Science.gov

Sample records for joint alignment affect

  1. Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment.

    PubMed

    Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Farshad, Mazda T; Snedeker, Jess G

    2017-01-01

    This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:131-139, 2017. © 2016

  2. Joint Bayesian estimation of alignment and phylogeny.

    PubMed

    Redelings, Benjamin D; Suchard, Marc A

    2005-06-01

    We describe a novel model and algorithm for simultaneously estimating multiple molecular sequence alignments and the phylogenetic trees that relate the sequences. Unlike current techniques that base phylogeny estimates on a single estimate of the alignment, we take alignment uncertainty into account by considering all possible alignments. Furthermore, because the alignment and phylogeny are constructed simultaneously, a guide tree is not needed. This sidesteps the problem in which alignments created by progressive alignment are biased toward the guide tree used to generate them. Joint estimation also allows us to model rate variation between sites when estimating the alignment and to use the evidence in shared insertion/deletions (indels) to group sister taxa in the phylogeny. Our indel model makes use of affine gap penalties and considers indels of multiple letters. We make the simplifying assumption that the indel process is identical on all branches. As a result, the probability of a gap is independent of branch length. We use a Markov chain Monte Carlo (MCMC) method to sample from the posterior of the joint model, estimating the most probable alignment and tree and their support simultaneously. We describe a new MCMC transition kernel that improves our algorithm's mixing efficiency, allowing the MCMC chains to converge even when started from arbitrary alignments. Our software implementation can estimate alignment uncertainty and we describe a method for summarizing this uncertainty in a single plot.

  3. Photosensors used to maintain welding electrode-to-joint alignment

    NASA Technical Reports Server (NTRS)

    Bowen, J. B.

    1965-01-01

    Photosensors maintain electrode-to-joint alignment in automatic precision arc welding. They detect the presence and relative position of a joint to be welded and actuate a servomechanism to guide the welding head accordingly thus permitting alignment for more than straight line or true circle joints.

  4. A self-aligning knee joint for walking assistance devices.

    PubMed

    Byungjune Choi; Younbaek Lee; Jeonghun Kim; Minhyung Lee; Jongwon Lee; Se-Gon Roh; Hyundo Choi; Yong-Jae Kim; Jung-Yun Choi

    2016-08-01

    This paper presents a novel self-aligning knee mechanism for walking assistance devices for the elderly to provide physical gait assistance. Self-aligning knee joints can assist in flexion/extension motions of the knee joint and compensate the knee's transitional movements in the sagittal plane. In order to compensate the center of rotation, which moves with the flexion/extension motion of the human knee joint, a self-aligning knee joint is proposed that adds redundant degrees of freedom (i.e., 2-DoF) to the 1-DoF revolute joint. The key idea of the proposed mechanism is to decouple joint rotations and translations for use in lower-extremity wearable devices. This paper describes the mechanical design of this self-aligning knee mechanism and its implementation on a wearable robot and in preliminary experiments. The performance of the proposed mechanism is verified by simulations and experiments.

  5. Determining knee joint alignment using digital photographs.

    PubMed

    Schmitt, Holger; Kappel, Hannes; Moser, Michael T; Cardenas-Montemayor, Eloy; Engelleiter, Karoly; Kuni, Benita; Clarius, Michael

    2008-08-01

    The objective of this work is to find out how reliably knee joint alignment can be measured from a standardized photograph and what influence changes in the standing position have on the angles measured. The interrater, intrarater, and test-retest reliability were evaluated. The influence of image-object distance, the distance between the legs and leg rotation on the measured angles was evaluated. In addition to the digital photographs, 10 full-length radiographs were obtained in an upright position to determine whether the measured angles represent the anatomic axis or mechanical axis. There was high correlation between the interrater (ICC 0.997), intrarater (ICC 0.989) and test-retest reliability (ICC 0.904). Only slight deviation was found with the changes in radiograph-object distance (0 degrees -1.8 degrees ). With feet together varus malalignment was greater. Leg rotation showed a strong influence on the measured results (ICC 0.658). The angle measured in the digital photographs reflects the mechanical axis with only slight deviation (0.12 degrees -1.9 degrees ). The measurement of the clinical axis using standardized radiography is highly reliable and can be used for individual follow-up of varus and valgus malalignments.

  6. Peri-talar re-alignment osteotomy for joint preservation in asymmetrical ankle osteoarthritis

    PubMed Central

    Yi, Young; Lee, Woochun

    2017-01-01

    Various types of re-alignment surgery are used to preserve the ankle joint in cases of intermediate ankle arthritis with partial joint space narrowing. The short-term and mid-term results after re-alignment surgery are promising, with substantial post-operative pain relief and functional improvement that is reflected by high rates of patient satisfaction. In this context, re-alignment surgery can preserve the joint and reduce the pathological load that acts on the affected area. Good clinical and radiological outcomes can be achieved in asymmetrical ankle osteoarthritis by understanding the specific deformities and appropriate indications for different surgical techniques. Cite this article: EFORT Open Rev 2017;2:324-331. DOI: 10.1302/2058-5241.2.160021 PMID:28828181

  7. StatAlign: an extendable software package for joint Bayesian estimation of alignments and evolutionary trees.

    PubMed

    Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2008-10-15

    Bayesian analysis is one of the most popular methods in phylogenetic inference. The most commonly used methods fix a single multiple alignment and consider only substitutions as phylogenetically informative mutations, though alignments and phylogenies should be inferred jointly as insertions and deletions also carry informative signals. Methods addressing these issues have been developed only recently and there has not been so far a user-friendly program with a graphical interface that implements these methods. We have developed an extendable software package in the Java programming language that samples from the joint posterior distribution of phylogenies, alignments and evolutionary parameters by applying the Markov chain Monte Carlo method. The package also offers tools for efficient on-the-fly summarization of the results. It has a graphical interface to configure, start and supervise the analysis, to track the status of the Markov chain and to save the results. The background model for insertions and deletions can be combined with any substitution model. It is easy to add new substitution models to the software package as plugins. The samples from the Markov chain can be summarized in several ways, and new postprocessing plugins may also be installed.

  8. Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics.

    PubMed

    Rubenson, Jonas; Lloyd, David G; Besier, Thor F; Heliams, Denham B; Fournier, Paul A

    2007-07-01

    Although locomotor kinematics in walking and running birds have been examined in studies exploring many biological aspects of bipedalism, these studies have been largely limited to two-dimensional analyses. Incorporating a five-segment, 17 degree-of-freedom (d.f.) kinematic model of the ostrich hind limb developed from anatomical specimens, we quantified the three-dimensional (3-D) joint axis alignment and joint kinematics during running (at approximately 3.3 m s(-1)) in the largest avian biped, the ostrich. Our analysis revealed that the majority of the segment motion during running in the ostrich occurs in flexion/extension. Importantly, however, the alignment of the average flexion/extension helical axes of the knee and ankle are rotated externally to the direction of travel (37 degrees and 21 degrees , respectively) so that pure flexion and extension at the knee will act to adduct and adbuct the tibiotarsus relative to the plane of movement, and pure flexion and extension at the ankle will act to abduct and adduct the tarsometatarsus relative to the plane of movement. This feature of the limb anatomy appears to provide the major lateral (non-sagittal) displacement of the lower limb necessary for steering the swinging limb clear of the stance limb and replaces what would otherwise require greater adduction/abduction and/or internal/external rotation, allowing for less complex joints, musculoskeletal geometry and neuromuscular control. Significant rotation about the joints' non-flexion/extension axes nevertheless occurs over the running stride. In particular, hip abduction and knee internal/external and varus/valgus motion may further facilitate limb clearance during the swing phase, and substantial non-flexion/extension movement at the knee is also observed during stance. Measurement of 3-D segment and joint motion in birds will be aided by the use of functionally determined axes of rotation rather than assumed axes, proving important when interpreting the

  9. Joint alignment of multispectral images via semidefinite programming

    PubMed Central

    Zheng, Yuanjie; Wang, Yu; Jiao, Wanzhen; Hou, Sujuan; Ren, Yanju; Qin, Maoling; Hou, Dewen; Luo, Chao; Wang, Hong; Gee, James; Zhao, Bojun

    2017-01-01

    In this paper, we introduce a novel feature-point-matching based framework for achieving an optimized joint-alignment of sequential images from multispectral imaging (MSI). It solves a low-rank and semidefinite matrix that stores all pairwise-image feature-mappings by minimizing the total amount of point-to-point matching cost via a convex optimization of a semidefinite programming formulation. This unique strategy takes a complete consideration of the information aggregated by all point-matching costs and enables the entire set of pairwise-image feature-mappings to be solved simultaneously and near-optimally. Our framework is capable of running in an automatic or interactive fashion, offering an effective tool for eliminating spatial misalignments introduced into sequential MSI images during the imaging process. Our experimental results obtained from a database of 28 sequences of MSI images of human eye demonstrate the superior performances of our approach to the state-of-the-art techniques. Our framework is potentially invaluable in a large variety of practical applications of MSI images. PMID:28270991

  10. Cell flexibility affects the alignment of model myxobacteria.

    PubMed

    Janulevicius, Albertas; van Loosdrecht, Mark C M; Simone, Angelo; Picioreanu, Cristian

    2010-11-17

    Myxobacteria are social bacteria that exhibit a complex life cycle culminating in the development of multicellular fruiting bodies. The alignment of rod-shaped myxobacteria cells within populations is crucial for development to proceed. It has been suggested that myxobacteria align due to mechanical interactions between gliding cells and that cell flexibility facilitates reorientation of cells upon mechanical contact. However, these suggestions have not been based on experimental or theoretical evidence. Here we created a computational mass-spring model of a flexible rod-shaped cell that glides on a substratum periodically reversing direction. The model was formulated in terms of experimentally measurable mechanical parameters, such as engine force, bending stiffness, and drag coefficient. We investigated how cell flexibility and motility engine type affected the pattern of cell gliding and the alignment of a population of 500 mechanically interacting cells. It was found that a flexible cell powered by engine force at the rear of the cell, as suggested by the slime extrusion hypothesis for myxobacteria motility engine, would not be able to glide in the direction of its long axis. A population of rigid reversing cells could indeed align due to mechanical interactions between cells, but cell flexibility impaired the alignment.

  11. Rubber hand illusion affects joint angle perception.

    PubMed

    Butz, Martin V; Kutter, Esther F; Lorenz, Corinna

    2014-01-01

    The Rubber Hand Illusion (RHI) is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.

  12. Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.

    PubMed

    Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg

    2015-01-01

    Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.

  13. Accurate Joint-Alignment of Indocyanine Green and Fluorescein Angiograph Sequences for Treatment of Subretinal Lesions.

    PubMed

    Chia-Ling Tsai; Hung-Chuan Hsu; Xin-Chang Wu; Shih-Jen Chen; Wei-Yang Lin

    2017-05-01

    In ophthalmology, aligning images in indocyanine green and fluorescein angiograph sequences is important for the treatment of subretinal lesions. This paper introduces an algorithm that is tailored to align jointly in a common reference space all the images in an angiogram sequence containing both modalities. To overcome the issues of low image contrast and low signal-to-noise ratio for late-phase images, the structural similarity between two images is enhanced using Gabor wavelet transform. Image pairs are pairwise registered and the transformations are simultaneously and globally adjusted for a mutually consistent joint alignment. The joint registration process is incremental and the success depends on the correctness of matches from the pairwise registration. To safeguard the joint process, our system performs the consistency test to exclude incorrect pairwise results automatically to ensure correct matches as more images are jointly aligned. Our dataset consists of 60 sequences of polypoidal choroidal vasculopathy collected by the EVEREST Study Group. On average, each sequence contains 20 images. Our algorithm successfully pairwise registered 95.04% of all image pairs, and joint registered 98.7% of all images, with an average alignment error of 1.58 pixels.

  14. Elbow Position Affects Distal Radioulnar Joint Kinematics

    PubMed Central

    Fu, Eric; Li, Guoan; Souer, Sebastiaan; Lozano-Calderon, Santiago; Herndon, James H.; Jupiter, Jesse B.; Chen, Neal C.

    2009-01-01

    Previous in vivo and in vitro studies of forearm supination/pronation suggest that distal radioulnar joint kinematics may be affected by elbow flexion. The primary hypotheses tested by this study were that in vivo: 1) ulnar variance changes with elbow flexion and forearm rotation and 2) the arc of forearm rotation changes in relationship to elbow flexion. Materials and Methods Changes in radioulnar kinematics during forearm supination/pronation and elbow flexion (0–90°) were studied in five uninjured subjects using computed tomography, dual-orthogonal fluoroscopy, and three-dimensional modeling. Analysis of variance and post-hoc testing was performed. Results Proximal translation of the radius was greatest with the elbow flexed to 90° with the arm in mid-pronation. With the arm in mid-pronation, the translation of the radius was significantly greater at 0° versus 45° of elbow flexion (0.82 ± 0.59 mm v. 0.65 ± 0.80 mm, F: 4.49, Post Hoc: 0.055; p = 0.05), and significantly smaller at 45° versus 90° of elbow flexion (0.65 ± 0.80 mm v. 0.97 ± 0.35 mm, F: 4.49, Post Hoc: 0.048; p = 0.05). Proximal translation of the radius in mid-pronation was significantly greater than when the forearm was in a supinated position when the elbow was at 0° or 90° flexion (F: 14.90, post-hoc: < 0.01; p < 0.01, F: 19.11, post-hoc: < 0.01, p < 0.01). The arc of forearm rotation was significantly decreased at 0° compared to 90° of elbow flexion (129.3 ± 22.2° v 152.8 ± 14.4°, F: 3.29, post-hoc: 0.79; p = 0.09). The center of rotation shifted volarly and ulnarly with increasing elbow extension. Discussion Elbow position affects the kinematics of the distal radioulnar joint. The kinematics of the distal radioulnar joint are primarily affected by forearm rotation and secondarily affected by elbow flexion. These findings have clinical relevance to our understanding of ulnar impaction, and how elbow position affects the proximal-distal translation of the radius. These

  15. PARTS: probabilistic alignment for RNA joinT secondary structure prediction.

    PubMed

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H

    2008-04-01

    A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu.

  16. PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction

    PubMed Central

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.

    2008-01-01

    A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945

  17. Rapid alignment of x-ray and electron nanotomography data using joint iterative reconstruction and reprojection

    DOE PAGES

    Gürsoy, Doğa; Hong, Young Pyo; He, Kuan; ...

    2017-09-18

    As x-ray and electron tomography is pushed farther into the nanoscale, the limitations of rotation stages become more apparent leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality 3D images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. We characterize convergence in simulations, and show its application in x-ray and electron nanotomography.

  18. Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection

    DOE PAGES

    Gürsoy, Doğa; Hong, Young P.; He, Kuan; ...

    2017-09-18

    As x-ray and electron tomography is pushed farther into the nanoscale, the limitations of rotation stages become more apparent leading to challenges in the alignment of the acquired projection images. Here we present an approach for rapid post-acquisition alignment of these projections to obtain high quality 3D images. Our approach is based on a joint estimation of alignment errors, and the object, using an iterative refinement procedure. We characterize convergence in simulations, and show its application in x-ray and electron nanotomography.

  19. Apparatus for maintaining alignment of a shrinking weld joint in an electron-beam welding operation

    DOEpatents

    Trent, Jett B.; Murphy, Jimmy L.

    1981-01-01

    The present invention is directed to an apparatus for automatically maintaining a shrinking weld joint in alignment with an electron beam during an electron-beam multipass-welding operation. The apparatus utilizes a biasing device for continually urging a workpiece-supporting face plate away from a carriage mounted base that rotatably supports the face plate. The extent of displacement of the face plate away from the base is indicative of the shrinkage occuring in the weld joint area. This displacement is measured and is used to move the base on the carriage a distance equal to one-half the displacement for aligning the weld joint with the electron beam during each welding pass.

  20. Influences of Alignment and Obesity on Knee Joint Loading in Osteoarthritic Gait

    PubMed Central

    Messier, Stephen P.; Pater, Mackenzie; Beavers, Daniel P.; Legault, Claudine; Loeser, Richard F.; Hunter, David J.; DeVita, Paul

    2014-01-01

    Objective To determine the influences of frontal plane knee alignment and obesity on knee joint loads in older, overweight and obese adults with knee osteoarthritis. Methods Cross-sectional investigation of alignment and obesity on knee joint loads using community dwelling older adults (age ≥ 55 yrs.; 27 kg·m−2 ≥ BMI ≤ 41 kg·m−2; 69% female) with radiographic knee osteoarthritis that were a subset of participants (157 out of 454) enrolled in the Intensive Diet and Exercise for Arthritis (IDEA) clinical trial. Results A higher BMI was associated with greater (p = 0.0006) peak knee compressive forces [overweight, 2411 N (2182, 2639), class 1 obesity, 2772 N (2602, 2943), class 2+ obesity, 2993 N (2796, 3190)] and greater (p = 0.004) shear forces [overweight, 369 N (322, 415), class 1 obesity, 418 N (384, 453), class 2+ obesity, 472 N (432, 513)], independent of alignment, and varus alignment was associated (p < 0.0001) with greater peak external knee adduction moments, independent of BMI [valgus, 18.7 Nm (15.1, 22.4), neutral, 27.7 Nm (24.0, 31.4), varus, 37.0 Nm (34.4, 39.7)]. Conclusion BMI and alignment were associated with different joint loading measures; alignment was more closely associated with the asymmetry or imbalance of loads across the medial and lateral knee compartments as reflected by the frontal plane external adduction moment, while BMI was associated with the magnitude of total tibio-femoral force. These data may be useful in selecting treatment options for knee osteoarthritis patients (e.g., diet to reduce compressive loads or bracing to change alignment). PMID:24857973

  1. Influences of alignment and obesity on knee joint loading in osteoarthritic gait.

    PubMed

    Messier, S P; Pater, M; Beavers, D P; Legault, C; Loeser, R F; Hunter, D J; DeVita, P

    2014-07-01

    To determine the influences of frontal plane knee alignment and obesity on knee joint loads in older, overweight and obese adults with knee osteoarthritis (OA). Cross-sectional investigation of alignment and obesity on knee joint loads using community dwelling older adults (age ≥ 55 years; 27 kg m(-2) ≥ body mass or body mass index (BMI) ≤ 41 kg m(-2); 69% female) with radiographic knee OA that were a subset of participants (157 out of 454) enrolled in the Intensive Diet and Exercise for Arthritis (IDEA) clinical trial. A higher BMI was associated with greater (P = 0.0006) peak knee compressive forces [overweight, 2411 N (2182, 2639), class 1 obesity, 2772 N (2602, 2943), class 2+ obesity, 2993 N (2796, 3190)] and greater (P = 0.004) shear forces [overweight, 369 N (322, 415), class 1 obesity, 418 N (384, 453), class 2+ obesity, 472 N (432, 513)], independent of alignment, and varus alignment was associated (P < 0.0001) with greater peak external knee adduction moments, independent of BMI [valgus, 18.7 Nm (15.1, 22.4), neutral, 27.7 Nm (24.0, 31.4), varus, 37.0 Nm (34.4, 39.7)]. BMI and alignment were associated with different joint loading measures; alignment was more closely associated with the asymmetry or imbalance of loads across the medial and lateral knee compartments as reflected by the frontal plane external adduction moment, while BMI was associated with the magnitude of total tibiofemoral force. These data may be useful in selecting treatment options for knee OA patients (e.g., diet to reduce compressive loads or bracing to change alignment). Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment.

    PubMed

    Kutzner, I; Bender, A; Dymke, J; Duda, G; von Roth, P; Bergmann, G

    2017-06-01

    Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs. The medial force ratio strongly correlated with the tibiofemoral alignment in the static condition of one-legged stance (R² = 0.88) and dynamic single-limb loading (R² = 0.59) with varus malalignment leading to increased medial force ratios of up to 88%. In contrast, the correlation between leg alignment and magnitude of medial compartment force was much less pronounced. A lateral shift of force occurred during activities with double-limb support and higher knee flexion angles. The medial force ratio depends on both the tibiofemoral alignment and the nature of the activity involved. It cannot be generalised to a single value. Higher medial ratios during single-limb loading are associated with varus malalignment in TKA. The current trend towards a 'constitutional varus' after joint replacement, in terms of overall tibiofemoral alignment, should be considered carefully with respect to the increased medial force ratio. Cite this article: Bone Joint J 2017;99-B:779-87. ©2017 The British Editorial Society of Bone & Joint Surgery.

  3. Do ergogenic AIDS alter lower extremity joint alignment during a functional movement lunge prior to and following an exercise bout?

    PubMed

    Mills, Chris; Knight, James; Milligan, Gemma

    2015-03-29

    Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise.

  4. Do Ergogenic Aids Alter Lower Extremity Joint Alignment During a Functional Movement Lunge Prior to and Following an Exercise Bout?

    PubMed Central

    Mills, Chris; Knight, James; Milligan, Gemma

    2015-01-01

    Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805

  5. Sagittal alignment of the first metatarsophalangeal joint after arthrodesis for rheumatoid forefoot deformity.

    PubMed

    Tanabe, Akihiko; Majima, Tokifumi; Onodera, Tomohiro; Sawaguchi, Naohiro; Watanabe, Takuya; Kasahara, Yasuhiko; Takahashi, Daisuke

    2013-01-01

    The present study assessed the midterm results of reconstruction for rheumatoid forefoot deformity with arthrodesis of the first metatarsophalangeal (MTP) joint, scarf osteotomy, resection arthroplasty of the metatarsal head of the lesser toes, and surgical repair of hammertoe deformity (arthrodesis of the proximal interphalangeal joint). Special focus was placed on the sagittal alignment of the first metatarsophalangeal joint after arthrodesis. We retrospectively evaluated the postoperative clinical outcomes and radiographic findings for 16 consecutive female patients (20 feet) with symptomatic rheumatoid forefoot deformities. The mean duration of follow-up was 7.9 (range 4 to 13) years. All first MTP joints and first metatarsal bones were fused successfully. The mean value of the American Orthopaedic Foot and Ankle Society and Japanese Society for Foot Surgery clinical scores significantly improved overall, except for 2 patients (10%), who complained of first toe pain at the final follow-up visit owing to sagittal misalignment of the fused first MTP joint. Sagittal alignment of the first metatarsal varies greatly because of the rheumatoid midfoot and hindfoot deformities. Therefore, inclination of the first metatarsal should be considered when determining the first MTP joint sagittal fusion angle.

  6. Stereoradiogrammetric technique for estimating alignment of the joints in the hand and wrist.

    PubMed

    Runciman, R J; Bryant, J T; Small, C F; Fujita, N; Cooke, T D

    1993-03-01

    A method and apparatus for quantitative measurement of the alignment and motion of the joints of the hand in three dimensions has been developed using stereoradiogrammetric principles. Alignment in planes of flexion-extension and radial-ulnar deviation can be determined to within 2.5 degrees; rotation about the long axis of the metacarpals or phalanges is more difficult to determine, and can be measured to within 7 degrees. Stereo views subtending angles in the range of 40 degrees were found to optimize the total system accuracy.

  7. Capsulotomy Size Affects Hip Joint Kinematic Stability.

    PubMed

    Wuerz, Thomas H; Song, Sang H; Grzybowski, Jeffrey S; Martin, Hal D; Mather, Richard C; Salata, Michael J; Espinoza Orías, Alejandro A; Nho, Shane J

    2016-08-01

    To evaluate the effect of capsulotomy size and subsequent repair on the biomechanical stability of hip joint kinematics through external rotation of a cadaveric hip in neutral flexion. Eight fresh-frozen cadaveric hip specimens were used in this study. Each hip was tested under torsional loads of 6 N·m applied by a servohydraulic frame and transmitted by a pulley system. The test conditions were (1) neutral flexion with the capsule intact, (2) neutral flexion with a 4-cm interportal capsulotomy, (3) neutral flexion with a 6-cm capsulotomy, and (4) neutral flexion with capsulotomy repair. Soft tissue was retained during all interventions. Measures indicating joint kinematics (range of motion [ROM], hysteresis area [HA], and neutral zone [NZ]) were obtained for each condition. For all hip specimens, the average ROM, HA, and NZ were calculated relative to the intact capsular state (100%) and expressed in terms of percentage (± SD). The findings for ROM were as follows: intact, 100%; 4 cm, 107.42% ± 5.69%; 6 cm, 113.40% ± 7.92%; and repair, 99.78% ± 3.77%. The findings for HA were as follows: intact, 100%; 4 cm, 108.30% ± 9.30%; 6 cm, 115.30% ± 13.92%; and repair, 99.47% ± 4.12%. The findings for NZ were as follows: intact, 100%; 4 cm, 139.61% ± 62.35%; 6 cm, 169.25% ± 78.19%; and repair, 132.03% ± 64.38%. Statistically significant differences in ROM existed between the intact and 4-cm conditions (P = .039), the intact and 6-cm conditions (P < .0001), the 4-cm and repair conditions (P = .033), and the 6-cm and repair conditions (P < .0001). There was no statistically significant difference between the intact and repair conditions (P > .99) or between the 4- and 6-cm conditions (P = .126). Under laboratory-based conditions, larger-sized capsulotomies were accompanied by increases in all 3 measures of joint mobility: ROM, HA, and NZ at time zero. Complete capsular closure effectively restored these measures when compared with the intact condition

  8. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    PubMed Central

    Askari, Davood; Ghasemi-Nejhad, Mehrdad N

    2012-01-01

    The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength) using carbon nanotubes (CNTs) as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests. PMID:27877502

  9. Knee osteoarthritis affects the distribution of joint moments during gait.

    PubMed

    Zeni, Joseph A; Higginson, Jill S

    2011-06-01

    Alterations in lower extremity kinetics have been shown to exist in persons with knee osteoarthritis (OA), however few investigations have examined how the intersegmental coordination of the lower extremity kinetic chain varies in the presence of knee joint pathology. The objective of this study was to evaluate how knee OA and walking speed affect total support moment and individual joint contributions to the total support moment. Fifteen healthy subjects and 30 persons with knee OA participated in 3D walking analysis at constrained (1.0 m/s), self-selected and fastest tolerable walking speeds. Individual joint contributions to total support moment were analyzed using separate ANOVAs with one repeated measure (walking speed). Linear regression analysis was used to evaluate the relationship between walking speed and joint contribution. Persons with knee OA reduced the contribution of the knee joint when walking at constrained (p = 0.04) and self-selected walking speeds (p = 0.009). There was a significant increase in the ankle contribution and a significant decrease in the hip contribution when walking speed was increased (p < 0.004), however individual walking speeds were not significantly related to joint contributions. This suggests that the relationship between walking speed and joint contribution is dependent on the individual's control strategy and we cannot estimate the joint contribution solely based on walking speed. The slower gait speed observed in persons with knee OA is not responsible for the reduction in knee joint moments, rather this change is likely due to alterations in the neuromuscular strategy of the lower extremity kinetic chain in response to joint pain or muscle weakness.

  10. Knee Osteoarthritis Affects the Distribution of Joint Moments During Gait

    PubMed Central

    Zeni, Joseph A; Higginson, Jill S.

    2010-01-01

    Alterations in lower extremity kinetics have been shown to exist in persons with knee osteoarthritis (OA), however few investigations have examined how the intersegmental coordination of the lower extremity kinetic chain varies in the presence of knee joint pathology. The objective of this study was to evaluate the how knee OA and walking speed affect total support moment and individual joint contributions to the total support moment. Fifteen healthy subjects and 30 persons with knee OA participated in 3D walking analysis at constrained (1.0 m/s), self-selected and fastest tolerable walking speeds. Individual joint contributions to total support moment were analyzed using separate ANOVAs with one repeated measure (walking speed). Linear regression analysis was used to evaluate the relationship between walking speed and joint contribution. Persons with knee OA reduced the contribution of the knee joint when walking at constrained (p=0.04) and self-selected walking speeds (p=0.009). There was a significant increase in the ankle contribution and a significant decrease in the hip contribution when walking speed was increased (P<0.004), however individual walking speeds were not significantly related to joint contributions. This suggests that the relationship between walking speed and joint contribution is dependent on the individual’s control strategy and we cannot estimate the joint contribution solely on walking speed. The slower gait speed observed in persons with knee OA is not responsible for the reduction in knee joint moments, rather this change is likely due to alterations in the neuromuscular strategy of the lower extremity kinetic chain in response to joint pain or muscle weakness. PMID:20510618

  11. Effects of Patellofemoral Taping on Patellofemoral Joint Alignment and Contact Area During Weight Bearing.

    PubMed

    Ho, Kai-Yu; Epstein, Ryan; Garcia, Ron; Riley, Nicole; Lee, Szu-Ping

    2017-02-01

    Study Design Controlled laboratory study. Background Although it has been theorized that patellofemoral joint (PFJ) taping can correct patellar malalignment, the effects of PFJ taping techniques on patellar alignment and contact area have not yet been studied during weight bearing. Objective To examine the effects of 2 taping approaches (Kinesio and McConnell) on PFJ alignment and contact area. Methods Fourteen female subjects with patellofemoral pain and PFJ malalignment participated. Each subject underwent a pretaping magnetic resonance imaging (MRI) scan session and 2 MRI scan sessions after the application of the 2 taping techniques, which aimed to correct lateral patellar displacement. Subjects were asked to report their pain level prior to each scan session. During MRI assessment, subjects were loaded with 25% of body weight on their involved/more symptomatic leg at 0°, 20°, and 40° of knee flexion. The outcome measures included patellar lateral displacement (bisect-offset [BSO] index), mediolateral patellar tilt angle, patellar height (Insall-Salvati ratio), contact area, and pain. Patellofemoral joint alignment and contact area were compared among the 3 conditions (no tape, Kinesio, and McConnell) at 3 knee angles using a 2-factor, repeated-measures analysis of variance. Pain was compared among the 3 conditions using the Friedman test and post hoc Wilcoxon signed-rank tests. Results Our data did not reveal any significant effects of either McConnell or Kinesio taping on the BSO index, patellar tilt angle, Insall-Salvati ratio, or contact area across the 3 knee angles, whereas knee angle had a significant effect on the BSO index and contact area. A reduction in pain was observed after the application of the Kinesio taping technique. Conclusion In a weight-bearing condition, this preliminary study did not support the use of PFJ taping as a medial correction technique to alter the PFJ contact area or alignment of the patella. J Orthop Sports Phys Ther 2017

  12. Body position reproducibility and joint alignment stability criticality on a muscular strength research device

    NASA Astrophysics Data System (ADS)

    Nunez, F.; Romero, A.; Clua, J.; Mas, J.; Tomas, A.; Catalan, A.; Castellsaguer, J.

    2005-08-01

    MARES (Muscle Atrophy Research and Exercise System) is a computerized ergometer for neuromuscular research to be flown and installed onboard the International Space Station in 2007. Validity of data acquired depends on controlling and reducing all significant error sources. One of them is the misalignment of the joint rotation axis with respect to the motor axis.The error induced on the measurements is proportional to the misalignment between both axis. Therefore, the restraint system's performance is critical [1]. MARES HRS (Human Restraint System) assures alignment within an acceptable range while performing the exercise (results: elbow movement:13.94mm+/-5.45, Knee movement: 22.36mm+/- 6.06 ) and reproducibility of human positioning (results: elbow movement: 2.82mm+/-1.56, Knee movement 7.45mm+/-4.8 ). These results allow limiting measurement errors induced by misalignment.

  13. How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces

    PubMed Central

    Lerner, Zachary F.; DeMers, Matthew S.; Delp, Scott L.; Browning, Raymond C.

    2015-01-01

    Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined via radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. PMID:25595425

  14. A Novel Joint Power and Feedback Bit Allocation Interference Alignment Scheme for Wireless Sensor Networks

    PubMed Central

    Li, Shibao; He, Chang; Wang, Yixin; Zhang, Yang; Liu, Jianhang; Huang, Tingpei

    2017-01-01

    It is necessary to improve the energy efficiency of batteries in wireless sensor networks (WSNs). The multiple-input multiple-output (MIMO) technique has become an important means to ameliorate WSNs, and interference management is the core of improving energy efficiency. A promising approach is interference alignment (IA), which effectively reduces the interference and improves the throughput of a system in the MIMO interference channels. However, the IA scheme requires perfect channel state information (CSI) at all transceivers in practice, which results in considerable feedback overhead. Thus, limited IA feedback has attracted much attention. In this paper, we analyze the throughput loss of the K-user MIMO interference channels when each transmitter delivers multiple streams in one slot, and derives the upper-bound of the system interference leakage and throughput loss. Then, to reduce the interference leakage and throughput loss for the MIMO interference alignment with limited feedback, a joint power and feedback bit allocation optimization scheme is proposed. The simulation results show that, compared with the conventional schemes, the presented optimal scheme achieves less residual interference and better performance in the system throughput. PMID:28287434

  15. A Novel Joint Power and Feedback Bit Allocation Interference Alignment Scheme for Wireless Sensor Networks.

    PubMed

    Li, Shibao; He, Chang; Wang, Yixin; Zhang, Yang; Liu, Jianhang; Huang, Tingpei

    2017-03-10

    It is necessary to improve the energy efficiency of batteries in wireless sensor networks (WSNs). The multiple-input multiple-output (MIMO) technique has become an important means to ameliorate WSNs, and interference management is the core of improving energy efficiency. A promising approach is interference alignment (IA), which effectively reduces the interference and improves the throughput of a system in the MIMO interference channels. However, the IA scheme requires perfect channel state information (CSI) at all transceivers in practice, which results in considerable feedback overhead. Thus, limited IA feedback has attracted much attention. In this paper, we analyze the throughput loss of the K-user MIMO interference channels when each transmitter delivers multiple streams in one slot, and derives the upper-bound of the system interference leakage and throughput loss. Then, to reduce the interference leakage and throughput loss for the MIMO interference alignment with limited feedback, a joint power and feedback bit allocation optimization scheme is proposed. The simulation results show that, compared with the conventional schemes, the presented optimal scheme achieves less residual interference and better performance in the system throughput.

  16. Modeling the stance leg in two-dimensional analyses of sprinting: inclusion of the MTP joint affects joint kinetics.

    PubMed

    Bezodis, Neil E; Salo A, I T; Trewartha, Grant

    2012-05-01

    Two-dimensional analyses of sprint kinetics are commonly undertaken but often ignore the metatarsalphalangeal (MTP) joint and model the foot as a single segment. Due to the linked-segment nature of inverse dynamics analyses, the aim of this study was to investigate the effect of ignoring the MTP joint on the calculated joint kinetics at the other stance leg joints during sprinting. High-speed video and force platform data were collected from four to five trials for each of three international athletes. Resultant joint moments, powers, and net work at the stance leg joints during the first stance phase after block clearance were calculated using three different foot models. By ignoring the MTP joint, peak extensor moments at the ankle, knee, and hip were on average 35% higher (p < .05 for each athlete), 40% lower (p < .05), and 9% higher (p > .05), respectively, than those calculated with the MTP joint included. Peak ankle and knee joint powers and net work at all joints were also significantly (p < .05) different. By ignoring a genuine MTP joint plantar flexor moment, artificially high peak ankle joint moments are calculated, and these also affect the calculated joint kinetics at the knee.

  17. Analysis of the affected joints in rheumatoid arthritis patients in a large Japanese cohort.

    PubMed

    Kanazawa, Teruhisa; Nishino, Jinju; Tohma, Shigeto; Tanaka, Sakae

    2013-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disorder involving multiple joints. We investigated the distribution of the affected joints and the relationships among this distribution, the disease activity, and the disease duration in Japanese RA patients by cross-sectional analysis using the National Database of Rheumatic Diseases by iR-net in Japan. A total of 6408 RA patients registered in the database were analyzed. In each patient, the location of joint swelling and joint tenderness of 68 joints was examined, and the relationships among the distribution of the affected joints, the disease activity as determined using the DAS28-ESR, and the disease duration were analyzed statistically. For the 6408 RA patients examined, the wrist was the most frequently affected site. There were some differences in the prevalence of tenderness and swelling; tenderness was frequently observed in large joints such as the knee, elbow and shoulder, while swelling was frequently observed in small joints such as the metacarpophalangeal joints. Although the frequency of involvement increased in all joints as disease activity increased, the pattern of distribution was not affected by disease activity. Furthermore, the distribution was not influenced by disease duration. Based on the results of this study, we can draw the following conclusions: (1) the wrist was the most affected joint; (2) there was a discrepancy between the distribution of swollen joints and that of tender joints; and (3) the distribution of affected joints was uniform regardless of disease activity.

  18. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Effect of soft tissue laxity of the knee joint on limb alignment correction in open-wedge high tibial osteotomy.

    PubMed

    Lee, Dae-Hee; Park, Sung-Chul; Park, Hyung-Joon; Han, Seung-Beom

    2016-12-01

    Open-wedge high tibial osteotomy (HTO) cannot always accurately correct limb alignment, resulting in under- or over-correction. This study assessed the relationship between soft tissue laxity of the knee joint and alignment correction in open-wedge HTO. This prospective study involved 85 patients (86 knees) undergoing open-wedge HTO for primary medial osteoarthritis. The mechanical axis (MA), weight-bearing line (WBL) ratio, and joint line convergence angle (JLCA) were measured on radiographs preoperatively and after 6 months, and the differences between the pre- and post-surgery values were calculated. Post-operative WBL ratios of 57-67 % were classified as acceptable correction. WBL ratios <57 and >67 % were classified as under- and over-corrections, respectively. Preoperative JLCA correlated positively with differences in MA (r = 0.358, P = 0.001) and WBL ratio (P = 0.003). Difference in JLCA showed a stronger correlation than preoperative JLCA with differences in MA (P < 0.001) and WBL ratio (P < 0.001). Difference in JLCA was the only predictor of both difference in MA (P < 0.001) and difference in WBL ratio (P < 0.001). The difference between pre- and post-operative JLCA differed significantly between the under-correction, acceptable-correction, and over-correction groups (P = 0.033). Preoperative JLCA, however, did not differ significantly between the three groups. Neither preoperative JLCA nor difference in JLCA correlated with change in posterior slope. Preoperative degree of soft tissue laxity in the knee joint was related to the degree of alignment correction, but not to alignment correction error, in open-wedge HTO. Change in soft tissue laxity around the knee from before to after open-wedge HTO correlated with both correction amount and correction error. Therefore, a too large change in JLCA from before to after open-wedge osteotomy may be due to an overly large reduction in JLCA following osteotomy, suggesting alignment over

  20. A comparative assessment of alternatives to the full-leg radiograph for determining knee joint alignment

    PubMed Central

    2012-01-01

    Background The purpose of this study was to assess the concurrent validity of alternative measures of frontal plane knee alignment, namely the radiographic anatomic axis and two clinical measures in patients complaining of knee malalignment as compared with the mechanical axis on full-length radiograph of lower limbs. Methods The knee-alignment angle was measured in 100 knees of 50 subjects with the chief complaint of frontal knee malalignment according to the following methods: lower-limb mechanical axis on radiograph, lower-limb anatomic axis on radiograph, distance between medial femoral condyles or medial malleoli using a calliper and lower-limb alignment using a goniometer. Data were analyzed using Pearson’s correlation coefficient and simple linear regression. Results The anatomic axis best correlated with the mechanical axis (r = 0.93, P<0.001), followed closely by the intercondylar/intermalleolar distance measured by calliper (r = 0.89, P<0.001). Significant correlation was also found between the mechanical-axis angle and the lower limb axis measured by goniometer (r = 0.67, P<0.001). Conclusions The anatomic axis on radiograph, the calliper method and to a lesser extent the goniometer measurement appear to be valid alternatives to the mechanical axis on full-leg radiograph for determining frontal plane knee alignment. These alternative measures have the potential to provide useful information regarding knee alignment and may increase the assessment of this parameter by clinicians and researchers. PMID:23110745

  1. Effect of Stomatognathic Alignment Exercise on Temporomandibular Joint Function and Swallowing Function of Stroke Patients with Limited Mouth Opening

    PubMed Central

    Oh, Duck-Won; Kang, Tae-Woo; Kim, Sun-Ju

    2013-01-01

    [Purpose] This study investigated the effects of stomatognathic alignment exercise on temporomandibular joint function and swallowing function of stroke patients presenting limited mouth opening. [Subjects] Fourteen subjects with post-stroke hemiparesis presenting limited mouth opening were randomly assigned to either the experimental group or the control group, with 7 subjects in each group. [Methods] Subjects in the experimental group participated in a stomatognathic alignment exercise program that consisted of mobility exercises of the TMJ and neck and postural correction. Main outcome measures were neck mobility, the active maximum range of mouth opening, the craniomandibular index (CMI), and the Mann assessment of swallowing ability (MASA) score. [Results] The changes in the values of the range of mouth opening, CMI, MASA, and all the parameters of neck mobility were significantly different between the groups. Furthermore, post-test values appeared to be significantly different for the range of mouth opening, the craniomandibular index, and the MASA scores between the groups (p>0.05). [Conclusion] Stomatognathic alignment exercise may improve TMJ function and swallowing function of patients with post-stroke hemiparesis. PMID:24259786

  2. Association between measures of patella height, morphologic features of the trochlea, and patellofemoral joint alignment: the MOST study.

    PubMed

    Stefanik, Joshua J; Zumwalt, Ann C; Segal, Neil A; Lynch, John A; Powers, Christopher M

    2013-08-01

    Patellofemoral joint (PFJ) malalignment (lateral patella displacement and tilt) has been proposed as a cause of patellofemoral pain. Patella height and/or the morphologic features of the femoral trochlea may predispose one to patella malalignment. The purposes of our study were to assess the associations among patella height, morphologic features of the trochlea, and measures of PFJ alignment and to determine which measures of patella height and morphologic features of the trochlea were the best predictors of PFJ alignment. Measures of patella height (Insall-Salvati ratio and modified Insall-Salvati ratio), morphologic features of the trochlea (sulcus angle, trochlear angle, lateral trochlear inclination, medial trochlear inclination), and PFJ alignment (bisect offset and patella tilt angle) were assessed in 566 knees from the Multicenter Osteoarthritis Study. Bisect offset was correlated with the Insall-Salvati ratio (r = 0.25) and lateral trochlear inclination (r = -0.38). Patella tilt angle correlated with the trochlear angle (-0.27) and lateral trochlear inclination (-0.32). Linear regression models including the Insall-Salvati ratio and lateral trochlear inclination explained 20% and 11% of the variance in bisect offset and patella tilt angle, respectively. Of the variables measured in the current study, the Insall-Salvati ratio and lateral trochlear inclination were the best predictors of lateral patella displacement and lateral tilt. This knowledge will aid clinicians in the identification of anatomic risk factors for PFJ malalignment and/or PFJ dysfunction.

  3. Effect of stomatognathic alignment exercise on temporomandibular joint function and swallowing function of stroke patients with limited mouth opening.

    PubMed

    Oh, Duck-Won; Kang, Tae-Woo; Kim, Sun-Ju

    2013-10-01

    [Purpose] This study investigated the effects of stomatognathic alignment exercise on temporomandibular joint function and swallowing function of stroke patients presenting limited mouth opening. [Subjects] Fourteen subjects with post-stroke hemiparesis presenting limited mouth opening were randomly assigned to either the experimental group or the control group, with 7 subjects in each group. [Methods] Subjects in the experimental group participated in a stomatognathic alignment exercise program that consisted of mobility exercises of the TMJ and neck and postural correction. Main outcome measures were neck mobility, the active maximum range of mouth opening, the craniomandibular index (CMI), and the Mann assessment of swallowing ability (MASA) score. [Results] The changes in the values of the range of mouth opening, CMI, MASA, and all the parameters of neck mobility were significantly different between the groups. Furthermore, post-test values appeared to be significantly different for the range of mouth opening, the craniomandibular index, and the MASA scores between the groups (p>0.05). [Conclusion] Stomatognathic alignment exercise may improve TMJ function and swallowing function of patients with post-stroke hemiparesis.

  4. Comparison of Lateral Closing-Wedge Versus Medial Opening-Wedge High Tibial Osteotomy on Knee Joint Alignment and Kinematics in the ACL-Deficient Knee.

