Sample records for joint alma observatory

  1. ALMA Observatory Equipped with its First Antenna

    NASA Astrophysics Data System (ADS)

    2008-12-01

    High in the Atacama region of northern Chile one of the world’s most advanced telescopes has just passed a major milestone. The first of many state-of-the-art antennas has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is being built by a global partnership whose North American partners are led by the National Radio Astronomy Observatory (NRAO). With ALMA, astronomers will study the cool Universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new, much-needed insights into the formation of stars and planets, and will reveal distant galaxies in the early Universe, which we see as they were over ten billion years ago. ALMA will initially comprise 66 high-precision antennas, with the option to expand in the future. There will be an array of fifty 12-meter diameter antennas, acting together as a single giant telescope, and a compact array composed of 7-meter and 12-meter antennas. The first 12-meter antenna to be handed over to the observatory was built by Mitsubishi Electric Corporation for the National Astronomical Observatory of Japan, one of the ALMA partners. It will shortly be joined by North American and European antennas. “Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA Director. Antennas arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennas have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles. “The handover of the first Japanese antenna is the crowning achievement of the ALMA Project to date,” said Adrian Russell, the North American ALMA Project Director at NRAO. The

  2. U.S. and European ALMA Partners Sign Agreement Green Light for World's Most Powerful Radio Observatory

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Dr. Rita Colwell, director of the U.S. National Science Foundation (NSF), and Dr. Catherine Cesarsky, director general of the European Southern Observatory (ESO), today signed a historic agreement jointly to construct and operate ALMA, the Atacama Large Millimeter Array, the world's largest and most powerful radio telescope operating at millimeter and sub-millimeter wavelengths. "With this agreement, we usher in a new age of research in astronomy," said Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and we will be able to study and understand our Universe in ways that have previously been beyond our vision." ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site Dr. Cesarsky also commented, "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward toward wonderful research projects. With ALMA, we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvelous facility." When complete in 2011, ALMA will be an array of 64, 12-meter radio antennas that will work together as one telescope to study millimeter and sub-millimeter wavelength light from space. These wavelengths of the electromagnetic spectrum, which cross the critical boundary between infrared and microwave radiation, hold the key to understanding such processes as planet and star formation, the formation of early galaxies and galaxy

  3. ALMA Test Sharpens Vision of New Observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial to producing the high-quality images that will be the trademark of this revolutionary new tool for astronomy. A team of ALMA astronomers and engineers successfully linked three of the observatory's advanced antennas at the 16,500-foot-elevation observing site in northern Chile. Linking three antennas to work in unison for the first time allowed the ALMA team to correct errors that can arise when only two antennas are used, thus paving the way for precise, high-resolution imaging. The three-antenna linkup was a key test of the full electronic and software system now being installed at ALMA. Its success shows that the completed ALMA system of 66 high-tech antennas will be capable of producing astronomical images of unprecedented quality at its designed observing wavelengths. "This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes," said Fred Lo, director of the National Radio Astronomy Observatory (NRAO), which leads North America's participation in the ALMA project. A multi-antenna imaging system such as ALMA uses its antennas in pairs, with each antenna working with every other antenna. Each pair contributes a unique piece of information about the region of sky under observation. The contributions of all the pairs are collected and computer-processed into a completed image following the observation. Earlier ALMA tests, at the ALMA Test Facility in New Mexico, at ALMA's lower-elevation Operations Support Facility, and at the high observing site, had successfully linked pairs of antennas. This demonstrated the proper functioning of the antennas and electronic systems as what scientists and engineers call interferometer pairs. However, the information from one pair of antennas may be

  4. Complementarity of NGST, ALMA, and far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory in space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  5. Complementarity of NGST, ALMA, and Far IR Space Observatories

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2004-01-01

    The Next Generation Space Telescope (NGST) and the Atacama Large Millimeter Array (ALMA) will both start operations long before a new far IR observatory to follow SIRTF into space can be launched. What will be unknown even after they are operational, and what will a far IR space observatory be able to add? I will compare the telescope design concepts and capabilities and the advertised scientific programs for the projects and attempt to forecast the research topics that will be at the forefront in 2010.

  6. NRAO Welcomes Taiwan as a New North American ALMA Partner

    NASA Astrophysics Data System (ADS)

    2008-12-01

    The National Radio Astronomy Observatory (NRAO) has announced a formal agreement enabling Taiwanese astronomers to participate in the North American component of the international ALMA partnership, alongside American and Canadian astronomers. Taiwan's efforts will be led by the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). ALMA, the Atacama Large Millimeter/submillimeter Array, is the most ambitious ground-based astronomical observatory in history. Currently under construction in Chile’s Atacama Desert at an altitude of 16,500 feet, it promises to revolutionize our understanding of the formation of planets, stars, and galaxies when it begins full science operations early in the next decade. The agreement, signed by the Taipei Economic and Cultural Representative Office and the American Institute in Taiwan, provides for approximately $20 million in ALMA construction funding through the National Science Council (NSC), Taiwan’s equivalent to the US National Science Foundation (NSF) and Canada's National Research Council (NRC), which have jointly funded North America's existing contribution to the international ALMA project. Activities under the agreement will include joint research projects, development projects, collaboration on construction, support of observatory operations and other forms of cooperation. Access to ALMA observing time will be shared, as will membership on advisory committees. “Taiwan is a world-class center for submillimeter-wavelength astronomical research, and we’re delighted that the ALMA project and all its future users will benefit from the resources and expertise that Taiwan’s deepening participation brings to this great, global endeavor,” said Dr. Fred Lo, NRAO's director. This new agreement increases and diversifies Taiwan’s Academia Sinica investment in ALMA beyond the levels achieved through its participation in the East Asian component of the ALMA partnership, which is led by the National Astronomical

  7. Exploring remote operation for ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Ovando, Nicolás.; Velez, Gaston; Fuica, Soledad; Schemrl, Anton; Robles, Andres; Ibsen, Jorge; Filippi, Giorgio; Pietriga, Emmanuel

    2014-08-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) will be a unique research instrument composed of at least 66 reconfigurable high-precision antennas, located at the Chajnantor plain in the Chilean Andes at an elevation of 5000 m. The observatory has another office located in Santiago of Chile, 1600 km from the Chajnantor plain. In the Atacama desert, the wonderful observing conditions imply precarious living conditions and extremely high operation costs: i.e: flight tickets, hospitality, infrastructure, water, electricity, etc. It is clear that a purely remote operational model is impossible, but we believe that a mixture of remote and local operation scheme would be beneficial to the observatory, not only in reducing the cost but also in increasing the observatory overall efficiency. This paper describes the challenges and experience gained in such experimental proof of the concept. The experiment was performed over the existing 100 Mbps bandwidth, which connects both sites through a third party telecommunication infrastructure. During the experiment, all of the existent capacities of the observing software were validated successfully, although room for improvement was clearly detected. Network virtualization, MPLS configuration, L2TPv3 tunneling, NFS adjustment, operational workstations design are part of the experiment.

  8. Galaxies and cosmology with ALMA

    NASA Astrophysics Data System (ADS)

    Planesas, P.

    2011-12-01

    Intensive work is being carried out at the Joint ALMA Observatory in order to bring four bands of a 16-antenna mm/submm interferometer into scientific operation. Specific tests of the advertised capabilities for Early Science are being carried out as well as further tests in order to bring ALMA into full operation as planned. Some of the measurements were taken towards extragalactic objects. In fact, the high sensitivity, high angular resolution, high image fidelity, and high mapping speed, together with a large frequency coverage, will make ALMA the right instrument for high redshift studies, and detailed dynamical and chemical studies of nearby galaxies.

  9. Closing the Loop for ALMA - Three antennas working in unison open new bright year for revolutionary observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial for the high quality images that will be the trademark of this revolutionary new tool for astronomy. Astronomers and engineers have, for the first time, successfully linked three of the observatory's antennas at the 5000-metre elevation observing site in northern Chile. Having three antennas observing in unison paves the way for precise images of the cool Universe at unprecedented resolution, by providing the missing link to correct errors that arise when only two antennas are used. On 20 November 2009 the third antenna for the ALMA observatory was successfully installed at the Array Operations Site, the observatory's "high site" on the Chajnantor plateau, at an altitude of 5000 metres in the Chilean Andes. Later, after a series of technical tests, astronomers and engineers observed the first signals from an astronomical source making use of all three 12-metre diameter antennas linked together, and are now working around the clock to establish the stability and readiness of the system. "The first signal using just two ALMA antennas, observed in October, can be compared to a baby's first babblings," says Leonardo Testi, the European Project Scientist for ALMA at ESO. "Observing with a third antenna represents the moment when the baby says its very first, meaningful word - not yet a full sentence, but overwhelmingly exciting! The linking of three antennas is indeed the first actual step towards our goal of achieving precise and sharp images at submillimetre wavelengths." The successful linking of the antenna trio was a key test of the full electronic and software system now being installed at ALMA, and its success anticipates the future capabilities of the observatory. When complete, ALMA will have at least 66 high-tech antennas operating together as an "interferometer", working as a single, huge telescope probing the sky in the millimetre and submillimetre wavelengths of light

  10. ALMA Telescope Passes Major Milestone with Successful Antenna Link

    NASA Astrophysics Data System (ADS)

    2009-05-01

    naked-eye planet, but because we observed something in the sky interferometrically using the genuine hardware that soon will be making its way up to the mountain to the Array Operations Site. Components from North America, Asia, and Europe are all working together to form a single mammoth telescope, and that bodes well for ALMA’s success.” “This can only be achieved with the perfect synchronization of the antennas and the electronic equipment: a precision much better than one millionth of a millionth of a second between equipment located many kilometers apart. The extreme environment where the ALMA observatory is located, with its strong winds, high altitude, and wide range of temperatures, just adds to the complexity of the observatory and to the fascinating engineering challenges we face,” commented Richard Murowinski, ALMA Project Engineer at the Joint ALMA Observatory (JAO) in Chile. ALMA will provide astronomers with the world's most advanced tool for exploring the Universe at millimeter and submillimeter wavelengths. It will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. Scientists are eager to use this transformational capability to study stars and galaxies that formed in the early Universe, to learn long-sought details about how stars are born, and to trace the motion of gas and dust as it whirls toward the surface of newly-formed stars and planets. “This is another important step forward for ALMA as it proves that the various hardware components can work well together. The efforts of all the staff involved in this first antenna integration show the strength of our global collaboration and give much confidence that we can get to full operations with ALMA as one great astronomical observatory,” said Thijs de Graauw, ALMA Director at the JAO. “We are on target to do the first interferometry tests at the 5000-meter-high site by the end of this year, and by the end of

  11. The evolution of the simulation environment in the ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Saez, Norman; Velez, Gaston; Staig, Tomas; Sepulveda, Jorge; Saez, Alejandro; Ovando, Nicolas; Ibsen, Jorge

    2016-07-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) has entered into operation phase since 2013. This transition changed the priorities within the observatory, in which, most of the available time will be dedicated to science observations at the expense of technical time. Therefore, it was planned to design and implement a new simulation environment, which must be comparable - or at least- be representative of the production environment. Concepts of model in the loop and hardware in the loop were explored. In this paper we review experiences gained and lessons learnt during the design and implementation of the new simulation environment.

  12. Europe, Japan and North America Prepare for Joint Construction of the Giant Radio Telescope "ALMA" in Chile

    NASA Astrophysics Data System (ADS)

    2001-04-01

    our own Galaxy, ALMA will study the morphology, the motions and the chemistry of dust-enshrouded regions where stars and planets are being formed. ALMA will shed light on these optically `dark' celestial regions that carry key information on the origin of the richness of structure in the Universe and clues to the origin of life. ALMA is a merger of three large projects - The Millimeter Array (MMA) of the United States, the Large Southern Array (LSA) of Europe, and the Large Millimeter and Submillimeter Array (LMSA) of Japan - each of which has been endorsed as the top-priority project in their respective astronomical communities. The European and North American projects were merged into ALMA in 1999 and joint design and development of ALMA began at that time. The National Research Council of Canada is participating with the U.S. in the project. With Japan joining the project as a third partner equal with North America and Europe, and with Chile also taking part, ALMA has become one of the first truly global projects in the history of fundamental science. In the agreement signed today, the partners pledge to use their best efforts to obtain full approval and funding for their participation in ALMA. With the schedule planned, the telescope should be in full operation in 2010. Note [1]: This Press Release is issued jointly by ESO for its members plus UK and Spain, by the National Astronomical Observatory of Japan (NAOJ), by the US National Science Foundation (NSF) and by CONICYT in Chile. The embargo period coincides with a Press Conference by the partners in Tokyo (Japan). Links to earlier Press Releases etc. about ALMA are found on the dedicated webpage.

  13. Simbol-X: Synergies with JWST, ALMA and Herschel

    NASA Astrophysics Data System (ADS)

    Maiolino, R.

    2009-05-01

    I discuss the synergies between Simbol-X and three among the major astronomical facilities that, in the next decade, will be operative in the infrared-millimeter spectral range, namely JWST, Herschel and ALMA. I first provide a brief overview of the main features and observing capabilities offered by these facilities. Then I will discuss a few research fields (mostly extragalactic) that will geatly benefit of the joint exploitation of Simbol-X and these IR-mm observatories.

  14. Protoplanetary disks in Taurus: Probing the role of multiplicity with ALMA observations

    NASA Astrophysics Data System (ADS)

    Laos, Stefan; Akeson, Rachel L.; Jensen, Eric L. N.

    2017-01-01

    We present results from an ALMA survey of single and multiple young systems in Taurus designed to probe how protoplanetary disk mass depends on both stellar mass and multiplicity. In observations taken in Cycles 0 and 2, we detect over 25 new disks. These detections include disks around stars in both single and multiple systems and are predominantly around lower mass stars with spectral types from M0 to M6. Combined with previous detections, these observations reveal a wide range of disk mass around both primary and companion stars, and allow us to test if the relation previously seen between disk and stellar mass continues at lower stellar masses. We find that within multiple systems the ratio of primary to secondary stellar mass is not correlated with the ratio of primary to secondary disk mass. In some cases, the secondary star hosts the more massive disk, contrary to theoretical predictions. We will discuss the implications of these results for the process of planet formation in multiple systems.This work makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00150.S. and ADS/JAO.ALMA#2013.1.00105.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  15. ALMA Achieves Major Milestone With Antenna-Link Success

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international telescope project, reached a major milestone on March 2, when two ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object. The milestone achievement, technically termed "First Fringes," came at the ALMA Test Facility (ATF) on the grounds of the National Radio Astronomy Observatory's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. NRAO is a facility of the National Science Foundation (NSF), managed by Associated Universities, Incorporated (AUI). AUI also is designated by NSF as the North American Executive for ALMA. ALMA Test Facility ALMA Test Facility, New Mexico: VertexRSI antenna, left; AEC antenna, right. CREDIT: Drew Medlin, NRAO/AUI/NSF Click on image for page of graphics and full information Faint radio waves emitted by the planet Saturn were collected by the two ALMA antennas, then processed by new, state-of-the-art electronics to turn the two antennas into a single, high-resolution telescope system, called an interferometer. Such pairs of antennas are the basic building blocks of multi-antenna imaging systems such as ALMA and the VLA. In such a system, each antenna is combined electronically with every other antenna to form a multitude of pairs. Each pair contributes unique information that is used to build a highly-detailed image of the astronomical object under observation. When completed in 2012, ALMA will have 66 antennas. The successful Saturn observation began at 7:13 p.m., U.S. Mountain Time Friday (0213 UTC Saturday). The planet's radio emissions at a frequency of 104 GigaHertz (GHz) were tracked by the ALMA system for more than an hour. "Our congratulations go to the dedicated team of scientists, engineers and technicians who produced this groundbreaking achievement for ALMA. Much hard work and many long hours went into this effort, and we appreciate it all. This team should be very proud today," said NRAO

  16. A Roof for ALMA

    NASA Astrophysics Data System (ADS)

    2007-03-01

    On 10 March, an official ceremony took place on the 2,900m high site of the Atacama Large Millimeter/submillimeter Array (ALMA) Operations Support Facility, from where the ALMA antennas will be remotely controlled. The ceremony marked the completion of the structural works, while the building itself will be finished by the end of the year. This will become the operational centre of one of the most important ground-based astronomical facilities on Earth. ESO PR Photo 13a/07 ESO PR Photo 13a/07 Cutting the Red Ribbon The ceremony, known as 'Tijerales' in Chile, is the equivalent to the 'roof-topping ceremony' that takes place worldwide, in one form or another, to celebrate reaching the highest level of a construction. It this case, the construction is the unique ALMA Operations Support Facility (OSF), located near the town of San Pedro de Atacama. "The end of this first stage represents an historic moment for ALMA," said Hans Rykaczewski, the European ALMA Project Manager. "Once completed in December 2007, this monumental building of 7,000 square metres will be one of the largest and most important astronomical operation centres in the world." ALMA, located at an elevation of 5,000m in the Atacama Desert of northern Chile, will provide astronomers with the world's most advanced tool for exploring the Universe at millimetre and submillimetre wavelengths. ALMA will detect fainter objects and be able to produce much higher-quality images at these wavelengths than any previous telescope system. The OSF buildings are designed to suit the requirements of this exceptional observatory in a remote, desert location. The facility, which will host about 100 people during operations, consists of three main buildings: the technical building, hosting the control centre of the observatory, the antenna assembly building, including four antenna foundations for testing and maintenance purposes, and the warehouse building, including mechanical workshops. Further secondary buildings are

  17. Centralized operations and maintenance planning at the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.

  18. The ALMA CONOPS project: the impact of funding decisions on observatory performance

    NASA Astrophysics Data System (ADS)

    Ibsen, Jorge; Hibbard, John; Filippi, Giorgio

    2014-08-01

    In time when every penny counts, many organizations are facing the question of how much scientific impact a budget cut can have or, putting it in more general terms, which is the science impact of alternative (less costly) operational modes. In reply to such question posted by the governing bodies, the ALMA project had to develop a methodology (ALMA Concepts for Operations, CONOPS) that attempts to measure the impact that alternative operational scenarios may have on the overall scientific production of the Observatory. Although the analysis and the results are ALMA specific, the developed approach is rather general and provides a methodology for a cost-performance analysis of alternatives before any radical alterations to the operations model are adopted. This paper describes the key aspects of the methodology: a) the definition of the Figures of Merit (FoMs) for the assessment of quantitative science performance impacts as well as qualitative impacts, and presents a methodology using these FoMs to evaluate the cost and impact of the different operational scenarios; b) the definition of a REFERENCE operational baseline; c) the identification of Alternative Scenarios each replacing one or more concepts in the REFERENCE by a different concept that has a lower cost and some level of scientific and/or operational impact; d) the use of a Cost-Performance plane to graphically combine the effects that the alternative scenarios can have in terms of cost reduction and affected performance. Although is a firstorder assessment, we believe this approach is useful for comparing different operational models and to understand the cost performance impact of these choices. This can be used to take decision to meet budget cuts as well as in evaluating possible new emergent opportunities.

  19. ALMA telescope reaches new heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory has taken another step forward - and upwards. One of its state-of-the-art antennas was carried for the first time to the 5000m plateau of Chajnantor, in the Chilean Andes, on the back of a custom-built giant transporter. The antenna, which weighs about 100 tons and has a diameter of 12 metres, was transported up to the high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for ALMA's observations of the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 2900 m altitude of the ALMA Operations Support Facility. It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "This is an important moment for ALMA. We are very happy that the first transport of an antenna to the high site went flawlessly. This achievement was only possible through contributions from all international ALMA partners: this particular antenna is provided by Japan, the heavy-lift transporter by Europe, and the receiving electronics inside the antenna by North America, Europe, and Asia", said Wolfgang Wild, European ALMA Project Manager. The trip began when one of the two ALMA transporters, named Otto, lifted the antenna onto its back. It then carried its heavy load along the 28 km road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 12 km/hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas are the most advanced submillimetre-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions

  20. Astronomers Break Ground on Atacama Large Millimeter Array (ALMA) - World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    will combine the signals from all its antennas (one pair of antennas at a time) to simulate a telescope the size of the distance between the antennas. With 64 antennas, ALMA will generate 2016 individual antenna pairs ("baselines") during the observations. To handle this enormous amount of data, ALMA will rely on a very powerful, specialized computer (a "correlator"), which will perform 16,000 million million (1.6 x 10 16 ) operations per second. Currently, two prototype ALMA antennas are undergoing rigorous testing at the NRAO's Very Large Array site, near Socorro, New Mexico, USA. International collaboration For this ambitious project, ALMA has become a joint effort among many nations and scientific institutions. In Europe, ESO leads on behalf of its ten member countries (Belgium, Denmark, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland and the United Kingdom) and Spain. Japan may join in 2004, bringing enhancements to the project. Given the participation of North America, this will be the first truly global project of ground-based astronomy, an essential development in view of the increasing technological sophistication and the high costs of front-line astronomy installations. The first submillimeter telescope in the southern hemisphere was the 15-m Swedish-ESO Submillimetre Telescope (SEST) which was installed at the ESO La Silla Observatory in 1987. It has since been used extensively by astronomers, mostly from ESO's member states. SEST has now been decommissioned and a new submillimetre telescope, APEX, is about to commence operations at Chajnantor. APEX, which is a joint project between ESO, the Max Planck Institute for Radio Astronomy in Bonn (Germany), and the Onsala Space Observatory (Sweden), is an antenna comparable to the ALMA antennas.

  1. The Future of Astronomy and the ALMA Archive

    NASA Astrophysics Data System (ADS)

    Stoehr, F.; Lacy, M.; Leon, S.; Muller, E.; Kawamura, A.

    2015-09-01

    Astronomy is changing as the amount and complexity of data taken grows. We argue that in the future observatories will compete for astronomers to work with their data, that observatories will have to reorient themselves to from providing good data only to providing an excellent end-to-end user-experience with all its implications, that science-grade data-reduction pipelines will become an integral part of the design of a new observatory or instrument and that all this evolution will have a deep impact on how astronomers will do science. We show how ALMA's general design principles are in line with this paradigm and how the ALMA archive fits into this picture.

  2. Exploring the Sun with ALMA

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Bárta, M.; Brajša, R.; Chen, B.; Pontieu, B. D.; Gary, D. E.; Fleishman, G. D.; Hales, A. S.; Iwai, K.; Hudson, H.; Kim, S.; Kobelski, A.; Loukitcheva, M.; Shimojo, M.; Skokić, I.; Wedemeyer, S.; White, S. M.; Yan, Y.

    2018-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) Observatory opens a new window onto the Universe. The ability to perform continuum imaging and spectroscopy of astrophysical phenomena at millimetre and submillimetre wavelengths with unprecedented sensitivity opens up new avenues for the study of cosmology and the evolution of galaxies, the formation of stars and planets, and astrochemistry. ALMA also allows fundamentally new observations to be made of objects much closer to home, including the Sun. The Sun has long served as a touchstone for our understanding of astrophysical processes, from the nature of stellar interiors, to magnetic dynamos, non-radiative heating, stellar mass loss, and energetic phenomena such as solar flares. ALMA offers new insights into all of these processes.

  3. The ALMA archive and its place in the astronomy of the future

    NASA Astrophysics Data System (ADS)

    Stoehr, Felix; Lacy, Mark; Leon, Stephane; Muller, Erik; Manning, Alisdair; Moins, Christophe; Jenkins, Dustin

    2014-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international partnership of Europe, North America and East Asia in cooperation with the Republic of Chile, is the largest astronomical project in existence. While ALMA's capabilities are ramping up, Early Science observations have started. The ALMA Archive is at the center of the operations of the telescope array and is designed to manage the 200 TB of data that will be taken each year, once the observatory is in full operations. We briefly describe design principles. The second part of this paper focuses on how astronomy is likely to evolve as the amount and complexity of data taken grows. We argue that in the future observatories will compete for astronomers to work with their data, that observatories will have to reorient themselves to from providing good data only to providing an excellent end-to-end user-experience with all its implications, that science-grade data-reduction pipelines will become an integral part of the design of a new observatory or instrument and that all this evolution will have a deep impact on how astronomers will do science. We show how ALMA's design principles are in line with this paradigm.

  4. First two ALMA antennas successfully linked

    NASA Astrophysics Data System (ADS)

    2009-05-01

    Scientists and engineers working on the world's largest ground-based astronomical project, the Atacama Large Millimeter/submillimeter Array (ALMA), have achieved another milestone -- the successful linking of two ALMA astronomical antennas, synchronised with a precision of one millionth of a millionth of a second -- to observe the planet Mars. ALMA is under construction by an international partnership in the Chilean Andes. ESO PR Photo 18a/09 The two ALMA antennas On 30 April, the team observed the first "interferometric fringes" of an astronomical source by linking two 12-metre diameter ALMA antennas, together with the other critical parts of the system. Mars was chosen as a suitable target for the observations, which demonstrate ALMA's full hardware functionality and connectivity. This important milestone was achieved at the ALMA Operations Support Facility, high in Chile's Atacama region, at an altitude of 2900 metres. "We're very proud and excited to have made this crucial observation, as it proves that the various hardware components work smoothly together. This brings us another step closer to full operations for ALMA as an astronomical observatory," says Wolfgang Wild, the European ALMA Project Manager. The two antennas used in this test will be part of ALMA's array of 66 giant 12-metre and 7-metre diameter antennas that will observe in unison as a single giant telescope, under construction on the Chajnantor plateau above the Operations Support Facility, at an altitude of 5000 metres. ALMA will operate as an interferometer, capturing millimetre and submillimetre wavelength signals from the sky with multiple antennas, and combining them to create extremely high resolution images, similar to those that would be obtained by a single, giant antenna with a diameter equal to the distance between the antennas used. "This can only be achieved with the perfect synchronisation of the antennas and the electronic equipment: a precision much better than one millionth of

  5. First ALMA Transporter Ready for Challenging Duty

    NASA Astrophysics Data System (ADS)

    2008-07-01

    The first of two ALMA transporters -- unique vehicles designed to move high-tech radio-telescope antennas in the harsh, high-altitude environment of the Atacama Large Millimeter/submillimeter Array -- has been completed and passed its initial operational tests. The 130-ton machine moves on 28 wheels and will be able to transport a 115-ton antenna and set it down on a concrete pad within millimeters of a prescribed position. ALMA Transporter The ALMA Transporter on a Test Run CREDIT: ESO Click on image for high-resolution file (244 KB) The ALMA transporter rolled out of its hangar and underwent the tests at the Scheuerle Fahrzeugfabrik company site near Nuremberg, Germany. The machine is scheduled for delivery at the ALMA site in Chile by the end of 2007, and a second vehicle will follow about three months later. ALMA is a giant, international observatory under construction in the Atacama Desert of northern Chile at an elevation of 16,500 feet. Using at least 66 high-precision antennas, with the possibility of increasing the number in the future, ALMA will provide astronomers with an unprecedented ability to explore the Universe as seen at wavelengths of a few millimeters to less than a millimeter. By moving the antennas from configurations as compact as 150 meters to as wide as 15 kilometers, the system will provide a zoom-lens ability for scientists. "The ability to move antennas to reconfigure the array is vital to fulfilling ALMA's scientific mission. The operations plan calls for moving antennas on a daily basis to provide the flexibility that will be such a big part of ALMA's scientific value. That's why the transporters are so important and why this is such a significant milestone," said Adrian Russell, North American Project Manager for ALMA. "The ALMA antennas will be assembled and their functionality will be verified at a base camp, located at an altitude of 2900 meters (9500 feet) and the transporters will in a first step bring the telescopes up to the

  6. ALMA Partners Break Ground on World's Largest Millimeter Wavelength Telescope

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Scientists and dignitaries from North America, Europe, and Chile broke ground today (Thursday, November 6, 2003) on what will be the world's largest, most sensitive radio telescope operating at millimeter wavelengths. ALMA - the Atacama Large Millimeter Array - will be a single instrument composed of 64 high-precision antennas located on the Chajnantor plain of the Chilean Andes in the District of San Pedro de Atacama, 16,500 feet (5,000 meters) above sea level. ALMA's primary function will be to observe and image with unprecedented clarity the enigmatic cold regions of the Universe, which are optically dark, yet shine brightly in the millimeter portion of the electromagnetic spectrum. ALMA Array Artist's Conception of ALMA Array in Compact Configuration (Click on Image for Larger Version) Other Images Available: Artist's conception of the antennas for the Atacama Large Millimeter Array Moonrise over ALMA test equipment near Cerro Chajnantor, Chile VertexRSI antenna at the VLA test site The Atacama Large Millimeter Array is an international astronomy facility. ALMA is an equal partnership between Europe and North America, in cooperation with the Republic of Chile, and is funded in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Europe by the European Southern Observatory (ESO) and Spain. ALMA construction and operations are led on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO. "The U.S. National Science Foundation joins today with our North American partner, Canada, and with the European Southern Observatory, Spain, and Chile to prepare for a spectacular new instrument," said Dr. Rita Colwell, director of the U.S. National Science Foundation. "The Atacama Large Millimeter Array will expand our vision of the Universe with "eyes" that pierce the shrouded mantles of

  7. The ALMA correlator

    NASA Astrophysics Data System (ADS)

    Escoffier, R. P.; Comoretto, G.; Webber, J. C.; Baudry, A.; Broadwell, C. M.; Greenberg, J. H.; Treacy, R. R.; Cais, P.; Quertier, B.; Camino, P.; Bos, A.; Gunst, A. W.

    2007-02-01

    Aims: The Atacama Large Millimeter Array (ALMA) is an international astronomy facility to be used for detecting and imaging all types of astronomical sources at millimeter and submillimeter wavelengths at a 5000-m elevation site in the Atacama Desert of Chile. Our main aims are: describe the correlator sub-system which is that part of the ALMA system that combines the signal from up to 64 remote individual radio antennas and forms them into a single instrument; emphasize the high spectral resolution and the configuration flexibility available with the ALMA correlator. Methods: The main digital signal processing features and a block diagram of the correlator being constructed for the ALMA radio astronomy observatory are presented. Tables of observing modes and spectral resolutions offered by the correlator system are given together with some examples of multi-resolution spectral modes. Results: The correlator is delivered by quadrants and the first quadrant is being tested while most of the other printed circuit cards required by the system have been produced. In its final version the ALMA correlator will process the outputs of up to 64 antennas using an instantaneous bandwidth of 8 GHz in each of two polarizations per antenna. In the frequency division mode, unrivalled spectral flexibility together with very high resolution (3.8 kHz) and up to 8192 spectral points are achieved. In the time division mode high time resolution is available with minimum data dump rates of 16 ms for all cross-products.

  8. ESO and NSF Sign Agreement on ALMA

    NASA Astrophysics Data System (ADS)

    2003-02-01

    Green Light for World's Most Powerful Radio Observatory On February 25, 2003, the European Southern Observatory (ESO) and the US National Science Foundation (NSF) are signing a historic agreement to construct and operate the world's largest and most powerful radio telescope, operating at millimeter and sub-millimeter wavelength. The Director General of ESO, Dr. Catherine Cesarsky, and the Director of the NSF, Dr. Rita Colwell, act for their respective organizations. Known as the Atacama Large Millimeter Array (ALMA), the future facility will encompass sixty-four interconnected 12-meter antennae at a unique, high-altitude site at Chajnantor in the Atacama region of northern Chile. ALMA is a joint project between Europe and North America. In Europe, ESO is leading on behalf of its ten member countries and Spain. In North America, the NSF also acts for the National Research Council of Canada and executes the project through the National Radio Astronomy Observatory (NRAO) operated by Associated Universities, Inc. (AUI). The conclusion of the ESO-NSF Agreement now gives the final green light for the ALMA project. The total cost of approximately 650 million Euro (or US Dollars) is shared equally between the two partners. Dr. Cesarsky is excited: "This agreement signifies the start of a great project of contemporary astronomy and astrophysics. Representing Europe, and in collaboration with many laboratories and institutes on this continent, we together look forward towards wonderful research projects. With ALMA we may learn how the earliest galaxies in the Universe really looked like, to mention but one of the many eagerly awaited opportunities with this marvellous facility". "With this agreement, we usher in a new age of research in astronomy" says Dr. Colwell. "By working together in this truly global partnership, the international astronomy community will be able to ensure the research capabilities needed to meet the long-term demands of our scientific enterprise, and

  9. The ALMA OT in early science: supporting multiple customers

    NASA Astrophysics Data System (ADS)

    Bridger, Alan; Williams, Stewart; McLay, Stewart; Yatagai, Hiroshi; Schilling, Marcus; Biggs, Andrew; Tobar, Rodrigo; Warmels, Rein H.

    2012-09-01

    The ALMA Observatory is currently operating 'Early Science' observing. The Cycle0 and Cycle1 Calls for Proposals are part of this Early Science, and in both the ALMA Observing Tool plays a crucial role. This paper describes how the ALMA OT tackles the problem of making millimeter/sub-millimeter interferometry accessible to the wider community, while allowing "experts" the power and flexibility they need. We will also describe our approach to the challenges of supporting multiple customers, and explore the lessons learnt from the Early Science experiences. Finally we look ahead to the challenges presented by future observing cycles.

  10. ALMA Telescope Reaches New Heights

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The ALMA (Atacama Large Millimeter/submillimeter Array) astronomical observatory took another step forward and upward, as one of its state-of-the-art antennas was carried for the first time to Chile's 16,500-foot-high plateau of Chajnantor on the back of a giant, custom-built transporter. The 40-foot-diameter antenna, weighing about 100 tons, was moved to ALMA's high-altitude Array Operations Site, where the extremely dry and rarefied air is ideal for observing the Universe. The conditions at the Array Operations Site on Chajnantor, while excellent for astronomy, are also very harsh. Only about half as much oxygen is available as at sea level, making it very difficult to work there. This is why ALMA's antennas are assembled and tested at the lower 9,500-foot altitude of the ALMA Operations Support Facility (OSF). It was from this relatively hospitable base camp that the ALMA antenna began its journey to the high Chajnantor site. "The successful transport of the first ALMA Antenna to the high site marks the start of the next phase of the project. Now that we are starting to move the ALMA antennas to the high site, the real work begins and the exciting part is just beginning," said Adrian Russell, North American ALMA Project Manager. The antenna's trip began when one of the two ALMA transporters lifted the antenna onto its back, carrying its heavy load along the 17-mile road from the Operations Support Facility up to the Array Operations Site. While the transporter is capable of speeds of up to 8 miles per hour when carrying an antenna, this first journey was made more slowly to ensure that everything worked as expected, taking about seven hours. The ALMA antennas use state-of-the-art technology, and are the most advanced submillimeter-wavelength antennas ever made. They are designed to operate fully exposed in the harsh conditions of the Array Operations Site, to survive strong winds and extreme temperatures, to point precisely enough that they could pick out a golf

  11. ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Raffi, Gianni

    2002-12-01

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe and North America. ALMA will consist of at least 64 12-meter antennas operating in the millimeter and sub-millimeter range. It will be located at an altitude of about 5000m in the Chilean Atacama desert. The primary challenge to the development of the software architecture is the fact that both its development and runtime environments will be distributed. Groups at different institutes will develop the key elements such as Proposal Preparation tools, Instrument operation, On-line calibration and reduction, and Archiving. The Proposal Preparation software will be used primarily at scientists' home institutions (or on their laptops), while Instrument Operations will execute on a set of networked computers at the ALMA Operations Support Facility. The ALMA Science Archive, itself to be replicated at several sites, will serve astronomers worldwide. Building upon the existing ALMA Common Software (ACS), the system architects will prepare a robust framework that will use XML-encoded entity objects to provide an effective solution to the persistence needs of this system, while remaining largely independent of any underlying DBMS technology. Independence of distributed subsystems will be facilitated by an XML- and CORBA-based pass-by-value mechanism for exchange of objects. Proof of concept (as well as a guide to subsystem developers) will come from a prototype whose details will be presented.

  12. ALMA Band 5 receiver cartridge. Design, performance, and commissioning

    NASA Astrophysics Data System (ADS)

    Belitsky, V.; Bylund, M.; Desmaris, V.; Ermakov, A.; Ferm, S.-E.; Fredrixon, M.; Krause, S.; Lapkin, I.; Meledin, D.; Pavolotsky, A.; Rashid, H.; Shafiee, S.; Strandberg, M.; Sundin, E.; Aghdam, P. Yadranjee; Hesper, R.; Barkhof, J.; Bekema, M. E.; Adema, J.; Haan, R. de; Koops, A.; Boland, W.; Yagoubov, P.; Marconi, G.; Siringo, G.; Humphreys, E.; Tan, G. H.; Laing, R.; Testi, L.; Mroczkowski, T.; Wild, W.; Saini, K. S.; Bryerton, E.

    2018-04-01

    We describe the design, performance, and commissioning results for the new ALMA Band 5 receiver channel, 163-211 GHz, which is in the final stage of full deployment and expected to be available for observations in 2018. This manuscript provides the description of the new ALMA Band 5 receiver cartridge and serves as a reference for observers using the ALMA Band 5 receiver for observations. At the time of writing this paper, the ALMA Band 5 Production Consortium consisting of NOVA Instrumentation group, based in Groningen, NL, and GARD in Sweden have produced and delivered to ALMA Observatory over 60 receiver cartridges. All 60 cartridges fulfil the new more stringent specifications for Band 5 and demonstrate excellent noise temperatures, typically below 45 K single sideband (SSB) at 4 K detector physical temperature and below 35 K SSB at 3.5 K (typical for operation at the ALMA Frontend), providing the average sideband rejection better than 15 dB, and the integrated cross-polarization level better than -25 dB. The 70 warm cartridge assemblies, hosting Band 5 local oscillator and DC bias electronics, have been produced and delivered to ALMA by NRAO. The commissioning results confirm the excellent performance of the receivers.

  13. The European ALMA Regional Centre: a model of user support

    NASA Astrophysics Data System (ADS)

    Andreani, P.; Stoehr, F.; Zwaan, M.; Hatziminaoglou, E.; Biggs, A.; Diaz-Trigo, M.; Humphreys, E.; Petry, D.; Randall, S.; Stanke, T.; van Kampen, E.; Bárta, M.; Brand, J.; Gueth, F.; Hogerheijde, M.; Bertoldi, F.; Muxlow, T.; Richards, A.; Vlemmings, W.

    2014-08-01

    The ALMA Regional Centres (ARCs) form the interface between the ALMA observatory and the user community from the proposal preparation stage to the delivery of data and their subsequent analysis. The ARCs provide critical services to both the ALMA operations in Chile and to the user community. These services were split by the ALMA project into core and additional services. The core services are financed by the ALMA operations budget and are critical to the successful operation of ALMA. They are contractual obligations and must be delivered to the ALMA project. The additional services are not funded by the ALMA project and are not contractual obligations, but are critical to achieve ALMA full scientific potential. A distributed network of ARC nodes (with ESO being the central ARC) has been set up throughout Europe at the following seven locations: Bologna, Bonn-Cologne, Grenoble, Leiden, Manchester, Ondrejov, Onsala. These ARC nodes are working together with the central node at ESO and provide both core and additional services to the ALMA user community. This paper presents the European ARC, and how it operates in Europe to support the ALMA community. This model, although complex in nature, is turning into a very successful one, providing a service to the scientific community that has been so far highly appreciated. The ARC could become a reference support model in an age where very large collaborations are required to build large facilities, and support is needed for geographically and culturally diverse communities.

  14. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  15. U.S., European ALMA Partners Award Prototype Antenna Contracts

    NASA Astrophysics Data System (ADS)

    2000-03-01

    The U.S. and European partners in the Atacama Large Millimeter Array (ALMA) project have awarded contracts to U.S. and Italian firms, respectively, for two prototype antennas. ALMA is a planned telescope array, expected to consist of 64 millimeter-wave antennas with 12-meter diameter dishes. The array will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert, and is scheduled to be completed sometime in this decade. On February 22, 2000, Associated Universities Inc. (AUI) signed an approximately $6.2 million contract with Vertex Antenna Systems, of Santa Clara, Calif., for construction of one prototype ALMA antenna. AUI operates the U.S. National Radio Astronomy Observatory (NRAO) for the National Science Foundation under a cooperative agreement. The European partners contracted with the consortium of European Industrial Engineering and Costamasnaga, of Mestre, Italy, on February 21, 2000, for the production of another prototype. (Mestre is located on the inland side of Venice.) The two antennas must meet identical specifications, but will inherently be of different designs. This will ensure that the best possible technologies are incorporated into the final production antennas. Only one of the designs will be selected for final production. Several technical challenges must be met for the antennas to perform to ALMA specifications. Each antenna must have extremely high surface accuracy (25 micrometers, or one-third the diameter of a human hair, over the entire 12-meter diameter). This means that, when completed, the surface accuracy of the ALMA dishes will be 20 times greater than that of the Very Large Array (VLA) antennas, and about 50 times greater than dish antennas for communications or radar. The ALMA antennas must also have extremely high pointing accuracy (0.6 arcseconds). An additional challenge is that the antennas, when installed at the ALMA site in Chile, will be exposed to the ravages of weather at 16,500 feet (5000 meters

  16. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA

  17. A web-based dashboard for the high-level monitoring of ALMA

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Filippi, Giorgio; Véliz, Luis; del Campo, Fernando; Ibsen, Jorge

    2014-07-01

    The ALMA radio-telescope's operations depend on the availability of high-level, easy-to-understand status information about all of its components. The ALMA Dashboard aims at providing an all-in-one-place near-real-time overview of the observatory's key elements and figures to both line and senior management. The Dashboard covers a wide range of elements beyond antennas, such as pads, correlator and central local oscillator. Data can be displayed in multiple ways, including: a table view, a compact view fitting on a single screen, a timeline showing detailed information over time, a logbook, a geographical map.

  18. Performance and Uniformity of Mass-Produced SIS Mixers for ALMA Band 8 Receiver Cartridges

    NASA Astrophysics Data System (ADS)

    Tomura, Tomonuri; Noguchi, Takashi; Sekimoto, Yutaro; Shan, Wenlei; Sato, Naohisa; Iizuka, Yoshizo; Kumagai, Kazuyoshi; Niizeki, Yasuaki; Iwakuni, Mikio; Ito, Tetsuya

    2015-05-01

    The Atacama large millimeter/submillimeter array (ALMA), which was jointly built in Chile by Europe, North America and East Asia, has an observational band from 30 to 950 GHz [1], [2]. We developed receiver cartridges for ALMA Band 8 (385-500 GHz) [3]-[5] which is one of ALMA 10 frequency bands. The Band 8 receiver cartridges were produced as 73 cartridges, and 292 SIS mixers were installed in their cartridges. Also, their all cartridges were required to meet following ALMA specifications: 1. The noise temperature is less than 196 K over 80% of the frequency range and less than 292 K at any frequency from 385 to 500 GHz. 2. The image rejection ratio is larger than 10 dB over 90% of the frequency range. 3. The IF output power variation is less than 7.0 dB peak-to-peak in the 4-8 GHz band. 4. The gain compression to RF load temperatures between 77 and 373 K is less than 5%. 5. The Allan variance of the IF output power is less than 4.0×10-7 in the time scale of 0.05 s≤T≤100 s and 3.0×10-6 at 300 s. To meet these specifications, the performance and uniformity of the SIS mixers are crucial. The SIS mixers with Nb/Al-AlOx/Nb superconductor-insulator-superconductor (SIS) tunnel junctions were fabricated in a clean room of National Astronomical Observatory of Japan and over 1000 mixer chips were mass-produced. After screening these mixers, 73 Band 8 receivers were assembled and tested. We report the test results of the mass-produced mixers and the receiver cartridges in detail from a statistical point of view.

  19. Probing Massive Star Cluster Formation with ALMA

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2015-08-01

    Observationally constraining the physical conditions that give rise to massive star clusters has been a long-standing challenge. Now with the ALMA Observatory coming on-line, we can finally begin to probe the birth environments of massive clusters in a variety of galaxies with sufficient angular resolution. In this talk I will give an overview of ALMA observations of galaxies in which candidate proto-super star cluster molecular clouds have been identified. These new data probe the physical conditions that give rise to super star clusters, providing information on their densities, pressures, and temperatures. In particular, the observations indicate that these clouds may be subject to external pressures of P/k > 108 K cm-3, which is consistent with the prevalence of optically observed adolescent super star clusters in interacting galaxy systems and other high pressure environments. ALMA observations also enable an assessement of the molecular cloud chemical abundances in the regions surrounding super star clusters. Molecular clouds associated with existing super star clusters are strongly correlated with HCO+ emission, but appear to have relatively low ratio of CO/HCO+ emission compared to other clouds, indicating that the super star clusters are impacting the molecular abundances in their vicinity.

  20. Growth of carbon chains in IRC +10216 mapped with ALMA

    NASA Astrophysics Data System (ADS)

    Agúndez, M.; Cernicharo, J.; Quintana-Lacaci, G.; Castro-Carrizo, A.; Velilla Prieto, L.; Marcelino, N.; Guélin, M.; Joblin, C.; Martín-Gago, J. A.; Gottlieb, C. A.; Patel, N. A.; McCarthy, M. C.

    2017-05-01

    Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC +10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of λ 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1''. The spatial distribution of all these species is a hollow 5-10'' wide spherical shell located at a radius of 10-20'' from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner subshells that are 1-2'' wide and not fully concentric, indicating that the mass-loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals. Based on observations carried out with ALMA and the IRAM 30 m Telescope. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ

  1. ALMA to Help Solving Acute Mountain Sickness Mystery

    NASA Astrophysics Data System (ADS)

    2007-04-01

    , family and social isolation, commuting, intermittent high altitude exposure and other environmental challenges such as low temperatures. "An adequate acclimatisation to 2500m altitude requires around two weeks, and we can thus speculate that going to 5000m would require more than one month to achieve complete acclimatisation," said Professor Juan Silva Urra, from the University of Antofagasta. However, short and long term effects of regular commuting between sea level and high altitude have scarcely been studied in biomedical terms. Scientifically based guidelines for appropriate preventive handling and care under these conditions are lacking and the new study will help bridging this gap. Among the studies to be done, some involve continuous monitoring of the human body through portable devices, including measurements of hormone levels and application of psychometric tests. All measurements at 5000m will be carried out on a voluntary basis, under strict safety protocols, with the presence of a doctor from the investigation team, paramedic personnel form ALMA and an ambulance. The symptoms of Acute Mountain Sickness are headache, sicknesses, gastrointestinal inconveniences, fatigue and insomnia that, depending on their intensities, decrease the capacity to carry out the most routine activities. The valuable data collected will enhance our knowledge of human physiology in extreme environments, generating recommendations that will improve wellbeing and health not only in high-altitude observatories, but also in mining and Antarctic personnel. "We are pleased that ALMA is contributing to other disciplines, like medicine, even before the antennas begin to explore the universe," said Felix Mirabel, ESO's representative in Chile. "This outstanding long-term research that will provide crucial information of human physiology to experts worldwide, has been made possible thanks to the combined effort of Chilean and European universities, in collaboration with ALMA". The Atacama

  2. National Academy of Sciences Recommends Continued Support of ALMA Project

    NASA Astrophysics Data System (ADS)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes

  3. The ALMA Common Software as a Basis for a Distributed Software Development

    NASA Astrophysics Data System (ADS)

    Raffi, Gianni; Chiozzi, Gianluca; Glendenning, Brian

    The Atacama Large Millimeter Array (ALMA) is a joint project involving astronomical organizations in Europe, North America and Japan. ALMA will consist of 64 12-m antennas operating in the millimetre and sub-millimetre wavelength range, with baselines of more than 10 km. It will be located at an altitude above 5000 m in the Chilean Atacama desert. The ALMA Computing group is a joint group with staff scattered on 3 continents and is responsible for all the control and data flow software related to ALMA, including tools ranging from support of proposal preparation to archive access of automatically created images. Early in the project it was decided that an ALMA Common Software (ACS) would be developed as a way to provide to all partners involved in the development a common software platform. The original assumption was that some key middleware like communication via CORBA and the use of XML and Java would be part of the project. It was intended from the beginning to develop this software in an incremental way based on releases, so that it would then evolve into an essential embedded part of all ALMA software applications. In this way we would build a basic unity and coherence into a system that will have been developed in a distributed fashion. This paper evaluates our progress after 1.5 year of work, following a few tests and preliminary releases. It analyzes the advantages and difficulties of such an ambitious approach, which creates an interface across all the various control and data flow applications.

  4. ALMA Partners Award Prototype Antenna Contracts in Europe and the USA

    NASA Astrophysics Data System (ADS)

    2000-03-01

    prototype antennas will be delivered to the NRAO VLA site in October and November of 2001, respectively. Preparations for ALMA prototype testing are already underway at the VLA site. Three pads are being constructed for the antennas to rest on. An ALMA control room within the VLA control building is being established. About ten full-time ALMA staff will be involved in the testing. Additionally, ALMA project members from around the U.S. and the world will visit the VLA site to participate in the test program. The two prototype antennas will first be tested separately. Following that, the two will be linked together and tested as an interferometer. Millimeter-wave astronomy is the study of the universe in the spectral region between what is traditionally considered radio waves and infrared radiation. In this realm, ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the member states of the European Southern Observatory (Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland), the Centre National de la Recherche Scientifique (CNRS) in France, the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, the United Kingdom Particle Physics and Astronomy Research Council (PPARC), the Oficina de Ciencia Y Tecnologia/Instituto Geografico Nacional OCYT/IGN (Spain) and the Swedish Natural Science Research Council (NFR). The project is currently in a Design and Development phase governed by a Memorandum of Understanding between the United States and Europe. Negotiations are currently underway to add Canada to the United States team. Note [1] This Press Release is published simultaneously by the U.S. National

  5. Solar research with ALMA: Czech node of European ARC as your user-support infrastructure

    NASA Astrophysics Data System (ADS)

    Bárta, M.; Skokić, I.; Brajša, R.; Czech ARC Node Team

    2017-08-01

    ALMA (Atacama Large Millimeter/sub-millimeter Array) is by far the largest project of current ground-based observational facilities in astronomy and astrophysics. It is built and operated in the world-wide cooperation (ESO, NRAO, NAOJ) at altitude of 5000m in the desert of Atacama, Chile. Because of its unprecedented capabilities, ALMA is considered as a cutting-edge research device in astrophysics with potential for many breakthrough discoveries in the next decade and beyond. In spite it is not exclusively solar-research dedicated instrument, science observations of the Sun are now possible and has recently started in the observing Cycle 4 (2016-2017). In order to facilitate user access to this top-class, but at the same moment very complicated device to researchers lacking technical expertise, a network of three ALMA Regional Centers (ARCs) has been formed in Europe, North America, and East Asia as a user-support infrastructure and interface between the observatory and users community. After short introduction to ALMA the roles of ARCs and hint how to utilize their services will be presented, with emphasis to the specific (and in Europe unique) mission of the Czech ARC node in solar research with ALMA. Finally, peculiarities of solar observations that demanded the development of the specific Solar ALMA Observing Modes will be discussed and the results of Commissioning and Science Verification observing campaigns (solar ALMA maps) will be shown.

