Science.gov

Sample records for joint evolutionary histories

  1. Investigating human evolutionary history

    PubMed Central

    WOOD, BERNARD

    2000-01-01

    We rely on fossils for the interpretation of more than 95% of our evolutionary history. Fieldwork resulting in the recovery of fresh fossil evidence is an important component of reconstructing human evolutionary history, but advances can also be made by extracting additional evidence for the existing fossil record, and by improving the methods used to interpret the fossil evidence. This review shows how information from imaging and dental microstructure has contributed to improving our understanding of the hominin fossil record. It also surveys recent advances in the use of the fossil record for phylogenetic inference. PMID:10999269

  2. Evolutionary History of Tissue Kallikreins

    PubMed Central

    Pavlopoulou, Athanasia; Pampalakis, Georgios; Michalopoulos, Ioannis; Sotiropoulou, Georgia

    2010-01-01

    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs. PMID:21072173

  3. Evolutionary history of exon shuffling.

    PubMed

    França, Gustavo S; Cancherini, Douglas V; de Souza, Sandro J

    2012-06-01

    Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.

  4. Maximum likelihood inference of reticulate evolutionary histories.

    PubMed

    Yu, Yun; Dong, Jianrong; Liu, Kevin J; Nakhleh, Luay

    2014-11-18

    Hybridization plays an important role in the evolution of certain groups of organisms, adaptation to their environments, and diversification of their genomes. The evolutionary histories of such groups are reticulate, and methods for reconstructing them are still in their infancy and have limited applicability. We present a maximum likelihood method for inferring reticulate evolutionary histories while accounting simultaneously for incomplete lineage sorting. Additionally, we propose methods for assessing confidence in the amount of reticulation and the topology of the inferred evolutionary history. Our method obtains accurate estimates of reticulate evolutionary histories on simulated datasets. Furthermore, our method provides support for a hypothesis of a reticulate evolutionary history inferred from a set of house mouse (Mus musculus) genomes. As evidence of hybridization in eukaryotic groups accumulates, it is essential to have methods that infer reticulate evolutionary histories. The work we present here allows for such inference and provides a significant step toward putting phylogenetic networks on par with phylogenetic trees as a model of capturing evolutionary relationships. PMID:25368173

  5. Extinction as the loss of evolutionary history

    PubMed Central

    Erwin, Douglas H.

    2008-01-01

    Current plant and animal diversity preserves at most 1–2% of the species that have existed over the past 600 million years. But understanding the evolutionary impact of these extinctions requires a variety of metrics. The traditional measurement is loss of taxa (species or a higher category) but in the absence of phylogenetic information it is difficult to distinguish the evolutionary depth of different patterns of extinction: the same species loss can encompass very different losses of evolutionary history. Furthermore, both taxic and phylogenetic measures are poor metrics of morphologic disparity. Other measures of lost diversity include: functional diversity, architectural components, behavioral and social repertoires, and developmental strategies. The canonical five mass extinctions of the Phanerozoic reveals the loss of different, albeit sometimes overlapping, aspects of loss of evolutionary history. The end-Permian mass extinction (252 Ma) reduced all measures of diversity. The same was not true of other episodes, differences that may reflect their duration and structure. The construction of biodiversity reflects similarly uneven contributions to each of these metrics. Unraveling these contributions requires greater attention to feedbacks on biodiversity and the temporal variability in their contribution to evolutionary history. Taxic diversity increases after mass extinctions, but the response by other aspects of evolutionary history is less well studied. Earlier views of postextinction biotic recovery as the refilling of empty ecospace fail to capture the dynamics of this diversity increase. PMID:18695248

  6. The Ancient Evolutionary History of Polyomaviruses.

    PubMed

    Buck, Christopher B; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M; Tisza, Michael J; An, Ping; Katz, Joshua P; Pipas, James M; McBride, Alison A; Camus, Alvin C; McDermott, Alexa J; Dill, Jennifer A; Delwart, Eric; Ng, Terry F F; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V; Varsani, Arvind