    PubMed

    Ranawat, Anil S; Nwachukwu, Benedict U; Pearle, Andrew D; Zuiderbaan, Hendrik A; Weeks, Kenneth D; Khamaisy, Saker

    2016-12-01

    Lateral closing-wedge (LCW) and medial opening-wedge (MOW) high tibial osteotomies (HTOs) correct varus knee alignment and stabilize the anterior cruciate ligament (ACL)-deficient knee. Tibiofemoral and patellofemoral alignment and kinematics after HTO are not well quantified. To compare the effect of LCW and MOW HTO on tibiofemoral and patellofemoral alignment in the ACL-deficient knee. Controlled laboratory study. Anterior drawer, Lachman, and pivot-shift tests were performed on cadaveric specimens (N = 16), and anterior tibial translation and tibial rotation were measured for the native and ACL-sectioned knee. The right and left knee of each cadaveric specimen underwent an LCW and MOW HTO, respectively, and stability testing was repeated. All cadavers underwent pre- and postosteotomy computerized tomography with 3-dimensional computer modeling to determine the effect of HTO on posterior tibial slope, as well as tibial and patellofemoral axial plane alignment (tibial axial rotation and patellar axial tilt). Correction to neutral coronal alignment was obtained with both osteotomy techniques; however, larger posterior tibial slope neutralization was achieved with LCW compared with MOW (mean ± SD, 11° ± 3.8° vs 5° ± 5°). LCW demonstrated a greater decrease in anterior tibial translation (P < .05) during Lachman testing, with translation values approximating those of the native knee, especially for the lateral compartment. A similar decrease in anterior tibial translation with LCW was not found during anterior drawer testing. Anterior tibial translation did not improve for either the Lachman or the anterior drawer test after MOW. Osteotomy type did not affect tibial rotation with pivot shift. Relative to MOW, LCW resulted in greater tibial axial rotation and patellar axial tilt (7.7° ± 4° and 5.6° ± 3.9° [LCW], 2.8° ± 2.3° and 2.4° ± 0.9° [MOW], respectively; P < .05). LCW shows more reproducible posterior tibial slope neutralization and decreased

  5. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires.

    PubMed

    Lok, Shu K; Tian, Jia C; Wang, Yuxing; Lai, Ying H; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K L; Wang, Gan; Sou, Iam K

    2012-12-07

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  6. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires

    NASA Astrophysics Data System (ADS)

    Lok, Shu K.; Tian, Jia C.; Wang, Yuxing; Lai, Ying H.; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K. L.; Wang, Gan; Sou, Iam K.

    2012-12-01

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  7. Joint awareness after total knee arthroplasty is affected by pain and quadriceps strength.

    PubMed

    Hiyama, Y; Wada, O; Nakakita, S; Mizuno, K

    2016-06-01

    There is a growing interest in the use of patient-reported outcomes to provide a more patient-centered view on treatment. Forgetting the artificial joint can be regarded as the goal in joint arthroplasty. The goals of the study were to describe changes in joint awareness in the artificial joint after total knee arthroplasty (TKA), and to determine which factors among pain, knee range of motion (ROM), quadriceps strength, and functional ability affect joint awareness after TKA. Patients undergoing TKA demonstrate changes in joint awareness and joint awareness is associated with pain, knee ROM, quadriceps strength, and functional ability. This prospective cohort study comprised 63 individuals undergoing TKA, evaluated at 1, 6, and 12 months postoperatively. Outcomes included joint awareness assessed using the Forgotten Joint Score (FJS), pain score, knee ROM, quadriceps strength, and functional ability. Fifty-eight individuals completed all postoperative assessments. All measures except for knee extension ROM improved from 1 to 6 months. However, there were no differences in any measures from 6 to 12 months. FJS was affected most greatly by pain at 1 month and by quadriceps strength at 6 and 12 months. Patients following TKA demonstrate improvements in joint awareness and function within 6 months after surgery, but reach a plateau from 6 to 12 months. Quadriceps strength could contribute to this plateau of joint awareness. Prospective cohort study, IV. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. A robotic apparatus that dictates torque fields around joints without affecting inherent joint dynamics.

    PubMed

    Oytam, Yalchin; Lloyd, David; Reid, Campbell S; de Rugy, Aymar; Carson, Richard G

    2010-10-01

    This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.

  9. Relationship between proximal femoral and acetabular alignment in normal hip joints using 3-dimensional computed tomography.

    PubMed

    Buller, Leonard T; Rosneck, James; Monaco, Feno M; Butler, Robert; Smith, Travis; Barsoum, Wael K

    2012-02-01

    The bony architecture of the hip depends upon functional adaptation to mechanical usage via the dynamic interaction between the acetabulum and femoral head. Acetabular retroversion is thought to be a contributing factor of pincer-type femoroacetabular impingement. Studies of pathological hip joints suggest proximal femoral anatomy compensates for acetabular retroversion. HYPOTHESIS/ PURPOSE: The purpose of this study was to determine if a predictable relationship exists between proximal femoral and acetabular angles, age, and gender in normal hip joints. We hypothesized that, through functional adaptation to mechanical loading, a complementary developmental relationship exists between the acetabulum and proximal femur. Descriptive laboratory study. The femoral neck version, femoral neck shaft angle, acetabular version, acetabular inclination, and center edge angle were measured in 230 normal hip joints in 115 adults using 3-dimensional reconstruction software. Correlations between the angles, age, and gender were examined using the methods of stepwise regression and backward elimination. Regarding side-to-side comparison and variability, there was no statistically significant difference between the left and right sides in the average value of each angle measurement. The correlations specifically between angles, age, and gender were similar on the left and right sides for all pairs except femoral version and acetabular inclination. Regarding significant findings of the study, a positive correlation (P < .05) was found between femoral version and acetabular version (0.38° to 1°). A positive correlation was found between femoral neck shaft angle and acetabular version (0.21° to 1°). A negative correlation was found between femoral neck shaft angle and age (-0.17° to 1°). A positive correlation was found between acetabular version and female gender (2.6° to 1°). A positive correlation was found between center edge angle and female gender (2.8° to 1°). A

  10. Post-trial anatomical frame alignment procedure for comparison of 3D joint angle measurement from magnetic/inertial measurement units and camera-based systems.

    PubMed

    Li, Qingguo; Zhang, Jun-Tian

    2014-11-01

    Magnetic and inertial measurement units (MIMUs) have been widely used as an alternative to traditional camera-based motion capture systems for 3D joint kinematics measurement. Since these sensors do not directly measure position, a pre-trial anatomical calibration, either with the assistance of a special protocol/apparatus or with another motion capture system is required to establish the transformation matrices between the local sensor frame and the anatomical frame (AF) of each body segment on which the sensors are attached. Because the axes of AFs are often used as the rotational axes in the joint angle calculation, any difference in the AF determination will cause discrepancies in the calculated joint angles. Therefore, a direct comparison of joint angles between MIMU systems and camera-based systems is less meaningful because the calculated joint angles contain a systemic error due to the differences in the AF determination. To solve this problem a new post-trial AF alignment procedure is proposed. By correcting the AF misalignments, the joint angle differences caused by the difference in AF determination are eliminated and the remaining discrepancies are mainly from the measurement accuracy of the systems themselves. Lower limb joint angles from 30 walking trials were used to validate the effectiveness of the proposed AF alignment procedure. This technique could serve as a new means for calibrating magnetic/inertial sensor-based motion capture systems and correcting for AF misalignment in scenarios where joint angles are compared directly.

  11. How geometric details can affect the strength of adhesive lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1996-12-31

    The durability of adhesively bonded joints--when utilized as blade attachments--has a significant impact on the performance of wind turbines. Accordingly, there is interest in determining how geometric details affect the strength of these joints. Finite element analyses were performed to aid in the selection of three composite-to-metal joint geometries for compressive axial testing. Both monotonic and low-cycle fatigue tests were conducted. Analysis and testing of these joints provide insight into the effects of adding extra adhesive to the end of the bond or tapering the metal adherend. The issue of whether the relative performance of different joints in monotonic tests can be used to predict the relative fatigue strength of these joints is also addressed.

  12. Quantitative Analysis of the Degree of Frontal Rotation Required to Anatomically Align the First Metatarsal Phalangeal Joint During Modified Tarsal-Metatarsal Arthrodesis Without Capsular Balancing.

    PubMed

    Dayton, Paul; Kauwe, Merrell; DiDomenico, Lawrence; Feilmeier, Mindi; Reimer, Rachel

    2016-01-01

    The data from 35 consecutive patients with hallux valgus undergoing triplane arthrodesis at the first tarsal metatarsal joint were studied to determine the amount of first metatarsal frontal plane rotation (supination) needed to anatomically align the first metatarsal phalangeal joint on an anterior posterior radiograph without soft tissue balancing at the first metatarsal phalangeal joint. Radiographs were measured both pre- and postoperatively to assess the 1-2 intermetatarsal angle, hallux abductus angle, and tibial sesamoid position (TSP). The mean amount of varus (supination) rotation performed during correction was 22.1° ± 5.2° and the mean amount of intermetatarsal angle reduction achieved after completion of the procedure was 6.9° ± 3.0°. The TSP changed by a mean of 3.3° ± 1.2°. A series of univariate linear regression analyses was performed to analyze the relationship between the frontal plane rotation of the first metatarsal performed during the operation and the preoperative intermetatarsal angle, hallux abductus angle, and TSP. Greater preoperative TSP scores were associated with greater intraoperative varus (supination) rotation required for joint alignment. Direct observation of the alignment changes at the first metatarsal phalangeal joint after metatarsal rotation without distal procedures strengthened the notion that the frontal plane rotational position plays an important role in the bunion deformity. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    PubMed

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Novel Joint Spatial-Code Clustered Interference Alignment Scheme for Large-Scale Wireless Sensor Networks

    PubMed Central

    Wu, Zhilu; Jiang, Lihui; Ren, Guanghui; Zhao, Nan; Zhao, Yaqin

    2015-01-01

    Interference alignment (IA) has been put forward as a promising technique which can mitigate interference and effectively increase the throughput of wireless sensor networks (WSNs). However, the number of users is strictly restricted by the IA feasibility condition, and the interference leakage will become so strong that the quality of service will degrade significantly when there are more users than that IA can support. In this paper, a novel joint spatial-code clustered (JSCC)-IA scheme is proposed to solve this problem. In the proposed scheme, the users are clustered into several groups so that feasible IA can be achieved within each group. In addition, each group is assigned a pseudo noise (PN) code in order to suppress the inter-group interference via the code dimension. The analytical bit error rate (BER) expressions of the proposed JSCC-IA scheme are formulated for the systems with identical and different propagation delays, respectively. To further improve the performance of the JSCC-IA scheme in asymmetric networks, a random grouping selection (RGS) algorithm is developed to search for better grouping combinations. Numerical results demonstrate that the proposed JSCC-IA scheme is capable of accommodating many more users to communicate simultaneously in the same frequency band with better performance. PMID:25602270

  15. A novel joint spatial-code clustered interference alignment scheme for large-scale wireless sensor networks.

    PubMed

    Wu, Zhilu; Jiang, Lihui; Ren, Guanghui; Zhao, Nan; Zhao, Yaqin

    2015-01-16

    Interference alignment (IA) has been put forward as a promising technique which can mitigate interference and effectively increase the throughput of wireless sensor networks (WSNs). However, the number of users is strictly restricted by the IA feasibility condition, and the interference leakage will become so strong that the quality of service will degrade significantly when there are more users than that IA can support. In this paper, a novel joint spatial-code clustered (JSCC)-IA scheme is proposed to solve this problem. In the proposed scheme, the users are clustered into several groups so that feasible IA can be achieved within each group. In addition, each group is assigned a pseudo noise (PN) code in order to suppress the inter-group interference via the code dimension. The analytical bit error rate (BER) expressions of the proposed JSCC-IA scheme are formulated for the systems with identical and different propagation delays, respectively. To further improve the performance of the JSCC-IA scheme in asymmetric networks, a random grouping selection (RGS) algorithm is developed to search for better grouping combinations. Numerical results demonstrate that the proposed JSCC-IA scheme is capable of accommodating many more users to communicate simultaneously in the same frequency band with better performance.

  16. Footwear affects the gearing at the ankle and knee joints during running.

    PubMed

    Braunstein, Bjoern; Arampatzis, Adamantios; Eysel, Peer; Brüggemann, Gert-Peter

    2010-08-10

    The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRF's. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.

  17. Door Opening Affects Operating Room Pressure During Joint Arthroplasty.

    PubMed

    Mears, Simon C; Blanding, Renee; Belkoff, Stephen M

    2015-11-01

    Many resources are expended to ensure a sterile operating room environment. Efforts are made to prevent exposure of patients to personnel and to achieve positive room pressure to keep out airborne contaminants. Foot traffic into and out of the operating room during surgery can undermine these efforts. The authors investigated the number and duration of operating room door openings during hip and knee arthroplasty procedures and the effect of the door openings on room pressure. They tested the hypothesis that door openings defeat positive pressure, permitting air flow into the room. Room pressure and door status were monitored electronically during 191 hip and knee arthroplasty procedures. Operating room staff were unaware that data were being collected. The authors evaluated the data with regression analysis to determine whether the number and duration of door openings had an effect on room pressure. Significance was set at P<.05. Doors were open, on average, 9.5 minutes per case. In 77 of 191 cases, positive pressure was defeated, allowing air flow to reverse into the operating room. Total time with the door open significantly affected the minimum pressure recorded in the room (P<.02), but did not significantly affect average room pressure (P=.7). This finding suggested that the loss of positive pressure was a transient event from which the room recovered. The number and duration of door openings showed a significant association with length of surgery. Door openings threaten positive pressure, potentially jeopardizing operating room sterility. The causes of excessive operating room traffic must be evaluated to identify ways to reduce this traffic and the associated risks.

  18. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  19. Design and Evaluation of a New Type of Knee Orthosis to Align the Mediolateral Angle of the Knee Joint with Osteoarthritis

    PubMed Central

    Esrafilian, Amir; Karimi, Mohammad Taghi; Eshraghi, Arezoo

    2012-01-01

    Background. Osteoarthritis (OA) is a disease which influences the performance of the knee joint. Moreover, the force and moments applied on the joint increase in contrast to normal subjects. Various types of knee orthoses have been designed to solve the mentioned problems. However, there are other problems in terms of distal migration during walking and the alignment of the orthosis which cannot be changed following the use of brace. Therefore, the main aim of the research was to design an orthosis to solve the aforementioned problems. Method. A new type of knee orthosis was designed with a modular structure. Two patients with knee OA participated in this research project. The force applied on the foot, moment transmitted through the knee joint, and spatiotemporal gait parameters were measured by use of a motion analysis system. Results. The results of the research showed that the adduction moment applied on the knee joint decreased while subjects walked with the new knee orthosis (P-value < 0.05). Conclusion. The new design of the knee brace can be used as an effective treatment to decrease the loads applied on the knee joint and to improve the alignment whilst walking. PMID:22577565

  20. Dimensional stability of flakeboards as affected by board specific gravity and flake alignment

    Treesearch

    Robert L. Geimer

    1982-01-01

    The objective was to determine the relationship between the variables specific gravity (SG) and flake alignment and the dimensional stability properties of flakeboard. Boards manufactured without a density gradient were exposed to various levels of relative humidity and a vacuum-pressure soak (VPS) treatment. Changes in moisture content (MC), thickness swelling, and...

  1. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes

    PubMed Central

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities. PMID:28210029

  2. Joint Attention Initiation with and without Positive Affect: Risk Group Differences and Associations with ASD Symptoms

    ERIC Educational Resources Information Center

    Gangi, Devon N.; Ibañez, Lisa V.; Messinger, Daniel S.

    2014-01-01

    Infants at risk for autism spectrum disorders (ASD) may have difficulty integrating smiles into initiating joint attention (IJA) bids. A specific IJA pattern, anticipatory smiling, may communicate preexisting positive affect when an infant smiles at an object and then turns the smile toward the social partner. We compared the development of…

  3. Joint Attention Initiation with and without Positive Affect: Risk Group Differences and Associations with ASD Symptoms

    ERIC Educational Resources Information Center

    Gangi, Devon N.; Ibañez, Lisa V.; Messinger, Daniel S.

    2014-01-01

    Infants at risk for autism spectrum disorders (ASD) may have difficulty integrating smiles into initiating joint attention (IJA) bids. A specific IJA pattern, anticipatory smiling, may communicate preexisting positive affect when an infant smiles at an object and then turns the smile toward the social partner. We compared the development of…

  4. Bilateral and unilateral increases in calcaneal eversion affect pelvic alignment in standing position.

    PubMed

    Pinto, Rafael Z A; Souza, Thales R; Trede, Renato G; Kirkwood, Renata N; Figueiredo, Elyonara M; Fonseca, Sérgio T

    2008-12-01

    Excessive foot pronation has been associated with the occurrence of low back pain, possibly for generating changes in the lumbopelvic alignment. However, the influence of foot pronation (measured as calcaneal eversion) on pelvic alignment during standing has not been well established. Fourteen young healthy subjects participated in the study. A Motion Analysis System was used to obtain pelvic positions in sagittal and frontal planes and calcaneal position in the frontal plane. Volunteers were filmed in relaxed standing position during three trials, in three conditions: control; unilateral experimental with increased right calcaneal eversion and bilateral experimental with increased bilateral calcaneal eversion. Increased calcaneal eversion was obtained using wedges tilted 10 degrees medially, unilaterally and bilaterally. Repeated measures ANOVAs with Bonferroni corrections were used for statistical analysis. Unilateral and bilateral use of medially tilted wedges produced a significant increase of calcaneal eversion (Palignment and should be considered, associated with other relevant factors, when assessing pelvic misalignments.

  5. Classroom Has a Heart: Teachers and Students Affective Alignment in a Persian Heritage Language Classroom

    ERIC Educational Resources Information Center

    Atoofi, Saeid

    2013-01-01

    This research study investigated how the teachers and students at a Persian heritage language class acknowledged and modified their affective behavior based on the affective feedback they received from one another. The notion that interactants can modify their affective output in such fashion is referred in the literature as affective alignment…

  6. Classroom Has a Heart: Teachers and Students Affective Alignment in a Persian Heritage Language Classroom

    ERIC Educational Resources Information Center

    Atoofi, Saeid

    2013-01-01

    This research study investigated how the teachers and students at a Persian heritage language class acknowledged and modified their affective behavior based on the affective feedback they received from one another. The notion that interactants can modify their affective output in such fashion is referred in the literature as affective alignment…

  7. Asymmetry of the leg alignment affects trunk bending in the coronal plane after unilateral total knee arthroplasty.

    PubMed

    Harato, Kengo; Yoshida, Hiroki; Otani, Toshiro

    2013-08-01

    Unilateral total knee arthroplasty (TKA) would produce asymmetric changes of lower extremity in patients with bilateral varus deformity. Our purpose was to investigate whether asymmetry of the leg alignment would affect trunk bending in the coronal plane after unilateral TKA. Twenty patients (mean 76 years old) with bilateral end-stage knee osteoarthritis (OA) participated. Spine images during relaxed standing were obtained on pre- and postoperative day 21. As a result, the shoulder tilted more to the TKA side and the pelvis inclined more to the contralateral OA side. These results suggested that the trunk would bend away from the contralateral OA side after unilateral TKA in patients with bilateral end-stage knee OA and varus deformity. Asymmetry of the leg alignment led to asymmetric trunk bending.

  8. Assessment of solvent effects: do weak alignment media affect the structure of the solute?

    PubMed

    Shahkhatuni, Astghik A; Shahkhatuni, Aleksan G; Panosyan, Henry A; Sahakyan, Aleksandr B; Byeon, In-Ja L; Gronenborn, Angela M

    2007-07-01

    Alignment media used for measuring residual dipolar couplings, such as solutions of filamentous phages, phospholipid mixtures, polyacrylamide gels and various lyotropic liquid crystalline systems were investigated with respect to solvent effects on molecular structure. Structural parameters of the small rigid model compound 13C-acetonitrile were calculated from dipolar couplings and variations from expectation values were used for assessment of solvent effects. Only minor solvent effects were observed for most of the media employed and the measured structural data are in good agreement with microwave data and theoretical predictions. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    PubMed

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Modes of Presentation of Reactive Arthritis Based on the Affected Joints

    PubMed Central

    Lahu, Ali; Backa, Teuta; Ismaili, Jehona; Lahu, Vendenis; Saiti, Valton

    2015-01-01

    Introduction: Reactive arthritis is an autoimmune condition that occurs as a reaction against an infection site elsewhere in the body. Reactive arthritis affects mostly young ages, mainly group age 20-40 y.o., mostly males with ratio 2:1 against females, sometimes 3:1, and even 14:1. The purpose of the study was to observe the mode of illness presentation based on the number of affected joints. Material and Methods: During the 01.03.2012 – 01.03.2014 in the Clinic for Rheumatology and O.S.I.R. “Vendenisi – AL” in Besiana have been examined, elaborated and hospitalized 100 patients with reactive arthritis, out of them 66 males and 34 females. Patients underwent necessary laboratory, hematological, biochemical, and immunological examinations. Subsequently each affected joint has been examined based on the propedeutics rules (inspection, palpation and assessment of the level of motility), as well as x ray examination. Results: From 100 examined patients 66% were males and 34% females respectively. 11% of them were in the 10-20y.o. group age, 30% belonged to group age 21-30 y.o., 24% of patients to 31-40 y.o. group age, 30% to 41-50 y.o. group age, and 5% of patients to the group age over the 51 year old. Regarding the affected articulations and modes of illness presentation, we‘ve obtained the following results: Knee was affected in 64.7% female and 52,12% male patients respectively, T/C joint in 50% female and 57.57% male patients, MTPH joint in 41.11% female and 48.48% male patients respectively, and R/C joint in 44.11% female and 48.48% male patients respectively. Oligoarticular type is seen in 73% male and 70% female patients. Monoarticular type is seen in 14% male and 13% female patients, and poliarticular type is seen in 10% male and 14% female patients respectively. Results from our study have revealed that: reactive arthritis is more frequent in males than females in ratio 2:1 in the infections of urogenital infection, 3:1 in nasopharyngeal

  11. Minimalist Social-Affective Value for Use in Joint Action: A Neural-Computational Hypothesis

    PubMed Central

    Lowe, Robert; Almér, Alexander; Lindblad, Gustaf; Gander, Pierre; Michael, John; Vesper, Cordula

    2016-01-01

    Joint Action is typically described as social interaction that requires coordination among two or more co-actors in order to achieve a common goal. In this article, we put forward a hypothesis for the existence of a neural-computational mechanism of affective valuation that may be critically exploited in Joint Action. Such a mechanism would serve to facilitate coordination between co-actors permitting a reduction of required information. Our hypothesized affective mechanism provides a value function based implementation of Associative Two-Process (ATP) theory that entails the classification of external stimuli according to outcome expectancies. This approach has been used to describe animal and human action that concerns differential outcome expectancies. Until now it has not been applied to social interaction. We describe our Affective ATP model as applied to social learning consistent with an “extended common currency” perspective in the social neuroscience literature. We contrast this to an alternative mechanism that provides an example implementation of the so-called social-specific value perspective. In brief, our Social-Affective ATP mechanism builds upon established formalisms for reinforcement learning (temporal difference learning models) nuanced to accommodate expectations (consistent with ATP theory) and extended to integrate non-social and social cues for use in Joint Action. PMID:27601989

  12. Segment-embedded frame definition affects the hip joint centre precision during walking.

    PubMed

    Roosen, Andy; Pain, Matthew T G; Thouzé, Arsène; Monnet, Tony; Begon, Mickaël

    2013-08-01

    Due to marker-specific soft tissue artefacts, the choice of the markers defining the segment-embedded frame affects the functional joint centre location, with subsequent error propagation to joint kinematics and kinetics in gait analysis. Our aim was to assess the effect of the number and placement of markers on the precision of the hip joint centre (HJC) location during walking. Twelve markers (2x6) were attached to the pelvis and left thigh of 15 young male subjects. Set-up movements were collected to locate an optimised functional HJC. For all permutations of three from six markers, a HJC was located and subsequently reconstructed in a static trial and during walking. Precision measures with two different definitions of the origin, namely a single maker or their mean-point, and using three, four, five and six were calculated. Finally, marker triads that reduced the variability of the HJC location were determined. Both the number of markers and method for defining the origin significantly affected the HJC precision during static and walking trials. For walking, precision of 39 mm using three markers improved to 5mm using redundant markers and the mean marker position as the segment origin. Markers placed close to the joint gave more consistent results.

  13. Patellofemoral Osteoarthritis Progression and Alignment Changes after Open-Wedge High Tibial Osteotomy Do Not Affect Clinical Outcomes at Mid-term Follow-up.

    PubMed

    Goshima, Kenichi; Sawaguchi, Takeshi; Shigemoto, Kenji; Iwai, Shintaro; Nakanishi, Akira; Ueoka, Ken

    2017-10-01

    To evaluate the clinical and radiological outcomes of open-wedge high tibial osteotomy (OWHTO) with respect to the patellofemoral joint and to assess whether patellofemoral osteoarthritis (OA) progression and alignment changes after OWHTO affect clinical outcomes. Inclusion criteria were consecutive patients who underwent OWHTO from March 2005 to September 2013. Exclusion criteria were loss to follow-up within 2 years and absence of second-look arthroscopy findings at the time of plate removal. The clinical parameters, including anterior knee pain while climbing stairs, Japanese Orthopedic Association score, and Oxford Knee Score, were evaluated. Radiological outcomes, including weight-bearing line ratio, modified Blackburne-Peel ratio, posterior tibial slope, tilting angle, lateral shift ratio, and patellofemoral OA (Kellgren-Lawrence grade), were evaluated preoperatively and at the final follow-up. Cartilage status (International Cartilage Repair Society grade) was evaluated at the initial HTO and at plate removal. Fifty-three patients (60 knees) were included in this study. The mean follow-up was 58.2 ± 22.4 months. Two knees (3%) presented with mild anterior knee pain after OWHTO. The mean Japanese Orthopedic Association score (66.9 ± 11.2 to 91.2 ± 9.7) significantly improved (P < .001), and the mean Oxford Knee Score at the final follow-up was 42.0 ± 5.3. The mean modified Blackburne-Peel ratio (0.9 ± 0.1 to 0.7 ± 0.1, P < .001) and tilting angle (6.8 ± 3.7 to 5.6 ± 3.4, P = .033) significantly decreased after OWHTO, whereas no significant changes in posterior tibial slope (P = .511) and lateral shift ratio (P = .522) were observed. Radiologically, patellofemoral OA had progressed in 15 knees (27%), and arthroscopically patellofemoral cartilage degeneration had progressed in 27 knees (45%). However, there was no significant correlation between changes in patellofemoral alignment and clinical outcomes. Changes in patellofemoral alignment and

  14. Intermodal attention affects the processing of the temporal alignment of audiovisual stimuli.

    PubMed

    Talsma, Durk; Senkowski, Daniel; Woldorff, Marty G

    2009-09-01

    The temporal asynchrony between inputs to different sensory modalities has been shown to be a critical factor influencing the interaction between such inputs. We used scalp-recorded event-related potentials (ERPs) to investigate the effects of attention on the processing of audiovisual multisensory stimuli as the temporal asynchrony between the auditory and visual inputs varied across the audiovisual integration window (i.e., up to 125 ms). Randomized streams of unisensory auditory stimuli, unisensory visual stimuli, and audiovisual stimuli (consisting of the temporally proximal presentation of the visual and auditory stimulus components) were presented centrally while participants attended to either the auditory or the visual modality to detect occasional target stimuli in that modality. ERPs elicited by each of the contributing sensory modalities were extracted by signal processing techniques from the combined ERP waveforms elicited by the multisensory stimuli. This was done for each of the five different 50-ms subranges of stimulus onset asynchrony (SOA: e.g., V precedes A by 125-75 ms, by 75-25 ms, etc.). The extracted ERPs for the visual inputs of the multisensory stimuli were compared among each other and with the ERPs to the unisensory visual control stimuli, separately when attention was directed to the visual or to the auditory modality. The results showed that the attention effects on the right-hemisphere visual P1 was largest when auditory and visual stimuli were temporally aligned. In contrast, the N1 attention effect was smallest at this latency, suggesting that attention may play a role in the processing of the relative temporal alignment of the constituent parts of multisensory stimuli. At longer latencies an occipital selection negativity for the attended versus unattended visual stimuli was also observed, but this effect did not vary as a function of SOA, suggesting that by that latency a stable representation of the auditory and visual stimulus

  15. MIS Fusion of the SI Joint: Does Prior Lumbar Spinal Fusion Affect Patient Outcomes?

    PubMed

    Rudolf, Leonard

    2013-01-01

    Sacroiliac (SI) joint pain is a challenging condition to manage as it can mimic discogenic or radicular low back pain, and present as low back, hip, groin and/or buttock pain. Patients may present with a combination of lumbar spine and SI joint symptoms, further complicating the diagnosis and treatment algorithm [1-3]. SI joint pain after lumbar spinal fusion has been reported in the literature. Both clinical and biomechanical studies show the SI joint to be susceptible to increased motion and stress at the articular surface with up to 40-75% of patients developing significant SI joint degeneration after 5 years. In a recent case series study of 50 patients who underwent minimally invasive SI joint arthrodesis, 50% had undergone previous lumbar spinal fusion and 18% had symptomatic lumbar spine pathology treated conservatively [4]. The purpose of this study is to determine if history of previous lumbar fusion or lumbar pathology affects patient outcomes after MIS SI joint fusion surgery. We report on 40 patients with 24 month follow up treated with MIS SI joint fusion using a series of triangular porous plasma coated titanium implants (iFuse, SI-Bone, Inc. San Jose, CA). Outcomes using a numerical rating scale (NRS) for pain were obtained at 3-, 6-, 12- and 24 month follow up intervals. Additionally, patient satisfaction was collected at the latest follow up interval. Patients were separated into 3 cohorts: 1) underwent prior lumbar spine fusion (PF), 2) no history of previous lumbar spine fusion (NF), 3) no history of previous lumbar spine fusion with symptomatic lumbar spine pathology treated conservatively (LP). A repeated measures analysis of variance (rANOVA) was used to determine if the change in NRS pain scores differed across timepoints and subgroups. A decrease in NRS by 2 points was deemed clinically significant [5]. Mean age was 54 (±13) years and varied slightly but not statistically between groups. All subgroups experienced a clinically and

  16. Joint involvement in patients affected by systemic lupus erythematosus: application of the swollen to tender joint count ratio.

    PubMed

    Cipriano, E; Ceccarelli, F; Massaro, L; Spinelli, F R; Alessandri, C; Perricone, C; Valesini, G; Conti, F

    2015-09-16

    Joint involvement is a common manifestation in systemic lupus erythematosus (SLE). According to the SLE disease activity index 2000 (SLEDAI-2K), joint involvement is present in case of ≥2 joints with pain and signs of inflammation. However this definition could fail to catch all the various features of joint involvement. Alternatively the Swollen to Tender joint Ratio (STR) could be used. This new index, which was originally proposed for rheumatoid arthritis (RA) patients, is based on the count of 28 swollen and tender joints. Our study is, therefore, aimed to assess joint involvement in a SLE cohort using the STR. SLE patients with joint symptoms (≥1 tender joint) were enrolled over a period of one month. Disease activity was assessed by SLEDAI-2K. We performed the swollen and tender joint count (0-28) and calculated the STR. Depending on the STR, SLE patients were grouped into three categories of disease activity: low (STR1.0). We also calculated the disease activity score based on a 28-joint count and the erythrocyte sedimentation rate (DAS28-ESR). We enrolled 100 SLE patients [F/M 95/5, mean±standard deviation (SD) age 46.3±10.6 years, mean±SD disease duration 147.1±103.8 months]. The median of tender and swollen joints was 4 (IQR 7) and 1 (IQR 2.5), respectively. The median STR value was 0.03 (IQR 0.6). According to the STR, disease activity was low in 70 patients, moderate in 23 and high in 7. A significant correlation was identified between STR values and DAS28 (r=0.33, p=0.001). The present study suggests a correlation between STR and DAS28, allowing an easier and faster assessment of joint involvement with the former index.

  17. Exploring Alignment between Affective Assessments and College Success Courses: An Exploratory Case Study

    ERIC Educational Resources Information Center

    Begotka, James

    2012-01-01

    Many two-year colleges throughout the nation are intentionally redesigning developmental education programming and practices directed at improving student preparedness and success. Theoretical works from Bloom and Knowles have established that the affective domain is significant to learner preparedness and eventual success, specifically for adult…

  18. Joint Attention Initiation with and without Positive Affect: Risk Group Differences and Associations with ASD Symptoms

    PubMed Central

    Gangi, Devon N.; Ibañez, Lisa V.; Messinger, Daniel S.

    2014-01-01

    Infants at risk for Autism Spectrum Disorders (ASD) may have difficulty integrating smiles into initiating joint attention (IJA) bids. A specific IJA pattern, anticipatory smiling, may communicate preexisting positive affect when an infant smiles at an object and then turns the smile toward the social partner. We compared the development of anticipatory smiling at 8, 10, and 12 months in infant siblings of children with ASD (high-risk siblings) and without ASD (low-risk siblings). High-risk siblings produced less anticipatory smiling than low-risk siblings, suggesting early differences in communicating preexisting positive affect. While early anticipatory smiling distinguished the risk groups, IJA not accompanied by smiling best predicted later severity of ASD-related behavioral characteristics among high-risk siblings. High-risk infants appear to show lower levels of motivation to share positive affect with others. However, facility with initiating joint attention in the absence of a clear index of positive affective motivation appears to be central to the prediction of ASD symptoms. PMID:24281421

  19. Re-alignment of the eyes, with prisms and with eye surgery, affects postural stability differently in children with strabismus.

    PubMed

    Legrand, Agathe; Bui-Quoc, Emmanuel; Bucci, Maria Pia

    2012-06-01

    The purpose of the study was to examine the effect of eye re-alignment (after wearing prisms and after eye surgery) on postural stability in children with strabismus. Nine children with strabismus (6-13 years old) participated in the study. A posturography platform (TechnoConcept) was used to examine posture in quiet stance at two distances: steady fixation of a target at near distance (40 cm) and at far distance (200 cm). Four different conditions were tested: with and without prisms before eye surgery, and twice after eye surgery. The surface of the CoP increased after wearing prisms (540 mm(2) compared to the condition without prisms (462 mm(2)); in contrast, eye surgery reduced the surface of the CoP, leading to improved postural control (454 mm(2) and 401 mm(2), respectively, in the post 1 and post 2 surgery condition). Unlike normal children, strabismic children showed no improvement in postural control at near distance. Binocular visual and motor changes affect body sway; adaptive mechanisms induced by eye re-alignment after surgery allow improved postural control. The absence of dependency on distance in postural stability in strabismic children could be due to their impaired depth perception and to the poor integrity of the visual signal required to control posture.

  20. Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels

    PubMed Central

    Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the

  1. Arthrodesis of the proximal interphalangeal joint affected with septic arthritis in 8 horses.

    PubMed Central

    Groom, L J; Gaughan, E M; Lillich, J D; Valentino, L W

    2000-01-01

    Arthrodesis was performed to treat septic arthritis of the proximal interphalangeal joint of 8 horses. Records of the horses were reviewed to determine outcome and possible factors that influenced success or failure. All horses were female. Seven horses had 1 joint treated and 1 horse was treated for bilateral pelvic limb involvement. The duration of sepsis before surgery ranged from 1 to 66 days. Bone lysis and production was radiographically apparent in 7 horses before surgery. Six horses had multiple bacterial organisms cultured from bone or synovial tissues; 2 horses had single isolates identified. After aggressive curettage, arthrodesis was accomplished with 3 parallel screws in 1 horse, 2 divergent narrow dynamic compression plates in 3 horses, and a single broad dynamic compression plate in 4 horses. Casts were applied to all horses for 1 to 6 weeks. Four horses survived to successful brood mare status. Four horses were euthanized during hospitalization because of continued discomfort or complications of sepsis. Arthrodesis of the proximal interphalangeal joint affected with septic arthritis appears to be an acceptable alternative to euthanasia for some horses. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:10723597

  2. Validation of a computational knee joint model using an alignment method for the knee laxity test and computed tomography.

    PubMed

    Kang, Kyoung-Tak; Kim, Sung-Hwan; Son, Juhyun; Lee, Young Han; Koh, Yong-Gon

    2017-01-01

    Computational models have been identified as efficient techniques in the clinical decision-making process. However, computational model was validated using published data in most previous studies, and the kinematic validation of such models still remains a challenge. Recently, studies using medical imaging have provided a more accurate visualization of knee joint kinematics. The purpose of the present study was to perform kinematic validation for the subject-specific computational knee joint model by comparison with subject's medical imaging under identical laxity condition. The laxity test was applied to the anterior-posterior drawer under 90° flexion and the varus-valgus under 20° flexion with a series of stress radiographs, a Telos device, and computed tomography. The loading condition in the computational subject-specific knee joint model was identical to the laxity test condition in the medical image. Our computational model showed knee laxity kinematic trends that were consistent with the computed tomography images, except for negligible differences because of the indirect application of the subject's in vivo material properties. Medical imaging based on computed tomography with the laxity test allowed us to measure not only the precise translation but also the rotation of the knee joint. This methodology will be beneficial in the validation of laxity tests for subject- or patient-specific computational models.

  3. Factors affecting the range of motion of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis who walk daily

    PubMed Central

    Matsui, Nobumasa; Shoji, Morio; Kitagawa, Takashi; Terada, Shigeru

    2016-01-01

    [Purpose] Increased plantar pressure during walking is a risk factor for foot ulcers because of reduced range of motion at the ankle and first metatarsophalangeal joints. However, the range of motion in patients undergoing hemodialysis has not yet been determined. A cross-sectional study was performed to investigate the factors affecting the range of motion of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis who walk daily. [Subjects and Methods] Seventy feet of 35 patients receiving hemodialysis therapy were examined. Measurements included the passive range of motion of plantar flexion and dorsiflexion of the ankle joint, and flexion and extension of the first metatarsophalangeal joint. [Results] Hemodialysis duration was not associated with ankle and first metatarsophalangeal joint range of motion in patients undergoing hemodialysis. Diabetes duration was significantly associated with limited ankle joint mobility. Finally, blood hemoglobin levels, body mass index, and age were associated with first metatarsophalangeal joint range of motion. [Conclusion] The present study identified age, diabetes, and decreased physical activity, but not hemodialysis duration, to be risk factors for limited joint mobility of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis. PMID:27313371

  4. Factors affecting the range of motion of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis who walk daily.

    PubMed

    Matsui, Nobumasa; Shoji, Morio; Kitagawa, Takashi; Terada, Shigeru

    2016-05-01

    [Purpose] Increased plantar pressure during walking is a risk factor for foot ulcers because of reduced range of motion at the ankle and first metatarsophalangeal joints. However, the range of motion in patients undergoing hemodialysis has not yet been determined. A cross-sectional study was performed to investigate the factors affecting the range of motion of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis who walk daily. [Subjects and Methods] Seventy feet of 35 patients receiving hemodialysis therapy were examined. Measurements included the passive range of motion of plantar flexion and dorsiflexion of the ankle joint, and flexion and extension of the first metatarsophalangeal joint. [Results] Hemodialysis duration was not associated with ankle and first metatarsophalangeal joint range of motion in patients undergoing hemodialysis. Diabetes duration was significantly associated with limited ankle joint mobility. Finally, blood hemoglobin levels, body mass index, and age were associated with first metatarsophalangeal joint range of motion. [Conclusion] The present study identified age, diabetes, and decreased physical activity, but not hemodialysis duration, to be risk factors for limited joint mobility of the ankle and first metatarsophalangeal joints in patients undergoing hemodialysis.

  5. Optimizing femorotibial alignment in high tibial osteotomy

    PubMed Central

    Rudan, John; Harrison, Mark; Simurda, Michael A

    Objective To study factors that affect femorotibial (F-T) alignment after valgus closing wedge tibial osteotomy. Study design A review of standardized standing radiographs. Femorotibial alignment was measured 1 year postoperatively for over- and under-correction. Changes in F–T alignment and in tibial plateau angle were measured. Setting An urban hospital and orthopedic clinic. Patients Eighty-two patients with osteoarthritis and varus femorotibial alignment underwent valgus closing wedge tibial osteotomy. Patients having a diagnosis of inflammatory arthritis or a prior osteotomy about the knee were excluded. Results A 1° wedge removed from the tibia resulted in an average correction of F–T alignment of 1.2°. A knee that had increased valgus orientation of the distal femur had a greater degree of correction, averaging 1.46° in F–T alignment per degree of tibial wedge. This resulted in excessive postoperative valgus alignment for some patients who had increased valgus tilt of the distal femur. Optimal F–T alignment of 6° to 14° of valgus occurred when the postoperative tibial inclination was 4° to 8° of valgus. Conclusions There was a trend for knees with increased valgus orientation of the distal femur to have greater correction in F–T alignment after tibial osteotomy, likely because of a greater opening up of the medial joint space during stance. Surgeons need to account for this in their preoperative planning. PMID:10526522

  6. Does therapist’s attitude affect clinical outcome of lumbar facet joint injections?

    PubMed Central

    Middendorp, Marcus; Kollias, Konstantinos; Ackermann, Hanns; Splettstößer, Annina; Vogl, Thomas J; Khan, M Fawad; Maataoui, Adel

    2016-01-01

    AIM: To investigate if the clinical outcome of intra-articular lumbar facet joint injections is affected by the therapist’s attitude. METHODS: A total of 40 patients with facet joint-associated chronic low back pain were randomly divided into two groups. All patients received computed tomography-guided, monosegmental intra-articular facet joint injections. Following the therapeutic procedure, the patients of the experimental group (EG) held a conversation with the radiologist in a comfortable atmosphere. During the dialog, the patients were encouraged to ask questions and were shown four images. The patients of the control group (CG) left the clinic without any further contact with the radiologist. Outcome was assessed using a pain-based Verbal Numeric Scale at baseline, at 1 wk and at 1, 3, and 6 mo after first treatment. RESULTS: The patient demographics showed no differences between the groups. The patients of the EG received 57 interventional procedures in total, while the patients of the CG received 70 interventional procedures. In both groups, the pain scores decreased significantly over the entire observation period. Compared to the CG, the EG showed a statistically significant reduction of pain at 1 wk and 1 mo post-treatment, while at 3 and 6 mo after treatment, there were no significant differences between both groups. CONCLUSION: Our results show a significant effect on pain relief during the early post-interventional period in the EG as compared to the CG. The basic principle behind the higher efficacy might be the phenomenon of hetero-suggestion. PMID:27358691

  7. Pelvic limb alignment in small breed dogs: a comparison between affected and free subjects from medial patellar luxation.

    PubMed

    Olimpo, Matteo; Piras, Lisa Adele; Peirone, Bruno

    2016-01-01

    Small breed dogs are 12 times more likely to develop medial patellar luxation (MPL) than large breed dogs and breed predisposition has been reported. Many surgical techniques are available for correction of patellar luxation in dogs. However, recent studies reported an 8% incidence of reluxation when traditional techniques are used. The relatively high frequency of major complications and patellar reluxation may be partially caused by inadequate appreciation of the underlying skeletal deformity and subsequent incorrect selection and application of traditional techniques. The aims of this study were to report the normal values of the anatomic and mechanical joint angles of the femur and tibia in small breed dogs and to compare these data to a population of small breed dogs affected by different degrees of MPL. Normal values of the anatomic and mechanical angles of the femur are similar to the ones reported in literature in Pomeranian dogs. Normal values of the anatomic and mechanical angles of the tibia have been described for the first time. Significant differences were found between normal population and dogs affected by grade 4 MPL in relation to anatomical Lateral Distal Femoral Angle (aLDFA), mechanical Medial Proximal Tibial Angle (mMPTA), and mechanical Caudal Proximal Tibial Angle (mCaPTA).

  8. Prediction of the Properties of Heat-Affected Zone of Welded Joints of Sheets from Aluminum Alloys with Structured Surface

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. G.

    2016-05-01

    Welded joints of light structured sheets from aluminum alloy EN AW-6181-T4 (DIN EN 515) of the Al - Si - Mg system are studied. The welding is performed in an argon environment with a short arc by the method of cold metal transfer (CMT®). The results of the study are used in an amended Leblond model for describing the variation of the properties of the heat-affected zone of welded joints of structured sheets.