  6. Solar research with ALMA: Czech node of European ARC as your user-support infrastructure

    NASA Astrophysics Data System (ADS)

    Bárta, M.; Skokić, I.; Brajša, R.; Czech ARC Node Team

    2017-08-01

    ALMA (Atacama Large Millimeter/sub-millimeter Array) is by far the largest project of current ground-based observational facilities in astronomy and astrophysics. It is built and operated in the world-wide cooperation (ESO, NRAO, NAOJ) at altitude of 5000m in the desert of Atacama, Chile. Because of its unprecedented capabilities, ALMA is considered as a cutting-edge research device in astrophysics with potential for many breakthrough discoveries in the next decade and beyond. In spite it is not exclusively solar-research dedicated instrument, science observations of the Sun are now possible and has recently started in the observing Cycle 4 (2016-2017). In order to facilitate user access to this top-class, but at the same moment very complicated device to researchers lacking technical expertise, a network of three ALMA Regional Centers (ARCs) has been formed in Europe, North America, and East Asia as a user-support infrastructure and interface between the observatory and users community. After short introduction to ALMA the roles of ARCs and hint how to utilize their services will be presented, with emphasis to the specific (and in Europe unique) mission of the Czech ARC node in solar research with ALMA. Finally, peculiarities of solar observations that demanded the development of the specific Solar ALMA Observing Modes will be discuss

  7. ALMA Pipeline: Current Status

    NASA Astrophysics Data System (ADS)

    Shinnaga, H.; Humphreys, E.; Indebetouw, R.; Villard, E.; Kern, J.; Davis, L.; Miura, R. E.; Nakazato, T.; Sugimoto, K.; Kosugi, G.; Akiyama, E.; Muders, D.; Wyrowski, F.; Williams, S.; Lightfoot, J.; Kent, B.; Momjian, E.; Hunter, T.; ALMA Pipeline Team

    2015-12-01

    The ALMA Pipeline is the automated data reduction tool that runs on ALMA data. Current version of the ALMA pipeline produces science quality data products for standard interferometric observing modes up to calibration process. The ALMA Pipeline is comprised of (1) heuristics in the form of Python scripts that select the best processing parameters, and (2) contexts that are given for book-keeping purpose of data processes. The ALMA Pipeline produces a "weblog" that showcases detailed plots for users to judge how each step of calibration processes are treated. The ALMA Interferometric Pipeline was conditionally accepted in March 2014 by processing Cycle 0 and Cycle 1 data sets. From Cycle 2, ALMA Pipeline is used for ALMA data reduction and quality assurance for the projects whose observing modes are supported by the ALMA Pipeline. Pipeline tasks are available based on CASA version 4.2.2, and the first public pipeline release called CASA 4.2.2-pipe has been available since October 2014. One can reduce ALMA data both by CASA tasks as well as by pipeline tasks by using CASA version 4.2.2-pipe.

  8. New Inspiring Planetarium Show Introduces ALMA to the Public

    NASA Astrophysics Data System (ADS)

    2009-03-01

    As part of a wide range of education and public outreach activities for the International Year of Astronomy 2009 (IYA2009), ESO, together with the Association of French Language Planetariums (APLF), has produced a 30-minute planetarium show, In Search of our Cosmic Origins. It is centred on the global ground-based astronomical Atacama Large Millimeter/submillimeter Array (ALMA) project and represents a unique chance for planetariums to be associated with the IYA2009. ESO PR Photo 09a/09 Logo of the ALMA Planetarium Show ESO PR Photo 09b/09 Galileo's first observations with a telescope ESO PR Photo 09c/09 The ALMA Observatory ESO PR Photo 09d/09 The Milky Way band ESO PR Video 09a/09 Trailer in English ALMA is the leading telescope for observing the cool Universe -- the relic radiation of the Big Bang, and the molecular gas and dust that constitute the building blocks of stars, planetary systems, galaxies and life itself. It is currently being built in the extremely arid environment of the Chajnantor plateau, at 5000 metres altitude in the Chilean Andes, and will start scientific observations around 2011. ALMA, the largest current astronomical project, is a revolutionary telescope, comprising a state-of-the-art array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. In Search of our Cosmic Origins highlights the unprecedented window on the Universe that this facility will open for astronomers. "The show gives viewers a fascinating tour of the highest observatory on Earth, and takes them from there out into our Milky Way, and beyond," says Douglas Pierce-Price, the ALMA Public Information Officer at ESO. Edited by world fulldome experts Mirage3D, the emphasis of the new planetarium show is on the incomparable scientific adventure of the ALMA project. A young female astronomer guides the audience through a story that includes unique animations and footage, leading the viewer from the first observations by Galileo

  9. Resolving Planet Formation in the Era of ALMA and Extreme AO Report on the joint ESO/NRAO Conference

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.; Hales, A.; Milli, J.

    2016-12-01

    ALMA in its long-baseline configuration, as well as new optical/near-infrared adaptive optics instruments such as SPHERE and GPI, are now able to achieve spatial resolutions considerably better than 0.1 arcseconds. These facilities are enabling us to observe for the first time the regions around young stars where planets form. Already, complex structures including holes, spiral waves and extreme asymmetries are being found in these protoplanetary discs. To discuss these newly-imaged phenomena, and to enable cross-fertilisation of ideas between the two wavelength ranges, a joint ESO/NRAO workshop was held in Santiago. We present here a summary and some highlights of the meeting.

  10. HerMES: ALMA Imaging of Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Bussmann, R. S.; Riechers, D.; Fialkov, A.; Scudder, J.; Hayward, C. C.; Cowley, W. I.; Bock, J.; Calanog, J.; Chapman, S. C.; Cooray, A.; De Bernardis, F.; Farrah, D.; Fu, Hai; Gavazzi, R.; Hopwood, R.; Ivison, R. J.; Jarvis, M.; Lacey, C.; Loeb, A.; Oliver, S. J.; Pérez-Fournon, I.; Rigopoulou, D.; Roseboom, I. G.; Scott, Douglas; Smith, A. J.; Vieira, J. D.; Wang, L.; Wardlow, J.

    2015-10-01

    The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Herschel. We present 870 μm 0.″45 resolution imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of a sample of 29 HerMES DSFGs that have far-infrared (FIR) flux densities that lie between the brightest of sources found by Herschel and fainter DSFGs found via ground-based surveys in the submillimeter region. The ALMA imaging reveals that these DSFGs comprise a total of 62 sources (down to the 5σ point-source sensitivity limit in our ALMA sample; σ ≈ 0.2 {mJy}). Optical or near-infrared imaging indicates that 36 of the ALMA sources experience a significant flux boost from gravitational lensing (μ \\gt 1.1), but only six are strongly lensed and show multiple images. We introduce and make use of uvmcmcfit, a general-purpose and publicly available Markov chain Monte Carlo visibility-plane analysis tool to analyze the source properties. Combined with our previous work on brighter Herschel sources, the lens models presented here tentatively favor intrinsic number counts for DSFGs with a break near 8 {mJy} at 880 μ {{m}} and a steep fall-off at higher flux densities. Nearly 70% of the Herschel sources break down into multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sources discovered in single-dish submillimeter or FIR surveys. The ALMA counterparts to our Herschel targets are located significantly closer to each other than ALMA counterparts to sources found in the LABOCA ECDFS Submillimeter Survey. Theoretical models underpredict the excess number of sources with small separations seen in our ALMA sample. The high multiplicity rate and small projected separations between sources seen in our sample argue in favor of interactions

  11. The High Redshift Universe Seen Through the Eyes of ALMA

    NASA Astrophysics Data System (ADS)

    Wiklind, Tommy

    2012-07-01

    The Atacama Large Millimeter/submm Array (ALMA) is an interferometric telescope currently under construction on the Chajnantor Plateau in northern Chile. It is situated at an altitude of 5000m, in one of the driest places in the world. The combination of the meteorological conditions, increased total collecting area and the use of state-of-the-art receivers means that the fully operational ALMA is a factor 10-1000 more sensitive than existing facilities, depending on the wavelength. When completed in 2013, ALMA will consists of 66 antennas, with maximum baselines of up to 15 km and it will be able to observe at wavelengths from 10 millimeter to ~350micron. ALMA will be able to provide an angular resolution of ~0.05 arcseconds. ALMA is still under construction, but has started producing science in an 'Early Science' phase. The goal with ALMA has from the beginning been to provide very high sensitivity as well as an angular resolution matching that of space based optical observatories such as the HST. One of three main drivers when designing ALMA has been the ability to study the high redshift universe. The main reason behind this is that almost half of the integrated background radiation comes from the far-infrared wavelength regime. This emission is interpreted as originating from dust re-radiated stellar emission in high redshift galaxies. Interstellar dust is almost invariably associated with molecular gas, that can be studied using molecular rotational transitions. The shape of the dust spectral energy distribution ensures that the observed flux at a fixed wavelength long-ward of the far-infrared peak (about 100micron) remains more or less constant over a redshift range z=1-10. This aspect makes dust continuum emission extraordinarily important for studying galaxies and Active Galactic Nuclei at high redshift. Through observations of line emission from molecular transitions it is possible to study the associated molecular gas distribution and its kinematics. The

  12. VLT/SPHERE- and ALMA-based shape reconstruction of asteroid (3) Juno

    NASA Astrophysics Data System (ADS)

    Viikinkoski, M.; Kaasalainen, M.; Ďurech, J.; Carry, B.; Marsset, M.; Fusco, T.; Dumas, C.; Merline, W. J.; Yang, B.; Berthier, J.; Kervella, P.; Vernazza, P.

    2015-09-01

    We use the recently released Atacama Large Millimeter Array (ALMA) and VLT/SPHERE science verification data, together with earlier adaptive-optics images, stellar occultation, and lightcurve data to model the 3D shape and spin of the large asteroid (3) Juno with the all-data asteroid modelling (ADAM) procedure. These data set limits on the plausible range of shape models, yielding reconstructions suggesting that, despite its large size, Juno has sizable unrounded features moulded by non-gravitational processes such as impacts. Based on observations collected at the European Southern Observatory, Paranal, Chile (prog. ID: 60.A-9379, 086.C-0785), and at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  13. CLEANER-Hydrologic Observatory Joint Science Plan

    NASA Astrophysics Data System (ADS)

    Welty, C.; Dressler, K.; Hooper, R.

    2005-12-01

    modeling and decision-support tools to predict the underlying processes or subsequently forecast the effects of different management strategies. Water is a critical driver for the functioning of all ecosystems and development of human society, and it is a key ingredient for the success of industry, agriculture and, national economy. CLEANER-Hydrologic Observatories will foster cutting-edge science and engineering research that addresses major national needs (public and governmental) related to water and include, for example: (i) water resource problems, such as impaired surface waters, contaminated ground water, water availability for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a balance of economic and environmental sustainability; (iv) reversing environmental degradation; and (v) protecting against chemical and biological threats. CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) is an ENG initiative; the Hydrologic Observatory Network is GEO initiative through CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.). The two initiatives were merged into a joint, bi-directorate program in December 2004.

  14. The ALMA common software: dispatch from the trenches

    NASA Astrophysics Data System (ADS)

    Schwarz, J.; Sommer, H.; Jeram, B.; Sekoranja, M.; Chiozzi, G.; Grimstrup, A.; Caproni, A.; Paredes, C.; Allaert, E.; Harrington, S.; Turolla, S.; Cirami, R.

    2008-07-01

    The ALMA Common Software (ACS) provides both an application framework and CORBA-based middleware for the distributed software system of the Atacama Large Millimeter Array. Building upon open-source tools such as the JacORB, TAO and OmniORB ORBs, ACS supports the development of component-based software in any of three languages: Java, C++ and Python. Now in its seventh major release, ACS has matured, both in its feature set as well as in its reliability and performance. However, it is only recently that the ALMA observatory's hardware and application software has reached a level at which it can exploit and challenge the infrastructure that ACS provides. In particular, the availability of an Antenna Test Facility(ATF) at the site of the Very Large Array in New Mexico has enabled us to exercise and test the still evolving end-to-end ALMA software under realistic conditions. The major focus of ACS, consequently, has shifted from the development of new features to consideration of how best to use those that already exist. Configuration details which could be neglected for the purpose of running unit tests or skeletal end-to-end simulations have turned out to be sensitive levers for achieving satisfactory performance in a real-world environment. Surprising behavior in some open-source tools has required us to choose between patching code that we did not write or addressing its deficiencies by implementing workarounds in our own software. We will discuss these and other aspects of our recent experience at the ATF and in simulation.

  15. The complexity of Orion: an ALMA view. I. Data and first results

    NASA Astrophysics Data System (ADS)

    Pagani, L.; Favre, C.; Goldsmith, P. F.; Bergin, E. A.; Snell, R.; Melnick, G.

    2017-07-01

    -1) revealing a quiescent region that has not been affected by this explosion. This probably indicates that the compact ridge is either over 10 000 au in front of or behind the rest of the region. Conclusions: Many lines remain unidentified, and only a detailed modeling of all known species, including vibrational states of isotopologues combined with the detailed spatial analysis offered by ALMA enriched with zero-spacing data, will allow new species to be detected. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00533.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.The reduced ALMA data cubes as listed in Table 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A32

  16. A Multi-Wavelength View of Planet Forming Regions: Unleashing the Full Power of ALMA

    NASA Astrophysics Data System (ADS)

    Tazzari, Marco

    2017-11-01

    Observations at sub-mm/mm wavelengths allow us to probe the solids in the interior of protoplanetary disks, where the bulk of the dust is located and planet formation is expected to occur. However, the actual size of dust grains is still largely unknown due to the limited angular resolution and sensitivity of past observations. The upgraded VLA and, especially, the ALMA observatories provide now powerful tools to resolve grain growth in disks, making the time ripe for developing a multi-wavelength analysis of sub-mm/mm observations of disks. In my contribution I will present a novel analysis method for multi-wavelength ALMA/VLA observations which, based on the self-consistent modelling of the sub-mm/mm disk continuum emission, allows us to constrain simultaneously the size distribution of dust grains and the disk's physical structure (Tazzari et al. 2016, A&A 588 A53). I will also present the recent analysis of spatially resolved ALMA Band 7 observations of a large sample of disks in the Lupus star forming region, from which we obtained a tentative evidence of a disk size-disk mass correlation (Tazzari et al. 2017, arXiv:1707.01499). Finally, I will introduce galario, a GPU Accelerated Library for the Analysis of Radio Interferometry Observations. Fitting the observed visibilities in the uv-plane is computationally demanding: with galario we solve this problem for the current as well as for the full-science ALMA capabilities by leveraging on the computing power of GPUs, providing the computational breakthrough needed to fully exploit the new wealth of information delivered by ALMA.

  17. End-to-end operations at the National Radio Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Radziwill, Nicole M.

    2008-07-01

    In 2006 NRAO launched a formal organization, the Office of End to End Operations (OEO), to broaden access to its instruments (VLA/EVLA, VLBA, GBT and ALMA) in the most cost-effective ways possible. The VLA, VLBA and GBT are mature instruments, and the EVLA and ALMA are currently under construction, which presents unique challenges for integrating software across the Observatory. This article 1) provides a survey of the new developments over the past year, and those planned for the next year, 2) describes the business model used to deliver many of these services, and 3) discusses the management models being applied to ensure continuous innovation in operations, while preserving the flexibility and autonomy of telescope software development groups.

  18. ALMA Observing Strategies

    NASA Astrophysics Data System (ADS)

    Biggs, Andy

    2018-03-01

    The ALMA Observing Tool (OT) is a Java-based tool used to prepare ALMA observations. In this talk, I highlight the particular features relevant to setting up single dish observations when these are needed to observe sources where the largest angular scale requires the addition of the total power antennas.

  19. Ssalmon - The Solar Simulations For The Atacama Large Millimeter Observatory Network

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Ssalmon Group

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) provides a new powerful tool for observing the solar chromosphere at high spatial, temporal, and spectral resolution, which will allow for addressing a wide range of scientific topics in solar physics. Numerical simulations of the solar atmosphere and modeling of instrumental effects are valuable tools for constraining, preparing and optimizing future observations with ALMA and for interpreting the results. In order to co-ordinate related activities, the Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated on September 1st, 2014, in connection with the NA- and EU-led solar ALMA development studies. As of April, 2015, SSALMON has grown to 83 members from 18 countries (plus ESO and ESA). Another important goal of SSALMON is to promote the scientific potential of solar science with ALMA, which has resulted in two major publications so far. During 2015, the SSALMON Expert Teams produced a White Paper with potential science cases for Cycle 4, which will be the first time regular solar observations will be carried out. Registration and more information at http://www.ssalmon.uio.no.

  20. ALMA Correlator Real-Time Data Processor

    NASA Astrophysics Data System (ADS)

    Pisano, J.; Amestica, R.; Perez, J.

    2005-10-01

    The design of a real-time Linux application utilizing Real-Time Application Interface (RTAI) to process real-time data from the radio astronomy correlator for the Atacama Large Millimeter Array (ALMA) is described. The correlator is a custom-built digital signal processor which computes the cross-correlation function of two digitized signal streams. ALMA will have 64 antennas with 2080 signal streams each with a sample rate of 4 giga-samples per second. The correlator's aggregate data output will be 1 gigabyte per second. The software is defined by hard deadlines with high input and processing data rates, while requiring interfaces to non real-time external computers. The designed computer system - the Correlator Data Processor or CDP, consists of a cluster of 17 SMP computers, 16 of which are compute nodes plus a master controller node all running real-time Linux kernels. Each compute node uses an RTAI kernel module to interface to a 32-bit parallel interface which accepts raw data at 64 megabytes per second in 1 megabyte chunks every 16 milliseconds. These data are transferred to tasks running on multiple CPUs in hard real-time using RTAI's LXRT facility to perform quantization corrections, data windowing, FFTs, and phase corrections for a processing rate of approximately 1 GFLOPS. Highly accurate timing signals are distributed to all seventeen computer nodes in order to synchronize them to other time-dependent devices in the observatory array. RTAI kernel tasks interface to the timing signals providing sub-millisecond timing resolution. The CDP interfaces, via the master node, to other computer systems on an external intra-net for command and control, data storage, and further data (image) processing. The master node accesses these external systems utilizing ALMA Common Software (ACS), a CORBA-based client-server software infrastructure providing logging, monitoring, data delivery, and intra-computer function invocation. The software is being developed in tandem

  1. Shocks and Cool Cores: An ALMA View of Massive Galaxy Cluster Formation at High Redshifts

    NASA Astrophysics Data System (ADS)

    Basu, Kaustuv

    2017-07-01

    These slides present some recent results on the Sunyaev-Zel'dovich (SZ) effect imaging of galaxy cluster substructures. The advantage of SZ imaging at high redshifts or in the low density cluster outskirts is already well-known. Now with ALMA a combination of superior angular resolution and high sensitivity is available. One example is the first ALMA measurement of a merger shock at z=0.9 in the famous El Gordo galaxy cluster. Here comparison between SZ, X-ray and radio data enabled us to put constraints on the shock Mach number and magnetic field strength for a high-z radio relic. Second example is the ALMA SZ imaging of the core region of z=1.4 galaxy cluster XMMU J2235.2-2557. Here ALMA data provide an accurate measurement of the thermal pressure near the cluster center, and from a joint SZ/X-ray analysis we find clear evidence for a reduced core temperature. This result indicate that a cool core establishes itself early enough in the cluster formation history while the gas accumulation is still continuing. The above two ALMA measurements are among several other recent SZ results that shed light on the formation process of massive clusters at high redshifts.

  2. The Space Infrared Interferometric Telescope (SPIRIT) and its Complementarity to ALMA

    NASA Technical Reports Server (NTRS)

    Leisawitz, Dave

    2007-01-01

    We report results of a pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their chemical organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) Learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. In each of these science domains, SPIRIT will yield information complementary to that obtainable with the James Webb Space Telescope (JWST)and the Atacama Large Millimeter Array (ALMA), and all three observatories could operate contemporaneously. Here we shall emphasize the SPIRIT science goals (1) and (2) and the mission's complementarity with ALMA.

  3. ESO Signs Largest-Ever European Industrial Contract For Ground-Based Astronomy Project ALMA

    NASA Astrophysics Data System (ADS)

    2005-12-01

    coordinating consortiums in charge of complex, high-performance ground systems." ALMA is an international astronomy facility. It is a partnership between Europe, North America and Japan, in cooperation with the Republic of Chile. The European contribution is funded by ESO and Spain, with the construction and operations being managed by ESO. A matching contribution is being made by the USA and Canada, who will also provide 25 antennas. Japan will provide additional antennas, thus making this a truly worldwide endeavour. ALMA will be located on the 5,000m high Llano de Chajnantor site in the Atacama Desert of Northern Chile. ALMA will consist of a giant array of 12-m antennas separated by baselines of up to 18 km and is expected to start partial operation by 2010-2011. The excellent site, the most sensitive receivers developed so far, and the large number of antennas will allow ALMA to have a sensitivity that is many times better than any other comparable instrument. "ALMA will bring to sub-millimetre astronomy the aperture synthesis techniques of radio astronomy, enabling precision imaging to be done on sub-arcsecond angular scales, and will nicely complement the ESO VLT/VLTI observatory", said Dr. Hans Rykaczewski, the ALMA European Project Manager. Millimetre-wave astronomy is the study of the universe in the spectral region between what is traditionally considered radio waves and infrared radiation. In this realm, ALMA will study the evolution of galaxies, including very early stages, gather crucial data on the formation of stars, proto-planetary discs, and planets, and provide new insights on the familiar objects of our own solar system. A prototype antenna had already been built by Alcatel Alenia Space and European Industrial Engineering and thoroughly tested along with prototypes antennas from Vertex/LSI and Mitsubishi at the ALMA Antenna Test Facility located at the Very Large Array site in Socorro, New Mexico. For more information on the ALMA project, please go to http://www.eso.org/projects/alma/.

  4. ESO Demonstration Project with the NRAO 12-m Antenna

    NASA Astrophysics Data System (ADS)

    Heald, R.; Karban, R.

    2000-03-01

    During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.

  5. Protostellar Outflows Mapped with ALMA and Techniques to Include Short Spacings

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele

    2018-01-01

    Protostellar outflows are early signs of star formation, yet in cluster environments - common sites of star formation - their role and interaction with surrounding gas are complicated. Protostellar outflows are interesting and complex because they connect protostars (scales 10s au) to the surrounding gas environment (few pc), and their morphology constrains launching and/or accretion modes. A complete outflow study must use observing methods that recover several orders of magnitude of spatial scales, ideally with sub-arcsecond resolution and mapping over a few parsecs. ALMA provides high-resolution observations of outflows, and in some cases outflows have been mapped in clusters. Combining with observations using the Total Power array is possible, but challenging, and a large single dish telescope providing more overlap in uv space is advantageous. In this presentation I show protostellar outflows observed with ALMA using 12m, 7m, and To tal Power arrays. With a new CASA tool TP2VIS we create total power ``visibility'' data and perform joint imaging and deconvolution of interferometry and single dish data. TP2VIS will ultimately provide synergy between ALMA and AtLAST data.

  6. Upcoming approved ALMA studies and new projects

    NASA Astrophysics Data System (ADS)

    Wootten, Al

    2016-09-01

    Science results from the Atacama Large Millimeter/submillimeter Array (ALMA) have been transforming astronomy, and more than 400 papers have been published on a wide range of topics to date, from nearly one thousand delivered datasets. Installation and commissioning of two of the final three of the ten receiver bands defined in the specifications and requirements are in progress. Final installation of its ten bands empower ALMA to operate at wavelengths from 7mm to 0.3mm across a decade of frequency access as enabled by broad bandwidth ALMA receivers, powerful correlators and spectacular site. The ALMA specifications, contracts and construction began in 2003. The impetus to development of cutting edge technology spurred by ALMA construction has resulted in enormous advances since that time. Having invested ˜$1.3B USD to realize the largest historical advance in groundbased astronomy, it is vital to maintain and expand ALMA capabilities. The ALMA Development Program provides resources for that; the science community will define the scientific goals to drive that program into the future. Studies undertaken throughout the ALMA partnership have identified high-impact initiatives providing major advances in ALMA sensitivity, instantaneous bandwidth and spectral coverage, spatial resolution, and imaging speed. An overview of those initiatives will be given to spur further discussion of the science goals they will enable, and to provide further guiding scientific vision.

  7. Not letting the perfect be the enemy of the good: steps toward science-ready ALMA images

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Donovan Meyer, Jennifer; Brogan, Crystal; Moullet, Arielle; Hibbard, John; Indebetouw, Remy; Mason, Brian

    2016-07-01

    Historically, radio observatories have placed the onus of calibrating and imaging data on the observer, thus restricting their user base to those already initiated into the mysteries of radio data or those willing to develop these skills. To expand its user base, the Atacama Large Millimeter/submillimeter Array (ALMA) has a high- level directive to calibrate users' data and, ultimately, to deliver scientifically usable images or cubes to principle investigators (PIs). Although an ALMA calibration pipeline is in place, all delivered images continue to be produced for the PI by hand. In this talk, I will describe on-going efforts at the Northern American ALMA Science Center to produce more uniform imaging products that more closely meet the PI science goals and provide better archival value. As a first step, the NAASC imaging group produced a simple imaging template designed to help scientific staff produce uniform imaging products. This script allowed the NAASC to maximize the productivity of data analysts with relatively little guidance by the scientific staff by providing a step-by-step guide to best practices for ALMA imaging. Finally, I will describe the role of the manually produced images in verifying the imaging pipeline and the on-going development of said pipeline. The development of the imaging template, while technically simple, shows how small steps toward unifying processes and sharing knowledge can lead to large gains for science data products.

  8. Solar Observations with ALMA

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven

    2018-04-01

    The continuum intensity at millimeter wavelengths can serve as an essentially linear thermometer of the plasma in a thin layer in the atmosphere of the Sun, whereas the polarisation of the received radiation is a measure for the longitudinal magnetic field component in the same layer. The enormous leap in terms of spatial resolution with the Atacama Large Millimeter/submillimeter Array (ALMA) now makes it possible to observe the intricate fine-structure of the solar atmosphere at sufficiently high spatial, temporal, and spectral resolution, thus enabling studies of a wide range of scientific topics in solar physics that had been inaccessible at millimeter wavelengths before. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic layer between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer solar atmosphere. ALMA observations of the solar chromosphere, which are offered as a regular capability since 2016, therefore have the potential to make important contributions towards the solution of fundamental questions in solar physics with implications for our understanding of stars in general. In this presentation, I will give a short description of ALMA's solar observing mode, it challenges and opportunities, and selected science cases in combination with numerical simulations and coordinated observations at other wavelengths. ALMA's scientific potential for studying the dynamic small-scale pattern of the solar chromosphere is illustrated with first results from Cycle 4.

  9. The ALMA high speed optical communication link is here: an essential component for reliable present and future operations

    NASA Astrophysics Data System (ADS)

    Filippi, G.; Ibsen, J.; Jaque, S.; Liello, F.; Ovando, N.; Astudillo, A.; Parra, J.; Saldias, Christian

    2016-07-01

    Announced in 2012, started in 2013 and completed in 2015, the ALMA high bandwidth communication system has become a key factor to achieve the operational and scientific goals of ALMA. This paper summarizes the technical, organizational, and operational goals of the ALMA Optical Link Project, focused in the creation and operation of an effective and sustainable communication infrastructure to connect the ALMA Operations Support Facility and Array Operations Site, both located in the Atacama Desert in the Northern region of Chile, with the point of presence of REUNA in Antofagasta, about 400km away, and from there to the Santiago Central Office in the Chilean capital through the optical infrastructure created by the EC-funded EVALSO project and now an integral part of the REUNA backbone. This new infrastructure completed in 2014 and now operated on behalf of ALMA by REUNA, the Chilean National Research and Education Network, uses state of the art technologies, like dark fiber from newly built cables and DWDM transmission, allowing extending the reach of high capacity communication to the remote region where the Observatory is located. The paper also reports on the results obtained during the first year and a half testing and operation period, where different operational set ups have been experienced for data transfer, remote collaboration, etc. Finally, the authors will present a forward look of the impact of it to both the future scientific development of the Chajnantor Plateau, where many installations area are (and will be) located, as well as the potential Chilean scientific backbone long term development.

  10. Isotopic Ratios in Nitriles from Submillimeter Spectroscopy Using SMA and ALMA

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Moreno, Raphael; Vinatier, Sandrine; Lellouch, Emmanuel; Butler, Bryan J.; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq

    2016-10-01

    We present submillimeter spectroscopic observations of Titan obtained using the Submillimeter Array (SMA) in 2011, and the Atacama Large Millimeter/Submillimeter Array (ALMA) in 2012, some of which have previously been presented but not fully analyzed (1, 2, 3). The SMA observations were obtained at low spatial resolution, providing disk average spectra, but the ALMA observations provide low resolution mapping of Titan (~0.4"-0.6" when Titan was 0.77" surface diameter). We will present detailed radiative transfer analysis of detected spectral lines to derive isotopic ratios in two nitriles: HCN (D/H, 13C/12C, 15N/14N) and HC3N (15N/14N). The analysis makes use of nearly concurrent CIRS temperature profiles as important constraints for the vertical profiles of these species, allowing high precision measurements of the ratios. Finally, we will highlight current and future ALMA observations that will allow monitoring of non-symmetric molecular species in Titan's upper atmosphere from Earth, beyond the end of the Cassini mission.(1) Gurwell et al (2011) EPSC-DPS Joint Meeting 2011, p270. (2) Moreno et al (2014) EPSC 2014 Abstracts, Vol. 9, id. EPSC2014-438. (3) Moreno etal (2014), DPS meeting #46, id.211.19

  11. Demonstrating a New Census of Infrared Galaxies with ALMA (DANCING-ALMA). I. FIR Size and Luminosity Relation at z = 0-6 Revealed with 1034 ALMA Sources

    NASA Astrophysics Data System (ADS)

    Fujimoto, Seiji; Ouchi, Masami; Shibuya, Takatoshi; Nagai, Hiroshi

    2017-11-01

    We present the large statistics of the galaxy effective radius R e in the rest-frame far-infrared (FIR) wavelength {R}{{e}({FIR})} obtained from 1627 Atacama Large Millimeter/submillimeter Array (ALMA) 1 mm band maps that become public by 2017 July. Our ALMA sample consists of 1034 sources with the star formation rate ˜ 100{--}1000 {M}⊙ {{yr}}-1 and the stellar mass ˜ {10}10{--}{10}11.5 {M}⊙ at z = 0-6. We homogeneously derive {R}{{e}({FIR})} and FIR luminosity L FIR of our ALMA sources via the uv-visibility method with the exponential disk model, carefully evaluating selection and measurement incompletenesses by realistic Monte-Carlo simulations. We find that there is a positive correlation between {R}{{e}({FIR})} and L FIR at the >99% significance level. The best-fit power-law function, {R}{{e}({FIR})}\\propto {L}{FIR}α , provides α =0.28+/- 0.07, and shows that {R}{{e}({FIR})} at a fixed L FIR decreases toward high redshifts. The best-fit α and the redshift evolution of {R}{{e}({FIR})} are similar to those of R e in the rest-frame UV (optical) wavelength {R}{{e}({UV})} ({R}{{e}({Opt}.)}) revealed by Hubble Space Telescope (HST) studies. We identify that our ALMA sources have significant trends of {R}{{e}({FIR})}≲ {R}{{e}({UV})} and {R}{{e}({Opt}.)}, which suggests that the dusty starbursts take place in compact regions. Moreover, {R}{{e}({FIR})} of our ALMA sources is comparable to {R}{{e}({Opt}.)} of quiescent galaxies at z ˜ 1-3 as a function of stellar mass, supporting the evolutionary connection between these two galaxy populations. We also investigate rest-frame UV and optical morphologies of our ALMA sources with deep HST images, and find that ˜30%-40% of our ALMA sources are classified as major mergers. This indicates that dusty starbursts are triggered by not only the major mergers but also the other mechanism(s).

  12. ALMA, APEX and beyond

    NASA Astrophysics Data System (ADS)

    Zwaan, M.; Testi, L.

    The Atacama Large Millimeter/submillimeter Array (ALMA) is currently being constructed at the 5000m Chajnantor plateau in the Chilean Andes. ALMA has been designed and is being built to deliver transformational science in the millimeter and submillimeter regime for many years to come. We briefly describe the project status and timeline. The Atacama Pathfinder Experiment (APEX), built at the same site, is already operational and proves to be an effective survey instrument. We discuss which niches in millimeter/submillimeter astronomy will remain open for a possible facility in Antarctica.

  13. ALMA from the Users' Perspective

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey

    2010-05-01

    After decades of dreaming and preparation, the call for early science with ALMA is just around the corner. The goal of this talk is to illustrate the process of preparing and carrying out a research program with ALMA. This presentation will step through the user interface for proposal preparation, proposal review, project tracking, data acquisition, and post-processing. Examples of the software tools, including the simulator and spectral line catalog, will be included.

  14. Detection of Lensing Substructure Using Alma Observations of the Dusty Galaxy SDP.81

    DOE PAGES

    Hezaveh, Yashar D.; Dalal, Neal; Marrone, Daniel P.; ...

    2016-05-19

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 10 8.96±0.12 M ⊙ subhalo near one of the images, with amore » significance of 6.9σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ~ 2 × 10 7 M ⊙, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Finally, observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.« less

  15. ALMA and RATIR observations of GRB 131030A

    NASA Astrophysics Data System (ADS)

    Huang, Kuiyun; Urata, Yuji; Takahashi, Satoko; Im, Myungshin; Yu, Po-Chieh; Choi, Changsu; Butler, Nathaniel; Watson, Alan M.; Kutyrev, Alexander; Lee, William H.; Klein, Chris; Fox, Ori D.; Littlejohns, Owen; Cucchiara, Nino; Troja, Eleonora; González, Jesús; Richer, Michael G.; Román-Zúñiga, Carlos; Bloom, Josh; Prochaska, J. Xavier; Gehrels, Neil; Moseley, Harvey; Georgiev, Leonid; de Diego, José A.; Ramirez-Ruiz, Enrico

    2017-04-01

    We report on the first open-use based Atacama Large Millimeter/submm Array (ALMA) 345 GHz observation for the late afterglow phase of GRB 131030A. The ALMA observation constrained a deep limit at 17.1 d for the afterglow and host galaxy. We also identified a faint submillimeter source (ALMA J2300-0522) near the GRB 131030A position. The deep limit at 345 GHz and multifrequency observations obtained using Swift and RATIR yielded forward-shock modeling with a two-dimensional relativistic hydrodynamic jet simulation and described X-ray excess in the afterglow. The excess was inconsistent with the synchrotron self-inverse Compton radiation from the forward shock. The host galaxy of GRB 131030A and optical counterpart of ALMA J2300-0522 were also identified in the Subaru image. Based on the deep ALMA limit for the host galaxy, the 3σ upper limits of IR luminosity and the star formation rate (SFR) are estimated as LIR < 1.11 × 1011 L⊙ and SFR <18.7 (M⊙ yr-1), respectively. Although the separation angle from the burst location (3{^''.}5) was rather large, ALMA J2300-0522 may be one component of the GRB 131030A host galaxy, according to previous host galaxy cases.

  16. ALMA's long look

    NASA Astrophysics Data System (ADS)

    Morata, Oscar; Huang, Ted

    2017-06-01

    ALMA's Band 1 receivers will open up the 7 mm window to the 66 antennas on Chajnantor Plateau. Oscar Morata and Ted Huang relate the expected delivery schedule and science goals for these instruments.

  17. ALMA On the Move - ESO Awards Important Contract for the ALMA Project

    NASA Astrophysics Data System (ADS)

    2005-12-01

    Only two weeks after awarding its largest-ever contract for the procurement of antennas for the Atacama Large Millimeter Array project (ALMA), ESO has signed a contract with Scheuerle Fahrzeugfabrik GmbH, a world-leader in the design and production of custom-built heavy-duty transporters, for the provision of two antenna transporting vehicles. These vehicles are of crucial importance for ALMA. ESO PR Photo 41a/05 ESO PR Photo 41a/05 The ALMA Transporter (Artist's Impression) [Preview - JPEG: 400 x 756 pix - 234k] [Normal - JPEG: 800 x 1512 pix - 700k] [Full Res - JPEG: 1768 x 3265 pix - 2.3M] Caption: Each of the ALMA transporters will be 10 m wide, 4.5 m high and 16 m long. "The timely awarding of this contract is most important to ensure that science operations can commence as planned," said ESO Director General Catherine Cesarsky. "This contract thus marks a further step towards the realization of the ALMA project." "These vehicles will operate in a most unusual environment and must live up to very strict demands regarding performance, reliability and safety. Meeting these requirements is a challenge for us, and we are proud to have been selected by ESO for this task," commented Hans-Jörg Habernegg, President of Scheuerle GmbH. ESO PR Photo 41b/05 ESO PR Photo 41b/05 Signing the Contract [Preview - JPEG: 400 x 572 pix - 234k] [Normal - JPEG: 800 x 1143 pix - 700k] [HiRes - JPEG: 4368 x 3056 pix - 2.3M] Caption: (left to right) Mr Thomas Riek, Vice-President of Scheuerle GmbH, Dr Catherine Cesarsky, ESO Director General and Mr Hans-Jörg Habernegg, President of Scheuerle GmbH. When completed on the high-altitude Chajnantor site in Chile, ALMA is expected to comprise more than 60 antennas, which can be placed in different locations on the plateau but which work together as one giant telescope. Changing the relative positions of the antennas and thus also the configuration of the array allows for different observing modes, comparable to using a zoom lens, offering

  18. DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.; Mao, Yao-Yuan; Morningstar, Warren

    2016-05-20

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 10{sup 8.96±0.12} M {sub ⊙} subhalo near one of the images, withmore » a significance of 6.9 σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ∼ 2 × 10{sup 7} M {sub ⊙}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.« less

  19. A deep search for H2D+ in protoplanetary disks. Perspectives for ALMA

    NASA Astrophysics Data System (ADS)

    Chapillon, E.; Parise, B.; Guilloteau, S.; Du, F.

    2011-09-01

    Context. The structure in density and temperature of protoplanetary disks surrounding low-mass stars is not well known yet. The protoplanetary disks' midplane are expected to be very cold and thus depleted in molecules in gas phase, especially CO. Recent observations of molecules at very low apparent temperatures (~6 K) challenge this current picture of the protoplanetary disk structures. Aims: We aim at constraining the physical conditions and, in particular, the gas-phase CO abundance in the midplane of protoplanetary disks. Methods: The light molecule H2D+ is a tracer of cold and CO-depleted environment. It is therefore a good candidate for exploring the disks midplanes. We performed a deep search for H2D+ in the two well-known disks surrounding TW Hya and DM Tau using the APEX and JCMT telescopes. The analysis of the observations was done with DISKFIT, a radiative transfer code dedicated to disks. In addition, we used a chemical model describing deuterium chemistry to infer the implications of our observations on the level of CO depletion and on the ionization rate in the disk midplane. Results: The ortho-H2D+ (11,0-11,1) line at 372 GHz was not detected. Although our limit is three times better than previous observations, comparison with the chemical modeling indicates that it is still insufficient for putting useful constraints on the CO abundance in the disk midplane. Conclusions: Even with ALMA, the detection of H2D+ may not be straightforward, and H2D+ may not be sensitive enough to trace the protoplanetary disks midplane. Based on observations carried out with the Atacama Pathfinder Experiment and the James Clerk Maxwell Telescope. APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. The JCMT is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the Netherlands Organisation for Scientific

  20. Protoplanetary disk observations in the ALMA era

    NASA Astrophysics Data System (ADS)

    Salyk, Colette

    2018-06-01

    In this talk, I’ll discuss how ALMA is advancing our understanding of protoplanetary disks with its unprecedented sensitivity and spatial resolution. In particular, I’ll focus on how ALMA is providing our first detailed view of gas-phase chemistry in giant planet forming regions, allowing us to test our ideas about how planets develop their diverse characteristics. Interpretation of these spectroscopic datasets requires sophisticated modeling tools and accurate laboratory data, as protoplanetary disks are ever-evolving environments that span a large range in density, temperature, and radiation field. I’ll discuss some recent results that highlight the important interplay between modeling and data analysis/interpretation, and suggest research directions that ALMA is likely to pursue going forward.

  1. Web Services for Astronomical Databases: Connecting AIPS++ to the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Douthit, M. C.

    2002-12-01

    In the year 2010, the NRAO will be operating four of the world's most powerful radio telescopes: GBT, EVLA, VLBA, and ALMA (with international partnership). Multi-Terabyte data sets will quickly accumulate with a rate of twenty-five to fifty Megabytes of data per second generated by ALMA and EVLA each. It will be imperative for scientists to possess software capable of automated data reduction, image synthesis, and archiving. With the evolution of AIPS++ and the recently developed concepts of the image pipeline, the participation of the NRAO in the virtual observatories of the future is now on the horizon giving birth to the need for fast archive access and web service development in AIPS++. When the software package began over 10 years ago, it was not designed for data transfer via the web. In response to the demands of the NVO, we have designed and implemented an application layer that will allow our system to communicate with others. Sponsored by the NRAO and California State University, San Marcos.

  2. ALMA Studies of the Disk-Jet-Outflow Connection

    NASA Astrophysics Data System (ADS)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  3. Ground-water resources of the Alma area, Michigan

    USGS Publications Warehouse

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  4. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    conducted where every aspect of this large project was scrutinised by an international panel of independent experts. The panel found that the E-ELT project is technically ready to enter the construction phase. The go-ahead for E-ELT construction is planned for 2011 and when operations start early in the next decade, European, Brazilian and Chilean astronomers will have access to this giant telescope. The president of ESO's governing body, the Council, Laurent Vigroux, concludes: "Astronomers in Brazil will benefit from collaborating with European colleagues, and naturally from having observing time at ESO's world-class observatories at La Silla and Paranal, as well as on ALMA, which ESO is constructing with its international partners." Notes [1] After ratification of Brazil's membership, the ESO Member States will be Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the

  5. Solar Prominence Modelling and Plasma Diagnostics at ALMA Wavelengths

    NASA Astrophysics Data System (ADS)

    Rodger, Andrew; Labrosse, Nicolas

    2017-09-01

    Our aim is to test potential solar prominence plasma diagnostics as obtained with the new solar capability of the Atacama Large Millimeter/submillimeter Array (ALMA). We investigate the thermal and plasma diagnostic potential of ALMA for solar prominences through the computation of brightness temperatures at ALMA wavelengths. The brightness temperature, for a chosen line of sight, is calculated using the densities of electrons, hydrogen, and helium obtained from a radiative transfer code under non-local thermodynamic equilibrium (non-LTE) conditions, as well as the input internal parameters of the prominence model in consideration. Two distinct sets of prominence models were used: isothermal-isobaric fine-structure threads, and large-scale structures with radially increasing temperature distributions representing the prominence-to-corona transition region. We compute brightness temperatures over the range of wavelengths in which ALMA is capable of observing (0.32 - 9.6 mm), however, we particularly focus on the bands available to solar observers in ALMA cycles 4 and 5, namely 2.6 - 3.6 mm (Band 3) and 1.1 - 1.4 mm (Band 6). We show how the computed brightness temperatures and optical thicknesses in our models vary with the plasma parameters (temperature and pressure) and the wavelength of observation. We then study how ALMA observables such as the ratio of brightness temperatures at two frequencies can be used to estimate the optical thickness and the emission measure for isothermal and non-isothermal prominences. From this study we conclude that for both sets of models, ALMA presents a strong thermal diagnostic capability, provided that the interpretation of observations is supported by the use of non-LTE simulation results.

  6. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  7. OPTICAL–INFRARED PROPERTIES OF FAINT 1.3 mm SOURCES DETECTED WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatsukade, Bunyo; Yabe, Kiyoto; Ohta, Kouji

    2015-09-10

    We report optical-infrared (IR) properties of faint 1.3 mm sources (S{sub 1.3mm} = 0.2–1.0 mJy) detected with the Atacama Large Millimeter/submillimeter Array (ALMA) in the Subaru/XMM-Newton Deep Survey field. We searched for optical/IR counterparts of eight ALMA-detected sources (≥4.0σ, the sum of the probability of spurious source contamination is ∼1) in a K-band source catalog. Four ALMA sources have K-band counterpart candidates within a 0.″4 radius. Comparison between ALMA-detected and undetected K-band sources in the same observing fields shows that ALMA-detected sources tend to be brighter, more massive, and more actively forming stars. While many of the ALMA-identified submillimeter-bright galaxiesmore » (SMGs) in previous studies lie above the sequence of star-forming galaxies in the stellar mass–star formation rate plane, our ALMA sources are located in the sequence, suggesting that the ALMA-detected faint sources are more like “normal” star-forming galaxies rather than “classical” SMGs. We found a region where multiple ALMA sources and K-band sources reside in a narrow photometric redshift range (z ∼ 1.3–1.6) within a radius of 5″ (42 kpc if we assume z = 1.45). This is possibly a pre-merging system and we may be witnessing the early phase of formation of a massive elliptical galaxy.« less

  8. Engineering within the assembly, verification, and integration (AIV) process in ALMA

    NASA Astrophysics Data System (ADS)

    Lopez, Bernhard; McMullin, Joseph P.; Whyborn, Nicholas D.; Duvall, Eugene

    2010-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA will consist of at least 54 twelve-meter antennas and 12 seven-meter antennas operating as an interferometer in the millimeter and sub-millimeter wavelength range. It will be located at an altitude above 5000m in the Chilean Atacama desert. As part of the ALMA construction phase the Assembly, Verification and Integration (AIV) team receives antennas and instrumentation from Integrated Product Teams (IPTs), verifies that the sub-systems perform as expected, performs the assembly and integration of the scientific instrumentation and verifies that functional and performance requirements are met. This paper aims to describe those aspects related to the AIV Engineering team, its role within the 4-station AIV process, the different phases the group underwent, lessons learned and potential space for improvement. AIV Engineering initially focused on the preparation of the necessary site infrastructure for AIV activities, on the purchase of tools and equipment and on the first ALMA system installations. With the first antennas arriving on site the team started to gather experience with AIV Station 1 beacon holography measurements for the assessment of the overall antenna surface quality, and with optical pointing to confirm the antenna pointing and tracking capabilities. With the arrival of the first receiver AIV Station 2 was developed which focuses on the installation of electrical and cryogenic systems and incrementally establishes the full connectivity of the antenna as an observing platform. Further antenna deliveries then allowed to refine the related procedures, develop staff expertise and to transition towards a more routine production process. Stations 3 and 4 deal with verification of the antenna with integrated electronics by the AIV Science Team and is not covered

  9. Translating PI observing proposals into ALMA observing scripts

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey S.

    2014-08-01

    The ALMA telescope is a complex 66-antenna array working in the specialized domain of mm- and sub-mm aperture synthesis imaging. To make ALMA accessible to technically inexperienced but scientifically expert users, the ALMA Observing Tool (OT) has been developed. Using the OT, scientifically oriented user input is formatted as observing proposals that are packaged for peer-review and assessment of technical feasibility. If accepted, the proposal's scientifically oriented inputs are translated by the OT into scheduling blocks, which function as input to observing scripts for the telescope's online control system. Here I describe the processes and practices by which this translation from PI scientific goals to online control input and schedule block execution actually occurs.

  10. Solar ALMA Observations: Constraining the Chromosphere above Sunspots

    NASA Astrophysics Data System (ADS)

    Loukitcheva, Maria A.; Iwai, Kazumasa; Solanki, Sami K.; White, Stephen M.; Shimojo, Masumi

    2017-11-01

    We present the first high-resolution Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a sunspot at wavelengths of 1.3 and 3 mm, obtained during the solar ALMA Science Verification campaign in 2015, and compare them with the predictions of semi-empirical sunspot umbral/penumbral atmosphere models. For the first time, millimeter observations of sunspots have resolved umbral/penumbral brightness structure at the chromospheric heights, where the emission at these wavelengths is formed. We find that the sunspot umbra exhibits a radically different appearance at 1.3 and 3 mm, whereas the penumbral brightness structure is similar at the two wavelengths. The inner part of the umbra is ˜600 K brighter than the surrounding quiet Sun (QS) at 3 mm and is ˜700 K cooler than the QS at 1.3 mm, being the coolest part of sunspot at this wavelength. On average, the brightness of the penumbra at 3 mm is comparable to the QS brightness, while at 1.3 mm it is ˜1000 K brighter than the QS. Penumbral brightness increases toward the outer boundary in both ALMA bands. Among the tested umbral models, that of Severino et al. provides the best fit to the observational data, including both the ALMA data analyzed in this study and data from earlier works. No penumbral model among those considered here gives a satisfactory fit to the currently available measurements. ALMA observations at multiple millimeter wavelengths can be used for testing existing sunspot models, and serve as an important input to constrain new empirical models.