    2016-04-01

    Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. PMID:27093155

  7. The Ancient Evolutionary History of Polyomaviruses

    PubMed Central

    Buck, Christopher B.; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M.; Tisza, Michael J.; An, Ping; Katz, Joshua P.; Pipas, James M.; McBride, Alison A.; Camus, Alvin C.; McDermott, Alexa J.; Dill, Jennifer A.; Delwart, Eric; Ng, Terry F. F.; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V.; Varsani, Arvind

    2016-01-01

    Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae. PMID:27093155

  8. Teaching About Adaptation: Why Evolutionary History Matters

    NASA Astrophysics Data System (ADS)

    Kampourakis, Kostas

    2013-02-01

    Adaptation is one of the central concepts in evolutionary theory, which nonetheless has been given different definitions. Some scholars support a historical definition of adaptation, considering it as a trait that is the outcome of natural selection, whereas others support an ahistorical definition, considering it as a trait that contributes to the survival and reproduction of its possessors. Finally, adaptation has been defined as a process, as well. Consequently, two questions arise: the first is a philosophical one and focuses on what adaptation actually is; the second is a pedagogical one and focuses on what science teachers and educators should teach about it. In this article, the various definitions of adaptation are discussed and their uses in some textbooks are presented. It is suggested that, given elementary students' intuitions about purpose and design in nature and secondary students' teleological explanations for the origin of adaptations, any definition of adaptation as a trait should include some information about its evolutionary history.

  9. The Ancient Evolutionary History of Polyomaviruses.

    PubMed

    Buck, Christopher B; Van Doorslaer, Koenraad; Peretti, Alberto; Geoghegan, Eileen M; Tisza, Michael J; An, Ping; Katz, Joshua P; Pipas, James M; McBride, Alison A; Camus, Alvin C; McDermott, Alexa J; Dill, Jennifer A; Delwart, Eric; Ng, Terry F F; Farkas, Kata; Austin, Charlotte; Kraberger, Simona; Davison, William; Pastrana, Diana V; Varsani, Arvind

    2016-04-01

    Polyomaviruses are a family of DNA tumor viruses that are known to infect mammals and birds. To investigate the deeper evolutionary history of the family, we used a combination of viral metagenomics, bioinformatics, and structural modeling approaches to identify and characterize polyomavirus sequences associated with fish and arthropods. Analyses drawing upon the divergent new sequences indicate that polyomaviruses have been gradually co-evolving with their animal hosts for at least half a billion years. Phylogenetic analyses of individual polyomavirus genes suggest that some modern polyomavirus species arose after ancient recombination events involving distantly related polyomavirus lineages. The improved evolutionary model provides a useful platform for developing a more accurate taxonomic classification system for the viral family Polyomaviridae.

  10. Evolutionary history of CI and CM chondrites

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Macdougall, J. D.

    1984-01-01

    It is now clear that several different processes have acted upon various components of carbonaceous chondrites, and that at least some of those processes occurred very early in solar system history. Because these meteorites are breccias, petrographic relationships are seldom informative about the order in which those processes took place. Nonetheless, information about such an evolutionary sequence would be of potential value in defining the nature of the source region for these meteorites. Implantation of solar wind derived noble gases into CI magnetite apparently postdated the period of aqueous activity believed to be responsible for magnetite production. Carbonate crystallization roughly coincided with one or more episodes of impact driven brecciation.

  11. Clonality and Evolutionary History of Rhabdomyosarcoma

    PubMed Central

    Wei, Jun S.; Yohe, Marielle E.; Song, Young K.; Hurd, Laura; Liao, Hongling; Catchpoole, Daniel; Skapek, Stephen X.; Barr, Frederic G.; Hawkins, Douglas S.; Khan, Javed