  9. Dynamic measurement of patello-femoral joint alignment using weight-bearing magnetic resonance imaging (WB-MRI).

    PubMed

    Mariani, Silvia; La Marra, Alice; Arrigoni, Francesco; Necozione, Stefano; Splendiani, Alessandra; Di Cesare, Ernesto; Barile, Antonio; Masciocchi, Carlo

    2015-12-01

    Aim of our work was to compare standard and weight-bearing WB-MRI to define their contribution in unmasking patello-femoral (PF) maltracking and to define what measurement of patellar alignment is the most reliable. We prospectively collected 95 non consecutive patients, clinically divided into 2 groups: group A (the control group), including 20 patients (negative for patellar maltracking), and group B including 75 patients (positive for patellar maltracking). The patients underwent a dedicated 0.25 T MRI, in supine and WB position, with knee flexion of 12-15°. The following measurements were performed: Insall-Salvati index (IS), lateral patellar displacement (LPD), lateral patello-femoral angle (LPA) and lateral patellar tilt (LPT). Quantitative and qualitative statistical analyses were performed to compare the results obtained before and after WB-MRI. Measurements were subsequently performed on both groups. Group A patients showed no statistically significant variations at all measurements both on standard and WB-MRI. On the basis of measurements made on standard MRI, group B patients were divided into group B1 (23 patients) (negative or positive at 1 measurement) and group B2 (52 patients) (positive at 2 or more measurements). After WB-MRI, group B1 patients were divided into group B1a (6 patients), in case they remained positive at 0/1 measurement, and group B1b (17 patients), in case they became positive at 2 or more measurements. All group B2 patients confirmed to be positive at 2 or more measurements at WB-MRI. Quantitative statistical analysis showed that LPT and LPA were the most reproducible and clinically useful measurements. Qualitative statistical analysis performed on standard and WB-MRI demonstrated that LPT was the best predictive measurement. This study demonstrates both the high diagnostic value of WB-MRI in unmasking PF-maltracking and the best predictive value of LPT measurement. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Alignment methods: strategies, challenges, benchmarking, and comparative overview.

    PubMed

    Löytynoja, Ari

    2012-01-01

    Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.

  11. Subject-specific hip geometry affects predicted hip joint contact forces during gait.

    PubMed

    Lenaerts, G; De Groote, F; Demeulenaere, B; Mulier, M; Van der Perre, G; Spaepen, A; Jonkers, I

    2008-01-01

    Hip loading affects bone remodeling and implant fixation. In this study, we have analyzed the effect of subject-specific modeling of hip geometry on muscle activation patterns and hip contact forces during gait, using musculoskeletal modeling, inverse dynamic analysis and static optimization. We first used sensitivity analysis to analyze the effect of isolated changes in femoral neck-length (NL) and neck-shaft angle (NSA) on calculated muscle activations and hip contact force during the stance phase of gait. A deformable generic musculoskeletal model was adjusted incrementally to adopt a physiological range of NL and NSA. In a second similar analysis, we adjusted hip geometry to the measurements from digitized radiographs of 20 subjects with primary hip osteoarthrosis. Finally, we studied the effect of hip abductor weakness on muscle activation patterns and hip contact force. This analysis showed that differences in NL (41-74 mm) and NSA (113-140 degrees ) affect the muscle activation of the hip abductors during stance phase and hence hip contact force by up to three times body weight. In conclusion, the results from both the sensitivity and subject-specific analysis showed that at the moment of peak contact force, altered NSA has only a minor effect on the loading configuration of the hip. Increased NL, however, results in an increase of the three hip contact-force components and a reduced vertical loading. The results of these analyses are essential to understand modified hip joint loading, and for planning hip surgery for patients with osteoarthrosis.

  12. Group membership affects spontaneous mental representation: failure to represent the out-group in a joint action task.

    PubMed

    McClung, Jennifer Susan; Jentzsch, Ines; Reicher, Stephen David

    2013-01-01

    Predicting others' actions is crucial to successful social interaction. Previous research on joint action, based on a reaction-time paradigm called the Joint Simon Task, suggests that successful joint action stems from the simultaneous representation of the self with the other. Performance on this task provides a read-out of the degree of intrusion from a partner that participants experience from acting jointly compared to acting alone, which in turn is a measure of the degree to which participants mentally represent their co-actors during the task. To investigate the role of perceived group membership in this type of joint action and its influence on the representation of others, we first subjected participants to a minimal group paradigm while manipulating differences in social competition. We then asked participants to do the Joint Simon Task in pairs with an in-group or out-group member. Only participants who acted with an "in-group" partner on the joint task showed altered reaction times compared to when acting alone, presumably a change caused by the simultaneous and automatic representation of their in-group partner. In contrast, participants who acted with an out-group partner were unaffected in their reactions when doing the joint task, showing no evidence of representation of their out-group partner. This effect was present in both the high-competition and low-competition conditions, indicating that the differential effects of group membership on representation during joint action were driven by perceived group membership and independent of the effects of social competition. We concluded that participants failed to represent out-group members as socially relevant agents not based on any personality or situational characteristics, but in reaction only to their status as "other". In this way group membership appears to affect cognition on a very immediate and subconscious level.

  13. Images from a jointly-arousing collective ritual reveal affective polarization

    PubMed Central

    Bulbulia, Joseph A.; Xygalatas, Dimitris; Schjoedt, Uffe; Fondevila, Sabela; Sibley, Chris G.; Konvalinka, Ivana

    2013-01-01

    Collective rituals are biologically ancient and culturally pervasive, yet few studies have quantified their effects on participants. We assessed two plausible models from qualitative anthropology: ritual empathy predicts affective convergence among all ritual participants irrespective of ritual role; rite-of-passage predicts emotional differences, specifically that ritual initiates will express relatively negative valence when compared with non-initiates. To evaluate model predictions, images of participants in a Spanish fire-walking ritual were extracted from video footage and assessed by nine Spanish raters for arousal and valence. Consistent with rite-of-passage predictions, we found that arousal jointly increased for all participants but that valence differed by ritual role: fire-walkers exhibited increasingly positive arousal and increasingly negative valence when compared with passengers. This result offers the first quantified evidence for rite of passage dynamics within a highly arousing collective ritual. Methodologically, we show that surprisingly simple and non-invasive data structures (rated video images) may be combined with methods from evolutionary ecology (Bayesian Generalized Linear Mixed Effects models) to clarify poorly understood dimensions of the human condition. PMID:24399979

  14. Images from a jointly-arousing collective ritual reveal affective polarization.

    PubMed

    Bulbulia, Joseph A; Xygalatas, Dimitris; Schjoedt, Uffe; Fondevila, Sabela; Sibley, Chris G; Konvalinka, Ivana

    2013-01-01

    Collective rituals are biologically ancient and culturally pervasive, yet few studies have quantified their effects on participants. We assessed two plausible models from qualitative anthropology: ritual empathy predicts affective convergence among all ritual participants irrespective of ritual role; rite-of-passage predicts emotional differences, specifically that ritual initiates will express relatively negative valence when compared with non-initiates. To evaluate model predictions, images of participants in a Spanish fire-walking ritual were extracted from video footage and assessed by nine Spanish raters for arousal and valence. Consistent with rite-of-passage predictions, we found that arousal jointly increased for all participants but that valence differed by ritual role: fire-walkers exhibited increasingly positive arousal and increasingly negative valence when compared with passengers. This result offers the first quantified evidence for rite of passage dynamics within a highly arousing collective ritual. Methodologically, we show that surprisingly simple and non-invasive data structures (rated video images) may be combined with methods from evolutionary ecology (Bayesian Generalized Linear Mixed Effects models) to clarify poorly understood dimensions of the human condition.

  15. Verification Test of the SURF and SURFplus Models in xRage: Part III Affect of Mesh Alignment

    SciTech Connect

    Menikoff, Ralph

    2016-08-15

    The previous studies used an underdriven detonation wave in 1-dimension (steady ZND reaction zone profile followed by a scale-invariant rarefaction wave) for PBX 9502 as a verification test of the implementation of the SURF and SURFplus models in the xRage code. Since the SURF rate is a function of the lead shock pressure, the question arises as to the effect on accuracy of variations in the detected shock pressure due to the alignment of the shock front with the mesh. To study the effect of mesh alignment we simulate a cylindrically diverging detonation wave using a planar 2-D mesh. The leading issue is the magnitude of azimuthal asymmetries in the numerical solution. The 2-D test case does not have an exact analytic solution. To quantify the accuracy, the 2-D solution along rays through the origin are compared to a highly resolved 1-D simulation in cylindrical geometry.

  16. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

    2015-09-01

    Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

  17. An Examination of the Joint Effects of Affective Experiences and Job Beliefs on Job Satisfaction and Variations in Affective Experiences over Time.

    PubMed

    Weiss; Nicholas; Daus

    1999-04-01

    This study investigated the joint influences of episodic levels of pleasant mood at work and beliefs about one's job on judgments of job satisfaction, as well as examining the prediction of the patterns of affective states over time. Twenty-four managerial workers completed a diary during work hours which required them to report their mood state at four different times during the workday. The diaries were completed for 16 workdays. At a separate time they completed a measure of overall satisfaction, a Valence-Instrumentality-Expectancy (VIE) measure of beliefs about the job and two dispositional variables, dispositional happiness and affect intensity. Results showed that average levels of pleasant mood over the 16 days and VIE beliefs about the job made significant and independent contributions to the prediction of overall job satisfaction and did so over and above the contribution of dispositional happiness. Results also indicated that individual differences in affective intensity predicted the variability of pleasant mood over time as well as mean levels of mood activation. Finally, spectral analyses applied to the series of mood observations showed that the variability over time in the series of mood observations showed two definite cycles, one corresponding to a daily cycle and one corresponding to a two-period oscillation in mood. Results are discussed in terms of the joint influences of affective experiences and job beliefs on job attitudes and the importance of studying affect over time independent of job satisfaction. Copyright 1999 Academic Press.

  18. Impact orientation can significantly affect the outcome of a blunt impact to the rabbit patellofemoral joint.

    PubMed

    Ewers, Benjamin J; Weaver, Brian T; Haut, Roger C

    2002-12-01

    This laboratory has developed a subfracture, joint trauma model in rabbits. Using a dropped impact mass directed onto a slightly abducted joint, chronic softening of retropatellar cartilage and thickening of underlying subchondral bone are documented in studies to 1 year post-insult. It has been hypothesized that these tissue changes are initiated by stresses developed during impact loading. A previous analytical study by this laboratory suggests that tensile strains in retropatellar cartilage can be significantly lowered, without significantly changing the intensity of stresses in the underlying subchondral bone, by reorientation of patellar impact more centrally on the joint. In the current study comparative experiments were performed on groups of animals after either an impact directed on the slightly abducted limb or a more central impact. One-year post-trauma in animals subjected to the central-oriented impact no degradation of the shear modulus for the retropatellar cartilage was documented, but the thickness of the underlying subchondral bone was significantly increased. In contrast, alterations in cartilage and underlying bone following impact on the slightly abducted limb were consistent with previous studies. The current experimental investigation showed the sensitivity of post-trauma alterations in joint tissues to slight changes in the orientation of impact load on the joint. Interestingly, for this trauma model thickening of the underlying subchondral plate occurred without mechanical degradation of the overlying articular cartilage. This supports the current laboratory hypothesis that alterations in the subchondral bone and overlying cartilage occur independently in this animal model.

  19. Does the Age of a Patient Affect the Outcome of Temporomandibular Joint Arthroscopic Surgery?

    PubMed

    Cho, Jungsuk; Israel, Howard

    2017-06-01

    Although temporomandibular joint (TMJ) disorders encompass all age groups, it is generally considered to affect young to middle-age adults. The aim of this investigation was to study patients who met the criteria for TMJ arthroscopy and to determine whether there was a difference in outcomes between younger and older patients. This was a retrospective chart review of patients who underwent TMJ operative arthroscopy. The primary variable studied was patient age. Major outcome variables included changes in subjective pain measured by a visual analog scale (VAS) and changes in maximum interincisal opening (MIO) after arthroscopic surgery. Other variables of interest included the presence of systemic disease, synovitis, and osteoarthritis diagnosed arthroscopically. Data analysis included the Student t test, regression analysis (R Studio, Boston, MA), and χ(2) test with a P value less than .05 indicating statistical significance. The study population consisted of 103 patients diagnosed with internal derangement and severe inflammatory or degenerative TMJ disease (Wilkes stages II to V) who underwent operative arthroscopy. Patients were divided into 2 groups based on age (group Y, <40 yr old, n = 51, mean age, 26 yr; group O, >40 yr old, n = 52, mean age, 56 yr). The presence of osteoarthritis diagnosed arthroscopically was significantly greater in group O than in group Y (P < .01). There was significant postoperative improvement in pain (VAS) and MIO in group Y (P < .01) and group O (P < .01). Although the 2 groups showed substantial improvement after arthroscopy, when comparing differences in outcomes between the groups, the absolute postoperative pain level for group O was significantly lower than for group Y (P < .05). Comparison of postoperative MIO did not show a significant difference between group Y and group O (P = .286). Groups Y and O showed substantial improvement in pain (VAS) and mandibular mobility (MIO) after surgical TMJ arthroscopy. Group O had

  20. Does aspiration of bones and joints affect results of later bone scanning

    SciTech Connect

    Canale, S.T.; Harkness, R.M.; Thomas, P.A.; Massie, J.D.

    1985-01-01

    To determine the effect, if any, of needle aspiration on /sup 99m/Tc bone scanning, three different areas of 15 dogs were first aspirated and then imaged with technetium bone scintigraphy. The hip joint was aspirated, the distal femoral metaphysis was drilled and aspirated, and the tibial periosteum was scraped with an 18- or 20-gauge needle. Varying amounts of trauma were inflicted to simulate varying difficulties at aspiration. /sup 99m/Tc bone scans were obtained from 5 h to 10 days later. There was no evidence of focal technetium uptake after any hip joint aspiration. This was consistent regardless of the amount of trauma inflicted or the time from aspiration to bone scanning. Metaphyseal cortical drilling and tibial periosteal scraping occasionally caused some focal uptake when scanning was delayed greater than 2 days. When osteomyelitis or pyarthrosis is clinically suspected, joint aspiration can be performed without fear of producing a false- positive bone scan.

  1. Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait.

    PubMed

    Lenaerts, G; Bartels, W; Gelaude, F; Mulier, M; Spaepen, A; Van der Perre, G; Jonkers, I

    2009-06-19

    Hip loading affects the development of hip osteoarthritis, bone remodelling and osseointegration of implants. In this study, we analyzed the effect of subject-specific modelling of hip geometry and hip joint centre (HJC) location on the quantification of hip joint moments, muscle moments and hip contact forces during gait, using musculoskeletal modelling, inverse dynamic analysis and static optimization. For 10 subjects, hip joint moments, muscle moments and hip loading in terms of magnitude and orientation were quantified using three different model types, each including a different amount of subject-specific detail: (1) a generic scaled musculoskeletal model, (2) a generic scaled musculoskeletal model with subject-specific hip geometry (femoral anteversion, neck-length and neck-shaft angle) and (3) a generic scaled musculoskeletal model with subject-specific hip geometry including HJC location. Subject-specific geometry and HJC location were derived from CT. Significant differences were found between the three model types in HJC location, hip flexion-extension moment and inclination angle of the total contact force in the frontal plane. No model agreement was found between the three model types for the calculation of contact forces in terms of magnitude and orientations, and muscle moments. Therefore, we suggest that personalized models with individualized hip joint geometry and HJC location should be used for the quantification of hip loading. For biomechanical analyses aiming to understand modified hip joint loading, and planning hip surgery in patients with osteoarthritis, the amount of subject-specific detail, related to bone geometry and joint centre location in the musculoskeletal models used, needs to be considered.

  2. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    PubMed

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  3. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  4. Aligning Plasma-Arc Welding Oscillations

    NASA Technical Reports Server (NTRS)

    Norris, Jeff; Fairley, Mike

    1989-01-01

    Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.

  5. Is Infant Initiation of Joint Attention by Pointing Affected by Type of Interaction?

    ERIC Educational Resources Information Center

    Franco, Fabia; Perucchini, Paola; March, Barbara

    2009-01-01

    This article reports the results of two experiments studying the effects of type of interaction on infant production of declarative pointing. In Experiment 1, intensity of social presence was manipulated in adult-infant interaction with 12-19-month-olds (no social presence; adult responding only; adult also initiating joint attentional bids).…

  6. Length of Hospitalization After Joint Arthroplasty: Does Early Discharge Affect Complications and Readmission Rates?

    PubMed

    Otero, Jesse E; Gholson, J Joseph; Pugely, Andrew J; Gao, Yubo; Bedard, Nicholas A; Callaghan, John J

    2016-12-01

    Length of hospital stay is a quality metric in joint arthroplasty. Rapid recovery protocols have safely reduced the average length of hospitalization, but it is unclear whether there is a difference in complication and readmission rates between patients discharged the day of surgery or on postoperative day 1 (POD 1). We calculated 30-day complication and readmission after total knee arthroplasty (TKA), total hip arthroplasty (THA), and unicompartmental knee arthroplasty (UKA) based on day of discharge. We then analyzed the rapid recovery group by comparing those discharged the day of surgery and those discharged on POD 1. Patients undergoing joint arthroplasty between 2011 and 2013 were selected from the American College of Surgeons (ACS) National Surgical Quality Improvement Program. Demographics, comorbidities, and 30-day complication and readmission were determined based on discharge date. Propensity-matched comparisons were performed between patients discharged POD 0 vs POD 1. We used multivariate logistic regression to determine independent risk factors for 30-day complication and readmission. There was no difference in complication or readmission after TKA or UKA between POD 0 or POD 1 discharge. In the propensity-matched cohort in THA, however, there was an increased rate of any complication in the POD 0 compared with the POD 1 discharge cohort. Risk factors for complication and readmission among THA, TKA, and UKA include age >80 years and smoking, and discharge after day 3. Increased length of stay is associated with increased complication and readmission after joint arthroplasty for patients with a hospital stay of 3 or more days. However, in THA, there was an increased complication rate in patients discharged POD 0 as compared to POD 1. Efforts to improve patient selection are expected to reduce short-term complications after outpatient joint arthroplasty. Further research is needed to determine which patients can be discharged POD 0 without increased

  7. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps.

    PubMed

    Coratella, Giuseppe; Bellin, Giuseppe; Beato, Marco; Schena, Federico

    2015-01-01

    Primary aim of this study was to investigate peak joint torque angle (i.e. the angle of peak torque) changes recorded during an isokinetic test before and after a fatiguing soccer match simulation. Secondarily we want to investigate functional Hecc:Qconc and conventional Hconc:Qconc ratio changes due to fatigue. Before and after a standardised soccer match simulation, twenty-two healthy male amateur soccer players performed maximal isokinetic strength tests both for hamstrings and for quadriceps muscles at 1.05 rad · s(‒1), 3.14 rad · s(‒1) and 5.24 rad · s(‒1). Peak joint torque angle, peak torque and both functional Hecc:Qconc and conventional Hconc:Qconc ratios were examined. Both dominant and non-dominant limbs were tested. Peak joint torque angle significantly increased only in knee flexors. Both eccentric and concentric contractions resulted in such increment, which occurred in both limbs. No changes were found in quadriceps peak joint torque angle. Participants experienced a significant decrease in torque both in hamstrings and in quadriceps. Functional Hecc:Qconc ratio was lower only in dominant limb at higher velocities, while Hconc:Qconc did not change. This study showed after specific fatiguing task changes in hamstrings only torque/angle relationship. Hamstrings injury risk could depend on altered torque when knee is close to extension, coupled with a greater peak torque decrement compared to quadriceps. These results suggest the use eccentric based training to prevent hamstrings shift towards shorter length.

  8. Motion coordination affects movement parameters in a joint pick-and-place task.

    PubMed

    Vesper, Cordula; Soutschek, Alexander; Schubo, Anna

    2009-12-01

    This study examined influences of social context on movement parameters in a pick-and-place task. Participants' motion trajectories were recorded while they performed sequences of natural movements either working side-by-side with a partner or alone. It was expected that movement parameters would be specifically adapted to the joint condition to overcome the difficulties arising from the requirement to coordinate with another person. To disentangle effects based on participants' effort to coordinate their movements from effects merely due to the other's presence, a condition was included where only one person performed the task while being observed by the partner. Results indicate that participants adapted their movements temporally and spatially to the joint action situation: Overall movement duration was shorter, and mean and maximum velocity was higher when actually working together than when working alone. Pick-to-place trajectories were also shifted away from the partner in spatial coordinates. The partner's presence as such did not have an impact on movement parameters. These findings are interpreted as evidence for the use of implicit strategies to facilitate movement coordination in joint action tasks.

  9. Joint Measurements of Terahertz Wave Generation and High-Harmonic Generation from Aligned Nitrogen Molecules Reveal Angle-Resolved Molecular Structures

    NASA Astrophysics Data System (ADS)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We report the synchronized measurements of terahertz wave generation and high-harmonic generation from aligned nitrogen molecules in dual-color laser fields. Both yields are found to be alignment dependent, showing the importance of molecular structures in the generation processes. By calibrating the angular ionization rates with the terahertz yields, we present a new way of retrieving the angular differential photoionization cross section (PICS) from the harmonic signals which avoids specific model calculations or separate measurements of the alignment-dependent ionization rates. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures.

  10. The Influence Of Component Alignment On The Life Of Total Knee Prostheses

    NASA Astrophysics Data System (ADS)

    Bugariu, Delia; Bereteu, Liviu

    2012-12-01

    An arthritic knee affects the patient's life by causing pain and limiting movement. If the cartilage and the bone surfaces are severely affected, the natural joint is replaced with an artificial joint. The procedure is called total knee arthroplasty (TKA). Lately, the numbers of implanted total knee prostheses grow steadily. An important factor in TKA is the perfect alignment of the total knee prosthesis (TKP) components. Component misalignment can lead to the prosthesis loss by producing wear particles. The paper proposes a study on mechanical behaviors of a TKP based on numerical analysis, using ANSYS software. The numerical analysis is based on both the normal and the changed angle of the components alignment.

  11. Rhythmic affects on stroke-induced joint synergies across a range of speeds.

    PubMed

    Simkins, Matt; Burleigh Jacobs, Anne; Rosen, Jacob

    2013-09-01

    Joint synergies are one among several diminished motor capabilities that are associated with stroke. These synergies are characterized by a stereotypical combination of involuntary joint coactivations. This research measured the synergistic rotations of the shoulder in response to voluntary rhythmic motion of the elbow across a range of speeds. The experimental protocol included a total of 22 subjects divided into two groups: (1) stroke survivors and (2) neurologically intact controls. Rhythmic motion in stroke survivors resulted in comparable synergies to discrete movement. It was found that hemiparetic subjects had greater synergy than neurologically intact individuals for all speeds. Synergy was quantified using a synergy ratio. This ratio uses elbow rotation as an input in the denominator and shoulder rotation as an output in the numerator. The amount of shoulder synergy varied with the subject's level of impairment as measured by a modified Fugl-Meyer assessment. As rhythmic speeds increased, the synergy ratios became higher for stroke subjects. This effect was especially pronounced for subjects with higher impairment. The relationships between synergies that arise from rhythmic and discrete movements are also discussed. The results of this study may have implications for therapeutic interventions, robotic rehabilitation approaches, and for the design of orthotic devices. More generally, these results shed light on the role of central pattern generators in hemiparetic motion.

  12. Selective Thoracic Fusion of Lenke I and II Curves Affects Sagittal Profiles But Not Sagittal or Spinopelvic Alignment: A Case-Control Study.

    PubMed

    Ries, Zachary; Harpole, Bethany; Graves, Christopher; Gnanapragasam, Gnanapradeep; Larson, Nyle; Weintstein, Stuart; Mendoza-Lattes, Sergio A

    2015-06-15

    (33.4-90.1); P < 0.001) and at 2 years (55.4º [29.0-81.9]; P < 0.001). Sagittal vertical alignment, pelvic tilt, and pelvic incidence were comparable between controls and patients with AIS at baseline and did not change with surgery. Adolescents with Lenke I or II curves have comparable sagittal profiles with those of healthy controls of the same age. This suggests that Lenke I and II curves may not be hypokyphotic as previously thought. After selective thoracic fusion, patients with AIS have a significantly decreased thoracic kyphosis, which is accompanied by reciprocal changes in the noninstrumented lumbar curve. Sagittal vertical alignment and pelvic tilt are not significantly affected. These results agree with previous reports, which suggest that constructs with pedicle screws have a higher impact on sagittal curves but do not affect sagittal or spinopelvic alignment. The long-term effects of abnormal sagittal profiles need further clarification. 3.

  13. Variability in static alignment and kinematics for kinematically aligned TKA.

    PubMed

    Theodore, Willy; Twiggs, Joshua; Kolos, Elizabeth; Roe, Justin; Fritsch, Brett; Dickison, David; Liu, David; Salmon, Lucy; Miles, Brad; Howell, Stephen

    2017-08-01

    Total knee arthroplasty (TKA) significantly improves pain and restores a considerable degree of function. However, improvements are needed to increase patient satisfaction and restore kinematics to allow more physically demanding activities that active patients consider important. The aim of our study was to compare the alignment and motion of kinematically and mechanically aligned TKAs. A patient specific musculoskeletal computer simulation was used to compare the tibio-femoral and patello-femoral kinematics between mechanically aligned and kinematically aligned TKA in 20 patients. When kinematically aligned, femoral components on average resulted in more valgus alignment to the mechanical axis and internally rotated to surgical transepicondylar axis whereas tibia component on average resulted in more varus alignment to the mechanical axis and internally rotated to tibial AP rotational axis. With kinematic alignment, tibio-femoral motion displayed greater tibial external rotation and lateral femoral flexion facet centre (FFC) translation with knee flexion than mechanical aligned TKA. At the patellofemoral joint, patella lateral shift of kinematically aligned TKA plateaued after 20 to 30° flexion while in mechanically aligned TKA it decreased continuously through the whole range of motion. Kinematic alignment resulted in greater variation than mechanical alignment for all tibio-femoral and patello-femoral motion. Kinematic alignment places TKA components patient specific alignment which depends on the preoperative state of the knee resulting in greater variation in kinematics. The use of computational models has the potential to predict which alignment based on native alignment, kinematic or mechanical, could improve knee function for patient's undergoing TKA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The Rigors of Aligning Performance

    DTIC Science & Technology

    2015-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT THE RIGORS OF ALIGNING PERFORMANCE June 2015 By... Project (0704–0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE June 2015 3. REPORT TYPE AND DATES COVERED Joint...

  15. Age-related differences do affect postural kinematics and joint kinetics during repetitive lifting.

    PubMed

    Boocock, Mark G; Mawston, Grant A; Taylor, Steve

    2015-02-01

    Age is considered a risk factor for manual handling-related injuries and older workers incur higher injury-related costs than younger co-workers. This study investigated the differences between the kinematics and kinetics of repetitive lifting in two groups of handlers of different ages. Fourteen younger (mean 24.4 yr) and 14 older (mean 47.2 yr) males participated in the study. Participants repetitively lifted a box weighing 13 kg at a frequency of 10 lifts/min for a maximum of 20 min. Postural kinematics (joint and lumbosacral angles and angular velocities) and kinetics (joint moments) were measured throughout the lifting task using motion analysis and ground reaction forces. Muscle fatigue of the erector spinae was assessed using electromyography. Peak lumbosacral, trunk, hip and knee flexion angles differed significantly between age groups over the duration of the task, as did lumbosacral and trunk angular velocities. The younger group increased peak lumbar flexion by approximately 18% and approached 99% of maximum lumbosacral flexion after 20 min, whereas the older group increased lumbar flexion by 4% and approached 82% maximum flexion. The younger group had a larger increase in peak lumbosacral and trunk angular velocities during extension, which may be related to the increased back muscle fatigue observed among the younger group. Older participants appeared to control the detrimental effects of fatigue associated with repetitive lifting and limit lumbar spine range of motion. The higher rates of musculoskeletal injury among older workers may stem from a complex interaction of manual handling risk factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events

    PubMed Central

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate. PMID:28066225

  17. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.

    PubMed

    Shahi, Mina; van Vreeswijk, Carl; Pipa, Gordon

    2016-01-01

    Detecting the existence of temporally coordinated spiking activity, and its role in information processing in the cortex, has remained a major challenge for neuroscience research. Different methods and approaches have been suggested to test whether the observed synchronized events are significantly different from those expected by chance. To analyze the simultaneous spike trains for precise spike correlation, these methods typically model the spike trains as a Poisson process implying that the generation of each spike is independent of all the other spikes. However, studies have shown that neural spike trains exhibit dependence among spike sequences, such as the absolute and relative refractory periods which govern the spike probability of the oncoming action potential based on the time of the last spike, or the bursting behavior, which is characterized by short epochs of rapid action potentials, followed by longer episodes of silence. Here we investigate non-renewal processes with the inter-spike interval distribution model that incorporates spike-history dependence of individual neurons. For that, we use the Monte Carlo method to estimate the full shape of the coincidence count distribution and to generate false positives for coincidence detection. The results show that compared to the distributions based on homogeneous Poisson processes, and also non-Poisson processes, the width of the distribution of joint spike events changes. Non-renewal processes can lead to both heavy tailed or narrow coincidence distribution. We conclude that small differences in the exact autostructure of the point process can cause large differences in the width of a coincidence distribution. Therefore, manipulations of the autostructure for the estimation of significance of joint spike events seem to be inadequate.

  18. Emotional communication in the context of joint attention for food stimuli: effects on attentional and affective processing.

    PubMed

    Soussignan, Robert; Schaal, Benoist; Boulanger, Véronique; Garcia, Samuel; Jiang, Tao

    2015-01-01

    Guided by distinct theoretical frameworks (the embodiment theories, shared-signal hypothesis, and appraisal theories), we examined the effects of gaze direction and emotional expressions (joy, disgust, and neutral) of virtual characters on attention orienting and affective reactivity of participants while they were engaged in joint attention for food stimuli contrasted by preference (disliked, moderately liked, and liked). The participants were exposed to videos of avatars looking at food and displaying facial expressions with their gaze directed either toward the food only or toward the food and participants consecutively. We recorded eye-tracking responses, heart rate, facial electromyography (zygomatic, corrugator, and levator labii regions), and food wanting/liking. The avatars' joy faces increased the participants' zygomatic reactions and food liking, with mutual eye contact boosting attentional responses. Eye contact also fostered disgust reactions to disliked food, regardless of the avatars' expressions. The findings show that joint attention for food accompanied by face-to-face emotional communication elicits differential attentional and affective responses. The findings appear consistent with the appraisal theories of emotion. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Lateral trunk lean in pitchers affects both ball velocity and upper extremity joint moments.

    PubMed

    Solomito, Matthew J; Garibay, Erin J; Woods, Jessica R; Õunpuu, Sylvia; Nissen, Carl W

    2015-05-01

    The incidence of upper extremity injuries in baseball pitchers is increasing. Over the past decade there has been a great deal of research attempting to elucidate the cause of these injuries, focusing mainly on the mechanics of the pitching arm with no examination of other key segments, such as the trunk. This is surprising, as coaches will often comment on trunk position in an effort to improve pitching outcomes. To determine the association between contralateral trunk lean and ball velocity and the moments about the elbow and glenohumeral joint. Descriptive laboratory study. A total of 99 pitchers were recruited for this study and underwent a pitching analysis using 3-dimensional motion analysis techniques. A random intercept mixed-effects regression model was used to determine if statistically significant associations existed between contralateral trunk lean (away from the pitching arm side) and ball velocity, as well as the elbow varus moment and glenohumeral internal rotation moment. The results demonstrated that the greatest contralateral trunk lean occurs around the time of the peak elbow varus moment. Statistically significant associations were found between contralateral trunk lean and increased ball velocity (P=.003) indicating that for every 10° increase in contralateral lean, ball velocity increased 0.5 m/s. Results also indicated that for every 10° increase in contralateral lean, elbow varus moments increased by 3.7 N·m and glenohumeral internal rotation moments increased by 2.5 N·m (P<.001 for both). Study findings indicate that the positioning of the trunk plays a substantial role in pitching performance and pitcher injury potential. This work helps to demonstrate the importance of proper trunk mechanics in pitching and highlights the need for future research to understand the contribution of the trunk to pitching mechanics. Pitching coaches and trainers can use the results of this study to stress the importance of proper trunk mechanics in

  20. Age affects joint space narrowing in patients with early active rheumatoid arthritis

    PubMed Central

    Matthijssen, X M E; Markusse, I M; Stijnen, T; Riyazi, N; Han, K H; Bijkerk, C; Kerstens, P J S M; Lems, W F; Huizinga, T W J; Allaart, C F

    2016-01-01

    Background Joint space narrowing (JSN) in rheumatoid arthritis (RA) may be a manifestation of (primary) osteoarthritis becoming more prominent with age. We investigated the severity and predictors of JSN progression among different age groups. Methods 10-year follow-up data of the BeSt study, a randomised controlled treat-to-target trial in early RA were used. Annual X-rays of hands and feet were scored using the Sharp/van der Heijde score (SHS). Subgroups were defined by age at baseline: ≥55, ≥40<55 and <40 years. JSN progression predictors were assessed by Poisson regression. Results Baseline JSN scores (median (IQR)) were higher in patients ≥55 (2.0 (0.0–6.0)) compared with the other age groups: 1.0 (0.0–3.0) ≥40<55 and 0.3 (0.0–3.0) <40, p<0.001. After 10 years, total JSN and SHS were similar in all age groups. In patients ≥55 the mean erythrocyte sedimentation rate (ESR) over time (relative risk 1.02 (95% CI 1.00 to 1.03)) and the combined presence of rheumatoid factor and anticitrullinated protein antibodies (RF+/ACPA+) (3.27 (1.25–8.53)) were significantly correlated with JSN progression. In patients <40 the baseline swollen joint count (SJC; 1.09 (1.01–1.18)) and ESR over time (1.04 (1.02–1.06)) were significantly associated. Conclusions At baseline, patients with RA ≥55 years had more JSN than younger patients but after 10 years JSN scores were similar between age groups. Independent risk factors for JSN progression were baseline SJC and ESR over time in patients <40, RF+/ACPA+ and ESR over time in patients ≥55 years. This suggests that mechanisms leading to JSN progression are related to (residual) rheumatoid inflammation and vary between age groups. These mechanisms remain to be elucidated. Trial registration numbers NTR262, NTR265. PMID:27843577

  1. Age affects joint space narrowing in patients with early active rheumatoid arthritis.

    PubMed

    Matthijssen, X M E; Akdemir, G; Markusse, I M; Stijnen, T; Riyazi, N; Han, K H; Bijkerk, C; Kerstens, P J S M; Lems, W F; Huizinga, T W J; Allaart, C F

    2016-01-01

    Joint space narrowing (JSN) in rheumatoid arthritis (RA) may be a manifestation of (primary) osteoarthritis becoming more prominent with age. We investigated the severity and predictors of JSN progression among different age groups. 10-year follow-up data of the BeSt study, a randomised controlled treat-to-target trial in early RA were used. Annual X-rays of hands and feet were scored using the Sharp/van der Heijde score (SHS). Subgroups were defined by age at baseline: ≥55, ≥40<55 and <40 years. JSN progression predictors were assessed by Poisson regression. Baseline JSN scores (median (IQR)) were higher in patients ≥55 (2.0 (0.0-6.0)) compared with the other age groups: 1.0 (0.0-3.0) ≥40<55 and 0.3 (0.0-3.0) <40, p<0.001. After 10 years, total JSN and SHS were similar in all age groups. In patients ≥55 the mean erythrocyte sedimentation rate (ESR) over time (relative risk 1.02 (95% CI 1.00 to 1.03)) and the combined presence of rheumatoid factor and anticitrullinated protein antibodies (RF+/ACPA+) (3.27 (1.25-8.53)) were significantly correlated with JSN progression. In patients <40 the baseline swollen joint count (SJC; 1.09 (1.01-1.18)) and ESR over time (1.04 (1.02-1.06)) were significantly associated. At baseline, patients with RA ≥55 years had more JSN than younger patients but after 10 years JSN scores were similar between age groups. Independent risk factors for JSN progression were baseline SJC and ESR over time in patients <40, RF+/ACPA+ and ESR over time in patients ≥55 years. This suggests that mechanisms leading to JSN progression are related to (residual) rheumatoid inflammation and vary between age groups. These mechanisms remain to be elucidated. NTR262, NTR265.

  2. Stress analysis in human temporomandibular joint affected by anterior disc displacement during prolonged clenching.

    PubMed

    Abe, S; Kawano, F; Kohge, K; Kawaoka, T; Ueda, K; Hattori-Hara, E; Mori, H; Kuroda, S; Tanaka, E

    2013-04-01

    Parafunctional habits, such as prolonged clenching and bruxism, have been associated with dysfunctional overloading in the temporomandibular joint (TMJ). In this study, stress distributions in the TMJ were analysed during prolonged clenching, using three-dimensional finite element (FE) models of the TMJ with and without disc displacement. The aim of this study was to investigate stress distribution of the cartilaginous tissues in the TMJ with and without disc displacement. Finite element models were developed on the basis of magnetic resonance images from two subjects with and without anterior disc displacement. Condylar movements recorded during a 5-min clenching were used as the loading condition for stress analysis. In the asymptomatic model, the highest von Mises stresses were located in the lateral area (4·91 MPa) of the disc surfaces, and after 5-min clenching, the higher stresses were still located at the lateral area (3·65 MPa). In all the cartilaginous tissues, 30-50% of stress reduction occurred during 5-min clenching. In contrast, the von Mises stress in the cartilaginous tissues of the symptomatic model with disc displacement was markedly lower, compared with the asymptomatic model. However, in the condylar cartilage, stress relaxation during clenching was not recognised. Furthermore, relatively high stresses were observed in the retrodiscal tissues throughout clenching. The present results indicate that disc position could be involved in the stress distribution of the TMJ components during prolonged clenching.

  3. Joint Trajectories of Behavioral, Affective, and Cognitive Engagement in Elementary School

    ERIC Educational Resources Information Center

    Archambault, Isabelle; Dupéré, Véronique

    2017-01-01

    The aim of the present study was to model student trajectories of behavioral, affective, and cognitive engagement from Grade 3 to Grade 6. The authors also examined whether teachers perceptions could predict student trajectory membership. The authors collected data from a sample of 831 students and 152 teachers. Using multiple-process growth…

  4. Self-Aligning Coupler

    NASA Technical Reports Server (NTRS)

    Cooney, Earl T.

    1990-01-01

    Joint reduces assembly time and eliminates fumbling. Self-aligning coupler easy to use for people wearing heavy gloves or other restrictive clothing. Consists of two threaded sections, one with blade, other with slot - joined by threaded collar. Blade fits precisely in slot. Notch in blade engages pin in slot to form temporary attachment. Collar turned on continuous thread of joined sections to form tight, rigid joint. Designed for assembly of structures by astronauts in space suits, coupler used on Earth by firefighters wearing protective garments, technicians handling hazardous materials, and others working underwater or in other difficult environments.

  5. Factors affecting results of fluoroscopy-guided facet joint injection: Probable differences in the outcome of treatment between pure facet joint hypertrophy and concomitant diseases

    PubMed Central

    Albayrak, Akif; Ozkul, Baris; Balioglu, Mehmet Bulent; Atici, Yunus; Gultekin, Muhammet Zeki; Albayrak, Merih Dilan

    2016-01-01

    Study Design: Retrospective cohort study. Purpose: Facet joints are considered a common source of chronic low-back pain. To determine whether pathogens related to the facet joint arthritis have any effect on treatment failure. Materials and Methods: Facet joint injection was applied to 94 patients treated at our hospital between 2011 and 2012 (mean age 59.5 years; 80 women and 14 men). For the purpose of analysis, the patients were divided into two groups. Patients who only had facet hypertrophy were placed in group A (47 patients, 41 women and 6 men, mean age 55.3 years) and patients who had any additional major pathology to facet hypertrophy were placed in group B (47 patients, 39 women and 8 men, mean age 58.9 years). Injections were applied around the facet joint under surgical conditions utilizing fluoroscopy device guidance. A mixture of methylprednisolone and lidocaine was used as the injection ingredient. Results: In terms of Oswestry Disability Index (ODI) and visual analog scale (VAS) scores, no significant difference was found between preinjection and immediate postinjection values in both groups, and the scores of group A patients were significantly lower (P < 0.005) compared with that of group B patients at the end of the third, sixth, and twelfth month. Conclusion: For low-back pain caused by facet hypertrophy, steroid injection around the facet joint is an effective treatment, but if there is an existing major pathology, it is not as effective. PMID:27041884

  6. Alignment as a Consequence of Expectation Adaptation: Syntactic Priming Is Affected by the Prime's Prediction Error Given both Prior and Recent Experience

    ERIC Educational Resources Information Center

    Jaeger, T. Florian; Snider, Neal E.

    2013-01-01

    Speakers show a remarkable tendency to align their productions with their interlocutors'. Focusing on sentence production, we investigate the cognitive systems underlying such alignment (syntactic priming). Our guiding hypothesis is that syntactic priming is a consequence of a language processing system that is organized to achieve efficient…

  7. Alignment as a Consequence of Expectation Adaptation: Syntactic Priming Is Affected by the Prime's Prediction Error Given both Prior and Recent Experience

    ERIC Educational Resources Information Center

    Jaeger, T. Florian; Snider, Neal E.

    2013-01-01

    Speakers show a remarkable tendency to align their productions with their interlocutors'. Focusing on sentence production, we investigate the cognitive systems underlying such alignment (syntactic priming). Our guiding hypothesis is that syntactic priming is a consequence of a language processing system that is organized to achieve efficient…

  8. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  9. Coronal alignment of patellofemoral arthroplasty.

    PubMed

    Thienpont, Emmanuel; Lonner, Jess H

    2014-01-01

    Patellofemoral arthroplasty (PFA) can yield successful results in appropriately selected patients. The varus-valgus position or coronal alignment of the trochlear implant is determined by how its transitional edges articulate with the condylar cartilage. Whilst variation in condylar anatomy will not influence the axis of the lower limb in PFA, it can impact on the Q-angle of the PF joint. The aim of this study was to analyze how the coronal alignment can be influenced by the choice of anatomical landmarks. Retrospective analysis of 57 PFAs with measurements of alignment from full leg radiographs. Coronal alignment following anterior condylar anatomy leads to a mean (SD) proximal valgus alignment of 100° (9°). Aligning the component with Whiteside's line gives a better alignment with less variance 89° (3°). A trochlear component with a higher Q-angle compensates for patellar maltracking if the condylar anatomy would tend to put the implant in a more proximal varus or neutral position. If the trochlear component is proximally aligned in valgus this may have the opposite effect. Aligning the trochlear component with the AP-axis in the coronal plane avoids maltracking and optimally utilizes the design features of the implant. Level III. © 2014 Elsevier B.V. All rights reserved.

  10. Some Ways in Which Neighborhoods, Nuclear Families, Friendship Groups, and Schools Jointly Affect Changes in Early Adolescent Development.

    ERIC Educational Resources Information Center

    Cook, Thomas D.; Herman, Melissa R.; Phillips, Meredith; Settersten, Richard A., Jr.

    2002-01-01

    This study assessed how schools, neighborhoods, nuclear families, and friendship groups jointly contribute to positive change during early adolescence. Analyses showed that the four context indices modestly intercorrelated at the individual student level, but clustered more tightly at the school and neighborhood levels. Joint influence of all four…

  11. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  12. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  13. Four Weeks of Balance Training does not Affect Ankle Joint Stiffness in Subjects with Unilateral Chronic Ankle Instability

    PubMed Central

    Jain, Tarang Kumar; Wauneka, Clayton N.; Liu, Wen

    2016-01-01

    Background Balance training has been shown to be effective in preventing ankle sprain recurrences in subjects with chronic ankle instability (CAI) but the biomechanical pathways underlying the clinical outcomes are still unknown. This study was conducted to determine if a 4-week balance training intervention can alter the mechanical characteristics in ankles with CAI. Methods Twenty-two recreationally active subjects with unilateral CAI were randomized to either a control (n = 11, 35.1 ± 9.3 years) or intervention (n = 11, 33.5 ± 6.6 years) group. Subjects in the intervention group were trained on the affected limb with static and dynamic components using a Biodex balance stability system for 4-weeks. The ankle joint stiffness and neutral zone in inversion and eversion directions on the involved and uninvolved limbs was measured at baseline and post-intervention using a dynamometer. Results At baseline, the mean values of the inversion stiffness (0.69 ± 0.37 Nm/degree) in the involved ankle was significantly lower (p < 0.011, 95% CI [0.563, 0.544]) than that of uninvolved contralateral ankle (0.99 ± 0.41 Nm/degree). With the available sample size, the eversion stiffness, inversion neutral zone, and eversion neutral zone were not found to be significantly different between the involved and uninvolved contralateral ankles. The 4-week balance training intervention failed to show any significant effect on the passive ankle stiffness and neutral zones in inversion and eversion. Conclusion Decreased inversion stiffness in the involved chronic unstable ankle was found that of uninvolved contralateral ankle. The 4-week balance training program intervention was ineffective in altering the mechanical characteristics of ankles with CAI. Level of evidence Randomized controlled clinical trial; Level of evidence, 1. PMID:27642647

  14. The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking.

    PubMed

    Koehler-McNicholas, Sara R; Lipschutz, Robert D; Gard, Steven A

    2016-01-01

    Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (i.e., the ANT condition), participants significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, participants also decreased the rate at which they loaded their prosthesis, decreased their affected-side step length, increased their trunk flexion, and maintained their prosthesis in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, comparatively few significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee joint control.