  11. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  12. Design and performance of the ALMA-J prototype antenna

    NASA Astrophysics Data System (ADS)

    Ukita, Nobuharu; Saito, Masao; Ezawa, Hajime; Ikenoue, Bungo; Ishizaki, Hideharu; Iwashita, Hiroyuki; Yamaguchi, Nobuyuki; Hayakawa, Takahiro

    2004-10-01

    The National Astronomical Observatory of Japan has constructed a prototype 12-m antenna of the Atacama Compact Array to evaluate its performance at the ALMA Test Facility in the NRAO VLA observatory in New Mexico, the United States. The antenna has a CFRP tube backup structure (BUS) with CFRP boards to support 205 machined Aluminum surface panels. Their accuracies were measured to be 5.9 m rms on average. A chemical treatment technique of the surface panels has successfully applied to scatter the solar radiation, which resulted in a subreflector temperature increase of about 25 degrees relative to ambient temperature during direct solar observations. Holography measurements and panel adjustments led to a final surface accuracy of 20 m rms, (weighted by 12dB edge taper), after three rounds of the panel adjustments. Based on a long term temperature monitoring of the BUS and thermal deformation FEM calculation, the BUS thermal deformation was estimated to be less than 3.1 m rms. We have employed gear drive mechanism both for a fast position switching capability and for smooth drive at low velocities. Servo errors measured with angle encoders were found to be less than 0.1 arcseconds rms at rotational velocities below 0.1 degrees s-1 and to increase to 0.7 arcseconds rms at the maximum speed of the 'on-the-fly' scan as a single dish, 0.5 deg s-1 induced by the irregularity of individual gear tooth profiles. Simultaneous measurements of the antenna motion with the angle encoders and seismic accelerometers mounted at the primary reflector mirror edges and at the subreflector showed the same amplitude and phase of oscillation, indicating that they are rigid, suggesting that it is possible to estimate where the antenna is actually pointing from the encoder readout. Continuous tracking measurements of Polaris during day and night have revealed a large pointing drift due to thermal distortion of the yoke structure. We have applied retrospective thermal corrections to

  13. The ALMA Science Pipeline: Current Status

    NASA Astrophysics Data System (ADS)

    Humphreys, Elizabeth; Miura, Rie; Brogan, Crystal L.; Hibbard, John; Hunter, Todd R.; Indebetouw, Remy

    2016-09-01

    The ALMA Science Pipeline is being developed for the automated calibration and imaging of ALMA interferometric and single-dish data. The calibration Pipeline for interferometric data was accepted for use by ALMA Science Operations in 2014, and for single-dish data end-to-end processing in 2015. However, work is ongoing to expand the use cases for which the Pipeline can be used e.g. for higher frequency and lower signal-to-noise datasets, and for new observing modes. A current focus includes the commissioning of science target imaging for interferometric data. For the Single Dish Pipeline, the line finding algorithm used in baseline subtraction and baseline flagging heuristics have been greately improved since the prototype used for data from the previous cycle. These algorithms, unique to the Pipeline, produce better results than standard manual processing in many cases. In this poster, we report on the current status of the Pipeline capabilities, present initial results from the Imaging Pipeline, and the smart line finding and flagging algorithm used in the Single Dish Pipeline. The Pipeline is released as part of CASA (the Common Astronomy Software Applications package).

  14. Interaction design challenges and solutions for ALMA operations monitoring and control

    NASA Astrophysics Data System (ADS)

    Pietriga, Emmanuel; Cubaud, Pierre; Schwarz, Joseph; Primet, Romain; Schilling, Marcus; Barkats, Denis; Barrios, Emilio; Vila Vilaro, Baltasar

    2012-09-01

    The ALMA radio-telescope, currently under construction in northern Chile, is a very advanced instrument that presents numerous challenges. From a software perspective, one critical issue is the design of graphical user interfaces for operations monitoring and control that scale to the complexity of the system and to the massive amounts of data users are faced with. Early experience operating the telescope with only a few antennas has shown that conventional user interface technologies are not adequate in this context. They consume too much screen real-estate, require many unnecessary interactions to access relevant information, and fail to provide operators and astronomers with a clear mental map of the instrument. They increase extraneous cognitive load, impeding tasks that call for quick diagnosis and action. To address this challenge, the ALMA software division adopted a user-centered design approach. For the last two years, astronomers, operators, software engineers and human-computer interaction researchers have been involved in participatory design workshops, with the aim of designing better user interfaces based on state-of-the-art visualization techniques. This paper describes the process that led to the development of those interface components and to a proposal for the science and operations console setup: brainstorming sessions, rapid prototyping, joint implementation work involving software engineers and human-computer interaction researchers, feedback collection from a broader range of users, further iterations and testing.

  15. Demonstration of a Data Distribution System for ALMA Data Cubes

    NASA Astrophysics Data System (ADS)

    Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.; Kobayashi, T.

    2014-05-01

    The Atacama Large Millimeter / submillimeter Array (ALMA) is the world's largest radio telescope in Chile. As a part of Japanese Virtual Observatory (JVO) system, we have been constructing a prototype of data service to distribute ALMA data, which are three or four dimensional cubes and expected to exceed 2 TB in total size, corresponding to 75 days at world-averaged Internet bandwidth of 2.6 Mbps, in the next three years. To utilize the limited bandwidth, our system adopts a higher dimensional version of so-called "deep zoom": the system generates and stores lower resolution FITS data cubes with various binning parameters in directions of both space and frequency. Users of our portal site can easily visualize and cut out those data cubes by using ALMAWebQL, which is a web application built on customized GWT. Once the FITS files are downloaded via ALMAWebQL, one can visualize them in more detail using Vissage, a Java-based FITS cube browser. We exhibited our web and desktop viewer “fresh from the oven” at the last ADASS conference (Shirasaki et al. 2013). Improvement of their performance and functionality after that made the system nearly to a practical level. The performance problem of ALMAWebQL reported last year (Eguchi et al. 2013) was overcome by optimizing the network topology and applying the just-in-time endian conversion algorithm; the latest ALMAWebQL can follow up any user actions almost in real time for files smaller than 5 GB. It also enables users to define either a sub-region or sub-frequency range and move it freely on the graphical user interface, providing more detailed information of the FITS file. In addition, the latest Vissage now supports data from other telescopes including HST, Subaru, Chandra, etc. and overlaying two images. In this paper, we introduce the latest version of our VO system.

  16. Web and Desktop Applications for ALMA Science Verification Data

    NASA Astrophysics Data System (ADS)

    Shirasaki, Y.; Kawasaki, W.; Eguchi, S.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.

    2013-10-01

    ALMA is the largest radio telescope operating in Chile, and it is expected to produce 200 TB of data every year. Even a data cube obtained for a single source can exceed 1 TB. It is, therefore, crucial to reduce the size of data transmitted through the Internet by doing a cutout of a part of a data cube and/or reducing the spatial/frequency resolution before transferring the data. To specify the cutout region or required resolution, one needs to overview the whole of the data without transferring the large data cube. For this purpose, we developed two applications for quick-looking ALMA data cube, ALMA Web QL and Desktop Viewer (Vissage).

  17. SAO/NASA joint investigation of astronomical viewing quality at Mount Hopkins Observatory: 1969-1971

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Bufton, J. L.; Hogan, D.; Kurtenbach, D.; Goodwin, K.

    1974-01-01

    Quantitative measurements of the astronomical seeing conditions have been made with a stellar-image monitor system at the Mt. Hopkins Observatory in Arizona. The results of this joint SAO-NASA experiment indicate that for a 15-cm-diameter telescope, image motion is typically 1 arcsec or less and that intensity fluctuations due to scintillation have a coefficient of irradiance variance of less than 0.12 on the average. Correlations between seeing quality and local meteorological conditions were investigated. Local temperature fluctuations and temperature gradients were found to be indicators of image-motion conditions, while high-altitude-wind conditions were shown to be somewhat correlated with scintillation-spectrum bandwidth. The theoretical basis for the relationship of atmospheric turbulence to optical effects is discussed in some detail, along with a description of the equipment used in the experiment. General site-testing comments and applications of the seeing-test results are also included.

  18. An ALMA and MagAO Study of the Substellar Companion GQ Lup B*

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Sheehan, Patrick D.; Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Teske, Johanna K.; Haug-Baltzell, Asher; Merchant, Nirav; Lyons, Eric

    2017-02-01

    Multi-wavelength observations provide a complementary view of the formation of young, directly imaged planet-mass companions. We report the ALMA 1.3 mm and Magellan adaptive optics Hα, I\\prime , z\\prime , and Y S observations of the GQ Lup system, a classical T Tauri star with a 10{--}40 {M}{Jup} substellar companion at ˜110 au projected separation. We estimate the accretion rates for both components from the observed Hα fluxes. In our ˜0.″05 resolution ALMA map, we resolve GQ Lup A’s disk in the dust continuum, but no signal is found from the companion. The disk is compact, with a radius of ˜22 au, a dust mass of ˜6 M ⊕, an inclination angle of ˜56°, and a very flat surface density profile indicative of a radial variation in dust grain sizes. No gaps or inner cavity are found in the disk, so there is unlikely a massive inner companion to scatter GQ Lup B outward. Thus, GQ Lup B might have formed in situ via disk fragmentation or prestellar core collapse. We also show that GQ Lup A’s disk is misaligned with its spin axis, and possibly with GQ Lup B’s orbit. Our analysis on the tidal truncation radius of GQ Lup A’s disk suggests that GQ Lup B’s orbit might have a low eccentricity. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.

  19. Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.

    2016-06-01

    It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.

  20. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  1. A Look Inside Hurricane Alma

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hurricane season in the eastern Pacific started off with a whimper late last month as Alma, a Category 2 hurricane, slowly made its way up the coast of Baja California, packing sustained winds of 110 miles per hour and gusts of 135 miles per hour. The above image of the hurricane was acquired on May 29, 2002, and displays the rainfall rates occurring within the storm. Click the image above to see an animated data visualization (3.8 MB) of the interior of Hurricane Alma. The images of the clouds seen at the beginning of the movie were retrieved from the National Oceanic and Atmospheric Association's (NOAA's) Geostationary Orbiting Environmental Satellite (GOES) network. As the movie continues, the clouds are peeled away to reveal an image of rainfall levels in the hurricane. The rainfall data were obtained by the Precipitation Radar aboard NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The Precipitation Radar bounces radio waves off of clouds to retrieve a reading of the number of large, rain-sized droplets within the clouds. Using these data, scientists can tell how much precipitation is occurring within and beneath a hurricane. In the movie, yellow denotes areas where 0.5 inches of rain is falling per hour, green denotes 1 inch per hour, and red denotes over 2 inches per hour. (Please note that high resolution still images of Hurricane Alma are available in the NASA Visible Earth in TIFF format.) Image and animation courtesy Lori Perkins, NASA Goddard Space Flight Center Scientific Visualization Studio

  2. JERICO: a Joint European Research Infrastructure network for Coastal Observatories

    NASA Astrophysics Data System (ADS)

    Puillat, I.; Sparnocchia, S.; Bozzano, R.; Coppola, L.; Petihakis, G.; Ntoumas, M.; Lefevre, D.; Caballero, A.; Beguery, L.; Testor, P.

    2013-12-01

    Existing coastal observatories in European waters are composed of platforms such as moored buoys, piles, profiling systems, gliders, ';ferryboxes' and automated systems on board of ships of opportunity. JERICO project strives to integrate existing infrastructures and provides a platform for the identification and dissemination of best practices for the design, implementation, operation and maintenance of observing systems and the dissemination of data. In order to reach these objectives several kinds of actions are undertaken, amongst which the offer of Trans-National Access (TNA) to a number of coastal observatories and calibration facilities for international research and technology development. This presentation will give a short overview of the selected TNA proposals and a focus will be drawn on some of the TNA results. Calibrating sensors regularly is the prime requirement for getting reliable data from coastal observatories and ensuring their long-term relevance as viable providers of information on the marine environment. The calibration facilities at the HCMR complex in Crete hosted users for calibration experiments. The first one was accessed by a HCMR team to improve their experience in calibrating high-quality oceanographic temperature sensors using primary ITS-90 reference standards. The experiment involved full calibrations of two SBE 35 thermometers from Sea-Bird Electronics, Inc. owned by the HCMR that will be used as reference sensors for temperature measurements in their calibration laboratory in Crete. Gliders make oceanographic measurements traditionally collected by research vessels or moored instruments, but at a fraction of the costs. The GESEBB glider Mission started in July 2013, in the southeastern Bay of Biscay. The objective of the mission is sampling the characteristics of a mesoscale eddy that appears in the southeastern Bay of Biscay, during spring and summer. The origin of this structure is associated with the strength and extension

  3. Performance highlights of the ALMA correlators

    NASA Astrophysics Data System (ADS)

    Baudry, Alain; Lacasse, Richard; Escoffier, Ray; Webber, John; Greenberg, Joseph; Platt, Laurence; Treacy, Robert; Saez, Alejandro F.; Cais, Philippe; Comoretto, Giovanni; Quertier, Benjamin; Okumura, Sachiko K.; Kamazaki, Takeshi; Chikada, Yoshihiro; Watanabe, Manabu; Okuda, Takeshi; Kurono, Yasutake; Iguchi, Satoru

    2012-09-01

    Two large correlators have been constructed to combine the signals captured by the ALMA antennas deployed on the Atacama Desert in Chile at an elevation of 5050 meters. The Baseline correlator was fabricated by a NRAO/European team to process up to 64 antennas for 16 GHz bandwidth in two polarizations and another correlator, the Atacama Compact Array (ACA) correlator, was fabricated by a Japanese team to process up to 16 antennas. Both correlators meet the same specifications except for the number of processed antennas. The main architectural differences between these two large machines will be underlined. Selected features of the Baseline and ACA correlators as well as the main technical challenges met by the designers will be briefly discussed. The Baseline correlator is the largest correlator ever built for radio astronomy. Its digital hybrid architecture provides a wide variety of observing modes including the ability to divide each input baseband into 32 frequency-mobile sub-bands for high spectral resolution and to be operated as a conventional 'lag' correlator for high time resolution. The various observing modes offered by the ALMA correlators to the science community for 'Early Science' are presented, as well as future observing modes. Coherently phasing the array to provide VLBI maps of extremely compact sources is another feature of the ALMA correlators. Finally, the status and availability of these large machines will be presented.

  4. Evaluating a NoSQL Alternative for Chilean Virtual Observatory Services

    NASA Astrophysics Data System (ADS)

    Antognini, J.; Araya, M.; Solar, M.; Valenzuela, C.; Lira, F.

    2015-09-01

    Currently, the standards and protocols for data access in the Virtual Observatory architecture (DAL) are generally implemented with relational databases based on SQL. In particular, the Astronomical Data Query Language (ADQL), language used by IVOA to represent queries to VO services, was created to satisfy the different data access protocols, such as Simple Cone Search. ADQL is based in SQL92, and has extra functionality implemented using PgSphere. An emergent alternative to SQL are the so called NoSQL databases, which can be classified in several categories such as Column, Document, Key-Value, Graph, Object, etc.; each one recommended for different scenarios. Within their notable characteristics we can find: schema-free, easy replication support, simple API, Big Data, etc. The Chilean Virtual Observatory (ChiVO) is developing a functional prototype based on the IVOA architecture, with the following relevant factors: Performance, Scalability, Flexibility, Complexity, and Functionality. Currently, it's very difficult to compare these factors, due to a lack of alternatives. The objective of this paper is to compare NoSQL alternatives with SQL through the implementation of a Web API REST that satisfies ChiVO's needs: a SESAME-style name resolver for the data from ALMA. Therefore, we propose a test scenario by configuring a NoSQL database with data from different sources and evaluating the feasibility of creating a Simple Cone Search service and its performance. This comparison will allow to pave the way for the application of Big Data databases in the Virtual Observatory.

  5. ALMA observations of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel

    2015-08-01

    The Universe is filled with planetary systems, as recent detections of exo-planets have shown. Such systems grow out of disks of gas and dust that surround newly formed stars. The ground work for our understanding of the structure, composition, and evolution of such disks has been laid with infrared telescopes in the 1980's, 1990's, and 2000's, as well as with millimeter interferometers operating in the United States, France, and Japan. With the construction of the Atacama Large Millimeter / submillimeter Array, a new era of studying planet-forming disks has started. The unprecedented leap in sensitivity and angular resolution that ALMA offers, has truely revolutionized our understanding of disks. No longer featureless objects consisting of gas and smalll dust, they are now seen to harbor a rich structure and chemistry. The ongoing planet-formation process sculpts many disks into systems of rings and arcs; grains grown to millimeter-sizes collect in high-pressure areas where they could grow out to asteroids or comets or further generations of planets. This wealth of new information directly addresses bottlenecks in our theoretical understanding of planet formation, such as the question how grains can grow past the 'meter-sized' barrier or overcome the 'drift barrier', and how gas and ice evolve together and ultimately determine the elemental compositions of both giant and terrestrial planets. I will review the recent ALMA results on protoplanetary disks, presenting results on individual objects and from the first populations studies. I will conclude with a forward look, on what we might expect from ALMA in this area for the years and decades to come.

  6. Design and development of a 600-720 GHz receiver for ALMA Band 9

    NASA Astrophysics Data System (ADS)

    Baryshev, A. M.; Hesper, R.; Mena, F. P.; Jackson, B. D.; Adema, J.; Schaeffer, H.; Barkhof, J.; Wild, W.; Candotti, M.; Lodewijk, C.; Loudkov, D.; Zijlstra, T.; Noroozian, 0.; Klapwijk, T. M.

    2006-05-01

    This paper describes the design and development of the ALMA Band 9 receiver cartridges. The ALMA project is a collaboration between Europe, North America, and Japan to build an aperture synthesis telescope consisting of at least 64 12-m antennas located at 5000 m altitude in Chile. In its full configuration, ALMA will observe in 10 frequency bands between 30 and 950 GHz, and will provide astronomers with unprecedented sensitivity and spatial resolution at millimetre and sub-millimetre wavelengths. Band 9, covering 600-720 GHz, is the highest frequency band in the baseline ALMA project, and will thus offer the telescope's highest spatial resolutions. The ALMA Band 9 cartridge is a compact unit containing the core of a 600-720 GHz heterodyne receiver front-end that can be easily inserted into and removed from the ALMA cryostat. In particular, its core technologies include low-noise, broadband SIS mixers; an electronically-tunable solid-state local oscillator; and low-noise cryogenic IF amplifiers. These components are built into a rigid opto-mechanical structure that includes a compact optical assembly mounted on the cartridge's 4 K stage that combines the astronomical and local oscillator signals and focuses them into two SIS mixers. In this report we present the noise measurement with an emphasis on the extreme large IF bandwidth (4-12 GHz). IF-gain slope, receiver linearity/saturation, receiver beam pattern and cross polarization level measurements will be presented and compared with expectations. The receiver phase and amplitude stability measurements will be presented and the system aspects related to interferometer will be discussed. Finally, a detailed measurement of LO noise contribution will be presented. This measurement was done by comparing receiver noise measured with internal ALMA LO (multipliers power amplifiers combination) to receiver noise measured by means of Gunn diode, followed by a x2x3 multiplier.

  7. First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun

    NASA Astrophysics Data System (ADS)

    Brajša, R.; Sudar, D.; Benz, A. O.; Skokić, I.; Bárta, M.; Pontieu, B. De; Kim, S.; Kobelski, A.; Kuhar, M.; Shimojo, M.; Wedemeyer, S.; White, S.; Yagoubov, P.; Yan, Y.

    2018-05-01

    Context. Various solar features can be seen in emission or absorption on maps of the Sun in the millimetre and submillimetre wavelength range. The recently installed Atacama Large Millimetre/submillimetre Array (ALMA) is capable of observing the Sun in that wavelength range with an unprecedented spatial, temporal and spectral resolution. To interpret solar observations with ALMA, the first important step is to compare solar ALMA maps with simultaneous images of the Sun recorded in other spectral ranges. Aims: The first aim of the present work is to identify different structures in the solar atmosphere seen in the optical, infrared, and EUV parts of the spectrum (quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points) in a full-disc solar ALMA image. The second aim is to measure the intensities (brightness temperatures) of those structures and to compare them with the corresponding quiet Sun level. Methods: A full-disc solar image at 1.21 mm obtained on December 18, 2015, during a CSV-EOC campaign with ALMA is calibrated and compared with full-disc solar images from the same day in Hα line, in He I 1083 nm line core, and with various SDO images (AIA at 170 nm, 30.4 nm, 21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures of various structures are determined by averaging over corresponding regions of interest in the calibrated ALMA image. Results: Positions of the quiet Sun, active regions, prominences on the disc, magnetic inversion lines, coronal holes and coronal bright points are identified in the ALMA image. At the wavelength of 1.21 mm, active regions appear as bright areas (but sunspots are dark), while prominences on the disc and coronal holes are not discernible from the quiet Sun background, despite having slightly less intensity than surrounding quiet Sun regions. Magnetic inversion lines appear as large, elongated dark structures and coronal bright points correspond

  8. The ALMA software architecture

    NASA Astrophysics Data System (ADS)

    Schwarz, Joseph; Farris, Allen; Sommer, Heiko

    2004-09-01

    The software for the Atacama Large Millimeter Array (ALMA) is being developed by many institutes on two continents. The software itself will function in a distributed environment, from the 0.5-14 kmbaselines that separate antennas to the larger distances that separate the array site at the Llano de Chajnantor in Chile from the operations and user support facilities in Chile, North America and Europe. Distributed development demands 1) interfaces that allow separated groups to work with minimal dependence on their counterparts at other locations; and 2) a common architecture to minimize duplication and ensure that developers can always perform similar tasks in a similar way. The Container/Component model provides a blueprint for the separation of functional from technical concerns: application developers concentrate on implementing functionality in Components, which depend on Containers to provide them with services such as access to remote resources, transparent serialization of entity objects to XML, logging, error handling and security. Early system integrations have verified that this architecture is sound and that developers can successfully exploit its features. The Containers and their services are provided by a system-orienteddevelopment team as part of the ALMA Common Software (ACS), middleware that is based on CORBA.

  9. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  10. The ALMA Band 9 receiver. Design, construction, characterization, and first light

    NASA Astrophysics Data System (ADS)

    Baryshev, A. M.; Hesper, R.; Mena, F. P.; Klapwijk, T. M.; van Kempen, T. A.; Hogerheijde, M. R.; Jackson, B. D.; Adema, J.; Gerlofsma, G. J.; Bekema, M. E.; Barkhof, J.; de Haan-Stijkel, L. H. R.; van den Bemt, M.; Koops, A.; Keizer, K.; Pieters, C.; Koops van het Jagt, J.; Schaeffer, H. H. A.; Zijlstra, T.; Kroug, M.; Lodewijk, C. F. J.; Wielinga, K.; Boland, W.; de Graauw, M. W. M.; van Dishoeck, E. F.; Jager, H.; Wild, W.

    2015-05-01

    Aims: We describe the design, construction, and characterization of the Band 9 heterodyne receivers (600-720 GHz) for the Atacama Large Millimeter/submillimeter Array (ALMA). First-light Band 9 data, obtained during ALMA commissioning and science verification phases, are presented as well. Methods: The ALMA Band 9 receiver units (so-called "cartridges"), which are installed in the telescope's front end, have been designed to detect and down-convert two orthogonal linear polarization components of the light collected by the ALMA antennas. The light entering the front end is refocused with a compact arrangement of mirrors, which is fully contained within the cartridge. The arrangement contains a grid to separate the polarizations and two beam splitters to combine each resulting beam with a local oscillator signal. The combined beams are fed into independent double-sideband mixers, each with a corrugated feedhorn coupling the radiation by way of a waveguide with backshort cavity into an impedance-tuned superconductor-insulator-superconductor (SIS) junction that performs the heterodyne down-conversion. Finally, the generated intermediate frequency (IF) signals are amplified by cryogenic and room-temperature HEMT amplifiers and exported to the telescope's IF back end for further processing and, finally, correlation. Results: The receivers have been constructed and tested in the laboratory and they show an excellent performance, complying with ALMA requirements. Performance statistics on all 73 Band 9 receivers are reported. Importantly, two different tunnel-barrier technologies (necessitating different tuning circuits) for the SIS junctions have been used, namely conventional AlOx barriers and the more recent high-current-density AlN barriers. On-sky characterization and tests of the performance of the Band 9 cartridges are presented using commissioning data. Continuum and line images of the low-mass protobinary IRAS 16293-2422 are presented which were obtained as part

  11. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.

    2018-01-01

    The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.

  12. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2006. The observatory is expected to operate for over 20 years. The first light science instruments and some science projects will be discussed.

  13. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint US and German SOFIA project to develop and operate a 2.5 m infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2007. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  14. ALMACAL IV: A catalogue of ALMA calibrator continuum observations

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Liuzzo, E.; Giannetti, A.; Massardi, M.; De Zotti, G.; Burkutean, S.; Galluzzi, V.; Negrello, M.; Baronchelli, I.; Brand, J.; Zwaan, M. A.; Rygl, K. L. J.; Marchili, N.; Klitsch, A.; Oteo, I.

    2018-05-01

    We present a catalogue of ALMA flux density measurements of 754 calibrators observed between August 2012 and September 2017, for a total of 16,263 observations in different bands and epochs. The flux densities were measured reprocessing the ALMA images generated in the framework of the ALMACAL project, with a new code developed by the Italian node of the European ALMA Regional Centre. A search in the online databases yielded redshift measurements for 589 sources (˜78 per cent of the total). Almost all sources are flat-spectrum, based on their low-frequency spectral index, and have properties consistent with being blazars of different types. To illustrate the properties of the sample we show the redshift and flux density distributions as well as the distributions of the number of observations of individual sources and of time spans in the source frame for sources observed in bands 3 (84-116 GHz) and 6 (211-275 GHz). As examples of the scientific investigations allowed by the catalogue we briefly discuss the variability properties of our sources in ALMA bands 3 and 6 and the frequency spectra between the effective frequencies of these bands. We find that the median variability index steadily increases with the source-frame time lag increasing from 100 to 800 days, and that the frequency spectra of BL Lacs are significantly flatter than those of flat-spectrum radio quasars. We also show the global spectral energy distributions of our sources over 17 orders of magnitude in frequency.

  15. An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources

    NASA Astrophysics Data System (ADS)

    Wardlow, Julie L.; Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Blain, A. W.; Brandt, W. N.; Chapman, S. C.; Chen, Chian-Chou; Cooke, E. A.; Dannerbauer, H.; Gullberg, B.; Hodge, J. A.; Ivison, R. J.; Knudsen, K. K.; Scott, Douglas; Thomson, A. P.; Wei, A.; van der Werf, P. P.

    2018-06-01

    We present ALMA observations of the mid-J12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South (ECDFS) and UKIDSS Ultra-Deep Survey (UDS) fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5-10″ scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously-measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3-2) or CO(4-3) at z = 2.3-3.7 in seven of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3-mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64( ± 18)% of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50%) contain new, serendipitously-detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870-μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ˜100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21 ± 12% of SMGs have spatially-distinct and kinematically-close companion galaxies (˜8-150 kpc and ≲ 300 km s-1), which may have enhanced their star-formation via gravitational interactions.

  16. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in the final stages of development. First science flights will begin in 2008. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of 1-st light spectroscopic astrochemistry science are discussed.

  17. Alma Polarization Measurements Towards Sgr A* (Poster)

    NASA Astrophysics Data System (ADS)

    Liu, Hauyu Baobab; Wright, M. C. H.; Zhao, J.-H.

    2017-10-01

    We have observed linear polarization of the Sgr A* at band 3, 6, 7, 8, and 9 using ALMA. I will outline our method, and compare our measurements with the records taken since 2005 by Geoffrey Bower and Dan Marrone.

  18. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    , a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of

  19. SXDF-UDS-CANDELS-ALMA 1.5 arcmin2 deep survey

    NASA Astrophysics Data System (ADS)

    Kohno, Kotaro; Tamura, Yoichi; Yamaguchi, Yuki; Umehata, Hideki; Rujopakarn, Wiphu; Lee, Minju; Motohara, Kentaro; Makiya, Ryu; Izumi, Takuma; Ivison, Rob; Ikarashi, Soh; Tadaki, Ken-ichi; Kodama, Tadayuki; Hatsukade, Bunyo; Yabe, Kiyoto; Hayashi, Masao; Iono, Daisuke; Matsuda, Yuichi; Nakanishi, Kouichiro; Kawabe, Ryohei; Wilson, Grant; Yun, Min S.; Hughes, David; Caputi, Karina; Dunlop, James

    2015-08-01

    We have conducted 1.1 mm ALMA observations of a contiguous 105″ × 50″ or 1.5 arcmin2 window (achieved by 19 point mosaic) in the SXDF-UDS-CANDELS. We achieved a 5σ sensitivity of 0.28 mJy, giving a flat sensus of dusty star-forming galaxies with LIR ~6 × 1011 L⊙ (if Tdust = 40 K) or SFR ~100 M⊙ yr-1 up to z~10 thanks to the negative K-correction at this wavelength. We detect 5 brightest sources (S/N>6) and 18 low-significant sources (5 > S/N > 4; they may contain spurious detections, though) in the field. We find that these discrete sources are responsible for a faint filamentary emission seen in low-resolution (~30″) heavily confused AzTEC 1.1mm and SPIRE 0.5mm images. One of the 5 brightest ALMA sources is very dark in deep WFC3 and HAWK-I NIR images as well as VLA 1.4 GHz images, demonstrating that deep ALMA imaging can unveil new obscured star-forming galaxy population.

  20. ALMA test interferometer control system: past experiences and future developments

    NASA Astrophysics Data System (ADS)

    Marson, Ralph G.; Pokorny, Martin; Kern, Jeff; Stauffer, Fritz; Perrigouard, Alain; Gustafsson, Birger; Ramey, Ken

    2004-09-01

    The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an interferometer. The ALMA Test Interferometer Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to provide sufficient functionality for the evaluation of the prototype antennas. The main antenna evaluation tasks include surface measurements via holography and pointing accuracy, measured at both optical and millimeter wavelengths. In this paper we will present the design of TICS, which is a distributed computing environment. In the test facility there are four computers: three real-time computers running VxWorks (one on each antenna and a central one) and a master computer running Linux. These computers communicate via Ethernet, and each of the real-time computers is connected to the hardware devices via an extension of the CAN bus. We will also discuss our experience with this system and outline changes we are making in light of our experiences.

  1. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Casey, Sean C.; Davidson, Jacqueline A.; Savage, Maureen L.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association , teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the preliminary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics, US science instrument complement, and operations concept for the SOFIA observatory, with an emphasis on the science community's participation are discussed.

  2. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    night skies on the Earth. At its peak, La Silla was home to no fewer than 15 telescopes, among them the first -- and, for a very long time, the only -- telescope working in submillimetric waves (the 15-metre SEST) in the southern hemisphere, which paved the way for APEX and ALMA, and the 1-metre Schmidt telescope, which completed the first photographic mapping of the southern sky. The telescopes at La Silla have also supported countless space missions, e.g., by obtaining the last images of comet Shoemaker Levy 9 before it crashed into Jupiter, thereby helping predicting the exact moment when the Galileo spacecraft should observe to capture images of the cosmic collision. "Many of the current generation of astronomers were trained on La Silla where they got their first experience with what were then considered large telescopes," says Bruno Leibundgut, ESO Director for Science. While some of the smaller telescopes have been closed over the years, frontline observations continue with the larger telescopes, aided by new and innovative astronomical instruments. La Silla currently hosts two of the most productive 4-metre class telescopes in the world, the 3.5-metre New Technology Telescope (NTT) and the 3.6-metre ESO telescope. "The NTT broke new ground for telescope engineering and design," says Andreas Kaufer, director of the La Silla Paranal Observatory. The NTT was the first in the world to have a computer-controlled main mirror (active optics), a technology developed at ESO and now applied to the VLT and most of the world's current large telescopes. The ESO 3.6-metre telescope, which was for many years one of the largest European telescopes in operation, is now home to the extrasolar planet hunter, HARPS (High Accuracy Radial velocity Planet Searcher), a spectrograph with unrivalled precision. The infrastructure of La Silla is used by many of the ESO member states for targeted projects such as the Swiss 1.2-metre Euler telescope, the Italian Rapid-Eye Mount (REM) and

  3. Probing Cometary Chemistry with ALMA

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.

    2010-01-01

    Comets are considered to bear the record of the primitive Solar nebula as remnants of planetesimals that formed the outer planets. To date there are just over two dozen known cometary species compared to the >150 known interstellar molecules. This is likely due to the challenges posed when attempting to measure the composition of these small bodies. With the significant improvement in sensitivity, ALMA will likely enable the detection of new molecules to help us gain better understanding of the chemical complexity found in comets. This advancement in sensitivity will also assist in the measurement of isotope ratios in various species. These values are imperative for determining the conditions during cometary formation as well as provide insight into ongoing speculations of parent species, the possible delivery of H2O to Earth, and a direct comparison to protostellar disk chemistry. The high angular resolution obtained with ALMA will be capable of resolving any compact distributions or density enhancements in the more extended distribution that may lead to a better understanding of the formation of these species in the outer coma. By studying comet compositions we gain insight into the composition of the early Solar System as well as their astrobiological implications.

  4. A Subarcsecond ALMA Molecular Line Imaging Survey of the Circumbinary, Protoplanetary Disk Orbiting V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, C.; Dickson-Vandervelde, Annie; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Sacco, Germano; Rapson, Valerie; Principe, David

    2018-01-01

    We present a suite of ALMA interferometric molecular line and continuum images of the gas-rich circumbinary disk orbiting the nearby, young, short-period, solar-mass binary system V4046 Sgr (D ~ 73 pc; age ~20 Myr). These Cycle 2 and 3 ALMA observations of V4046 Sgr were undertaken in the 1.1 to 1.4 mm wavelength range (ALMA Band 6) with antenna configurations involving maximum baselines of several hundred meters, yielding subarcsecond-resolution images in more than a dozen molecular species and isotopologues. Collectively, these ALMA images serve to elucidate, on linear size scales of ~30-40 AU, the chemical structure of an evolved, circumbinary, protoplanetary disk.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT.

  5. Bulk data transfer distributer: a high performance multicast model in ALMA ACS

    NASA Astrophysics Data System (ADS)

    Cirami, R.; Di Marcantonio, P.; Chiozzi, G.; Jeram, B.

    2006-06-01

    A high performance multicast model for the bulk data transfer mechanism in the ALMA (Atacama Large Millimeter Array) Common Software (ACS) is presented. The ALMA astronomical interferometer will consist of at least 50 12-m antennas operating at millimeter wavelength. The whole software infrastructure for ALMA is based on ACS, which is a set of application frameworks built on top of CORBA. To cope with the very strong requirements for the amount of data that needs to be transported by the software communication channels of the ALMA subsystems (a typical output data rate expected from the Correlator is of the order of 64 MB per second) and with the potential CORBA bottleneck due to parameter marshalling/de-marshalling, usage of IIOP protocol, etc., a transfer mechanism based on the ACE/TAO CORBA Audio/Video (A/V) Streaming Service has been developed. The ACS Bulk Data Transfer architecture bypasses the CORBA protocol with an out-of-bound connection for the data streams (transmitting data directly in TCP or UDP format), using at the same time CORBA for handshaking and leveraging the benefits of ACS middleware. Such a mechanism has proven to be capable of high performances, of the order of 800 Mbits per second on a 1Gbit Ethernet network. Besides a point-to-point communication model, the ACS Bulk Data Transfer provides a multicast model. Since the TCP protocol does not support multicasting and all the data must be correctly delivered to all ALMA subsystems, a distributer mechanism has been developed. This paper focuses on the ACS Bulk Data Distributer, which mimics a multicast behaviour managing data dispatching to all receivers willing to get data from the same sender.

  6. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    2003-06-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Brown Dwarf research; some of these are discussed.

  7. Abundance and Temperature Variations in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, A. E.; Nixon, C. A.; Chanover, N.; Molter, E.; Cordiner, M. A.; Serigano, J., IV; Irwin, P. G.; Charnley, S. B.; Teanby, N. A.

    2016-12-01

    Photochemistry in Titan's atmosphere produces a wealth of organic molecular species through the dissociation of it's main constituents: N2 and CH4. Chemical species including hydrocarbons (CXHY) and nitriles (CXHY[CN]Z) exhibit latitudinal variations in abundance as observed by Cassini, attributed to atmospheric circulation and Titan's seasonal cycle. Flux calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes smaller than Titan's angular diameter ( 0.7'') allow for measurements of rotational transition lines in spatially resolved regions of Titan's disk. We present nitrile abundance profiles and temperature measurements derived from CO lines obtained by ALMA in 2014, as Titan transitioned into northern summer. Vertical profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. We present a comparison of the abundance variations of chemical species to measurements made using Cassini data. Temperature profiles derived from CO lines are compared to Cassini Composite Infrared Spectrometer temperature fields. The techniques presented here will allow us to determine temporal changes in Titan's atmospheric chemical composition after the end of the Cassini mission by utilizing high resolution ALMA data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  8. Observability of forming planets and their circumplanetary discs - I. Parameter study for ALMA

    NASA Astrophysics Data System (ADS)

    Szulágyi, J.; Plas, G. van der; Meyer, M. R.; Pohl, A.; Quanz, S. P.; Mayer, L.; Daemgen, S.; Tamburello, V.

    2018-01-01

    We present mock observations of forming planets with Atacama Large Millimeter Array (ALMA). The possible detections of circumplanetary discs (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 au from their star. The radiative, 3D hydrodynamic simulations were then post-processed with RADMC3D and the ALMA observation simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit; therefore, the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as band 9 (440 μm). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup gas-giant, due to temperature-weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disc leading to a less efficient cooling there. A test was made for a 52 au orbital separation, which showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>5 h). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; secondly, the beam convolution makes the gap shallower and at least 25 per cent narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.

  9. ALMA Long Baseline Observations of the Dynamical Atmospheres of AGB Stars

    NASA Astrophysics Data System (ADS)

    Vlemmings, Wouter

    2018-04-01

    I will present the current status of ALMA long baseline observations of W Hya, R Leo, R Dor and Mira. We have recently obtained band 4, 6 and 7 observations of the line and continuum emission tracing the temperature and dynamics in their extended atmosphere. Our preliminary analysis confirms our previous detection of a hotspot on W Hya, and reveals unexpected lines in most of the sources, as well as possible fast rotation in the atmopshere of one of the stars. The observations show the unique power of ALMA in observing the extended stellar atmospheres.

  10. The ALMA Band 3 (84-116 GHz) receiver production plan

    NASA Astrophysics Data System (ADS)

    Yeung, Keith; Claude, Stéphane; Loop, David

    2008-07-01

    The NRC Herzberg Institute of Astrophysics (NRC-HIA) is currently responsible to contribute Band 3 (84-116 GHz) receivers to the international ALMA project - a partnership involving North America, Europe and, now, Asia. Not only are the technical requirements for these receivers far more stringent than those for any existing radio astronomy receivers operating at these frequencies, but the delivery schedule for these receivers is equally challenging. Since the Asian partnership joined the ALMA project in 2006, NRC-HIA has been asked to deliver an additional 11 cartridges, for a total of 73 units. Some of these new cartridges will be used for the ALMA Compact Array (ACA) and others as spares. Moreover, the project has also requested that these additional cartridges be delivered in the same time period as the original 62 units. To meet this requirement, production must increase from the existing rate of one unit every four weeks to one every two, taxing the existing production infrastructure at NRC-HIA. Additional test facilities and human resources must be planned to sustain the required production rate over the next several years. Industrial involvement is one of the important elements in our production plan. In order to supplement the existing human resources at NRC-HIA, we are planning to outsource a number of low-risk and labor-intensive tasks to industry. However, NRC-HIA will retain overall project management responsibility and will conduct all the cartridge integration and acceptance test activities in-house. This paper focuses on the resource estimation, planning and project management required to deliver the Band 3 receivers to the ALMA project on time and on budget.

  11. Early Science Results from SOFIA, the Worlds Largest Airborne Observatory

    NASA Astrophysics Data System (ADS)

    De Buizer, J.

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the largest flying observatory ever built, consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt. By flying at altitudes up to 45000 feet, the observatory gets above 99.9% of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This talk will review some of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and the optical occultation photometer HIPO.

  12. ALMA Array Operations Group process overview

    NASA Astrophysics Data System (ADS)

    Barrios, Emilio; Alarcon, Hector

    2016-07-01

    ALMA Science operations activities in Chile are responsibility of the Department of Science Operations, which consists of three groups, the Array Operations Group (AOG), the Program Management Group (PMG) and the Data Management Group (DMG). The AOG includes the Array Operators and have the mission to provide support for science observations, operating safely and efficiently the array. The poster describes the AOG process, management and operational tools.

  13. A future large-aperture UVOIR space observatory: reference designs

    NASA Astrophysics Data System (ADS)

    Rioux, Norman; Thronson, Harley; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-09-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  14. A Future Large-Aperture UVOIR Space Observatory: Reference Designs

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Rioux, Norman; Feinberg, Lee; Stahl, H. Philip; Redding, Dave; Jones, Andrew; Sturm, James; Collins, Christine; Liu, Alice

    2015-01-01

    Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. We describe the feasibility assessment of system thermal and dynamic stability for supporting coronagraphy. The observatory is in a Sun-Earth L2 orbit providing a stable thermal environment and excellent field of regard. Reference designs include a 36-segment 9.2 m aperture telescope that stows within a five meter diameter launch vehicle fairing. Performance needs developed under the study are traceable to a variety of reference designs including options for a monolithic primary mirror.

  15. First year of ALMA site software deployment: where everything comes together

    NASA Astrophysics Data System (ADS)

    González, Víctor; Mora, Matias; Araya, Rodrigo; Arredondo, Diego; Bartsch, Marcelo; Burgos, Pablo; Ibsen, Jorge; Reveco, Johnny; Sáez, Norman; Schemrl, Anton; Sepulveda, Jorge; Shen, Tzu-Chiang; Soto, Rubén; Troncoso, Nicolás; Zambrano, Mauricio; Barriga, Nicolás; Glendenning, Brian; Raffi, Gianni; Kern, Jeff

    2010-07-01

    Starting 2009, the ALMA project initiated one of its most exciting phases within construction: the first antenna from one of the vendors was delivered to the Assembly, Integration and Verification team. With this milestone and the closure of the ALMA Test Facility in New Mexico, the JAO Computing Group in Chile found itself in the front line of the project's software deployment and integration effort. Among the group's main responsibilities are the deployment, configuration and support of the observation systems, in addition to infrastructure administration, all of which needs to be done in close coordination with the development groups in Europe, North America and Japan. Software support has been the primary interaction key with the current users (mainly scientists, operators and hardware engineers), as the software is normally the most visible part of the system. During this first year of work with the production hardware, three consecutive software releases have been deployed and commissioned. Also, the first three antennas have been moved to the Array Operations Site, at 5.000 meters elevation, and the complete end-to-end system has been successfully tested. This paper shares the experience of this 15-people group as part of the construction team at the ALMA site, and working together with Computing IPT, on the achievements and problems overcomed during this period. It explores the excellent results of teamwork, and also some of the troubles that such a complex and geographically distributed project can run into. Finally, it approaches the challenges still to come, with the transition to the ALMA operations plan.

  16. Towards a dynamical scheduler for ALMA: a science - software collaboration

    NASA Astrophysics Data System (ADS)

    Avarias, Jorge; Toledo, Ignacio; Espada, Daniel; Hibbard, John; Nyman, Lars-Ake; Hiriart, Rafael

    2016-07-01

    State-of-the art astronomical facilities are costly to build and operate, hence it is essential that these facilities must be operated as much efficiently as possible, trying to maximize the scientific output and at the same time minimizing overhead times. Over the latest decades the scheduling problem has drawn attention of research because new facilities have been demonstrated that is unfeasible to try to schedule observations manually, due the complexity to satisfy the astronomical and instrumental constraints and the number of scientific proposals to be reviewed and evaluated in near real-time. In addition, the dynamic nature of some constraints make this problem even more difficult. The Atacama Large Millimeter/submillimeter Array (ALMA) is a major collaboration effort between European (ESO), North American (NRAO) and East Asian countries (NAOJ), under operations on the Chilean Chajnantor plateau, at 5.000 meters of altitude. During normal operations at least two independent arrays are available, aiming to achieve different types of science. Since ALMA does not observe in the visible spectrum, observations are not limited to night time only, thus a 24/7 operation with little downtime as possible is expected when full operations state will have been reached. However, during preliminary operations (early-science) ALMA has been operated on tied schedules using around half of the whole day-time to conduct scientific observations. The purpose of this paper is to explain how the observation scheduling and its optimization is done within ALMA, giving details about the problem complexity, its similarities and differences with traditional scheduling problems found in the literature. The paper delves into the current recommendation system implementation and the difficulties found during the road to its deployment in production.

  17. ALMA specifications and results: report at mid-cycle 3

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.

    2016-07-01

    ALMA is now nearing the end of its third cycle of operations, and is transitioning from `early science' to regular PI-driven observing. The array has been operated over the complete range of available baseline lengths, from <10m with the ACA out to the maximum of 16km in the long-baseline configuration. Typically 40 12m-diameter antennas are now used at any one time. In this paper, we summarise the advertised capabilities and how they have evolved in the first 5 years, the proposal pressure and `hot spots', and describe some of the issues with the real measured system performance. We also outline the observing statistics, project completion rates, and papers from ALMA. Finally we highlight some of the new transformational science coming from this facility.

  18. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    2004-12-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Dust Debris Disks; some of these are discussed.

  19. ALMA Observations of Starless Core Substructure in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Kirk, H.; Dunham, M. M.; Di Francesco, J.; Johnstone, D.; Offner, S. S. R.; Sadavoy, S. I.; Tobin, J. J.; Arce, H. G.; Bourke, T. L.; Mairs, S.; Myers, P. C.; Pineda, J. E.; Schnee, S.; Shirley, Y. L.

    2017-04-01

    Compact substructure is expected to arise in a starless core as mass becomes concentrated in the central region likely to form a protostar. Additionally, multiple peaks may form if fragmentation occurs. We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 observations of 60 starless and protostellar cores in the Ophiuchus molecular cloud. We detect eight compact substructures which are > 15\\prime\\prime from the nearest Spitzer young stellar object. Only one of these has strong evidence for being truly starless after considering ancillary data, e.g., from Herschel and X-ray telescopes. An additional extended emission structure has tentative evidence for starlessness. The number of our detections is consistent with estimates from a combination of synthetic observations of numerical simulations and analytical arguments. This result suggests that a similar ALMA study in the Chamaeleon I cloud, which detected no compact substructure in starless cores, may be due to the peculiar evolutionary state of cores in that cloud.

  20. ALMA Reveals a Compact Starburst Around a Hidden QSO at z˜5

    NASA Astrophysics Data System (ADS)

    Gilli, R.; Norman, C. A.; Vignali, C.

    2015-12-01

    We present ALMA 1.3mm observations of XID403, an SMG at z=4.75 in the Chandra Deep Field South hosting a heavily obscured, Compton-thick QSO. The ALMA data show that the dust heated by star formation is distributed within ˜0.9 kpc from the nucleus (effective radius). The SFR and dust temperature obtained from the Herschel+ALMA far-IR SED, reveal a warm and compact starburst with surface density of 200 M⊙ yr-1 kpc-2. Our analysis suggest that, besides the mass, SFR and gas consumption timescale, objects like XID403 have also the right size to be the progenitors of the compact quiescent massive galaxies seen at z˜3. It is finally shown that the density of the gas co-spatial with the dust provides a substantial contribution to the absorbing column density towards the QSO as measured from the X-rays.

  1. Observing the Sun with the Atacama Large Millimeter/submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    NASA Astrophysics Data System (ADS)

    White, S. M.; Iwai, K.; Phillips, N. M.; Hills, R. E.; Hirota, A.; Yagoubov, P.; Siringo, G.; Shimojo, M.; Bastian, T. S.; Hales, A. S.; Sawada, T.; Asayama, S.; Sugimoto, M.; Marson, R. G.; Kawasaki, W.; Muller, E.; Nakazato, T.; Sugimoto, K.; Brajša, R.; Skokić, I.; Bárta, M.; Kim, S.; Remijan, A. J.; de Gregorio, I.; Corder, S. A.; Hudson, H. S.; Loukitcheva, M.; Chen, B.; De Pontieu, B.; Fleishmann, G. D.; Gary, D. E.; Kobelski, A.; Wedemeyer, S.; Yan, Y.

    2017-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12 m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that uses the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions, we derive quiet-Sun values at disk center of 7300 K at λ = 3 mm and 5900 K at λ = 1.3 mm. These values have statistical uncertainties of about 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of about 25'', the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range. Active regions and plages are among the hotter features, while a large sunspot umbra shows up as a depression, and filament channels are relatively cool. Prominences above the solar limb are a common feature of the single-dish images.

  2. Quiescent Prominences in the Era of ALMA. II. Kinetic Temperature Diagnostics

    NASA Astrophysics Data System (ADS)

    Gunár, Stanislav; Heinzel, Petr; Anzer, Ulrich; Mackay, Duncan H.

    2018-01-01

    We provide the theoretical background for diagnostics of the thermal properties of solar prominences observed by the Atacama Large Millimeter/submillimeter Array (ALMA). To do this, we employ the 3D Whole-Prominence Fine Structure (WPFS) model that produces synthetic ALMA-like observations of a complex simulated prominence. We use synthetic observations derived at two different submillimeter/millimeter (SMM) wavelengths—one at a wavelength at which the simulated prominence is completely optically thin and another at a wavelength at which a significant portion of the simulated prominence is optically thick—as if these were the actual ALMA observations. This allows us to develop a technique for an analysis of the prominence plasma thermal properties from such a pair of simultaneous high-resolution ALMA observations. The 3D WPFS model also provides detailed information about the distribution of the kinetic temperature and the optical thickness along any line of sight. We can thus assess whether the measure of the kinetic temperature derived from observations accurately represents the actual kinetic temperature properties of the observed plasma. We demonstrate here that in a given pixel the optical thickness at the wavelength at which the prominence plasma is optically thick needs to be above unity or even larger to achieve a sufficient accuracy of the derived information about the kinetic temperature of the analyzed plasma. Information about the optical thickness cannot be directly discerned from observations at the SMM wavelengths alone. However, we show that a criterion that can identify those pixels in which the derived kinetic temperature values correspond well to the actual thermal properties in which the observed prominence can be established.