    2015-01-01

    To infer the subclonality of rhabdomyosarcoma (RMS) and predict the temporal order of genetic events for the tumorigenic process, and to identify novel drivers, we applied a systematic method that takes into account germline and somatic alterations in 44 tumor-normal RMS pairs using deep whole-genome sequencing. Intriguingly, we find that loss of heterozygosity of 11p15.5 and mutations in RAS pathway genes occur early in the evolutionary history of the PAX-fusion-negative-RMS (PFN-RMS) subtype. We discover several early mutations in non-RAS mutated samples and predict them to be drivers in PFN-RMS including recurrent mutation of PKN1. In contrast, we find that PAX-fusion-positive (PFP) subtype tumors have undergone whole-genome duplication in the late stage of cancer evolutionary history and have acquired fewer mutations and subclones than PFN-RMS. Moreover we predict that the PAX3-FOXO1 fusion event occurs earlier than the whole genome duplication. Our findings provide information critical to the understanding of tumorigenesis of RMS. PMID:25768946

  12. Human growth: evolutionary and life history perspectives.

    PubMed

    Gluckman, Peter D; Beedle, Alan S; Hanson, Mark A; Low, Felicia M

    2013-01-01

    Evolutionary and life history perspectives allow a fuller understanding of both patterns of growth and development and variations in disease risk. Evolutionary processes act to ensure successful reproduction and not the preservation of health and longevity, and this entails trade-offs both between traits and across the life course. Developmental plasticity adjusts the developmental trajectory so that the phenotype in childhood and through peak reproduction will suit predicted environmental conditions - a capacity that may become maladaptive should early-life predictions be inaccurate. Bipedalism and consequent pelvic narrowing in humans have led to the evolution of secondary altricialism. Shorter inter-birth intervals enabled by appropriate social support structures have allowed increased fecundity/fitness. The age at puberty has fallen over the past two centuries, perhaps resulting from changes in maternal and infant health and nutrition. The timing of puberty is also advanced by conditions of high extrinsic mortality in hunter-gatherers and is reflected in developed countries where a poor or disadvantaged start to life may also accelerate maturation. The postpubertal individual is physically and psychosexually mature, but neural executive function only reaches full maturity in the third decade of life; this mismatch may account for increased adolescent morbidity and mortality in those with earlier pubertal onset.

  13. Clustering Genes of Common Evolutionary History

    PubMed Central

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-01-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent—due to events such as incomplete lineage sorting or horizontal gene transfer—it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such “process-agnostic” approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward’s method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta. We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  14. Clustering Genes of Common Evolutionary History.

    PubMed

    Gori, Kevin; Suchan, Tomasz; Alvarez, Nadir; Goldman, Nick; Dessimoz, Christophe

    2016-06-01

    Phylogenetic inference can potentially result in a more accurate tree using data from multiple loci. However, if the loci are incongruent-due to events such as incomplete lineage sorting or horizontal gene transfer-it can be misleading to infer a single tree. To address this, many previous contributions have taken a mechanistic approach, by modeling specific processes. Alternatively, one can cluster loci without assuming how these incongruencies might arise. Such "process-agnostic" approaches typically infer a tree for each locus and cluster these. There are, however, many possible combinations of tree distance and clustering methods; their comparative performance in the context of tree incongruence is largely unknown. Furthermore, because standard model selection criteria such as AIC cannot be applied to problems with a variable number of topologies, the issue of inferring the optimal number of clusters is poorly understood. Here, we perform a large-scale simulation study of phylogenetic distances and clustering methods to infer loci of common evolutionary history. We observe that the best-performing combinations are distances accounting for branch lengths followed by spectral clustering or Ward's method. We also introduce two statistical tests to infer the optimal number of clusters and show that they strongly outperform the silhouette criterion, a general-purpose heuristic. We illustrate the usefulness of the approach by 1) identifying errors in a previous phylogenetic analysis of yeast species and 2) identifying topological incongruence among newly sequenced loci of the globeflower fly genus Chiastocheta We release treeCl, a new program to cluster genes of common evolutionary history (http://git.io/treeCl). PMID:26893301

  15. How Evolutionary Biologists Reconstruct History: Patterns & Processes

    ERIC Educational Resources Information Center

    Cooper, Robert A.

    2004-01-01

    Focusing on specific modes of evolutionally inquiry is important for students to achieve a mature understanding about evolutionary biology. Presenting evolution as rhetoric of conclusions would only confuse the minds of students.