  15. Does early care affect joint attention in great apes (Pan troglodytes, Pan paniscus, Pongo abelii, Pongo pygmaeus, Gorilla gorilla)?

    PubMed

    Pitman, Caisie A; Shumaker, Robert W

    2009-08-01

    The ability to share attention with another is the foundation on which other theory of mind skills are formed. The quality of care received during infancy has been correlated with increased joint attention in humans. The purpose of this study was to assess the effects of care style (responsive or basic) and caregiver type (ape or human) during the first 6 months on joint attention in 4 great ape species (Pan troglodytes, Gorilla gorilla, Pongo spp., and Pan pansicus). Great apes engaged in joint attention with conspecifics and humans regardless of the style of early care they experienced from either a great ape mother or human caregiver. This finding suggests that joint attention is a robust ability in great apes that is resilient against at least some differences in early care. Future studies using additional measures of early care quality are recommended.

  16. Individual joint contribution to body weight support in the affected lower limb during walking in post-stroke hemiplegia.

    PubMed

    Kim, Woo-Sub; Kim, Min Joo

    2017-04-01

    Patients with post-stroke hemiplegia have difficulty with body weight support during walking. However, it is unclear which intra-limb strategy for body weight support tends to predominate, and how the intra-limb strategy is related to gait function. Support moment and individual joint contribution to support moment are the parameters that reflect intra-limb strategy for body weight supporting. The aim of this study was to test whether support moment and individual joint contributions differed between post-stroke subjects with different gait function. Laboratory gait analysis was performed for 14 non-hemiplegic elderly (NE) and 12 post-stroke hemiplegic elderly walking without cane (HNC) and 11 walking with a cane (HWC). Data were obtained for the vertical ground reaction force (vGRF) curve, 1st peak and 2nd peak of vGRF and corresponding temporal occurrences. Support moment (Ms) was numerical sum of hip extension, knee extension, and ankle plantar flexion moment. Individual joint contribution was calculated as the ratio of each joint moment to support moment. At temporal occurrences of vGRF peaks, Ms and individual joint contribution to Ms were calculated. Ms and individual joint contribution to Ms were compared among NE, HNC and HWC groups. Each subject's characteristics of individual joint contribution to Ms were explored. At the 1st peak of vGRF, support moments were similar among the three groups. However, the hip contributions were significantly greater in the NE group than in the other two groups, the ankle contributions were significantly greater in the HNC group than in the NE group. Notably, some of the subjects with post-stroke hemiplegia showed atypical characteristics that did not correspond to the group characteristics. Observing support moment and individual joint contribution is helpful to ascertain not only group characteristics, but also individual characteristics of intra-limb strategy for weight support in patients with post-stroke hemiplegia.

  17. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  18. How joint characteristics between a piezoelectric beam and the main structure affect the performance of an energy harvester

    NASA Astrophysics Data System (ADS)

    Jahani, K.; Rafiei, M. M.; Aghazadeh, P.

    2017-09-01

    In this paper, the influence of the joint region between a piezoelectric energy harvesting beam and the vibratory main structure is studied. The investigations are conducted in two separate sections, namely numerical and experimental studies. In numerical studies, the effects of nonlinear parameters on generated power are investigated while the joint characteristics the between vibrating base and a piezoelectric energy harvester are taken into consideration. A unimorph beam with a tip mass and a nonlinear piezoelectric layer that undergoes a large-amplitude deflection is considered as an energy harvester. By applying the Euler-Lagrange equation and Gauss’s law the mechanical and electrical equations of motion are obtained, respectively. The excitation frequency is assumed to be close to the first natural frequency. Thus, a unimodal response is considered to be like that of a system with a single degree of freedom (SDOF). The joint between the vibrating main structure and the cantilevered beam is then added to the SDOF model. The joint characteristics are simulated with a light mass, mj , linear spring stiffness, kj , and equivalent viscous damper, cj . In two scenarios, i.e. with a rigid joint and with a flexible one, a numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on the harvested power. In experimental studies, the influence of a bolted joining technique and a flexible adhesive bonding method on the harvested power is investigated. The results achieved experimentally confirm those obtained numerically, i.e. a stiffer joint leads to a greater power produced by the harvester. In other words, neglecting the joint characteristics will cause the performance (maximum output power and the range of excitation frequency) of the harvester to be overestimated in numerical simulations.

  19. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  20. How does joint procurement affect the design, customisation and usability of a hospital ePrescribing system?

    PubMed

    Lee, Lisa; Williams, Robin; Sheikh, Aziz

    2016-12-01

    The aim of this article is to explore the effect of the joint procurement model adopted during the English National Programme for Information Technology (NPfIT) on the customisation, design and usability of a hospital ePrescribing system. Drawing on qualitative data collected at two case study sites deploying an ePrescribing system jointly procured within one of the NPfIT's geographical clusters, we explain how procurement decisions, difficult relationships with the supplier and strict contractual arrangements contributed to usability issues and difficulties in the customisation process. While some limited change requests made by users were taken up by the developers, these were seen by users as insufficient to meet local clinical needs and practices. A joint procurement approach, such as the NPfIT, thus limited the opportunity and scope of the changes to the ePrescribing system, which impinged not only on the perceived success of the implementation but also on the system's usability.

  1. Hydrostatic self-aligning axial/torsional mechanism

    DOEpatents

    O'Connor, Daniel G.; Gerth, Howard L.

    1990-01-01

    The present invention is directed to a self-aligning axial/torsional loading mechanism for testing the strength of brittle materials which are sensitive to bending moments. Disposed inside said self-aligning loading mechanism is a frictionless hydrostatic ball joint with a flexure ring to accommodate torsional loads through said ball joint.

  2. Environmental cold exposure increases blood flow and affects pain sensitivity in the knee joints of CFA-induced arthritic mice in a TRPA1-dependent manner.

    PubMed

    Fernandes, Elizabeth S; Russell, Fiona A; Alawi, Khadija M; Sand, Claire; Liang, Lihuan; Salamon, Robin; Bodkin, Jennifer V; Aubdool, Aisah A; Arno, Matthew; Gentry, Clive; Smillie, Sarah-Jane; Bevan, Stuart; Keeble, Julie E; Malcangio, Marzia; Brain, Susan D

    2016-01-11

    The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. We provide evidence that environmental

  3. Alignment of Helical Membrane Protein Sequences Using AlignMe

    PubMed Central

    Khafizov, Kamil; Forrest, Lucy R.

    2013-01-01

    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set. PMID:23469223

  4. Intraoperative joint gaps and mediolateral balance affect postoperative knee kinematics in posterior-stabilized total knee arthroplasty.

    PubMed

    Watanabe, Toshifumi; Muneta, Takeshi; Sekiya, Ichiro; Banks, Scott A

    2015-12-01

    Adjusting joint gaps and establishing mediolateral (ML) soft tissue balance are considered essential interventions for better outcomes in total knee arthroplasty (TKA). However, the relationship between intraoperative laxity measurements and weightbearing knee kinematics has not been well explored. This study aimed to quantify the effect of intraoperative joint gaps and ML soft tissue balance on postoperative knee kinematics in posterior-stabilized (PS)-TKA. We investigated 44 knees in 34 patients who underwent primary PS-TKA by a single surgeon. The central joint gaps and ML tilting angles at 0°, 10°, 30°, 60°, 90°, 120° and 135° flexion were measured during surgery. At a minimum of two year follow-up, we analyzed in vivo kinematics of these knees and examined the influence of intraoperative measurements on postoperative kinematics. Gap difference of knee flexion at 135° minus 0° was correlated with the total posterior translation of lateral femoral condyle (r=0.336, p=0.042) and femoral external rotation (r=0.488, p=0.002) during squatting, anteroposterior position of lateral femoral condyle (r=-0.510, p=0.001) and maximum knee flexion (r=0.355, p=0.031) in kneeling. Similar correlations were observed between deep flexion gap differences with respect to the 90° reference and postoperative knee kinematics. Well-balanced knees showed less anterior translation of medial femoral condyle in mid- to deep flexion, consistent femoral external rotation, and the most neutral valgus/varus rotation compared with unbalanced knees. These findings indicate the importance of adequate intraoperative joint gaps in deep flexion and ML soft tissue balance throughout the range of motion. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Bracing improves clinical outcomes but does not affect the medial knee joint space in osteoarthritic patients during gait.

    PubMed

    Haladik, Jeffrey A; Vasileff, William K; Peltz, Cathryn D; Lock, Terrence R; Bey, Michael J

    2014-11-01

    Osteoarthritis (OA) of the knee is commonly treated through the use of medial compartment unloading braces which have been shown to improve clinical symptoms. The objective of this study was to assess the effects of a medial compartment unloading brace on biomechanical measurements and clinical outcomes. We hypothesized that brace usage would lead to increased medial joint space and improved clinical outcomes. Ten patients with medial compartment OA were prescribed a medial compartment unloading brace and underwent dynamic biplane radiograph imaging while walking with and without the brace. The Western Ontario and McMaster University Osteoarthritis (WOMAC) Index was used to assess pain before brace wear and at the time of testing. The 3D position and orientation of the femur and tibia were determined using a model-based tracking technique. Patients saw an average improvement of 33 % in their WOMAC scores (p = 0.01). This study failed to detect any statistically significant changes in the functional joint space, knee kinematics, or contact centre location between the braced and unbraced condition (n.s.). The data from this study, using a highly accurate (±0.6 mm and ±0.6°) 3D radiograph analysis of dynamic tibiofemoral motion, suggest that the brace is ineffective at increasing joint space. However, it was shown to be effective in improving clinical outcome and therefore should continue to be prescribed to patients even though the mechanism of its effectiveness remains unknown. IV.

  6. How the neck affects the back: changes in regional cervical sagittal alignment correlate to HRQOL improvement in adult thoracolumbar deformity patients at 2-year follow-up.

    PubMed

    Protopsaltis, Themistocles S; Scheer, Justin K; Terran, Jamie S; Smith, Justin S; Hamilton, D Kojo; Kim, Han Jo; Mundis, Greg M; Hart, Robert A; McCarthy, Ian M; Klineberg, Eric; Lafage, Virginie; Bess, Shay; Schwab, Frank; Shaffrey, Christopher I; Ames, Christopher P

    2015-08-01

    OBJECT Regional cervical sagittal alignment (C2-7 sagittal vertical axis [SVA]) has been shown to correlate with health-related quality of life (HRQOL). The study objective was to examine the relationship between cervical and thoracolumbar alignment parameters with HRQOL among patients with operative and nonoperative adult thoracolumbar deformity. METHODS This is a multicenter prospective data collection of consecutive patients with adult thoracolumbar spinal deformity. Clinical measures of disability included the Oswestry Disability Index (ODI), Scoliosis Research Society-22 Patient Questionnaire (SRS-22), and 36-Item Short-Form Health Survey (SF-36). Cervical radiographic parameters were correlated with global sagittal parameters within the nonoperative and operative cohorts. A partial correlation analysis was performed controlling for C-7 SVA. The operative group was subanalyzed by the magnitude of global deformity (C-7 SVA ≥ 5 cm vs < 5 cm). RESULTS A total of 318 patients were included (186 operative and 132 nonoperative). The mean age was 55.4 ± 14.9 years. Operative patients had significantly worse baseline HRQOL and significantly larger C-7 SVA, pelvic tilt (PT), mismatch between pelvic incidence and lumbar lordosis (PI-LL), and C2-7 SVA. The operative patients with baseline C-7 SVA ≥ 5 cm had significantly larger C2-7 lordosis (CL), C2-7 SVA, C-7 SVA, PI-LL, and PT than patients with a normal C-7 SVA. For all patients, baseline C2-7 SVA and CL significantly correlated with baseline ODI, Physical Component Summary (PCS), SRS Activity domain, and SRS Appearance domain. Baseline C2-7 SVA also correlated with SRS Pain and SRS Total. For the operative patients with baseline C-7 SVA ≥ 5 cm, the 2-year C2-7 SVA significantly correlated with 2-year Mental Component Summary, SRS Mental, SRS Satisfaction, and decreases in ODI. Decreases in C2-7 SVA at 2 years significantly correlated with lower ODI at 2 years. Using partial correlations while controlling for

  7. Do Transsacral-transiliac Screws Across Uninjured Sacroiliac Joints Affect Pain and Functional Outcomes in Trauma Patients?

    PubMed

    Heydemann, John; Hartline, Braden; Gibson, Mary Elizabeth; Ambrose, Catherine G; Munz, John W; Galpin, Matthew; Achor, Timothy S; Gary, Joshua L

    2016-06-01

    Patients with pelvic ring displacement and instability can benefit from surgical reduction and instrumentation to stabilize the pelvis and improve functional outcomes. Current treatments include iliosacral screw or transsacral-transiliac screw, which provides greater biomechanical stability. However, controversy exists regarding the effects of placement of a screw across an uninjured sacroiliac joint for pelvis stabilization after trauma. Does transsacral-transiliac screw fixation of an uninjured sacroiliac joint increase pain and worsen functional outcomes at minimum 1-year followup compared with patients undergoing standard iliosacral screw fixation across the injured sacroiliac joint in patients who have sustained pelvic trauma? All patients between ages 18 and 84 years who sustained injuries to the pelvic ring (AO/OTA 61 A, B, C) who were surgically treated between 2011 and 2013 at an academic Level I trauma center were identified for selection. We included patients with unilateral sacroiliac disruption or sacral fractures treated with standard iliosacral screws across an injured hemipelvis and/or transsacral-transiliac screws placed in the posterior ring. Transsacral-transiliac screws were generally more likely to be used in patients with vertically unstable sacral injuries of the posterior ring as a result of previous reports of failures or in osteopenic patients. We excluded patients with bilateral posterior pelvic ring injuries, fixation with a device other than a screw, previous pelvic or acetabular fractures, associated acetabular fractures, and ankylosing spondylitis. Of the 110 patients who met study criteria, 53 (44%) were available for followup at least 12 months postinjury. Sixty patients were unable to be contacted by phone or mail and seven declined to participate in the study. Outcomes were obtained by members of the research team using the visual analog scale (VAS) pain score for both posterior sacroiliac joints, Short Musculoskeletal Functional

  8. Joint for deployable structures

    NASA Technical Reports Server (NTRS)

    Craighead, N. D., II; Preliasco, R. J.; Hult, T. D. (Inventor)

    1985-01-01

    A joint is described for connecting a pair of beams to pivot them between positions in alignment or beside one another, which is of light weight and which operates in a controlled manner. The joint includes a pair of fittings and at least one center link having opposite ends pivotally connected to opposite fittings and having axes that pass through centerplates of the fittings. A control link having opposite ends pivotally connected to the different fittings controls their relative orientations, and a toggle assemly holds the fittings in the deployed configuration wherein they are aligned. The fittings have stops that lie on one side of the centerplane opposite the toggle assembly.

  9. Neuroimaging and psychophysiological investigation of the link between anxiety, enhanced affective reactivity and interoception in people with joint hypermobility

    PubMed Central

    Mallorquí-Bagué, Núria; Garfinkel, Sarah N.; Engels, Miriam; Eccles, Jessica A.; Pailhez, Guillem; Bulbena, Antonio; Critchley, Hugo D.

    2014-01-01

    Objective: Anxiety is associated with increased physiological reactivity and also increased “interoceptive” sensitivity to such changes in internal bodily arousal. Joint hypermobility, an expression of a common variation in the connective tissue protein collagen, is increasingly recognized as a risk factor to anxiety and related disorders. This study explored the link between anxiety, interoceptive sensitivity and hypermobility in a sub-clinical population using neuroimaging and psychophysiological evaluation. Methods: Thirty-six healthy volunteers undertook interoceptive sensitivity tests, a clinical examination for hypermobility and completed validated questionnaire measures of state anxiety and body awareness tendency. Nineteen participants also performed an emotional processing paradigm during functional neuroimaging. Results: We confirmed a significant relationship between state anxiety score and joint hypermobility. Interoceptive sensitivity mediated the relationship between state anxiety and hypermobility. Hypermobile, compared to non-hypermobile, participants displayed heightened neural reactivity to sad and angry scenes within brain regions implicated in anxious feeling states, notably insular cortex. Conclusions: Our findings highlight the dependence of anxiety state on bodily context, and increase our understanding of the mechanisms through which vulnerability to anxiety disorders arises in people bearing a common variant of collagen. PMID:25352818

  10. Extra domain B fibronectin as a target for near-infrared fluorescence imaging of rheumatoid arthritis affected joints in vivo.

    PubMed

    Vollmer, Sonja; Vater, Axel; Licha, Kai; Gemeinhardt, Ines; Gemeinhardt, Ole; Voigt, Jan; Ebert, Bernd; Schnorr, Jörg; Taupitz, Matthias; Macdonald, Rainer; Schirner, Michael

    2009-12-01

    Abstract We investigated a molecular imaging approach for the detection of collagen-induced arthritis in rats by targeting the extra domain B (ED-B) of the extracellular matrix protein fibronectin. ED-B is a highly conserved domain (identical in human and rats) that is produced by alternative splicing during embryonic development and during vascular remodeling such as angiogenesis. The hallmark of rheumatoid arthritis is synovitis leading to both angiogenesis in the synovium and the promotion of cartilage and bone disruption. For in vivo diagnostics, the ED-B-binding single-chain antibody fragment AP39 was used as a targeting probe. It was covalently linked to the near-infrared dye tetrasulfocyanine (TSC) to be visualized by near-infrared fluorescence imaging. The resulting AP39-TSC conjugate was intravenously administered to rats with collagen-induced arthritis and the respective controls. Ovalbumin-TSC was used as control conjugate. Optical imaging over a time period of 24 hours using a planar imaging setup resulted in a clear enhancement of fluorescence intensity in joints with moderate to severe arthritis compared with control joints between 3 and 8 hours postinjection. Given that AP39 is a fully human antibody fragment, this molecular imaging approach for arthritis detection might be translated to humans.

  11. Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of artificial articular joints.

    PubMed

    Kitano, T; Ateshian, G A; Mow, V C; Kadoya, Y; Yamano, Y

    2001-08-01

    The relationship between the coefficient of friction and pH value or protein constituents of lubricating fluid, together with viscosity, were studied within a bearing surface model for artificial joint, ultra-high molecular weight polyethylene (UHMWPE) against stainless steel (SUS), using a mechanical spectrometer. Four lubricants were tested in this study: sodium hyaluronate (HA), HA with albumin, HA with gamma-globulin, and HA with (L)alpha-dipalmitoyl phosphatidylcholine ((L)alpha-DPPC). The coefficient of friction between UHMWPE and SUS in HA with albumin or HA with gamma-globulin varied from 0.035 to 0.070 depending on angular velocity and pH. The coefficient of friction in HA or HA with (L)alpha-DPPC varied from 0.023 to 0.045 depending on angular velocity and pH. The variation in pH for HA with albumin had a large effect on the coefficient of friction at low range of angular velocity with viscosity independence. The variation in pH for HA with gamma-globulin had a large effect on the coefficient of friction with viscosity dependence at high angular velocity. The addition of (L)alpha-DPPC showed a small effect on the coefficient of friction at low angular velocity. This study confirms that the presence of albumin in the lubricant promotes pH dependence and viscosity independence of the tribological properties at low speed while the presence of globulin promotes pH and viscosity independence at low speed and promotes pH and viscosity dependence at high speed in the lubrication of UHMWPE against SUS. This study supports the clinical hypothesis that the effect of constituents and pH changes in periprosthetic fluid for the lubrication is a clue toward resolving many complications after total joint replacement.

  12. Impact of the difference in the plantar flexor strength of the ankle joint in the affected side among hemiplegic patients on the plantar pressure and walking asymmetry

    PubMed Central

    You, Young Youl; Chung, Sin Ho; Lee, Hyung Jin

    2016-01-01

    [Purpose] This study was to examine the changes in the gait lines and plantar pressures in static and dynamic circumstances, according to the differences in the strengths of the plantar flexors in the ankle joints on the affected sides of hemiplegic patients, and to determine their impacts on walking symmetry. [Subjects and Methods] A total of thirty hospitalized stroke patients suffering from hemiplegia were selected in this study. The subjects had ankylosing patterns in the ankle joints of the affected sides. Fifteen of the patients had plantar flexor manual muscle testing scores between poor and fair, while fifteen of the patients had zero and trace. [Results] The contact pattern of the plantar surface with the ground is a reliable method for walking analysis, which is an important index for understanding the ankle mechanism and the relationship between the plantar surface and the ground. [Conclusion] The functional improvement of patients with stroke could be supported through a verification of the analysis methods of the therapy strategy and walking pattern. PMID:27942112

  13. Impact of the difference in the plantar flexor strength of the ankle joint in the affected side among hemiplegic patients on the plantar pressure and walking asymmetry.

    PubMed

    You, Young Youl; Chung, Sin Ho; Lee, Hyung Jin

    2016-11-01

    [Purpose] This study was to examine the changes in the gait lines and plantar pressures in static and dynamic circumstances, according to the differences in the strengths of the plantar flexors in the ankle joints on the affected sides of hemiplegic patients, and to determine their impacts on walking symmetry. [Subjects and Methods] A total of thirty hospitalized stroke patients suffering from hemiplegia were selected in this study. The subjects had ankylosing patterns in the ankle joints of the affected sides. Fifteen of the patients had plantar flexor manual muscle testing scores between poor and fair, while fifteen of the patients had zero and trace. [Results] The contact pattern of the plantar surface with the ground is a reliable method for walking analysis, which is an important index for understanding the ankle mechanism and the relationship between the plantar surface and the ground. [Conclusion] The functional improvement of patients with stroke could be supported through a verification of the analysis methods of the therapy strategy and walking pattern.

  14. Measuring Hole Elongation in Bolted Joints

    NASA Technical Reports Server (NTRS)

    Wichorek, G. R.

    1986-01-01

    Measurement does not affect joint parameters. Verification of analytical and strength-prediction methods for bolted composite joints based generally on data obtained experimentally from double-lap-joint specimens. In mechanically fastened joints, stresses maximal at fastener holes. Ability to measure accurately hole elongations without affecting joint parameters provides better understanding of elastic and plastic behavior of joint material leading to failure mechanisms in mechanically fastened joints required for design of more-efficient, lightweight composite joints.

  15. BAYESIAN PROTEIN STRUCTURE ALIGNMENT1

    PubMed Central

    RODRIGUEZ, ABEL; SCHMIDLER, SCOTT C.

    2015-01-01

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key “gap” parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence–structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples. PMID:26925188

  16. Alignment of Standards and Assessments as an Accountability Criterion.

    ERIC Educational Resources Information Center

    La Marca, Paul M.

    2001-01-01

    Provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. Discusses some methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment is not only a methodological requirement but also an ethical requirement.…

  17. Alignment of Standards and Assessments as an Accountability Criterion.

    ERIC Educational Resources Information Center

    La Marca, Paul M.

    2001-01-01

    Provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. Discusses some methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment is not only a methodological requirement but also an ethical requirement.…

  18. Quick-connect threaded attachment joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Messick, W. R.; Vasquez, P.

    1979-01-01

    Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.

  19. Quick-connect threaded attachment joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Messick, W. R.; Vasquez, P.

    1979-01-01

    Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.

  20. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  1. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    PubMed

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension.

  2. The subtalar joint

    PubMed Central

    Krähenbühl, Nicola; Horn-Lang, Tamara; Hintermann, Beat; Knupp, Markus

    2017-01-01

    Subtalar joint anatomy is complex and can vary significantly between individuals. Movement is affected by several adjacent joints, ligaments and periarticular tendons. The subtalar joint has gained interest from foot and ankle surgeons in recent years, but its importance in hindfoot disorders is still under debate. The purpose of this article is to give a general overview of the anatomy, biomechanics and radiographic assessment of the subtalar joint. The influence of the subtalar joint on the evolution of ankle joint osteoarthritis is additionally discussed. Cite this article: EFORT Open Rev 2017;2:309-316. DOI: 10.1302/2058-5241.2.160050 PMID:28828179

  3. Factors Affecting Student Success in Distance Learning Courses at a Local California Community College: Joint Governance Perspectives

    ERIC Educational Resources Information Center

    Gonzalez, Luis A.

    2012-01-01

    The purpose of this study was to explore the perspectives of staff and faculty regarding factors affecting student success in distance learning at a California community college (CCC). Participants were members of the leadership group known as the distance learning committee. Data were collected through in-depth interviews using open-ended…

  4. Effect of long-term aging on microstructure and local behavior in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint

    SciTech Connect

    Zhu, Ming-Liang Wang, De-Qiang; Xuan, Fu-Zhen

    2014-01-15

    Evolution of microstructure, micro-hardness and micro-tensile strength behavior was investigated in the heat-affected zone of a Ni–Cr–Mo–V steel welded joint after the artificial aging at 350 °C for 3000 h. After detailed characterization of microstructures in optical microscopy, scanning electron microscopy and transmission electron microscopy, it is revealed that the change of martensite–bainite constituent promotes more homogeneous microstructure distribution. The aging treatment facilitates redistribution of carbon and chromium elements along the welded joint, and the micro-hardness is increased slightly through the welds due to enrichment of carbon. The types of precipitates in the weldment mainly include M{sub 3}C, MC, M{sub 2}C and M{sub 23}C{sub 6}. The carbides in base metal, weld metal and coarse-grained heat-affected zone are prone to change from ellipsoidal to platelet form whereas more uniform spherical carbides are observed in the fine-grained zone. Precipitation and coarsening of M{sub 23}C{sub 6} near the fusion line, and formation of MC and M{sub 2}C, are responsible for the tensile strength decrease and its smooth distribution in the aged heat-affected zone. This implies that the thermal aging can relieve strength mismatch in the weldments. - Highlights: • Microstructure homogeneity improved in HAZ after long-term aging. • Tensile strength decreased in HAZ due to precipitation and coarsening of M{sub 23}C{sub 6}. • Strength mismatch in NiCrMoV steel welds was relieved after aging at 350 °C × 3000 h.

  5. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  6. Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance

    ERIC Educational Resources Information Center

    Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    This study investigates interpersonal processes underlying dialog by comparing two approaches, "interactive alignment" and "interpersonal synergy", and assesses how they predict collective performance in a joint task. While the interactive alignment approach highlights imitative patterns between interlocutors, the synergy…

  7. Early and aggressive treatment of rheumatoid arthritis patients affects the association of HLA class II antigens with progression of joint damage.

    PubMed

    Lard, L R; Boers, M; Verhoeven, A; Vos, K; Visser, H; Hazes, J M W; Zwinderman, A H; Schreuder, G M T; Breedveld, F C; De Vries, R R P; van der Linden, S; Zanelli, E; Huizinga, T W J

    2002-04-01

    affects the association of HLA class II alleles with progression of joint damage in RA.

  8. FAS rs2234767 and rs1800682 polymorphisms jointly contributed to risk of colorectal cancer by affecting SP1/STAT1 complex recruitment to chromatin

    PubMed Central

    Wang, Shizhi; Wu, Shenshen; Meng, Qingtao; Li, Xiaobo; Zhang, Jinchun; Chen, Rui; Wang, Meilin

    2016-01-01

    FAS rs2234767 (−1377 G>A), rs1800682 (−670 A>G) and FASLG rs763110 (−844 C>T) promoter polymorphisms can influence transcriptional activities of the genes and thus multiple tumors susceptibility. To investigate their association with risk of colorectal cancer (CRC), the three SNPs were genotyped in 878 cases and 884 controls and the results showed that the FAS rs2234767 and rs1800682 were in a high linkage disequilibrium (LD) with each other (D’ = 0.994) and jointly contributed to an increased risk of CRC (without vs. with rs2234767 GG/rs1800682 AA genotypes, adjusted OR = 1.30, 95% CI = 1.05 − 1.61). In vivo ChIP assays evaluated the effect of rs2234767 and rs1800682 on recruitment of SP1 and STAT1, respectively, to chromatin. The results showed SP1 interacting specifically with STAT1 recruited to their respective motifs for transcriptional activation. The mutant alleles rs2234767 A and rs1800682 G jointly affected coupled SP1 and STAT1 recruitment to chromatin. The interplay between SP1 and STAT1 was critical for the functional outcome of rs2234767 and rs1800682 in view of their high LD. In conclusion, the FAS rs2234767 and rs1800682 polymorphisms were in high LD with each other, and they jointly contributed to an increased risk of CRC by altering recruitment of SP1/STAT1 complex to the FAS promoter for transcriptional activation. PMID:26759270

  9. Two sides of the safety coin?: How patient engagement and safety climate jointly affect error occurrence in hospital units.

    PubMed

    Schiffinger, Michael; Latzke, Markus; Steyrer, Johannes

    2016-01-01

    Safety climate (SC) and more recently patient engagement (PE) have been identified as potential determinants of patient safety, but conceptual and empirical studies combining both are lacking. On the basis of extant theories and concepts in safety research, this study investigates the effect of PE in conjunction with SC on perceived error occurrence (pEO) in hospitals, controlling for various staff-, patient-, and hospital-related variables as well as the amount of stress and (lack of) organizational support experienced by staff. Besides the main effects of PE and SC on error occurrence, their interaction is examined, too. In 66 hospital units, 4,345 patients assessed the degree of PE, and 811 staff assessed SC and pEO. PE was measured with a new instrument, capturing its core elements according to a recent literature review: Information Provision (both active and passive) and Activation and Collaboration. SC and pEO were measured with validated German-language questionnaires. Besides standard regression and correlational analyses, partial least squares analysis was employed to model the main and interaction effects of PE and SC on pEO, also controlling for stress and (lack of) support perceived by staff, various staff and patient attributes, and potential single-source bias. Both PE and SC are associated with lower pEO, to a similar extent. The joint effect of these predictors suggests a substitution rather than mutually reinforcing interaction. Accounting for control variables and/or potential single-source bias slightly attenuates some effects without altering the results. Ignoring PE potentially amounts to forgoing a potential source of additional safety. On the other hand, despite the abovementioned substitution effect and conjectures of SC being inert, PE should not be considered as a replacement for SC.

  10. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  11. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups (p < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p = 0.006) and FCTP-pre (OR = 2.13, p = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters

  12. Automatic Word Alignment

    DTIC Science & Technology

    2014-02-18

    for each of the paired units includes forming a first alignment of units of the first language to units of the second language, and forming a second...alignment of units of the second language to units of the first language . The alignment parameters include a first set of parameters for forming an...alignment from the first language to the second language and a second set of parameters for forming an align­ ment from the second language to the

  13. Individuals with Primary Osteoarthritis Have Different Phenotypes Depending on the Affected Joint - A Case Control Study from Southern Sweden Including 514 Participants

    PubMed Central

    Karlsson, Magnus K; Karlsson, Caroline; Magnusson, Håkan; Cöster, Maria; von Schewelov, Tord; Nilsson, Jan Åke; Brudin, Lars; Rosengren, Björn E

    2014-01-01

    Objective: The aim of this study was to evaluate whether primary osteoarthritis (OA), independent of affected joint, is associated with a phenotype that is different from the phenotype in a normative cohort. Material and Methods: We included 274 patients with primary OA, 30 women and 32 men (mean age 66 years, range 42-84) with primary hip OA, 38 women and 74 men (mean age 61 years; range 34-85) with primary knee OA, 42 women and 19 men (men age 64 years, range 42-87) with primary ankle or foot OA and 20 women and 19 men (mean age 66 years, range 47-88) with primary hand or finger OA. Of all patients included with OA, 23% had hip OA, 41% knee OA, 22% ankle or foot OA and 14% hand or finger OA. Serving as references were 122 women and 118 men of the same ages who were population-based, included as a control cohort. We measured total body BMD (g/cm2) and proportion of fat and lean mass (%) with dual energy X-ray absorptiometry. Height, weight and BMI (kg/m2) were also assessed. We then calculated Z-scores (number of standard deviations difference from the mean value of the control cohort) in the OA patients and compared these between the groups. Results: Individuals with hand OA and controls had similar phenotype. Individuals with lower extremity OA, irrespective of the affected joint, had similar weight, BMI and BMD, but higher than in individuals with hand OA and controls (all p<0.05). Individuals with lower extremity OA had higher fat and lower lean mass than individuals with hand OA and controls (all p<0.001). Conclusion: Individuals with primary OA in the lower extremity have a phenotype with higher BMD, higher BMI, proportionally higher fat content and lower lean body mass content. The different skeletal phenotypes in our patients with OA in the lower extremity and patients with hand OA indicate that separate pathophysiologic pathways may be responsible for primary OA in different joints PMID:25614774

  14. To What Degree Do Pain-coping Strategies Affect Joint Stiffness and Functional Outcomes in Patients with Hand Fractures?

    PubMed

    Roh, Young Hak; Noh, Jung Ho; Oh, Joo Han; Gong, Hyun Sik; Baek, Goo Hyun

    2015-11-01

    Patients with hand fractures often have pain, swelling, and stiffness in the joints of the hand, which may lead them to protect their hands, resulting in more stiffness and in delayed recovery. However, the effects of pain-coping strategies and catastrophization (the tendency to expect the worst to occur when pain is present, an approach that can be thought of as the opposite of "coping") on functional recovery after hand fractures have not been investigated in depth. Are preoperative catastrophization and anxiety in patients with hand fractures associated with (1) decreased grip strength; (2) decreased range of motion; and (3) increased disability at 3 and 6 months after surgical treatment for a hand fracture? Secondarily, we asked if there are other patient and injury factors that are associated with these outcomes at 3 and 6 months. A total of 93 patients with surgically treated hand fractures were enrolled in this prospective study. Preoperative assessments measured coping strategies evaluated by measuring catastrophic thinking with the Pain Catastrophizing Scale and pain anxiety with the Pain Anxiety Symptom Scale. At 3 and 6 months postoperatively, grip strength, total active range of motion, and disability (Quick Disabilities of the Arm, Shoulder, and Hand score) were assessed. Bivariate and multivariate analyses were performed to identify patient demographic, injury, and coping skills factors that accounted for outcomes of strength, motion, and disability. Decreased grip strength was associated with catastrophic thinking (beta = -1.29 [95% confidence interval, -1.67 to -0.89], partial R(2) = 11%, p < 0.001) and anxiety (beta = -0.83 [-1.16 to -0.50], partial R(2) = 7%, p = 0.007) at 3 months, but by 6 months, only anxiety (beta = -0.74 [-1.04 to -0.44], partial R(2) = 7%, p = 0.010) remained an important factor. Decreased total active range of motion was associated with pain catastrophizing (beta = -0.63 [-0.90 to -0.36], partial R(2) = 6 %, p = 0.024) and

  15. Joint geophysical measurements to investigate the Rossano of Vaglio archaeological site affected by landslide phenomena (Basilicata region, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Perrone, A.; Chianese, D.; Lapenna, V.; Lorenzo, P.; Piscitelli, S.; Rizzo, E.; Sdao, F.

    2003-04-01

    In the frame of a project supported by the Italian Ministry of Research: "Geomorphological study and landslides control in some areas of the Basilicata region characterized by historical-cultural heritage", the I.M.A.A. of the CNR (Tito Scalo, Potenza) and the Di.S.G.G. of the Basilicata University, developed a research activity focussed on the realization of combined geophysical measurements for the study of archaeological areas affected by landslide phenomena in Basilicata region (Southern Italy). Since IV century b.C., the birth and the evolution of many religious places is observed in the Basilicata region. Location and construction of these sanctuaries were influenced by the geological and geomorphological setting: many of them were built near important springs; others on morphological terraces, representing the main effect of the large and ancient landslides, often reactivated during the years. In this work we report the results regarding the application of 2D electrical resistivity tomographies, electromagnetic and magnetic measurements carried out in the Rossano of Vaglio (Potenza, Italy), where in the late IV century b.C. raised a sanctuary devoted to the Mephitis goddess (Adamasteanu and Dilthey, 1992; Masseria and D'Anisi, 2001). The sacred area was affected by a multiple and retrogressive rototranslational slide, historically and actually subject to reactivation. The geophysical results, obtained combining advanced technologies for data acquisition and new methods for data inversion (Loke and Barker, 1996; Ciminale and Loddo, 2001; Nuzzo et al, 2002), allowed us to define the geometrical characteristics of the landslide body, to outline the sliding surfaces and to individuate the buried structures of the sanctuary.

  16. Subtalar arthrodesis alignment: the effect on ankle biomechanics.

    PubMed

    Jastifer, James R; Gustafson, Peter A; Gorman, Robert R

    2013-02-01

    The position, axis, and control of each lower extremity joint intimately affect adjacent joint function as well as whole-limb performance. A review of the literature finds little describing the biomechanics of subtalar arthrodesis and the effect on ankle biomechanics. The purpose of the current study was to establish this effect on sagittal plane ankle biomechanics. A study was performed using a 3-dimensional, validated, computational model of the lower extremity. A subtalar arthrodesis was simulated from 20 degrees of varus to 20 degrees of valgus. At each arthrodesis position, the ankle dorsiflexor and plantarflexor muscles' fiber force, moment arm, and moments were calculated throughout a physiologic range of motion. Throughout ankle range of motion, plantarflexion and dorsiflexion strength varied with subtalar arthrodesis position. When the ankle joint was in neutral sagittal alignment, plantarflexion strength was maximized in 10 degrees of subtalar valgus, and strength varied by a maximum of 2.6% from the peak 221 Nm. In a similar manner, with the ankle joint in neutral position, dorsiflexion strength was maximized with a subtalar joint arthrodesis in 5 degrees of valgus, and strength varied by a maximum of 7.5% from the peak 46.8 Nm. The change in strength was due to affected muscle fiber force generating capacities and muscle moment arms. The significance of this study is that subtalar arthrodesis in a position of 5 to 10 degrees of subtalar valgus has a biomechanical advantage. This supports previous clinical outcome studies and offers a biomechanical rationale for their generally favorable outcomes.

  17. Pre-injection of hyaluronic acid does not affect the systemic effects of intra-articular depot betamethasone injection at the knee joint.

    PubMed

    Habib, George; Khatib, Muhamad; Sakas, Fahed; Artul, Suheil; Jabaly-Habib, Haneen

    2017-01-01

    Intra-articular injection (IAI) of both hyaluronic acid (HA) and depot-steroid preparations had the advantage of quick and prolonged favorable effects on pain relief among patients with symptomatic osteoarthritis of the knee (OAK). The effect of IAI of HA on the systemic effects of the intra-articular steroids had not been investigated. Non-selected patients attending the rheumatology clinic with symptomatic OAK who failed NSAIDS and physical therapy were offered an IAI of HA at the knee joint followed 20 min later by an IAI of 1 ml of Celestone Chronodose at the same joint (group 1). Morning serum levels of cortisol were obtained just prior to the IAI and 1, 2 and 8 days later. Demographic, clinical, and laboratory parameters were obtained also from all the patients. Age- and sex-matched group of patients from the same clinic were recruited as a control group (group 2). Mean baseline serum cortisol levels in group 1 was 381 ± 154 mmol/l vs. 376 ± 119 in group 2 (p = 0.954). Morning serum cortisol levels at day 1 and day 2 were 24 ± 6 and 22 ± 6 mmol/l, respectively, in group 1 patients vs. 27 ± 5.8 (p = 0.214) and 25 ± 5.6 mmol/l (p = 0.200), respectively, in group 2. These levels were significantly lower than baseline levels in each group. Morning serum cortisol levels at day 8 in group 1 and group 2 were 349 ± 128 and 314 ± 99 mmol/l, respectively (p = 0.419). Pre-injection of HA at the knee joint did not affect the systemic effect on the hypothalamic-pituitary-adrenal axis of IAI of Celestone Chronodose.

  18. Does stress affect the joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis.

    PubMed

    Evers, Andrea W M; Verhoeven, Elisabeth W M; van Middendorp, Henriët; Sweep, Fred C G J; Kraaimaat, Floris W; Donders, A Rogier T; Eijsbouts, Agnes E; van Laarhoven, Antoinette I M; de Brouwer, Sabine J M; Wirken, Lieke; Radstake, Timothy R D J; van Riel, Piet L C M

    2014-09-01

    Both stressors and stress vulnerability factors together with immune and hypothalamus-pituitary-adrenal (HPA) axis activity components have been considered to contribute to disease fluctuations of chronic inflammatory diseases, such as rheumatoid arthritis (RA). The aim of the present study was to investigate whether daily stressors and worrying as stress vulnerability factor as well as immune and HPA axis activity markers predict short-term disease activity and symptom fluctuations in patients with RA. In a prospective design, daily stressors, worrying, HPA axis (cortisol) and immune system (interleukin (IL)-1β, IL-6, IL-8, interferon (IFN)-γ, tumour necrosis factor α) markers, clinical and self-reported disease activity (disease activity score in 28 joints, RA disease activity index), and physical symptoms of pain and fatigue were monitored monthly during 6 months in 80 RA patients. Multilevel modelling indicated that daily stressors predicted increased fatigue in the next month and that worrying predicted increased self-reported disease activity, swollen joint count and pain in the next month. In addition, specific cytokines of IL-1β and IFN-γ predicted increased fatigue 1 month later. Overall, relationships remained relatively unchanged after controlling for medication use, disease duration and demographic variables. No evidence was found for immune and HPA axis activity markers as mediators of the stress-disease relationship. Daily stressors and the stress-vulnerability factor worrying predict indicators of the short-term course of RA disease activity and fatigue and pain, while specific cytokines predict short-term fluctuations of fatigue. These stress-related variables and immune markers seem to affect different aspects of disease activity or symptom fluctuations independently in RA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Farm management, environment, and weather factors jointly affect the probability of spinach contamination by generic Escherichia coli at the preharvest stage.

    PubMed

    Park, Sangshin; Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-04-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination.

  20. Farm Management, Environment, and Weather Factors Jointly Affect the Probability of Spinach Contamination by Generic Escherichia coli at the Preharvest Stage

    PubMed Central

    Navratil, Sarah; Gregory, Ashley; Bauer, Arin; Srinath, Indumathi; Szonyi, Barbara; Nightingale, Kendra; Anciso, Juan; Jun, Mikyoung; Han, Daikwon; Lawhon, Sara; Ivanek, Renata

    2014-01-01

    The National Resources Information (NRI) databases provide underutilized information on the local farm conditions that may predict microbial contamination of leafy greens at preharvest. Our objective was to identify NRI weather and landscape factors affecting spinach contamination with generic Escherichia coli individually and jointly with farm management and environmental factors. For each of the 955 georeferenced spinach samples (including 63 positive samples) collected between 2010 and 2012 on 12 farms in Colorado and Texas, we extracted variables describing the local weather (ambient temperature, precipitation, and wind speed) and landscape (soil characteristics and proximity to roads and water bodies) from NRI databases. Variables describing farm management and environment were obtained from a survey of the enrolled farms. The variables were evaluated using a mixed-effect logistic regression model with random effects for farm and date. The model identified precipitation as a single NRI predictor of spinach contamination with generic E. coli, indicating that the contamination probability increases with an increasing mean amount of rain (mm) in the past 29 days (odds ratio [OR] = 3.5). The model also identified the farm's hygiene practices as a protective factor (OR = 0.06) and manure application (OR = 52.2) and state (OR = 108.1) as risk factors. In cross-validation, the model showed a solid predictive performance, with an area under the receiver operating characteristic (ROC) curve of 81%. Overall, the findings highlighted the utility of NRI precipitation data in predicting contamination and demonstrated that farm management, environment, and weather factors should be considered jointly in development of good agricultural practices and measures to reduce produce contamination. PMID:24509926

  1. Erasing Errors due to Alignment Ambiguity When Estimating Positive Selection

    PubMed Central

    Redelings, Benjamin

    2014-01-01

    Current estimates of diversifying positive selection rely on first having an accurate multiple sequence alignment. Simulation studies have shown that under biologically plausible conditions, relying on a single estimate of the alignment from commonly used alignment software can lead to unacceptably high false-positive rates in detecting diversifying positive selection. We present a novel statistical method that eliminates excess false positives resulting from alignment error by jointly estimating the degree of positive selection and the alignment under an evolutionary model. Our model treats both substitutions and insertions/deletions as sequence changes on a tree and allows site heterogeneity in the substitution process. We conduct inference starting from unaligned sequence data by integrating over all alignments. This approach naturally accounts for ambiguous alignments without requiring ambiguously aligned sites to be identified and removed prior to analysis. We take a Bayesian approach and conduct inference using Markov chain Monte Carlo to integrate over all alignments on a fixed evolutionary tree topology. We introduce a Bayesian version of the branch-site test and assess the evidence for positive selection using Bayes factors. We compare two models of differing dimensionality using a simple alternative to reversible-jump methods. We also describe a more accurate method of estimating the Bayes factor using Rao-Blackwellization. We then show using simulated data that jointly estimating the alignment and the presence of positive selection solves the problem with excessive false positives from erroneous alignments and has nearly the same power to detect positive selection as when the true alignment is known. We also show that samples taken from the posterior alignment distribution using the software BAli-Phy have substantially lower alignment error compared with MUSCLE, MAFFT, PRANK, and FSA alignments. PMID:24866534

  2. Bayesian coestimation of phylogeny and sequence alignment.

    PubMed

    Lunter, Gerton; Miklós, István; Drummond, Alexei; Jensen, Jens Ledet; Hein, Jotun

    2005-04-01

    reliability broadly correspond to structural features of the proteins, and thus provides biologically meaningful information which is not existent in the usual point-estimate of the alignment. Our methods can handle input data of moderate size (10-20 protein sequences, each 100-200 bp), which we analyzed overnight on a standard 2 GHz personal computer. Joint analysis of multiple sequence alignment, evolutionary trees and additional evolutionary parameters can be now done within a single coherent statistical framework.