  3. Stratospheric Observatory for Infrared Astronomy (SOPHIA) Mirror Coating Facility

    NASA Astrophysics Data System (ADS)

    Austin, Ed

    The joint US and German project, Stratospheric Observatory for Infrared Astronomy (SOFIA), to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began late last year. Universities Space Research Association (USRA), teamed with Raytheon E-Systems and United Airlines, was selected by NASA to develop and operate SOPHIA. The 2.5 meter telescope will be designed and built by a consortium of German companies. The observatory is expected to operate for over 29 years with the first science flights beginning in 2001. The SOPHIA Observatory will fly at and above 12.5 km, where the telescope will collect radiation in the wavelength range from 0.3 micrometers to a 1.6 millimeters. Universities Space Research Association (USRA) with support from NASA is currently evaluating methods of recoating the primary mirror in preparation for procurement of mirror coating equipment. The decision analysis technique, decision criteria and telescope specifications will be discussed.

  4. Atmospheric phase characteristics of the ALMA long baseline

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Barkats, Denis; Corder, Stuartt A.; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Morita, Koh-Ichiro; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine

    2016-07-01

    Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/ submillimeter (mm / Submm) interferometer. Along with science observations, ALMA has performed several long baseline campaigns in the last 6 years to characterize and optimize its long baseline capabilities. To achieve full long baseline capability of ALMA, it is important to understand the characteristics of atmospheric phase fluctuation at long baselines, since it is believed to be the main cause of mm/submm image degradation. For the first time, we present detailed properties of atmospheric phase fluctuation at mm/submm wavelength from baselines up to 15 km in length. Atmospheric phase fluctuation increases as a function of baseline length with a power-law slope close to 0.6, and many of the data display a shallower slope (02.-03) at baseline length greater than about 15 km. Some of the data, on the other hand, show a single slope up to the maximum baseline length of around 15 km. The phase correction method based on water vapor radiometers (WVRs) works well, especially for cases with precipitable water vapor (PWV) greater than 1 mm, typically yielding a 50% decrease or more in the degree of phase fluctuation. However, signicant amount of atmospheric phase fluctuation still remains after the WVR phase correction: about 200 micron in rms excess path length (rms phase fluctuation in unit of length) even at PWV less than 1 mm. This result suggests the existence of other non-water-vapor sources of phase fluctuation. and emphasizes the need for additional phase correction methods, such as band-to-band and/or fast switching.

  5. A general observatory control software framework design for existing small and mid-size telescopes

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Lu, Xiao-Meng; Jiang, Xiao-Jun

    2015-07-01

    A general framework for observatory control software would help to improve the efficiency of observation and operation of telescopes, and would also be advantageous for remote and joint observations. We describe a general framework for observatory control software, which considers principles of flexibility and inheritance to meet the expectations from observers and technical personnel. This framework includes observation scheduling, device control and data storage. The design is based on a finite state machine that controls the whole process.

  6. Alma Flor Ada and the Quest for Change

    ERIC Educational Resources Information Center

    Manna, Anthony, L.; Hill, Janet; Kellogg, Kathy

    2004-01-01

    Alma Flor Ada, a folklorist, novelist, scholar, teacher, and children's book author has passionate dedication to education for social justice, equality, and peace. As a faculty member at the University of San Francisco, Ada has developed programs that help students and others transform their lives and has written several bilingual legends and…

  7. Detection and mapping of organic molecules in Titan's atmosphere using ALMA

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin

    2016-06-01

    Titan's atmospheric photochemistry results in the production of a wide range of organic molecules, including hydrocarbons, nitriles, aromatics and other complex species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of organic matter in primitive (terrestrial) planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. Results will be presented from our ongoing studies of Titan using ALMA data obtained during the period 2012-2014 [1,2], including detection and mapping of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH. In addition, combining data from multiple ALMA Band 6 observations, we obtained high-resolution spectra with unprecedented sensitivity, enabling the first detection of C2H3CN (vinyl cyanide) on Titan, and derived a mean C2H3CN C2H5CN abundance ratio above 300 km of 0.3. Vinyl cyanide has recently been investigated as a possible constituent of (pre-biotic) vesicle membranes in Titan's liquid CH4 oceans [3]. Radiative transfer models and possible chemical formation pathways for the detected molecules will be discussed. ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere for gases inaccessible to previous studies, and therefore provide new insights into photochemical production and transport, particularly at higher altitudes. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with the molecular distributions found in previous studies at infrared wavelengths by Voyager and Cassini, but high-altitude longitudinal asymmetries in our nitrile data indicate that the mesosphere may be more spatially variable than previously thought.

  8. QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.

    2016-12-20

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less

  9. ALMA observations of Titan's atmospheric chemistry and seasonal variation

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin

    2017-04-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Photochemistry in Titan's upper atmosphere results in the production of a wide range of organic molecules, including hydrocarbons, nitriles and aromatics, some of which could be of pre-biotic relevance. Thus, we obtain insights into the possible molecular inventories of primitive (reducing) planetary atmospheres. Titan's atmosphere also provides a unique laboratory for testing our understanding of fundamental processes involving the chemistry and spectroscopy of complex organic molecules. In this talk, results will be presented from our studies using the Atacama Large Millimeter/submillimeter Array (ALMA) during the period 2012-2015, focussing in particular on the detection and mapping of emission from various nitrile species. By combining data from multiple ALMA observations, our spectra have reached an unprecedented sensitivity level, enabling the first spectroscopic detection and mapping of C2H3CN (vinyl cyanide) on Titan. Liquid-phase simulations of Titan's seas indicate that vinyl cyanide molecules could combine to form vesicle membranes (similar to the cells of terrestrial biology), and the astrobiological implications of this discovery will be discussed. Furthermore, ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere, for gases inaccessible to previous instruments. Combined with complementary data obtained from the Cassini Saturn orbiter, as well as theoretical models and laboratory studies, our observed, seasonally variable, spatially resolved abundance patterns are capable of providing new insights into photochemical production and transport in primitive planetary atmospheres in the Solar System and beyond.

  10. ALMA and VLA observations of the HD 141569 system

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.; MacGregor, M. A.; Hughes, A. M.; Wilner, D. J.

    2018-03-01

    We present VLA 9 mm (33 GHz) and archival ALMA 2.9 mm (103 GHz) observations of the HD 141569 system. The VLA observations achieve a resolution of 0.25 arcsec (˜28 au) and a sensitivity of 4.7 μJy beam- 1. We find (1) a 52 ± 5 μJy point source at the location of HD 141569A that shows potential variability, (2) the detected flux is contained within the SED-inferred central clearing of the disc meaning the spectral index of the dust disc is steeper than previously inferred, and (3) the M dwarf companions are also detected and variable. Previous lower resolution VLA observations (semester 14A) found a higher flux density, interpreted as solely dust emission. When combined with ALMA observations, the VLA 14A observations suggested the spectral index, and grain size distribution of HD 141569's disc was shallow and an outlier among debris systems. Using archival ALMA observations of HD 141569 at 0.87 and 2.9 mm, we find a dust spectral index of αmm = 1.81 ± 0.20. The VLA 16A flux corresponds to a brightness temperature of ˜5 × 106 K, suggesting strong non-disc emission is affecting the inferred grain properties. The VLA 16A flux density of the M2V companion HD 141569B is 149 ± 9 μJy, corresponding to a brightness temperature of ˜2 × 108 K and suggesting significant stellar variability when compared to the VLA14A observations, which are smaller by a factor of ˜6.

  11. Stratospheric observatory for infrared astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Moon, L. J.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA survey project related to astrochemistry is discussed.

  12. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1999-03-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP is now in full development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20 per cent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow much more use by scientists than was possible on the KAO.

  13. Physics and Chemistry of Star and Planet Formation in the Alma ERA

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin

    2014-06-01

    ALMA will open up new avenues of exploration encompassing the wide range of star formation in our galaxy and peering into the central heart of planet-forming circumstellar disks. As we seek to explore the origins of stars and planets molecular emission will be at the front and center of many studies probing gas physics and chemistry. In this talk I will discus some of the areas where we can expect significant advances due to the increased sensitivity and superb spatial resolution of ALMA. In star-forming cores, a rich chemistry is revealed that may be the simpler molecular precursors to more complex organics, such as amino acids, seen within primitive rocks in our own solar system. ALMA will provide new information regarding the relative spatial distribution within a given source for a host of organics, sampling tens to hundreds of transitions of a variety of molecules, including presumably new ones. In this area there is a rich synergy with existing ground and space-based data, including Herschel/Spitzer. Here the increased sampling of sources to be enabled by ALMA should bring greater clarity toward the key products of interstellar chemistry and further constrain processes. On smaller Solar System scales, for over a decade most observations of planet-forming disks focused on the dust thermal continuum emission as a probe of the gas content and structure. ALMA will enable reliable and direct studies of gas to explore the evolving physics of planet-formation, the gas dissipation timescales (i.e. the upper limit to the timescale for giant planet birth), and also the chemistry. It is this chemistry that sets the composition of gas giants and also influences the ultimate composition of water and organic materials that are delivered to terrestrial worlds. Here I will show how we can use molecular emission to determine the gas thermal structure of a disk system and the total gas content - key astrophysical quantities. This will also enable more constrained chemical

  14. ALMA OBSERVATIONS OF Ly α BLOB 1: HALO SUBSTRUCTURE ILLUMINATED FROM WITHIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geach, J. E.; Narayanan, D.; Matsuda, Y.

    2016-11-20

    We present new Atacama Large Millimeter/Submillimeter Array (ALMA) 850 μ m continuum observations of the original Ly α Blob (LAB) in the SSA22 field at z = 3.1 (SSA22-LAB01). The ALMA map resolves the previously identified submillimeter source into three components with a total flux density of S {sub 850} = 1.68 ± 0.06 mJy, corresponding to a star-formation rate of ∼150 M {sub ⊙} yr{sup -1}. The submillimeter sources are associated with several faint ( m ≈ 27 mag) rest-frame ultraviolet sources identified in Hubble Space Telescope Imaging Spectrograph (STIS) clear filter imaging ( λ ≈ 5850 Å). Onemore » of these companions is spectroscopically confirmed with the Keck Multi-Object Spectrometer For Infra-Red Exploration to lie within 20 projected kpc and 250 km s{sup -1} of one of the ALMA components. We postulate that some of these STIS sources represent a population of low-mass star-forming satellites surrounding the central submillimeter sources, potentially contributing to their growth and activity through accretion. Using a high-resolution cosmological zoom simulation of a 10{sup 13} M {sub ⊙} halo at z = 3, including stellar, dust, and Ly α radiative transfer, we can model the ALMA+STIS observations and demonstrate that Ly α photons escaping from the central submillimeter sources are expected to resonantly scatter in neutral hydrogen, the majority of which is predicted to be associated with halo substructure. We show how this process gives rise to extended Ly α emission with similar surface brightness and morphology to observed giant LABs.« less

  15. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial sciencemore » flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.« less

  16. Imaging of Stellar Surfacess Using Radio Facilities Including ALMA

    NASA Astrophysics Data System (ADS)

    O'Gorman, Eamon

    2018-04-01

    Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.

  17. The Atacama Large Millimeter/submillimeter Array (alma): Early Results

    NASA Astrophysics Data System (ADS)

    Wootten, Alwyn

    2012-06-01

    New radioastronomical instruments, such as ALMA or the Jansky VLA, have increased spectral throughput by orders of magnitude over previously available capabilities. ALMA brings orders of magnitude increases in spectral sensitivity and spatial resolution over what has previously been available. These increased capabilities open new possibilities for studies of complex molecules in the interstellar medium. Complex interstellar molecules may form on the surfaces of interstellar grains, after which they may be liberated into the gas phase by shocks, radiation, or other external influences. Emission from complex molecules may be diluted owing to the large number of transitions large molecules may undergo, particularly in warm regions of interstellar clouds. High sensitivity and spatial resolution are necessary to explore the distributions and relationships of these molecules. Of particular interest are the distributions of large organic molecules. Observations which establish the relationships between various large molecules are now emerging from these new instruments and will be discussed.

  18. Non-Equilibrium Chemistry of O-Rich AGB Stars as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Wong, Ka Tat

    2018-04-01

    Chemical models suggest that pulsation driven shocks propagating from the stellar surfaces of oxygen-rich evolved stars to the dust formation zone trigger non-equilibrium chemistry in the shocked gas near the star, including the formation of carbon-bearing molecules in the stellar winds dominated by oxygen-rich chemistry. Recent long-baseline ALMA observations are able to give us a detailed view of the molecular line emission and absorption at an angular resolution of a few stellar radii. I am going to present the latest results from the ALMA observations of IK Tau and o Cet in late 2017, with a particular focus on HCN.

  19. A submillimeter background galaxy projected on the debris disk of HD95086 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Zapata, Luis A.; Ho, Paul T. P.; Rodríguez, Luis F.

    2018-06-01

    We present sensitive observations carried out with the Atacama Large Millimeter/Submillimeter Array (ALMA) of the dusty debris disc HD 95086. These observations were made in bands 6 (223 GHz) and 7 (338 GHz) with an angular resolution of about 1 arcsec, which allowed us to resolve well the debris disc with a deconvolved size of 7.0 × 6.0 arcsec2 and with an inner depression of about 2 arcsec. We do not detect emission from the star itself and the possible inner dusty belt. We also do not detect CO (J = 2-1) and (J = 3-2) emission, excluding the possibility of an evolved gaseous primordial disc as noted in previous studies of HD95086. We estimated a lower limit for the gas mass of ≤0.01 M⊕ for the debris disc of HD95086. From the mm. emission, we computed a dust mass for the debris disc HD95086 of 0.5 ± 0.2 M⊕, resulting in a dust-to-gas ratio of ≥50. Finally, we confirm the detection of a strong submillimeter source to the north-west of the disc (ALMA-SMM1) revealed by recent ALMA observations. This new source might be interpreted as a planet in formation on the periphery of the debris disc HD 95086 or as a strong impact between dwarf planets. However, given the absence of the proper motions of ALMA-SMM1 similar to those reported in the debris disc (estimated from these new ALMA observations) and for the optical star, this is more likely to be a submillimeter background galaxy.

  20. ALMA Measurements of Circumstellar Material in the GQ Lup System

    NASA Astrophysics Data System (ADS)

    Wilner, David J.; MacGregor, Meredith A.; Czekala, Ian; Andrews, Sean M.; Dai, Yu Sophia; Herczeg, Gregory; Kratter, Kaitlin M.; Kraus, Adam L.; Ricci, Luca; Testi, Leonardo

    2017-01-01

    We present ALMA observations of the GQ Lup system, a young Sun-like star with a substellar mass companion in a wide-separation orbit. These observations of 870 micron continuum and CO J=3-2 line emission with beam 0.3 arcsec (45 AU) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. The 3 sigma upper limit on the 870 micron flux density of < 0.15 mJy implies an upper limit on the GQ Lup b disk mass of about 0.04 solar masses for standard assumptions about optically thin dust emission. Given the non-detection of a circumplanetary disk around GQ Lup b, and other similar systems observed by ALMA, we discuss implications for formation mechanisms of wide-separation substellar companions.

  1. The Best of Two Worlds: ALMA + IRAM30M Observations of the Orion Integral Shape Filament

    NASA Astrophysics Data System (ADS)

    Hacar Gonzalez, Alvaro

    2018-01-01

    We have investigated the internal gas structure of the Orion Integral Shape filament using two large-scale, 150-pointing ALMA-12m mosaics and previous IRAM30m single-dish (SD) observations. From the combination of both single-dish and interferometric data we have produced a high-dynamic range and high-sensitivity map describing the internal gas structure of this filament at scales between 2 pc and 2000 AU (Hacar et al, submitted to A&A). In a series of individual CASA reductions (w/o SD data + w/o feathering), we have investigated the impact of the different uv-coverages on both the total flux and line velocity structure of our ALMA maps. Our analysis highlights the critical role played by the zero-spacing data at the different stages of the cleaning process. The results of these ALMA+IRAM30m experiments emphasize the need of high-sensitivity SD observations for the analysis of large-scale interferometric maps. During my talk, I will discuss the implications of these experiments on the dawn of the ALMA era and in the context of the new AtLAST telescope.

  2. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    , Czech representative at the ESO Council. After the opening of the telescopes, President Klaus had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the VLT platform. Then he visited the VLT control room, which operates the four Unit Telescopes and the VLT Interferometer (VLTI). Here, the President took part in the start of observations from the console of one of the VLT Unit telescopes. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  4. The National E-Books Observatory Project: Examining Student Behaviors and Usage

    ERIC Educational Resources Information Center

    Estelle, Lorraine; Woodward, Hazel

    2009-01-01

    The Joint Information Systems Committee National e-Books Observatory Project will assess the impacts, observe behaviors, and develop new models to stimulate the U.K. higher education e-books market. The project has licensed a collection of e-books that are highly relevant to U.K. higher education in four disciplines and will evaluate the use of…

  5. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.; Horn, Jochen M. M.

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now well into development. Work on the aircraft and the telescope has started. First science flights will begin in 2003 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have instrumentation that will allow astronomical surveys that were not possible on the KAO. A future SOFIA project related to astrochemistry is discussed.

  6. NASA's newly painted Stratospheric Observatory for Infrared Astronomy 747SP is pushed back from L-3 Communications' Integrated Systems hangar in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP aircraft sits outside a hangar at L-3 Communications Integrated Systems' facility in Waco, Texas. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  7. ALMA Examines a Distant Quasar Host

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at

  8. Accessing Multi-Dimensional Images and Data Cubes in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Tody, Douglas; Plante, R. L.; Berriman, G. B.; Cresitello-Dittmar, M.; Good, J.; Graham, M.; Greene, G.; Hanisch, R. J.; Jenness, T.; Lazio, J.; Norris, P.; Pevunova, O.; Rots, A. H.

    2014-01-01

    Telescopes across the spectrum are routinely producing multi-dimensional images and datasets, such as Doppler velocity cubes, polarization datasets, and time-resolved “movies.” Examples of current telescopes producing such multi-dimensional images include the JVLA, ALMA, and the IFU instruments on large optical and near-infrared wavelength telescopes. In the near future, both the LSST and JWST will also produce such multi-dimensional images routinely. High-energy instruments such as Chandra produce event datasets that are also a form of multi-dimensional data, in effect being a very sparse multi-dimensional image. Ensuring that the data sets produced by these telescopes can be both discovered and accessed by the community is essential and is part of the mission of the Virtual Observatory (VO). The Virtual Astronomical Observatory (VAO, http://www.usvao.org/), in conjunction with its international partners in the International Virtual Observatory Alliance (IVOA), has developed a protocol and an initial demonstration service designed for the publication, discovery, and access of arbitrarily large multi-dimensional images. The protocol describing multi-dimensional images is the Simple Image Access Protocol, version 2, which provides the minimal set of metadata required to characterize a multi-dimensional image for its discovery and access. A companion Image Data Model formally defines the semantics and structure of multi-dimensional images independently of how they are serialized, while providing capabilities such as support for sparse data that are essential to deal effectively with large cubes. A prototype data access service has been deployed and tested, using a suite of multi-dimensional images from a variety of telescopes. The prototype has demonstrated the capability to discover and remotely access multi-dimensional data via standard VO protocols. The prototype informs the specification of a protocol that will be submitted to the IVOA for approval, with an

  9. ALMA Spectroscopy of Titan's Atmosphere: First Detections of Vinyl Cyanide and Acetonitrile Isotopologues

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Y Palmer, Maureen; Nixon, Conor A.; Charnley, Steven B.; Mumma, Michael J.; Irwin, Pat G. J.; Teanby, Nick A.; Kisiel, Zbigniew; Serigano, Joseph

    2015-11-01

    Studies of Titan's atmospheric chemistry provide a unique opportunity to explore the origin and evolution of complex organic matter in primitive planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new telescope, well suited to the study of molecular emission from Titan's stratosphere and mesosphere. Here we present early results from our ongoing study to exploit the large volume of Titan data taken using ALMA in Early Science Mode (during the period 2012-2014). Combining data from multiple ALMA Band 6 observations, we obtained high-resolution mm-wave spectra with unprecedented sensitivity, enabling the first detection of vinyl cyanide (C2H3CN) in Titan's atmosphere. Initial estimates indicate a mesospheric abundance ratio with respect to ethyl cyanide (C2H5CN) of [C2H3CN]/[C2H5CN] = 0.31. In addition, we report the first detections on Titan of the 13C and 15N-substituted isotopologues of acetonitrile (13CH3CN and CH3C15N). Radiative transfer models and possible chemical formation pathways for these molecules will be discussed.

  10. ALMA long baseline phase calibration using phase referencing

    NASA Astrophysics Data System (ADS)

    Asaki, Yoshiharu; Matsushita, Satoki; Fomalont, Edward B.; Corder, Stuartt A.; Nyman, Lars-Åke; Dent, William R. F.; Philips, Neil M.; Hirota, Akihiko; Takahashi, Satoko; Vila-Vilaro, Baltasar; Nikolic, Bojan; Hunter, Todd R.; Remijan, Anthony; Vlahakis, Catherine

    2016-08-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/submillimeter telescope and provides unprecedented sensitivities and spatial resolutions. To achieve the highest imaging capabilities, interferometric phase calibration for the long baselines is one of the most important subjects: The longer the baselines, the worse the phase stability becomes because of turbulent motions of the Earth's atmosphere, especially, the water vapor in the troposphere. To overcome this subject, ALMA adopts a phase correction scheme using a Water Vapor Radiometer (WVR) to estimate the amount of water vapor content along the antenna line of sight. An additional technique is phase referencing, in which a science target and a nearby calibrator are observed by turn by quickly changing the antenna pointing. We conducted feasibility studies of the hybrid technique with the WVR phase correction and the antenna Fast Switching (FS) phase referencing (WVR+FS phase correction) for the ALMA 16 km longest baselines in cases that (1) the same observing frequency both for a target and calibrator is used, and (2) higher and lower frequencies for a target and calibrator, respectively, with a typical switching cycle time of 20 s. It was found that the phase correction performance of the hybrid technique is promising where a nearby calibrator is located within roughly 3◦ from a science target, and that the phase correction with 20 s switching cycle time significantly improves the performance with the above separation angle criterion comparing to the 120 s switching cycle time. The currently trial phase calibration method shows the same performance independent of the observing frequencies. This result is especially important for the higher frequency observations because it becomes difficult to find a bright calibrator close to an arbitrary sky position. In the series of our experiments, it is also found that phase errors affecting the image quality come from not only

  11. Observations of CO in Titan's Atmosphere Using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixon, Conor A.; Cordiner, Martin; Irwin, Patrick G. J.; Teanby, Nicholas; Charnley, Steven B.; Lindberg, Johan E.; Remijan, Anthony J.

    2015-11-01

    The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has provided a powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the dense, nitrogen-dominated atmosphere of Titan, photodissociation of molecular nitrogen and methane leads to a wealth of complex hydrocarbons and nitriles in small abundances. Past millimeter/submillimeter observations, including ground-based observations as well as those by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, have proven the significance of this wavelength region for the derivation of vertical mixing profiles, latitudinal and seasonal variations, and molecular detections. Previous ALMA studies of Titan have presented mapping and vertical column densities of hydrogen isocyanide (HNC) and cyanoacetylene (HC3N) (Cordiner et al. 2014) as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan’s atmosphere (Cordiner et al. 2015).Here, we report several submillimetric observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C17O in Titan’s atmosphere obtained with flux calibration data from the ALMA Science Archive. We employ NEMESIS, a line-by-line radiative transfer code, to determine the stratospheric abundances of these molecules. The abundance of CO in Titan's atmosphere is determined to be approximately 50±1 ppm, constant with altitude, and isotopic ratios are determined to be approximately 12C/13C = 90, 16O/18O = 470, and 16O/17O = 2800. This report presents the first spectroscopic detection of C17O in the outer solar system, detected at >11σ confidence. This talk will focus on isotopic ratios in CO in Titan's atmosphere and will compare our results to previously measured values for Titan and other bodies in the Solar System. General implications for the history of Titan from measurements of CO and its isotopologues will be

  12. Business Intelligence Applied to the ALMA Software Integration Process

    NASA Astrophysics Data System (ADS)

    Zambrano, M.; Recabarren, C.; González, V.; Hoffstadt, A.; Soto, R.; Shen, T.-C.

    2012-09-01

    Software quality assurance and planning of an astronomy project is a complex task, specially if it is a distributed collaborative project such as ALMA, where the development centers are spread across the globe. When you execute a software project there is much valuable information about this process itself that you might be able to collect. One of the ways you can receive this input is via an issue tracking system that will gather the problem reports relative to software bugs captured during the testing of the software, during the integration of the different components or even worst, problems occurred during production time. Usually, there is little time spent on analyzing them but with some multidimensional processing you can extract valuable information from them and it might help you on the long term planning and resources allocation. We present an analysis of the information collected at ALMA from a collection of key unbiased indicators. We describe here the extraction, transformation and load process and how the data was processed. The main goal is to assess a software process and get insights from this information.

  13. Seeing and optimization of the thermal regime in the dome of 1.5-m Telescope Maidanak Observatory

    NASA Astrophysics Data System (ADS)

    Artamonov, Boris P.

    1997-03-01

    Beginning in 1975 Sternberg Astronomical Institute of Moscow University (SAI) developed a search of places with the best astroclimate in Middle Asia. Mount Maidanak (150 km to south from Samarkand) was chosen after investigation of the meteorological conditions, temperature fluctuations and seeing quality by astroclimatical expeditions in a different city testing for Moscow University Observatory. Having an isolated summit Maidanak has good astroclimatical parameters: 2000 clean observational hours/year, median seeing about 0.7 arcsec (Artamonov et al. 1987, Bugaenko et al. 1992). At the end of 1992 SAI mainly finished the construction of Maidanak Observatory with a 1.5 meter RC telescope, but in 1993 the development of the observatory was stopped after nationalization by Uzbekistan. At present Sternberg Astronomical Institute and Tashkent Astronomical Institute (new owner of the observatory) continue to work in joint observations and try to create International Maidanak Observatory.

  14. ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Y. D.; Marrone, D. P.; Spilker, J. S.

    2013-04-20

    We present Atacama Large Millimeter/submillimeter Array (ALMA) 860 {mu}m imaging of four high-redshift (z = 2.8-5.7) dusty sources that were detected using the South Pole Telescope (SPT) at 1.4 mm and are not seen in existing radio to far-infrared catalogs. At 1.''5 resolution, the ALMA data reveal multiple images of each submillimeter source, separated by 1''-3'', consistent with strong lensing by intervening galaxies visible in near-IR imaging of these sources. We describe a gravitational lens modeling procedure that operates on the measured visibilities and incorporates self-calibration-like antenna phase corrections as part of the model optimization, which we use to interpretmore » the source structure. Lens models indicate that SPT0346-52, located at z = 5.7, is one of the most luminous and intensely star-forming sources in the universe with a lensing corrected FIR luminosity of 3.7 Multiplication-Sign 10{sup 13} L{sub Sun} and star formation surface density of 4200 M{sub Sun} yr{sup -1} kpc{sup -2}. We find magnification factors of 5 to 22, with lens Einstein radii of 1.''1-2.''0 and Einstein enclosed masses of 1.6-7.2 Multiplication-Sign 10{sup 11} M{sub Sun }. These observations confirm the lensing origin of these objects, allow us to measure their intrinsic sizes and luminosities, and demonstrate the important role that ALMA will play in the interpretation of lensed submillimeter sources.« less

  15. Protostellar Jets: The Revolution with ALMA

    NASA Astrophysics Data System (ADS)

    Podio, Linda

    2017-11-01

    Fast and collimated molecular jets as well as slower wide-angle outflows are observed since the earliest stages of the formation of a new star, when the protostellar embryo accretes most of its final mass from the dense parental envelope. Early theoretical studies suggested that jets have a key role in this process as they can transport away angular momentum thus allowing the star to form without reaching its break-up speed. However, an observational validation of these theories is still challenging as it requires to investigate the interface between jets and disks on scales of fractions to tens of AUs. For this reason, many questions about the origin and feedback of protostellar jets remain unanswered, e.g. are jets ubiquitous at the earliest stages of star formation? Are they launched by a magneto-centrifugal mechanism as suggested by theoretical models? Are they able to remove (enough) angular momentum? What is the jet/outflow feedback on the forming star-disk system in terms of transported mass/momentum and shock-induced chemical alterations? The advent of millimetre interferometers such as NOEMA and ALMA with their unprecedented combination of angular resolution and sensitivity are now unraveling the core of pristine jet-disk systems. While NOEMA allows to obtain the first statistically relevant surveys of protostellar jet properties and ubiquity, recent ALMA observations provide the first solid signatures of jet rotation and new insight on the chemistry of the protostellar region. I will review the most recent and exciting results obtained in the field and show how millimetre interferometry is revolutionising our comprehension of protostellar jets.

  16. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  17. The Cultural Implications of Primary Health Care and the Declaration of Alma-Ata: The Health District of Kedougou, Senegal

    ERIC Educational Resources Information Center

    Blanas, Demetri A.

    2008-01-01

    In 1978, the World Health Organization (WHO) and the international health community convoked a conference in Alma-Ata, Kazakhstan, to address global inequalities in health. The conference resulted in the publication of the "Declaration of Alma-Ata," which made the ambitious call "for urgent action by all governments, all health and…

  18. Gamma-Ray Burst Afterglows with ALMA

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Huang, K.; Takahashi, S.

    2015-12-01

    We present multi-wavelength observations including sub-millimeter follow-ups for two GRB afterglows. The rapid SMA and multi-wavelength observations for GRB120326A revealed their complex emissions as the synchrotron self-inverse Compton radiation from reverse shock. The observations including ALMA for GRB131030A also showed the significant X-ray excess from the standard forward shock synchrotron model. Based on these results, we also discuss further observations for (A) constraining of the mass of progenitor with polarization, (B) the first confirmation of GRB jet collimation, and (C) revealing the origin of optically dark GRBs.

  19. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  20. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  1. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  2. Charting the Winds that Change the Universe, II The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    The Single Aperture Far Infrared Observatory (SAFIR) will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  3. Poster 9: Isotopic Ratios of Carbon and Oxygen in Titan's CO using ALMA

    NASA Astrophysics Data System (ADS)

    Serigano, Joseph; Nixion, Conor A.; Cordiner, Martin A.; Irwin, Patrick G. J.; Teanby, Nick A.; Charnley, Steven B.; Lindberg, Johan E.

    2016-06-01

    The advent of the Atacama Large Millimeter/Submillimeter Array (ALMA) has provided a new and powerful facility for probing the atmospheres of solar system targets at long wavelengths (84-720 GHz) where the rotational lines of small, polar molecules are prominent. In the complex atmosphere of Titan, photochemical processes dissociate and ionize molecular nitrogen and methane in the upper atmosphere, creating a complex inventory of trace hydrocarbons and nitriles. Additionally, the existence of oxygen on Titan facilitates the synthesis of molecules of potential astrobiological importance. Utilization of ground-based submillimeter observations of Titan has proven to be a powerful tool to complement results from spacecraft observations. ALMA provides the ability to probe this region in greater detail with unprecedented spectral and spatial resolution at high sensitivity, allowing for the derivation of vertical mixing profiles, molecular detections, and observations of latitudinal and seasonal variations. Recent ALMA studies of Titan have presented spectrally and spatially-resolved maps of HNC and HC3N emission (Cordiner et al. 2014), as well as the first spectroscopic detection of ethyl cyanide (C2H5CN) in Titan's atmosphere (Cordiner et al. 2015). This poster will focus on ALMA observations of carbon monoxide (CO) and its isotopologues 13CO, C18O, and C 17O in Titan's atmosphere. Molecular abundances and the vertical atmospheric temperature profile were derived by modeling the observed emission line profiles using NEMESIS, a line-by-line radiative transfer code (Irwin et al. 2008). This study reports the first spectroscopic detection of 17O in the outer solar system with C17O detected at >8σ confidence. The abundances of these molecules and isotopic ratios of 12C/13C, 16O/18O, and 16O/17O will be presented. General implications for the history of Titan from these measurements will be discussed.

  4. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.

    1997-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter infrared airborne telescope in a Boeing 747-SP began earlier this year. Universities Space Research Association (USRA), teamed with Raytheon E systems and United Airlines, was selected by NASA to develop and operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies lead by MAN-GHH. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001, and the observatory is expected to operate for over 20 years. The specifications, instruments and science potential of SOFIA are discussed.

  5. Stratospheric Observatory For Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Davidson, J. A.; Horn, J. M. M.

    1999-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 - meter infrared airborne telescope in a Boeing 747-SP is now in its second year of development. Work on the aircraft and the primary mirror has started. First science flights will begin in 2002 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have facility instrumentation that will allow astronomical surveys that were not possible on the KAO. Two future SOFIA projects related to cosmology and astrochemistry are discussed.

  6. NASA's Stratospheric Observatory for Infrared Astronomy 747SP shows off its new blue-and-white livery at L-3 Communications' Integrated Systems in Waco, Texas

    NASA Image and Video Library

    2006-09-25

    NASA's freshly painted Stratospheric Observatory for Infrared Astronomy (SOFIA) 747SP is shown at L-3 Communications Integrated Systems' facility in Waco, Texas, where major modifications and installation was performed. The observatory, which features a German-built 100-inch (2.5 meter) diameter infrared telescope weighing 20 tons, is approaching the flight test phase as part of a joint program by NASA and DLR Deutsches Zentrum fuer Luft- und Raumfahrt (German Aerospace Center). SOFIA's science and mission operations are being planned jointly by Universities Space Research Association (USRA) and the Deutsches SOFIA Institut (DSI). Once operational, SOFIA will be the world's primary infrared observatory during a mission lasting up to 20 years, as well as an outstanding laboratory for developing and testing instrumentation and detector technology.

  7. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2012-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP. SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters. At SOFIA's maximum service ceiling of 45,000 feet, the average transmission at these wavelengths is greater than 80 percent. SOFIA flys out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations (SMO) Center is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes broadband imagers and spectrographs that can resolve spectral features due to dust and large molecules, and high resolution spectrometers facilitating kinematic studies of molecular and atomic gas lines at km/s resolution. More than 30 science flights of 10 hours length (take-off to landing) were conducted in the past year. About 100 eight to ten hour flights per year are planned by 2014, and the observatory will operate until the mid-2030's.

  8. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  9. Broadband MMIC LNAs for ALMA Band 2+3 With Noise Temperature Below 28 K

    NASA Astrophysics Data System (ADS)

    Cuadrado-Calle, David; George, Danielle; Fuller, Gary A.; Cleary, Kieran; Samoska, Lorene; Kangaslahti, Pekka; Kooi, Jacob W.; Soria, Mary; Varonen, Mikko; Lai, Richard; Mei, Xiaobing

    2017-05-01

    Recent advancements in transistor technology, such as the 35 nm InP HEMT, allow for the development of monolithic microwave integrated circuit (MMIC) low noise amplifiers (LNAs) with performance properties that challenge the hegemony of SIS mixers as leading radio astronomy detectors at frequencies as high as 116 GHz. In particular, for the Atacama Large Millimeter and Submillimeter Array (ALMA), this technical advancement allows the combination of two previously defined bands, 2 (67-90 GHz) and 3 (84-116 GHz), into a single ultra-broadband 2+3 (67-116 GHz) receiver. With this purpose, we present the design, implementation, and characterization of LNAs suitable for operation in this new ALMA band 2+3, and also a different set of LNAs for ALMA band 2. The best LNAs reported here show a noise temperature less than 250 K from 72 to 104 GHz at room temperature, and less than 28 K from 70 to 110 GHz at cryogenic ambient temperature of 20 K. To the best knowledge of the authors, this is the lowest wideband noise ever published in the 70-110 GHz frequency range, typically designated as W-band.

  10. The dust attenuation of star-forming galaxies at z ˜ 3 and beyond: New insights from ALMA observations

    NASA Astrophysics Data System (ADS)

    Fudamoto, Y.; Oesch, P. A.; Schinnerer, E.; Groves, B.; Karim, A.; Magnelli, B.; Sargent, M. T.; Cassata, P.; Lang, P.; Liu, D.; Le Fèvre, O.; Leslie, S.; Smolčić, V.; Tasca, L.

    2017-11-01

    We present results on the dust attenuation of galaxies at redshift ∼3-6 by studying the relationship between the UV spectral slope (βUV) and the infrared excess (IRX; LIR/LUV) using Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared continuum observations. Our study is based on a sample of 67 massive, star-forming galaxies with a median mass of M* ∼ 1010.7 M⊙ spanning a redshift range z = 2.6-3.7 (median z = 3.2) that were observed with ALMA at λ _{rest}=300 {μ m}. Both the individual ALMA detections (41 sources) and stacks including all galaxies show the IRX-βUV relationship at z ∼ 3 is mostly consistent with that of local starburst galaxies on average. However, we find evidence for a large dispersion around the mean relationship by up to ±0.5 dex. Nevertheless, the locally calibrated dust correction factors based on the IRX-βUV relation are on average applicable to main-sequence z ∼ 3 galaxies. This does not appear to be the case at even higher redshifts, however. Using public ALMA observations of z ∼ 4-6 galaxies we find evidence for a significant evolution in the IRX-βUV and the IRX-M* relations beyond z ∼ 3 towards lower IRX values. We discuss several caveats that could affect these results, including the assumed dust temperature. ALMA observations of larger z > 3 galaxy sample spanning a wide range of physical parameters (e.g. lower stellar mass) will be important to investigate this intriguing redshift evolution further.

  11. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    NASA Astrophysics Data System (ADS)

    Shimojo, M.; Hudson, H. S.; White, S. M.; Bastian, T.; Iwai, K.

    2017-12-01

    Eruptive phenomena are important features of energy releases events, such solar flares, and have the potential to improve our understanding of the dynamics of the solar atmosphere. The 304 A EUV line of helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously with ALMA, SDO/AIA, and Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ˜10^5 K plasma that is optically thin at 100 GHz, or a ˜10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.

  12. HELIO: The Heliophysics Integrated Observatory

    NASA Technical Reports Server (NTRS)

    Bentley, R. D.; Csillaghy, A.; Aboudarham, J.; Jacquey, C.; Hapgood, M. A.; Bocchialini, K.; Messerotti, M.; Brooke, J.; Gallagher, P.; Fox, P.; hide

    2011-01-01

    Heliophysics is a new research field that explores the Sun-Solar System Connection; it requires the joint exploitation of solar, heliospheric, magnetospheric and ionospheric observations. HELIO, the Heliophysics Integrated Observatory, will facilitate this study by creating an integrated e-Infrastructure that has no equivalent anywhere else. It will be a key component of a worldwide effort to integrate heliophysics data and will coordinate closely with international organizations to exploit synergies with complementary domains. HELIO was proposed under a Research Infrastructure call in the Capacities Programme of the European Commission's 7th Framework Programme (FP7). The project was selected for negotiation in January 2009; following a successful conclusion to these, the project started on 1 June 2009 and will last for 36 months.

  13. Modeling Protostar Envelopes and Disks Seen With ALMA: A Focus on L1527 Kinematics

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Flores Rivera, Lizxandra; Willacy, Karen

    2018-06-01

    ALMA probes continuum and spectral line emission from protostars that comes from both the envelope and circumstellar disk. The dust and gas emit on a variety of spatial scales, ranging from sub-arcseconds for disks to roughly 10 arcseconds for envelopes for nearby protostars. We present models of what ALMA should detect that incorporate a self-consistent collapse solution, radiative transfer, and realistic dust properties. Molecular abundances are also calculated; we present results for CO and isotopologues for the Class 0 source L1527. Results for the outer disk show that there can be significant differences from standard assumptions due to the effect of CO freeze out and non-Keplerian dynamics.

  14. Isotopic Ratios in Nitrile Species on Titan using ALMA

    NASA Astrophysics Data System (ADS)

    Molter, Edward; Nixon, Conor; Cordiner, Martin; Serigano, Joseph; Irwin, Patrick; Teanby, Nicholas; Charnley, Steven; Lindeberg, Johan

    2016-06-01

    The atmosphere of Titan is primarily composed of molecular nitrogen (N2, ˜98%) and methane (CH4, ˜2%), but also hosts a myriad of trace organic species. Two of the simplest and most abundant of these are hydrogen cyanide (HCN) and cyanoacetylene (HC3N). The advent of ALMA provides the opportunity to observe rotational transitions in these molecules and their isotopologues with unprecendented sensitivity and spatial resolution. We searched through the ALMA archive for publicly available high-resolution observations of Titan as a flux calibrator source taken between April and July 2014; each integration lasted around 160 seconds. Using spectra of HCN and HC3N isotopologues found in these data, we derive vertical abundance profiles and determine the isotopic ratios 14N/15N and 12C/13C in these molecules. We also report the detection of a new HCN isotopologue on Titan, H13C6 15N, and use a high signal-to-noise spectrum of DCN to determine the D/H ratio in HCN on Titan for the first time. These isotopic ratios are leveraged to constrain the physical and chemical processes occurring in Titan's atmosphere.

  15. The SOLA Team: A Star Formation Project To Study the Soul of Lupus with ALMA

    NASA Astrophysics Data System (ADS)

    De Gregorio-Monsalvo, Itziar; Saito, M.; Rodon, J.; Takahashi, S.

    2017-06-01

    The SOLA team is a multi-national and multi-wavelength collaboration composed by scientists with technical expertise in ALMA and in infrared and optical techniques. The aim of the team is to establish a low-mass star formation scenario based on the Lupus molecular clouds. In this talk I will present our unique catalog of pre-stellar and proto-stellar cores toward Lupus molecular clouds, the results on our latest studies in protoplanetary disks, as well as our ALMA Cycle 3 data aiming at testing the formation mechanism of sub-stellar objects in Lupus molecular clouds.

  16. Formation, Detection and the Distribution of Complex Organic Molecules with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    2015-08-01

    The formation and distribution of complex organic material in astronomical environments continues to be a focused research area in astrochemistry. For several decades now, emphasis has been placed on the millimeter/submillimeter regime of the radio spectrum for trying to detect new molecular species and to constrain the chemical formation route of complex molecules by comparing and contrasting their relative distributions towards varying astronomical environments. This effort has been extremely laborious as millimeter/submillimeter facilities have been only able to detect and map the distribution of the strongest transition(s) of the simplest organic molecules. Even then, these single transition "chemical maps" have been very low spatial resolution because early millimeter/submillimeter facilities did not have access to broadband spectral coverage or the imaging capabilities to truly ascertain the morphology of the molecular emission. In the era of ALMA, these limitations have been greatly lifted. Broadband spectral line surveys now hold the key to uncovering the full molecular complexity in astronomical environments. In addition, searches for complex organic material is no longer limited to investigating the strongest lines of the simplest molecules toward the strongest sources of emission in the Galaxy. ALMA is issuing a new era of exploration as the search for complex molecules will now be available to an increased suite of sources in the Galaxy and our understanding of the formation of this complex material will be greatly increased as a result. This presentation will highlight the current and future ALMA capabilities in the search for complex molecules towards astronomical environments, highlight the recent searches that ALMA scientists have conducted from the start of ALMA Early Science and provide the motivation for the next suite of astronomical searches to investigate our pre-biotic origins in the universe.

  17. Spatial Variations of Chemical Abundances in Titan's Atmosphere as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, Conor; Chanover, Nancy J.; Molter, Edward; Serigano, Joseph; Cordiner, Martin; Charnley, Steven B.; Teanby, Nicholas A.; Irwin, Patrick

    2016-10-01

    Complex organic molecules in Titan's atmosphere - formed through the dissociation of N2 and CH4 - exhibit latitudinal variations in abundance as observed by Cassini. Chemical species including hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - may show spatial abundance variations as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes of ~0.3'' allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk. We present abundance profiles obtained from public ALMA data taken in 2014, as Titan transitioned into northern summer. Abundance profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. These retrievals were performed using spatial temperature profiles obtained by modeling strong CO lines from datasets taken in similar times with comparable resolution. We compare the abundance variations of chemical species to measurements made using Cassini data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.

  18. De Herschel à Alma. Les galaxies dévoilent enfin leurs secrets.

    NASA Astrophysics Data System (ADS)

    Elbaz, David

    2016-08-01

    With deep surveys, one can measure the amount of stars born in slices of the Universe and infer a "cosmic rate of star formation." The latest estimates from the Herschel satellite show a rapid drop of star formation in galaxies since ten billion years. To understand the cause of this fall, we can now measure the interstellar reservoirs of galaxies by combining observations from Herschel and the millimeter interferometer ALMA. Early results suggest that this fall comes from the rapid consumption of interstellar matter which served as reservoir to galaxies. Thanks to the technique of interferometry, ALMA can map interstellar dust within galaxies observed at the time of the peak of cosmic star formation, ten billion years ago. We discover that the stars of the most massive galaxies are born not only at very high rates but also with an extreme concentration.

  19. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, Eric E.

    1998-08-01

    The joint US and German SOFIA project to develop and operate a 2.5 meter IR airborne telescope in a Boeing 747-SP is now in its second year. The Universities Space Research Association, teamed with Raytheon E-Systems and United Airlines, is developing and will operate SOFIA. The 2.5 meter telescope will be designed and built by a consortium of German companies led by MAN. Work on the aircraft and the primary mirror has started. First science flights will begin in 2001 with 20 percent of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed.

  20. An engineering array for the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel

    2012-03-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is currently being deployed at 4100 m in Sierra Negra, Mexico. The HAWC observatory will have 300 Water Cherenkov Detectors (WCDs). Each WCD will be instrumented with 4 upward facing baffled photo multiplier tubes (PMTs) anchored to the bottom of a 5 m deep by 7.3 m diameter steel container with a multilayer hermetic plastic bag containing 200,000 liters of purified water. An engineering array of 6 WCDs was deployed in Summer 2011 at the HAWC site and has been operational since then. This array serves to validate the design and construction methods for the HAWC observatory. It has also been collecting data which allows for the development of data collection and analysis tools. Here we will describe the deployment of the engineering array, the lessons learned from this experience and the implications for HAWC, as well as give an introduction into data collection and initial analysis being done, which will be presented jointly.

  1. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  2. Interstellar Isotopes: Prospects with ALMA

    NASA Technical Reports Server (NTRS)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  3. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  4. A Technical Overview and Description of SOFIA (Stratospheric Observatory for Infrared Astronomy)

    NASA Technical Reports Server (NTRS)

    Kunz, Nans

    2003-01-01

    This paper provides a technical overview of SOFIA, a unique airborne observatory, from an engineering perspective. It will do this by describing several of the systems of this observatory that are common with mountain top ground based observatories but mostly emphasize those more unique features and systems that are required to facilitate world class astronomy from a highly modified Boeing 747-SP flying at Mach 0.84 in the Stratosphere. This paper provides a technical overview of SOFIA by reviewing each of the performance specifications (the level one requirements for development) and describing some of the technical advancements for the telescope as well as the platform required to achieve these performance specifications. The technical advancements involved include mirror technologies, control system features, the telescope suspension system, and the aircraft open port cavity with associated cavity door that opens in flight and tracks the telescope elevation angle. For background this paper will provide a brief programmatic overview of the SOFIA project including the joint project arrangement between the US and Germany (NASA and DLR). Additionally, this paper will describe the up to date status of the development of SOFIA as the Observatory nears the date of the first test flight in the summer of 2004.

  5. The Hot Phase of a Cold Black Hole Fountain: Unifying Chandra with ALMA

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant

    2016-09-01

    A stunning new ALMA observation of the Cool Core Cluster Abell 2597 has revealed that a supermassive black hole can act much like a mechanical pump in a water fountain, inflating a billion solar mass radially expanding molecular bubble that is pushed far out into the galaxy outskirts, only to fall back inward again to feed the AGN. Previous 120 ksec Chandra observations show that this fountain exists amid exquisitely complex X-ray structures, including what may be the first direct observational evidence in support of buoyant X-ray cavity heating models invoked to inhibit cooling flows at late epochs. Mapping the hot phase of the fountain, however, remains impossible absent more X-ray counts. We propose a deep Legacy-class observation to illustrate the combined power of Chandra and ALMA.

  6. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less

  7. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2011-06-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) is a 2.5- meter infrared airborne telescope in a Boeing 747-SP that began science flights in 2010. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA can conduct photometric, spectroscopic, and imaging observations at wavelengths from 0.3 microns to 1.6 millimeters with an average transmission of greater than 80 percent. SOFIA is staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) is located at NASA Ames Research Center, Moffett Field, CA. SOFIA's first-generation instrument complement includes high speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. About 100 eight to ten hour flights per year are expected by 2014, and the observatory will operate until the mid 2030's. We will review the status of the SOFIA facility, its initial complement of science instruments, and the opportunities for advanced instrumentation.

  8. GRB 110715A: the peculiar multiwavelength evolution of the first afterglow detected by ALMA

    NASA Astrophysics Data System (ADS)

    Sánchez-Ramírez, R.; Hancock, P. J.; Jóhannesson, G.; Murphy, Tara; de Ugarte Postigo, A.; Gorosabel, J.; Kann, D. A.; Krühler, T.; Oates, S. R.; Japelj, J.; Thöne, C. C.; Lundgren, A.; Perley, D. A.; Malesani, D.; de Gregorio Monsalvo, I.; Castro-Tirado, A. J.; D'Elia, V.; Fynbo, J. P. U.; Garcia-Appadoo, D.; Goldoni, P.; Greiner, J.; Hu, Y.-D.; Jelínek, M.; Jeong, S.; Kamble, A.; Klose, S.; Kuin, N. P. M.; Llorente, A.; Martín, S.; Nicuesa Guelbenzu, A.; Rossi, A.; Schady, P.; Sparre, M.; Sudilovsky, V.; Tello, J. C.; Updike, A.; Wiersema, K.; Zhang, B.-B.

    2017-02-01

    We present the extensive follow-up campaign on the afterglow of GRB 110715A at 17 different wavelengths, from X-ray to radio bands, starting 81 s after the burst and extending up to 74 d later. We performed for the first time a GRB afterglow observation with the ALMA observatory. We find that the afterglow of GRB 110715A is very bright at optical and radio wavelengths. We use the optical and near-infrared spectroscopy to provide further information about the progenitor's environment and its host galaxy. The spectrum shows weak absorption features at a redshift z = 0.8225, which reveal a host-galaxy environment with low ionization, column density, and dynamical activity. Late deep imaging shows a very faint galaxy, consistent with the spectroscopic results. The broad-band afterglow emission is modelled with synchrotron radiation using a numerical algorithm and we determine the best-fitting parameters using Bayesian inference in order to constrain the physical parameters of the jet and the medium in which the relativistic shock propagates. We fitted our data with a variety of models, including different density profiles and energy injections. Although the general behaviour can be roughly described by these models, none of them are able to fully explain all data points simultaneously. GRB 110715A shows the complexity of reproducing extensive multiwavelength broad-band afterglow observations, and the need of good sampling in wavelength and time and more complex models to accurately constrain the physics of GRB afterglows.

  9. Laboratory Rotational Spectroscopy in the Era of ALMA: Applications to Disks and Circumstellar Outflows

    NASA Astrophysics Data System (ADS)

    Ziurys, Lucy M.; McCarthy, Michael C.; Stancil, Phillip C.; Halfen, DeWayne; Burton, Mark; Gottlieb, Carl A.; Lee, Kelvin

    2018-06-01

    The enormous leap in sensitivity and angular resolution offered by the Atacama Large Millimeter Array (ALMA) has revealed the presence of ever greater chemical complexity in astronomical sources, with an increasing number of unidentified lines. The need for supporting laboratory spectroscopy has become more urgent to fully exploit the scientific impact of ALMA. Rotational transition measurements are particularly important in this regard, as are the evaluation of line strengths, collisional cross sections, and dipole moments. Here we present new spectroscopic data concerning a wide range of potential interstellar and circumstellar molecules, including silicon and metal-bearing species, lines arising from vibrationally-excited molecules, and supporting theoretical calculations. Recent work concerning AlC2, KO, and vibrationally-excited AlO will be presented.

  10. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  11. Multiwavelength Properties of Faint Submillimeter Galaxies with Archival ALMA Data

    NASA Astrophysics Data System (ADS)

    Patil, Pallavi; Lacy, Mark; Nyland, Kristina

    2018-01-01

    Detection of Faint submillimeter galaxies was made possible by large improvements in the spatial resolution and sensitivity by interferometric observations. These galaxies are a dominant contributor to the extragalactic background light at millimeter wavelengths and are likely to play a significant role in galaxy evolution. We present a catalog of 28 such galaxies with S(1.1 mm) < 1.0 mJy that have 13-band optical/near IR photometry (Spitzer DeepDrill, VIDEO, CFHTLS, and HSC) and serendipitous detections in ALMA band 6. ALMA 1.1 mm continuum observations were cross-matched with the K-band VIDEO catalog in the XMM-LSS field to identify multiwavelength counterparts. A forced Photometry approach based on the Tractor image modeling code is used to construct the catalog. The median photometric redshift of the sample is z ~ 1.96 along with two high redshift candidates at z ~ 5. We have provided population statistics using multiband photometry and estimated galaxy properties such as dust and gas masses. We aim to provide a detailed characterization of this population to ultimately devise better selection techniques for future wide-area sky surveys.

  12. The need for a European data platform for hydrological observatories

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Bogena, Heye; Jensen, Karsten; Zacharias, Steffen; Kunstmann, Harald; Heinrich, Ingo; Kunkel, Ralf; Vereecken, Harry

    2017-04-01

    argued that the main incentives lie in the shared learning from contrasting environments, which is at the heart of obtaining hydrological research findings that are generalizable beyond individual locations. From a more practical perspective, experience can be shared with testing measurement technologies and experimental design. Benefits to the wider community include a more coherent research thrust brought about by a common, accessible data set, a more long-term vision of experimental research, as well as greater visibility of experimental research. The common data platform is a first step towards a larger network of hydrological observatories. The larger network could involve a more aligned research collaboration including exchange of models, exchange of students, a joint research agenda and joint long-term projects. Ultimately, the aim is to align experimental research in hydrology to strengthen the discipline of hydrology as a whole.

  13. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  14. A framework for cross-observatory volcanological database management

    NASA Astrophysics Data System (ADS)

    Aliotta, Marco Antonio; Amore, Mauro; Cannavò, Flavio; Cassisi, Carmelo; D'Agostino, Marcello; Dolce, Mario; Mastrolia, Andrea; Mangiagli, Salvatore; Messina, Giuseppe; Montalto, Placido; Fabio Pisciotta, Antonino; Prestifilippo, Michele; Rossi, Massimo; Scarpato, Giovanni; Torrisi, Orazio

    2017-04-01

    In the last years, it has been clearly shown how the multiparametric approach is the winning strategy to investigate the complex dynamics of the volcanic systems. This involves the use of different sensor networks, each one dedicated to the acquisition of particular data useful for research and monitoring. The increasing interest devoted to the study of volcanological phenomena led the constitution of different research organizations or observatories, also relative to the same volcanoes, which acquire large amounts of data from sensor networks for the multiparametric monitoring. At INGV we developed a framework, hereinafter called TSDSystem (Time Series Database System), which allows to acquire data streams from several geophysical and geochemical permanent sensor networks (also represented by different data sources such as ASCII, ODBC, URL etc.), located on the main volcanic areas of Southern Italy, and relate them within a relational database management system. Furthermore, spatial data related to different dataset are managed using a GIS module for sharing and visualization purpose. The standardization provides the ability to perform operations, such as query and visualization, of many measures synchronizing them using a common space and time scale. In order to share data between INGV observatories, and also with Civil Protection, whose activity is related on the same volcanic districts, we designed a "Master View" system that, starting from the implementation of a number of instances of the TSDSystem framework (one for each observatory), makes possible the joint interrogation of data, both temporal and spatial, on instances located in different observatories, through the use of web services technology (RESTful, SOAP). Similarly, it provides metadata for equipment using standard schemas (such as FDSN StationXML). The "Master View" is also responsible for managing the data policy through a "who owns what" system, which allows you to associate viewing/download of

  15. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  16. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  17. The Quest for an OCO (Orbiting Carbon Observatory) Re-Flight

    NASA Technical Reports Server (NTRS)

    Basilio, Ralph R.; Livermore, Thomas R.; Shen, Y. Janet; Pollock, H. Randy

    2010-01-01

    The objective of the OCO (Orbiting Carbon Observatory) mission was to make the first space-based measurements of atmospheric carbon dioxide with the accuracy needed to quantify sources and sinks of this important greenhouse gas. Unfortunately, the observatory was lost as a result of a launch vehicle failure on 24 February 2009. The JPL (Jet Propulsion Laboratory) was directed to assess the options for the re-flight of the OCO instrument and recovery of the carbon-related measurement, and to understand and quantitatively assess the cost, schedule, and technical and programmatic risks of the identified options. The two most likely solutions were (1) a shared platform with the TIRS (Thermal Infrared Sensor) instrument and (2) a dedicated OSC (Orbital Sciences Corporation) LEOStar-2 spacecraft bus similar to that utilized for the original OCO mission. A joint OCO-TIRS mission study was commissioned and two specific options were examined. However, each presented technical challenges that would drive cost. It was determined that the best option was to rebuild the OCO observatory to the extent possible including another LEOStar-2 spacecraft bus. This lowest risk approach leverages the original OCO design and provides the shortest path to launch, which is targeted for no later than the February 2013 timeframe.

  18. The ALMA Frontier Fields Survey. II. Multiwavelength Photometric analysis of 1.1 mm continuum sources in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Bauer, F. E.; Troncoso-Iribarren, P.; Huang, X.; González-López, J.; Kim, S.; Anguita, T.; Aravena, M.; Barrientos, L. F.; Bouwens, R.; Bradley, L.; Brammer, G.; Carrasco, M.; Carvajal, R.; Coe, D.; Demarco, R.; Ellis, R. S.; Ford, H.; Francke, H.; Ibar, E.; Infante, L.; Kneissl, R.; Koekemoer, A. M.; Messias, H.; Muñoz Arancibia, A.; Nagar, N.; Padilla, N.; Pelló, R.; Postman, M.; Quénard, D.; Romero-Cañizales, C.; Treister, E.; Villard, E.; Zheng, W.; Zitrin, A.

    2017-08-01

    Context. The Hubble and Spitzer Space Telescope surveys of the Frontier Fields provide extremely deep images around six massive, strong-lensing clusters of galaxies. The ALMA Frontier Fields survey aims to cover the same fields at 1.1 mm, with maps reaching (unlensed) sensitivities of <70 μJy, in order to explore the properties of background dusty star-forming galaxies. Aims: We report on the multi-wavelength photometric analysis of all 12 significantly detected (>5σ) sources in the first three Frontier Fields clusters observed by ALMA, based on data from Hubble and Spitzer, the Very Large Telescope and the Herschel Space Observatory. Methods: We measure the total photometry in all available bands and determine the photometric redshifts and the physical properties of the counterparts via SED-fitting. In particular, we carefully estimate the far-infrared (FIR) photometry using 1.1 mm priors to limit the misidentification of blended FIR counterparts, which strongly affect some flux estimates in previous FIR catalogs. Due to the extremely red nature of these objects, we used a large range of parameters (e.g. 0.0

  19. Molecular Gas in Disks around Young Stars with ALMA

    NASA Astrophysics Data System (ADS)

    Hughes, A. Meredith; Factor, Samuel; Lieman-Sifry, Jesse; Flaherty, Kevin; Daley, Cail; Mann, Rita; Roberge, Aki; Di Francesco, James; Williams, Jonathan; Ricci, Luca; Matthews, Brenda; Bally, John; Johnstone, Doug; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David; Andrews, Sean; Kastner, Joel H.; Abraham, Peter

    2018-01-01

    Molecular gas is a critical component of the planet formation process. In this poster, we present two analyses of the molecular gas component of circumstellar disks at extremes (young, old) of the pre-main sequence phase.(1) We characterize the molecular gas content of the disk around d216-0939, a pre-main sequence star in the Orion Nebula Cluster, using ALMA observations of CO(3-2), HCO+(4-3), and HCN(4-3) observed at 0.5" resolution. We model the density and temperature structure of the disk, returning abundances generally consistent with chemical modeling of protoplanetary disks, and obtain a dynamical mass measurement of the central star of 2.2+/-0.4 M_sun, which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable position offset from the central star, consistent with an object in Keplerian orbit at 60+/-20 au. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk, providing evidence that planet formation is ongoing within this massive and relatively isolated Orion proplyd. This work is published in Factor et al. (2017). (2) We present ~0.4" resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with ALMA. We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly

  20. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  1. A deep ALMA image of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Biggs, A. D.; Geach, J. E.; Michałowski, M. J.; Ivison, R. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.; Scott, D.; Swinbank, A. M.; Targett, T. A.; Aretxaga, I.; Austermann, J. E.; Best, P. N.; Bruce, V. A.; Chapin, E. L.; Charlot, S.; Cirasuolo, M.; Coppin, K.; Ellis, R. S.; Finkelstein, S. L.; Hayward, C. C.; Hughes, D. H.; Ibar, E.; Jagannathan, P.; Khochfar, S.; Koprowski, M. P.; Narayanan, D.; Nyland, K.; Papovich, C.; Peacock, J. A.; Rieke, G. H.; Robertson, B.; Vernstrom, T.; Werf, P. P. van der; Wilson, G. W.; Yun, M.

    2017-04-01

    We present the results of the first, deep Atacama Large Millimeter Array (ALMA) imaging covering the full ≃4.5 arcmin2 of the Hubble Ultra Deep Field (HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching σ1.3 ≃ 35 μJy, at a resolution of ≃0.7 arcsec. From an initial list of ≃50 > 3.5σ peaks, a rigorous analysis confirms 16 sources with S1.3 > 120 μJy. All of these have secure galaxy counterparts with robust redshifts ( = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z ≥ 2 our ALMA sample contains seven of the nine galaxies in the HUDF with M* ≥ 2 × 1010 M⊙, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 ≃ 10 μJy. We find strong evidence for a steep star-forming 'main sequence' at z ≃ 2, with SFR ∝M* and a mean specific SFR ≃ 2.2 Gyr-1. Moreover, we find that ≃85 per cent of total star formation at z ≃ 2 is enshrouded in dust, with ≃65 per cent of all star formation at this epoch occurring in high-mass galaxies (M* > 2 × 1010 M⊙), for which the average obscured:unobscured SF ratio is ≃200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z ≃ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z ≃ 4.

  2. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  3. ALMA 26 arcmin2 Survey of GOODS-S at One-millimeter (ASAGAO): X-Ray AGN Properties of Millimeter-selected Galaxies

    NASA Astrophysics Data System (ADS)

    Ueda, Y.; Hatsukade, B.; Kohno, K.; Yamaguchi, Y.; Tamura, Y.; Umehata, H.; Akiyama, M.; Ao, Y.; Aretxaga, I.; Caputi, K.; Dunlop, J. S.; Espada, D.; Fujimoto, S.; Hayatsu, N. H.; Imanishi, M.; Inoue, A. K.; Ivison, R. J.; Kodama, T.; Lee, M. M.; Matsuoka, K.; Miyaji, T.; Morokuma-Matsui, K.; Nagao, T.; Nakanishi, K.; Nyland, K.; Ohta, K.; Ouchi, M.; Rujopakarn, W.; Saito, T.; Tadaki, K.; Tanaka, I.; Taniguchi, Y.; Wang, T.; Wang, W.-H.; Yoshimura, Y.; Yun, M. S.

    2018-01-01

    We investigate the X-ray active galactic nucleus (AGN) properties of millimeter galaxies in the Great Observatories Origins Deep Survey South (GOODS-S) field detected with the Atacama Large Millimeter/submillimeter Array (ALMA), by utilizing the Chandra 7-Ms data, the deepest X-ray survey to date. Our millimeter galaxy sample comes from the ASAGAO survey covering 26 arcmin2 (12 sources at a 1.2 mm flux-density limit of ≈ 0.6 mJy), supplemented by the deeper but narrower 1.3 mm survey of a part of the ASAGAO field by Dunlop et al. Ofthe 25 total millimeter galaxies, 14 have Chandra counterparts. The observed AGN fractions at z=1.5{--}3 are found to be {90}-19+8% and {57}-25+23% for the ultra-luminous and luminous infrared galaxies with log {L}{IR}/{L}ȯ = 12–12.8 and log {L}{IR}/{L}ȯ = 11.5–12, respectively. The majority (∼2/3) of the ALMA and/or Herschel detected X-ray AGNs at z = 1.5‑3 appear to be star-formation-dominant populations, having {L}{{X}}/ {L}{IR} ratios smaller than the “simultaneous evolution” value expected from the local black-hole-mass-to-stellar-mass ({M}{BH}–M *) relation. On the basis of the {L}{{X}} and stellar mass relation, we infer that a large fraction of star-forming galaxies at z=1.5{--}3 have black hole masses that are smaller than those expected from the local {M}{BH}–M * relation. This contrasts previous reports on luminous AGNs at the same redshifts detected in wider and shallower surveys, which are subject to selection biases against lower luminosity AGNs. Our results are consistent with an evolutionary scenario in which star formation occurs first, and an AGN-dominant phase follows later, in objects that finally evolve into galaxies with classical bulges.

  4. Investigating the Early Evolution of Planetary Systems with ALMA and the Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Ricci, Luca; Liu, Shang-Fei; Isella, Andrea; Li, Hui

    2018-02-01

    We investigate the potential of the Atacama Large Millimeter/submillimeter Array (ALMA) and the Next Generation Very Large Array (ngVLA) to observe substructures in nearby young disks which are due to the gravitational interaction between disk material and planets close to the central star. We simulate the gas and dust dynamics in the disk using the LA-COMPASS hydrodynamical code. We generate synthetic images for the dust continuum emission at submillimeter to centimeter wavelengths and simulate ALMA and ngVLA observations. We explore the parameter space of some of the main disk and planet properties that would produce substructures that can be visible with ALMA and the ngVLA. We find that ngVLA observations with an angular resolution of 5 milliarcsec at 3 mm can reveal and characterize gaps and azimuthal asymmetries in disks hosting planets with masses down to ≈ 5 {M}\\oplus ≈ 1{--}5 {au} from a solar-like star in the closest star-forming regions, whereas ALMA can detect gaps down to planetary masses of ≈ 20 {M}\\oplus at 5 au. Gaps opened by super-Earth planets with masses ≈ 5{--}10 {M}\\oplus are detectable by the ngVLA in the case of disks with low viscosity (α ∼ {10}-5) and low pressure scale height (h ≈ 0.025 au at 5 au). The ngVLA can measure the proper motion of azimuthal asymmetric structures associated with the disk–planet interaction as well as possible circumplanetary disks on timescales as short as one to a few weeks for planets at 1–5 au from the star.

  5. The First ALMA Observation of a Solar Plasmoid Ejection from an X-Ray Bright Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Masumi; Hudson, Hugh S.; White, Stephen M.

    2017-05-20

    Eruptive phenomena such as plasmoid ejections or jets are important features of solar activity and have the potential to improve our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 Å EUV line of helium, formed at around 10{sup 5} K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, atmore » EUV wavelengths with SDO /AIA, and in soft X-rays with Hinode /XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV, and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal ∼10{sup 5} K plasma that is optically thin at 100 GHz, or a ∼10{sup 4} K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.« less

  6. Spectroscopic analysis in the virtual observatory environment with SPLAT-VO

    NASA Astrophysics Data System (ADS)

    Škoda, P.; Draper, P. W.; Neves, M. C.; Andrešič, D.; Jenness, T.

    2014-11-01

    SPLAT-VO is a powerful graphical tool for displaying, comparing, modifying and analysing astronomical spectra, as well as searching and retrieving spectra from services around the world using Virtual Observatory (VO) protocols and services. The development of SPLAT-VO started in 1999, as part of the Starlink StarJava initiative, sometime before that of the VO, so initial support for the VO was necessarily added once VO standards and services became available. Further developments were supported by the Joint Astronomy Centre, Hawaii until 2009. Since end of 2011 development of SPLAT-VO has been continued by the German Astrophysical Virtual Observatory, and the Astronomical Institute of the Academy of Sciences of the Czech Republic. From this time several new features have been added, including support for the latest VO protocols, along with new visualization and spectra storing capabilities. This paper presents the history of SPLAT-VO, its capabilities, recent additions and future plans, as well as a discussion on the motivations and lessons learned up to now.

  7. Prototype Implementation of Web and Desktop Applications for ALMA Science Verification Data and the Lessons Learned

    NASA Astrophysics Data System (ADS)

    Eguchi, S.; Kawasaki, W.; Shirasaki, Y.; Komiya, Y.; Kosugi, G.; Ohishi, M.; Mizumoto, Y.

    2013-10-01

    ALMA is estimated to generate TB scale data during only one observation; astronomers need to identify which part of the data they are really interested in. We have been developing new GUI software for this purpose utilizing the VO interface: ALMA Web Quick Look System (ALMAWebQL) and ALMA Desktop Application (Vissage). The former is written in JavaScript and HTML5 generated from Java code by the Google Web Toolkit, and the latter is in pure Java. An essential point of our approach is how to reduce network traffic: we prepare, in advance, “compressed” FITS files of 2x2x1 (horizontal, vertical, and spectral directions, respectively) binning, 2 x 2 x 2 binning, 4 x 4 x 2 binning data, and so on. These files are hidden from users, and Web QL automatically chooses the proper one for each user operation. Through this work, we find that network traffic in our system is still a bottleneck towards TB scale data distribution. Hence we have to develop alternative data containers for much faster data processing. In this paper, we introduce our data analysis systems, and describe what we learned through the development.

  8. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  9. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  10. ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    NASA Astrophysics Data System (ADS)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S. J.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-04-01

    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro-Frenk-White profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  11. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  12. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  13. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    2015-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  14. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  15. IRC +10 216 in 3D: morphology of a TP-AGB star envelope

    NASA Astrophysics Data System (ADS)

    Guélin, M.; Patel, N. A.; Bremer, M.; Cernicharo, J.; Castro-Carrizo, A.; Pety, J.; Fonfría, J. P.; Agúndez, M.; Santander-García, M.; Quintana-Lacaci, G.; Velilla Prieto, L.; Blundell, R.; Thaddeus, P.

    2018-02-01

    turbulent motions. Based on that property, we have reconstructed the 3D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r< 25'') envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years. This work was based on observations carried out with the IRAM, SMA and ALMA telescopes. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory (USA) and the Academia Sinica Institute of Astronomy and Astrophysics (Taiwan) and is funded by the Smithsonian Institution and the Academia Sinica. This paper makes use of the ALMA data: ADS/JAO.ALMA#2013.1.01215.S & ADS/JAO.ALMA#2013.1.00432.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.

  16. SOFIA: The Next Generation Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Dunham, Edward; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    SOFIA, the Stratospheric Observatory For Infrared Astronomy, will carry a 2.5 meter telescope into the stratosphere on 160 7.5 hour flights per year. At stratospheric altitudes SOFIA will operate above 99% of the water vapor in the Earth's atmosphere, allowing observation of wide regions of the infrared spectrum that are totally obscured from even the best ground-based sites. Its mobility and long range will allow worldwide observation of ephemeral events such as occultations and eclipses. SOFIA will be developed jointly by NASA and DARA, the German space agency. It has been included in the President's budget request to Congress for a development start in FY96 (this October!) and enjoys strong support in Germany. This talk will cover SOFIA's scientific goals, technical characteristics, science operating plan, and political status.

  17. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  18. Rings and filaments: The remarkable detached CO shell of U Antliae

    NASA Astrophysics Data System (ADS)

    Kerschbaum, F.; Maercker, M.; Brunner, M.; Lindqvist, M.; Olofsson, H.; Mecina, M.; De Beck, E.; Groenewegen, M. A. T.; Lagadec, E.; Mohamed, S.; Paladini, C.; Ramstedt, S.; Vlemmings, W. H. T.; Wittkowski, M.

    2017-09-01

    Aims: Our goal is to characterize the intermediate age, detached shell carbon star U Antliae morphologically and physically in order to study the mass-loss evolution after a possible thermal pulse. Methods: High spatial resolution ALMA observations of unprecedented quality in thermal CO lines allow us to derive first critical spatial and temporal scales and constrain modeling efforts to estimate mass-loss rates for both the present day as well as the ejection period of the detached shell. Results: The detached shell is remarkably thin, overall spherically symmetric, and shows a barely resolved filamentary substructure possibly caused by instabilities in the interaction zone of winds with different outflow velocities. The expansion age of the detached shell is of the order of 2700 yr and its overall width indicates a high expansion-velocity and high mass-loss period of only a few hundred years at an average mass-loss rate of ≈10-5 M⊙ yr-1. The post-high-mass-loss-rate-epoch evolution of U Ant shows a significant decline to a substantially lower gas expansion velocity and a mass-loss rate amounting to 4 × 10-8 M⊙ yr-1, at present being consistent with evolutionary changes as predicted for the period between thermal pulses. This paper makes use of the following ALMA data: ADS/JAO.ALMA2015.1.00007.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ.The reduced ALMA FITS data cubes are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A116The movie is available at http://www.aanda.org

  19. The diffuse molecular component in the nuclear bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Bronfman, L.; Mauersberger, R.; Finger, R.; Henkel, C.; Wilson, T. L.; Cortés-Zuleta, P.

    2018-02-01

    Context. The bulk of the molecular gas in the central molecular zone (CMZ) of the Galactic center region shows warm kinetic temperatures, ranging from >20 K in the coldest and densest regions (n 104-5 cm-3) up to more than 100 K for densities of about n 103 cm-3. Recently, a more diffuse, hotter (n 100 cm-3, T 250 K) gas component was discovered through absorption observations of H3+. This component may be widespread in the Galactic center, and low density gas detectable in absorption may be present even outside the CMZ along sightlines crossing the extended bulge of the Galaxy. Aim. We aim to observe and characterize diffuse and low density gas using observations of 3-mm molecular transitions seen in absorption. Methods: Using the Atacama Large (sub)Millimeter Array (ALMA) we observed the absorption against the quasar J1744-312, which is located toward the Galactic bulge region at (l, b) = (-2̊.13, -1̊.0), but outside the main molecular complexes. Results: ALMA observations in absorption against the J1744-312 quasar reveal a rich and complex chemistry in low density molecular and presumably diffuse clouds. We detected three velocity components at 0, -153, and -192 km s-1. The component at 0 km s-1 could represent gas in the Galactic disk while the velocity components at -153, and -192 km s-1 likely originate from the Galactic bulge. We detected 12 molecules in the survey, but only 7 in the Galactic bulge gas. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00119.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.

  20. The Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2010-06-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 feet and is capable of observations from 0.3 microns to 1.6 mm with an average transmission of greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. Open door test flights began in December of 2009. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 eight to ten hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. We review the status of the SOFIA facility and its initial complement of eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution.

  1. Deep data: discovery and visualization Application to hyperspectral ALMA imagery

    NASA Astrophysics Data System (ADS)

    Merényi, Erzsébet; Taylor, Joshua; Isella, Andrea

    2017-06-01

    Leading-edge telescopes such as the Atacama Large Millimeter and sub-millimeter Array (ALMA), and near-future ones, are capable of imaging the same sky area at hundreds-to-thousands of frequencies with both high spectral and spatial resolution. This provides unprecedented opportunities for discovery about the spatial, kinematical and compositional structure of sources such as molecular clouds or protoplanetary disks, and more. However, in addition to enormous volume, the data also exhibit unprecedented complexity, mandating new approaches for extracting and summarizing relevant information. Traditional techniques such as examining images at selected frequencies become intractable while tools that integrate data across frequencies or pixels (like moment maps) can no longer fully exploit and visualize the rich information. We present a neural map-based machine learning approach that can handle all spectral channels simultaneously, utilizing the full depth of these data for discovery and visualization of spectrally homogeneous spatial regions (spectral clusters) that characterize distinct kinematic behaviors. We demonstrate the effectiveness on an ALMA image cube of the protoplanetary disk HD142527. The tools we collectively name ``NeuroScope'' are efficient for ``Big Data'' due to intelligent data summarization that results in significant sparsity and noise reduction. We also demonstrate a new approach to automate our clustering for fast distillation of large data cubes.

  2. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  3. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  4. Behavior driven testing in ALMA telescope calibration software

    NASA Astrophysics Data System (ADS)

    Gil, Juan P.; Garces, Mario; Broguiere, Dominique; Shen, Tzu-Chiang

    2016-07-01

    ALMA software development cycle includes well defined testing stages that involves developers, testers and scientists. We adapted Behavior Driven Development (BDD) to testing activities applied to Telescope Calibration (TELCAL) software. BDD is an agile technique that encourages communication between roles by defining test cases using natural language to specify features and scenarios, what allows participants to share a common language and provides a high level set of automated tests. This work describes how we implemented and maintain BDD testing for TELCAL, the infrastructure needed to support it and proposals to expand this technique to other subsystems.

  5. Educational Programs at the Lake Afton Public Observatory

    NASA Astrophysics Data System (ADS)

    Alexander, D. R.; Novacek, G. R.

    1994-05-01

    The Lake Afton Public Observatory was founded 14 years ago as a joint project of the city, county, local schools, and Wichita State University to provide educational programs for the public and school children. A staff of 4 professional astronomers presents daytime and evening programs at the Observatory and makes presentations in schools to over 20,000 people per year. Programs are scheduled 6 days a week during the academic year and 3 days a week in the summer. Our public programs deviate significantly from the traditional observatory open house by following a specific theme. Selection and discussion of each object is centered on that theme. For example, a program on The Life Story of a Star would view a diffuse nebula (to discuss star formation), a young star cluster (to discuss one outcome of star formation), a double star (to discuss how the properties of stars are determined), and a planetary nebula (to discuss the death of a star). To complement the observing experiences of our visitors, we have developed a wide range of interactive exhibits to develop the concepts touched on in the viewing programs. We have also developed exhibit lending kits for extended use in school classrooms, educational games, activity manuals for teachers, and short videos to introduce single concepts in the classroom. In the past year we have begun to offer a series of workshops for in-service teachers to expand their knowledge of astronomy and to provide them with additional resources for teaching astronomy. This work is supported in part by NSF EPSCoR grant OSR-9255223.

  6. Mass Loss from Stars: Prospects with ALMA and Other Radio Interferometers

    NASA Astrophysics Data System (ADS)

    Richards, Anita

    2018-04-01

    We can now fully resolve a small sample of stars, in general spotty and/or aspherical, with radii larger (as a function of observing wavelength) than the optical or NIR photosphere R*, requiring the full capabilities of ALMA, e-MERLIN, the NG-VLA or SKA with long baselines. ALMA results has confirmed the presence of continuum hot-spots as well as molecular absorption, against surpisingly large stellar diameters. These studies can be used to investigate the transport of mass and energy through the layers above the photosphere, timescales depending on whether radiative, ionisation/recombination effects, or bulk transport dominate. Maser properties can be measured with an order of magnitude higher resolutiong than thermal lines. The clumpiness of the wind could be related to local ejection of mass from the stellar surface. Models now provide the tools to reconstruct physical conditions from multiple maser lines, and could reveal changes associated with the formation of dust and the transition from complicated infall and outflow near the star, to the radially accelerating wind. I will concentrate on practical aspects of current and potential high-resolution observations to these ends.

  7. High Efficiency Wideband Refractive Optics for ALMA Band-1 (35-52 GHz). Design, Implementation, and Measurement Results

    NASA Astrophysics Data System (ADS)

    Tapia, V.; González, A.; Finger, R.; Mena, F. P.; Monasterio, D.; Reyes, N.; Sánchez, M.; Bronfman, L.

    2017-03-01

    We present the design, implementation, and characterization of the optics of ALMA Band 1, the lowest frequency band in the most advanced radio astronomical telescope. Band 1 covers the broad frequency range from 35 to 50 GHz, with the goal of minor degradation up to 52 GHz. This is, up to now, the largest fractional bandwidth of all ALMA bands. Since the optics is the first subsystem of any receiver, low noise figure and maximum aperture efficiency are fundamental for best sensitivity. However, a conjunction of several factors (small cryostat apertures, mechanical constraints, and cost limitations) makes extremely challenging to achieve these goals. To overcome these problems, the optics presented here includes two innovative solutions, a compact optimized-profile corrugated horn and a modified Fresnel lens. The horn profile was optimized for optimum performance and easy fabrication by a single-piece manufacturing process in a lathe. In this way, manufacturability is eased when compared with traditional fabrication methods. To minimize the noise contribution of the optics, a one-step zoned lens was designed. Its parameters were carefully optimized to maximize the frequency coverage and reduce losses. The optical assembly reported here fully complies with ALMA specifications.

  8. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    NASA Astrophysics Data System (ADS)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  9. Band-9 ALMA Observations of the [N II] 122 μm Line and FIR Continuum in Two High-z galaxies.

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Stacey, Gordon J.; Sheth, Kartik; Hailey-Dunsheath, Steve; Falgarone, Edith

    2015-06-01

    We present Atacama Large Millimeter Array (ALMA) observations of two high-redshift systems (SMMJ02399-0136 at z 1 ˜ 2.8 and the Cloverleaf QSO at z 1 ˜ 2.5) in their rest-frame 122 μm continuum (ν sky ˜ 650 GHz, λ sky ˜ 450 μm) and [N ii] 122 μm line emission. The continuum observations with a synthesized beam of ˜0.″ 25 resolve both sources and recover the expected flux. The Cloverleaf is resolved into a partial Einstein ring, while SMMJ02399-0136 is unambiguously separated into two components: a point source associated with an active galactic nucleus and an extended region at the location of a previously identified dusty starburst. We detect the [N ii] line in both systems, though significantly weaker than our previous detections made with the first generation z (Redshift) and Early Universe Spectrometer. We show that this discrepancy is mostly explained if the line flux is resolved out due to significantly more extended emission and longer ALMA baselines than expected. Based on the ALMA observations we determine that ≥75% of the total [N ii] line flux in each source is produced via star formation. We use the [N ii] line flux that is recovered by ALMA to constrain the N/H abundance, ionized gas mass, hydrogen- ionizing photon rate, and star formation rate. In SMMJ02399-0136 we discover it contains a significant amount (˜1000 M ⊙ yr-1) of unobscured star formation in addition to its dusty starburst and argue that SMMJ02399-0136 may be similar to the Antennae Galaxies (Arp 244) locally. In total these observations provide a new look at two well-studied systems while demonstrating the power and challenges of Band-9 ALMA observations of high-z systems.

  10. ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Basu, K.; Sommer, M.; Erler, J.; Eckert, D.; Vazza, F.; Magnelli, B.; Bertoldi, F.; Tozzi, P.

    2016-10-01

    We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel’dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z≈ 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number { M }={2.4}-0.6+1.3, which in turn suggests a high value of the magnetic field (of the order of 4-10 μ {{G}}) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.

  11. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  12. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  13. Fast-growing SMBHs in Fast-growing Galaxies, at High Redshifts: the Role of Major Mergers as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto; Shemmer, Ohad

    2017-11-01

    We present a long-term, multi-wavelength project to understand the epoch of fastest growth of the most massive black holes by using a sample of 40 luminous quasars at z 4.8. These quasars have rather uniform properties, with typical accretion rates and black hole masses of L/L_Edd 0.7 and M_BH 10^9 M_sun. The sample consists of ``FIR-bright'' sources with a previous Herschel/SPIRE detection, suggesting SFR>1000 M_sun/yr, as well as of ``FIR-faint'' sources for which Herschel stacking analysis implies a typical SFR of 400 M_sun/yr. Six of the quasars have been observed by ALMA in [C II] 157.74 micron line emission and adjacent rest-frame 150 □micron continuum, to study the dusty cold ISM. ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for three sources – one FIR-bright and two FIR-faint. The companions are separated by 14-45 kpc from the quasar hosts, and we interpret them as major galaxy interactions. Our ALMA data therefore clearly support the idea that major mergers may be important drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed by ALMA, suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  14. Measuring Protoplanetary Disk Gas Surface Density Profiles with ALMA

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McPartland, Conor

    2016-10-01

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams & Best to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M gas = 0.048 M ⊙, and accretion disk characteristic size R c = 213 au and gradient γ = 0.39. The same parameters match the C18O 2-1 image and indicate an abundance ratio [12CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2-1 image library and fit simulated data. For disks with gas masses 3-10 M Jup at 150 pc, ALMA observations with a resolution of 0.″2-0.″3 and integration times of ˜20 minutes allow reliable estimates of R c to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.

  15. Molecules from Clouds to Planets: Sweet Results from Alma

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine

    2017-06-01

    One of the most exciting developments in astronomy is the discovery of thousands of planets around stars other than our Sun. But how do these exo-planets form, and which chemical ingredients are available to build them? Thanks to powerful new telescopes, especially the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers are starting to address these age-old questions scientifically. Stars and planets are born in the cold and tenuous clouds between the stars in the Milky Way. In spite of the extremely low temperatures and densities, a surprisingly rich and interesting chemistry occurs in these interstellar clouds, as evidenced by the detection of more than 180 different molecules. Highly accurate spectroscopic data are key to their identification, and examples of the continued need and close interaction between laboratory work and astronomical observations will be given. ALMA now allows us to zoom in on solar system construction for the first time. Spectral scans of the birth sites of young stars contain tens of thousands of rotational lines. Water and a surprisingly rich variety of organic materials are found, including simple sugars and high abundances of deuterated species. How are these molecules formed? Can these pre-biotic molecules end up on new planets and form the basis for life elsewhere in the universe? Stay tuned for the latest analyses and also a comparison with recent results from the Rosetta mission to comet 67 P/C-G in our own Solar System.

  16. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  17. ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, L.; Carpenter, J. M.; Fu, B.

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial widthmore » ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap.« less

  18. Clues to NaCN formation

    NASA Astrophysics Data System (ADS)

    Quintana-Lacaci, G.; Cernicharo, J.; Velilla Prieto, L.; Agúndez, M.; Castro-Carrizo, A.; Fonfría, J. P.; Massalkhi, S.; Pardo, J. R.

    2017-11-01

    Context. ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space. Aims: We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths. Methods: We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN. Results: We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CH3CN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 × 1015 cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation. Based on observations carried out with ALMA and the IRAM 30 m Telescope. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. IRAM is supported by INSU/CNRS (France

  19. SiO Masers in Mira with ALMA Long Baselines

    NASA Astrophysics Data System (ADS)

    Humphreys, Elizabeth

    2018-04-01

    The effect of binary companions on the near-circumstellar environment of AGB stars is an open-question. Using ALMA long baseline data, we have investigated this region of Mira A using SiO emission. The data locate SiO masers with respect to the star, unlike lower frequency observations. They also indicate an impact of the binary companion on gas within about 10 Rstar of Mira A. These types of studies, using high-frequency SiO masers, can provide a new avenue for understanding the influence of binaries on AGB mass loss and envelope-shaping.

  20. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  1. A detailed view of the gas shell around R Sculptoris with ALMA

    NASA Astrophysics Data System (ADS)

    Maercker, M.; Vlemmings, W. H. T.; Brunner, M.; De Beck, E.; Humphreys, E. M.; Kerschbaum, F.; Lindqvist, M.; Olofsson, H.; Ramstedt, S.

    2016-02-01

    Context. During the asymptotic giant branch (AGB) phase, stars undergo thermal pulses - short-lived phases of explosive helium burning in a shell around the stellar core. Thermal pulses lead to the formation and mixing-up of new elements to the stellar surface. They are hence fundamental to the chemical evolution of the star and its circumstellar envelope. A further consequence of thermal pulses is the formation of detached shells of gas and dust around the star, several of which have been observed around carbon-rich AGB stars. Aims: We aim to determine the physical properties of the detached gas shell around R Sculptoris, in particular the shell mass and temperature, and to constrain the evolution of the mass-loss rate during and after a thermal pulse. Methods: We analyse 12CO(1-0), 12CO(2-1), and 12CO(3-2) emission, observed with the Atacama Large Millimeter/submillimeter Array (ALMA) during Cycle 0 and complemented by single-dish observations. The spatial resolution of the ALMA data allows us to separate the detached shell emission from the extended emission inside the shell. We perform radiative transfer modelling of both components to determine the shell properties and the post-pulse mass-loss properties. Results: The ALMA data show a gas shell with a radius of 19.̋5 expanding at 14.3 km s-1. The different scales probed by the ALMA Cycle 0 array show that the shell must be entirely filled with gas, contrary to the idea of a detached shell. The comparison to single-dish spectra and radiative transfer modelling confirms this. We derive a shell mass of 4.5 × 10-3 M⊙ with a temperature of 50 K. Typical timescales for thermal pulses imply a pulse mass-loss rate of 2.3 × 10-5 M⊙ yr-1. For the post-pulse mass-loss rate, we find evidence for a gradual decline of the mass-loss rate, with an average value of 1.6 × 10-5 M⊙ yr-1. The total amount of mass lost since the last thermal pulse is 0.03 M⊙, a factor four higher compared to classical models, with a

  2. The Very Large Array Data Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako

    2018-01-01

    We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an

  3. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Gehrz, R. D.; Callis, H. H. S.

    2007-09-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region with an average transmission of >= 80%. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  4. Probing circumplanetary disks with MagAO and ALMA

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin

    2018-01-01

    The dedication of the Magellan Adaptive Optics (MagAO) on the 6.5 m Clay Telescope has opened a new era in high-contrast imaging. Its unique diffraction-limited wavelengths of 0.6 to 1 micron helps to probe circumplanetary disks by measuring the amount of dust reddening as well as by searching for the strongest gas accretion indicator H-alpha (0.65 micron). Using MagAO, I found that two wide-orbit planetary-mass companions CT Cha B and 1RXS 1609 B have a significant dust extinction of Av ~ 3 to 5 mag likely from their disks. For GQ Lup B, I found that it is actively accreting material from its disk and emitting strong H-alpha emission. My research with MagAO demonstrates that circumplanetary disks could be ubiquitous among young giant planets. I later carried out a survey using ALMA to image accretion disks around several wide planet-mass companions at 1.3 mm continuum and CO (2-1). This is the first systematic study aiming to measure the size, mass, and structure of planetary disks. However, except for FW Tau C (which was shown to actually be a low-mass star from the dynamical mass measurement) no disks around the companions were found in my ALMA survey. This surprising null result implies that circumplanetary disks are much more compact and denser than expected, so they are faint and optically thick in the radio wavelengths. Therefore, mid- to far-infrared may be more favorable to characterize disk properties. The MIRI camera on the JWST can test this compact optically-thick disk hypothesis by probing disk thermal emission between 10 and 25 micron.

  5. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  6. A disrupted molecular torus around Eta Carinae as seen in 12CO with ALMA

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Ginsburg, Adam; Bally, John

    2018-03-01

    We present Atacama Large Millimeter Array (ALMA) observations of 12CO 2-1 emission from circumstellar material around the massive star Eta Carinae (η Car). These observations reveal new structural details about the cool equatorial torus located ˜4000 au from the star. The CO torus is not a complete azimuthal loop, but rather, is missing its near side, which appears to have been cleared away. The missing material matches the direction of apastron in the eccentric binary system, making it likely that η Car's companion played an important role in disrupting portions of the torus soon after ejection. Molecular gas seen in ALMA data aligns well with the cool dust around η Car previously observed in mid-infrared (IR) maps, whereas hot dust resides at the inner surface of the molecular torus. The CO also coincides with the spatial and velocity structure of near-IR H2 emission. Together, these suggest that the CO torus seen by ALMA is actually the pinched waist of the Homunculus polar lobes, which glows brightly because it is close to the star and warmer than the poles. The near side of the torus appears to be a blowout, associated with fragmented equatorial ejecta. We discuss implications for the origin of various features north-west of the star. CO emission from the main torus implies a total gas mass in the range of 0.2-1 M⊙ (possibly up to 5 M⊙ or more, although with questionable assumptions). Deeper observations are needed to constrain CO emission from the cool polar lobes.

  7. An ALMA [C II] Survey of 27 Quasars at z > 5.94

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Venemans, Bram P.; Bañados, Eduardo; Bertoldi, Frank; Carilli, Chris; Fan, Xiaohui; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Riechers, Dominik; Rix, Hans-Walter; Strauss, Michael A.; Wang, Ran; Yang, Yujin

    2018-02-01

    We present a survey of the [C II] 158 μm line and underlying far-infrared (FIR) dust continuum emission in a sample of 27 z≳ 6 quasars using the Atacama Large Millimeter Array (ALMA) at ∼ 1\\prime\\prime resolution. The [C II] line was significantly detected (at > 5-σ) in 23 sources (85%). We find typical line luminosities of {L}[{{C}{{II}}]}={10}9-10 {L}ȯ , and an average line width of ∼385 {km} {{{s}}}-1. The [C II]-to-far-infrared luminosity ratios ([C II]/FIR) in our sources span one order of magnitude, highlighting a variety of conditions in the star-forming medium. Four quasar host galaxies are clearly resolved in their [C II] emission on a few kpc scales. Basic estimates of the dynamical masses of the host galaxies give masses between 2 × 1010 and 2 × 1011 {M}ȯ , i.e., more than an order of magnitude below what is expected from local scaling relations, given the available limits on the masses of the central black holes (> 3× {10}8 {M}ȯ , assuming Eddington-limited accretion). In stacked ALMA [C II] spectra of individual sources in our sample, we find no evidence of a deviation from a single Gaussian profile. The quasar luminosity does not strongly correlate with either the [C II] luminosity or equivalent width. This survey (with typical on-source integration times of 8 minutes) showcases the unparalleled sensitivity of ALMA at millimeter wavelengths, and offers a unique reference sample for the study of the first massive galaxies in the universe.

  8. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  9. Strongly Misaligned Triple System in SR 24 Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Fernández-López, M.; Zapata, L. A.; Gabbasov, R.

    2017-08-01

    We report the detection of the 1.3 mm continuum and the molecular emission of the disks of the young triple system SR24 by analyzing ALMA (The Atacama Large Millimeter/Submillimter Array) subarcsecond archival observations. We estimate the mass of the disks (0.025 M ⊙ and 4 × 10-5 M ⊕ for SR24S and SR24N, respectively) and the dynamical mass of the protostars (1.5 M ⊙ and 1.1 M ⊙). A kinematic model of the SR24S disk to fit its C18O (2-1) emission allows us to develop an observational method to determine the tilt of a rotating and accreting disk. We derive the size, inclination, position angle, and sense of rotation of each disk, finding that they are strongly misaligned (108^\\circ ) and possibly rotate in opposite directions as seen from Earth, in projection. We compare the ALMA observations with 12CO SMA archival observations, which are more sensitive to extended structures. We find three extended structures and estimate their masses: a molecular bridge joining the disks of the system, a molecular gas reservoir associated with SR24N, and a gas streamer associated with SR24S. Finally, we discuss the possible origin of the misaligned SR24 system, concluding that a closer inspection of the northern gas reservoir is needed to better understand it.

  10. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  11. Measuring AGN & Starburst Wind Properties with ALMA

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Chatterjee, Suchetana; Nyland, Kristina; Kimball, Amy; Mason, Brian; Rocha, Graca

    2018-01-01

    The Sunyaev-Zeldovich (SZ) effect is one of the few ways to constrain the energetically-dominant hot component of winds from AGN and starbursts. Studies of stacked data from Planck and ground-based mm/submm single dish telescopes have found significant detections of SZ from quasars, but contamination from other phenomena are hard to rule out given the large beams of single dishes. Direct detection of these winds is just feasible with observations with current facilities (VLA and ALMA), but with ngVLA we should be able to go beyond detections, and start to map the SZ effect around these objects. In this poster I will present predictions for the detectability of SZ decrements from AGN and hyperluminous starbursts using ngVLA parameters.

  12. Dynamical Characterization of Galaxies at z ˜ 4-6 via Tilted Ring Fitting to ALMA [C II] Observations

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Carilli, C. L.; Shao, Y.; Wang, R.; Capak, P. L.; Pavesi, R.; Riechers, D. A.; Karim, A.; Neeleman, M.; Walter, F.

    2017-12-01

    Until recently, determining the rotational properties of galaxies in the early universe (z> 4, universe age < 1.5 Gyr) was impractical, with the exception of a few strongly lensed systems. Combining the high resolution and sensitivity of ALMA at (sub-)millimeter wavelengths with the typically high strength of the [C II] 158 μm emission line from galaxies and long-developed dynamical modeling tools raises the possibility of characterizing the gas dynamics in both extreme starburst galaxies and normal star-forming disk galaxies at z˜ 4{--}7. Using a procedure centered around GIPSY’s ROTCUR task, we have fit tilted ring models to some of the best available ALMA [C II] data of a small set of galaxies: the MS galaxies HZ9 and HZ10, the damped Lyα absorber host galaxy ALMA J0817+1351, the submm galaxies AzTEC/C159 and COSMOS J1000+0234, and the quasar host galaxy ULAS J1319+0950. This procedure directly derives rotation curves and dynamical masses as functions of radius for each object. In one case, we present evidence for a dark matter halo of { O }({10}11) {M}⊙ . We present an analysis of the possible velocity dispersions of two sources based on matching simulated observations to the integrated [C II] line profiles. Finally, we test the effects of observation resolution and sensitivity on our results. While the conclusions remain limited at the resolution and signal-to-noise ratios of these observations, the results demonstrate the viability of the modeling tools at high redshift, and the exciting potential for detailed dynamical analysis of the earliest galaxies, as ALMA achieves full observational capabilities.

  13. ALMA Observations of Molecular Clouds in Three Group-centered Elliptical Galaxies: NGC 5846, NGC 4636, and NGC 5044

    NASA Astrophysics Data System (ADS)

    Temi, Pasquale; Amblard, Alexandre; Gitti, Myriam; Brighenti, Fabrizio; Gaspari, Massimo; Mathews, William G.; David, Laurence

    2018-05-01

    We present new ALMA CO(2–1) observations of two well-studied group-centered elliptical galaxies: NGC 4636 and NGC 5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC 5044 group. We find evidence that molecular gas is a common presence in bright group-centered galaxies (BGG). CO line widths are broader than Galactic molecular clouds, and using the reference Milky Way X CO, the total molecular mass ranges from 2.6 × 105 M ⊙ in NGC 4636 to 6.1 × 107 M ⊙ in NGC 5044. Complementary observations using the ALMA Compact Array do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps, suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ({10}3{--}{10}5 {{K}})/hot (≥106) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistent with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.

  14. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  15. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  16. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  17. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  18. Probing the gas fuelling and outflows in nearby AGN with ALMA

    NASA Astrophysics Data System (ADS)

    Audibert, Anelise; Combes, Françoise; García-Burillo, Santiago; Salomé, Philippe

    2017-12-01

    Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

  19. ALMA resolves extended star formation in high-z AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Simpson, J. M.; Stanley, F.; Alexander, D. M.; Daddi, E.; Mullaney, J. R.; Pannella, M.; Rosario, D. J.; Smail, Ian

    2016-03-01

    We present high-resolution (0.3 arcsec) Atacama Large Millimeter Array (ALMA) 870 μm imaging of five z ≈ 1.5-4.5 X-ray detected AGN (with luminosities of L2-8keV > 1042 erg s-1). These data provide a ≳20 times improvement in spatial resolution over single-dish rest-frame far-infrared (FIR) measurements. The sub-millimetre emission is extended on scales of FWHM ≈ 0.2 arcsec-0.5 arcsec, corresponding to physical sizes of 1-3 kpc (median value of 1.8 kpc). These sizes are comparable to the majority of z=1-5 sub-millimetre galaxies (SMGs) with equivalent ALMA measurements. In combination with spectral energy distribution analyses, we attribute this rest-frame FIR emission to dust heated by star formation. The implied star-formation rate surface densities are ≈20-200 M⊙ yr-1 kpc-2, which are consistent with SMGs of comparable FIR luminosities (I.e. LIR ≈ [1-5] × 1012 L⊙). Although limited by a small sample of AGN, which all have high-FIR luminosities, our study suggests that the kpc-scale spatial distribution and surface density of star formation in high-redshift star-forming galaxies is the same irrespective of the presence of X-ray detected AGN.