  3. Adolescents after Pemberton's osteotomy for developmental dysplasia of the hip displayed greater joint loading than healthy controls in affected and unaffected limbs during gait.

    PubMed

    Chang, Chu-Fen; Wang, Ting-Ming; Wang, Jyh-Horng; Huang, Shier-Chieg; Lu, Tung-Wu

    2011-07-01

    Patients after reduced developmental dysplasia of the hip (DDH) are at higher than normal risk of developing avascular necrosis (AVN) of the femoral head and degenerative hip osteoarthritis (OA) that are closely related to abnormal loadings. We aimed to determine the lower limb loadings in adolescents after Pemberton's osteotomy for unilateral DDH. Eleven females (age: 10.6 ± 1.0 years), who had received Pemberton's osteotomy for unilateral DDH at 1.6 ± 0.5 years of age, and 12 age-matched healthy controls were studied using gait analysis. Compared to the normal controls, the patients were displayed greater peak axial forces at the hip, knee, and ankle in both limbs, with greater loading rates in the ground reaction force (GRF) and at the hips (p < 0.05 for all comparisons). The increased rates of repetitive loading around heel strike in both hips suggest that patients treated for unilateral DDH using Pemberton's osteotomy may be at higher risk of premature hip OA. The increased axial forces at the affected hip may be a contributing factor to the development of AVN of the femoral head in these patients, especially when incomplete coverage, insufficient congruency, and/or damaged articular surfaces remain after the osteotomy. Therefore, monitoring the loading condition at the hip is necessary for a more accurate assessment of the risk of developing joint pathology in patients after reduced DDH.

  4. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    NASA Astrophysics Data System (ADS)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-09-01

    The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo2C and Al-Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time.

  5. MP-Align: alignment of metabolic pathways

    PubMed Central

    2014-01-01

    Background Comparing the metabolic pathways of different species is useful for understanding metabolic functions and can help in studying diseases and engineering drugs. Several comparison techniques for metabolic pathways have been introduced in the literature as a first attempt in this direction. The approaches are based on some simplified representation of metabolic pathways and on a related definition of a similarity score (or distance measure) between two pathways. More recent comparative research focuses on alignment techniques that can identify similar parts between pathways. Results We propose a methodology for the pairwise comparison and alignment of metabolic pathways that aims at providing the largest conserved substructure of the pathways under consideration. The proposed methodology has been implemented in a tool called MP-Align, which has been used to perform several validation tests. The results showed that our similarity score makes it possible to discriminate between different domains and to reconstruct a meaningful phylogeny from metabolic data. The results further demonstrate that our alignment algorithm correctly identifies subpathways sharing a common biological function. Conclusion The results of the validation tests performed with MP-Align are encouraging. A comparison with another proposal in the literature showed that our alignment algorithm is particularly well-suited to finding the largest conserved subpathway of the pathways under examination. PMID:24886436

  6. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  7. Knee alignment in professional tennis players.

    PubMed

    Maquirriain, Javier

    2002-01-01

    This study determined lower-limb alignment and knee geometry in professional tennis players and compared the data with those from nonathletic individuals. Twenty-four radiographs from 12 asymptomatic players (mean age: 23.4+/-3.8 years) were prospectively studied. The three angles most useful for describing limb alignment and knee geometry in the coronal plane were measured: hip-knee-ankle, condylar-hip, and plateau-ankle. The condylar-plateau angle, frontal foot rotation angle, and the relationship between the mechanical axis and tibial plateau also were calculated. Varus limb alignment was predominant and the mechanical axis passed medially through the knee center; there was increased valgus inclination of the distal femur, varus angulation of the tibial plateau, near parallel alignment of the joint, and exaggerated external foot rotation. Hip-knee-ankle, condylar-hip, plateau-ankle, and frontal foot rotation angles were significantly different (P<.05, two-tailed t test) from previously reported angles of nonathletic individuals. Variations, probably due to repetitive dynamic demands imposed on lower limbs from an early age, seem to involve both femoral condyles and proximal tibial metaphyses, maintaining normal parallel joint alignment.

  8. Diffeomorphic functional brain surface alignment: Functional demons.

    PubMed

    Nenning, Karl-Heinz; Liu, Hesheng; Ghosh, Satrajit S; Sabuncu, Mert R; Schwartz, Ernst; Langs, Georg

    2017-08-01

    Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Biomechanical assessment of varus-valgus range of motion of normal elbow joint using prototype measuring device.

    PubMed

    Podgórski, Andrzej; Kordasiewicz, Bartłomiej; Urban, Mariusz; Michalik, Dariusz; Pomianowski, Stanisław

    2012-01-01

    Elbow joint stability is provided by the medial and lateral collateral ligaments, joint surface alignment, and the joint capsule. The contribution of the joint capsule is relatively minor and varies with the position of the joint. The normal range of forearm abduction and adduction in the elbow joint is estimated to be between 5 and 10°. The aim of the paper was to determine precisely the physiological range of elbow joint motion in the frontal plane (laxity), which, apart from the knowledge gained, will provide a means to assess the effect of the surgical treatment of elbow joint contractures by comparing the stability of operated and healthy joints. The measurements were carried out using UB-01, a prototype device produced by ANT Polska, in a group of 52 healthy volunteers. The mean valgus and varus deviation of the elbow joint was 11.2° (6.4° 16.1°) and 6.6° (3° 10.7°), respectively. The mean degree of elbow joint laxity was 17.8° (10.6° 26.5°). The difference in laxity between two opposite elbow joints in the same person was, on average, 1.2° (0.1° 3.8°). In healthy persons, the amplitude of deviation for both elbows is significantly smaller than 2°. 1. There are major differences in elbow joint laxity between individuals. 2. Nevertheless, laxity values of two elbow joints in the same individual are very similar. This observation allows for the healthy elbow to be treated as a reference while assessing the affected joint's stability in a patient following conventional surgery for elbow joint contracture.

  10. Joint Problems

    MedlinePlus

    ... Information Causes & Symptoms Diagnosis & Tests Care & Treatment Lifestyle & ... Facts & Information What are Joint Problems? Your musculoskeletal system is constructed of bones, muscles, and joints. The ...

  11. An effortless procedure to align the local frame of an inertial measurement unit to the local frame of another motion capture system.

    PubMed

    Chardonnens, Julien; Favre, Julien; Aminian, Kamiar

    2012-08-31

    Inertial measurement units (IMUs) offer great opportunities to analyze segmental and joints kinematics. When combined with another motion capture system (MCS), for example, to validate new IMU-based applications or to develop mixed systems, it is necessary to align the local frame of the IMU sensors to the local frame of the MCS. Currently, all alignment methods use landmarks on the IMU's casing. Therefore, they can only be used with well-documented IMUs and they are prone to error when the IMU's casing is small. This study proposes an effortless procedure to align the local frame of any IMU to the local frame of any other MCS able to measure the orientation of its local frame. The general concept of this method is to derive the gyroscopic angles for both devices during an alignment movement, and then to use an optimization algorithm to calculate the alignment matrix between both local frames. The alignment movement consists of rotations around three more or less orthogonal axes and it can easily be performed by hands. To test the alignment procedure, an IMU and a magnetic marker were attached to a plate, and 20 alignment movements were recorded. The maximum errors of alignment (accuracy±precision) were 1.02°±0.32° and simulations showed that the method was robust against noise that typically affect IMUs. In conclusion, this study describes an efficient alignment procedure that is quick and easy to perform, and that does not require any alignment device or any knowledge about the IMU casing.

  12. Fibroblast-like synovial cells from normal and inflamed knee joints differently affect the expression of pain-related receptors in sensory neurones: a co-culture study.

    PubMed

    von Banchet, Gisela Segond; Richter, Jonny; Hückel, Marion; Rose, Christina; Bräuer, Rolf; Schaible, Hans-Georg

    2007-01-01

    Innervation of the joint with thinly myelinated and unmyelinated sensory nerve fibres is crucial for the occurrence of joint pain. During inflammation in the joint, sensory fibres show changes in the expression of receptors that are important for the activation and sensitization of the neurones and the generation of joint pain. We recently reported that both neurokinin 1 receptors and bradykinin 2 receptors are upregulated in dorsal root ganglion (DRG) neurones (the cell bodies of sensory fibres) in the course of acute and chronic antigen-induced arthritis in the rat. In this study, we begin to address mechanisms of the interaction between fibroblast-like synovial (FLS) cells and sensory neurones by establishing a co-culture system of FLS cells and DRG neurones. The proportion of DRG neurones expressing neurokinin 1 receptor-like immunoreactivity was not altered in the co-culture with FLS cells from normal joints but was significantly upregulated using FLS cells from knee joints of rats with antigen-induced arthritis. The proportion of DRG neurones expressing bradykinin 2 receptors was slightly upregulated in the presence of FLS cells from normal joints but upregulation was more pronounced in DRG neurones co-cultured with FLS cells from acutely inflamed joints. In addition, the expression of the transient receptor potential V1 (TRPV1) receptor, which is involved in inflammation-evoked thermal hyperalgesia, was mainly upregulated by co-culturing DRG neurones with FLS cells from chronically inflamed joints. Upregulation of neurokinin 1 receptors but not of bradykinin 2 and TRPV1 receptors was also observed when only the supernatant of FLS cells from acutely inflamed joint was added to DRG neurones. Addition of indomethacin to co-cultures inhibited the effect of FLS cells from acutely inflamed joints on neurokinin 1 receptor expression, suggesting an important role for prostaglandins. Collectively, these data show that FLS cells are able to induce an upregulation of

  13. Soft-Capture Mechanism For Collet Joint

    NASA Technical Reports Server (NTRS)

    Huff, John E., Jr.

    1992-01-01

    Soft-capture mechanism part of latching-and-rigidifying mechanism joining strut rigidly to node on truss. Latching-and-rigidifying mechanism of spreading-collet type, in which collet inserted into base that mates with collet to assure proper alignment, then collet spread to rigidify joint, fixing alignment. Designed to be operable by heavily gloved hand or by robot.

  14. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

    PubMed Central

    Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.

    2016-01-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446

  15. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš E-mail: zvlah@stanford.edu

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  16. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  17. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  18. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  19. Joint Hypermobility and Joint Range of Motion in Young Dancers.

    PubMed

    Steinberg, Nili; Hershkovitz, Israel; Zeev, Aviva; Rothschild, Bruce; Siev-Ner, Itzhak

    2016-06-01

    Joint range of motion (ROM) refers to the extent of movement of the joint, recorded using standard goniometers. Joint hypermobility (JHM) is a condition in which most of the synovial joints move beyond the "normal" limits. Joint hypermobility is recognized as a feature of heritable disorders of the connective tissue and can be identified mostly by the Beighton scale. Data on the possible relationship between JHM and joint ROM are lacking in the literature. The main objective of the present study was to evaluate the relationship between JHM and joint ROM in the different lower-extremity joints in young dancers. Joint hypermobility and ROM were assessed among 240 female dancers, aged 8 to 16 years, and 226 nondancers of similar age. The prevalence of JHM is significantly higher among dancers compared with the control subjects (P < 0.001). Joints' ROM is higher among dancers with JHM compared with dancers without JHM (P < 0.05). This phenomenon, however, is age dependent; as in young dancers (aged 8-10 years), this pertains only to the ankle dorsiflexion ROM. In adolescent dancers (aged 11-13 years), this relationship has been observed in most joints: ankle/foot en pointe, ankle dorsiflexion, hip external rotation, hip abduction, and hip extension. In mature dancers (aged 14-16 years), dancers with JHM had greater ROM in ankle/foot en pointe, hip abduction, and knee flexion (P < 0.05). (1) Joint ROM and JHM are associated one with the other; (2) the relationship between joint ROM and JHM is age dependent; and (3) JHM is common among young nonprofessional dancers compared with control subjects. The main clinical implications of the current study are to try and reduce the risk of injuries among JHM dancers by developing proprioceptive trainings to improve the correct alignment of the hyperextended joints, to increase their muscle strength for better stabilization of the hypermobile joints, and to provide them additional balancing and stabilizing exercises for their

  20. Formation of tough composite joints

    SciTech Connect

    Brun, M.K.

    1997-05-01

    Joints which exhibit tough fracture behavior were formed in a composite with a Si/SiC matrix reinforced with Textron SCS-6 fibers with either boron nitride or silicon nitride fiber coatings. In composites with BN coatings fibers were aligned uniaxially, while composites with Si{sub 3}N{sub 4}-coated fibers had a 0/90{degree} architecture. Lapped joints (joints with overlapping fingers) were necessary to obtain tough behavior. Geometrical requirements necessary to avoid brittle joint failure have been proposed. Joints with a simple overlap geometry (only a few fingers) would have to be very long in order to prevent brittle failure. Typical failure in these joints is caused by a crack propagating along the interfaces between the joint fingers. Joints of the same overall length, but with geometry changed to be symmetric about the joint centerline and with an extra shear surface exhibited tough fractures accompanied with extensive fiber pullout. The initial matrix cracking of these joints was relatively low because cracks propagated easily through the ends of the fingers. Joints with an optimized stepped sawtooth geometry produced composite-like failures with the stress/strain curves containing an elastic region followed by a region of rising stress with an increase of strain. Increasing the fiber/matrix interfacial strength from 9 to 25 MPa, by changing the fiber coating, increased matrix cracking and ultimate strength of the composite significantly. The best joints had matrix cracking stress and ultimate strength of 138 and 240 MPa, respectively. Joint failure was preceded by multiple matrix cracking in the entire composite. The high strength of the joints will permit building of structures containing joints with only a minor reduction of design stresses.

  1. ORFEUS alignment concept

    NASA Astrophysics Data System (ADS)

    Graue, R.; Kampf, D.; Rippel, H.; Witte, G.

    1991-09-01

    The alignment concept of ORFEUS, a short-term scientific space payload scheduled for launching by the STS in January 1993, is discussed. ORFEUS comprises two alternatively operating spectrometers (Echelle and Rowland) implemented in a CFC telescope with a 4-m tube length and an aperture of 1000 mm. The lightweight primary mirror has a focal length of 2426 mm. In order to achieve the required spectrometric high telescope resolution in the UV range (40-125 nm), a sophisticated alignment concept was developed. The centering of the alignment diaphragm (diameter: 15 microns) in the focus of the primary mirror has to be provided in the vertical tube position by means of an autocollimation telescope. The spectrometers have to be integrated into the horizontal telescope aligned within a special antigravity device to reduce optical surface deformations and to ensure the optical performance of the primary. The alignment of all optical components is to be performed in the visible spectral range.

  2. The radiology of joint disease. 3rd Ed

    SciTech Connect

    Forrester, D.M.; Brown, J.C.

    1987-01-01

    The book is a systematic radiographic approach to the arthritides. Part one deals with hand abnormalities ''to facilitate the teaching of basic principles and to dramatize the differences between radiographic features of various arthritides,'' as stated in the forward of the first edition. Part two, ''Arthritis from Head to Foot,'' illustrates the same diseases as they affect other joints. The ABCs (alignment, bone mineralization, cartilage space, soft tissue) approach is followed throughout the book. For example, reflex sympathetic dystrophy syndrome is dealt with in six different locations, and metatarsal stress fractures are mentioned in a chapter on erosions in rheumatoid arthritis.

  3. The tree alignment problem.

    PubMed

    Varón, Andrés; Wheeler, Ward C

    2012-11-09

    The inference of homologies among DNA sequences, that is, positions in multiple genomes that share a common evolutionary origin, is a crucial, yet difficult task facing biologists. Its computational counterpart is known as the multiple sequence alignment problem. There are various criteria and methods available to perform multiple sequence alignments, and among these, the minimization of the overall cost of the alignment on a phylogenetic tree is known in combinatorial optimization as the Tree Alignment Problem. This problem typically occurs as a subproblem of the Generalized Tree Alignment Problem, which looks for the tree with the lowest alignment cost among all possible trees. This is equivalent to the Maximum Parsimony problem when the input sequences are not aligned, that is, when phylogeny and alignments are simultaneously inferred. For large data sets, a popular heuristic is Direct Optimization (DO). DO provides a good tradeoff between speed, scalability, and competitive scores, and is implemented in the computer program POY. All other (competitive) algorithms have greater time complexities compared to DO. Here, we introduce and present experiments a new algorithm Affine-DO to accommodate the indel (alignment gap) models commonly used in phylogenetic analysis of molecular sequence data. Affine-DO has the same time complexity as DO, but is correctly suited for the affine gap edit distance. We demonstrate its performance with more than 330,000 experimental tests. These experiments show that the solutions of Affine-DO are close to the lower bound inferred from a linear programming solution. Moreover, iterating over a solution produced using Affine-DO shows little improvement. Our results show that Affine-DO is likely producing near-optimal solutions, with approximations within 10% for sequences with small divergence, and within 30% for random sequences, for which Affine-DO produced the worst solutions. The Affine-DO algorithm has the necessary scalability and

  4. The tree alignment problem

    PubMed Central

    2012-01-01

    Background The inference of homologies among DNA sequences, that is, positions in multiple genomes that share a common evolutionary origin, is a crucial, yet difficult task facing biologists. Its computational counterpart is known as the multiple sequence alignment problem. There are various criteria and methods available to perform multiple sequence alignments, and among these, the minimization of the overall cost of the alignment on a phylogenetic tree is known in combinatorial optimization as the Tree Alignment Problem. This problem typically occurs as a subproblem of the Generalized Tree Alignment Problem, which looks for the tree with the lowest alignment cost among all possible trees. This is equivalent to the Maximum Parsimony problem when the input sequences are not aligned, that is, when phylogeny and alignments are simultaneously inferred. Results For large data sets, a popular heuristic is Direct Optimization (DO). DO provides a good tradeoff between speed, scalability, and competitive scores, and is implemented in the computer program POY. All other (competitive) algorithms have greater time complexities compared to DO. Here, we introduce and present experiments a new algorithm Affine-DO to accommodate the indel (alignment gap) models commonly used in phylogenetic analysis of molecular sequence data. Affine-DO has the same time complexity as DO, but is correctly suited for the affine gap edit distance. We demonstrate its performance with more than 330,000 experimental tests. These experiments show that the solutions of Affine-DO are close to the lower bound inferred from a linear programming solution. Moreover, iterating over a solution produced using Affine-DO shows little improvement. Conclusions Our results show that Affine-DO is likely producing near-optimal solutions, with approximations within 10% for sequences with small divergence, and within 30% for random sequences, for which Affine-DO produced the worst solutions. The Affine-DO algorithm has

  5. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  6. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  7. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  8. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  9. Multiple alignment-free sequence comparison

    PubMed Central

    Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine

    2013-01-01

    Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418

  10. ReformAlign: improved multiple sequence alignments using a profile-based meta-alignment approach.

    PubMed

    Lyras, Dimitrios P; Metzler, Dirk

    2014-08-07

    Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments. We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in

  11. Lower Limbs Alignment in Patients with a Unilateral Completely Dislocated Hip

    PubMed Central

    Someya, Shinsuke; Sonohata, Motoki; Ide, Shuya; Nagamine, Satomi; Tajima, Tomonori; Mawatari, Masaaki

    2016-01-01

    Background: Severe hip osteoarthritis is known to lead to secondary osteoarthritis of the knee joint. It is not clear whether contracture or a leg length discrepancy is more important in determining the knee alignment. Methods: In this study, 48 hips in 48 patients with a unilateral completely dislocated hip (Crowe IV) were recruited. The patients were divided into two groups (Crowe IVa and IVb). The Crowe IVa group had completely dislocation with psudo-articulation, and the Crowe IVb group had completely dislocation without psudo-articulation. The lower limb alignment was divided into three patterns according to the femorotibial angle; varus (≥176 degrees), neutral(170 to 175 degrees) and valgus(≤169 degrees). Results: The combination of valgus alignment on the affected side and varus alignment on the unaffected side, so-called “windswept deformity” was observed in 12.5% of the patients; this included 18.2% and 7.7%, in the Crowe IVa and Crowe IVb groups, respectively. The valgus alignment on the unaffected side, namely “long leg arthropathy,” was found to have occurred in 6.3% of the patients, including 13.6% of the patients in the Crowe IVa group; there were no cases of long “leg arthropathy” in the Crowe IVb group. Conclusion: The lower limb alignment on the unaffected side had a tendency to be varus in the Crowe IV patients. The “windswept deformity” was observed in each of the groups; however, “long leg arthropathy” was only found in the Crowe IVa group. PMID:27733883

  12. Alignment of tactical tropo antennas

    NASA Astrophysics Data System (ADS)

    Bradley, Philip A.

    1986-07-01

    Alignment problems of parabolic reflector antennas for troposcatter radio communications are analyzed. Defects of previous alignment techniques are delineated and a new technique for automatic antenna alignment is presented.

  13. A joint resolution proposing an amendment to the Constitution of the United States relating to contributions and expenditures intended to affect elections.

    THOMAS, 113th Congress

    Sen. Udall, Tom [D-NM

    2013-06-18

    Senate - 09/11/2014 Cloture on the joint resolution not invoked in Senate by Yea-Nay Vote. 54 - 42. Record Vote Number: 261. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  14. A joint resolution proposing an amendment to the Constitution of the United States relating to contributions and expenditures intended to affect elections.

    THOMAS, 113th Congress

    Sen. Udall, Tom [D-NM

    2013-06-18

    09/11/2014 Cloture on the joint resolution not invoked in Senate by Yea-Nay Vote. 54 - 42. Record Vote Number: 261. (consideration: CR S5543-5544; text: CR S5543-5544) (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. A joint resolution proposing an amendment to the Constitution of the United States relating to contributions and expenditures intended to affect elections.

    THOMAS, 113th Congress

    Sen. Udall, Tom [D-NM

    2013-06-18

    09/11/2014 Cloture on the joint resolution not invoked in Senate by Yea-Nay Vote. 54 - 42. Record Vote Number: 261. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Alignment of CEBAF cryomodules

    SciTech Connect

    Schneider, W.J.; Bisognano, J.J.; Fischer, J.

    1993-06-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, when completed, will house a 4 GeV recirculating accelerator. Each of the accelerator`s two linacs contains 160 superconducting radio frequency (SRF) 1497 MHz niobium cavities in 20 cryomodules. Alignments of the cavities within the cryomodule with respect to beam axis is critical to achieving the optimum accelerator performance. This paper discusses the rationale for the current specification on cavity mechanical alignment: 2 mrad (rms) applied to the 0.5 m active length cavities. We describe the tooling that was developed to achieve the tolerance at the time of cavity pair assembly, to preserve and integrate alignment during cryomodule assembly, and to translate alignment to appropriate installation in the beam line.

  17. A study of pre-operative presence of micro-organisms in affected knee joints of rheumatoid arthritis patients who need total knee arthroplasty.

    PubMed

    Luo, Jiang-Ming; Guo, Lin; Chen, Hao; Yang, Peng-Fei; Xiong, Ran; Peng, Yang; Yang, Liu

    2017-03-01

    To evaluate, by way of intraoperative tissue culture and pathological study, the pre-operative presence of micro-organisms in knee joints of patients with rheumatoid arthritis (RA) who need total knee arthroplasty (TKA). From November 2012 to January 2014, 47 patients with RA (53 knees) who needed TKA were included in this study. Patients received routine pre-operative examination and joint fluid routine and culture. Each RA patient was match-paired with one osteoarthritis (OA) patient. During arthrotomy, synovial tissue was reserved and portioned for culture, frozen section, and routine pathologic examination. Pre-operative infection in all knees was ruled out. There were 12 RA patients (13 knees) with positive culture results: two Escherichia coli, two Staphylococcus epidermidis, two Staphylococcus aureus, one Proteus mirabilis, one Staphylococcus warneri, one Enterococcus faecalis, one Acinetobacter baumannii, one Candida albicans, one Ochrobactrum anthropi, and one Candida glabrata. Except for microabscess found in one RA patient, all pathological sections showed mild chronic inflammation but no infection. All patients with positive culture results were administered sensitive antibiotics for six weeks after surgery. Two patients had deep infection: one had a fused knee after a failed debridement, and the second was previously treated with an amphotericin injection. Pre-operative presence of micro-organism in knee joints of RA patients is common (24.5%). This finding of a high incidence of pre-operative presence of micro-organism in joints of RA patients before arthroplasty may suggest a role of micro-organism in the pathogenesis of prosthetic joint infection (PJI). Intraoperative synovial tissue culture is valuable for diagnosis of this condition and in instruction of antibacterial treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Alignment of Standards and Assessments as an Accountability Criterion. ERIC Digest.

    ERIC Educational Resources Information Center

    La Marca, Paul M.

    This digest provides an overview of the concept of alignment and the role it plays in assessment and accountability systems. It also discusses methodological issues affecting the study of alignment and explores the relationship between alignment and test score interpretation. Alignment refers to the degree of match between test content and subject…

  19. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  20. Evolution of Spinopelvic Alignment in Hominins.

    PubMed

    Been, Ella; Gómez-Olivencia, Asier; Shefi, Sara; Soudack, Michalle; Bastir, Markus; Barash, Alon

    2017-05-01

    Spinopelvic alignment refers to the interaction between pelvic orientation, spinal curvatures, and the line of gravity. In a healthy modern human, this alignment is characterized by reciprocal curves/orientation of the sacrum, lumbar lordosis, thoracic kyphosis, and cervical lordosis. In an economic sagittal posture, these curvatures keep the line of gravity close to the center of the acetabulum. The purpose of this study is to explore the spinopelvic alignment in extinct hominins. We examined spinopelvic alignment of a single representative from each of the following hominin groups: Australopithecus, Homo erectus (H. erectus), H. neanderthalensis, and early H. sapiens. Pelvic incidence, lumbar lordosis, thoracic kyphosis, and cervical lordosis for each representative was estimated and compared with that of modern humans. Three basic spinopelvic alignments were found: (1) the sinusoidal alignment with moderate to high spinal curvatures and pelvic incidence found in H. erectus and H. sapiens; (2) the straight alignment with small spinal curvatures and small pelvic incidence found in Neandertal lineage hominins; (3) the compound alignment found in Australopithecus, with moderate pelvic incidence and lumbar lordosis, and nearly straight cervical spine. Our results indicate that balanced upright posture can be achieved in different alignments. Each hominin group solved the requirements of erect posture in a slightly different way. Moreover, we propose the term "cranio-spino-pelvic balance" to substitute "spino-pelvic balance." From an evolutionary perspective, not only changes in the pelvis have conditioned the evolution of the spinal curvatures but also changes in the equilibrium of the head likely also affected this balance. Anat Rec, 300:900-911, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Simplified procedures for designing composite bolted joints

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1990-01-01

    Simplified procedures are described to design and analyze single and multi-bolt composite joints. Numerical examples illustrate the use of these methods. Factors affecting composite bolted joints are summarized. References are cited where more detailed discussion is presented on specific aspects of composite bolted joints. Design variables associated with these joints are summarized in the appendix.

  2. Simplified procedures for designing composite bolted joints

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1988-01-01

    Simplified procedures are described to design and analyze single and multi-bolt composite joints. Numerical examples illustrate the use of these methods. Factors affecting composite bolted joints are summarized. References are cited where more detailed discussion is presented on specific aspects of composite bolted joints. Design variables associated with these joints are summarized in the appendix.

  3. 42 CFR 423.1040 - Joint hearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Joint hearings. 423.1040 Section 423.1040 Public... Penalties § 423.1040 Joint hearings. When two or more affected parties have requested hearings and the same... and place for the prehearing conference or hearing and conduct all proceedings jointly. If joint...

  4. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Joint hearings. 422.1040 Section 422.1040 Public....1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are held...

  5. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Joint hearings. 422.1040 Section 422.1040 Public....1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are held...

  6. 42 CFR 423.1040 - Joint hearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Joint hearings. 423.1040 Section 423.1040 Public... Penalties § 423.1040 Joint hearings. When two or more affected parties have requested hearings and the same... and place for the prehearing conference or hearing and conduct all proceedings jointly. If joint...

  7. 42 CFR 423.1040 - Joint hearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Joint hearings. 423.1040 Section 423.1040 Public... § 423.1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are held...

  8. 42 CFR 423.1040 - Joint hearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Joint hearings. 423.1040 Section 423.1040 Public... § 423.1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are held...

  9. 42 CFR 422.1040 - Joint hearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Joint hearings. 422.1040 Section 422.1040 Public....1040 Joint hearings. When two or more affected parties have requested hearings and the same or... the prehearing conference or hearing and conduct all proceedings jointly. If joint hearings are held...

  10. 42 CFR 423.1040 - Joint hearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Joint hearings. 423.1040 Section 423.1040 Public... Penalties § 423.1040 Joint hearings. When two or more affected parties have requested hearings and the same... and place for the prehearing conference or hearing and conduct all proceedings jointly. If joint...

  11. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  12. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  13. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  14. Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking?

    PubMed Central

    Messier, Stephen P.; Legault, Claudine; Loeser, Richard F.; Van Arsdale, Stephanie J.; Davis, Cralen; Ettinger, Walter H.; DeVita, Paul

    2012-01-01

    Objective The aim of this study was to examine the effects of high weight loss on knee joint loads during walking in participants with knee OA. Design Data were obtained from a subset of participants enrolled in the Arthritis, Diet, and Activity Promotion Trial (ADAPT). Complete baseline and 18 month follow-up data were obtained on 76 sedentary, overweight or obese older adults with radiographic knee OA. Three-dimensional gait analysis was used to calculate knee joint forces and moments. The cohort was divided into high (> 5%), low (< 5%), and no (0% or gain) weight loss groups. Results From baseline body weight, the high weight loss group lost an average of 10.2%, the low weight loss group lost an average of 2.7%, and the no weight loss group gained 1.5%. Adjusted 18 month outcome data revealed lower maximum knee compressive forces with greater weight loss (p = 0.05). The difference in compressive forces between the high weight loss and no weight loss groups was due primarily to lower hamstring forces (p = 0.04). Quadriceps forces were similar between the groups at 18 month follow-up. There was no difference between the groups in 18-month joint space width or Kellgren-Lawrence scores. Conclusions These results suggest that a 10% weight loss in an overweight and obese osteoarthritic population elicits positive changes in the mechanical pathway to knee osteoarthritis by having lower knee joint compressive loads during walking compared to low and no weight loss groups. The difference in compressive forces was due, in large part, to reductions in hamstring co-contraction during the initial portion of the stance phase. PMID:21134477

  15. Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking?

    PubMed

    Messier, S P; Legault, C; Loeser, R F; Van Arsdale, S J; Davis, C; Ettinger, W H; DeVita, P

    2011-03-01

    The aim of this study was to examine the effects of high weight loss on knee joint loads during walking in participants with knee osteoarthritis (OA). Data were obtained from a subset of participants enrolled in the Arthritis, Diet, and Activity Promotion Trial (ADAPT). Complete baseline and 18-month follow-up data were obtained on 76 sedentary, overweight or obese older adults with radiographic knee OA. Three-dimensional gait analysis was used to calculate knee joint forces and moments. The cohort was divided into high (>5%), low (<5%), and no (0% or gain) weight loss groups. From baseline body weight, the high weight loss group lost an average of 10.2%, the low weight loss group lost an average of 2.7%, and the no weight loss group gained 1.5%. Adjusted 18-month outcome data revealed lower maximum knee compressive forces with greater weight loss (P=0.05). The difference in compressive forces between the high weight loss and no weight loss groups was due primarily to lower hamstring forces (P=0.04). Quadriceps forces were similar between the groups at 18-month follow-up. There was no difference between the groups in 18-month joint space width or Kellgren-Lawrence scores. These results suggest that a 10% weight loss in an overweight and obese osteoarthritic population elicits positive changes in the mechanical pathway to knee OA by having lower knee joint compressive loads during walking compared to low and no weight loss groups. The difference in compressive forces was due, in large part, to reductions in hamstring co-contraction during the initial portion of the stance phase. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Mechanics of Sheeting Joints

    NASA Astrophysics Data System (ADS)

    Martel, S. J.

    2015-12-01

    the joints can slide downslope; they can also buckle, resulting in a further breakdown of the rock. Understanding how sheeting joints evolve in three dimensions through time remains an outstanding challenge and would illuminate their affect on landscapes, slope stability, and fluid flow.

  17. Metalized nanotube tips improve through thickness thermal conductivity in adhesive joints.

    PubMed

    Ganguli, Sabyasachi; Sihn, Sangwook; Roy, Ajit K; Dai, Liming; Qu, Liangti

    2009-03-01

    The through-thickness thermal conductivity in conventional adhesive joints (of approximately 0.3 W/m-K) fails to meet the thermal load transfer requirement in numerous applications to enable lean manufacturing and improve system reliability to thermal load. Carbon nanotubes are known to possess extremely high thermal conductivity along the longitudinal axis. According to molecular dynamics simulations, the value can be as high as 3500 W/m-K at room temperature for multi-walled carbon nanotubes (MWCNT). Meanwhile, the transverse thermal conductivity perpendicular to the longitudinal axis of the MWCNTs is known to be relatively low, approximately 10-15 W/m-K. Existing studies of mixing the MWCNTs in polymers for adhesive joints only achieved minimal enhancement in the thermal conductivity and failed to satisfy the thermal property requirement for the adhesive joints. In order to properly utilize the superior axial thermal conductivity of the MWCNTs, vertically aligned MWCNTs have been used in this study and incorporated in the adhesive joint configuration. Analytical parametric study was conducted to identify critical parameters that affect the overall thermal conductivity of the joint and to provide guidelines for the process development. The process development involved growing the vertically aligned MWCNTs on silicon wafers. The aligned nanotube array was partially infused with epoxy adhesive. Selective reactive ion etching of the epoxy revealed the nanotube tips. In order to reduce the impedance mismatch and phonon scattering at the interface between the nanotube tips and the adherends, gold was thermally evaporated on the nanotube tips. The measured thermal conductivity of the adhesive joint device incorporating the MWCNTs was 262 W/m-K, which is significantly larger compared to that of less than 1 W/m-K without the MWCNTs.

  18. Fair evaluation of global network aligners.

    PubMed

    Crawford, Joseph; Sun, Yihan; Milenković, Tijana

    2015-01-01

    Analogous to genomic sequence alignment, biological network alignment identifies conserved regions between networks of different species. Then, function can be transferred from well- to poorly-annotated species between aligned network regions. Network alignment typically encompasses two algorithmic components: node cost function (NCF), which measures similarities between nodes in different networks, and alignment strategy (AS), which uses these similarities to rapidly identify high-scoring alignments. Different methods use both different NCFs and different ASs. Thus, it is unclear whether the superiority of a method comes from its NCF, its AS, or both. We already showed on state-of-the-art methods, MI-GRAAL and IsoRankN, that combining NCF of one method and AS of another method can give a new superior method. Here, we evaluate MI-GRAAL against a newer approach, GHOST, by mixing-and-matching the methods' NCFs and ASs to potentially further improve alignment quality. While doing so, we approach important questions that have not been asked systematically thus far. First, we ask how much of the NCF information should come from protein sequence data compared to network topology data. Existing methods determine this parameter more-less arbitrarily, which could affect alignment quality. Second, when topological information is used in NCF, we ask how large the size of the neighborhoods of the compared nodes should be. Existing methods assume that the larger the neighborhood size, the better. Our findings are as follows. MI-GRAAL's NCF is superior to GHOST's NCF, while the performance of the methods' ASs is data-dependent. Thus, for data on which GHOST's AS is superior to MI-GRAAL's AS, the combination of MI-GRAAL's NCF and GHOST's AS represents a new superior method. Also, which amount of sequence information is used within NCF does not affect alignment quality, while the inclusion of topological information is crucial for producing good alignments. Finally, larger

  19. Realignment Subtalar Joint Arthrodesis.

    PubMed

    Hentges, Matthew J; Gesheff, Martin G; Lamm, Bradley M

    2016-01-01

    Subtalar joint arthrodesis is a commonly performed procedure for the correction of hindfoot deformity and/or the relief of pain related to osteoarthritis. The purpose of the present study was to provide preoperative and intraoperative objective radiographic parameters to improve the accuracy and long-term success of realignment arthrodesis of the subtalar joint. We retrospectively reviewed the data from 16 patients, 11 male (57.9%) and 8 female (42.1%) feet, who had undergone realignment subtalar joint arthrodesis. A total of 19 fusions were performed in 9 (47.4%) right and 10 (52.6%) left feet, with a mean follow-up period of 2 (range 1 to 4.8) years. The mean age at surgery was 54.5 (range 14 to 77) years. Statistically significant improvement in radiographic alignment was found in the anteroposterior talo-first metatarsal angle (p = .002), lateral talo-first metatarsal angle (p < .001), tibial-calcaneal angle (p < .001), and tibial-calcaneal distance (p < .001). A positive correlation was observed between the tibial-calcaneal angle and tibial-calcaneal distance (r = 0.825, p < .001). The statistically significant improvement in tibial-calcaneal alignment, in both angulation and distance, support our conclusions that proper realignment of the calcaneus to vertical and central under the tibia will lead to short-term success and, likely, long-term success of subtalar joint arthrodesis. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  1. Multiple Sequence Alignment.

    PubMed

    Bawono, Punto; Dijkstra, Maurits; Pirovano, Walter; Feenstra, Anton; Abeln, Sanne; Heringa, Jaap

    2017-01-01

    The increasing importance of Next Generation Sequencing (NGS) techniques has highlighted the key role of multiple sequence alignment (MSA) in comparative structure and function analysis of biological sequences. MSA often leads to fundamental biological insight into sequence-structure-function relationships of nucleotide or protein sequence families. Significant advances have been achieved in this field, and many useful tools have been developed for constructing alignments, although many biological and methodological issues are still open. This chapter first provides some background information and considerations associated with MSA techniques, concentrating on the alignment of protein sequences. Then, a practical overview of currently available methods and a description of their specific advantages and limitations are given, to serve as a helpful guide or starting point for researchers who aim to construct a reliable MSA.

  2. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  3. Whole-genome alignment.

    PubMed

    Dewey, Colin N

    2012-01-01

    Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level between two or more genomes. It combines aspects of both colinear sequence alignment and gene orthology prediction, and is typically more challenging to address than either of these tasks due to the size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been developed for its solution because WGAs are valuable for genome-wide analyses, such as phylogenetic inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and significance of WGA and present an overview of the methods that address it. We also examine the problem of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in order to make the most effective use of our rapidly growing databases of whole genomes.

  4. Magnetically Aligned Supramolecular Hydrogels

    PubMed Central

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-01-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  5. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  6. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  7. RHIC survey and alignment

    SciTech Connect

    Karl, F.X.; Anderson, R.R.; Goldman, M.A.; Hemmer, F.M.; Kazmark, D. Jr.; Mroczkowski, T.T.; Roecklien, J.C.

    1993-07-01

    The Relativistic Heavy Ion Collider consists of two interlaced plane rings, a pair of mirror-symmetric beam injection arcs, a spatially curved beam transfer line from the Alternating Gradient Synchrotron, and a collection of precisely positioned and aligned magnets, on appropriately positioned support stands, threaded on those arcs. RHIC geometry is defined by six beam crossing points exactly in a plane, lying precising at the vertices of a regular hexagon of specified size position and orientation of this hexagon are defined geodetically. Survey control and alignment procedures, currently in use to construct RHIC, are described.

  8. Preliminary estimate of coal resources in the Gillette coalfield affected by the location of the Burlington Northern/Union Pacific joint mainline railroad

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.

    2006-01-01

    This publication, primarily in graphic form, presents a preliminary resource assessment related to a major, near-term restriction to mining in that portion of the Gillette coalfield, Wyoming, that is traversed by the Burlington Northern/Union Pacific joint mainline railroad. This assessment is part of a current Powder River Basin regional coal assessment, including both resources and reserves, being conducted by the U.S. Geological Survey. The slides were used to illustrate a presentation of study results at a meeting of the Bureau of Land Management's Regional Coal Team in Casper, Wyoming on April 19, 2006 by the senior author.

  9. Living Jointness

    DTIC Science & Technology

    1994-01-01

    reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...COVERED 00-00-1993 to 00-00-1994 4. TITLE AND SUBTITLE Living Jointness 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...and the peacetime activities of all services other than participation in joint exercises. It challenges the existing joint command structure because

  10. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  11. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  12. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  13. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  14. Precision Antenna Alignment Procedure.

    DTIC Science & Technology

    Precise azimuthal alignment of troposcatter system antennas is achieved by centering on the great circle, the combined pattern of intercepting beams...from two troposcatter antennas. The combined antenna pattern is determined to be centered on and symmetric about the great circle when the Doppler

  15. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  16. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  17. Characteristics of sagittal spine-pelvis-leg alignment in patients with severe hip osteoarthritis.

    PubMed

    Weng, Wen-Jie; Wang, Wei-Jun; Wu, Ming-Da; Xu, Zhi-Hong; Xu, Lei-Lei; Qiu, Yong

    2015-06-01

    The interaction between the sagittal alignment of the spine and pelvis and the compensatory mechanism in patients suffering from spinal disorders has been well documented. However, in patients with hip osteoarthritis (HOA), few studies have explored how the hip joint pathology could affect the sagittal alignment of the hip, pelvis and spine, and no reports have investigated whether these changes are involved in the pathogenesis of low back pain in these patients. The aims of this case-control study were to investigate the sagittal spine-pelvis-leg alignment in patients suffering from severe HOA and to understand whether the alignment was related to the occurrence of low back pain and the health-related quality of life in these patients. Fifty-eight patients with severe HOA and 64 asymptomatic controls were studied. Digital lateral X-rays of the spine, pelvis and proximal femur were obtained with the patients placed in upright positions. The following radiographic parameters were measured to examine the sagittal alignment of the pelvis, hip and spine: pelvic incidence (PI), pelvic tilting (PT), sacral slope (SS), pelvic femoral angle (PFA), femoral inclination (FI), lumbar lordosis (LL), spino-sacral angle (SSA), C7 tilt (C7T) and T1 spinal-pelvic inclination (T1-SPI). The global balance patterns of spinal-pelvic alignment were classified as normal balance, slight unbalance and severe unbalance according to the relative position of the C7 plumb line to the sacrum and femoral heads. Short Form-36 questionnaire was carried out in the patients. Comparisons were carried out between the patients with HOA and the controls and between the HOA patients with or without low back pain. Correlation analysis was used to measure relationships between the HOA patients' parameters. There were no significant differences in the age and gender distribution between the HOA patients and control. Compared with the controls, the patients with HOA showed significantly higher SS and lower

  18. The dynamic nature of alignment and variations in normal knees.

    PubMed

    Deep, K; Eachempati, K K; Apsingi, S

    2015-04-01

    The restoration of knee alignment is an important goal during total knee arthroplasty (TKA). In the past surgeons aimed to restore neutral limb alignment during surgery. However, previous studies have demonstrated alignment to be dynamic, varying depending on the position of the limb and the degree of weight-bearing, and between patients. We used a validated computer navigation system to measure the femorotibial mechanical angle (FTMA) in 264 knees in 77 male and 55 female healthy volunteers aged 18 to 35 years (mean 26.2). We found the mean supine alignment to be a varus angle of 1.2° (standard deviation (sd) 4), with few patients having neutral alignment. FTMA differs significantly between males and females (with a mean varus of 1.7° (sd 4) and 0.4° (sd 3.9), respectively; p = 0.008). It changes significantly with posture, the knee hyperextending by a mean of 5.6°, and coronal plane alignment becoming more varus by 2.2° (sd 3.6) on standing compared with supine. Knee alignment is different in different individuals and is dynamic in nature, changing with different postures. This may have implications for the assessment of alignment in TKA, which is achieved in non-weight-bearing conditions and which may not represent the situation observed during weight-bearing. ©2015 The British Editorial Society of Bone & Joint Surgery.

  19. Conceptual Alignment: How Brains Achieve Mutual Understanding.

    PubMed

    Stolk, Arjen; Verhagen, Lennart; Toni, Ivan

    2016-03-01

    We share our thoughts with other minds, but we do not understand how. Having a common language certainly helps, but infants' and tourists' communicative success clearly illustrates that sharing thoughts does not require signals with a pre-assigned meaning. In fact, human communicators jointly build a fleeting conceptual space in which signals are a means to seek and provide evidence for mutual understanding. Recent work has started to capture the neural mechanisms supporting those fleeting conceptual alignments. The evidence suggests that communicators and addressees achieve mutual understanding by using the same computational procedures, implemented in the same neuronal substrate, and operating over temporal scales independent from the signals' occurrences.

  20. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints.

    PubMed

    Prieto-Alhambra, Daniel; Judge, Andrew; Javaid, M Kassim; Cooper, Cyrus; Diez-Perez, Adolfo; Arden, Nigel K

    2014-09-01

    Data on the incidence of symptomatic osteoarthritis (OA) are scarce. We estimated incidence of clinical hip, knee and hand OA, and studied the effect of prevalent OA on joint-specific incident OA. SIDIAP contains primary care records for>5 million people from Catalonia (Spain). Participants aged ≥40 years with an incident diagnosis of knee, hip or hand OA between 2006 and 2010 were identified using International Classification of Diseases (ICD)-10 codes. Incidence rates and female-to-male rate ratios (RRs) for each joint site were calculated. Age, gender and body mass index-adjusted HR for future joint-specific OA according to prevalent OA at other sites were estimated using Cox regression. 3 266 826 participants were studied for a median of 4.45 years. Knee and hip OA rates increased continuously with age, and female-to-male RRs were highest at age 70-75 years. In contrast, female hand OA risk peaked at age 60-64 years, and corresponding female-to-male RR was highest at age 50-55 years. Adjusted HR for prevalent knee OA on risk of hip OA was 1.35 (99% CI 1.28 to 1.43); prevalent hip OA on incident knee OA: HR 1.15 (1.08 to 1.23). Prevalent hand OA predicted incident knee and hip OA: HR 1.20 (1.14 to 1.26) and 1.23 (1.13 to 1.34), respectively. The effect of age is greatest in the elderly for knee and hip OA, but around the menopause for hand OA. OA clusters within individuals, with higher risk of incident knee and hip disease from prevalent lower limb and hand OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  2. Fast and sensitive multiple alignment of large genomic sequences

    PubMed Central

    Brudno, Michael; Chapman, Michael; Göttgens, Berthold; Batzoglou, Serafim; Morgenstern, Burkhard

    2003-01-01

    Background Genomic sequence alignment is a powerful method for genome analysis and annotation, as alignments are routinely used to identify functional sites such as genes or regulatory elements. With a growing number of partially or completely sequenced genomes, multiple alignment is playing an increasingly important role in these studies. In recent years, various tools for pair-wise and multiple genomic alignment have been proposed. Some of them are extremely fast, but often efficiency is achieved at the expense of sensitivity. One way of combining speed and sensitivity is to use an anchored-alignment approach. In a first step, a fast search program identifies a chain of strong local sequence similarities. In a second step, regions between these anchor points are aligned using a slower but more accurate method. Results Herein, we present CHAOS, a novel algorithm for rapid identification of chains of local pair-wise sequence similarities. Local alignments calculated by CHAOS are used as anchor points to improve the running time of DIALIGN, a slow but sensitive multiple-alignment tool. We show that this way, the running time of DIALIGN can be reduced by more than 95% for BAC-sized and longer sequences, without affecting the quality of the resulting alignments. We apply our approach to a set of five genomic sequences around the stem-cell-leukemia (SCL) gene and demonstrate that exons and small regulatory elements can be identified by our multiple-alignment procedure. Conclusion We conclude that the novel CHAOS local alignment tool is an effective way to significantly speed up global alignment tools such as DIALIGN without reducing the alignment quality. We likewise demonstrate that the DIALIGN/CHAOS combination is able to accurately align short regulatory sequences in distant orthologues. PMID:14693042

  3. How Do Interventions That Exemplify the Joint Principles of the Patient Centered Medical Home Affect Hemoglobin A1C in Patients With Diabetes: A Review.

    PubMed

    Morgan, Toyosi O; Everett, Darcie L; Dunlop, Anne L

    2014-01-01

    To review the impact of the Joint Principle of the Patient Centered Medical Home (PCMH) on hemoglobin A1C (HbA1C) in primary care patients with diabetes. Systematic review of English articles using approximate terms for (1) the 7 principles of the PCMH, (2) primary care, and (3) HbA1C. We included experimental and observational studies. Three authors independently extracted data and obtained summary estimates for concepts with more than 2 high-quality studies. Forty-three studies published between 1998 and 2012 met inclusion criteria, 33 randomized and 10 controlled before-after studies. A physician-directed medical practice (principle 2) lowered HbA1C values when utilizing nursing (mean difference [MD] -0.36, 95% confidence interval [CI] -0.43 to -0.28) or pharmacy care management (MD -0.76; 95% CI -0.93 to -0.59). Whole-person orientation (principle 3) also lowered HbA1C (MD -0.72, 95% CI -0.98 to -0.45). Studies of coordinated and integrated care (principle 4) and quality and safety interventions (principle 5) did not consistently lower HbA1C when reviewed in aggregate. We did not identify high-quality studies to make conclusions for personal physician (principle 1), enhanced access (principle 6), and payment (principle 7). Our review found individual interventions that reduced the HbA1C by up to 2.0% when they met the definitions set by of the Joint Principles of the PCMH. Two of the principles-physician-led team and whole-person orientation-consistently lowered the HbA1C. Other principles had limited data or made little to no impact. Based on current evidence, PCMH principles differentially influence the HbA1C, and there are opportunities for additional research.

  4. Toolkit for Evaluating Alignment of Instructional and Assessment Materials to the Common Core State Standards

    ERIC Educational Resources Information Center

    Achieve, Inc., 2014

    2014-01-01

    In joint partnership, Achieve, The Council of Chief State School Officers, and Student Achievement Partners have developed a Toolkit for Evaluating the Alignment of Instructional and Assessment Materials to the Common Core State Standards (CCSS). The Toolkit is a set of interrelated, freely available instruments for evaluating alignment to the…

  5. Toolkit for Evaluating Alignment of Instructional and Assessment Materials to the Common Core State Standards

    ERIC Educational Resources Information Center

    Achieve, Inc., 2014

    2014-01-01

    In joint partnership, Achieve, The Council of Chief State School Officers, and Student Achievement Partners have developed a Toolkit for Evaluating the Alignment of Instructional and Assessment Materials to the Common Core State Standards. The Toolkit is a set of interrelated, freely available instruments for evaluating alignment to the CCSS; each…

  6. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  7. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  8. Image Correlation Method for DNA Sequence Alignment

    PubMed Central

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were “digitally” obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  9. Inexact Local Alignment Search over Suffix Arrays.

    PubMed

    Ghodsi, Mohammadreza; Pop, Mihai

    2009-11-01

    We describe an algorithm for finding approximate seeds for DNA homology searches. In contrast to previous algorithms that use exact or spaced seeds, our approximate seeds may contain insertions and deletions. We present a generalized heuristic for finding such seeds efficiently and prove that the heuristic does not affect sensitivity. We show how to adapt this algorithm to work over the memory efficient suffix array with provably minimal overhead in running time.We demonstrate the effectiveness of our algorithm on two tasks: whole genome alignment of bacteria and alignment of the DNA sequences of 177 genes that are orthologous in human and mouse. We show our algorithm achieves better sensitivity and uses less memory than other commonly used local alignment tools.

  10. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  11. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  12. Nuclear reactor alignment plate configuration

    SciTech Connect

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  13. Orbit IMU alignment: Error analysis

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  14. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  15. Multiple protein structure alignment.

    PubMed Central

    Taylor, W. R.; Flores, T. P.; Orengo, C. A.

    1994-01-01

    A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core. PMID:7849601

  16. Docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1990-01-01

    Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  17. How Do Interventions That Exemplify the Joint Principles of the Patient Centered Medical Home Affect Hemoglobin A1C in Patients With Diabetes

    PubMed Central

    Everett, Darcie L.; Dunlop, Anne L.

    2014-01-01

    Objective: To review the impact of the Joint Principle of the Patient Centered Medical Home (PCMH) on hemoglobin A1C (HbA1C) in primary care patients with diabetes. Methods: Systematic review of English articles using approximate terms for (1) the 7 principles of the PCMH, (2) primary care, and (3) HbA1C. We included experimental and observational studies. Three authors independently extracted data and obtained summary estimates for concepts with more than 2 high-quality studies. Results: Forty-three studies published between 1998 and 2012 met inclusion criteria, 33 randomized and 10 controlled before–after studies. A physician-directed medical practice (principle 2) lowered HbA1C values when utilizing nursing (mean difference [MD] −0.36, 95% confidence interval [CI] −0.43 to −0.28) or pharmacy care management (MD −0.76; 95% CI −0.93 to −0.59). Whole-person orientation (principle 3) also lowered HbA1C (MD −0.72, 95% CI −0.98 to −0.45). Studies of coordinated and integrated care (principle 4) and quality and safety interventions (principle 5) did not consistently lower HbA1C when reviewed in aggregate. We did not identify high-quality studies to make conclusions for personal physician (principle 1), enhanced access (principle 6), and payment (principle 7). Conclusion: Our review found individual interventions that reduced the HbA1C by up to 2.0% when they met the definitions set by of the Joint Principles of the PCMH. Two of the principles—physician-led team and whole-person orientation—consistently lowered the HbA1C. Other principles had limited data or made little to no impact. Based on current evidence, PCMH principles differentially influence the HbA1C, and there are opportunities for additional research. PMID:28462247

  18. Joint Attention in Autism: Teaching Smiling Coordinated with Gaze to Respond to Joint Attention Bids

    ERIC Educational Resources Information Center

    Krstovska-Guerrero, Ivana; Jones, Emily A.

    2013-01-01

    Children with autism demonstrate early deficits in joint attention and expressions of affect. Interventions to teach joint attention have addressed gaze behavior, gestures, and vocalizations, but have not specifically taught an expression of positive affect such as smiling that tends to occur during joint attention interactions. Intervention was…

  19. Joint Attention in Autism: Teaching Smiling Coordinated with Gaze to Respond to Joint Attention Bids

    ERIC Educational Resources Information Center

    Krstovska-Guerrero, Ivana; Jones, Emily A.

    2013-01-01

    Children with autism demonstrate early deficits in joint attention and expressions of affect. Interventions to teach joint attention have addressed gaze behavior, gestures, and vocalizations, but have not specifically taught an expression of positive affect such as smiling that tends to occur during joint attention interactions. Intervention was…

  20. Method for alignment of microwires

    DOEpatents

    Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce

    2017-01-24

    A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.

  1. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  2. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  3. Normalized entropy measure for multimodality image alignment

    NASA Astrophysics Data System (ADS)

    Studholme, Colin; Hawkes, David J.; Hill, Derek L.

    1998-06-01

    Automated multi-modality 3D medical image alignment has been an active area of research for many years. There have been a number of recent papers proposing and investigating the use of entropy derived measures of brain image alignment. Any registration measure must allow us to choose between transformation estimates based on the similarity of images within their volume of overlap. Since 3D medical images often have a limited extent and overlap, the similarity measure for the two transformation estimates may be derived from two very different regions within the images. Direct measures of information such as the joint entropy and mutual information will therefore be a function of, not only image similarity in the region of overlap, but also of the local image content within the overlap. In this paper we present a new measure, normalized mutual information, which is simply the ratio of the sum of the marginal entropies and the joint entropy. The effect of changing overlap on current entropy measures and this normalized measure are compared using a simple image model and experiments on clinical MR-PET and MR-CT image data. Results indicate that the normalized entropy measure provides significantly improved behavior over a range of imaged fields of view.

  4. Joint pain

    MedlinePlus

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: Gout (especially ...

  5. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  6. Joint Commission

    MedlinePlus

    Skip to main content The Joint Commission Log In | Request Guest Access Forgot password? | Log In Help Contact Us | Careers | JCR Web Store | Press Room Search Home Accreditation Accreditation Ambulatory Health ...

  7. Sagittal alignment of the spine-pelvis-lower extremity axis in patients with severe knee osteoarthritis

    PubMed Central

    Wang, W. J.; Liu, F.; Zhu, Y.W.; Sun, M.H.; Qiu, Y.

    2016-01-01

    Objectives Normal sagittal spine-pelvis-lower extremity alignment is crucial in humans for maintaining an ergonomic upright standing posture, and pathogenesis in any segment leads to poor balance. The present study aimed to investigate how this sagittal alignment can be affected by severe knee osteoarthritis (KOA), and whether associated changes corresponded with symptoms of lower back pain (LBP) in this patient population. Methods Lateral radiograph films in an upright standing position were obtained from 59 patients with severe KOA and 58 asymptomatic controls free from KOA. Sagittal alignment of the spine, pelvis, hip and proximal femur was quantified by measuring several radiographic parameters. Global balance was accessed according to the relative position of the C7 plumb line to the sacrum and femoral heads. The presence of chronic LBP was documented. Comparisons between the two groups were carried by independent samples t-tests or chi-squared test. Results Patients with severe KOA showed significant backward femoral inclination (FI), hip flexion, forward spinal inclination, and higher prevalence of global imbalance (27.1% versus 3.4%, p < 0.001) compared with controls. In addition, patients with FI of 10° (n = 23) showed reduced lumbar lordosis and significant forward spinal inclination compared with controls, whereas those with FI > 10° (n = 36) presented with significant pelvic anteversion and hip flexion. A total of 39 patients with KOA (66.1%) suffered from LBP. There was no significant difference in sagittal alignment between KOA patients with and without LBP. Conclusions The sagittal alignment of spine-pelvis-lower extremity axis was significantly influenced by severe KOA. The lumbar spine served as the primary source of compensation, while hip flexion and pelvic anteversion increased for further compensation. Changes in sagittal alignment may not be involved in the pathogenesis of LBP in this patient population. Cite this article: W. J. Wang, F. Liu

  8. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs

    PubMed Central

    2011-01-01

    Background Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Results Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Conclusions Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major

  9. Scalable cell alignment on optical media substrates.

    PubMed

    Anene-Nzelu, Chukwuemeka G; Choudhury, Deepak; Li, Huipeng; Fraiszudeen, Azmall; Peh, Kah-Yim; Toh, Yi-Chin; Ng, Sum Huan; Leo, Hwa Liang; Yu, Hanry

    2013-07-01

    Cell alignment by underlying topographical cues has been shown to affect important biological processes such as differentiation and functional maturation in vitro. However, the routine use of cell culture substrates with micro- or nano-topographies, such as grooves, is currently hampered by the high cost and specialized facilities required to produce these substrates. Here we present cost-effective commercially available optical media as substrates for aligning cells in culture. These optical media, including CD-R, DVD-R and optical grating, allow different cell types to attach and grow well on them. The physical dimension of the grooves in these optical media allowed cells to be aligned in confluent cell culture with maximal cell-cell interaction and these cell alignment affect the morphology and differentiation of cardiac (H9C2), skeletal muscle (C2C12) and neuronal (PC12) cell lines. The optical media is amenable to various chemical modifications with fibronectin, laminin and gelatin for culturing different cell types. These low-cost commercially available optical media can serve as scalable substrates for research or drug safety screening applications in industry scales.

  10. Effect of methylprednisolone, hyaluronic acid and pioglitazone on histological remodeling of temporomandibular joint cartilage in rabbits affected by drug-induced osteoarthritis.

    PubMed

    Kałużyński, Krzysztof; Trybek, Grzegorz; Smektała, Tomasz; Masiuk, Marek; Myśliwiec, Leszek; Sporniak-Tutak, Katarzyna

    2016-02-11

    The aims of this study were to assess the anti-degenerative effects of pioglitazone and to compare these effects with those of methylprednisolone and hyaluronic acid on drug-induced osteoarthritis in rabbits' temporomandibular joint cartilage. The experiment was conducted on 40 Californian white rabbits. Degenerative changes were induced by intra-articular injections of papain. Subsequently, all of the animals were randomly assigned to one of four groups: 1) a control group that received no medications; 2) a group treated with 4 intra-articular injections of 2 mg (0.2 ml) of hyaluronic acid at weekly intervals; 3) a group treated with 4 intra-articular injections of 2 mg (0.1 ml) of methylprednisolone at weekly intervals; 4) a group administered pioglitazone orally in daily doses of 2 mg/kg of body weight. Four weeks after the beginning of drug administration, the rabbits were sacrificed. Sagittal sections of the intra-articular cartilage (discs) and mandibular condyles were stained with hematoxylin and eosin by the PAS technique and with van Gieson's solution. Histologic examinations, as well as cartilage thickness and number of cell layers measurements, were performed. Histologic assessment in cases of arthritis-associated pathologies revealed that changes occurred most frequently in the control group and least frequently in the pioglitazone group. There were no differences in the histological structures of the intra-articular discs. Cartilage thickness measurements demonstrated the thinnest cartilage in group 2 and the thickest in group 3. Analysis of cell layer numbers showed the most numerous layers in the pioglitazone group and the least in the control group. Pioglitazone and hyaluronic acid showed anti-degenerative properties compared to methylprednisolone in an animal model.

  11. Effects of diatomic reagent alignment on the A + BC reaction

    NASA Technical Reports Server (NTRS)

    Pattengill, M. D.; Zare, R. N.; Jaffe, R. L.

    1987-01-01

    A computational study is reported on the A + BC - AB + C bimolecular exchange reaction in which BC is aligned with respect to the approach direction of atom A so that the initial rotational angular momentum vector of BC is either parallel (or equivalently antiparallel) or perpendicular to the initial velocity vector of A. The calculations employ a modification of the extended LEPS potential, which permits straightforward generation of noncollinear minimum energy reaction paths. The calculations clearly demonstrate that diatomic reagent alignment can markedly affect the nature of reaction product early partitioning; they also demonstrate that diatomic reagent alignment affects reactive cross sections.

  12. Effects of diatomic reagent alignment on the A + BC reaction

    NASA Technical Reports Server (NTRS)

    Pattengill, M. D.; Zare, R. N.; Jaffe, R. L.

    1987-01-01

    A computational study is reported on the A + BC - AB + C bimolecular exchange reaction in which BC is aligned with respect to the approach direction of atom A so that the initial rotational angular momentum vector of BC is either parallel (or equivalently antiparallel) or perpendicular to the initial velocity vector of A. The calculations employ a modification of the extended LEPS potential, which permits straightforward generation of noncollinear minimum energy reaction paths. The calculations clearly demonstrate that diatomic reagent alignment can markedly affect the nature of reaction product early partitioning; they also demonstrate that diatomic reagent alignment affects reactive cross sections.

  13. Precision alignment and mounting apparatus

    NASA Technical Reports Server (NTRS)

    Preston, Dennis R. (Inventor)

    1993-01-01

    An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.

  14. Investigation into the phenomena affecting the retention behavior of basic analytes in chaotropic chromatography: Joint effects of the most relevant chromatographic factors and analytes' molecular properties.

    PubMed

    Čolović, Jelena; Kalinić, Marko; Vemić, Ana; Erić, Slavica; Malenović, Anđelija

    2015-12-18

    The aim of this study was to systematically investigate the phenomena affecting the retention behavior of structurally diverse basic drugs in ion-interaction chromatographic systems with chaotropic additives. To this end, the influence of three factors was studied: pH value of the aqueous phase, concentration of sodium hexafluorophosphate, and content of acetonitrile in the mobile phase. Mobile phase pH was found to affect the thermodynamic equilibria in the studied system beyond its effects on the analytes' ionization state. Specifically, increasing pH from 2 to 4 led to longer retention times, even with analytes which remain completely protonated. An explanation for this phenomenon was sought by studying the adsorption behavior of acetonitrile and chaotropic additive onto stationary phase. It was shown that the magnitude of the developed surface potential, which significantly affects retention - increases with pH, and that this can be attributed to the larger surface excess of acetonitrile. To study how analytes' structural properties influence their retention, quantitative structure-retention modeling was performed next. A support vector machine regression model was developed, relating mobile phase constituents and structural descriptors with retention data. While the ETA_EtaP_B_RC and XlogP can be considered as molecular descriptors which describe factors affecting retention in any RP-HPLC system, TDB9p and RDF45p are molecular descriptors which account for spatial arrangement of polarizable atoms and they can clearly relate to analytes' behavior on the stationary phase surface, where the electrostatic potential develops. Complementarity of analytes' structure with that of the electric double layer can be seen as a key factor influencing their retention behavior. Structural diversity of analytes and good predictive capabilities over a range of experimental conditions make the established model a useful tool in predicting retention behavior in the studied

  15. Alignment of suprathermally rotating grains

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1995-12-01

    It is shown that mechanical alignment can be efficient for suprathermally rotating grains, provided that they drift with supersonic velocities. Such a drift should be widely spread due to both Alfvenic waves and ambipolar diffusion. Moreover, if suprathermal rotation is caused by grain interaction with a radiative flux, it is shown that mechanical alignment may be present even in the absence of supersonic drift. This means that the range of applicability of mechanical alignment is wider than generally accepted and that it can rival the paramagnetic one. We also study the latter mechanism and re-examine the interplay between poisoning of active sites and desorption of molecules blocking the access to the active sites of H_2 formation, in order to explain the observed poor alignment of small grains and good alignment of large grains. To obtain a more comprehensive picture of alignment, we briefly discuss the alignment by radiation fluxes and by grain magnetic moments.

  16. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  17. 38 CFR 4.66 - Sacroiliac joint.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permit assumption of pure traumatic origin, objective evidence of damage to the joint, and history of... paralysis attributable to disease affecting the lumbar vertebrae and the intervertebral disc....

  18. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  19. Alignment and assembly tool for very large diameter cylinders

    NASA Technical Reports Server (NTRS)

    Ehl, James H. (Inventor)

    1987-01-01

    An alignment and assembly tool is disclosed for aligning the ends of two very large cylinders so that the ends may be welded with a cylindrical strengthening section inserted between the cylinders and aligned and welded into the joint. The tool has a U-shaped main body with a horizontal top section and two legs, which are attached to the ends of the top section and extend outward and downward. Horizontal bottom sections extend outward from the bottoms of two of the legs. The tool has one inner jackscrew and one outer jackscrew on each side of its center, extending downward from the top section. Each of the two bottom sections has an attached side clamp for clamping the alignment tool to two opposing skin stringers of two of the cylinders. The jackscrews are adjusted to bring the edges of a tee ring into precise alignment with the ends of the two large cylinders so that both joints may be welded around their circumference.

  20. Combining many multiple alignments in one improved alignment.

    PubMed

    Bucka-Lassen, K; Caprani, O; Hein, J

    1999-02-01

    The fact that the multiple sequence alignment problem is of high complexity has led to many different heuristic algorithms attempting to find a solution in what would be considered a reasonable amount of computation time and space. Very few of these heuristics produce results that are guaranteed always to lie within a certain distance of an optimal solution (given a measure of quality, e.g. parsimony). Most practical heuristics cannot guarantee this, but nevertheless perform well for certain cases. An alignment, obtained with one of these heuristics and with a bad overall score, is not unusable though, it might contain important information on how substrings should be aligned. This paper presents a method that extracts qualitatively good sub-alignments from a set of multiple alignments and combines these into a new, often improved alignment. The algorithm is implemented as a variant of the traditional dynamic programming technique. An implementation of ComAlign (the algorithm that combines multiple alignments) has been run on several sets of artificially generated sequences and a set of 5S RNA sequences. To assess the quality of the alignments obtained, the results have been compared with the output of MSA 2.1 (Gupta et al., Proceedings of the Sixth Annual Symposium on Combinatorial Pattern Matching, 1995; Kececioglu et al., http://www.techfak.uni-bielefeld. de/bcd/Lectures/kececioglu.html, 1995). In all cases, ComAlign was able to produce a solution with a score comparable to the solution obtained by MSA. The results also show that ComAlign actually does combine parts from different alignments and not just select the best of them. The C source code (a Smalltalk version is being worked on) of ComAlign and the other programs that have been implemented in this context are free and available on WWW (http://www.daimi.au.dk/ õcaprani). klaus@bucka-lassen.dk; jotun@pop.bio.au.dk;ocaprani@daimi.au.dk

  1. 42 CFR 498.54 - Joint hearings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 5 2013-10-01 2013-10-01 false Joint hearings. 498.54 Section 498.54 Public Health... PROGRAM Hearings § 498.54 Joint hearings. When two or more affected parties have requested hearings and... joint hearings are held, a single record of the proceedings is made and a separate decision issued with...

  2. 42 CFR 498.54 - Joint hearings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 5 2012-10-01 2012-10-01 false Joint hearings. 498.54 Section 498.54 Public Health... PROGRAM Hearings § 498.54 Joint hearings. When two or more affected parties have requested hearings and... joint hearings are held, a single record of the preceedings is made and a separate decision issued with...

  3. 42 CFR 498.54 - Joint hearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 5 2011-10-01 2011-10-01 false Joint hearings. 498.54 Section 498.54 Public Health... PROGRAM Hearings § 498.54 Joint hearings. When two or more affected parties have requested hearings and... joint hearings are held, a single record of the preceedings is made and a separate decision issued with...

  4. 42 CFR 498.54 - Joint hearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 5 2014-10-01 2014-10-01 false Joint hearings. 498.54 Section 498.54 Public Health... PROGRAM Hearings § 498.54 Joint hearings. When two or more affected parties have requested hearings and... joint hearings are held, a single record of the proceedings is made and a separate decision issued with...

  5. 42 CFR 498.54 - Joint hearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Joint hearings. 498.54 Section 498.54 Public Health... PROGRAM Hearings § 498.54 Joint hearings. When two or more affected parties have requested hearings and... joint hearings are held, a single record of the preceedings is made and a separate decision issued with...

  6. Characterization of pairwise and multiple sequence alignment errors.

    PubMed

    Landan, Giddy; Graur, Dan

    2009-07-15

    We characterize pairwise and multiple sequence alignment (MSA) errors by comparing true alignments from simulations of sequence evolution with reconstructed alignments. The vast majority of reconstructed alignments contain many errors. Error rates rapidly increase with sequence divergence, thus, for even intermediate degrees of sequence divergence, more than half of the columns of a reconstructed alignment may be expected to be erroneous. In closely related sequences, most errors consist of the erroneous positioning of a single indel event and their effect is local. As sequences diverge, errors become more complex as a result of the simultaneous mis-reconstruction of many indel events, and the lengths of the affected MSA segments increase dramatically. We found a systematic bias towards underestimation of the number of gaps, which leads to the reconstructed MSA being on average shorter than the true one. Alignment errors are unavoidable even when the evolutionary parameters are known in advance. Correct reconstruction can only be guaranteed when the likelihood of true alignment is uniquely optimal. However, true alignment features are very frequently sub-optimal or co-optimal, with the result that optimal albeit erroneous features are incorporated into the reconstructed MSA. Progressive MSA utilizes a guide-tree in the reconstruction of MSAs. The quality of the guide-tree was found to affect MSA error levels only marginally.

  7. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  8. Functional Alignment of Metabolic Networks.

    PubMed

    Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded

    2016-05-01

    Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.

  9. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  10. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  11. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  12. Joint Effects of the Epigenetic Alteration of Neurotrophins and Cytokine Signaling: A Possible Exploratory Model of Affective Symptoms in Alcohol-Dependent Patients?

    PubMed

    Heberlein, Annemarie; Schuster, Rilana; Kleimann, Alexandra; Groh, Adrian; Kordon, Andreas; Opfermann, Birgitt; Lichtinghagen, Ralf; Gröschl, Michael; Kornhuber, Johannes; Bleich, Stefan; Frieling, Helge; Hillemacher, Thomas

    2017-05-01

    Neurotrophins have been linked to the symptomatology of alcohol dependence. We aimed to investigate a possible association between the methylation of the promoters of both neurotrophins, the serum levels of the cytokines and core symptoms of alcohol dependence as withdrawal severity and anxiety. In this study we investigated a possible association between alterations in the methylation of the BDNF IV/NGF I gene promoter and the cytokines tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in 55 male alcohol-dependent patients. Mean methylation of the promoter of the BDNF gene was significantly associated with the TNF-α serum levels and the CIWA-score during withdrawal (P < 0.001). Moreover, mean methylation of the NGF I promoter was significantly associated with the IL-6 serum levels and STAI-I score during withdrawal (P < 0.001). Our results suggest an association between the epigenetic regulation of both neurotrophins, BDNF and NGF, cytokine release and the symptomatology of alcohol dependence. They imply that changes in the methylation of neurotrophins may contribute to the symptomatology of alcohol dependence by affecting relevant downstream signaling cascades.

  13. The alignment strategy of HADES

    NASA Astrophysics Data System (ADS)

    Pechenova, O.; Pechenov, V.; Galatyuk, T.; Hennino, T.; Holzmann, R.; Kornakov, G.; Markert, J.; Müntz, C.; Salabura, P.; Schmah, A.; Schwab, E.; Stroth, J.

    2015-06-01

    The global as well as intrinsic alignment of any spectrometer impacts directly on its performance and the quality of the achievable physics results. An overview of the current alignment procedure of the DiElectron Spectrometer HADES is presented with an emphasis on its main features and its accuracy. The sequence of all steps and procedures is given, including details on photogrammetric and track-based alignment.

  14. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  15. Investigating the potential advantages of a new design metacarpophalangeal joint.

    PubMed

    Yeoman, M; Johnstone, A; Karuppiah, S V; Targell, J; Shepherd, D E

    2009-10-01

    This paper investigates a new metacarpophalangeal joint design aimed at treating patients with moderate to severe forms of arthritis affecting the index, long, ring, and little fingers. Current small joint arthroplasty designs, including those for the metacarpophalangeal joint of the hand, have had limited success owing to mechanical failures and can be divided into two main families: single-piece elastomer implants and surface articulating implants. The design proposed in this study involves combining the principles of a surface weight-bearing articulating implant with those of a spanning elastomeric implant. The design consists of metacarpal and proximal phalangeal articulating housings and a central flexible spanning elastomer rod that maintains the alignment of the metacarpal and proximal phalangeal components. A preliminary finite element analysis was used to investigate the stresses in the design, the wear of the articulating bearing surfaces for different material combinations, and the stresses between the central elastomer rod and the articulating housings. This preliminary analysis shows that the design should withstand the probable loading conditions experienced within the human body and that the wear rates of the articulating surfaces and the central elastomer are acceptable.

  16. The RNA structure alignment ontology

    PubMed Central

    Brown, James W.; Birmingham, Amanda; Griffiths, Paul E.; Jossinet, Fabrice; Kachouri-Lafond, Rym; Knight, Rob; Lang, B. Franz; Leontis, Neocles; Steger, Gerhard; Stombaugh, Jesse; Westhof, Eric

    2009-01-01

    Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of “correspondence,” which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments. PMID:19622678

  17. Hypermobile joints

    MedlinePlus

    ... A.M. Editorial team. Related MedlinePlus Health Topics Joint Disorders Browse the Encyclopedia A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC's accreditation program is an ...

  18. Host-feeding sources and habitats jointly affect wing developmental stability depending on sex in the major Chagas disease vector Triatoma infestans.

    PubMed

    Nattero, Julieta; Dujardin, Jean-Pierre; Del Pilar Fernández, María; Gürtler, Ricardo E

    2015-12-01

    Fluctuating asymmetry (FA), a slight and random departure from bilateral symmetry that is normally distributed around a 0 mean, has been widely used to infer developmental instability. We investigated whether habitats (ecotopes) and host-feeding sources influenced wing FA of the hematophagous bug Triatoma infestans. Because bug populations occupying distinct habitats differed substantially and consistently in various aspects such as feeding rates, engorgement status and the proportion of gravid females, we predicted that bugs from more open peridomestic habitats (i.e., goat corrals) were more likely to exhibit higher FA than bugs from domiciles. We examined patterns of asymmetry and the amount of wing size and shape FA in 196 adult T. infestans collected across a gradient of habitat suitability and stability that decreased from domiciles, storerooms, kitchens, chicken coops, pig corrals, to goat corrals in a well-defined area of Figueroa, northwestern Argentina. The bugs had unmixed blood meals on human, chicken, pig and goat depending on the bug collection ecotope. We documented the occurrence of FA in wing shape for bugs fed on all host-feeding sources and in all ecotopes except for females from domiciles or fed on humans. FA indices for wing shape differed significantly among host-feeding sources, ecotopes and sexes. The patterns of wing asymmetry in females from domiciles and from goat corrals were significantly different; differences in male FA were congruent with evidence showing that they had higher mobility than females across habitats. The host-feeding sources and habitats of T. infestans affected wing developmental stability depending on sex. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. GS-align for glycan structure alignment and similarity measurement

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Mukherjee, Srayanta; Park, Sang-Jun; Skolnick, Jeffrey; Lee, Jooyoung; Im, Wonpil

    2015-01-01

    Motivation: Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. Results: A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. Availability and implementation: http://www.glycanstructure.org/gsalign. Contact: wonpil@ku.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25857669

  20. Multiple sequence alignment based on profile alignment of intermediate sequences.

    PubMed

    Lu, Yue; Sze, Sing-Hoi

    2008-09-01

    Despite considerable efforts, it remains difficult to obtain accurate multiple sequence alignments. By using additional hits from database search of the input sequences, a few strategies have been proposed to significantly improve alignment accuracy, including the construction of profiles from the hits while performing profile alignment, the inclusion of high scoring hits into the input sequences, the use of intermediate sequence search to link distant homologs, and the use of secondary structure information. We develop an algorithm that integrates these strategies to further improve alignment accuracy by modifying the pair-Hidden Markov Model (HMM) approach in ProbCons to incorporate profiles of intermediate sequences from database search and utilize secondary structure predictions as in SPEM. We test our algorithm on a few sets of benchmark multiple alignments, including BAliBASE, HOMSTRAD, PREFAB, and SABmark, and show that it significantly outperforms MAFFT and ProbCons, which are among the best multiple alignment algorithms that do not utilize additional information, and SPEM, which is among the best multiple alignment algorithms that utilize additional hits from database search. The improvement in accuracy over SPEM can be as much as 5-10% when aligning divergent sequences. A software program that implements this approach (ISPAlign) is available at http://faculty.cs.tamu.edu/shsze/ispalign.

  1. MolAlign: an algorithm for aligning multiple small molecules

    NASA Astrophysics Data System (ADS)

    Chan, Shek Ling

    2017-06-01

    In small molecule drug discovery projects, the receptor structure is not always available. In such cases it is enormously useful to be able to align known ligands in the way they bind in the receptor. Here we shall present an algorithm for the alignment of multiple small molecule ligands. This algorithm takes pre-generated conformers as input, and proposes aligned assemblies of the ligands. The algorithm consists of two stages: the first stage is to perform alignments for each pair of ligands, the second stage makes use of the results from the first stage to build up multiple ligand alignment assemblies using a novel iterative procedure. The scoring functions are improved versions of the one mentioned in our previous work. We have compared our results with some recent publications. While an exact comparison is impossible, it is clear that our algorithm is fast and produces very competitive results.

  2. A study of lubrication, processing conditions, and material combinations that affect the wear of micro-textured-carbide coated cobalt-chromium-molybdenum alloy surfaces used for artificial joints implants

    NASA Astrophysics Data System (ADS)

    Ettienne-Modeste, Geriel A.

    Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide

  3. Alignments of galaxies within cosmic filaments from SDSS DR7

    SciTech Connect

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C. E-mail: xyang@sjtu.edu.cn

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  4. Mask alignment system for semiconductor processing

    DOEpatents

    Webb, Aaron P.; Carlson, Charles T.; Weaver, William T.; Grant, Christopher N.

    2017-02-14

    A mask alignment system for providing precise and repeatable alignment between ion implantation masks and workpieces. The system includes a mask frame having a plurality of ion implantation masks loosely connected thereto. The mask frame is provided with a plurality of frame alignment cavities, and each mask is provided with a plurality of mask alignment cavities. The system further includes a platen for holding workpieces. The platen may be provided with a plurality of mask alignment pins and frame alignment pins configured to engage the mask alignment cavities and frame alignment cavities, respectively. The mask frame can be lowered onto the platen, with the frame alignment cavities moving into registration with the frame alignment pins to provide rough alignment between the masks and workpieces. The mask alignment cavities are then moved into registration with the mask alignment pins, thereby shifting each individual mask into precise alignment with a respective workpiece.

  5. A clinical study of the rotational alignment of the femoral component in total knee arthroplasty

    PubMed Central

    Ding, Liangjia; Liu, Xiaomin; Liu, Changlu; Liu, Yingli

    2015-01-01

    [Purpose] The reasons for femorotibial rotational malalignment after total knee arthroplasty (TKA) were analyzed to provide evidence for clinical knee joint surgery and to reduce complications. [Subjects and Methods] Ninety knees of 60 patients were selected and randomly divided into two groups (n=30). For one group, rotational alignment of the femoral component was determined by the transepicondylar axis and TKA was performed. For the other group, rotational alignment of the femoral component was conducted through 3° external rotation of the posterior femoral condyles. Knee joint specimens were operated with TKA and various biomechanical indices were measured. [Results] The femoral epicondylar axis was a constant, reliable reference for femoral component rotational alignment. When the femoral component was rotated by 0° versus the epicondylar axis, the peak contact pressure on the patellofemoral joint was optimal. When the femoral component was arranged in parallel with Whiteside’s line, the peak contact pressure on the patellofemoral joint varied largely. The patellofemoral contact areas of the two groups were similar. [Conclusion] Axial rotational alignment of the femoral component influenced the contact pressure of patellofemoral joints in TKA more significantly than external rotation of the femoral condyles. It is more reliable to use the femoral epicondylar axis as the reference for the rotational alignment of the femoral component. PMID:26311929

  6. MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments

    PubMed Central

    2012-01-01

    Background The generation of multiple sequence alignments (MSAs) is a crucial step for many bioinformatic analyses. Thus improving MSA accuracy and identifying potential errors in MSAs is important for a wide range of post-genomic research. We present a novel method called MergeAlign which constructs consensus MSAs from multiple independent MSAs and assigns an alignment precision score to each column. Results Using conventional benchmark tests we demonstrate that on average MergeAlign MSAs are more accurate than MSAs generated using any single matrix of sequence substitution. We show that MergeAlign column scores are related to alignment precision and hence provide an ab initio method of estimating alignment precision in the absence of curated reference MSAs. Using two novel and independent alignment performance tests that utilise a large set of orthologous gene families we demonstrate that increasing MSA performance leads to an increase in the performance of downstream phylogenetic analyses. Conclusion Using multiple tests of alignment performance we demonstrate that this novel method has broad general application in biological research. PMID:22646090

  7. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  8. Calibration and Alignment.

    NASA Astrophysics Data System (ADS)

    Grassotti, Christopher; Iskenderian, Haig; Hoffman, Ross N.

    1999-06-01

    Discrepancies between estimates of rainfall from ground-based radar and satellite observing systems can be attributed to either calibration differences or to geolocation and sampling differences. These latter include differences due to radar or satellite misregistration, differences in observation times, or variations in instrument and retrieval algorithm sensitivities. A new methodology has been developed and tested for integrating radar- and satellite-based estimates of precipitation using a feature calibration and alignment (FCA) technique. The parameters describing the calibration and alignment are found using a variational approach, and are composed of displacement and amplitude adjustments to the satellite rainfall retrievals, which minimize the differences with respect to the radar data and satisfy additional smoothness and magnitude constraints. In this approach the amplitude component represents a calibration of the satellite estimate to the radar, whereas the displacement components correct temporal and/or geolocation differences between the radar and satellite data.The method has been tested on a number of cases of the NASA WetNet PIP-2 dataset. These data consist of coincident estimates of rainfall by ground-based radar and the DMSP SSM/I. Sensitivity tests were conducted to tune the parameters of the algorithm. Results indicate the effectiveness of the technique in minimizing the discrepancies between radar and satellite observations of rainfall for a variety of rainfall events ranging from midlatitude frontal precipitation to heavy convection associated with a tropical cyclone (Hurricane Andrew). A remaining issue to be resolved is the incorporation of knowledge about location dependencies in the errors of the radar and microwave estimates.Once the satellite data have been adjusted to match the radar observations, the two independent estimates (radar and adjusted SSM/I rain rates) may be blended to improve the overall depiction of the rainfall event

  9. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  10. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  11. Engaging Teachers in Curriculum Alignment.

    ERIC Educational Resources Information Center

    Armstrong, Dale; Suddards, Carol

    1999-01-01

    In 1997, Edmonton Public Schools (Alberta, Canada) began developing a process to engage teachers in curriculum alignment with a view to improving student achievement. Ten principles guiding the curriculum alignment framework are listed, followed by first-year results and factors that led to the framework's success. (CDS)

  12. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  13. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  14. Lexical alignment in triadic communication.

    PubMed

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one's interlocutor's lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants' lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment.

  15. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  16. Alignment of the MINOS FD

    SciTech Connect

    Becker, B.; Boehnlein, D.; /Fermilab

    2004-11-01

    The results and procedure of the alignment of the MINOS Far Detector are presented. The far detector has independent alignments of SM1 and SM2. The misalignments have an estimated uncertainty of {approx}850 {micro}m for SM1 and {approx}750 {micro}m for SM2. The alignment has as inputs the average rotations of U and V as determined by optical survey and strip positions within modules measured from the module mapper. The output of this is a module-module correction for transverse mis-alignments. These results were verified by examining an independent set of data. These alignment constants on average contribute much less then 1% to the total uncertainty in the transverse strip position.

  17. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  18. Joint Attention Revisited: Examining Heterogeneity among Children with Autism

    ERIC Educational Resources Information Center

    Hurwitz, Sarah

    2010-01-01

    Joint attention has long been considered absent or deviant in children with autism. Although this deficit is seen, there is variability in joint attention within the population and some children with autism employ it. Little is known about the profile of joint attention skills of these children or how joint attention use affects concurrent…

  19. Joint Attention Revisited: Examining Heterogeneity among Children with Autism

    ERIC Educational Resources Information Center

    Hurwitz, Sarah

    2010-01-01

    Joint attention has long been considered absent or deviant in children with autism. Although this deficit is seen, there is variability in joint attention within the population and some children with autism employ it. Little is known about the profile of joint attention skills of these children or how joint attention use affects concurrent…

  20. Joint Warrior

    DTIC Science & Technology

    2011-05-04

    hour per response , including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...reflect my own personal views and are not necessarily endorsed by the NWC or the Department of the Navy. 14. ABSTRACT The way we fight wars has been...evolving over thousands of years. Today, the U.S. Navy, finds itself in the post- modern area of war fighting . Joint warfare is the latest

  1. Alignment-Annotator web server: rendering and annotating sequence alignments.

    PubMed

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  3. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  4. The Effects of Fluid Absorption on the Mechanical Properties of Joint Prostheses Components

    NASA Astrophysics Data System (ADS)

    Yarbrough, David; Viano, Ann

    2010-02-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is the material playing the role of cartilage in human prosthetic joints. Wear debris from UHMWPE is a common reason for joint arthroplasty failure, and the exact mechanism responsible for wear remains an area of investigation. In this study, the microstructure of UHMWPE was examined as a function of fluid absorption. Samples with varying exposure to e-beam radiation (as part of the manufacturing process) were soaked for forty days in saline or artificial synovial fluid, under zero or 100 lbs load. Samples were then tensile-tested according to ASTM D-3895. The post-stressed material was then examined by transmission electron microscopy to evaluate the molecular response to stress, which correlates with macroscopic mechanical properties. Three parameters of the crystalline lamellae were measured: thickness, stacking ratio, and alignment to stress direction. Results indicate that fluid absorption does affect the mechanical properties of UHMWPE at both the microscopic and microscopic levels. )

  5. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  6. PRALINE: a versatile multiple sequence alignment toolkit.

    PubMed

    Bawono, Punto; Heringa, Jaap

    2014-01-01

    Profile ALIgNmEnt (PRALINE) is a versatile multiple sequence alignment toolkit. In its main alignment protocol, PRALINE follows the global progressive alignment algorithm. It provides various alignment optimization strategies to address the different situations that call for protein multiple sequence alignment: global profile preprocessing, homology-extended alignment, secondary structure-guided alignment, and transmembrane aware alignment. A number of combinations of these strategies are enabled as well. PRALINE is accessible via the online server http://www.ibi.vu.nl/programs/PRALINEwww/. The server facilitates extensive visualization possibilities aiding the interpretation of alignments generated, which can be written out in pdf format for publication purposes. PRALINE also allows the sequences in the alignment to be represented in a dendrogram to show their mutual relationships according to the alignment. The chapter ends with a discussion of various issues occurring in multiple sequence alignment.