  20. ALMA Observations of a Misaligned Binary Protoplanetary Disk System in Orion

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; Mann, Rita K.; Di Francesco, James; Andrews, Sean M.; Hughes, A. Meredith; Ricci, Luca; Bally, John; Johnstone, Doug; Matthews, Brenda

    2014-12-01

    We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.

  1. Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea

    2016-01-01

    Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.

  2. ALMA WILL DETERMINE THE SPECTROSCOPIC REDSHIFT z > 8 WITH FIR [O III] EMISSION LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, A. K.; Shimizu, I.; Tamura, Y.

    We investigate the potential use of nebular emission lines in the rest-frame far-infrared (FIR) for determining spectroscopic redshift of z > 8 galaxies with the Atacama Large Millimeter/submillimeter Array (ALMA). After making a line emissivity model as a function of metallicity, especially for the [O III] 88 μm line which is likely to be the strongest FIR line from H II regions, we predict the line fluxes from high-z galaxies based on a cosmological hydrodynamics simulation of galaxy formation. Since the metallicity of galaxies reaches at ∼0.2 Z {sub ☉} even at z > 8 in our simulation, we expectmore » the [O III] 88 μm line as strong as 1.3 mJy for 27 AB objects, which is detectable at a high significance by <1 hr integration with ALMA. Therefore, the [O III] 88 μm line would be the best tool to confirm the spectroscopic redshifts beyond z = 8.« less

  3. The CASA Software Package

    NASA Astrophysics Data System (ADS)

    Petry, Dirk

    2018-03-01

    CASA is the standard science data analysis package for ALMA and VLA but it can also be used for the analysis of data from other observatories. In this talk, I will give an overview of the structure and features of CASA, who develops it, and the present status and plans, and then show typical analysis workflows for ALMA data with special emphasis on the handling of single dish data and its combination with interferometric data.

  4. MEASURING PROTOPLANETARY DISK GAS SURFACE DENSITY PROFILES WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Jonathan P.; McPartland, Conor, E-mail: jpw@ifa.hawaii.edu

    2016-10-10

    The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We extend the modeling approach presented in Williams and Best to show that gas surface density profiles can be measured from high fidelity {sup 13}CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, M {sub gas} = 0.048 M {sub ⊙}, and accretion disk characteristic size R {sub c} =more » 213 au and gradient γ = 0.39. The same parameters match the C{sup 18}O 2–1 image and indicate an abundance ratio [{sup 12}CO]/[C{sup 18}O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large {sup 13}CO 2–1 image library and fit simulated data. For disks with gas masses 3–10 M {sub Jup} at 150 pc, ALMA observations with a resolution of 0.″2–0.″3 and integration times of ∼20 minutes allow reliable estimates of R {sub c} to within about 10 au and γ to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.« less

  5. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  6. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  7. Solar H-alpha features with hot onsets. III. Long fibrils in Lyman-alpha and with ALMA

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2017-02-01

    In H-alpha most of the solar surface is covered by dense canopies of long opaque fibrils, but predictions for quiet-Sun observations with ALMA have ignored this fact. Comparison with Ly-alpha suggests that the extraordinary opacity of H-alpha fibrils is caused by hot precursor events. Application of a recipe that assumes momentary Saha-Boltzmann extinction during their hot onset to millimeter wavelengths suggests that ALMA will observe H-alpha-like fibril canopies, not acoustic shocks underneath, and will yield data more interesting than if these canopies were transparent. An additional file is available at the end of the PDF file of this article.This study is offered as compliment to M.W.M. de Graauw. Our ways, objects, instruments and spectral domains parted after the 1970 eclipse but converge here.

  8. Lick Observatory, California, and 20th Century Leadership in Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Joseph

    2008-04-01

    With the establishment of the Lick Observatory on Mt. Hamilton in California in 1888 it was immediately established that an observatory located on a relatively high site far from city lights was a far superior location for optical astronomy than the previously common city locations. A few years after its beginning, astronomers at Lick convincingly demonstrated the clear advantage of the reflecting telescope for astrophysical research. Not only was a reflector achromatic over all wavelengths, but it could be made with a small focal ratio that provided high photographic speed. Furthermore, since light did not pass through the optic and it could be supported from behind, it could easily be made in large sizes. Over the first half of the 20^th century the establishment of the Mt. Wilson and Palomar Observatories expanded California's dominance in optical astronomy. Also with the new larger telescopes came major progress in the in design of focal plane instrumentation that allowed these telescopes to be superb tools for astrophysical research. The California observatories of the 20th century were largely independent of Federal funding for operations. Their facilities were were maintained and mostly used by their permanent staffs. This led to a style of doing forefront research that was highly effective, as both long-term survey-type programs and more speculative investigations with less-clear payoffs at the outset could be supported. Also the, the close connection of the scientists doing the research to the development of the telescopes and instruments they used for their research conferred advantages. At present, this style of doing astronomical observational research is a relatively small fraction of all this kind of research. At the end of the 20^th century the California pioneering advancement in ground-based optical astronomy was repeated with the creation of the Keck Observatory. A joint project of the University of California and the California Institute of

  9. 12. VIEW OF WESTERN CANAL AT ALMA SCHOOL ROAD IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF WESTERN CANAL AT ALMA SCHOOL ROAD IN MESA, THE LOCATION AT WHICH THE PECK, PINE AND WALLACE FEEDERS FORMERLY JOINED TO FORM THE WESTERN CANAL. THE PECK AND PINE FEEDERS, NOW KNOWN AS LATERAL 9 AND LATERAL 10, AND ALMOST ENTIRELY PIPED, STILL JOIN THE WESTERN CANAL AT THIS POINT, BUT AN EQUALLY IMPORTANT SOURCE OF SUPPLY IS THE NUMEROUS GROUNDWATER PUMPS LOCATED ON THE SYSTEM. - Western Canal, South side of Salt River between Tempe, Phoenix & Mesa, Mesa, Maricopa County, AZ

  10. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  11. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  12. JCMT in the Post-Herschel ERA of Alma

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug

    2013-07-01

    The James Clerk Maxwell Telescope (JCMT), with a 15m dish, is the largest single-dish astronomical telescope in the world designed specifically to operate in the sub-mm wavelength regime. The JCMT is located close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. The most recent addition to the JCMT's suite of instruments is the 10,000 bolometer sub-mm continuum instrument: SCUBA-2. SCUBA-2 operates simultaneously with 7' x7' foot print sub-arrays at both 450 and 850-microns. SCUBA-2's wide field surveying potential, combined with a 65% shared view of the sky from both sites, makes it the ideal instrument to provide complementary data for the ALMA Project. Furthermore, the SCUBA-2 sub-millimetre wavelength coverage and angular resolution complement existing Herschel observations. A set of comprehensive surveys of the submillimetre sky is underway at the James Clerk Maxwell Telescope (JCMT) using SCUBA-2 and HARP, a heterodyne array receiver operating between 325 and 375 GHz. The JCMT Legacy Survey (JLS) is comprised of seven survey projects, and ranges in scope from the study of nearby debris disk systems, the study of star formation in nearby molecular cloud systems and more distant structures in our Galactic Plane, to the structure and composition of galaxies in our local neighbourhood and the number and evolution of submillimetre galaxies at high redshifts in the early Universe. In addition to the JLS, the COHR survey is imaging the Galactic plane in CO (3-2) and a JAC Staff-led project is using SCUBA-2 to survey the Galactic Centre. This poster highlights the significant survey capabilities of SCUBA-2 and HARP and reveals the continuing importance of the JCMT in a post-Herschel, ALMA world.

  13. Stratospheric Observatory for Infrared Astronomy (sofia)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of ≳ 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.

  14. Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Gehrz, R. D.

    2009-08-01

    The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA's first generation instrument complement includes high-speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2010, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  15. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile

  16. Operator Interface for the ALMA Observing System

    NASA Astrophysics Data System (ADS)

    Grosbøl, P.; Schilling, M.

    2009-09-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.

  17. ALMA Observations of Dust Polarization and Molecular Line Emission from the Class 0 Protostellar Source Serpens SMM1

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Girart, Josep M.; Tychoniec, Łukasz; Rao, Ramprasad; Cortés, Paulo C.; Pokhrel, Riwaj; Zhang, Qizhou; Houde, Martin; Dunham, Michael M.; Kristensen, Lars E.; Lai, Shih-Ping; Li, Zhi-Yun; Plambeck, Richard L.

    2017-10-01

    We present high angular resolution dust polarization and molecular line observations carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) toward the Class 0 protostar Serpens SMM1. By complementing these observations with new polarization observations from the Submillimeter Array (SMA) and archival data from the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and the James Clerk Maxwell Telescopes (JCMT), we can compare the magnetic field orientations at different spatial scales. We find major changes in the magnetic field orientation between large (˜0.1 pc) scales—where the magnetic field is oriented E-W, perpendicular to the major axis of the dusty filament where SMM1 is embedded—and the intermediate and small scales probed by CARMA (˜1000 au resolution), the SMA (˜350 au resolution), and ALMA (˜140 au resolution). The ALMA maps reveal that the redshifted lobe of the bipolar outflow is shaping the magnetic field in SMM1 on the southeast side of the source; however, on the northwestern side and elsewhere in the source, low-velocity shocks may be causing the observed chaotic magnetic field pattern. High-spatial-resolution continuum and spectral-line observations also reveal a tight (˜130 au) protobinary system in SMM1-b, the eastern component of which is launching an extremely high-velocity, one-sided jet visible in both {CO}(J=2\\to 1) and {SiO}(J=5\\to 4); however, that jet does not appear to be shaping the magnetic field. These observations show that with the sensitivity and resolution of ALMA, we can now begin to understand the role that feedback (e.g., from protostellar outflows) plays in shaping the magnetic field in very young, star-forming sources like SMM1.

  18. Spatial variations in Titan's atmospheric temperature: ALMA and Cassini comparisons from 2012 to 2015

    NASA Astrophysics Data System (ADS)

    Thelen, Alexander E.; Nixon, C. A.; Chanover, N. J.; Molter, E. M.; Cordiner, M. A.; Achterberg, R. K.; Serigano, J.; Irwin, P. G. J.; Teanby, N.; Charnley, S. B.

    2018-06-01

    Submillimeter emission lines of carbon monoxide (CO) in Titan's atmosphere provide excellent probes of atmospheric temperature due to the molecule's long chemical lifetime and stable, well constrained volume mixing ratio. Here we present the analysis of 4 datasets obtained with the Atacama Large Millimeter/Submillimeter Array (ALMA) in 2012, 2013, 2014, and 2015 that contain strong CO rotational transitions. Utilizing ALMA's high spatial resolution in the 2012, 2014, and 2015 observations, we extract spectra from 3 separate regions on Titan's disk using datasets with beam sizes ranging from 0.35 × 0.28″ to 0.39 × 0.34″. Temperature profiles retrieved by the NEMESIS radiative transfer code are compared to Cassini Composite Infrared Spectrometer (CIRS) and radio occultation science results from similar latitude regions. Disk-averaged temperature profiles stay relatively constant from year to year, while small seasonal variations in atmospheric temperature are present from 2012 to 2015 in the stratosphere and mesosphere ( ∼ 100-500 km) of spatially resolved regions. We measure the stratopause (320 km) to increase in temperature by 5 K in northern latitudes from 2012 to 2015, while temperatures rise throughout the stratosphere at lower latitudes. We observe generally cooler temperatures in the lower stratosphere ( ∼ 100 km) than those obtained through Cassini radio occultation measurements, with the notable exception of warming in the northern latitudes and the absence of previous instabilities; both of these results are indicators that Titan's lower atmosphere responds to seasonal effects, particularly at higher latitudes. While retrieved temperature profiles cover a range of latitudes in these observations, deviations from CIRS nadir maps and radio occultation measurements convolved with the ALMA beam-footprint are not found to be statistically significant, and discrepancies are often found to be less than 5 K throughout the atmosphere. ALMA's excellent

  19. An Integrated Cyberenvironment for Event-Driven Environmental Observatory Research and Education

    NASA Astrophysics Data System (ADS)

    Myers, J.; Minsker, B.; Butler, R.

    2006-12-01

    National environmental observatories will soon provide large-scale data from diverse sensor networks and community models. While much attention is focused on piping data from sensors to archives and users, truly integrating these resources into the everyday research activities of scientists and engineers across the community, and enabling their results and innovations to be brought back into the observatory, also critical to long-term success of the observatories, is often neglected. This talk will give an overview of the Environmental Cyberinfrastructure Demonstrator (ECID) Cyberenvironment for observatory-centric environmental research and education, under development at the National Center for Supercomputing Applications (NCSA), which is designed to address these issues. Cyberenvironments incorporate collaboratory and grid technologies, web services, and other cyberinfrastructure into an overall framework that balances needs for efficient coordination and the ability to innovate. They are designed to support the full scientific lifecycle both in terms of individual experiments moving from data to workflows to publication and at the macro level where new discoveries lead to additional data, models, tools, and conceptual frameworks that augment and evolve community-scale systems such as observatories. The ECID cyberenvironment currently integrates five major components a collaborative portal, workflow engine, event manager, metadata repository, and social network personalization capabilities - that have novel features inspired by the Cyberenvironment concept and enabling powerful environmental research scenarios. A summary of these components and the overall cyberenvironment will be given in this talk, while other posters will give details on several of the components. The summary will be presented within the context of environmental use case scenarios created in collaboration with researchers from the WATERS (WATer and Environmental Research Systems) Network, a

  20. ALMA 1.3 mm Map of the HD 95086 System

    NASA Astrophysics Data System (ADS)

    Su, Kate Y. L.; MacGregor, Meredith A.; Booth, Mark; Wilner, David J.; Flaherty, Kevin; Hughes, A. Meredith; Phillips, Neil M.; Malhotra, Renu; Hales, Antonio S.; Morrison, Sarah; Ertel, Steve; Matthews, Brenda C.; Dent, William R. F.; Casassus, Simon

    2017-12-01

    Planets and minor bodies such as asteroids, Kuiper-Belt objects, and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-Belt analogs. The location of the Kuiper-Belt analog is resolved for the first time. The system can be depicted as a broad (ΔR/R ˜ 0.84), inclined (30° ± 3°) ring with millimeter emission peaked at 200 ± 6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106 ± 6 to 320 ± 20 au with a surface density distribution described by a power law with an index of -0.5 ± 0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming coplanarity with the observed disk.

  1. SHAPEMOL: the companion to SHAPE in the molecular era of ALMA and HERSCHEL

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Alcolea, J.

    2013-05-01

    Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far infrared ranges are only accessible from space) for probing molecular warm gas (˜50-1000 K), complementing ground-based telescopes, which are better suited to study molecular molecular gas with temperatures under ˜100 K. On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determinging the morphology and velocity field of different kinds of gaseous nebulae (mainly planetary nebulae, protoplanetary nebulae and nebulae around massive stars, although it can also be applied to H II regions and molecular clouds) via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE with which we intend to fill the so far empty molecular niche. shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the ^{12}CO and ^{13}CO J=1-0 to J=17-16 lines. shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.

  2. VizieR Online Data Catalog: ALMA submm galaxies multi-wavelength data (Simpson+, 2017)

    NASA Astrophysics Data System (ADS)

    Simpson, J. M.; Smail, I.; Swinbank, A. M.; Ivison, R. J.; Dunlop, J. S.; Geach, J. E.; Almaini, O.; Arumugam, V.; Bremer, M. N.; Chen, C.-C.; Conselice, C.; Coppin, K. E. K.; Farrah, D.; Ibar, E.; Hartley, W. G.; Ma, C. J.; Michalowski, M. J.; Scott, D.; Spaans, M.; Thomson, A. P.; van der Werf, P. P.

    2017-11-01

    In previous work, we presented the source catalog, number counts, and far-infrared morphologies of the 52 SMGs that were detected in 30 ALMA maps (see Simpson+ 2015ApJ...799...81S, 2015ApJ...807..128S). The UKIDSS observations of the ~0.8deg2 UDS comprise four Wide-Field Camera (WFCAM) pointings in the J-, H-, and K-bands. In this paper, we use the images and catalogs released as part of the UKIDSS data release 8 (DR8). The DR8 release contains data taken between 2005 and 2010, and the final J-, H-, and K-band mosaics have a median 5σ depth (2" apertures) of J=24.9, H=24.2, and K=24.6, respectively. Deep observations of the UDS have also been taken in the U-band with Megacam at the Canada-France-Hawaii Telescope (CFHT) and in the B, V, R, i', and z' bands with Suprime-cam at the Subaru telescope. Furthermore, deep Spitzer data, obtained as part of the SpUDS program (PI: J. Dunlop) provides imaging reaching a 5σ depth of m3.6=24.2 and m4.5=24.0 at 3.6um and 4.5um, respectively. The UDS field was observed at 250, 350, and 500um with the Spectral and Photometric Imaging Receiver (SPIRE) onboard the Herschel Space Observatory as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). The UDS field was observed by the VLA at 1.4GHz as part of the project UDS20 (V. Arumugam et al. 2017, in preparation). A total of 14 pointings were used to mosaic an area of ~1.3deg2 centered on the UDS field. (2 data files).

  3. Sperm whale assessment in the Western Ionian Sea using acoustic data from deep sea observatories

    NASA Astrophysics Data System (ADS)

    Caruso, Francesco; Bellia, Giorgio; Beranzoli, Laura; De Domenico, Emilio; Larosa, Giuseppina; Marinaro, Giuditta; Papale, Elena; Pavan, Gianni; Pellegrino, Carmelo; Pulvirenti, Sara; Riccobene, Giorgio; Scandura, Danila; Sciacca, Virginia; Viola, Salvatore

    2015-04-01

    The Italian National Institute of Nuclear Physics (INFN) operates two deep sea infrastructures: Capo Passero, Western Ionian Sea 3,600 meters of depth, and Catania Wester Ionian Sea 2,100 m depth. At the two sites, several research observatories have been run: OnDE, NEMO-SN1, SMO, KM3NeT-Italia most of them jointly operated between INFN and INGV. In all these observatories, passive acoustic sensors (hydrophones) have been installed. Passive Acoustics Monitoring (PAM) is nowadays the main tool of the bioacoustics to study marine mammals. In particular, receiving the sounds emitted by cetaceans from a multi-hydrophones array installed in a cabled seafloor observatory, a research about the ecological dynamics of the species may be performed. Data acquired with the hydrophones installed aboard the OnDE, SMO and KM3NeT-Italia observatories will be reported. Thanks to acquired data, the acoustic presence of the sperm whales was assessed and studied for several years (2005:2013). An "ad hoc" algorithm was also developed to allow the automatic identification of the "clicks" emitted by the sperm whales and measure the size of detected animals. According to the results obtained, the sperm whale population in the area is well-distributed in size, sex and sexual maturity. Although specimens more than 14 meters of length (old males) seem to be absent.

  4. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  5. Alternative Learning Methodologies through Academics (Project ALMA). Final Evaluation Report, 1993-94. OER Report.

    ERIC Educational Resources Information Center

    Roman, Elliott M.

    The Alternative Learning Methodologies through Academics Project (Project ALMA) was an Elementary and Secondary Education Act Title VII-funded project in its fourth year of operation in two high schools in Queens and the Bronx (New York). The program served 436 Spanish-speaking students, most of whom were of limited English proficiency.…

  6. ALMA observation of the disruption of molecular gas in M87

    NASA Astrophysics Data System (ADS)

    Simionescu, A.; Tremblay, G.; Werner, N.; Canning, R. E. A.; Allen, S. W.; Oonk, J. B. R.

    2018-04-01

    We present the results from Atacama Large Millimeter Array (ALMA) observations centred 40 arcsec (3 kpc in projection) south-east of the nucleus of M87. We report the detection of extended CO (2-1) line emission with a total flux of (5.5 ± 0.6) × 10-18 erg s-1 cm-2 and corresponding molecular gas mass M_{H_2}=(4.7 ± 0.4) × 10^5 M_{⊙}, assuming a Galactic CO to H2 conversion factor. ALMA data indicate a line-of-sight velocity of -129 ± 3 km s-1, in good agreement with measurements based on the [C II] and H α+[N II] lines, and a velocity dispersion of σ = 27 ± 3 km s-1. The CO (2-1) emission originates only outside the radio lobe of the active galactic nucleus (AGN) seen in the 6 cm Very Large Array image, while the filament prolongs further inwards at other wavelengths. The molecular gas in M87 appears to be destroyed or excited by AGN activity, either by direct interaction with the radio plasma, or by the shock driven by the lobe into the X-ray emitting atmosphere. This is an important piece of the puzzle in understanding the impact of the central AGN on the amount of the coldest gas from which star formation can proceed.

  7. ALMA Observations Show Major Mergers Among the Host Galaxies of Fast-growing, High-redshift​ Supermassive​ Black Holes

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Lira, Paulina; Netzer, Hagai; Cicone, Claudia; Maiolino, Roberto; Shemmer, Ohad

    2017-02-01

    We present new ALMA band-7 data for a sample of six luminous quasars at z≃ 4.8, powered by fast-growing supermassive black holes (SMBHs) with rather uniform properties: the typical accretion rates and black hole masses are L/{L}{Edd}≃ 0.7 and {M}{BH}≃ {10}9 {M}⊙ . Our sample consists of three “FIR-bright” sources, which were individually detected in previous Herschel/SPIRE observations, with star formation rates of {SFR}> 1000 {M}⊙ {{yr}}-1, and three “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR of ˜400 {M}⊙ {{yr}}-1. The dusty interstellar medium in the hosts of all six quasars is clearly detected in the ALMA data and resolved on scales of ˜2 kpc, in both continuum ({λ }{rest}˜ 150 μ {{m}}) and [{{C}} {{II}}] λ 157.74 μ {{m}} line emission. The continuum emission is in good agreement with the expectations from the Herschel data, confirming the intense SF activity in the quasar hosts. Importantly, we detect companion sub-millimeter galaxies (SMGs) for three sources—one FIR-bright and two FIR-faint, separated by ˜ 14{--}45 {kpc} and < 450 {km} {{{s}}}-1 from the quasar hosts. The [{{C}} {{II}}]-based dynamical mass estimates for the interacting SMGs are within a factor of ˜3 of the quasar hosts’ masses, while the continuum emission implies {{SFR}}{quasar}˜ (2{--}11)× {{SFR}}{SMG}. Our ALMA data therefore clearly support the idea that major mergers are important drivers for rapid early SMBH growth. However, the fact that not all high-SFR quasar hosts are accompanied by interacting SMGs and the gas kinematics as observed by ALMA suggest that other processes may be fueling these systems. Our analysis thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms associated with early and rapid SMBH growth.

  8. ALMA Explores How Supermassive Black Holes Talk to Their Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    We believe that supermassive black holes evolve in tandem with their host galaxies but how do the two communicate? Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed new clues about how a monster black hole talks to its galaxy.A Hubble image of the central galaxy in the Phoenix cluster. [Adapted from Russell et al. 2017]Observing FeedbackActive galactic nuclei (AGN), the highly luminous centers of some galaxies, are thought to radiate due to active accretion onto the supermassive black hole at their center.Its long been suspected that the radiation and outflowing material which often takes the form of enormous bipolar radio jets emitted into the surroundings influence the AGNs host galaxy, affecting star formation rates and the evolution of the galaxy. This AGN feedback has been alternately suggested to trigger star formation, quench it, and truncate the growth of massive galaxies.The details of this feedback process, however, have yet to be thoroughly understood in part because its difficult to obtain detailed observations of how AGN outflows interact with the galactic gas surrounding them. Now, a team of scientists led by Helen Russell (Institute of Astronomy in Cambridge, UK) has published the results of a new, high-resolution look at the gas in a massive galaxy in the center of the Phoenix cluster.Many Uses for FuelThe Phoenix cluster, a nearby (z = 0.596) group of star-forming galaxies, is the most luminous X-ray cluster known. The central galaxy in the cluster is especially active: it hosts a starburst of 500800 solar masses per year, the largest starburst found in any galaxy below a redshift of z= 1.The star formation in this galaxy is sustained by an enormous reservoir of cold molecular gas roughly 20 billion solar masses worth. This reservoir also powers the galaxys central black hole, fueling powerful radio jets that extend into the hot atmosphere of the galaxy and blow a giant bubble into the hot gas at each pole.ALMA

  9. A Complete ALMA Map of the Fomalhaut Debris Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, Meredith A.; Wilner, David J.; Matrà, Luca

    We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12more » ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.« less

  10. Herschel and ALMA Observations of Massive SZE-selected Clusters

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Aguirre, Paula; Baker, Andrew J.; Devlin, Mark J.; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lindner, Robert R.; Sifón, Cristóbal

    2018-02-01

    We present new Herschel observations of four massive, Sunyaev–Zel’dovich effect–selected clusters at 0.3≤slant z≤slant 1.1, two of which have also been observed with the Atacama Large Millimeter/submillimeter Array (ALMA). We detect 19 Herschel/Photoconductor Array Camera and Spectrometer (PACS) counterparts to spectroscopically confirmed cluster members, five of which have redshifts determined via CO (4–3) and [C I] ({}3{P}1{--}{}3{P}0) lines. The mean [C I]/CO line ratio is 0.19 ± 0.07 in brightness temperature units, consistent with previous results for field samples. We do not detect significant stacked ALMA dust continuum or spectral-line emission, implying upper limits on mean interstellar medium (H2 + H I) and molecular gas masses. An apparent anticorrelation of {L}{IR} with clustercentric radius is driven by the tight relation between star formation rate and stellar mass. We find an average specific star formation rate of log(sSFR/yr‑1) = ‑10.36, which is below the {SFR}{--}{M}* correlation measured for field galaxies at similar redshifts. The fraction of infrared-bright galaxies (IRBGs; {log}({L}{IR}/{L}ȯ )> 10.6) per cluster and average sSFR rise significantly with redshift. For CO detections, we find {f}{gas}∼ 0.2, comparable to those of field galaxies, and gas depletion timescales of about 2 Gyr. We use radio observations to distinguish active galactic nuclei (AGNs) from star-forming galaxies. At least four of our 19 Herschel cluster members have {q}{IR}< 1.8, implying an AGN fraction {f}{AGN}≳ 0.2 for our PACS-selected sample.

  11. Spatially resolved images of reactive ions in the Orion Bar

    NASA Astrophysics Data System (ADS)

    Goicoechea, Javier R.; Cuadrado, Sara; Pety, Jérôme; Bron, Emeric; Black, John H.; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne

    2017-05-01

    We report high angular resolution (4.9'' × 3.0'') images of reactive ions SH+, HOC+, and SO+ toward the Orion Bar photodissociation region (PDR). We used ALMA-ACA to map several rotational lines at 0.8 mm, complemented with multi-line observations obtained with the IRAM 30 m telescope. The SH+ and HOC+ emission is restricted to a narrow layer of 2''- to 10''-width (≈800 to 4000 AU depending on the assumed PDR geometry) that follows the vibrationally excited H emission. Both ions efficiently form very close to the H/H2 transition zone, at a depth of AV ≲ 1 mag into the neutral cloud, where abundant C+, S2* coexist. SO+ peaks slightly deeper into the cloud. The observed ions have low rotational temperatures (Trot ≈ 10-30 K ≪ Tk) and narrow line-widths ( 2-3 km s-1), a factor of ≃2 narrower that those of the lighter reactive ion CH+. This is consistent with the higher reactivity and faster radiative pumping rates of CH+ compared to the heavier ions, which are driven relatively more quickly toward smaller velocity dispersion by elastic collisions and toward lower Trot by inelastic collisions. We estimate column densities and average physical conditions from an excitation model (n(H2) ≈ 105-106 cm-3, n(e-) ≈ 10 cm-3, and Tk ≈ 200 K). Regardless of the excitation details, SH+ and HOC+ clearly trace the most exposed layers of the UV-irradiated molecular cloud surface, whereas SO+ arises from slightly more shielded layers. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2012.1.00352.S. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada), and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ.Includes IRAM 30 m telescope observations. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  12. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  13. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert; Becklin, Eric; Young, Erick; Krabbe, Alfred; Marcum, Pamela; Roellig, Thomas

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint U.S./German Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 and is capable of observations from 0.3 microns to 1.6 mm with an average transmission greater than 80 percent. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA and the SOFIA Science Mission Operations Center (SSMOC) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights will begin in 2010, and the number of flights will ramp up annually with a flight rate of over 100 8 to 10 hour flights per year expected by 2014. The observatory is expected to operate until the mid 2030's. SOFIA will initially fly with eight focal plane instruments that include broadband imagers, moderate resolution spectrographs that will resolve broad features due to dust and large molecules, and high resolution spectrometers capable of studying the kinematics of molecular and atomic gas lines at km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and future instrumentation developments. The operational characteristics of the SOFIA first-generation instruments are summarized and we give several specific examples of the types of scientific studies to which these instruments are expected to make fundamental scientific contributions.

  14. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, Robert

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.

  15. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.

    2008-07-01

    The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project will operate a 2.5-meter infrared airborne telescope in a Boeing 747SP. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations in the infrared and submillimeter region with an average transmission of 80%. SOFIA has a wide instrument complement including broadband imaging cameras, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas and will conclude in winter of 2008-09. SOFIA will be staged out of Dryden's aircraft operations facility at Palmdale, Site 9, CA for science operations. The SOFIA Science Center will be at NASA Ames Research Center, Moffet Field, CA. First science flights will begin in 2009, the next instrument call and first General Observer science call will be in 2010, and a full operations schedule of ~120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities, and examples of first light and early mission science are discussed.

  16. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  17. Adaptive grazing incidence optics for the next generation of x-ray observatories

    NASA Astrophysics Data System (ADS)

    Lillie, C.; Pearson, D.; Plinta, A.; Metro, B.; Lintz, E.; Shropshire, D.; Danner, R.

    2010-09-01

    Advances in X-ray astronomy require high spatial resolution and large collecting area. Unfortunately, X-ray telescopes with grazing incidence mirrors require hundreds of concentric mirror pairs to obtain the necessary collecting area, and these mirrors must be thin shells packed tightly together... They must also be light enough to be placed in orbit with existing launch vehicles, and able to be fabricated by the thousands for an affordable cost. The current state of the art in X-ray observatories is represented by NASA's Chandra X-ray observatory with 0.5 arc-second resolution, but only 400 cm2 of collecting area, and by ESA's XMM-Newton observatory with 4,300 cm2 of collecting area but only 15 arc-second resolution. The joint NASA/ESA/JAXA International X-ray Observatory (IXO), with {15,000 cm2 of collecting area and 5 arc-second resolution which is currently in the early study phase, is pushing the limits of passive mirror technology. The Generation-X mission is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 period. As currently conceived, Gen-X would be a follow-on to IXO with a collecting area >= 50 m2, a 60-m focal length and 0.1 arc-second spatial resolution. Gen-X would be launched in {2030 with a heavy lift Launch Vehicle to an L2 orbit. Active figure control will be necessary to meet the challenging requirements of the Gen-X optics. In this paper we present our adaptive grazing incidence mirror design and the results from laboratory tests of a prototype mirror.

  18. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  19. ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya

    We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, andmore » brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.« less

  20. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  1. Initiative for the creation of an integrated infrastructure of European Volcano Observatories

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Bachelery, P.; Ferreira, T. J. L.; Vogfjörd, K. S.

    2012-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of European citizens. The recent Eyjafjallajökull eruption also demonstrated that indirect effects of volcanic activity can present a threat to the economy and the lives of hundreds of million of people living in the whole continental area even in the case of activity of volcanoes with sporadic eruptions. Furthermore, due to the wide political distribution of the European territories, major activities of "European" volcanoes may have a worldwide impact (e.g. on the North Atlantic Ocean, West Indies included, and the Indian Ocean). Our ability to understand volcanic unrest and forecast eruptions depends on the capability of both the monitoring systems to effectively detect the signals generated by the magma rising and on the scientific knowledge necessary to unambiguously interpret these signals. Monitoring of volcanoes is the main focus of volcano observatories, which are Research Infrastructures in the ESFRI vision, because they represent the basic resource for researches in volcanology. In addition, their facilities are needed for the design, implementation and testing of new monitoring techniques. Volcano observatories produce a large amount of monitoring data and represent extraordinary and multidisciplinary laboratories for carrying out innovative joint research. The current distribution of volcano observatories in Europe and their technological state of the art is heterogeneous because of different types of volcanoes, different social requirements, operational structures and scientific background in the different volcanic areas, so that, in some active volcanic areas, observatories are lacking or poorly instrumented. Moreover, as the recent crisis of the ash in the skies over Europe confirms, the assessment of the volcanic hazard cannot be limited to the immediate areas surrounding active volcanoes. The whole European Community would therefore benefit from the creation of a network of

  2. Searching for trans ethyl methyl ether in Orion KL⋆

    NASA Astrophysics Data System (ADS)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2) × 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  3. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  4. The close circumstellar environment of Betelgeuse. V. Rotation velocity and molecular envelope properties from ALMA

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Decin, Leen; Richards, Anita M. S.; Harper, Graham M.; McDonald, Iain; O'Gorman, Eamon; Montargès, Miguel; Homan, Ward; Ohnaka, Keiichi

    2018-01-01

    We observed Betelgeuse using ALMA's extended configuration in band 7 (f ≈ 340 GHz, λ ≈ 0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(ν= 2, J = 8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of νeqsini = 5.47 ± 0.25 km s-1 at the equivalent continuum angular radius Rstar = 29.50 ± 0.14 mas. This corresponds to an angular rotation velocity of ω sini = (5.6 ± 1.3) × 10-9 rad s-1. The position angle of its north pole is PA = 48.0 ± 3.5°. The rotation period of Betelgeuse is estimated to P/ sini = 36 ± 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ≈ 10 au (45 mas or 1.5 × the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong "rogue" convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants.

  5. ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm wavelength

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Vlemmings, W.; Bayo, A.; Bertone, E.; Black, J. H.; del Burgo, C.; Chavez, M.; Danchi, W.; De la Luz, V.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Justtanont, K.; Krivov, A.; Marshall, J. P.; Mora, A.; Montesinos, B.; Nyman, L.-A.; Olofsson, G.; Sanz-Forcada, J.; Thébault, P.; White, G. J.

    2015-01-01

    Context. The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. This feedback will probably also help identify stars that potentially host planetary systems that are reminiscent of our own. Aims: Earlier observations with Herschel and APEX have revealed the temperature minimum of α Cen, but these were unable to spatially resolve the binary into individual components. With the data reported in this Letter, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870 μm. In the present context, we intend to extend the spectral mapping (SED) to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. Methods: The Atacama Large Millimeter/submillimeter Array (ALMA) is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high spatial resolving power of its adaptable interferometer for imaging close multiple stars. Results: This is the first detection of main-sequence stars at a wavelength of 3 mm. Furthermore, the individual components of the binary α Cen AB are clearly detected and spatially well resolved at all ALMA wavelengths. The high signal-to-noise ratios of these data permit accurate determination of their relative flux ratios, i.e., SyB / SyA> = 0.54 ± 0.04 at 440 μm, = 0.46 ± 0.01 at 870 μm, and = 0.47 ± 0.006 at 3.1 mm, respectively. Conclusions: The previously obtained flux ratio of 0.44±0.18, which was based on measurements in the optical and

  6. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  7. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2015-02-01

    Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU

  8. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  9. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  10. Press Meeting 20 January 2003: First Light for Europe's Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Video News Release 11:40 Demonstration of the AVO prototype, Nicholas Walton (University of Cambridge) 12:00 Q&A, including interview possibilities with the scientists 12:30-13:45 Buffet lunch, including individual hands-on demos 14:00 Science Demo (also open to interested journalists) For more information about Virtual Observatories and the AVO, see the website or the explanation below. Notes to editors The AVO involves several partner organisations led by the European Southern Observatory (ESO). The other partner organisations are the European Space Agency (ESA), AstroGrid (funded by PPARC as part of the UK's E-Science programme), the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS), the University Louis Pasteur in Strasbourg, France, the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris, France, and the Jodrell Bank Observatory of the Victoria University of Manchester, United Kingdom. Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, AstroGrid, CDS, TERAPIX/CNRS and the University of Manchester. Science Contacts Peter J. Quinn European Southern Observatory (ESO) Garching, Germany Tel: +49-89-3200 -6509 email: pjq@eso.org Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-25 (0147 in the United Kingdom) email: pdiamond@jb.man.ac.uk Press contacts Ian Morison University of Manchester/Jodrell Bank Observatory United Kingdom Tel: +44-147-757-26-10 (0147 in the United Kingdom) E-mail: email: im@jb.man.ac.uk Lars Lindberg Christensen Hubble European Space Agency Information Centre Garching, Germany Tel: +49-89-3200-6306 (089 in Germany) Cellular (24 hr): +49-173-3872-621 (0173 in Germany) email: lars@eso.org Richard West (ESO EPR Dept.) ESO EPR Dept. Garching, Germany Phone: +49-89-3200-6276 email: rwest@eso.org Background information What is a Virtual Observatory? - A short

  11. ALMA observation of the disruption of molecular gas in M87

    DOE PAGES

    Simionescu, A.; Tremblay, G.; Werner, N.; ...

    2018-01-09

    We present the results from Atacama Large Millimeter Array (ALMA) observations centred 40 arcsec (3 kpc in projection) south-east of the nucleus of M87. Here, we report the detection of extended CO (2–1) line emission with a total flux of (5.5 ± 0.6) × 10 -18 erg s -1 cm -2 and corresponding molecular gas mass M more » $$H{_2}$$=(4.7±0.4)×10 5M ⊙, assuming a Galactic CO to H 2 conversion factor. ALMA data indicate a line-of-sight velocity of -129 ± 3 km s -1, in good agreement with measurements based on the [C II] and H α+[N II] lines, and a velocity dispersion of σ = 27 ± 3 km s -1. The CO (2–1) emission originates only outside the radio lobe of the active galactic nucleus (AGN) seen in the 6 cm Very Large Array image, while the filament prolongs further inwards at other wavelengths. The molecular gas in M87 appears to be destroyed or excited by AGN activity, either by direct interaction with the radio plasma, or by the shock driven by the lobe into the X-ray emitting atmosphere. This is an important piece of the puzzle in understanding the impact of the central AGN on the amount of the coldest gas from which star formation can proceed.« less

  12. ALMA observation of the disruption of molecular gas in M87

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simionescu, A.; Tremblay, G.; Werner, N.

    We present the results from Atacama Large Millimeter Array (ALMA) observations centred 40 arcsec (3 kpc in projection) south-east of the nucleus of M87. Here, we report the detection of extended CO (2–1) line emission with a total flux of (5.5 ± 0.6) × 10 -18 erg s -1 cm -2 and corresponding molecular gas mass M more » $$H{_2}$$=(4.7±0.4)×10 5M ⊙, assuming a Galactic CO to H 2 conversion factor. ALMA data indicate a line-of-sight velocity of -129 ± 3 km s -1, in good agreement with measurements based on the [C II] and H α+[N II] lines, and a velocity dispersion of σ = 27 ± 3 km s -1. The CO (2–1) emission originates only outside the radio lobe of the active galactic nucleus (AGN) seen in the 6 cm Very Large Array image, while the filament prolongs further inwards at other wavelengths. The molecular gas in M87 appears to be destroyed or excited by AGN activity, either by direct interaction with the radio plasma, or by the shock driven by the lobe into the X-ray emitting atmosphere. This is an important piece of the puzzle in understanding the impact of the central AGN on the amount of the coldest gas from which star formation can proceed.« less

  13. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  14. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  15. The Atacama Large Millimeter/Submillimeter Array (ALMA) - A Successful Three-Way International Partnership Without a Majority Stakeholder

    NASA Astrophysics Data System (ADS)

    Vanden Bout, Paul A.

    2013-04-01

    The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.

  16. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  17. Development of the GPM Observatory Thermal Vacuum Test Model

    NASA Technical Reports Server (NTRS)

    Yang, Kan; Peabody, Hume

    2012-01-01

    A software-based thermal modeling process was documented for generating the thermal panel settings necessary to simulate worst-case on-orbit flight environments in an observatory-level thermal vacuum test setup. The method for creating such a thermal model involved four major steps: (1) determining the major thermal zones for test as indicated by the major dissipating components on the spacecraft, then mapping the major heat flows between these components; (2) finding the flight equivalent sink temperatures for these test thermal zones; (3) determining the thermal test ground support equipment (GSE) design and initial thermal panel settings based on the equivalent sink temperatures; and (4) adjusting the panel settings in the test model to match heat flows and temperatures with the flight model. The observatory test thermal model developed from this process allows quick predictions of the performance of the thermal vacuum test design. In this work, the method described above was applied to the Global Precipitation Measurement (GPM) core observatory spacecraft, a joint project between NASA and the Japanese Aerospace Exploration Agency (JAXA) which is currently being integrated at NASA Goddard Space Flight Center for launch in Early 2014. From preliminary results, the thermal test model generated from this process shows that the heat flows and temperatures match fairly well with the flight thermal model, indicating that the test model can simulate fairly accurately the conditions on-orbit. However, further analysis is needed to determine the best test configuration possible to validate the GPM thermal design before the start of environmental testing later this year. Also, while this analysis method has been applied solely to GPM, it should be emphasized that the same process can be applied to any mission to develop an effective test setup and panel settings which accurately simulate on-orbit thermal environments.

  18. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  19. Virtual Astronomy: The Legacy of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.; Berriman, G. B.; Lazio, J.; Szalay, A. S.; Fabbiano, G.; Plante, R. L.; McGlynn, T. A.; Evans, J.; Emery Bunn, S.; Claro, M.; VAO Project Team

    2014-01-01

    Over the past ten years, the Virtual Astronomical Observatory (VAO, http://usvao.org) and its predecessor, the National Virtual Observatory (NVO), have developed and operated a software infrastructure consisting of standards and protocols for data and science software applications. The Virtual Observatory (VO) makes it possible to develop robust software for the discovery, access, and analysis of astronomical data. Every major publicly funded research organization in the US and worldwide has deployed at least some components of the VO infrastructure; tens of thousands of VO-enabled queries for data are invoked daily against catalog, image, and spectral data collections; and groups within the community have developed tools and applications building upon the VO infrastructure. Further, NVO and VAO have helped ensure access to data internationally by co-founding the International Virtual Observatory Alliance (IVOA, http://ivoa.net). The products of the VAO are being archived in a publicly accessible repository. Several science tools developed by the VAO will continue to be supported by the organizations that developed them: the Iris spectral energy distribution package (SAO), the Data Discovery Tool (STScI/MAST, HEASARC), and the scalable cross-comparison service (IPAC). The final year of VAO is focused on development of the data access protocol for data cubes, creation of Python language bindings to VO services, and deployment of a cloud-like data storage service that links to VO data discovery tools (SciDrive). We encourage the community to make use of these tools and services, to extend and improve them, and to carry on with the vision for virtual astronomy: astronomical research enabled by easy access to distributed data and computational resources. Funding for VAO development and operations has been provided jointly by NSF and NASA since May 2010. NSF funding will end in September 2014, though with the possibility of competitive solicitations for VO-based tool

  20. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  1. Herschel And Alma Observations Of The Ism In Massive High-Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Wu, John F.; Aguirre, Paula; Baker, Andrew J.; Devlin, Mark J.; Hilton, Matt; Hughes, John P.; Infante, Leopoldo; Lindner, Robert R.; Sifón, Cristóbal

    2017-06-01

    The Sunyaev-Zel'dovich effect (SZE) can be used to select samples of galaxy clusters that are essentially mass-limited out to arbitrarily high redshifts. I will present results from an investigation of the star formation properties of galaxies in four massive clusters, extending to z 1, which were selected on the basis of their SZE decrements in the Atacama Cosmology Telescope (ACT) survey. All four clusters have been imaged with Herschel/PACS (tracing star formation rate) and two with ALMA (tracing dust and cold gas mass); newly discovered ALMA CO(4-3) and [CI] line detections expand an already large sample of spectroscopically confirmed cluster members. Star formation rate appears to anti-correlate with environmental density, but this trend vanishes after controlling for stellar mass. Elevated star formation and higher CO excitation are seen in "El Gordo," a violent cluster merger, relative to a virialized cluster at a similar high (z 1) redshift. Also exploiting ATCA 2.1 GHz observations to identify radio-loud active galactic nuclei (AGN) in our sample, I will use these data to develop a coherent picture of how environment influences galaxies' ISM properties and evolution in the most massive clusters at early cosmic times.

  2. Scientific and technological Challenges in the development of astronomical instrumentation: E-ELT & ALMA

    NASA Astrophysics Data System (ADS)

    Barrado, David; Gallego, Jesús

    2009-12-01

    The answers to the present astrophysical questions require the development of highly sophisticated instrumentation, which needs long-term scheduling and large assets of human and material resources, managed by consortia of several institutions. Spain has carried in the last years serious efforts in this direction (GTC, ESO, ESA), but there is still a notable offset between astronomical research at the theoretical and observational levels and the development of instrumentation. Now, the incorporation of new countries to ESO (in particular Spain) to ESO and several future big projects (ALMA, E-ELT, Cosmic Vision), raise the level of exigency. The goal of this workshop is to gather the scientific teams and the industries of the sector to expose their needs and projects, and share experiences. The workshop is aimed as well at serving as an echo to convince financing agencies and the astronomical community in general of the need to promote with decision the development of astrophysical instrumentation and the tools for the analysis of related data. The formation and acknowledgement of instrumentation astronomers will be a key factor for Spain to meet the requirements of its position in Astronomy in the next decades. Here, we present the contributions most closely related to the development of E-ELT, ALMA and ESA missions.

  3. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  4. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  5. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; Moreno, Raphael; Moullet, Arielle; Lellouch, Emmanuel; Fouchet, Thierry

    2014-05-01

    ALMA offers a unique opportunity to map mesospheric species on Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11 arcsec and the illumination factor was about 90 percent. Maps of CO, SO, SO2, and HDO have been built from transitions recorded in the 335-347 GHz frequency range. The mesospheric thermal profile has been inferred using the CO transition at 345.795 GHz. From the integrated spectrum of SO recorded on Nov. 14 at 346.528 GHz, we find that the best fit is obtained with a cut-off in the SO vertical distribution at about 88 km and a mean mixing ratio of about 8.0 ppb above this level. In the case of SO2, as for SO, we find that the best fit is obtained with a cut-off at about 88 km; the SO2 mixing ratio above this level is about 12 ppb. The map of HDO is retrieved from the 335.395 GHz transition. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is consistent with a H2O mixing ratio of about 2.5 ppm, constant with altitude. Our results are in good agreement with previous single dish submillimeter observations (Sandor and Clancy, Icarus 177, 129, 2005; Gurwell et al. Icarus 188, 288, 2007; Sandor et al. Icarus 208, 49, 2010; Icarus 217, 836, 2012), as well as with the predictions of photochemical models (Zhang et al. Icarus 217, 714, 2012).

  6. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  7. Computer Vision for the Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic

  8. Detectability of [C II] 158 μm Emission from High-Redshift Galaxies: Predictions for ALMA and SPICA

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Wolfe, Arthur M.; Hernquist, Lars

    2006-08-01

    We discuss the detectability of high-redshift galaxies via [C II] 158 μm line emission by coupling an analytic model with cosmological smoothed particle hydrodynamics (SPH) simulations that are based on the concordance Λ cold dark matter (CDM) model. Our analytic model describes a multiphase interstellar medium (ISM) irradiated by the far-ultraviolet (FUV) radiation from local star-forming regions, and it calculates thermal and ionization equilibrium between cooling and heating. The model allows us to predict the mass fraction of a cold neutral medium (CNM) embedded in a warm neutral medium (WNM). Our cosmological SPH simulations include a treatment of radiative cooling/heating, star formation, and feedback effects from supernovae and galactic winds. Using our method, we make predictions for the [C II] luminosity from high-redshift galaxies that can be directly compared with upcoming observations by the Atacama Large Millimeter Array (ALMA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA). We find that the number density of high-redshift galaxies detectable by ALMA and SPICA via [C II] emission depends significantly on the amount of neutral gas, which is highly uncertain. Our calculations suggest that, in a CDM universe, most [C II] sources at z=3 are faint objects with Sν<0.01 mJy. Lyman break galaxies (LBGs) brighter than RAB=23.5 mag are expected to have flux densities Sν=1-3 mJy depending on the strength of galactic wind feedback. The recommended observing strategy for ALMA and SPICA is to aim at very bright LBGs or star-forming DRG/BzK galaxies.

  9. Deep ALMA photometry of distant X-ray AGN: improvements in star formation rate constraints, and AGN identification

    NASA Astrophysics Data System (ADS)

    Stanley, F.; Harrison, C. M.; Alexander, D. M.; Simpson, J.; Knudsen, K. K.; Mullaney, J. R.; Rosario, D. J.; Scholtz, J.