  7. Ultrasonic Probing Of Complexly Shaped Joints

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1993-01-01

    Technique developed involves use of ultrasonics to inspect first bond surfaces of solid-rocket-motor joints. By fitting pieces of insulating materials to mate exactly with complicated shapes of affected parts of insulation, complicated shapes redefined into simpler ones probed more easily. When technique used to insonify from insulation side, one readily detects difference between disbond and good bond. Same technique applied to field tang joints, field clevis joints, and aft-dome-to-fixed-nozzle-housing attachment points. Although developed for inspecting joints in solid rocket motors, also applicable to nondestructive evaluation of other complicated joints.

  8. Do counteracting external frontal plane moments alter the intraarticular contact force distribution in the loaded human tibiofemoral joint?

    PubMed

    Engel, Karsten; Brüggemann, Gert-Peter; Heinrich, Kai; Potthast, Wolfgang; Liebau, Christian

    2015-03-01

    There are strong indications that asymmetric medio-lateral load distribution in the knee joint is a risk factor for osteoarthritis. Externally applied frontal plane moments (adduction and abduction) might affect the distribution of knee joint compartment loading. However, this is not confirmed through intraarticular measurements in loaded human knee joints. The purpose of the study was to determine the force distribution and the movement of the centre of pressure in the loaded tibiofemoral joint as a function of varied externally applied counteracting frontal plane moments and in dependence of the knee flexion angle. Adduction and abduction moments of 2.5 Nm and 5 Nm were applied to six cadaveric knees exhibiting varus, valgus and normal alignments. The joints were mounted in a knee joint loading simulator. During simulated muscle-driven extension-flexion cycles, intraarticular forces were determined using capacitive pressure sensors inserted into the medial and lateral knee joint compartments. Motion of femur and tibia were assessed by a motion analysis system. Externally applied frontal plane moments altered the intraarticular force distribution and caused shifts in the centre of pressure up to 4.3mm in all knee joints. Larger redistribution effects were found in higher knee flexion angles. The medial compartment load increased during the flexion in all investigated knee joints. The application of counteracting frontal plane moments for the conservative treatment of osteoarthritis can redistribute the forces and might slow down the progression of the disease. The findings of this study offer novel insights to guide the development and optimization of mechanical aids for the treatment of osteoarthritic knees. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Orbit Alignment in Triple Stars

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2017-08-01

    The statistics of the angle Φ between orbital angular momenta in hierarchical triple systems with known inner visual or astrometric orbits are studied. A correlation between apparent revolution directions proves the partial orbit alignment known from earlier works. The alignment is strong in triples with outer projected separation less than ∼50 au, where the average Φ is about 20^\\circ . In contrast, outer orbits wider than 1000 au are not aligned with the inner orbits. It is established that the orbit alignment decreases with the increasing mass of the primary component. The average eccentricity of inner orbits in well-aligned triples is smaller than in randomly aligned ones. These findings highlight the role of dissipative interactions with gas in defining the orbital architecture of low-mass triple systems. On the other hand, chaotic dynamics apparently played a role in shaping more massive hierarchies. The analysis of projected configurations and triples with known inner and outer orbits indicates that the distribution of Φ is likely bimodal, where 80% of triples have {{Φ }}< 70^\\circ and the remaining ones are randomly aligned.

  10. Effectuation of adaptive stability and postural alignment strategies are decreased by alcohol intoxication.

    PubMed

    Hafström, A; Modig, F; Magnusson, M; Fransson, P A

    2014-06-01

    Human stability control is a complex process comprising contributions from several partly independent mechanisms such as coordination, feedback and feed-forward control, and adaptation. Acute alcohol intoxication impairs these functions and is recognized as a major contributor to fall traumas. The study aimed to investigate how alcohol intoxication at .06% and .10% blood alcohol concentration (BAC) affected the movement spans and control of posture alignment. The angular positions of the head, shoulder, hip and knees relative to the ankles were measured with a 3D motion analysis system in 25 healthy adults during standing with eyes open or closed and with or without vibratory balance perturbations. Alcohol intoxication significantly increased the movement spans of the head, shoulders, hip and knees in anteroposterior and lateral directions during quiet stance (p < or = .047 and p < or = .003) and balance perturbations (p<.001, both directions). Alcohol intoxication also decreased the ability to reduce the movement spans through adaptation in both anteroposterior (p < or = .011) and lateral (p < or = .004) directions. When sober and submitted to balance perturbations, the subjects aligned the head, shoulders, hip and knees more forward relative to the ankle joint (p < .001), hence adopting a more resilient posture increasing the safety margin for backward falls. Alcohol intoxication significantly delayed this forward realignment (p < or = .022). Alcohol intoxication did not cause any significant posture realignment in the lateral direction. Thus, initiation of adaptive posture realignments to alcohol or other disruptions might be context dependent and associated with reaching a certain level of stability threats.

  11. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  12. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  13. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  14. Covariance of maximum likelihood evolutionary distances between sequences aligned pairwise.

    PubMed

    Dessimoz, Christophe; Gil, Manuel

    2008-06-23

    The estimation of a distance between two biological sequences is a fundamental process in molecular evolution. It is usually performed by maximum likelihood (ML) on characters aligned either pairwise or jointly in a multiple sequence alignment (MSA). Estimators for the covariance of pairs from an MSA are known, but we are not aware of any solution for cases of pairs aligned independently. In large-scale analyses, it may be too costly to compute MSAs every time distances must be compared, and therefore a covariance estimator for distances estimated from pairs aligned independently is desirable. Knowledge of covariances improves any process that compares or combines distances, such as in generalized least-squares phylogenetic tree building, orthology inference, or lateral gene transfer detection. In this paper, we introduce an estimator for the covariance of distances from sequences aligned pairwise. Its performance is analyzed through extensive Monte Carlo simulations, and compared to the well-known variance estimator of ML distances. Our covariance estimator can be used together with the ML variance estimator to form covariance matrices. The estimator performs similarly to the ML variance estimator. In particular, it shows no sign of bias when sequence divergence is below 150 PAM units (i.e. above ~29% expected sequence identity). Above that distance, the covariances tend to be underestimated, but then ML variances are also underestimated.

  15. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  16. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  17. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  18. Visual attitude orientation and alignment system

    NASA Technical Reports Server (NTRS)

    Beam, R. A.; Morris, D. B.

    1967-01-01

    Active vehicle optical alignment aid and a passive vehicle three-dimensional alignment target ensure proper orientation and alignment plus control of the closure range and rate between two bodies, one in controlled motion and one at rest.

  19. Protein structure alignment beyond spatial proximity.

    PubMed

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures.

  20. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  1. ASCONA: Rapid Detection and Alignment of Protein Binding Site Conformations.

    PubMed

    Bietz, Stefan; Rarey, Matthias

    2015-08-24

    The usage of conformational ensembles constitutes a widespread technique for the consideration of protein flexibility in computational biology. When experimental structures are applied for this purpose, alignment techniques are usually required in dealing with structural deviations and annotation inconsistencies. Moreover, many application scenarios focus on protein ligand binding sites. Here, we introduce our new alignment algorithm ASCONA that has been specially geared to the problem of aligning multiple conformations of sequentially similar binding sites. Intense efforts have been directed to an accurate detection of highly flexible backbone deviations, multiple binding site matches within a single structure, and a reliable, but at the same time highly efficient, search algorithm. In contrast, most available alignment methods rather target other issues, e.g., the global alignment of distantly related proteins that share structurally conserved regions. For conformational ensembles, this might not only result in an overhead of computation time but could also affect the achieved accuracy, especially for more complicated cases as highly flexible proteins. ASCONA was evaluated on a test set containing 1107 structures of 65 diverse proteins. In all cases, ASCONA was able to correctly align the binding site at an average alignment computation time of 4 ms per target. Furthermore, no false positive matches were observed when searching the same query sites in the structures of other proteins. ASCONA proved to cope with highly deviating backbone structures and to tolerate structural gaps and moderate mutation rates. ASCONA is available free of charge for academic use at http://www.zbh.uni-hamburg.de/ascona .

  2. Fixture for aligning motor assembly

    SciTech Connect

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  3. Stellar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    Fortuitous stellar alignments can be fitted to structural orientations with relative ease by the unwary. Nonetheless, cautious approaches taking into account a broader range of cultural evidence, as well as paying due attention to potential methodological pitfalls, have been successful in identifying credible stellar alignments—and constructing plausible assessments of their cultural significance—in a variety of circumstances. These range from single instances of alignments upon particular asterisms where the corroborating historical or ethnographic evidence is strong to repeated instances of oriented structures with only limited independent cultural information but where systematic, data-driven approaches can be productive. In the majority of cases, the identification and interpretation of putative stellar alignments relates to groups of similar monuments or complex single sites and involves a balance between systematic studies of the alignments themselves, backed up by statistical analysis where appropriate, and the consideration of a range of contextual evidence, either derived from the archaeological record alone or from other relevant sources.

  4. RF Jitter Modulation Alignment Sensing

    NASA Astrophysics Data System (ADS)

    Ortega, L. F.; Fulda, P.; Diaz-Ortiz, M.; Perez Sanchez, G.; Ciani, G.; Voss, D.; Mueller, G.; Tanner, D. B.

    2017-01-01

    We will present the numerical and experimental results of a new alignment sensing scheme which can reduce the complexity of alignment sensing systems currently used, while maintaining the same shot noise limited sensitivity. This scheme relies on the ability of electro-optic beam deflectors to create angular modulation sidebands in radio frequency, and needs only a single-element photodiode and IQ demodulation to generate error signals for tilt and translation degrees of freedom in one dimension. It distances itself from current techniques by eliminating the need for beam centering servo systems, quadrant photodetectors and Gouy phase telescopes. RF Jitter alignment sensing can be used to reduce the complexity in the alignment systems of many laser optical experiments, including LIGO and the ALPS experiment.

  5. Webb Instrument Undergoes Alignment Testing

    NASA Image and Video Library

    2011-08-18

    The Mid-Infrared Instrument, a component of NASA James Webb Space Telescope, underwent alignment testing at the Science and Technology Facilities Council Rutherford Appleton Laboratory Space in Oxfordshire, England.

  6. Sagittal alignment of cervical spine in adult idiopathic scoliosis.

    PubMed

    Aykac, Bilal; Ayhan, Selim; Yuksel, Selcen; Guler, Umit Ozgur; Pellise, Ferran; Alanay, Ahmet; Perez-Grueso, Francisco Javier Sanchez; Acaroglu, Emre

    2015-06-01

    likely a component of the global sagittal alignment strongly affected by thoracic kyphosis, and most probably does not affect HRQOL by itself.

  7. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  8. National Ignition Facility system alignment.

    PubMed

    Burkhart, S C; Bliss, E; Di Nicola, P; Kalantar, D; Lowe-Webb, R; McCarville, T; Nelson, D; Salmon, T; Schindler, T; Villanueva, J; Wilhelmsen, K

    2011-03-10

    The National Ignition Facility (NIF) is the world's largest optical instrument, comprising 192 37 cm square beams, each generating up to 9.6 kJ of 351 nm laser light in a 20 ns beam precisely tailored in time and spectrum. The Facility houses a massive (10 m diameter) target chamber within which the beams converge onto an ∼1 cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5 m×2 m×1 m) line-replaceable optics assemblies to within ±1 mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10 min and alignment to target chamber center within 44 min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50 μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.

  9. Joint interaction with embedded concretions: joint loading configurations inferred from propagation paths

    NASA Astrophysics Data System (ADS)

    McConaughy, David T.; Engelder, Terry

    1999-11-01

    postulated for the subsequent Alleghanian joints. The traces of the systematic ENE joints align on opposite sides of concretions, rather than curving toward the concretion as predicted by two-dimensional models of the fluid load. Co-planar traces are indicative of large, planar joints propagating in-plane around the concretion, making it energetically inefficient for the crack front to curve as it enters the local stress perturbation near the concretion. A fluid load for the systematic ENE joints came from high pore pressure during the pre-Alleghanian stages of burial of the Devonian Catskill delta complex.

  10. Binocular collimation vs conditional alignment

    NASA Astrophysics Data System (ADS)

    Cook, William J.

    2012-10-01

    As binocular enthusiasts share their passion, topics related to collimation abound. Typically, we find how observers, armed only with a jeweler's screwdriver, can "perfectly collimate" his or her binocular, make it "spot on," or other verbiage of similar connotation. Unfortunately, what most are addressing is a form of pseudo-collimation I have referred to since the mid-1970s as "Conditional Alignment." Ignoring the importance of the mechanical axis (hinge) in the alignment process, this "condition," while having the potential to make alignment serviceable, or even outstanding—within a small range of IPD (Interpupillary Distance) settings relative to the user's spatial accommodation (the ability to accept small errors in parallelism of the optical axes)—may take the instrument farther from the 3-axis collimation conscientious manufacturers seek to implement. Becoming more optically savvy—and especially with so many mechanically inferior binoculars entering the marketplace— the consumer contemplating self-repair and alignment has a need to understand the difference between clinical, 3-axis "collimation" (meaning both optical axes are parallel with the axis of the hinge) and "conditional alignment," as differentiated in this paper. Furthermore, I believe there has been a long-standing need for the term "Conditional Alignment," or some equivalent, to be accepted as part of the vernacular of those who use binoculars extensively, whether for professional or recreational activities. Achieving that acceptance is the aim of this paper.

  11. Projection-Based Volume Alignment

    PubMed Central

    Yu, Lingbo; Snapp, Robert R.; Ruiz, Teresa; Radermacher, Michael

    2013-01-01

    When heterogeneous samples of macromolecular assemblies are being examined by 3D electron microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of individual particles can be acquired from tomography, or volumes of multiple 2D classes can be obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to represent the reference volume and align them to a second volume. Projection alignment is achieved by maximizing the cross-correlation function with respect to rotation and translation parameters. If data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-noise ratios using modeled noise and with different percentages of missing data using a cryo-EM dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica, followed by classification and averaging. PMID:23410725

  12. Calibration of shaft alignment instruments

    NASA Astrophysics Data System (ADS)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  13. Joints in deployable space truss structures

    NASA Technical Reports Server (NTRS)

    Rhodes, M.

    1988-01-01

    Since the response of deployable structural concepts being considered for the Large Deployable Reflector (LDR) backup structure will be dominated by the response of joints, the joint characteristics are significant. An overview is given of the research activities at LaRC on the static behavior of joints for deployable space truss structures. Since a pin-clevis-type joint will be utilized in deployable structures, an experimental research program to characterize the joint parameters which affect stiffness was conducted. An experimental research program was conducted on a second type of joint, referred to as a near-center latch joint. It was used in the center of members on the deployable truss structure for the Control of Flexible Structures (COFS) flight experiment. The test results of the near-center latch joint and the member with the joints indicated that the stiffness of the near-center joint is linear and stiffer than the stiffness of the total member, and that non-linearities in the stiffness characteristics of the total member were due to bending introduced at the ends of the member. The resulting data indicates that stiff linear folding joints can be designed and that bending load paths should be avoided whenever possible. In summary, for deployable structures, special attention to the joint and the structure design is required to minimize the undesirable structural non-linearities.

  14. Reduced oxygen cost of running is related to alignment of the resultant GRF and leg axis vector: A pilot study.

    PubMed

    Moore, I S; Jones, A M; Dixon, S J

    2016-07-01

    This pilot study investigated whether a 10-week running program (10wkRP), which reduced the oxygen cost of running, affected resultant ground reaction force (GRF), leg axis alignment, joint moment characteristics, and gear ratios. Ten novice, female runners completed a 10wkRP. Running kinematics and kinetics, in addition to oxygen consumption ( V ˙ O 2 ) during steady-state running, were recorded pre- and post-10wkRP. V ˙ O 2 decreased (8%) from pre-10wkRP to post-10wkRP. There was a better alignment of the resultant GRF and leg axis at peak propulsion post-10wkRP compared with pre-10wkRP (10.8 ± 4.9 vs 1.6 ± 1.2°), as the resultant GRF vector was applied 7 ± 0.6° (P = 0.008) more horizontally. There were shorter external ankle moment arms (24%) and smaller knee extensor moments (23%) at peak braking post-10wkRP. The change in V ˙ O 2 was associated with the change in alignment of the resultant GRF and leg axis (rs  = 0.88, P = 0.003). As runners became more economical, they exhibited a more aligned resultant GRF vector and leg axis at peak propulsion. This appears to be a self-optimization strategy that may improve performance. Additionally, changes to external ankle moment arms indicated beneficial low gear ratios were achieved at the time of peak braking force.

  15. Cavity alignment using fringe scanning

    NASA Astrophysics Data System (ADS)

    Sinkunaite, Laura Paulina; Kawabe, Keita; Landry, Michael

    2017-01-01

    LIGO employs two 4-km long Fabry-Pérot arm cavities, which need to be aligned in order for an interferometer to be locked on a TEM00 mode. Once the cavity is locked, alignment signals can be derived from wave-front sensors which measure the TEM01 mode content. However, the alignment state is not always good enough for locking on TEM00. Even when this is the case, the alignment can be evaluated using a free swinging cavity, that shows flashes when higher-order modes become resonant. By moving test masses, small changes are made to the mirror orientation, and hence the TEM00 mode can be optimized iteratively. Currently, this is a manual procedure, and thus it is very time-consuming. Therefore, this project is aimed to study another possible way to lock the cavity on the TEM00 mode. Misalignment information can also be extracted from the power of the higher-order modes transmitted through the cavity. This talk will present an algorithm for this alternative and faster way to derive the alignment state of the arm cavities. Supported by APS FIP, NSF, and Caltech SFP.

  16. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  17. Self-Aligning Optical Measurement Systems

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1992-01-01

    The paper discusses how to teach a system of neural networks to respond to the alignment clues used by a human operator in performing routine, initial alignments. A paradigm is proposed for automating the alignment of the components of optical measurement systems. The paradigm which was tested on a spatial filter has proved to be successful for optical alignment.

  18. A Nonlinear Observer for Gyro Alignment Estimation

    NASA Technical Reports Server (NTRS)

    Thienel, J.; Sanner, R. M.

    2003-01-01

    A nonlinear observer for gyro alignment estimation is presented. The observer is composed of two error terms, an attitude error and an alignment error. The observer is globally stable with exponential convergence of the attitude errors. The gyro alignment estimate converges to the true alignment when the system is completely observable.

  19. Photosensitive Polymers for Liquid Crystal Alignment

    NASA Astrophysics Data System (ADS)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.; Muravsky, A. A.; Murauski, A. A.

    The peculiarities of alignment of liquid crystal (LC) materials by the layers of photocrosslinkable polymers with side benzaldehyde groups are considered. The investigation of mechanism of photostimulated alignment by rubbed benzaldehyde layer is performed. The methods of creation of multidomain aligning layers on the basis of photostimulated rubbing alignment are described.

  20. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  1. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  2. Temporomandibular Joint Disorders and Orofacial Pain.

    PubMed

    Ahmad, Mansur; Schiffman, Eric L

    2016-01-01

    Temporomandibular disorders (TMD) affect 5% to 12% of the United States population. This article discusses common conditions related to temporomandibular joints, including disc displacements, inflammatory disturbances, loose joint bodies, traumatic disturbances, and developmental conditions. Also addressed are the appropriate imaging modalities and diagnostic criteria for TMD.

  3. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  4. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  5. SQUINT: a multiple alignment program and editor.

    PubMed

    Goode, Matthew G; Rodrigo, Allen G

    2007-06-15

    SQUINT is a sequence alignment tool, and combines both automated progressive sequence alignment with facilities for manual editing. The program imports nucleotide or amino acid sequence multiple alignment files in standard formats, and permits users to view two translations of the same multiple alignment simultaneously. Edits in one view are instantaneously reflected in the other, and the scoring cost of the changes are shown in real-time. Progressive multiple alignments, using a variety of alignment parameters, can be performed on any block of sequences, including blocks embedded in the existing alignment. The software is freely available for download at http://www.cebl.auckland.ac.nz

  6. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  7. An introduction to the Lagan alignment toolkit.

    PubMed

    Brudno, Michael

    2007-01-01

    The Lagan Toolkit is a software package for comparison of genomic sequences. It includes the CHAOS local alignment program, LAGAN global alignment program for two, or more sequences and Shuffle-LAGAN, a "glocal" alignment method that handles genomic rearrangements in a global alignment framework. The alignment programs included in the Lagan Toolkit have been widely used to compare genomes of many organisms, from bacteria to large mammalian genomes. This chapter provides an overview of the algorithms used by the LAGAN programs to construct genomic alignments, explains how to build alignments using either the standalone program or the web server, and discusses some of the common pitfalls users encounter when using the toolkit.

  8. Multiple sequence alignment with hierarchical clustering.

    PubMed Central

    Corpet, F

    1988-01-01

    An algorithm is presented for the multiple alignment of sequences, either proteins or nucleic acids, that is both accurate and easy to use on microcomputers. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, a hierarchical clustering of the sequences is performed using the matrix of the pairwise alignment scores. The closest sequences are aligned creating groups of aligned sequences. Then close groups are aligned until all sequences are aligned in one group. The pairwise alignments included in the multiple alignment form a new matrix that is used to produce a hierarchical clustering. If it is different from the first one, iteration of the process can be performed. The method is illustrated by an example: a global alignment of 39 sequences of cytochrome c. PMID:2849754

  9. Joint Program Management Handbook

    DTIC Science & Technology

    1994-12-01

    program examples include the Worldwide Military Command and Control System (WWMCCS), Joint Stand-Off Weapon (JSOW), V22 Osprey , the Joint...MANAGEMENT HANDBOOK LIST OF FIGURES 1-1 DEFINITION OF JOINT POTENTIAL DESIGNATOR . .1-3 2-1 JOINT DOD ACQUISITION AUTHORITY CHAIN (ACAT ID PROGRAMS...INTRODUCTION TO JOINT PROGRAM MANAGEMENT This haIKlimk is designed to help curient and future joint program personnel. It contains advice that

  10. Mechanism of cell alignment in groups of Myxococcus xanthus bacteria

    NASA Astrophysics Data System (ADS)

    Balgam, Rajesh; Igoshin, Oleg

    2015-03-01

    Myxococcus xanthus is a model for studying self-organization in bacteria. These flexible cylindrical bacteria move along. In groups, M. xanthus cells align themselves into dynamic cell clusters but the mechanism underlying their formation is unknown. It has been shown that steric interactions can cause alignment in self-propelled hard rods but it is not clear how flexibility and reversals affect the alignment and cluster formation. We have investigated cell alignment process using our biophysical model of M. xanthus cell in an agent-based simulation framework under realistic cell flexibility values. We observed that flexible model cells can form aligned cell clusters when reversals are suppressed but these clusters disappeared when reversals frequency becomes similar to the observed value. However, M. xanthus cells follow slime (polysaccharide gel like material) trails left by other cells and we show that implementing this into our model rescues cell clustering for reversing cells. Our results show that slime following along with periodic cell reversals act as positive feedback to reinforce existing slime trails and recruit more cells. Furthermore, we have observed that mechanical cell alignment combined with slime following is sufficient to explain the distinct clustering patterns of reversing and non-reversing cells as observed in recent experiments. This work is supported by NSF MCB 0845919 and 1411780.

  11. Fabrication of aligned poly (vinyl alcohol) nanofibers by electrospinning.

    PubMed

    Chuangchote, Surawut; Supaphol, Pitt

    2006-01-01

    Electrospinning has become a versatile tool for fabricating nanofibers from materials of diverse origins. Normally, mats of randomly-aligned fibers were obtained. A number of techniques have been proposed to arrive at uniaxially-aligned fibers. This work reports a new technique, i.e., dual vertical wire technique, for fabrication of uniaxially-aligned fibers. This technique utilized two stainless steel wires that were vertically set in a parallel manner between a charged needle and a grounded collector plate. This technique allowed simultaneous collection of aligned fibers (between the parallel vertical wires) and a randomly-aligned fiber mat (on the collector plate). Application of the technique on poly(vinyl alcohol) (PVA) to prepare uniaxially-aligned fibers was found to be successful at short collection times. Unexpected formation of a large fiber tow consisting of individual as-spun nanofibers that were bound into a bundle was observed at long collection times. Morphological appearance and size of the fiber tow was affected by the change in the distance between the two vertical wire electrodes, while the average diameter of the individual fibers was not (i.e., about 340 to 350 nm). Lastly, mechanical properties and thermal behavior of the fiber tow were also investigated.

  12. Identifying and Aligning Expectations in a Mentoring Relationship

    PubMed Central

    Huskins, W. Charles; Silet, Karin; Weber‐Main, Anne Marie; Begg, Melissa D.; Fowler, Jr, Vance G.; Hamilton, John; Fleming, Michael

    2011-01-01

    Abstract The mentoring relationship between a scholar and their primary mentor is a core feature of research training. Anecdotal evidence suggests this relationship is adversely affected when scholar and mentor expectations are not aligned. We examined three questions: (1) What is the value in assuring that the expectations of scholars and mentors are mutually identified and aligned? (2) What types of programmatic interventions facilitate this process? (3) What types of expectations are important to identify and align? We addressed these questions through a systematic literature review, focus group interviews of mentors and scholars, a survey of Clinical and Translational Science Award (CTSA) KL2 program directors, and review of formal programmatic mechanisms used by KL2 programs. We found broad support for the importance of identifying and aligning the expectations of scholars and mentors and evidence that mentoring contracts, agreements, and training programs facilitate this process. These tools focus on aligning expectations with respect to the scholar’s research, education, professional development and career advancement as well as support, communication, and personal conduct and interpersonal relations. Research is needed to assess test the efficacy of formal alignment activities. Clin Trans Sci 2011; Volume 4: 439–447 PMID:22212226

  13. Identifying and aligning expectations in a mentoring relationship.

    PubMed

    Huskins, W Charles; Silet, Karin; Weber-Main, Anne Marie; Begg, Melissa D; Fowler, Vance G; Hamilton, John; Fleming, Michael

    2011-12-01

    The mentoring relationship between a scholar and their primary mentor is a core feature of research training. Anecdotal evidence suggests this relationship is adversely affected when scholar and mentor expectations are not aligned. We examined three questions: (1) What is the value in assuring that the expectations of scholars and mentors are mutually identified and aligned? (2) What types of programmatic interventions facilitate this process? (3) What types of expectations are important to identify and align? We addressed these questions through a systematic literature review, focus group interviews of mentors and scholars, a survey of Clinical and Translational Science Award (CTSA) KL2 program directors, and review of formal programmatic mechanisms used by KL2 programs. We found broad support for the importance of identifying and aligning the expectations of scholars and mentors and evidence that mentoring contracts, agreements, and training programs facilitate this process. These tools focus on aligning expectations with respect to the scholar's research, education, professional development and career advancement as well as support, communication, and personal conduct and interpersonal relations. Research is needed to assess test the efficacy of formal alignment activities. © 2011 Wiley Periodicals, Inc.

  14. Leg and Joint Stiffness in Children with Spastic Diplegic Cerebral Palsy during Level Walking

    PubMed Central

    Wang, Ting-Ming; Huang, Hsing-Po; Li, Jia-Da; Hong, Shih-Wun; Lo, Wei-Ching; Lu, Tung-Wu

    2015-01-01

    Individual joint deviations are often identified in the analysis of cerebral palsy (CP) gait. However, knowledge is limited as to how these deviations affect the control of the locomotor system as a whole when striving to meet the demands of walking. The current study aimed to bridge the gap by describing the control of the locomotor system in children with diplegic CP in terms of their leg stiffness, both skeletal and muscular components, and associated joint stiffness during gait. Twelve children with spastic diplegia CP and 12 healthy controls walked at a self-selected pace in a gait laboratory while their kinematic and forceplate data were measured and analyzed during loading response, mid-stance, terminal stance and pre-swing. For calculating the leg stiffness, each of the lower limbs was modeled as a non-linear spring, connecting the hip joint center and the corresponding center of pressure, with varying stiffness that was calculated as the slope (gradient) of the axial force vs. the deformation curve. The leg stiffness was further decomposed into skeletal and muscular components considering the alignment of the lower limb. The ankle, knee and hip of the limb were modeled as revolute joints with torsional springs whose stiffness was calculated as the slope of the moment vs. the angle curve of the joint. Independent t-tests were performed for between-group comparisons of all the variables. The CP group significantly decreased the leg stiffness but increased the joint stiffness during stance phase, except during terminal stance where the leg stiffness was increased. They appeared to rely more on muscular contributions to achieve the required leg stiffness, increasing the muscular demands in maintaining the body posture against collapse. Leg stiffness plays a critical role in modulating the kinematics and kinetics of the locomotor system during gait in the diplegic CP. PMID:26629700

  15. Motor hysteresis in a sequential grasping and pointing task is absent in task-critical joints.

    PubMed

    Schütz, Christoph; Weigelt, Matthias; Schack, Thomas

    2017-03-01

    In a prior study (Schütz et al. in Exp Brain Res 2016. doi: 10.1007/s00221-016-4608-6 ), we demonstrated that the cognitive cost of motor planning did not differ in a vertical pointing and grasping task. It was unclear whether the similar cost implied that both tasks required the same number of independent degrees of freedom (IDOFs) or that the number of IDOFs did not affect motor planning. To differentiate between both cases, a reanalysis of the prior data was conducted. The number of IDOFs in the pointing and grasping tasks was computed by factor analysis. In both tasks, two IDOFs were used, which was the minimum number required for position control. This indicates that hand alignment in the grasping task did not require an additional IDOF. No conclusions regarding the link between the cognitive cost of motor planning and the number of IDOFs could be drawn. A subset of task-critical joint angles was not affected by motor hysteresis. This indicates that a joint's susceptibility to motor hysteresis depends on its relevance to the task goal. In task-critical joints, planning cost minimization by motor plan reuse is suppressed in favor of the task goal.

  16. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  17. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  18. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  19. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  20. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  1. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  2. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  3. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  4. Special test equipment and fixturing for MSAT reflector assembly alignment

    NASA Technical Reports Server (NTRS)

    Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.

    1994-01-01

    The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.

  5. Enforcing Convexity for Improved Alignment with Constrained Local Models

    PubMed Central

    Wang, Yang; Lucey, Simon; Cohn, Jeffrey F.

    2010-01-01

    Constrained local models (CLMs) have recently demonstrated good performance in non-rigid object alignment/tracking in comparison to leading holistic approaches (e.g., AAMs). A major problem hindering the development of CLMs further, for non-rigid object alignment/tracking, is how to jointly optimize the global warp update across all local search responses. Previous methods have either used general purpose optimizers (e.g., simplex methods) or graph based optimization techniques. Unfortunately, problems exist with both these approaches when applied to CLMs. In this paper, we propose a new approach for optimizing the global warp update in an efficient manner by enforcing convexity at each local patch response surface. Furthermore, we show that the classic Lucas-Kanade approach to gradient descent image alignment can be viewed as a special case of our proposed framework. Finally, we demonstrate that our approach receives improved performance for the task of non-rigid face alignment/tracking on the MultiPIE database and the UNBC-McMaster archive. PMID:20622926

  6. Rheumatoid Arthritis: Can It Affect the Lungs?

    MedlinePlus

    Rheumatoid arthritis: Can it affect the lungs? Can rheumatoid arthritis affect your lungs? Answers from April Chang-Miller, M.D. Although rheumatoid arthritis primarily affects joints, it sometimes causes lung disease ...

  7. A Stochastic Evolutionary Model for Protein Structure Alignment and Phylogeny

    PubMed Central

    Challis, Christopher J.; Schmidler, Scott C.

    2012-01-01

    We present a stochastic process model for the joint evolution of protein primary and tertiary structure, suitable for use in alignment and estimation of phylogeny. Indels arise from a classic Links model, and mutations follow a standard substitution matrix, whereas backbone atoms diffuse in three-dimensional space according to an Ornstein–Uhlenbeck process. The model allows for simultaneous estimation of evolutionary distances, indel rates, structural drift rates, and alignments, while fully accounting for uncertainty. The inclusion of structural information enables phylogenetic inference on time scales not previously attainable with sequence evolution models. The model also provides a tool for testing evolutionary hypotheses and improving our understanding of protein structural evolution. PMID:22723302

  8. Alignment measurements using one, two or three photons

    NASA Astrophysics Data System (ADS)

    Docker, M. P.

    1988-10-01

    The classical and quantum mechanical theory needed to extract the alignment parameters of a molecular angular momentum distribution from one-, two- and three-photon measurements is discussed. The work of Case, McClelland and Herschbach using the time evolution of the state multipoles of a joint molecule/photon density matrix is extended to include non-resonant multiphoton transitions and new results applicable to 2+1 laser-induced fluorescence are presented. A number of experimentally useful special cases of the one-, two- and three-photon results are derived (including the effect of unresolved emission and of parallel polarised photons), and the high- Ji limiting classical coefficients for population and alignment terms are tabulated for a range of geometries.

  9. ALIGN_MTX--an optimal pairwise textual sequence alignment program, adapted for using in sequence-structure alignment.

    PubMed

    Vishnepolsky, Boris; Pirtskhalava, Malak

    2009-06-01

    The presented program ALIGN_MTX makes alignment of two textual sequences with an opportunity to use any several characters for the designation of sequence elements and arbitrary user substitution matrices. It can be used not only for the alignment of amino acid and nucleotide sequences but also for sequence-structure alignment used in threading, amino acid sequence alignment, using preliminary known PSSM matrix, and in other cases when alignment of biological or non-biological textual sequences is required. This distinguishes it from the majority of similar alignment programs that make, as a rule, alignment only of amino acid or nucleotide sequences represented as a sequence of single alphabetic characters. ALIGN_MTX is presented as downloadable zip archive at http://www.imbbp.org/software/ALIGN_MTX/ and available for free use. As application of using the program, the results of comparison of different types of substitution matrix for alignment quality in distantly related protein pair sets were presented. Threading matrix SORDIS, based on side-chain orientation in relation to hydrophobic core centers with evolutionary change-based substitution matrix BLOSUM and using multiple sequence alignment information position-specific score matrices (PSSM) were taken for test alignment accuracy. The best performance shows PSSM matrix, but in the reduced set with lower sequence similarity threading matrix SORDIS shows the same performance and it was shown that combined potential with SORDIS and PSSM can improve alignment quality in evolutionary distantly related protein pairs.

  10. Effect of Alignment on L2 Written Production

    ERIC Educational Resources Information Center

    Wang, Chuming; Wang, Min

    2015-01-01

    This article aims to uncover how L2 writing is affected by alignment, a socio-cognitive process involving dynamic coordination and adaptation. For this, two studies were conducted. Study 1 required two groups of 24 learners of English as a foreign language (EFL) to continue in English two stories with their endings removed, both of which had a…

  11. Effect of Alignment on L2 Written Production

    ERIC Educational Resources Information Center

    Wang, Chuming; Wang, Min

    2015-01-01

    This article aims to uncover how L2 writing is affected by alignment, a socio-cognitive process involving dynamic coordination and adaptation. For this, two studies were conducted. Study 1 required two groups of 24 learners of English as a foreign language (EFL) to continue in English two stories with their endings removed, both of which had a…

  12. Improving pairwise sequence alignment accuracy using near-optimal protein sequence alignments

    PubMed Central

    2010-01-01

    Background While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate. Results We compared near-optimal protein sequence alignments produced by the Zuker algorithm and a set of probabilistic alignments produced by the probA program with structural alignments produced by four different structure alignment algorithms. There is significant overlap between the solution spaces of structural alignments and both the near-optimal sequence alignments produced by commonly used scoring parameters for sequences that share significant sequence similarity (E-values < 10-5) and the ensemble of probA alignments. We constructed a logistic regression model incorporating three input variables derived from sets of near-optimal alignments: robustness, edge frequency, and maximum bits-per-position. A ROC analysis shows that this model more accurately classifies amino acid pairs (edges in the alignment path graph) according to the likelihood of appearance in structural alignments than the robustness score alone. We investigated various trimming protocols for removing incorrect edges from the optimal sequence alignment; the most effective protocol is to remove matches from the semi-global optimal alignment that are outside the boundaries of the local alignment, although trimming according to the model-generated probabilities achieves a similar level of improvement. The model can also be used to

  13. Strategic Planning to Conduct Joint Force Network Operations: A Content Analysis of NETOPS Organizations Strategic Plans

    DTIC Science & Technology

    2007-03-01

    information dominance , Joint Network Operations (NETOPS) organizations need to be strategically aligned. As result, to enhance the capabilities-based effects of NETOPS and reduce our NETOP infrastructures susceptibility to compromise. Once the key organizations were identified, their strategic plans were analyzed using a structured content analysis framework. The results illustrated that the strategic plans were aligned with the community of interests tasking to conduct NETOPS. Further research is required into the strategic alignment beyond the strategic

  14. A statistical finite element model of the knee accounting for shape and alignment variability.

    PubMed

    Rao, Chandreshwar; Fitzpatrick, Clare K; Rullkoetter, Paul J; Maletsky, Lorin P; Kim, Raymond H; Laz, Peter J

    2013-10-01

    By characterizing anatomical differences in size and shape between subjects, statistical shape models enable population-based evaluations in biomechanics. Statistical models have largely focused on individual bones with application to implant sizing, bone fracture and osteoarthritis; however, in joint mechanics applications, the statistical models must consider the geometry of multiple structures of a joint and their relative position. Accordingly, the objectives of this study were to develop a statistical shape and alignment modeling (SSAM) approach to characterize the intersubject variability in bone morphology and alignment for the structures of the knee, to demonstrate the statistical model's ability to describe variability in a training set and to generate realistic instances for use in finite element evaluation of joint mechanics. The statistical model included representations of the bone and cartilage for the femur, tibia and patella from magnetic resonance images and relative alignment of the structures at a known, loaded position in an experimental knee simulator for a training set of 20 specimens. The statistical model described relationships or modes of variation in shape and relative alignment of the knee structures. By generating new 'virtual subjects' with physiologically realistic knee anatomy, the modeling approach can efficiently perform investigations into joint mechanics and implant design which benefit from population-based considerations.

  15. Self-aligning spatial filter

    NASA Astrophysics Data System (ADS)

    Haniff, Tariq M.; Hu, Albert K.; Green, Evan D.

    1994-07-01

    In this paper we describe a prototype self-aligning spatial filter (SASF). We present studies of the design and the results of fabrication prior to the final processing step. The SASF consists of an electrostatically actuated platform on which an optical spatial filter (pinhole) has been fabricated. The pinhole is in the center of a four quadrant split-cell photodetector, which serves as the alignment gauge for the system. When a focused beam at the pinhole is aligned, all four detectors sense the same optical current. In future devices, this information from the photodetectors will be fed back to the electrostatic actuation system to push the platform and align the beam. The electrostatic actuators are formed from the parallel walls of vertical side- wall capacitors built between the silicon bulk and the movable platform. Electrical signal paths in the integrated system used diffused interconnects, while the photodetectors are simply reverse-biased p+n diodes. Fabrication techniques are similar to surface micromachining, except that a wafer bonding step is used to create single crystal structures.

  16. Alignment in Second Language Dialogue

    ERIC Educational Resources Information Center

    Costa, Albert; Pickering, Martin; Sorace, Antonella

    2008-01-01

    This paper considers the nature of second language dialogues, involving at least one non-native (L2) speaker. We assume that dialogue is characterised by a process in which interlocutors develop similar mental states to each other (Pickering & Garrod, 2004). We first consider various means in which interlocutors align their mental states, and…

  17. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  18. Aligning Assessments for COSMA Accreditation

    ERIC Educational Resources Information Center

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  19. Tonal Alignment in Irish Dialects

    ERIC Educational Resources Information Center

    Dalton, Martha; Ni Chasaide, Ailbhe

    2005-01-01

    A comparison of the contour alignment of nuclear and initial prenuclear accents was carried out for the Irish dialects of Gaoth Dobhair in Ulster (GD-U) and Cois Fharraige in Connaught (CF-C). This was done across conditions where the number of unstressed syllables following the nuclear and preceding the initial prenuclear accents was varied from…

  20. Aligning Assessments for COSMA Accreditation

    ERIC Educational Resources Information Center

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  1. Tonal Alignment in Irish Dialects

    ERIC Educational Resources Information Center

    Dalton, Martha; Ni Chasaide, Ailbhe

    2005-01-01

    A comparison of the contour alignment of nuclear and initial prenuclear accents was carried out for the Irish dialects of Gaoth Dobhair in Ulster (GD-U) and Cois Fharraige in Connaught (CF-C). This was done across conditions where the number of unstressed syllables following the nuclear and preceding the initial prenuclear accents was varied from…

  2. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  3. Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign

    PubMed Central

    2007-01-01

    Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction

  4. Errors in Shoulder Joint Position Sense Mainly Come from the Glenohumeral Joint.

    PubMed

    Lin, Yin-Liang; Karduna, Andrew

    2017-02-01

    While synchronous movement of the glenohumeral and scapulothoracic joints has been emphasized in previous kinematics studies, most investigations of shoulder joint position sense have treated the shoulder complex as a single joint. The purposes of this study were to investigate the joint position sense errors of the humerothoracic, glenohumeral, and scapulothoracic joints at different elevation angles and to examine whether the errors of the glenohumeral and scapulothoracic joints contribute to the errors of the humerothoracic joint. Fifty-one subjects with healthy shoulders were recruited. Active joint position sense of the humerothoracic, glenohumeral, and scapulothoracic joints was measured at 50°, 70°, and 90° of humerothoracic elevation in the scapular plane. The results showed that while scapulothoracic joint position sense errors were not affected by target angles, there was an angle effect on humerothoracic and glenohumeral errors, with errors decreasing as the target angles approached 90° of elevation. The results of a multiple regression analysis revealed that glenohumeral errors explained most of the variance of the humerothoracic errors and that scapulothoracic errors had a weaker predictive relationship with humerothoracic errors. Therefore, it may be necessary to test scapular joint position sense separately in addition to the assessment of the overall shoulder joint position sense.

  5. Laser-optic instruments improve machinery alignment

    SciTech Connect

    Bloch, H.P.

    1987-10-12

    Laser-optic alignment systems are fast becoming cost-effective devices that improve the accuracy and speed of machinery shaft alignment. Because of the difficulty, if not impossibility, of aligning operating machinery, cold alignment specifications must be determined to compensate for thermal growth so that the shaft alignment remains within tolerances when the machine reaches normal operating temperature. Some methods for accomplishing this are reviewed here. Three years' field experience with laser-optic alignment systems shows that many of these limitations can be eliminated, resulting in a more accurate alignment in less time. Some actual field alignments are given as examples of the improvement achieved by the use of laser equipment, and a procedure is given that shows how the laser-optic system may be used to determine running alignment changes caused by thermal growth.

  6. THE BIOMECHANICAL RESPONSE OF PERSONS WITH TRANSFEMORAL AMPUTATION TO VARIATIONS IN PROSTHETIC KNEE ALIGNMENT DURING LEVEL WALKING

    PubMed Central

    Koehler-McNicholas, Sara R.; Lipschutz, Robert D.; Gard, Steven A.

    2017-01-01

    Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (ANT), subjects significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, subjects also decreased the rate at which they loaded their prosthesis, decreased their step length, increased their trunk flexion, and maintained their limb in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, no significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee-joint control. PMID:28355034

  7. Progressive multiple sequence alignments from triplets

    PubMed Central

    Kruspe, Matthias; Stadler, Peter F

    2007-01-01

    Background The quality of progressive sequence alignments strongly depends on the accuracy of the individual pairwise alignment steps since gaps that are introduced at one step cannot be removed at later aggregation steps. Adjacent insertions and deletions necessarily appear in arbitrary order in pairwise alignments and hence form an unavoidable source of errors. Research Here we present a modified variant of progressive sequence alignments that addresses both issues. Instead of pairwise alignments we use exact dynamic programming to align sequence or profile triples. This avoids a large fractions of the ambiguities arising in pairwise alignments. In the subsequent aggregation steps we follow the logic of the Neighbor-Net algorithm, which constructs a phylogenetic network by step-wisely replacing triples by pairs instead of combining pairs to singletons. To this end the three-way alignments are subdivided into two partial alignments, at which stage all-gap columns are naturally removed. This alleviates the "once a gap, always a gap" problem of progressive alignment procedures. Conclusion The three-way Neighbor-Net based alignment program aln3nn is shown to compare favorably on both protein sequences and nucleic acids sequences to other progressive alignment tools. In the latter case one easily can include scoring terms that consider secondary structure features. Overall, the quality of resulting alignments in general exceeds that of clustalw or other multiple alignments tools even though our software does not included heuristics for context dependent (mis)match scores. PMID:17631683

  8. Tuberculosis joint infections in four domestic cats

    PubMed Central

    Lalor, Stephanie M; Clarke, Stephen; Pink, Jonathan; Parry, Andrew; Scurrell, Emma; Fitzpatrick, Noel; Watson, Fraje; O’Halloran, Conor; Gunn-Moore, Danielle

    2017-01-01

    Case series summary This paper describes the clinical presentation, diagnostic imaging findings and outcome in four cats with confirmed joint-associated tuberculosis. The cats were 2–6 years of age, and immune competent. Three cases had tuberculosis affecting only one joint, whereas one case had at least three joints affected. Two cases were caused by Mycobacterium bovis, and the other two were caused by Mycobacterium microti. Radiological findings included osteolysis, periosteal reaction and associated soft tissue swelling. Two cases were euthanased and two cases responded well to amputation and follow-on antibiotic therapy. Relevance and novel information To our knowledge, this is the first publication of a series of cats with joint-associated tuberculosis. Although tuberculosis is not common, a high degree of suspicion is needed to avoid delayed diagnosis. This case series highlights the importance of considering mycobacterial disease as a differential for joint disease in cats. PMID:28804639

  9. Vacuum Phenomenon of the Sacroiliac Joint: Correlation with Sacropelvic Morphology

    PubMed Central

    Higashino, Kosaku; Morimoto, Masatoshi; Sakai, Toshinori; Yamashita, Kazuta; Abe, Mitusnobu; Nagamachi, Akihiro; Sairyo, Koichi

    2016-01-01

    Study Design A radiologic study of sacropelvic morphology and vacuum phenomenon of sacroiliac joint in subjects unrelated to low back pain. Purpose The aim of this study is to describe the relationship between sacropelvic morphology and vacuum phenomenon of the sacroiliac joint. Overview of Literature Lumbopelvic alignment and sacropelvic morphology are associated with the pathomechanisms of various spinal disorders. The vacuum phenomena of the sacroiliac joint (SJVP) are often observed in clinical practice, but the relationships between these phenomena and sacropelvic morphology have not been investigated. This study examined the prevalence of SJVP in computed tomography (CT) images and the relationship between sacropelvic morphology and SJVP. Methods We analyzed multiplanar CT images of 93 subjects (59 men, 34 women). Pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), and lumbar lordosis (LL) were measured using the three-dimensional reconstruction method. The prevalence of SJVP in multiplanar CT images were reviewed. Roland-Morris Disability Questionnaire (RDQ) scores and the modified Japanese Orthopedic Association (JOA) score, which focuses on subjective symptoms and restriction of activities of daily living, were also obtained from all the subjects. Results Thirty-six of the 93 subjects had SJVP (39%), with marked female predominance (91% women, 8.5% men). Men with SJVP had significantly lower PI than men without SJVP (35.1° vs. 46.3°, p<0.05). There was no correlation between SJVP and the modified JOA or RDQ scores. Conclusions These data suggest that differences in sacropelvic morphology can influence the biomechanical environment and contribute to SJVP in men. Presence of SJVP did not affect JOA or RDQ scores. PMID:27559459

  10. Dynamic Alignment Models for Neural Coding

    PubMed Central

    Kollmorgen, Sepp; Hahnloser, Richard H. R.

    2014-01-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  11. Synovial Lipomatosis of the Glenohumeral Joint

    PubMed Central

    Safran, Ori

    2016-01-01

    Synovial lipomatosis (also known as lipoma arborescens) is a rare and benign lesion affecting synovium-lined cavities. It is characterized by hyperplasia of mature fat tissue in the subsynovial layer. Although the most commonly affected site is the knee joint, rarely additional locations such as tendon sheath and other joints are involved. We present a case of synovial lipomatosis of the glenohumeral joint in a 44-year-old man. The clinical data radiological studies and histopathologic results are described, as well as a review of the current literature. PMID:27563476

  12. Synovial Lipomatosis of the Glenohumeral Joint.

    PubMed

    Beyth, Shaul; Safran, Ori

    2016-01-01

    Synovial lipomatosis (also known as lipoma arborescens) is a rare and benign lesion affecting synovium-lined cavities. It is characterized by hyperplasia of mature fat tissue in the subsynovial layer. Although the most commonly affected site is the knee joint, rarely additional locations such as tendon sheath and other joints are involved. We present a case of synovial lipomatosis of the glenohumeral joint in a 44-year-old man. The clinical data radiological studies and histopathologic results are described, as well as a review of the current literature.

  13. Aligned Layers of Silver Nano-Fibers

    PubMed Central

    Golovin, Andrii B.; Stromer, Jeremy; Kreminska, Liubov

    2012-01-01

    We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics. PMID:28817042

  14. Bokeh mirror alignment for Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Mueller, S. A.; Adam, J.; Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Dmytriiev, A.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Linhoff, L.; Mannheim, K.; Neise, D.; Neronov, A.; Noethe, M.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Walter, R.

    2016-08-01

    Segmented imaging reflectors are a great choice for Imaging Atmospheric Cherenkov Telescopes (IACTs). However, the alignment of the individual mirror facets is challenging. We align a segmented reflector by observing and optimizing its Bokeh function. Bokeh alignment can already be done with very little resources and little preparation time. Further, Bokeh alignment can be done anytime, even during the day. We present a first usage of Bokeh alignment on FACT, a 4m IACT on Canary Island La Palma, Spain and further a first Bokeh alignment test on the CTA MST IACT prototype in Brelin Adlershof.

  15. An efficient method for multiple sequence alignment

    SciTech Connect

    Kim, J.; Pramanik, S.

    1994-12-31

    Multiple sequence alignment has been a useful method in the study of molecular evolution and sequence-structure relationships. This paper presents a new method for multiple sequence alignment based on simulated annealing technique. Dynamic programming has been widely used to find an optimal alignment. However, dynamic programming has several limitations to obtain optimal alignment. It requires long computation time and cannot apply certain types of cost functions. We describe detail mechanisms of simulated annealing for multiple sequence alignment problem. It is shown that simulated annealing can be an effective approach to overcome the limitations of dynamic programming in multiple sequence alignment problem.

  16. Optimized Bolted Joint

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.; Bunin, B. L.; Watts, D. J.

    1986-01-01

    Computer technique aids joint optimization. Load-sharing between fasteners in multirow bolted composite joints computed by nonlinear-analysis computer program. Input to analysis was load-deflection data from 180 specimens tested as part of program to develop technology of structural joints for advanced transport aircraft. Bolt design optimization technique applicable to major joints in composite materials for primary and secondary structures and generally applicable for metal joints as well.

  17. The Poisson alignment reference system implementation at the Advanced Photon Source.

    SciTech Connect

    Feier, I.

    1998-09-21

    The Poisson spot was established using a collimated laser beam from a 3-mW diode laser. It was monitored on a quadrant detector and found to be very sensitive to vibration and air disturbances. Therefore, for future work we strongly recommend a sealed vacuum tube in which the Poisson line may be propagated. A digital single-axis feedback system was employed to generate an straight line reference (SLR) on the X axis. Pointing accuracy was better than 8 {+-} 2 microns at a distance of 5 m. The digital system was found to be quite slow with a maximum bandwidth of 47 {+-} 9 Hz. Slow drifts were easily corrected but any vibration over 5 Hz was not. We recommend an analog proportional-integral-derivative (PID) controller for high bandwidth and smooth operation of the kinematic mirror. Although the Poisson alignment system (PAS) at the Advanced Photon Source is still in its infancy, it already shows great promise as a possible alignment system for the low-energy undulator test line (LEUTL). Since components such as wigglers and quadruples will initially be aligned with respect to each other using conventional means and mounted on some kind of rigid rail, the goal would be to align six to ten such rails over a distance of about 30 m. The PAS could be used to align these rails by mounting a sphere at the joint between two rails. These spheres would need to be in a vacuum pipe to eliminate the refractive effects of air. Each sphere would not be attached to either rail but instead to a flange connecting the vacuum pipes of each rail. Thus the whole line would be made up of straight, rigid segments that could be aligned by moving the joints. Each sphere would have its own detector, allowing the operators to actively monitor the position of each joint and therefore the overall alignment of the system.

  18. Degenerative Joint Diseases and Neuroinflammation.

    PubMed

    Fusco, Mariella; Skaper, Stephen D; Coaccioli, Stefano; Varrassi, Giustino; Paladini, Antonella

    2016-12-31

    Rheumatic and joint diseases, as exemplified by osteoarthritis and rheumatoid arthritis, are among the most widespread painful and disabling pathologies across the globe. Given the continuing rise in life expectancy, their prevalence is destined to grow. Osteoarthritis, a degenerative joint disease, is, in particular, on its way to becoming the fourth leading cause of disability worldwide by 2020, with the rising incidence of obesity in addition to age being important factors. It is estimated that 25% of osteoarthritic individuals are unable to perform daily activities. Accompanying osteoarthritis is rheumatoid arthritis, which is a chronic systemic disease that often causes pain and deformity. At least 50% of those affected are unable to remain gainfully employed within 10 years of disease onset. A growing body of evidence now points to inflammation, locally and more systemically, as a promoter of damage to joints and bones, as well as joint-related functional deficits. The pathogenesis underlying joint diseases remains unclear; however, it is currently believed that cross-talk between cartilage and subchondral bone-and loss of balance between these two structures in joint diseases-is a critical element. This view is amplified by the presence of mast cells, whose dysregulation is associated with alterations of junction structures (cartilage, bone, synovia, matrix, nerve endings, and blood vessels). In addition, persistent activation of mast cells facilitates the development of spinal neuroinflammation mediated through their interaction with microglia. Unfortunately, current treatment strategies for rheumatic and articular disease are symptomatic and do little to limit disease progression. Research now should be directed at therapeutic modalities that target osteoarticular structural elements and thereby delaying disease progression and joint replacement.

  19. Sequence alignment with tandem duplication

    SciTech Connect

    Benson, G.

    1997-12-01

    Algorithm development for comparing and aligning biological sequences has, until recently, been based on the SI model of mutational events which assumes that modification of sequences proceeds through any of the operations of substitution, insertion or deletion (the latter two collectively termed indels). While this model has worked farily well, it has long been apparent that other mutational events occur. In this paper, we introduce a new model, the DSI model which includes another common mutational event, tandem duplication. Tandem duplication produces tandem repeats which are common in DNA, making up perhaps 10% of the human genome. They are responsible for some human diseases and may serve a multitude of functions in DNA regulation and evolution. Using the DSI model, we develop new exact and heuristic algorithms for comparing and aligning DNA sequences when they contain tandem repeats. 30 refs., 3 figs.

  20. Aligned mesoporous architectures and devices.

    SciTech Connect

    Brinker, C. Jeffrey; Lu, Yunfeng

    2011-03-01

    This is the final report for the Presidential Early Career Award for Science and Engineering - PECASE (LDRD projects 93369 and 118841) awarded to Professor Yunfeng Lu (Tulane University and University of California-Los Angeles). During the last decade, mesoporous materials with tunable periodic pores have been synthesized using surfactant liquid crystalline as templates, opening a new avenue for a wide spectrum of applications. However, the applications are somewhat limited by the unfavorabe pore orientation of these materials. Although substantial effort has been devoted to align the pore channels, fabrication of mesoporous materials with perpendicular pore channels remains challenging. This project focused on fabrication of mesoporous materials with perpendicularly aligned pore channels. We demonstrated structures for use in water purification, separation, sensors, templated synthesis, microelectronics, optics, controlled release, and highly selective catalysts.

  1. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  2. Automatic heliostat track alignment method

    SciTech Connect

    Not Available

    1986-01-14

    This patent describes a heliostat alignment method consisting of a number of steps. The first step consists of commanding a sunbeam centroid to a target location to establish a reference position. The next step searches for the actual sunbeam centroid position and determines the sunbeam centroid position error. These actions are followed by the analysis of the sunbeam centroid position error, correlating the sunbeam position error to errors in a heliostat reference system, and changing the heliostat reference system to correct for track misalignment in order to establish a revised heliostat reference system. The final step is changing the track alignment based on the revised heliostat reference system to a new position to correct the track misalignment.

  3. Shuttle onboard IMU alignment methods

    NASA Technical Reports Server (NTRS)

    Henderson, D. M.

    1976-01-01

    The current approach to the shuttle IMU alignment is based solely on the Apollo Deterministic Method. This method is simple, fast, reliable and provides an accurate estimate for the present cluster to mean of 1,950 transformation matrix. If four or more star sightings are available, the application of least squares analysis can be utilized. The least squares method offers the next level of sophistication to the IMU alignment solution. The least squares method studied shows that a more accurate estimate for the misalignment angles is computed, and the IMU drift rates are a free by-product of the analysis. Core storage requirements are considerably more; estimated 20 to 30 times the core required for the Apollo Deterministic Method. The least squares method offers an intermediate solution utilizing as much data that is available without a complete statistical analysis as in Kalman filtering.

  4. Aligning carbon fibers in micro-extruded composite ink

    NASA Astrophysics Data System (ADS)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  5. Selection of Partners for International Joint Degree Programs

    ERIC Educational Resources Information Center

    Brown, Jennifer Lauren

    2013-01-01

    This case study investigates the selection of partner institutions for international joint degree programs at the graduate level utilizing Knight's (2008) challenges to the development of such partnerships which are: Academic Alignment, Mobility and Language concerns, and Recognition and Legitimacy concerns. This study focuses on the criteria used…

  6. The radiology of joint disease. Volume 2. Third edition

    SciTech Connect

    Forrester, D.M.; Brown, J.C.

    1987-01-01

    This book explains the diagnostic criteria and radiologic appearance of joint disease - principally arthritis. It covers the soft tissues, alignment abnormalities, bony mineralization, and abnormalities of the cartilage space of the hand; arthritis from head to foot; and the differential diagnosis of arthritis.

  7. Selection of Partners for International Joint Degree Programs

    ERIC Educational Resources Information Center

    Brown, Jennifer Lauren

    2013-01-01

    This case study investigates the selection of partner institutions for international joint degree programs at the graduate level utilizing Knight's (2008) challenges to the development of such partnerships which are: Academic Alignment, Mobility and Language concerns, and Recognition and Legitimacy concerns. This study focuses on the criteria used…

  8. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  9. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  10. Aligning incentives in supply chains.

    PubMed

    Narayanan, V G; Raman, Ananth

    2004-11-01

    Most companies don't worry about the behavior of their supply chain partners. Instead, they expect the supply chain to work efficiently without interference, as if guided by Adam Smith's famed invisible hand. In their study of more than 50 supply networks, V.G. Narayanan and Ananth Raman found that companies often looked out for their own interests and ignored those of their network partners. Consequently, supply chains performed poorly. Those results aren't shocking when you consider that supply chains extend across several functions and many companies, each with its own priorities and goals. Yet all those functions and firms must pull in the same direction for a chain to deliver goods and services to consumers quickly and cost-effectively. According to the authors, a supply chain works well only if the risks, costs, and rewards of doing business are distributed fairly across the network. In fact, misaligned incentives are often the cause of excess inventory, stock-outs, incorrect forecasts, inadequate sales efforts, and even poor customer service. The fates of all supply chain partners are interlinked: If the firms work together to serve consumers, they will all win. However, they can do that only if incentives are aligned. Companies must acknowledge that the problem of incentive misalignment exists and then determine its root cause and align or redesign incentives. They can improve alignment by, for instance, adopting revenue-sharing contracts, using technology to track previously hidden information, or working with intermediaries to build trust among network partners. It's also important to periodically reassess incentives, because even top-performing networks find that changes in technology or business conditions alter the alignment of incentives.

  11. Quantitative Methods for Analysing Joint Questionnaire Data: Exploring the Role of Joint in Force Design

    DTIC Science & Technology

    2015-08-01

    mathematics and engineering. A theoretical or conceptual model of ‘Joint’ was developed based on three Latent Variables (LVs) or constructs that aligned with...one, not as a group, so that the survey design team could provide feedback and learn about any shortfalls. The survey was then conducted in two...Hierarchical Cluster Analysis (HAC) was also conducted on both Joint, and Single Service responses. HAC attempts to assign the data to clusters based on

  12. Instability in progressive multiple sequence alignment algorithms.

    PubMed

    Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G

    2015-01-01

    Progressive alignment is the standard approach used to align large numbers of sequences. As with all heuristics, this involves a tradeoff between alignment accuracy and computation time. We examine this tradeoff and find that, because of a loss of information in the early steps of the approach, the alignments generated by the most common multiple sequence alignment programs are inherently unstable, and simply reversing the order of the sequences in the input file will cause a different alignment to be generated. Although this effect is more obvious with larger numbers of sequences, it can also be seen with data sets in the order of one hundred sequences. We also outline the means to determine the number of sequences in a data set beyond which the probability of instability will become more pronounced. This has major ramifications for both the designers of large-scale multiple sequence alignment algorithms, and for the users of these alignments.

  13. NICMOS SM-2 SMOV Alignment Results

    NASA Astrophysics Data System (ADS)

    Lupie, O.; Lallo, M.; Cox, C.; Bergeron, E.

    1997-08-01

    This technical memo documents the alignment calibration, spreadsheet model modifications and the update of aperture tables using results from in-flight NICM alignment tests performed during the Second Servicing Mission Orbital Verification Phase.

  14. Locking of the metacarpophalangeal joints in degenerative disease.

    PubMed

    Stewart, G J; Williams, E A

    1981-06-01

    Nine cases of locking of the metacarpo-phalangeal joint are described. The previously asymptomatic middle finger joint in an elderly person was most likely to be affected. Radiology of the joint has shown degenerative changes in all cases. In two patients, spontaneous unlocking of the joint occurred and in a further six operative release was undertaken. The important anatomical features of the condition are discussed in relation to the mechanism of locking and the surgical treatment.

  15. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  16. Disorientation of Suprathermally Rotating Grains and the Grain Alignment Problem

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Draine, B. T.

    1997-09-01

    We discuss the dynamics of dust grains subjected to torques arising from H2 formation. In particular, we discuss grain dynamics when a grain spins down and goes through a ``crossover'' event. As first pointed out by Spitzer & McGlynn, the grain angular momentum before and after a crossover event are correlated, and the degree of this correlation critically affects the alignment of dust grains by paramagnetic dissipation. We calculate the correlation including the important effects of thermal fluctuations within the grain material. These fluctuations limit the degree to which the grain angular momentum J is coupled with the grain principal axis a1 of maximal inertia. We show that this imperfect coupling of a1 with J plays a critical role during crossovers and can substantially increase the efficiency of paramagnetic alignment for grains larger than 0.1 μm. As a result, we show that for reasonable choices of parameters, the observed alignment of a >~ 0.1 μm grains could be achieved by paramagnetic dissipation in suprathermally rotating grains, if radiative torques caused by starlight were not present. We also show that the efficiency of mechanical alignment in the limit of long alignment times is not altered by the thermal fluctuations in the grain material. This paper is dedicated to the memory of Lyman Spitzer, Jr.

  17. Use laser-optics for machinery alignment

    SciTech Connect

    Bloch, H.P.

    1987-10-01

    Many sources attribute most bearing overload and destructive vibration in industrial machinery to shaft misalignment. There is considerable disagreement as to the alignment quality required. There is also little agreement on suitable calculation methods and achievable accuracy for anticipated thermal growth of machinery (necessary if running alignment is to remain acceptable). This article examines existing alignment quality guidelines for relevance and consistency, and reviews the application of laser-optic alignment systems based on three years of field experience.

  18. Risk of osteoarthritis secondary to partial or total arthrodesis of the subtalar and midtarsal joints after a minimum follow-up of 10 years.

    PubMed

    Ebalard, M; Le Henaff, G; Sigonney, G; Lopes, R; Kerhousse, G; Brilhault, J; Huten, D

    2014-06-01

    The goal of this retrospective, multicentre study was to evaluate the long-term outcomes in patients who have undergone partial or total arthrodesis of the subtalar and midtarsal joints. Secondary osteoarthritis of the adjacent joints can negatively affect the outcomes more than 10 years after these fusion procedures. The outcomes of 72 fusions (total: 22; partial: 50) performed between 1981 and 2002 were evaluated using the Maryland Foot Score (MFS), self-evaluation questionnaire and three weight-bearing X-ray views (Meary's with cerclage wire around heel, lateral and dorsoplantar). The average follow-up was 15 ± 5 years (range 10-31). There were two deep infections that resolved after lavage and antibiotics therapy. There were 21 early complications (10 complex regional pain syndrome, 7 delayed wound healing, 2 superficial infections, 2 venous thrombosis) that all resolved. There were five cases of non-union (6.9%) that healed after being re-operated. After five years, secondary osteoarthritis led to the fusion being extended to the tibotalar joint (1 case) and midtarsal joint (1 case). At the last follow-up, the average MFS was 71.5 (range 25-100). Patient deemed the result as either excellent (10%), very good (9%), good (55%), poor (19%) or bad (7%). Pain at the last follow-up was present in 84% of cases. The rear-foot was normally aligned in 45% of cases, varus aligned in 22% and valgus aligned in 33%. The MFS was significantly better in patients with normal alignment. Patients with neurological foot disorders had significantly more preoperative (80% cavovarus) and postoperative foot deformity (P<0.05). At the last follow-up, the rate of secondary osteoarthritis in the surrounding joints was elevated: 73% tibiotalar, 58.3% subtalar, 65.8% talonavicular, 53.5% calaneocuboid. The presence of osteoarthritis was not correlated with pain or lower MFS. However there was significantly more pain at last follow-up than at 12 months postoperative and two fusions were

  19. Butt Joint Tool Commissioning

    SciTech Connect

    Martovetsky, N N

    2007-12-06

    ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell. These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.

  20. Tibiofemoral alignment in posterior stabilized total knee arthroplasty: Static alignment does not predict dynamic tibial plateau loading.

    PubMed

    Miller, Emily J; Pagnano, Mark W; Kaufman, Kenton R

    2014-08-01

    For total knee arthroplasty (TKA), neutral mechanical alignment produces balanced static knee loading. Dynamically, knee loading is affected by more than limb static alignment. We compared static and dynamic knee loading following TKA. Fifteen TKA patients were evaluated pre-operatively and 2 months and 2 years post-operatively. Tibiofemoral angles and medial tibial plateau loading were calculated. Pre-operatively, static medial load was greater for varus than valgus knees. Post-operatively, no relationship existed between tibiofemoral angle and static medial plateau load. Pre-operatively and post-operatively, dynamic medial load was not dependent on tibiofemoral angle. While all patients achieved equal static plateau load distributions at 2 years, only 47% had dynamic medial load distributions of 50 ± 10%. Static tibiofemoral alignment alone does not predict dynamic tibial loading.

  1. Vertically aligned nanostructure scanning probe microscope tips

    DOEpatents

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  2. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  3. Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function.

    PubMed

    Fitzpatrick, Clare K; Baldwin, Mark A; Laz, Peter J; FitzPatrick, David P; Lerner, Amy L; Rullkoetter, Paul J

    2011-09-02

    Patellofemoral (PF)-related pathologies, including joint laxity, patellar maltracking, cartilage degradation and anterior knee pain, affect nearly 25% of the population. Researchers have investigated the influence of articular geometry on kinematics and contact mechanics in order to gain insight into the etiology of these conditions. The purpose of the current study was to create a three-dimensional statistical shape model of the PF joint and to characterize relationships between PF shape and function (kinematics and contact mechanics). A statistical shape model of the patellar and femoral articular surfaces and their relative alignment was developed from magnetic resonance images. Using 15 shape parameters, the model characterized 97% of the variation in the training set. The first three shape modes primarily described variation in size, patella alta-baja and depth of the sulcus groove. A previously verified finite element model was used to predict kinematics and contact mechanics for each subject. Combining the shape and joint mechanics data, a statistical shape-function model was developed that established quantitative relations of how changes in the shape of the PF joint influence mechanics. The predictive capability of the shape-function model was evaluated by comparing statistical model and finite element predictions, resulting in kinematic root mean square errors of less than 3° and 2.5 mm. The key results of the study are dually in the implementation of a novel approach linking statistical shape and finite element models and the relationships elucidated between PF articular geometry and mechanics.

  4. Development of the Butt Joint for the ITER Central Solenoid

    SciTech Connect

    Martovetsky, N N

    2006-08-23

    The ITER Central Solenoid (CS) requires compact and reliable joints for its Cable-in-Conduit Conductor (CICC). The baseline design is a diffusion bonded butt joint. In such a joint the mating cables are compacted to a very low void fraction in a copper sleeve and then heat treated. After the heat treatment the ends are cut, polished and aligned against each other and then diffusion bonded under high compression in a vacuum chamber at 750 C. The jacket is then welded on the conductor to complete the joint, which remarkably does not require more room than a regular conductor. This joint design is based on a proven concept developed for the ITER CS Model Coil that was successfully tested in the previous R&D phase.

  5. MAGNA: Maximizing Accuracy in Global Network Alignment.

    PubMed

    Saraph, Vikram; Milenković, Tijana

    2014-10-15

    Biological network alignment aims to identify similar regions between networks of different species. Existing methods compute node similarities to rapidly identify from possible alignments the high-scoring alignments with respect to the overall node similarity. But, the accuracy of the alignments is then evaluated with some other measure that is different than the node similarity used to construct the alignments. Typically, one measures the amount of conserved edges. Thus, the existing methods align similar nodes between networks hoping to conserve many edges (after the alignment is constructed!). Instead, we introduce MAGNA to directly 'optimize' edge conservation while the alignment is constructed, without decreasing the quality of node mapping. MAGNA uses a genetic algorithm and our novel function for 'crossover' of two 'parent' alignments into a superior 'child' alignment to simulate a 'population' of alignments that 'evolves' over time; the 'fittest' alignments survive and proceed to the next 'generation', until the alignment accuracy cannot be optimized further. While we optimize our new and superior measure of the amount of conserved edges, MAGNA can optimize any alignment accuracy measure, including a combined measure of both node and edge conservation. In systematic evaluations against state-of-the-art methods (IsoRank, MI-GRAAL and GHOST), on both synthetic networks and real-world biological data, MAGNA outperforms all of the existing methods, in terms of both node and edge conservation as well as both topological and biological alignment accuracy. Software: http://nd.edu/∼cone/MAGNA CONTACT: : tmilenko@nd.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Modeling of Human Joint Structures.

    DTIC Science & Technology

    1982-09-01

    Radial Lateral " epicondyle Olecranon Radius Ulna Figure 3. Lateral aspect of the right elbow joint. -17- Annular Ligament This strong band encircles... elbow joint, knee joint, human joints, shoulder joint, ankle joint, joint models, hip joint, ligaments. 20. ABSTRACT (Continue on reverse side If...ligaments. -A rather extended discussion of the articulations and anatomical descriptions of the elbow , shoulder, hip, knee and ankle joints are

  7. RNA-RNA interaction prediction based on multiple sequence alignments.

    PubMed

    Li, Andrew X; Marz, Manja; Qin, Jing; Reidys, Christian M

    2011-02-15

    Many computerized methods for RNA-RNA interaction structure prediction have been developed. Recently, O(N(6)) time and O(N(4)) space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes. However, few of these methods incorporate the knowledge concerning related sequences, thus relevant evolutionary information is often neglected from the structure determination. Therefore, it is of considerable practical interest to introduce a method taking into consideration both: thermodynamic stability as well as sequence/structure covariation. We present the a priori folding algorithm ripalign, whose input consists of two (given) multiple sequence alignments (MSA). ripalign outputs (i) the partition function, (ii) base pairing probabilities, (iii) hybrid probabilities and (iv) a set of Boltzmann-sampled suboptimal structures consisting of canonical joint structures that are compatible to the alignments. Compared to the single sequence-pair folding algorithm rip, ripalign requires negligible additional memory resource but offers much better sensitivity and specificity, once alignments of suitable quality are given. ripalign additionally allows to incorporate structure constraints as input parameters. The algorithm described here is implemented in C as part of the rip package.

  8. Aligning Two Genomic Sequences That Contain Duplications

    NASA Astrophysics Data System (ADS)

    Hou, Minmei; Riemer, Cathy; Berman, Piotr; Hardison, Ross C.; Miller, Webb

    It is difficult to properly align genomic sequences that contain intra-species duplications. With this goal in mind, we have developed a tool, called TOAST (two-way orthologous alignment selection tool), for predicting whether two aligned regions from different species are orthologous, i.e., separated by a speciation event, as opposed to a duplication event. The advantage of restricting alignment to orthologous pairs is that they constitute the aligning regions that are most likely to share the same biological function, and most easily analyzed for evidence of selection. We evaluate TOAST on 12 human/mouse gene clusters.

  9. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  10. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  11. Preloaded space structural coupling joints

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D. (Inventor)

    1987-01-01

    A coupling device for tubular members of large truss structures with a locking collar being the only moving part is described. Each tubular member is constructed with an end bell section that has a belled flange with a mating face, and a necked area which is smaller in diameter than the tubular members to be joined. A split ring is affixed to each tubular member and is constructed so that when two tubular members are laterally moved into axial alignment and the collar is rotated over it, the split ring loads the joint with axial forces by pressing the belled flange mating surfaces together, and a preloading force is provided by the collar mating with a taper on the outside of the split rings. All free play is thereby removed by preloaded force. A major object is to provide an ability to remove and replace individual tubular members without disturbing other structural parts of a truss structure. An additional anticipated use of this joint is to couple high pressure fluid lines.

  12. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane β-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  13. MP Joint Arthritis

    MedlinePlus

    ... Find a Hand Surgeon Home Anatomy MP Joint Arthritis Email to a friend * required fields From * To * ... important for both pinching and gripping. MP joint arthritis is most common in the thumb and index ...

  14. Temporomandibular Joint Dysfunction

    MedlinePlus

    The temporomandibular joint (TMJ) connects your jaw to the side of your head. When it works well, it enables you to ... For people with TMJ dysfunction, problems with the joint and muscles around it may cause Pain that ...

  15. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  16. Joint Injection/Aspiration

    MedlinePlus

    ... osteoarthritis. What usually is injected into the joint space? Corticosteroids (such as methylprednisolone and triamcinolone formulated to ... for producing inflammation and pain within the joint space. Although corticosteroids may also be successfully used in ...

  17. Joint Aspiration (Arthrocentesis)

    MedlinePlus

    ... arthritis, or JRA), systemic lupus erythematosus (SLE), and Lyme disease. Joint aspiration is diagnostic but it also can ... Parents MORE ON THIS TOPIC Evaluate Your Child's Lyme Disease Risk Living With Lupus Bones, Muscles, and Joints ...

  18. Hip joint injection

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007633.htm Hip joint injection To use the sharing features on this ... injection is a shot of medicine into the hip joint. The medicine helps relieve pain and inflammation. It ...

  19. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  20. FOGSAA: Fast Optimal Global Sequence Alignment Algorithm

    NASA Astrophysics Data System (ADS)

    Chakraborty, Angana; Bandyopadhyay, Sanghamitra

    2013-04-01

    In this article we propose a Fast Optimal Global Sequence Alignment Algorithm, FOGSAA, which aligns a pair of nucleotide/protein sequences faster than any optimal global alignment method including the widely used Needleman-Wunsch (NW) algorithm. FOGSAA is applicable for all types of sequences, with any scoring scheme, and with or without affine gap penalty. Compared to NW, FOGSAA achieves a time gain of (70-90)% for highly similar nucleotide sequences (> 80% similarity), and (54-70)% for sequences having (30-80)% similarity. For other sequences, it terminates with an approximate score. For protein sequences, the average time gain is between (25-40)%. Compared to three heuristic global alignment methods, the quality of alignment is improved by about 23%-53%. FOGSAA is, in general, suitable for aligning any two sequences defined over a finite alphabet set, where the quality of the global alignment is of supreme importance.

  1. Antares beam-alignment-system performance

    SciTech Connect

    Appert, Q.D.; Bender, S.C.

    1983-01-01

    The beam alignment system for the 24-beam-sector Antares CO/sub 2/ fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO/sub 2/ alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence.

  2. Lower bounds on multiple sequence alignment using exact 3-way alignment.

    PubMed

    Colbourn, Charles J; Kumar, Sudhir

    2007-04-30

    Multiple sequence alignment is fundamental. Exponential growth in computation time appears to be inevitable when an optimal alignment is required for many sequences. Exact costs of optimum alignments are therefore rarely computed. Consequently much effort has been invested in algorithms for alignment that are heuristic, or explore a restricted class of solutions. These give an upper bound on the alignment cost, but it is equally important to determine the quality of the solution obtained. In the absence of an optimal alignment with which to compare, lower bounds may be calculated to assess the quality of the alignment. As more effort is invested in improving upper bounds (alignment algorithms), it is therefore important to improve lower bounds as well. Although numerous cost metrics can be used to determine the quality of an alignment, many are based on sum-of-pairs (SP) measures and their generalizations. Two standard and two new methods are considered for using exact 2-way and 3-way alignments to compute lower bounds on total SP alignment cost; one new method fares well with respect to accuracy, while the other reduces the computation time. The first employs exhaustive computation of exact 3-way alignments, while the second employs an efficient heuristic to compute a much smaller number of exact 3-way alignments. Calculating all 3-way alignments exactly and computing their average improves lower bounds on sum of SP cost in v-way alignments. However judicious selection of a subset of all 3-way alignments can yield a further improvement with minimal additional effort. On the other hand, a simple heuristic to select a random subset of 3-way alignments (a random packing) yields accuracy comparable to averaging all 3-way alignments with substantially less computational effort. Calculation of lower bounds on SP cost (and thus the quality of an alignment) can be improved by employing a mixture of 3-way and 2-way alignments.

  3. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  4. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  5. Method for protein structure alignment

    DOEpatents

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  6. SOAP: short oligonucleotide alignment program.

    PubMed

    Li, Ruiqiang; Li, Yingrui; Kristiansen, Karsten; Wang, Jun

    2008-03-01

    We have developed a program SOAP for efficient gapped and ungapped alignment of short oligonucleotides onto reference sequences. The program is designed to handle the huge amounts of short reads generated by parallel sequencing using the new generation Illumina-Solexa sequencing technology. SOAP is compatible with numerous applications, including single-read or pair-end resequencing, small RNA discovery and mRNA tag sequence mapping. SOAP is a command-driven program, which supports multi-threaded parallel computing, and has a batch module for multiple query sets. http://soap.genomics.org.cn.

  7. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  8. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  9. Image Alignment and Correlation System.

    DTIC Science & Technology

    1980-07-01

    RESOLUTION TEST CHART NATIONAL BUREAU Of STANDARDS-1963-A 07- 0r MA4 ETL 237 IMAGE ALIGNMENT AND CORRELATION SYSTEM (J[ Y Samuel E./Craig Alan L./Moyer...respect to the reference image. The images are transparencies mounted on light boxes. iii/ . . . . .. , , I Ii / An x- y plotter and a graphics terminal were...terminal which has a storage cathode- ray tube (CRT) or an x- y recorder for "hard copy." The sensor output is scanned in the spatial frequency domain under

  10. Joint Program Management Handbook

    DTIC Science & Technology

    2004-07-01

    program examples include the Joint Tactical Unmanned Aerial Vehicle (JTUAV), Joint Lethal Strike (JLS), V22 Osprey , Joint Sur- veillance Target Attack...military departments, are also con- sidered Components in their own right. In most joint programs, a “lead” Component is designated to cen- trally...all program direction and funding has single source Single-Component program; interest from other Component(s) manifested by their designation of a

  11. Strategies for active alignment of lenses

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Wilde, Chrisitan; Hahne, Felix; Lüerß, Bernd

    2015-10-01

    Today's optical systems require up-to-date assembly and joining technology. The trend of keeping dimensions as small as possible while maintaining or increasing optical imaging performance leaves little to no room for mechanical lens adjustment equipment that may remain in the final product. In this context active alignment of optical elements opens up possibilities for the fast and cost-economic manufacturing of lenses and lens assemblies with highest optical performance. Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.

  12. Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Arch & Chord Joint Detail; Crossbracing Center Joint Detail; Chord, Panel Post, Tie & Diagonal Brace Joint Detail; Chord, Panel Post, Tie & Crossbracing Joint Detail - Dunlapsville Covered Bridge, Spanning East Fork Whitewater River, Dunlapsville, Union County, IN

  13. Joint pain in people with hemophilia depends on joint status.

    PubMed

    Hilberg, Thomas; Czepa, Doerte; Freialdenhoven, David; Boettger, Michael Karl

    2011-09-01

    Recurrent joint bleedings in people with hemophilia (PWH) often progress into the full clinical picture of hemophilic arthropathy, accompanied by chronic pain. Although chronic pain is commonly present in PWH, investigations assessing pain thresholds have not been performed yet. Thus, the aim of this study was to obtain objective and subjective measures of joint pain in PWH and to relate these to the severity of joint pathology. Thirty-six patients (aged 43±11 years) with hemophilia A and B (31 severe A, 1 B; 3 moderate A, 1 B) and 40 healthy control subjects (aged 42±14 years) participated in this study. Mechanical pain thresholds were obtained as objective parameters using an algometer, while subjective pain intensity and quality were assessed using numeric analogue scales. Quality of life was estimated using the Short-Form Health Survey (SF-36) questionnaire. Overall, we found reduced mechanical pain thresholds as obtained from the knee (PWH--left 38.1 [28.7/57.7], right 29.5 [20.9/49.3]; control--left 67.4 [56.8/112.6], right 60.9 [42.6/97.2]), and elbow (PWH--left 23.4 [15.3/33.4], right 23.5 [20.1/35.1]; control--left 56.7 [32.6/86.6], right 53.0 [30.7/87.7] in N; median [25th/75th percentile]) joints in PWH. Interestingly, this increased pain sensitivity was related to the severity of clinical joint pathology. In addition, PWH reported their pain in a more descriptive and not affective manner and scored similar to controls in the mental domain of the SF-36, thereby indicating good coping strategies despite the chronic nature of their complaints. In conclusion, pain sensitivity at the site of the affected joints is increased and closely related to joint pathology in people with hemophilia. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Joint Enrollment Report, 2014

    ERIC Educational Resources Information Center

    Iowa Department of Education, 2014

    2014-01-01

    The Iowa Department of Education collects information on joint enrollment in Iowa's 15 community colleges. Jointly enrolled students are high school students enrolled in community college credit coursework. Most jointly enrolled students enroll through Senior Year Plus (SYP) programs such as Postsecondary Enrollment Options (PSEO) and concurrent…

  15. Joint Aspiration (Arthrocentesis)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Joint Aspiration (Arthrocentesis) KidsHealth > For Parents > Joint Aspiration (Arthrocentesis) Print A A A What's in ... español Aspiración articular (artrocentesis) What It Is A joint aspiration (arthrocentesis) is a test that involves withdrawing ( ...

  16. Evaluation and assessment of read-mapping by multiple next-generation sequencing aligners based on genome-wide characteristics.

    PubMed

    Thankaswamy-Kosalai, Subazini; Sen, Partho; Nookaew, Intawat

    2017-07-01

    Massive data produced due to the advent of next-generation sequencing (NGS) technology is widely used for biological researches and medical diagnosis. The crucial step in NGS analysis is read alignment or mapping which is computationally intensive and complex. The mapping bias tends to affect the downstream analysis, including detection of polymorphisms. In order to provide guidelines to the biologist for suitable selection of aligners; we have evaluated and benchmarked 5 different aligners (BWA, Bowtie2, NovoAlign, Smalt and Stampy) and their mapping bias based on characteristics of 5 microbial genomes. Two million simulated read pairs of various sizes (36bp, 50bp, 72bp, 100bp, 125bp, 150bp, 200bp, 250bp and 300bp) were aligned. Specific alignment features such as sensitivity of mapping, percentage of properly paired reads, alignment time and effect of tandem repeats on incorrectly mapped reads were evaluated. BWA showed faster alignment followed by Bowtie2 and Smalt. NovoAlign and Stampy were comparatively slower. Most of the aligners showed high sensitivity towards long reads (>100bp) mapping. On the other hand NovoAlign showed higher sensitivity towards both short reads (36bp, 50bp, 72bp) and long reads (>100bp) mappings; It also showed higher sensitivity towards mapping a complex genome like Plasmodium falciparum. The percentage of properly paired reads aligned by NovoAlign, BWA and Stampy were markedly higher. None of the aligners outperforms the others in the benchmark, however the aligners perform differently with genome characteristics. We expect that the results from this study will be useful for the end user to choose aligner, thus enhance the accuracy of read mapping. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. A theoretical estimate of intrinsic ellipticity bispectra induced by angular momenta alignments

    NASA Astrophysics Data System (ADS)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2014-12-01

    Intrinsically aligned galaxy shapes are one of the most important systematics in cosmic shear measurements. So far, theoretical studies of intrinsic alignments almost exclusively focus on their statistics at the two-point level. Results from numerical simulations, however, suggest that third-order measures might be even stronger affected. We therefore investigate the (angular) bispectrum of intrinsic alignments. In our fully analytical study, we describe intrinsic galaxy ellipticities by a physical alignment model, which makes use of tidal torque theory. We derive expressions for the various combinations of intrinsic and gravitationally induced ellipticities, i.e. III-, GII- and GGI-alignments, and compare our results to the shear bispectrum, the GGG-term. The latter is computed using hyperextended perturbation theory. Considering equilateral and squeezed configurations, we find that for a Euclid-like survey intrinsic alignments (III-alignments) start to dominate on angular scales smaller than 20 and 13 arcmin, respectively. This sensitivity to the configuration-space geometry may allow us to exploit the cosmological information contained in both the intrinsic and gravitationally induced ellipticity field. On smallest scales (ℓ ˜ 3000), III-alignments exceed the lensing signal by at least one order of magnitude. The amplitude of the GGI-alignments is the weakest. It stays below that of the shear field on all angular scales irrespective of the wavevector configuration.

  18. The association between patellar alignment on magnetic resonance imaging and radiographic manifestations of knee osteoarthritis

    PubMed Central

    Kalichman, Leonid; Zhang, Yuqing; Niu, Jingbo; Goggins, Joyce; Gale, Daniel; Zhu, Yanyan; Felson, David T; Hunter, David J

    2007-01-01

    The aim of our study was to evaluate the association between patellar alignment by using magnetic resonance imaging images and radiographic manifestations of patello-femoral osteoarthritis (OA). Subjects were recruited to participate in a natural history study of symptomatic knee OA. We examined the relation of patellar alignment in the sagittal plane (patellar length ratio (PLR)) and the transverse plane (sulcus angle (SA), lateral patellar tilt angle (LPTA), and bisect offset (BO)) to radiographic features of patello-femoral OA, namely joint space narrowing and patellar osteophytes, using a proportional odds logistic regression model while adjusting for age, sex, and bone mass index (BMI). The study sample consisted of 126 males (average age 68.0 years, BMI 31.2) and 87 females (average age 64.7 years, BMI 31.6), 75% of whom had tibiofemoral OA (a Kellgren-Lawrence score of 2 or more). PLR showed a statistically significant association with joint space narrowing and osteophytosis in the lateral compartment. SA showed significant association with medial joint space narrowing and with lateral and medial patellar osteophytosis. LPTA and BO showed significant association with both radiographic indices of the lateral compartment. Clear linear trends were found in association between PLR, LPTA and BO, and with outcomes associated with lateral patello-femoral OA. SA, LPTA, and BO showed linear trends of association with medial joint space narrowing. Results of our study clearly suggest the association between indices of patellar alignment and such features of patello-femoral OA as osteophytosis and joint space narrowing. Additional studies will be required to establish the normal and abnormal ranges of patellar alignment indices and their longitudinal relation to patello-femoral OA. PMID:17343731

  19. Measuring alignment of loading fixture

    DOEpatents

    Scavone, Donald W.

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  20. Imaging Approach to Temporomandibular Joint Disorders.

    PubMed

    Morales, H; Cornelius, R

    2016-03-01

    Internal derangement is the most common temporomandibular joint disorder. Degenerative osteoarthritis and trauma are next in frequency. Less common pathology includes rheumatoid arthritis, synovial chondromatosis, calcium pyrophosphate dehydrate deposition disease, pigmented villonodular synovitis, tumors, infection, and osteonecrosis. We provide a systematic approach to facilitate interpretation based on major anatomic structures: disc-attachments, joint space, condyle, and lateral pterygoid muscle. Relevant graphic anatomy and state of the art imaging are discussed in correlation with current clinical and therapeutic highlights of pathologic entities affecting the joint.