    2018-05-01

    We present the star formation rates (SFRs) of a sample of 109 galaxies with X-ray selected active galactic nuclei (AGN) with moderate to high X-ray luminosities (\\mathrel {L_2-8{keV}}= 10^{42} - 10^{45} \\mathrel {erg {} s^{-1}}), at redshifts 1 < z < 4.7, that were selected to be faint or undetected in the Herschel bands. We combine our deep ALMA continuum observations with deblended 8-500\\mathrel {μ m} photometry from Spitzer and Herschel, and use infrared (IR) SED fitting and AGN - star formation decomposition methods. The addition of the ALMA photometry results in an order of magnitude more X-ray AGN in our sample with a measured SFR (now 37 per cent). The remaining 63 per cent of the sources have SFR upper limits that are typically a factor of 2-10 times lower than the pre-ALMA constraints. With the improved constraints on the IR SEDs, we can now identify a mid-IR (MIR) AGN component in 50 per cent of our sample, compared to only ˜1 per cent previously. We further explore the F_{870\\mathrel {μ m}}/F_{24\\mathrel {μ m}}-redshift plane as a tool for the identification of MIR emitting AGN, for three different samples representing AGN dominated, star formation dominated, and composite sources. We demonstrate that the F_{870\\mathrel {μ m}}/F_{24\\mathrel {μ m}}-redshift plane can successfully split between AGN and star formation dominated sources, and can be used as an AGN identification method.

  10. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  11. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  12. The Pierre Auger Cosmic Ray Observatory

    DOE PAGES

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km 2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km 2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operationmore » since completion in 2008 and has recorded data from an exposure exceeding 40,000 km 2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  13. Using ALMA to Resolve the Nature of the Early Star-Forming Large-Scale Structure G073

    NASA Astrophysics Data System (ADS)

    Hill, R.; Kneissl, R.; Polletta, M.; Clarenc, B.; Dole, H. A.; Nesvadba, N. P. H.; Scott, D.; Béthermin, M.; Lagache, G.; Montier, L.

    2017-07-01

    Galaxy clusters at large redshift are key targets for understanding the nature of the early Universe, yet locating them has proven to be very challenging. Recently, a large sample of over 2000 high-z candidate structures have been found using Planck's all-sky submillimetre maps, and a subset of 234 have been followed up with Herschel-SPIRE, which showed that the emission can be attributed to large far-infrared overdensities. However, the individual galaxies giving rise to the emission seen by Planck and Herschel have not yet been resolved nor characterized, so we do not yet know whether these sources are the progenitors of present-day, massive galaxy clusters. In an attempt to address this, we targeted the eight brightest Herschel-SPIRE peaks in the centre of the Planck peak G073.4-57.5 using ALMA at 1.3 mm, and complemented these observations with multi-wavelength data from Spitzer-IRAC at 3.6 and 4.5 μm and from CFHT-WIRCam at 1.2 and 2.2 μm. We also utilize data on G073.4-57.5 at 850 μm from JCMT's SCUBA-2 instrument. We detect a total of 18 millimetre galaxies brighter than 0.3mJy in 2.4arcmin2. In every case we are able to match these to their NIR counterparts, and while the most significant SCUBA-2 sources are not included in the ALMA pointings, we find an 8σ detection when stacking the ALMA source positions in the 850 μm data. We derive photometric redshifts, IR luminosities, star-formation rates, stellar masses, dust temperatures, and dust masses; the photometric redshifts are concentrated around z ≃ 1 and z ≃ 2 and the NIR colours show a "red" sequence, while the star-formation rates indicate that three of the galaxies are "starbursts". Serendipitous CO line detections of two of the galaxies appear to match their photometric redshifts with z = 2.05. We find that the ALMA source density is 8-30 times higher than average background estimates, and thus also larger than seen in typical "proto-cluster" fields. The evidence seems to be indicating the

  14. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  15. ACS (Alma Common Software) operating a set of robotic telescopes

    NASA Astrophysics Data System (ADS)

    Westhues, C.; Ramolla, M.; Lemke, R.; Haas, M.; Drass, H.; Chini, R.

    2014-07-01

    We use the ALMA Common Software (ACS) to establish a unified middleware for robotic observations with the 40cm Optical, 80cm Infrared and 1.5m Hexapod telescopes located at OCA (Observatorio Cerro Armazones) and the ESO 1-m located at La Silla. ACS permits to hide from the observer the technical specifications, like mount-type or camera-model. Furthermore ACS provides a uniform interface to the different telescopes, allowing us to run the same planning program for each telescope. Observations are carried out for long-term monitoring campaigns to study the variability of stars and AGN. We present here the specific implementation to the different telescopes.

  16. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    , Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  18. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  19. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    NASA Astrophysics Data System (ADS)

    Iwai, K.; Loukitcheva, M.; Shimojo, M.; Solanki, S. K.; White, S. M.

    2017-12-01

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300''×300'' field of view and 4.9''×2.2'' spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph (IRIS), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.

  20. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  1. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  2. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  3. ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; De Beck, E.; Homan, W.; Smith, N.; Van de Sande, M.; Walsh, C.

    2016-07-01

    Context. At the end of their lives, most stars lose a significant amount of mass through a stellar wind. The specific physical and chemical circumstances that lead to the onset of the stellar wind for cool luminous stars are not yet understood. Complex geometrical morphologies in the circumstellar envelopes prove that various dynamical and chemical processes are interlocked and that their relative contributions are not easy to disentangle. Aims: We aim to study the inner-wind structure (R< 250 R⋆) of the well-known red supergiant VY CMa, the archetype for the class of luminous red supergiant stars experiencing high mass loss. Specifically, the objective is to unravel the density structure in the inner envelope and to examine the chemical interaction between gas and dust species. Methods: We analyse high spatial resolution (~0.̋24×0.̋13) ALMA science verification (SV) data in band 7, in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. Results: For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50° measured from north to east. However, this picture cannot capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the

  4. Unveiling the inner morphology and gas kinematics of NGC 5135 with ALMA

    NASA Astrophysics Data System (ADS)

    Sabatini, G.; Gruppioni, C.; Massardi, M.; Giannetti, A.; Burkutean, S.; Cimatti, A.; Pozzi, F.; Talia, M.

    2018-06-01

    The local Seyfert 2 galaxy NGC 5135, thanks to its almost face-on appearance, a bulge overdensity of stars, the presence of a large-scale bar, an active galactic nucleus (AGN) and a supernova remnant, is an excellent target to investigate the dynamics of inflows, outflows, star formation, and AGN feedback. Here, we present a reconstruction of the gas morphology and kinematics in the inner regions of this galaxy, based on the analysis of Atacama Large Millimeter Array (ALMA) archival data. For this purpose, we combine the available ˜100 pc resolution ALMA 1.3 and 0.45 mm observations of dust continuum emission, the spectroscopic maps of two transitions of the CO molecule (tracer of molecular gas mass in star-forming and nuclear regions), and of the CS molecule (tracer of the dense star-forming regions) with the outcome of the spectral energy distribution decomposition. By applying the 3DBAROLO software (3D-Based Analysis of Rotating Objects from Line Observations), we have been able to fit the galaxy rotation curve using a 3D tilted-ring model of the disc. Most of the observed emitting features are described by our kinematic model. We also attempt an interpretation for the emission in a few regions that the axisymmetric model fails to reproduce. The most relevant of these is a region at the northern edge of the inner bar, where multiple velocity components overlap, as a possible consequence of the expansion of a superbubble.

  5. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  6. The European Drought Observatory (EDO): Current State and Future Directions

    NASA Astrophysics Data System (ADS)

    Vogt, J.; Singleton, A.; Sepulcre, G.; Micale, F.; Barbosa, P.

    2012-12-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, improving the functionalities, extending the linkage to additional national and regional drought information systems and improving medium to long-range probabilistic drought forecasting products. Probabilistic forecasts are attractive in that they provide an estimate of the range of uncertainty in a particular forecast. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in

  7. The European Drought Observatory (EDO): Current State and Future Directions

    NASA Astrophysics Data System (ADS)

    Vogt, Jürgen; Sepulcre, Guadalupe; Magni, Diego; Valentini, Luana; Singleton, Andrew; Micale, Fabio; Barbosa, Paulo

    2013-04-01

    Europe has repeatedly been affected by droughts, resulting in considerable ecological and economic damage and climate change studies indicate a trend towards increasing climate variability most likely resulting in more frequent drought occurrences also in Europe. Against this background, the European Commission's Joint Research Centre (JRC) is developing methods and tools for assessing, monitoring and forecasting droughts in Europe and develops a European Drought Observatory (EDO) to complement and integrate national activities with a European view. At the core of the European Drought Observatory (EDO) is a portal, including a map server, a metadata catalogue, a media-monitor and analysis tools. The map server presents Europe-wide up-to-date information on the occurrence and severity of droughts, which is complemented by more detailed information provided by regional, national and local observatories through OGC compliant web mapping and web coverage services. In addition, time series of historical maps as well as graphs of the temporal evolution of drought indices for individual grid cells and administrative regions in Europe can be retrieved and analysed. Current work is focusing on validating the available products, developing combined indicators, improving the functionalities, extending the linkage to additional national and regional drought information systems and testing options for medium-range probabilistic drought forecasting across Europe. Longer-term goals include the development of long-range drought forecasting products, the analysis of drought hazard and risk, the monitoring of drought impact and the integration of EDO in a global drought information system. The talk will provide an overview on the development and state of EDO, the different products, and the ways to include a wide range of stakeholders (i.e. European, national river basin, and local authorities) in the development of the system as well as an outlook on the future developments.

  8. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  9. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated

  10. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  11. Worldwide R&D of Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Cui, C. Z.; Zhao, Y. H.

    2008-07-01

    Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in the late 1990s to meet the challenges brought up with data avalanche in astronomy. In the paper, current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects are reviewed, a brief introduction of Chinese Virtual Observatory is given.

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-07-01

    A crew member of the STS-93 mission took this photograph of the Chandra X-Ray Observatory, still attached to the Inertial Upper Stage (IUS), backdropped against the darkness of space not long after its release from Orbiter Columbia. Two firings of an attached IUS rocket placed the Observatory into its working orbit. The primary duty of the crew of this mission was to deploy the 50,162-pound Observatory, the world's most powerful x-ray telescope.

  13. Detection of Atmospheric CO on Pluto with ALMA

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark; Lellouch, Emmanuel; Butler, Bryan; Moullet, Arielle; Moreno, Raphael; Bockelée-Morvan, Dominique; Biver, Nicolas; Fouchet, Thierry; Lis, Darek; Stern, Alan; Young, Leslie; Young, Eliot; Weaver, Hal; Boissier, Jeremie; Stansberry, John

    2015-11-01

    We observed Pluto and Charon using the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer in Northern Chile on June 12.2 and June 13.15, 2015, just one month prior to the New Horizons flyby of the system. The configuration of ALMA at the time provided ~0.3" resolution, allowing separation of emission from Pluto and Charon. This project targeted multiple science goals, including a search for HCN in Pluto's atmosphere [1] and high precision measurements of the individual brightness temperatures of Pluto and Charon [2], also presented at this meeting. Here we report the high SNR detection of carbon monoxide in the atmosphere of Pluto. The CO(3-2) rotational line, at 345.796 GHz (867 μm), was observed with 117 kHz spectral resolution for 45 min (on-source) on each date, providing ~3.5mJy/channel RMS. CO emission was clearly detected on both days, with a contrast of ~65 mJy above the Pluto continuum, and ~1.8 MHz FWHM linewidth, with the combined integrated line SNR >50. The presence of CO in Pluto's atmosphere is expected due to it's presence as ice on the surface in vapor pressure equilibrium with the atmosphere (e.g. [3],[4]), and it was previously detected at modest SNR in the near-IR using the VLT [5]. A preliminary assessment based upon the CO line wings shows the fractional abundance of CO is 500-750 ppm, consistent with that found in [5]. Further, the shape of the line core emission (assuming a constant CO mixing ratio), suggests that the atmospheric temperature rises quickly from the surface to ~100-110 K in the altitude range 20-70 km but decreases above that, falling to about 70 K by 200 km altitude. A detailed line inversion analysis will be performed and results presented.[1] Lellouch et al, this meeting. [2] Butler et al., this meeting. [3] Owen et al (1993), Science, 261, pp. 745-748. [4] Spencer et al (1993), In Pluto and Charon, pp. 435-473. Univ. of Arizona Press, Tucson. [5] Lellouch et al (2011), A&A, 530, L4.

  14. Earth Observatory Satellite system definition study. Report no. 5: System design and specifications. Part 1: Observatory system element specifications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The performance, design, and quality assurance requirements for the Earth Observatory Satellite (EOS) Observatory and Ground System program elements required to perform the Land Resources Management (LRM) A-type mission are presented. The requirements for the Observatory element with the exception of the instruments specifications are contained in the first part.

  15. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  16. Exploring Molecular Complexity in the Interstellar Medium with Alma

    NASA Astrophysics Data System (ADS)

    Belloche, Arnaud

    2017-06-01

    The search for complex organic molecules (COMs) in the interstellar medium (ISM) relies heavily on the progress made in the laboratory to record and characterize the rotational spectra of these molecules. Almost 200 different molecules have been identified in the ISM so far, in particular thanks to millimeter-wavelength observations of the star-forming molecular cloud core Sgr B2(N) in the Galactic Center region. The advent of the Atacama Large Millimeter/submillimeter Array (ALMA) has recently opened a new door to explore the molecular complexity of the ISM. Thanks to its high angular resolution, the spectral confusion of star-forming cores can be reduced, and its tremendous sensitivity allows astronomers to detect molecules of low abundance that could not be probed by previous generations of telescopes. I will present results of the EMoCA survey conducted toward Sgr B2(N) with ALMA. The main goal of this spectral line survey is to decipher the molecular content of Sgr B2(N) in order to test the predictions of astrochemical numerical simulations and gain insight into the chemical processes at work in the ISM. I will in particular report on the tentative detection of N-methylformamide, on the deuterium fractionation of COMs, and on the detection of a branched alkyl molecule in the ISM. The latter detection has unveiled a new domain in the structures available to the chemistry of star-forming regions and established a further connection to the COMs found in meteorites. A. Belloche, A. A. Meshcheryakov, R. T. Garrod et al. 2017, A&A, in press, DOI: 10.1051/0004-6361/201629724 A. Belloche, H. S. P. Müller, R. T. Garrod, and K. M. Menten 2016, A&A, 587, A91 A. Belloche, R. T. Garrod, H. S. P. Müller, and K. M. Menten 2014, Science, 345, 1584 R. T. Garrod, A. Belloche, H. S. P. Müller, and K. M. Menten 2017, A&A, in press, DOI: 10.1051/0004-6361/201630254.

  17. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Our program is also accredited by Colorado State University.

  18. Moving toward queue operations at the Large Binocular Telescope Observatory

    NASA Astrophysics Data System (ADS)

    Edwards, Michelle L.; Summers, Doug; Astier, Joseph; Suarez Sola, Igor; Veillet, Christian; Power, Jennifer; Cardwell, Andrew; Walsh, Shane

    2016-07-01

    The Large Binocular Telescope Observatory (LBTO), a joint scientific venture between the Instituto Nazionale di Astrofisica (INAF), LBT Beteiligungsgesellschaft (LBTB), University of Arizona, Ohio State University (OSU), and the Research Corporation, is one of the newest additions to the world's collection of large optical/infrared ground-based telescopes. With its unique, twin 8.4m mirror design providing a 22.8 meter interferometric baseline and the collecting area of an 11.8m telescope, LBT has a window of opportunity to exploit its singular status as the "first" of the next generation of Extremely Large Telescopes (ELTs). Prompted by urgency to maximize scientific output during this favorable interval, LBTO recently re-evaluated its operations model and developed a new strategy that augments classical observing with queue. Aided by trained observatory staff, queue mode will allow for flexible, multi-instrument observing responsive to site conditions. Our plan is to implement a staged rollout that will provide many of the benefits of queue observing sooner rather than later - with more bells and whistles coming in future stages. In this paper, we outline LBTO's new scientific model, focusing specifically on our "lean" resourcing and development, reuse and adaptation of existing software, challenges presented from our one-of-a-kind binocular operations, and lessons learned. We also outline further stages of development and our ultimate goals for queue.

  19. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools (Corrigendum). I. UKIDSS LAS DR5 vs. SDSS DR7

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2017-01-01

    Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 084.C-0928A.Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  20. SOFIA - Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the Stratospheric Observatory for Infrared Astronomy (SOFIA). The contents include: 1) Heritage & History; 2) Level 1 Requirements; 3) Top Level Overview of the Observatory; 4) Development Challenges; and 5) Highlight Photos.

  1. NASA capabilities roadmap: advanced telescopes and observatories

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.

    2005-01-01

    The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  2. The thermal emission of Centaurs and trans-Neptunian objects at millimeter wavelengths from ALMA observations

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Moreno, R.; Müller, T.; Fornasier, S.; Santos-Sanz, P.; Moullet, A.; Gurwell, M.; Stansberry, J.; Leiva, R.; Sicardy, B.; Butler, B.; Boissier, J.

    2017-12-01

    The sensitivity of ALMA makes it possible to detect thermal mm/submm emission from small and/or distant solar system bodies at the sub-mJy level. While the measured fluxes are primarily sensitive to the objects' diameters, deriving precise sizes is somewhat hampered by the uncertain effective emissivity at these wavelengths. Following recent work presenting ALMA data for four trans-Neptunian objects (TNOs) with satellites, we report on ALMA 233 GHz (1.29 mm) flux measurements of four Centaurs (2002 GZ32, Bienor, Chiron, Chariklo) and two other TNOs (Huya and Makemake), sampling a range of sizes, albedos, and compositions. These thermal fluxes are combined with previously published fluxes in the mid/far infrared in order to derive their relative emissivity at radio (mm/submm) wavelengths, using the Near Earth Asteroid Standard Model (NEATM) and thermophysical models. We reassess earlier thermal measurements of these and other objects - including Pluto/Charon and Varuna - exploring, in particular, effects due to non-spherical shape and varying apparent pole orientation whenever information is available, and show that these effects can be key for reconciling previous diameter determinations and correctly estimating the spectral emissivities. We also evaluate the possible contribution to thermal fluxes of established (Chariklo) or claimed (Chiron) ring systems. For Chariklo, the rings do not impact the diameter determinations by more than 5%; for Chiron, invoking a ring system does not help in improving the consistency between the numerous past size measurements. As a general conclusion, all the objects, except Makemake, have radio emissivities significantly lower than unity. Although the emissivity values show diversity, we do not find any significant trend with physical parameters such as diameter, composition, beaming factor, albedo, or color, but we suggest that the emissivity could be correlated with grain size. The mean relative radio emissivity is found to be 0

  3. ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, Kazumasa; Loukitcheva, Maria; Shimojo, Masumi

    We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatialmore » resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.« less

  4. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  6. Observatory Bibliographies as Research Tools

    NASA Astrophysics Data System (ADS)

    Rots, Arnold H.; Winkelman, S. L.

    2013-01-01

    Traditionally, observatory bibliographies were maintained to provide insight in how successful a observatory is as measured by its prominence in the (refereed) literature. When we set up the bibliographic database for the Chandra X-ray Observatory (http://cxc.harvard.edu/cgi-gen/cda/bibliography) as part of the Chandra Data Archive ((http://cxc.harvard.edu/cda/), very early in the mission, our objective was to make it primarily a useful tool for our user community. To achieve this we are: (1) casting a very wide net in collecting Chandra-related publications; (2) including for each literature reference in the database a wealth of metadata that is useful for the users; and (3) providing specific links between the articles and the datasets in the archive that they use. As a result our users are able to browse the literature and the data archive simultaneously. As an added bonus, the rich metadata content and data links have also allowed us to assemble more meaningful statistics about the scientific efficacy of the observatory. In all this we collaborate closely with the Astrophysics Data System (ADS). Among the plans for future enhancement are the inclusion of press releases and the Chandra image gallery, linking with ADS semantic searching tools, full-text metadata mining, and linking with other observatories' bibliographies. This work is supported by NASA contract NAS8-03060 (CXC) and depends critically on the services provided by the ADS.

  7. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision

  8. Science Enabled by Ocean Observatory Acoustics

    NASA Astrophysics Data System (ADS)

    Howe, B. M.; Lee, C.; Gobat, J.; Freitag, L.; Miller, J. H.; Committee, I.

    2004-12-01

    Ocean observatories have the potential to examine the physical, chemical, biological, and geological parameters and processes of the ocean at time and space scales previously unexplored. Acoustics provides an efficient and cost-effective means by which these parameters and processes can be measured and information can be communicated. Integrated acoustics systems providing navigation and communications for mobile platforms and conducting acoustical measurements in support of science objectives are critical and essential elements of the ocean observatories presently in the planning and implementation stages. The ORION Workshop (Puerto Rico, 4-8 January 2004) developed science themes that can be addressed utilizing ocean observatory infrastructure. The use of acoustics to sense the 3-d/volumetric ocean environment on all temporal and spatial scales was discussed in many ORION working groups. Science themes that are related to acoustics and measurements using acoustics are reviewed and tabulated, as are the related and sometimes competing requirements for passive listening, acoustic navigation and acoustic communication around observatories. Sound in the sea, brought from observatories to universities and schools via the internet, will also be a major education and outreach mechanism.

  9. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  10. NEW Fe IX LINE IDENTIFICATIONS USING SOLAR AND HELIOSPHERIC OBSERVATORY/SOLAR ULTRAVIOLET MEASUREMENT OF EMITTED RADIATION AND HINODE/EIS JOINT OBSERVATIONS OF THE QUIET SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, E.; Young, P. R.

    2009-12-20

    In this work, we study joint observations of Hinode/EUV Imaging Spectrometer (EIS) and Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation of Fe IX lines emitted by the same level of the high energy configuration 3s {sup 2}3p {sup 5}4p. The intensity ratios of these lines are dependent on atomic physics parameters only and not on the physical parameters of the emitting plasma, so that they are excellent tools to verify the relative intensity calibration of high-resolution spectrometers that work in the 170-200 A and 700-850 A wavelength ranges. We carry out extensive atomic physics calculations to improve themore » accuracy of the predicted intensity ratio, and compare the results with simultaneous EIS-SUMER observations of an off-disk quiet Sun region. We were able to identify two ultraviolet lines in the SUMER spectrum that are emitted by the same level that emits one bright line in the EIS wavelength range. Comparison between predicted and measured intensity ratios, wavelengths and energy separation of Fe IX levels confirms the identifications we make. Blending and calibration uncertainties are discussed. The results of this work are important for cross-calibrating EIS and SUMER, as well as future instrumentation.« less

  11. Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert

    2018-06-01

    We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

  12. Black hole mass measurement using molecular gas kinematics: what ALMA can do

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang

    2017-04-01

    We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.

  13. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2007-12-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. This past year, we have used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud three years ago. Our teacher programs have involved scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! We also held a Colorado Project ASTRO-GEO workshop, and the observatory continues to make high-school astronomy courses available to students from the surrounding school districts. Statewide, this year we helped support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone, and Gunnison. The LTO is grateful to have received the recently-retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (all with volunteer labor). During 2008 we plan to build a custom pier and refurbish the telescope.

  14. Construction/Application of the Internet Observatories in Japan

    NASA Astrophysics Data System (ADS)

    Satoh, T.; Tsubota, Y.; Matsumoto, N.; Takahashi, N.

    2000-05-01

    We have successfully built two Internet Observatories in Japan: one at Noda campus of the Science University of Tokyo and another at Hiyoshi campus of the Keio Senior High School. Both observatories are equipped with a computerized Meade LX-200 telescope (8" tube at the SUT site and 12" at the Keio site) with a CCD video camera inside the sliding-roof type observatory. Each observatory is controlled by two personal computer: one controls almost everything, including the roof, the telescope, and the camera, while another is dedicated to encode the real-time picture from the CCD video camera into the RealVideo format for live broadcasting. A user can operate the observatory through the web-based interface and can enjoy the real-time picture of the objects via the RealPlayer software. The administrator can run a sequence of batch commands with which no human interaction is needed from the beginning to the end of an observation. Although our observatories are primarily for educational purposes, this system can easily be converted to a signal-triggered one which may be very useful to observe transient phenomena, such as afterglows of gamma-ray bursts. The most remarkable feature of our observatories is that it is very inexpensive (it costs only a few tens of grands). We'll report details of the observatories in the poster, and at the same time, will demonstrate operating the observatories using an internet-connected PC from the meeting site. This work has been supported through the funding from the Telecommunicaitons Advancement Foundation for FY 1998 and 1999.

  15. DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.

    2015-12-10

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 betweenmore » dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.« less

  16. Design of Balanced Mixers for ALMA Band-10

    NASA Astrophysics Data System (ADS)

    Shitov, Sergey V.; Koryukin, Oleg V.; Uzawa, Yoshinori; Noguchi, Takashi; Uvarov, Andrey V.; Bukovski, Maksim A.; Cohn, Ilya A.

    2007-06-01

    Two variants of balanced mixer employing twin-SIS structure are under development for 787-950 GHz frequency range. Easy-to-use Geometry Transformation method for modeling of superconducting microstrips is developed, compared to referenced methods and used for design of the mixers. Lens-antenna mixer is based on cross-slot antenna; it does not need any intervening optics between its lens and sub-reflector of ALMA telescope; simple yet efficient composition of lens-antenna cartridge is suggested. Compact single-chamber balanced waveguide mixer employs two SIS chips and capacitive probe for LO injection; coupling above -3 dB and signal loss below -20 dB are expected. Need in shifting of resonance frequency of twin-SIS mixer towards top of the frequency band is predicted using Tucker's theory in large-signal approximation. TRX considerably below 200 K (DSB) is simulated using high-quality hybrid SIS junction for NbTiN/Nb - AlOx - Nb/Al for Jc = 12 kA/cm2.

  17. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used

  18. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  19. The Astrophysical Multimessenger Observatory Network (AMON)

    NASA Technical Reports Server (NTRS)

    Smith. M. W. E.; Fox, D. B.; Cowen, D. F.; Meszaros, P.; Tesic, G.; Fixelle, J.; Bartos, I.; Sommers, P.; Ashtekar, Abhay; Babu, G. Jogesh; hide

    2013-01-01

    We summarize the science opportunity, design elements, current and projected partner observatories, and anticipated science returns of the Astrophysical Multimessenger Observatory Network (AMON). AMON will link multiple current and future high-energy, multimessenger, and follow-up observatories together into a single network, enabling near real-time coincidence searches for multimessenger astrophysical transients and their electromagnetic counterparts. Candidate and high-confidence multimessenger transient events will be identified, characterized, and distributed as AMON alerts within the network and to interested external observers, leading to follow-up observations across the electromagnetic spectrum. In this way, AMON aims to evoke the discovery of multimessenger transients from within observatory subthreshold data streams and facilitate the exploitation of these transients for purposes of astronomy and fundamental physics. As a central hub of global multimessenger science, AMON will also enable cross-collaboration analyses of archival datasets in search of rare or exotic astrophysical phenomena.

  20. The Stratospheric Observatory for Infrared Astronomy (SOFIA) - Current Status, Recent Results, Future Plans, and Synergies with the AKARI Archive

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2017-01-01

    The Stratospheric Observatory for Infrared Astronomy comprises a 2.7m diameter telescope mounted in a heavily modified B747SP aircraft. The SOFIA program is a joint US NASA and German DLR program, with the development and operations costs split roughly 80%:20%, respectively. Although the observatory is funded by these two nations, its observing time is open to proposals from astronomers of any nationality. The observatory has been flying and taking scientific data since 2010 and currently observes astronomical targets from the stratosphere for approximately 800 research flight hours per year. Seven science instruments (with an eighth coming online in 2020) cover the visible to sub-millimeter wavelengths with a variety of spectral resolutions ranging up to 1e8. The AKARI Archive with its 1.7 to 180 micron wavelength coverage is a natural complementary source for follow-up observations with SOFIA. This presentation will cover the current SOFIA technical capabilities and will present a few recent science highlights that demonstrate the SOFIA/AKARI complementarity. The presentation will also cover the SOFIA proposal process and will summarize other partnership opportunities for additional observing time on SOFIA.

  1. A Green Robotic Observatory for Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Archer, K.

    2008-09-01

    With the development of robotic telescopes and stable remote observing software, it is currently possible for a small institution to have an affordable astronomical facility for astronomy education. However, a faculty member has to deal with the light pollution (observatory location on campus), its nightly operations and regular maintenance apart from his day time teaching and research responsibilities. While building an observatory at a remote location is a solution, the cost of constructing and operating such a facility, not to mention the environmental impact, are beyond the reach of most institutions. In an effort to resolve these issues we have developed a robotic remote observatory that can be operated via the internet from anywhere in the world, has a zero operating carbon footprint and minimum impact on the local environment. The prototype observatory is a clam-shell design that houses an 8-inch telescope with a SBIG ST-10 CCD detector. The brain of the observatory is a low draw 12-volt harsh duty computer that runs the dome, telescope, CCD camera, focuser, and weather monitoring. All equipment runs of a 12-volt AGM-style battery that has low lead content and hence more environmental-friendly to dispose. The total power of 12-14 amp/hrs is generated from a set of solar panels that are large enough to maintain a full battery charge for several cloudy days. This completely eliminates the need for a local power grid for operations. Internet access is accomplished via a high-speed cell phone broadband connection or satellite link eliminating the need for a phone network. An independent observatory monitoring system interfaces with the observatory computer during operation. The observatory converts to a trailer for transportation to the site and is converted to a semi-permanent building without wheels and towing equipment. This ensures minimal disturbance to local environment.

  2. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  3. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  4. Terrestrial Planet Finder Coronagraph Observatory summary

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Levine-Westa, Marie; Kissila, Andy; Kwacka, Eug; Hoa, Tim; Dumonta, Phil; Lismana, Doug; Fehera, Peter; Cafferty, Terry

    2005-01-01

    Creating an optical space telescope observatory capable of detecting and characterizing light from extra-solar terrestrial planets poses technical challenges related to extreme wavefront stability. The Terrestrial Planet Finder Coronagraph design team has been developing an observatory based on trade studies, modeling and analysis that has guided us towards design choices to enable this challenging mission. This paper will describe the current flight baseline design of the observatory and the trade studies that have been performed. The modeling and analysis of this design will be described including predicted performance and the tasks yet to be done.

  5. Project on Chinese Virtual Solar Observatory

    NASA Astrophysics Data System (ADS)

    Lin, Gang-Hua

    2004-09-01

    With going deep into research of solar physics, development of observational instrument and accumulation of obervation data, it urges people to think such things: using data which is observed in different times, places, bands and history data to seek answers of a plenty science problems. In the meanwhile, researcher can easily search the data and analyze data. This is why the project of the virtual solar observatory gained active replies and operation from observatories, institutes and universities in the world. In this article, how we face to the development of the virtual solar observatory and our preliminary project on CVSO are discussed.

  6. ON THE NATURE OF THE TERTIARY COMPANION TO FW TAU: ALMA CO OBSERVATIONS AND SED MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caceres, Claudio; Hardy, Adam; Schreiber, Matthias R.

    2015-06-20

    It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FW Tau system. We present here ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak {sup 12}CO (2–1) line, providing direct evidencemore » for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with either a brown dwarf embedded in an edge-on disk or a planet embedded in a low inclination disk, which is externally irradiated by the binary companion. Further observations with ALMA, aiming for high SNR detections of non-contaminated gas lines, are required to conclusively unveil the nature of the third object in FW Tau.« less

  7. Alma Polarization Observations Of The Particle Accelerators In The Peculiar Hot Spot 3C 445 South

    NASA Astrophysics Data System (ADS)

    Orienti, Monica; Brunetti, G.; Mack, K.-H.; Nagai, H.; Paladino, R.; Prieto, M. A.

    2017-10-01

    Radio hot spots are bright and compact regions at the edges of powerful radio galaxies. In these regions the relativistic particles are reaccelerated by shocks produced by the interaction between the supersonic jets and the external environment. The discovery of synchrotron optical emission extending on kpc scale in some hot spots suggests that additional efficient and spatially distributed acceleration mechanisms must take place in order to compensate the severe radiative losses of optical emitting electrons. The key parameter to unveil the mechanism at work is the polarization intensity: high fractional polarization in the case of shocks, whereas low values or absence of polarization are expected in case of turbulence. In this contribution I will present results on full-polarization ALMA observations at 97 GHz of the hot spot 3C 445 South. This arc-shaped hot spot is characterized by two main components enshrouded by extended emission that is visible from radio to X-rays. The ALMA results, complemented by mutiband VLA, VLT, HST and Chandra data, will be used to shed a light on the complex distribution and nature of particle acceleration at the edge of powerful radio galaxies.

  8. Design of a Lunar Farside Observatory

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The design of a mantendable lunar farside observatory and science base is presented. A farside observatory will allow high accuracy astronomical observations, as well as the opportunity to perform geological and low gravity studies on the Moon. The requirements of the observatory and its support facilities are determined, and a preliminary timeline for the project development is presented. The primary areas of investigation include observatory equipment, communications, habitation, and surface operations. Each area was investigated to determine the available options, and each option was evaluated to determine the advantages and disadvantages. The options selected for incorporation into the design of the farside base are presented. The observatory equipment deemed most suitable for placement on the lunar farside consist of large optical and radio arrays and seismic equipment. A communications system consisting of a temporary satellite about the L sub 2 libration point and followed by a satellite at the stable L sub 5 libration point was selected. A space station common module was found to be the most practical option for housing the astronauts at the base. Finally, a support system based upon robotic construction vehicles and the use of lunar materials was determined to be a necessary component of the base.

  9. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.; Sackett, C.

    2001-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools in Colorado to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. We are honored that a committee of teachers and administrators from the Thompson School district have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." Also in the past year, our training materials have been shared with NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  10. Kennicutt-Schmidt Law in the Central Region of NGC 4321 as Seen by ALMA

    PubMed Central

    Azeez, Jazeel H.; Hwang, C.-Y.; Abidin, Zamri Z.; Ibrahim, Zainol A.

    2016-01-01

    We present the Atacama Large Millimeter/Sub-millimeter Array (ALMA) cycle-0 science verification data of the CO(1–0) line emission in the central region of NGC 4321 (also known as M100) at the distance of 17.1 Mpc and VLA, L-band data of HI of the same galaxy. We have drawn the center area of M100 in the 12CO(J = 1–0) line with the resolution of (3.87″ × 2.53″) as viewed by ALMA, along with HI and Spitzer 8 and 3.6 μm data. The relationship between the surface density of molecular gas mass ∑H2 and that of star formation rate ∑SFR has been investigated, in addition to the relationship between the surface density of the neutral atomic hydrogen mass and that of ∑SFR (Kennicutt–Schmidt law) in this galaxy with a high spatial resolution. The results indicate that a significant correlation exists between the SFR surface density and the molecular gas mass density in the ~2 kpc region. The power-law index has been determined for three regions: center, upper and lower arms. The value of this index in the center region is 1.13, which follows the traditional (K-S) law and indicates that the molecular gas is affected by star formation. PMID:27247251

  11. VizieR Online Data Catalog: ALMA 106GHz continuum observations in Chamaeleon I (Dunham+, 2016)

    NASA Astrophysics Data System (ADS)

    Dunham, M. M.; Offner, S. S. R.; Pineda, J. E.; Bourke, T. L.; Tobin, J. J.; Arce, H. G.; Chen, X.; di, Francesco J.; Johnstone, D.; Lee, K. I.; Myers, P. C.; Price, D.; Sadavoy, S. I.; Schnee, S.

    2018-02-01

    We obtained ALMA observations of every source in Chamaleon I detected in the single-dish 870 μm LABOCA survey by Belloche et al. (2011, J/A+A/527/A145), except for those listed as likely artifacts (1 source), residuals from bright sources (7 sources), or detections tentatively associated with YSOs (3 sources). We observed 73 sources from the initial list of 84 objects identified by Belloche et al. (2011, J/A+A/527/A145). We observed the 73 pointings using the ALMA Band 3 receivers during its Cycle 1 campaign between 2013 November 29 and 2014 March 08. Between 25 and 27 antennas were available for our observations, with the array configured in a relatively compact configuration to provide a resolution of approximately 2" FWHM (300 AU at the distance to Chamaeleon I). Each target was observed in a single pointing with approximately 1 minute of on-source integration time. Three out of the four available spectral windows were configured to measure the continuum at 101, 103, and 114 GHz, each with a bandwidth of 2 GHz, for a total continuum bandwidth of 6 GHz (2.8 mm) at a central frequency of 106 GHz. (2 data files).

  12. ALMA Detection of Extended [C II] Emission in Himiko at z = 6.6

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Maiolino, R.; Smit, R.; Amorín, R.

    2018-02-01

    Himiko is one of the most luminous Lyα emitters at z = 6.595. It has three star-forming clumps detected in the rest-frame UV, with a total SFR = 20 M ⊙ yr‑1. We report the Atacama Large Millimeter/submillimeter Array (ALMA) detection of the [C II]158 μm line emission in this Galaxy with a significance of 8σ. The total [C II] luminosity (L [C II] = 1.2 × 108 L ⊙) is fully consistent with the local L [C II]–SFR relation. The ALMA high-angular resolution reveals that the [C II] emission is made of two distinct components. The brightest [C II] clump is extended over 4 kpc and is located on the peak of the Lyα nebula, which is spatially offset by 1 kpc relative to the brightest UV clump. The second [C II] component is spatially unresolved (size <2 kpc) and coincident with one of the three UV clumps. While the latter component is consistent with the local L [C II]–SFR relation, the other components are scattered above and below the local relation. We shortly discuss the possible origin of the [C II] components and their relation with the star-forming clumps traced by the UV emission.

  13. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  14. The Little Thompson Observatory's Astronomy Education Programs

    NASA Astrophysics Data System (ADS)

    Schweitzer, Andrea E.

    2008-05-01

    The Little Thompson Observatory is a community-built E/PO observatory and is a member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. Annually we have approximately 5,000 visitors, which is roughly equal to the population of the small town of Berthoud, CO. In spring 2008, we offered a special training session to boost participation in the GLOBE at Night international observing program. During 2005-2007 we used the funding from our NASA ROSS E/PO grant to expand our teacher workshop programs, and included the baseball-sized meteorite that landed in Berthoud four years ago. Our teacher programs are ongoing, and include scientists from the Southwest Research Institute and from Fiske Planetarium at CU-Boulder. We thank the NASA ROSS E/PO program for providing this funding! Statewide, we are a founding member of Colorado Project ASTRO-GEO, and the observatory offers high-school astronomy courses to students from the surrounding school districts. We continue to support the development and construction of three new educational observatories in Colorado, located in Estes Park, Keystone and Gunnison. The LTO is grateful to have received the retired 24-inch telescope from Mount Wilson Observatory as part of the TIE program. To provide a new home for this historic telescope, we have doubled the size of the observatory and are building a second dome (almost all construction done with volunteer labor). During 2008 we will be building a custom pier and refurbishing the telescope.

  15. The European ALMA production antennas: new drive applications for better performances and low cost management

    NASA Astrophysics Data System (ADS)

    Giacomel, L.; Manfrin, C.; Marchiori, G.

    2008-07-01

    From the first application on the VLT Telescopes till today, the linear motor identifies the best solution in terms of quality/cost for any technological application in the astronomical field. Its application also in the radio-astronomy sector with the ALMA project represents a whole of forefront technology, high reliability and minimum maintenance. The adoption of embedded electronics on each motor sector makes it a system at present modular, redundant with resetting of EMC troubles.

  16. Solar Terrestrial Relations Observatory Spacecraft Artist Concept

    NASA Image and Video Library

    2011-06-01

    An artist conception of one of NASA Solar Terrestrial Relations Observatory STEREO spacecraft. The two observatories currently lie on either side of the sun, providing views of the entire sun simultaneously.

  17. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  18. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  19. The University of Montana's Blue Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Friend, D. B.

    2004-12-01

    The University of Montana's Department of Physics and Astronomy runs the state of Montana's only professional astronomical observatory. The Observatory, located on nearby Blue Mountain, houses a 16 inch Boller and Chivens Cassegrain reflector (purchased in 1970), in an Ash dome. The Observatory sits just below the summit ridge, at an elevation of approximately 6300 feet. Our instrumentation includes an Op-Tec SSP-5A photoelectric photometer and an SBIG ST-9E CCD camera. We have the only undergraduate astronomy major in the state (technically a physics major with an astronomy option), so our Observatory is an important component of our students' education. Students have recently carried out observing projects on the photometry of variable stars and color photometry of open clusters and OB associations. In my poster I will show some of the data collected by students in their observing projects. The Observatory is also used for public open houses during the summer months, and these have become very popular: at times we have had 300 visitors in a single night.

  20. Orbiting Astronomical Observatory-C (OAO-C): Press kit

    NASA Technical Reports Server (NTRS)

    Allaway, H. G.

    1972-01-01

    Mission planning for the Orbiting Astronomical Observatory-C (OAO-C) is presented. The characteristics of the observatory and its capabilities are described. The following experiments are discussed: (1) Princeton Experiment Package, (2) X-ray experiment, and (3) guest investigator program. Results of the OAO-2 observatory are presented. A tabulation of flight events is included.

  1. Robotic Software for the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    Lawrence, George; Luebbers, Julien; Eastman, Jason D.; Johnson, John A.; Swift, Jonathan

    2018-06-01

    The Thacher Observatory—a research and educational facility located in Ojai, CA—uses a 0.7 meter telescope to conduct photometric research on a variety of targets including eclipsing binaries, exoplanet transits, and supernovae. Currently, observations are automated using commercial software. In order to expand the flexibility for specialized scientific observations and to increase the educational value of the facility on campus, we are adapting and implementing the custom observatory control software and queue scheduling developed for the Miniature Exoplanet Radial Velocity Array (MINERVA) to the Thacher Observatory. We present the design and implementation of this new software as well as its demonstrated functionality on the Thacher Observatory.

  2. Planetary research at Lowell Observatory

    NASA Technical Reports Server (NTRS)

    Baum, William A.

    1988-01-01

    Scientific goals include a better determination of the basic physical characteristics of cometary nuclei, a more complete understanding of the complex processes in the comae, a survey of abundances and gas/dust ratios in a large number of comets, and measurement of primordial (12)C/(13)C and (14)N/(15)N ratios. The program also includes the observation of Pluto-Charon mutual eclipses to derive dimensions. Reduction and analysis of extensive narrowband photometry of Comet Halley from Cerro Tololo Inter-American Observatory, Perth Observatory, Lowell Observatory, and Mauna Kea Observatory were completed. It was shown that the 7.4-day periodicity in the activity of Comet Halley was present from late February through at least early June 1986, but there is no conclusive evidence of periodic variability in the preperihelion data. Greatly improved NH scalelengths and lifetimes were derived from the Halley data which lead to the conclusion that the abundance of NH in comets is much higher than previously believed. Simultaneous optical and thermal infrared observations were obtained of Comet P/Temple 2 using the MKO 2.2 m telescope and the NASA IRTF. Preliminary analysis of these observations shows that the comet's nucleus is highly elongated, very dark, and quite red.

  3. Need for a network of observatories for space debris dynamical and physical characterization

    NASA Astrophysics Data System (ADS)

    Piergentili, Fabrizio; Santoni, Fabio; Castronuovo, Marco; Portelli, Claudio; Cardona, Tommaso; Arena, Lorenzo; Sciré, Gioacchino; Seitzer, Patrick

    2016-01-01

    Space debris represents a major concern for space missions since the risk of impact with uncontrolled objects has increased dramatically in recent years. Passive and active mitigation countermeasures are currently under consideration but, at the base of any of such corrective actions is the space debris continuous monitoring through ground based surveillance systems.At the present, many space agencies have the capability to get optical measurements of space orbiting objects mainly relaying on single observatories. The recent research in the field of space debris, demonstrated how it is possible to increase the effectiveness of optical measurements exploitation by using joint observations of the same target from different sites.The University of Rome "La Sapienza", in collaboration with Italian Space Agency (ASI), is developing a scientific network of observatories dedicated to Space Debris deployed in Italy (S5Scope at Rome and SPADE at Matera) and in Kenya at the Broglio Space Center in Malindi (EQUO). ASI founded a program dedicated to space debris, in order to spread the Italian capability to deal with different aspects of this issue. In this framework, the University of Rome is in charge of coordinating the observatories network both in the operation scheduling and in the data analysis. This work describes the features of the observatories dedicated to space debris observation, highlighting their capabilities and detailing their instrumentation. Moreover, the main features of the scheduler under development, devoted to harmonizing the operations of the network, will be shown. This is a new system, which will autonomously coordinate the observations, aiming to optimize results in terms of number of followed targets, amount of time dedicated to survey, accuracy of orbit determination and feasibility of attitude determination through photometric data.Thus, the authors will describe the techniques developed and applied (i) to implement the multi-site orbit

  4. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  5. Session 21.4 - World Heritage and the Protection of Working Observatory Sites

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive

    2016-10-01

    This joint session between FM21 and FM2 (``Astronomical Heritage: Progressing the UNESCO-IAU Initiative'') focused upon the need to preserve the dark skies necessary for the continued functioning of the world's leading optical observatories and whether, if some of the sites concerned could be inscribed on UNESCO's World Heritage List, this could help achieve this objective. Among the main issues addressed were: is a WHL inscription feasible in the first place? how could the strongest case for inscription be made? what progress has been made towards doing this? and what other effects might a WHL inscription have and would they all be desirable to astronomers? Addressing such issues involves not only scientific but also heritage and political considerations.

  6. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2002-12-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  7. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; Melsheimer, T. T.

    2003-05-01

    The Little Thompson Observatory is the first community-built observatory that is part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building was done completely by volunteer labor, and first light occurred in May 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. We are grateful to have received an IDEAS grant to provide teacher training workshops for K-12 schools to make use of the observatory, including remote observing from classrooms. Students connect to the observatory over the Internet, and then receive the images back on their local computers. A committee of teachers and administrators from the Thompson School District have selected these workshops to count towards Incentive Credits (movement on the salary schedule) because the course meets the criteria: "Learning must be directly transferable to the classroom with students and relate to standards, assessment and/or technology." In addition, this past summer our program became an accredited course by Colorado State University. Our next project is to partner with the Discovery Center Science Museum and Colorado State University to provide additional teacher education programs. Our training materials have also been shared with TIE/Mt. Wilson, NASA Goddard and Howard University, which are working together to develop a similar teacher education program.

  8. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 35th International Cosmic Ray Conference (ICRC 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; et al.

    Joint contributions of the IceCube Collaboration, the Telescope Array Collaboration, and the Pierre Auger Collaboration to the 35th International Cosmic Ray Conference (ICRC 2017), 12-20 July 2017, Bexco, Busan, Korea.

  9. Addressing the social dimensions of citizen observatories: The Ground Truth 2.0 socio-technical approach for sustainable implementation of citizen observatories

    NASA Astrophysics Data System (ADS)

    Wehn, Uta; Joshi, Somya; Pfeiffer, Ellen; Anema, Kim; Gharesifard, Mohammad; Momani, Abeer

    2017-04-01

    Owing to ICT-enabled citizen observatories, citizens can take on new roles in environmental monitoring, decision making and co-operative planning, and environmental stewardship. And yet implementing advanced citizen observatories for data collection, knowledge exchange and interactions to support policy objectives is neither always easy nor successful, given the required commitment, trust, and data reliability concerns. Many efforts are facing problems with the uptake and sustained engagement by citizens, limited scalability, unclear long-term sustainability and limited actual impact on governance processes. Similarly, to sustain the engagement of decision makers in citizen observatories, mechanisms are required from the start of the initiative in order to have them invest in and, hence, commit to and own the entire process. In order to implement sustainable citizen observatories, these social dimensions therefore need to be soundly managed. We provide empirical evidence of how the social dimensions of citizen observatories are being addressed in the Ground Truth 2.0 project, drawing on a range of relevant social science approaches. This project combines the social dimensions of citizen observatories with enabling technologies - via a socio-technical approach - so that their customisation and deployment is tailored to the envisaged societal and economic impacts of the observatories. The projects consists of the demonstration and validation of six scaled up citizen observatories in real operational conditions both in the EU and in Africa, with a specific focus on flora and fauna as well as water availability and water quality for land and natural resources management. The demonstration cases (4 EU and 2 African) cover the full 'spectrum' of citizen-sensed data usage and citizen engagement, and therefore allow testing and validation of the socio-technical concept for citizen observatories under a range of conditions.

  10. The Paris Observatory has 350 years

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2017-01-01

    The Paris Observatory is the oldest astronomical observatory that has worked without interruption since its foundation to the present day. The building due to Claude Perrault is still in existence with few modifications, but of course other buildings have been added all along the centuries for housing new instruments and laboratories. In particular, a large dome has been built on the terrace in 1847, with a 38-cm diameter telescope completed in 1857: both are still visible. The main initial purpose of the Observatory was to determine longitudes. This was achieved by Jean-Dominique Cassini using the eclipses of the satellites of Jupiter: a much better map of France was the produced using this method, which unfortunately does not work at sea. Incidentally, the observation of these eclipses led to the discovery in 1676 of the finite velocity of light by Cassini and Rømer. Cassini also discovered the differential rotation of Jupiter and four satellites of Saturn. Then, geodesy was to be the main activity of the Observatory for more than a century, culminating in the famous Cassini map of France completed around 1790. During the first half of the 19th century, under François Arago, the Observatory was at the centre of French physics, which then developed very rapidly. Arago initiated astrophysics in 1810 by showing that the Sun and stars are made of incandescent gas. In 1854, the new director, Urbain Le Verrier, put emphasis on astrometry and celestial mechanics, discovering in particular the anomalous advance of the perihelion of Mercury, which was later to be a proof of General Relativity. In 1858, Leon Foucault built the first modern reflecting telescopes with their silvered glass mirror. Le Verrier created on his side modern meteorology, including some primitive forecasts. The following period was not so bright, due to the enormous project of the Carte du Ciel, which took much of the forces of the Observatory for half a century with little scientific return. In

  11. The Luminous Blue Variable RMC 127 as Seen with ALMA and ATCA

    NASA Astrophysics Data System (ADS)

    Agliozzo, C.; Trigilio, C.; Pignata, G.; Phillips, N. M.; Nikutta, R.; Leto, P.; Umana, G.; Ingallinera, A.; Buemi, C.; Bauer, F. E.; Paladini, R.; Noriega-Crespo, A.; Prieto, J. L.; Massardi, M.; Cerrigone, L.

    2017-06-01

    We present ALMA and ATCA observations of the luminous blue variable RMC 127. The radio maps show for the first time the core of the nebula and evidence that the nebula is strongly asymmetric with a Z-pattern shape. Hints of this morphology are also visible in the archival Hubble Space Telescope {{H}}α image, which overall resembles the radio emission. The emission mechanism in the outer nebula is optically thin free-free in the radio. At high frequencies, a component of point-source emission appears at the position of the star, up to the ALMA frequencies. The rising flux density distribution ({S}ν ˜ {ν }0.78+/- 0.05) of this object suggests thermal emission from the ionized stellar wind and indicates a departure from spherical symmetry with {n}e(r)\\propto {r}-2. We examine different scenarios to explain this excess of thermal emission from the wind and show that this can arise from a bipolar outflow, supporting the suggestion by other authors that the stellar wind of RMC 127 is aspherical. We fit the data with two collimated ionized wind models, and we find that the mass-loss rate can be a factor of two or more smaller than in the spherical case. We also fit the photometry obtained by IR space telescopes and deduce that the mid- to far-IR emission must arise from extended, cool (˜ 80 {{K}}) dust within the outer ionized nebula. Finally, we discuss two possible scenarios for the nebular morphology: the canonical single-star expanding shell geometry and a precessing jet model assuming the presence of a companion star.

  12. New ALMA Images of the HD 32297 and HD 61005 Debris Disks

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith Ann; Weinberger, Alycia; Wilner, David; Hughes, A. Meredith; debes, John Henry; Redfield, Seth; Donaldson, Jessica; Nesvold, Erika; Schneider, Glenn; Currie, Thayne; Roberge, Aki; Rodriguez, David

    2018-01-01

    HD 61005 (G-type star, “The Moth") and HD 32297 (A-type star) host two of the most iconic debris disks. Scattered light images show that both disks are nearly edge-on with dramatic swept-back wings of dust. Previous studies have proposed a range of mechanisms to explain this distinctive morphology including interactions with the interstellar medium, secular perturbations of grains by low-density, neutral interstellar gas, and gravitational interactions with an inclined, eccentric companion. We present new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that provide the highest resolution images at millimeter wavelengths to date of both systems. Observations at millimeter wavelengths are especially critical to our understanding of the physical mechanisms shaping the structure of these disks, since the large grains that dominate emission at these wavelengths are less affected by stellar radiation and winds and more reliably trace the underlying planetesimal distribution. We fit models directly to the observed visibilities within a Markov Chain Monte Carlo (MCMC) framework to characterize the continuum emission and place constraints on the structure of these unique debris disks. Our new ALMA images reveal that despite differences in spectral type, both systems are best described by a two-component structure with (1) a parent body belt, and (2) an outer halo aligned with the scattered light disk. Such halos have typically been assumed to be composed of small grains visible in scattered light, so these images are some of the first observational evidence that larger grains may also populate extended halos. In addition, we detect significant 12CO gas emission from HD 32297, and determine a robust upper limit for HD 61005.

  13. Rings and gaps in the disc around Elias 24 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Dipierro, G.; Ricci, L.; Pérez, L.; Lodato, G.; Alexander, R. D.; Laibe, G.; Andrews, S.; Carpenter, J. M.; Chandler, C. J.; Greaves, J. A.; Hall, C.; Henning, T.; Kwon, W.; Linz, H.; Mundy, L.; Sargent, A.; Tazzari, M.; Testi, L.; Wilner, D.

    2018-04-01

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle 2 observations of the 1.3-mm dust continuum emission of the protoplanetary disc surrounding the T Tauri star Elias 24 with an angular resolution of ˜0.2 arcsec (˜28 au). The dust continuum emission map reveals a dark ring at a radial distance of 0.47 arcsec (˜65 au) from the central star, surrounded by a bright ring at 0.58 arcsec (˜81 au). In the outer disc, the radial intensity profile shows two inflection points at 0.71 and 0.87 arcsec (˜99 and 121 au, respectively). We perform global three-dimensional smoothed particle hydrodynamic gas/dust simulations of discs hosting a migrating and accreting planet. Combining the dust density maps of small and large grains with three-dimensional radiative transfer calculations, we produce synthetic ALMA observations of a variety of disc models in order to reproduce the gap- and ring-like features observed in Elias 24. We find that the dust emission across the disc is consistent with the presence of an embedded planet with a mass of ˜0.7 MJ at an orbital radius of ˜ 60 au. Our model suggests that the two inflection points in the radial intensity profile are due to the inward radial motion of large dust grains from the outer disc. The surface brightness map of our disc model provides a reasonable match to the gap- and ring-like structures observed in Elias 24, with an average discrepancy of ˜5 per cent of the observed fluxes around the gap region.

  14. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    organisations are the European Space Agency (ESA) , the United Kingdom's ASTROGRID consortium, the CNRS-supported Centre de Données Astronomiques de Strasbourg (CDS) at the University Louis Pasteur in Strasbourg (France), the CNRS-supported TERAPIX astronomical data centre at the Institut d'Astrophysique in Paris and the Jodrell Bank Observatory of the Victoria University of Manchester (UK). Note [1]: This is a joint Press Release issued by the European Southern Observatory (ESO), the Hubble European Space Agency Information Centre, ASTROGRID, CDS, TERAPIX/CNRS and the University of Manchester. A 13 minute background video (broadcast PAL) is available from ESO PR and the Hubble European Space Agency Information Centre (addresses below). This will also be transmitted via satellite Wednesday 12 December 2001 from 12:00 to 12:15 CET on "ESA TV Service", cf. http://television.esa.int. An international conference, "Toward an International Virtual Observatory" will take place at ESO (Garching, Germany) on June 10 - 14, 2002. Contacts AVO Contacts Peter Quinn European Southern Observatory Garching, Germany Tel.: +4989-3200-6509 email: pjq@eso.org Piero Benvenuti Space Telescope-European Coordinating Facility Garching, Germany Tel.: +49-89-3200-6290 email: pbenvenu@eso.org Andy Lawrence (on behalf of The ASTROGRID Consortium) Institute for Astronomy University of Edinburgh United Kingdom Tel.: +44-131-668-8346/56 email: al@roe.ac.uk Francoise Genova Centre de Données Astronomiques de Strasbourg (CDS) France Tel.: +33-390-24-24-76 email: genova@astro.u-strasbg.fr Yannick Mellier CNRS, Delegation Paris A (CNRSDR01-Terapix)/IAP/INSU France Tel.: +33-1-44-32-81-40 email: mellier@iap.fr Phil Diamond University of Manchester/Jodrell Bank Observatory United Kingdom Tel.: +44-147-757-2625 email: pdiamond@jb.man.ac.uk PR Contacts Richard West European Southern Observatory Garching, Germany Tel.: +49-89-3200-6276 email: rwest@eso.org Lars Lindberg Christensen Hubble European Space Agency

  15. ALMACAL I: FIRST DUAL-BAND NUMBER COUNTS FROM A DEEP AND WIDE ALMA SUBMILLIMETER SURVEY, FREE FROM COSMIC VARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oteo, I.; Ivison, R. J.; Zwaan, M. A.

    We have exploited ALMA calibration observations to carry out a novel, wide, and deep submillimeter (submm) survey, almacal. These calibration data comprise a large number of observations of calibrator fields in a variety of frequency bands and array configurations. By gathering together data acquired during multiple visits to many ALMA calibrators, it is possible to reach noise levels which allow the detection of faint, dusty, star-forming galaxies (DSFGs) over a significant area. In this paper, we outline our survey strategy and report the first results. We have analyzed data for 69 calibrators, reaching depths of ∼25 μ Jy beam{sup −1}more » at sub-arcsec resolution. Adopting a conservative approach based on ≥5 σ detections, we have found 8 and 11 DSFGs in ALMA bands 6 and 7, respectively, with flux densities S {sub 1.2} m {sub m} ≥ 0.2 mJy. The faintest galaxies would have been missed by even the deepest Herschel surveys. Our cumulative number counts have been determined independently at 870 μ m and 1.2 mm from a sparse sampling of the astronomical sky, and are thus relatively free of cosmic variance. The counts are lower than reported previously by a factor of at least 2×. Future analyses will yield large, secure samples of DSFGs with redshifts determined via the detection of submm spectral lines. Uniquely, our strategy then allows for morphological studies of very faint DSFGs—representative of more normal star-forming galaxies than conventional submm galaxies—in fields where self-calibration is feasible, yielding milliarcsecond spatial resolution.« less

  16. Operations of and Future Plans for the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, : J.; Abreu, P.; Aglietta, M.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Performance and operation of the Surface Detectors of the Pierre Auger Observatory; (2) Extension of the Pierre Auger Observatory using high-elevation fluorescence telescopes (HEAT); (3) AMIGA - Auger Muons and Infill for the Ground Array of the Pierre Auger Observatory; (4) Radio detection of Cosmic Rays at the southern Auger Observatory; (5) Hardware Developments for the AMIGA enhancement at the Pierre Auger Observatory; (6) A simulation of the fluorescence detectors of the Pierre Augermore » Observatory using GEANT 4; (7) Education and Public Outreach at the Pierre Auger Observatory; (8) BATATA: A device to characterize the punch-through observed in underground muon detectors and to operate as a prototype for AMIGA; and (9) Progress with the Northern Part of the Pierre Auger Observatory.« less

  17. Long-lived space observatories for astronomy and astrophysics

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Becklin, Eric E.; Beckwith, Steven V. W.; Cowie, Lennox L.; Dupree, Andrea K.; Elliot, James L.; Gallagher, John S.; Helfand, David J.; Jenkins, Edward F.; Johnston, Kenneth J.

    1987-01-01

    NASA's plan to build and launch a fleet of long-lived space observatories that include the Hubble Space Telescope (HST), the Gamma Ray Observatory (GRO), the Advanced X Ray Astrophysics Observatory (AXAF), and the Space Infrared Telescope Facility (SIRTF) are discussed. These facilities are expected to have a profound impact on the sciences of astronomy and astrophysics. The long-lived observatories will provide new insights about astronomical and astrophysical problems that range from the presence of planets orbiting nearby stars to the large-scale distribution and evolution of matter in the universe. An important concern to NASA and the scientific community is the operation and maintenance cost of the four observatories described above. The HST cost about $1.3 billion (1984 dollars) to build and is estimated to require $160 million (1986 dollars) a year to operate and maintain. If HST is operated for 20 years, the accumulated costs will be considerably more than those required for its construction. Therefore, it is essential to plan carefully for observatory operations and maintenance before a long-lived facility is constructed. The primary goal of this report is to help NASA develop guidelines for the operations and management of these future observatories so as to achieve the best possible scientific results for the resources available. Eight recommendations are given.

  18. ALMA 1.3 Millimeter Map of the HD 95086 System -- A Young Analog of the HR 8799 System

    NASA Astrophysics Data System (ADS)

    Su, Kate; MacGregor, Meredith Ann; Booth, Mark; Wilner, David; Malhotra, Renu; Morrison, Sarah; OST STDT

    2018-01-01

    Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is best illustrated through resolved observations of its debris disk. Here we present ALMA 1.3 mm observations of HD 95086, a young analog of the HR 8799 system, that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. Our deep ALMA map also reveals a bright source located near the edge of the ring. The properties of the source, based on limited data, are consistent with it being a luminous star-forming galaxy at high redshift. We will discuss future, resolved observations of debris disks, highlighting the potential of the Origins Space Telescope (OST), one of the four science and technology definition studies commissioned by NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.

  19. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    A collection of tools for collaboratively managing a coastal ocean observatory have been developed and used in a multi-institutional, interdisciplinary field experiment. The Autonomous Ocean Sampling Network program created these tools to support the Adaptive Sampling and Prediction (ASAP) field experiment that occurred in Monterey Bay in the summer of 2006. ASAP involved the day-to-day participation of a large group of researchers located across North America. The goal of these investigators was to adapt an array of observational assets to optimize data collection and analysis. Achieving the goal required continual interaction, but the long duration of the observatory made sustained co-location of researchers difficult. The ASAP team needed a remote collaboration tool, the capability to add non-standard, interdisciplinary data sets to the overall data collection, and the ability to retrieve standardized data sets from the collection. Over the course of several months and "virtual experiments," the Ocean Observatory Portal (COOP) collaboration tool was created, along with tools for centralizing, cataloging, and converting data sets into common formats, and tools for generating automated plots of the common format data. Accumulating the data in a central location and converting the data to common formats allowed any team member to manipulate any data set quickly, without having to rely heavily on the expertise of data generators to read the data. The common data collection allowed for the development of a wide range of comparison plots and allowed team members to assimilate new data sources into derived outputs such as ocean models quickly. In addition to the standardized outputs, team members were able to produce their own specialized products and link to these through the collaborative portal, which made the experimental process more interdisciplinary and interactive. COOP was used to manage the ASAP vehicle program from its start in July 2006. New summaries were

  20. Punctuated Evolution of Volcanology: An Observatory Perspective

    NASA Astrophysics Data System (ADS)

    Burton, W. C.; Eichelberger, J. C.

    2010-12-01

    models will be coupled with risk assessments in which the parameters are adjusted to an emerging situation, while accessing global eruption databases in order to construct eruption event trees with statistically sound probabilities. Design of these alert systems will necessarily require the joint input of scientists and emergency management leaders. All of this can be visualized now, and programs such as VHub, WOVOdat, and NVEWS are working towards its eventual reality. Technological advances will make possible in a crisis the tapping of a global pool of expertise, which may have the effect of diminishing the importance of observatories as physical entities-however, familiarity with the nearby, monitored volcanoes and impacted populations will always require their presence. What is also clear about the future is that there must be more international communication and cooperation. We do this quite well scientifically, but not so well in terms of observatory operations or best practices. While parallel paths can be stimulating through diversity and competition, there is no need for every national program to separately invent the wheel. Changes will also need to be made in institutional expectations of scientists, which currently overemphasize solitary achievement at the expense of community efforts.

  1. Dusty Starbursts within a z=3 Large Scale Structure revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki

    The role of the large-scale structure is one of the most important theme in studying galaxy formation and evolution. However, it has been still mystery especially at z>2. On the basis of our ALMA 1.1 mm observations in a z ~ 3 protocluster field, it is suggested that submillimeter galaxies (SMGs) preferentially reside in the densest environment at z ~ 3. Furthermore we find a rich cluster of AGN-host SMGs at the core of the protocluster, combining with Chandra X-ray data. Our results indicate the vigorous star-formation and accelerated super massive black hole (SMBH) growth in the node of the cosmic web.

  2. The First Astronomical Observatory in Cluj-Napoca

    NASA Astrophysics Data System (ADS)

    Szenkovits, Ferenc

    2008-09-01

    One of the most important cities of Romania is Cluj-Napoca (Kolozsvár, Klausenburg). This is a traditional center of education, with many universities and high schools. From the second half of the 18th century the University of Cluj has its own Astronomical Observatory, serving for didactical activities and scientific researches. The famous astronomer Maximillian Hell was one of those Jesuits who put the base of this Astronomical Observatory. Our purpose is to offer a short history of the beginnings of this Astronomical Observatory.

  3. SOFIA: Stratospheric Observatory For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Kunz, Nans; Bowers, Al

    2007-01-01

    This viewgraph presentation reviews the great astronomical observatories both space and land based that are now operational. It shows the history of the development of SOFIA, from its conception in 1986 through the contract awards in 1996 and through the planned first flight in 2007. The major components of the observatory are shown and there is a comparison of the SOFIA with the Kuiper Airborne Observatory (KAO), which is the direct predecessor to SOFIA. The development of the aft ramp of the KAO was developed as a result of the wind tunnel tests performed for SOFIA development. Further slides show the airborne observatory layout and the telescope's optical layout. Included are also vies of the 2.5 Meter effective aperture, and the major telescope's components. The presentations reviews the technical challenges encountered during the development of SOFIA. There are also slides that review the wind tunnel tests, and CFD modeling performed during the development of SOFIA. Closing views show many views of the airplane, and views of SOFIA.

  4. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This image is a wide field x-ray view of the center region of M31 by the HEAO-2's Imaging Proportional Counter. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  6. Visits to La Plata Observatory

    NASA Astrophysics Data System (ADS)

    Feinstein, A.

    1985-03-01

    La Plata Observatory will welcome visitors to ESO-La Silla that are willing to make a stop at Buenos Aires on their trip to Chile or on their way back. There is a nice guesthouse at the Observatory that can be used, for a couple of days or so, by astronomers interested in visiting the Observatory and delivering talks on their research work to the Argentine colleagues. No payments can, however, be made at present. La Plata is at 60 km from Buenos Aires. In the same area lie the Instituto de Astronomia y Fisica dei Espacio (IAFE), in Buenos Aires proper, and the Instituto Argentino de Radioastronomia (IAR). about 40 km from Buenos Aires on the way to La Plata. Those interested should contacl: Sr Decano Prof. Cesar A. Mondinalli, or Dr Alejandro Feinstein, Observatorio Astron6mico, Paseo dei Bosque, 1900 La Plata, Argentina. Telex: 31216 CESLA AR.

  7. Hydrologic Observatories: Design, Operation, and the Neuse Basin Prototype

    NASA Astrophysics Data System (ADS)

    Reckhow, K.; Band, L.

    2003-12-01

    Hydrologic observatories are conceived as major research facilities that will be available to the full hydrologic community, to facilitate comprehensive, cross-disciplinary and multi-scale measurements necessary to address the current and next generation of critical science and management issues. A network of hydrologic observatories is proposed that both develop national comparable, multidisciplinary data sets and provide study areas to allow scientists, through their own creativity, to make scientific breakthroughs that would be impossible without the proposed observatories. The core objective of an observatory is to improve predictive understanding of the flow paths, fluxes, and residence times of water, sediment and nutrients (the "core data") across a range of spatial and temporal scales across `interfaces'. To assess attainment of this objective, a benchmark will be established in the first year, and evaluated periodically. The benchmark should provide an estimate of prediction uncertainty at points in the stream across scale; the general principle is that predictive understanding must be demonstrated internal to the catchment as well as its outlet. The core data will be needed for practically any hydrologic study, yet absence of these data has been a barrier to larger scale studies in the past. However, advancement of hydrologic science facilitated by the network of hydrologic observatories is expected to focus on a set of science drivers, drawn from the major scientific questions posed by the set of NRC reports and refined into CUAHSI themes. These hypotheses will be tested at all observatories and will be used in the design to ensure the sufficiency of the data set. To make the observatories a national (and international) resource, a key aspect of the operation is the support of remote PI's. This support will include a resident staff of scientists and technicians on the order of 10 FTE's, availability of dormitory, laboratory, workshop space for all

  8. Norwegian Ocean Observatory Network (NOON)

    NASA Astrophysics Data System (ADS)

    Ferré, Bénédicte; Mienert, Jürgen; Winther, Svein; Hageberg, Anne; Rune Godoe, Olav; Partners, Noon

    2010-05-01

    The Norwegian Ocean Observatory Network (NOON) is led by the University of Tromsø and collaborates with the Universities of Oslo and Bergen, UniResearch, Institute of Marine Research, Christian Michelsen Research and SINTEF. It is supported by the Research Council of Norway and oil and gas (O&G) industries like Statoil to develop science, technology and new educational programs. Main topics relate to ocean climate and environment as well as marine resources offshore Norway from the northern North Atlantic to the Arctic Ocean. NOON's vision is to bring Norway to the international forefront in using cable based ocean observatory technology for marine science and management, by establishing an infrastructure that enables real-time and long term monitoring of processes and interactions between hydrosphere, geosphere and biosphere. This activity is in concert with the EU funded European Strategy Forum on Research Infrastructures (ESFRI) roadmap and European Multidisciplinary Seafloor Observation (EMSO) project to attract international leading research developments. NOON envisions developing towards a European Research Infrastructure Consortium (ERIC). Beside, the research community in Norway already possesses a considerable marine infrastructure that can expand towards an international focus for real-time multidisciplinary observations in times of rapid climate change. PIC The presently established cable-based fjord observatory, followed by the establishment of a cable-based ocean observatory network towards the Arctic from an O&G installation, will provide invaluable knowledge and experience necessary to make a successful larger cable-based observatory network at the Norwegian and Arctic margin (figure 1). Access to large quantities of real-time observation from the deep sea, including high definition video, could be used to provide the public and future recruits to science a fascinating insight into an almost unexplored part of the Earth beyond the Arctic Circle

  9. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  10. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  11. Telescopes in Education: the Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Vanlew, K.; Melsheimer, T.; Melsheimer, L.; Rideout, C.; Patterson, T.

    1997-12-01

    A second observatory of the Telescopes in Education (TIE) project is in the planning stages, with hopes to be in use by fall 1998. The Little Thompson Observatory will be located adjacent to Berthoud High School in northern Colorado. TIE has offered the observatory a Tinsley 18" Cassegrain telescope on a 10-year loan. Local schools and youth organizations will have prioritized access to the telescope until midnight; after that, the telescope will be open to world-wide use by schools via the Internet. The first TIE observatory is a 24" telescope on Mt. Wilson, already booked through July 1998. That telescope has been in use every clear night for the past four years by up to 50 schools per month. Students remotely control the telescope over the Internet, and then receive the images on their local computers. The estimated cost of the Little Thompson Observatory is roughly \\170,000. However, donations of labor and materials have reduced the final price tag closer to \\40,000. Habitat for Humanity is organized to construct the dome, classrooms, and other facilities. Tom and Linda Melsheimer, who developed the remote telescope control system for the University of Denver's Mount Evans Observatory, are donating a similar control system. The formally-trained, all-volunteer staff will be comprised of local residents, teachers and amateur astronomers. Utilities and Internet access will be provided by the Thompson School District.

  12. Summary of interference measurements at selected radio observatories

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1990-01-01

    Results are presented from a series of RF interference (RFI) observations conducted during 1989 and 1990 at selected radio astronomy observatories in order to choose a site for the SETI, where the local and orbital RFI would be as benign as possible for observations of weak electromagnetic signals. These observatories included the DSS13 at Goldstone (California), the Arecibo Observatory (Puerto Rico), the Algonquin Radio Observatory in Ottawa (Canada), the Ohio State University Radio Observatory in Columbus (Ohio), and the NRAO in Green Bank (West Virginia). The observations characterize the RFI environment at these sites from 1 to 10 GHz, using radio astronomy antennas, feeds, and receivers; SETI signal processors; and stand-alone equipment built specifically for this purpose. The results served as part of the basis for the selection (by the NASA SETI Microwave Observing Project) of NRAO as the site of choice for SETI observations.

  13. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  14. The many transformations of the University of Illinois Observatory Annex

    NASA Astrophysics Data System (ADS)

    Svec, Michael

    2018-04-01

    The University of Illinois Observatory acquired a second-hand 30-inch Brashear reflector in 1912 with the intent of dedicating it to photoelectric photometry. A small observatory annex was built adjacent to the main observatory. This smaller observatory and its telescope underwent multiple transitions and instrument changes over the next 70 years, reflecting the research interests of Joel Stebbins and Robert H. Baker. The story of this observatory telescope illustrates changes in astronomical instrumentation and research over the course of the twentieth century.

  15. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  16. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster

    DOE PAGES

    Russell, H. R.; McDonald, M.; McNamara, B. R.; ...

    2017-02-14

    We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less

  17. ALMA Observations of SMM11 Reveal an Extremely Young Protostar in Serpens Main Cluster

    NASA Astrophysics Data System (ADS)

    Aso, Yusuke; Ohashi, Nagayoshi; Aikawa, Yuri; Machida, Masahiro N.; Saigo, Kazuya; Saito, Masao; Takakuwa, Shigehisa; Tomida, Kengo; Tomisaka, Kohji; Yen, Hsi-Wei; Williams, Jonathan P.

    2017-11-01

    We report the discovery of an extremely young protostar, SMM11, located in the associated submillimeter condensation in the Serpens Main cluster using the Atacama Large Millimeter/submillimeter Array (ALMA) during its Cycle 3 at 1.3 mm and an angular resolution of ˜ 0\\buildrel{\\prime\\prime}\\over{.} 5˜ 210 {AU}. SMM11 is a Class 0 protostar without any counterpart at 70 μm or shorter wavelengths. The ALMA observations show 1.3 mm continuum emission associated with a collimated 12CO bipolar outflow. Spitzer and Herschel data show that SMM11 is extremely cold ({T}{bol} = 26 K) and faint ({L}{bol} ≲ 0.9 {L}⊙ ). We estimate the inclination angle of the outflow to be ˜ 80^\\circ , almost parallel to the plane of the sky, from simple fitting using a wind-driven-shell model. The continuum visibilities consist of Gaussian and power-law components, suggesting a spherical envelope with a radius of ˜600 au around the protostar. The estimated low C18O abundance, X(C18O) = 1.5-3 × {10}-10, is also consistent with its youth. The high outflow velocity, a few 10 {km} {{{s}}}-1 at a few 1000 au, is much higher than theoretical simulations of first hydrostatic cores, and we suggest that SMM11 is a transitional object right after the second collapse of the first core.

  18. 21st Century Lightning Protection for High Altitude Observatories

    NASA Astrophysics Data System (ADS)

    Kithil, Richard

    2013-05-01

    One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.

  19. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yinghe; Lu, Nanyao; Xu, C. Kevin

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the COmore » (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .« less

  20. Introduction

    NASA Astrophysics Data System (ADS)

    de Graauw, T.

    2010-01-01

    First of all, I would like to wish all of you an happy New Year, which I sincerely hope will bring you success, happiness and interesting new opportunities. For us in ALMA, the end of 2009 and the beginning of 2010 have been very exciting and this is once more a special moment in the development of our observatory. After transporting our third antenna to the high altitude Chajnantor plateau, at 5000 meters above sea level, our team successfully combined the outputs of these antennas using "phase closure", a standard method in interferometry. This achievement marks one more milestone along the way to the beginning of Commissioning and Science Verification, CSV, which, once completed, will mark the beginning of Early Science for ALMA. There was an official announcement about this milestone at the AAS meeting early January and we also wanted to share this good news with you through this newsletter, which contains the content of the announcement. In another area, this newsletter contains the progress on site and a presentation of the Atacama Compact Array (ACA). This is the second part of a two part series on antennas, a continuation of the article in the last newsletter. The ACA plays a crucial part in the imaging of extended sources with ALMA. Without the ACA, the ability to produce accurate images would be very restricted. Finally, as you know, we like to show the human face of this great endeavour we are building and this time, we decided to highlight the Department of Technical Services, another fundamental piece working actively to make ALMA the most powerful radio observatory ever built.

  1. Spectroscopic observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.

    The joint US and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high-resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light spectroscopic science are discussed.

  2. VizieR Online Data Catalog: Venus mesosphere ALMA observations (Piccialli+, 2017)

    NASA Astrophysics Data System (ADS)

    Piccialli, A.; Moreno, R.; Encrenaz, T.; Fouchet, T.; Lellouch, E.; Widemann, T.

    2017-07-01

    Observations of Venus were obtained using the ALMA interferometer within the project labeled 2011.0.00136.S. We observed - with a single receiver tuning setup - the CO, SO, SO2 and H2O rotational lines at frequencies of 345.795GHz, 346.528GHz, 346.652GHz and 335.395GHz, respectively. The spectral resolution (originally 61kHz) was binned to 0.35MHz in order to optimize the S/N. These observations were obtained on November 14, 2011, between 22:15 and 22:53 UT; on November 15, 2011, between 20:39 and 21:11 UT; on November 26, 2011, between 21:24 and 22:02 UT; and on November 27, 2011, between 21:07 and 21:58 UT. (23 data files).

  3. Donald Menzel: His Founding and Funding of Solar Observatories.

    NASA Astrophysics Data System (ADS)

    Welther, B. L.

    2002-12-01

    In January 1961 Donald Menzel wrote to his cousin, M. H. Bruckman, "I am proudest of the observatories that I have built in the West." The first of those facilities, a solar observatory, was founded in 1940 in Colorado and later came to be known as the High Altitude Observatory. The second one, also a solar observatory, was founded a dozen years later at Sacramento Peak in New Mexico. The third facility, however, established at Fort Davis, Texas, was the Harvard Radio Astronomy Observatory. Although Menzel was primarily a theoretical astrophysicist, renowned for his studies of the solar chromosphere, he was also an entrepreneur who had a talent for developing observatories and coping with numerous setbacks in funding and staffing. Where many others would have failed, Menzel succeeded in mentoring colleagues and finding sources of financial support. This paper will draw primarily on letters and other materials in the Harvard University Archives.

  4. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This supernova in the constellation Cassiopeia was observed by Tycho Brahe in 1572. In this x-ray image from the High Energy Astronomy Observatory (HEAO-2/Einstein Observatory produced by nearly a day of exposure time, the center region appears filled with emissions that can be resolved into patches or knots of material. However, no central pulsar or other collapsed object can be seen. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  5. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This is an x-ray image of the Crab Nebula taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The image is demonstrated by a pulsar, which appears as a bright point due to its pulsed x-ray emissions. The strongest region of diffused emissions comes from just northwest of the pulsar, and corresponds closely to the region of brightest visible-light emission. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  6. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1980-01-01

    This x-ray photograph of the Supernova remnant Cassiopeia A, taken with the High Energy Astronomy Observatory (HEAO) 2/Einstein Observatory, shows that the regions with fast moving knots of material in the expanding shell are bright and clear. A faint x-ray halo, just outside the bright shell, is interpreted as a shock wave moving ahead of the expanding debris. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  9. THE ANATOMY OF AN EXTREME STARBURST WITHIN 1.3 Gyr OF THE BIG BANG REVEALED BY ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, C. L.; Riechers, D.; Walter, F.

    We present further analysis of the [C II] 158 {mu}m fine structure line and thermal dust continuum emission from the archetype extreme starburst/active galactic nucleus (AGN) group of galaxies in the early universe, BRI 1202-0725 at z = 4.7, using the Atacama Large Millimeter Array. The group has long been noted for having a closely separated (26 kpc in projection) FIR-hyperluminous quasar host galaxy and an optically obscured submillimeter galaxy (SMG). A short ALMA test observation reveals a rich laboratory for the study of the myriad processes involved in clustered massive galaxy formation in the early universe. Strong [C II]more » emission from the SMG and the quasar have been reported earlier by Wagg et al. based on these observations. In this paper, we examine in more detail the imaging results from the ALMA observations, including velocity channel images, position-velocity plots, and line moment images. We present detections of [C II] emission from two Ly{alpha}-selected galaxies in the group, demonstrating the relative ease with which ALMA can detect the [C II] emission from lower star formation rate galaxies at high redshift. Imaging of the [C II] emission shows a clear velocity gradient across the SMG, possibly indicating rotation or a more complex dynamical system on a scale {approx}10 kpc. There is evidence in the quasar spectrum and images for a possible outflow toward the southwest, as well as more extended emission (a {sup b}ridge{sup )}, between the quasar and the SMG, although the latter could simply be emission from Ly{alpha}-1 blending with that of the quasar at the limited spatial resolution of the current observations. These results provide an unprecedented view of a major merger of gas-rich galaxies driving extreme starbursts and AGN accretion during the formation of massive galaxies and supermassive black holes within 1.3 Gyr of the big bang.« less

  10. Phase correction for ALMA. Investigating water vapour radiometer scaling: The long-baseline science verification data case study

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Tilanus, R. P. J.; van Kempen, T. A.; Hogerheijde, M. R.; Schmalzl, M.; Yoon, I.; Contreras, Y.; Toribio, M. C.; Asaki, Y.; Dent, W. R. F.; Fomalont, E.; Matsushita, S.

    2017-09-01

    The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to 30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1 mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5 km) observations. These inherently have poorer phase stability and are taken in low PWV (<1 mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.

  11. NEPTUNE: an under-sea plate scale observatory

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. M.; Heath, G. R.; Maffei, A.; Chave, A.; Howe, B.; Wilcock, W.; Delaney, J.; Kirkham, H.

    2002-01-01

    The NEPTUNE project will establish a linked array of undersea observatories on the Juan de Fuca tectonic plate. This observatory will provide a new kind of research platform for real-time, long-term, plate-scale studies in the ocean and Earth sciences.

  12. Ten years of the Spanish Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Solano, E.

    2015-05-01

    The main objective of the Virtual Observatory (VO) is to guarantee an easy and efficient access and analysis of the information hosted in astronomical archives. The Spanish Virtual Observatory (SVO) is a project that was born in 2004 with the goal of promoting and coordinating the VO-related activities at national level. SVO is also the national contact point for the international VO initiatives, in particular the International Virtual Observatory Alliance (IVOA) and the Euro-VO project. The project, led by Centro de Astrobiología (INTA-CSIC), is structured around four major topics: a) VO compliance of astronomical archives, b) VO-science, c) VO- and data mining-tools, and d) Education and outreach. In this paper I will describe the most important results obtained by the Spanish Virtual Observatory in its first ten years of life as well as the future lines of work.

  13. A green observatory in the Chilean Atacama desert

    NASA Astrophysics Data System (ADS)

    Ramolla, Michael; Westhues, Christian; Hackstein, Moritz; Haas, Martin; Hodapp, Klaus; Lemke, Roland; Barr Domínguez, Angie; Chini, Rolf; Murphy, Miguel

    2016-08-01

    Since 2007, the Ruhr-Universität Bochum (RUB) in Germany and Universidad Católica del Norte (UCN) in Chile jointly operate the Universitätssternwarte der Ruhr-Universität Bochum (USB), which is located in direct neighborhood of the future E-ELT of ESO. It is the only observatory powered exclusively by solar panels and wind turbines. Excess power is stored in batteries that allow uninterrupted operation even in windless nights. The scientific equipment consists of three robotic optical telescopes with apertures ranging from 15 cm (RoBoTT) over 25 cm (BESTII) to 40 cm (BMT) and one 80 cm (IRIS) infra-red telescope. The optical telescopes are equipped with Johnson and Sloan broad band filters together with a large number of narrow and intermediate bands. In the infrared, J,H and K filters are available, accompanied by several narrow bands near the K band wavelength. The second Nasmyth focus in the 80 cm telescope feeds a high resolution echelle spectrograph similar to the FEROS instrument of ESO. This variety of instruments has evolved from different collaborations, i.e. with the University of Hawaii (IfA) in the USA, which provided the near-infrared-camera of the IRIS telescope, or with the Deutsches Zentrum für Luft- und Raumfahrt (DLR) in Germany, which provided the BESTII telescope. The highly automatized processes on all telescopes enable a single person to run the whole facility, providing the high cost efficiency required for an university observatory. The excellent site conditions allow projects that require daily observations of astronomical objects over epochs of several months or years. Here we report on such studies of young stellar objects from the Bochum Galactic Disk Survey, the multiplicity of stars, quasar variability or the hunt for exo-planets.

  14. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil; Feinberg, Lee

    2006-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  15. Summary of NASA Advanced Telescope and Observatory Capability Roadmap

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Feinberg, Lee

    2007-01-01

    The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.

  16. Weak Turbulence in Protoplanetary Disks as Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Flaherty, Kevin; Hughes, A. Meredith; Simon, Jacob; Andrews, Sean; Bai, Xue-Ning; Wilner, David

    2018-01-01

    Gas kinematics are an important part of planet formation, influencing processes ranging from the growth of sub-micron grains to the migration of gas giant planets. Dynamical behavior can be traced with both synoptic observations of the mid-infrared excess, sensitive to the inner disk, and spatially resolved radio observations of gas emission, sensitive to the outer disk. I report on our ongoing efforts to constrain turbulence using ALMA observations of CO emission from protoplanetary disks. Building on our upper limit around HD 163296 (<0.05cs), we find evidence for weak turbulence around TW Hya (<0.08cs) indicating that weak non-thermal motion is not unique to HD 163296. I will also discuss observations of CO/13CO/C18O from around V4046 Sgr, DM Tau, and MWC 480 that will help to further expand the turbulence sample, as well as inform our understanding of CO photo-chemistry in the outer edges of these disks.

  17. Enabling Virtual Access to Latin-American Southern Observatories

    NASA Astrophysics Data System (ADS)

    Filippi, G.

    2010-12-01

    EVALSO (Enabling Virtual Access to Latin-American Southern Observatories) is an international consortium of nine astronomical organisations and research network operators, part-funded under the European Commission FP7, to create and exploit high-speed bandwidth connections to South American observatories. A brief description of the project is presented. The EVALSO Consortium inaugurated a fibre link between the Paranal Observatory and international networks on 4 November 2010 capable of 10 Gigabit per second.

  18. ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s{sup −1} and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggestingmore » that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.« less

  19. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of thismore » ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.« less

  20. ALMA Observations of the Coldest Place in the Universe: The Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-01

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  1. The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans; Sandell, Goeran

    2014-07-01

    G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.

  2. Development of Armenian-Georgian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  3. Inefficient jet-induced star formation in Centaurus A. High resolution ALMA observations of the northern filaments

    NASA Astrophysics Data System (ADS)

    Salomé, Q.; Salomé, P.; Miville-Deschênes, M.-A.; Combes, F.; Hamer, S.

    2017-12-01

    NGC 5128 (Centaurus A) is one of the best targets to study AGN feedback in the local Universe. At 13.5 kpc from the galaxy, optical filaments with recent star formation lie along the radio jet direction. This region is a testbed for positive feedback, here through jet-induced star formation. Atacama Pathfinder EXperiment (APEX) observations have revealed strong CO emission in star-forming regions and in regions with no detected tracers of star formation activity. In cases where star formation is observed, this activity appears to be inefficient compared to the Kennicutt-Schmidt relation. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to map the 12CO(1-0) emission all along the filaments of NGC 5128 at a resolution of 1.3'' 23.8pc. We find that the CO emission is clumpy and is distributed in two main structures: (i) the Horseshoe complex, located outside the HI cloud, where gas is mostly excited by shocks and where no star formation is observed, and (ii) the Vertical filament, located at the edge of the HI shell, which is a region of moderate star formation. We identified 140 molecular clouds using a clustering method applied to the CO data cube. A statistical study reveals that these clouds have very similar physical properties, such as size, velocity dispersion, and mass, as in the inner Milky Way. However, the range of radius available with the present ALMA observations does not enable us to investigate whether or not the clouds follow the Larson relation. The large virial parameter αvir of the clouds suggests that gravity is not dominant and clouds are not gravitationally unstable. Finally, the total energy injection in the northern filaments of Centaurus A is of the same order as in the inner part of the Milky Way. The strong CO emission detected in the northern filaments is an indication that the energy injected by the jet acts positively in the formation of dense molecular gas. The relatively high virial parameter of the molecular clouds

  4. Status of the Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Gehrz, R. D.; Becklin, E. E.; de Buizer, J.; Herter, T.; Keller, L. D.; Krabbe, A.; Marcum, P. M.; Roellig, T. L.; Sandell, G. H. L.; Temi, P.; Vacca, W. D.; Young, E. T.; Zinnecker, H.

    2011-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA), a joint US/German project, is a 2.5-m infrared airborne telescope carried by a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 ft (13.72 km). This facility is capable of observing from 0.3 μm to 1.6 mm with an average transmission greater than 80% averaged over all wavelengths. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA. The SOFIA Science Mission Operations (SMO) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights began in 2010 and a full operations schedule of up to one hundred 8 to 10 hour-long flights per year will be reached by 2014. The observatory is expected to operate until the mid-2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs that will resolve broad features due to dust and large molecules, and high-resolution spectrometers capable of studying the kinematics of atomic and molecular gas at sub-km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and for future instrumentation development. The operational characteristics of the SOFIA first-generation instruments are summarized. The status of the flight test program is discussed and we show First Light images obtained at wavelengths from 5.4 to 37 μm with the FORCAST imaging camera. Additional information about SOFIA is available at http://www.sofia.usra.edu and http://www.sofia.usra.edu/Science/docs/SofiaScienceVision051809-1.pdf.

  5. Automated Long - Term Scheduling for the SOFIA Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Civeit, Thomas

    2013-01-01

    The NASA Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project to develop and operate a gyro-stabilized 2.5-meter telescope in a Boeing 747SP. SOFIA's first science observations were made in December 2010. During 2011, SOFIA accomplished 30 flights in the "Early Science" program as well as a deployment to Germany. The new observing period, known as Cycle 1, is scheduled to begin in 2012. It includes 46 science flights grouped in four multi-week observing campaigns spread through a 13-month span. Automation of the flight scheduling process offers a major challenge to the SOFIA mission operations. First because it is needed to mitigate its relatively high cost per unit observing time compared to space-borne missions. Second because automated scheduling techniques available for ground-based and space-based telescopes are inappropriate for an airborne observatory. Although serious attempts have been made in the past to solve part of the problem, until recently mission operations staff was still manually scheduling flights. We present in this paper a new automated solution for generating SOFIA long-term schedules that will be used in operations from the Cycle 1 observing period. We describe the constraints that should be satisfied to solve the SOFIA scheduling problem in the context of real operations. We establish key formulas required to efficiently calculate the aircraft course over ground when evaluating flight schedules. We describe the foundations of the SOFIA long-term scheduler, the constraint representation, and the random search based algorithm that generates observation and instrument schedules. Finally, we report on how the new long-term scheduler has been used in operations to date.

  6. ALMA data suggest the presence of spiral structure in the inner wind of CW Leonis

    NASA Astrophysics Data System (ADS)

    Decin, L.; Richards, A. M. S.; Neufeld, D.; Steffen, W.; Melnick, G.; Lombaert, R.

    2015-02-01

    Context. Evolved low-mass stars lose a significant fraction of their mass through stellar winds. While the overall morphology of the stellar wind structure during the asymptotic giant branch (AGB) phase is thought to be roughly spherically symmetric, the morphology changes dramatically during the post-AGB and planetary nebula phase, during which bipolar and multi-polar structures are often observed. Aims: We aim to study the inner wind structure of the closest well-known AGB star CW Leo. Different diagnostics probing different geometrical scales have implied a non-homogeneous mass-loss process for this star: dust clumps are observed at milli-arcsec scale, a bipolar structure is seen at arcsecond-scale, and multi-concentric shells are detected beyond 1''. Methods: We present the first ALMA Cycle 0 band 9 data around 650 GHz (450 μm) tracing the inner wind of CW Leo. The full-resolution data have a spatial resolution of 0.̋42 × 0.̋24, allowing us to study the morpho-kinematical structure of CW Leo within ~6''. Results: We have detected 25 molecular emission lines in four spectral windows. The emission of all but one line is spatially resolved. The dust and molecular lines are centered around the continuum peak position, which is assumed to be dominated by stellar emission. The dust emission has an asymmetric distribution with a central peak flux density of ~2 Jy. The molecular emission lines trace different regions in the wind acceleration region and imply that the wind velocity increases rapidly from about 5 R⋆, almost reaching the terminal velocity at ~11 R⋆. The images prove that vibrational lines are excited close to the stellar surface and that SiO is a parent molecule. The channel maps for the brighter lines show a complex structure; specifically, for the 13CO J = 6-5 line, different arcs are detected within the first few arcseconds. The curved structure in the position-velocity (PV) map of the 13CO J = 6-5 line can be explained by a spiral structure in

  7. The Ultimate Private Observatory

    NASA Astrophysics Data System (ADS)

    Aymond, J.

    2009-03-01

    An amateur astronomer from Washington Parish, Southeast Louisiana, USA has designed and built an amazing observatory. It is not only an astronomical observatory, but a home theater, and tornado shelter designed to take a direct hit from an F5 tornado. The facility is fully equipped and automated, with a hydraulically driven roof that weighs 20,571 lbs., which lifts up, then rolls away to the end of the tracks. This leaves the user sitting inside of four 14-foot high walls open to the night sky. It has two premium quality telescopes for viewing deep space and objects inside the solar system. The chair that the observer sits on is also hydraulically driven.

  8. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory

  9. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  10. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  11. Detection of the Simplest Sugar, Glycolaldehyde, in a Solar-type Protostar with ALMA

    NASA Astrophysics Data System (ADS)

    Jørgensen, Jes K.; Favre, Cécile; Bisschop, Suzanne E.; Bourke, Tyler L.; van Dishoeck, Ewine F.; Schmalzl, Markus

    2012-09-01

    Glycolaldehyde (HCOCH2OH) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. In this Letter we present the first detection of 13 transitions of glycolaldehyde around a solar-type young star, through Atacama Large Millimeter Array (ALMA) observations of the Class 0 protostellar binary IRAS 16293-2422 at 220 GHz (6 transitions) and 690 GHz (7 transitions). The glycolaldehyde lines have their origin in warm (200-300 K) gas close to the individual components of the binary. Glycolaldehyde co-exists with its isomer, methyl formate (HCOOCH3), which is a factor 10-15 more abundant toward the two sources. The data also show a tentative detection of ethylene glycol, the reduced alcohol of glycolaldehyde. In the 690 GHz data, the seven transitions predicted to have the highest optical depths based on modeling of the 220 GHz lines all show redshifted absorption profiles toward one of the components in the binary (IRAS 16293B) indicative of infall and emission at the systemic velocity offset from this by about 0farcs2 (25 AU). We discuss the constraints on the chemical formation of glycolaldehyde and other organic species—in particular, in the context of laboratory experiments of photochemistry of methanol-containing ices. The relative abundances appear to be consistent with UV photochemistry of a CH3OH-CO mixed ice that has undergone mild heating. The order of magnitude increase in line density in these early ALMA data illustrates its huge potential to reveal the full chemical complexity associated with the formation of solar system analogs.

  12. Las Cumbres Observatory Partners With Local Museums In “Experience The Eclipse” Community Program

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Seale, Sandy; Rivera, Javier; Skinner, Ron

    2017-10-01

    Las Cumbres Observatory (LCO) in Goleta, California, together with the Santa Barbara Museum of Natural History (SBMNH) and the Wolf Museum of Exploration & Innovation (MOXI) put together a community program called “Experience the Eclipse” for the month of August.The greater Santa Barbara community includes over 200,000 people and the city is known for its vibrant cultural life. Events featuring science, physics, and astronomy are very popular. In 2016, Javier Rivera, the Astronomy Program Manager of the SBMNH, and Ron Skinner, the Director of Education at MOXI, met with LCO to discuss planning a month of activities to educate the public about the Great American Eclipse. The vision was to capitalize on the strength of each organization and to share information and events.The events included daily planetarium shows and open houses at the observatory of the SBMNH. All three organizations gave parties at public venues with presentations by astronomers. Together the group purchased 6,000 pairs of eclipse viewer glasses and they shared the responsibility of distributing these to local schools and community groups. A master calendar of the events was published in local press outlets and a document describing the eclipse and safe viewing practices was distributed widely. Preparation of these materials was a joint effort among the three institutions.“Experience the Eclipse” was a great success. The open houses at SBMNH were well attended and all public events sold out very quickly. On August 21, the SBMNH presented a live feed of the eclipse taken from their own observatory.We will present photos and videos from these events, along with data on the attendance and quotes from enthusiastic participants.

  13. Implementing the concurrent operation of sub-arrays in the ALMA correlator

    NASA Astrophysics Data System (ADS)

    Amestica, Rodrigo; Perez, Jesus; Lacasse, Richard; Saez, Alejandro

    2016-07-01

    The ALMA correlator processes the digitized signals from 64 individual antennas to produce a grand total of 2016 correlated base-lines, with runtime selectable lags resolution and integration time. The on-line software system can process a maximum of 125M visibilities per second, producing an archiving data rate close to one sixteenth of the former (7.8M visibilities per second with a network transfer limit of 60 MB/sec). Mechanisms in the correlator hardware design make it possible to split the total number of antennas in the array into smaller subsets, or sub-arrays, such that they can share correlator resources while executing independent observations. The software part of the sub-system is responsible for configuring and scheduling correlator resources in such a way that observations among independent subarrays occur simultaneously while internally sharing correlator resources under a cooperative arrangement. Configuration of correlator modes through its CAN-bus interface and periodic geometric delay updates are the most relevant activities to schedule concurrently while observations happen at the same time among a number of sub-arrays. For that to work correctly, the software interface to sub-arrays schedules shared correlator resources sequentially before observations actually start on each sub-array. Start times for specific observations are optimized and reported back to the higher level observing software. After that initial sequential phase has taken place then simultaneous executions and recording of correlated data across different sub-arrays move forward concurrently, sharing the local network to broadcast results to other software sub-systems. The present paper presents an overview of the different hardware and software actors within the correlator sub-system that implement some degree of concurrency and synchronization needed for seamless and simultaneous operation of multiple sub-arrays, limitations stemming from the resource-sharing nature of the

  14. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.

  15. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  16. Five HSFA telescopes and spectrographs - family silver or Greek gift?

    NASA Astrophysics Data System (ADS)

    Kotrč, P.

    2010-12-01

    A quarter-century ago five horizontal solar telescopes were delivered to Czechoslovakia from the Carl Zeiss Jena Company. Two of them have been installed in Ondrejov and one each in Hurbanovo, and Stará Lesná, with the last one reaching a mountain observatory near Alma Ata, Kazakhstan. The paper summarizes the brief history and characteristics of the instruments, different ways of their use, and realistic plans for their development. The users of the equipment received a dozen questions. The answers help us understand the importance of these instruments for the individual observatories.

  17. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  18. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-06-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being checked by engineers in the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope. The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  19. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  20. The Aosta Valley Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Carbognani, A.

    2011-06-01

    OAVdA stands for Astronomical Observatory of the Autonomous Region of the Aosta Valley (Italy). The centre is located in the northwestern Italian Alps, near the border with France and Switzerland (Lat: 45° 47' 22" N, Long: 7° 28' 42" E), at 1675 m above sea level in the Saint-Barthélemy Valley and is managed by the "Fondazione Clément Fillietroz", with funding from local administrations. OAVdA was opened in 2003 as a centre for the popularization of astronomy but, since 2006, the main activity has been scientific research, as a consequence of an official cooperation agreement established with the Italian National Institute for Astrophysics (INAF). In 2009, a planetarium was built near the observatory with a 10-meter dome and 67 seats, which is currently used for educational astronomy. In the year 2009 about 15,200 people visited OAVdA and the planetarium. The staff in 2010 was made up of 12 people, including a scientific team of 5 physicists and astronomers on ESF (European Social Fund) grants and permanently residing at the observatory.