  16. Teaching about Adaptation: Why Evolutionary History Matters

    ERIC Educational Resources Information Center

    Kampourakis, Kostas

    2013-01-01

    Adaptation is one of the central concepts in evolutionary theory, which nonetheless has been given different definitions. Some scholars support a historical definition of adaptation, considering it as a trait that is the outcome of natural selection, whereas others support an ahistorical definition, considering it as a trait that contributes to…

  17. Developmental and evolutionary history affect survival in stressful environments.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; French, Susannah S

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history.

  18. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  19. Colloquium paper: extinction as the loss of evolutionary history.

    PubMed

    Erwin, Douglas H

    2008-08-12

    Current plant and animal diversity preserves at most 1-2% of the species that have existed over the past 600 million years. But understanding the evolutionary impact of these extinctions requires a variety of metrics. The traditional measurement is loss of taxa (species or a higher category) but in the absence of phylogenetic information it is difficult to distinguish the evolutionary depth of different patterns of extinction: the same species loss can encompass very different losses of evolutionary history. Furthermore, both taxic and phylogenetic measures are poor metrics of morphologic disparity. Other measures of lost diversity include: functional diversity, architectural components, behavioral and social repertoires, and developmental strategies. The canonical five mass extinctions of the Phanerozoic reveals the loss of different, albeit sometimes overlapping, aspects of loss of evolutionary history. The end-Permian mass extinction (252 Ma) reduced all measures of diversity. The same was not true of other episodes, differences that may reflect their duration and structure. The construction of biodiversity reflects similarly uneven contributions to each of these metrics. Unraveling these contributions requires greater attention to feedbacks on biodiversity and the temporal variability in their contribution to evolutionary history. Taxic diversity increases after mass extinctions, but the response by other aspects of evolutionary history is less well studied. Earlier views of postextinction biotic recovery as the refilling of empty ecospace fail to capture the dynamics of this diversity increase. PMID:18695248

  20. Exploring the evolutionary history of centrosomes.

    PubMed

    Azimzadeh, Juliette

    2014-09-01

    The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage.

  1. Exploring the evolutionary history of centrosomes

    PubMed Central

    Azimzadeh, Juliette

    2014-01-01

    The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage. PMID:25047607

  2. The evolutionary history of division of labour

    PubMed Central

    Simpson, Carl

    2012-01-01

    Functional specialization, or division of labour (DOL), of parts within organisms and colonies is common in most multi-cellular, colonial and social organisms, but it is far from ubiquitous. Several mechanisms have been proposed to explain the evolutionary origins of DOL; the basic feature common to all of them is that functional differences can arise easily. These mechanisms cannot explain the many groups of colonial and social animals that exhibit no DOL despite up to 500 million years of evolution. Here, I propose a new hypothesis, based on a multi-level selection theory, which predicts that a reproductive DOL is required to evolve prior to subsequent functional specialization. I test this hypothesis using a dataset consisting of the type of DOL for living and extinct colonial and social animals. The frequency distribution of DOL and the sequence of its acquisition confirm that reproductive specialization evolves prior to functional specialization. A corollary of this hypothesis is observed in colonial, social and also within multi-cellular organisms; those species without a reproductive DOL have a smaller range of internal variation, in terms of the number of polymorphs or cell types, than species with a reproductive DOL. PMID:21561969

  3. The evolutionary history of Melianthus (Melianthaceae).

    PubMed

    Linder, H Peter; Dlamini, Titus; Henning, Jack; Verboom, G Anthony

    2006-07-01

    The evolutionary origins of the morphological and taxonomic diversity of angiosperms is poorly known. We used the genus Melianthus to explore the diversification of the southern African flora. Melianthus comprises eight species, and a phylogeny based on one nuclear and two plastid genes, as well as a morphological data set, confirmed that the genus is monophyletic. The two earliest diverging lineages are found in relatively mesic habitats, whereas the two terminal clades (an eastern and a western clade), each with three species, favor more arid habitats. The eastern clade is largely restricted to the summer-rainfall parts of southern Africa, and the western clade is found in winter-rainfall region. Molecular dating indicates a mid-Tertiary origin of the genus, with diversification of the eastern and western clades coincident with the Late Miocene-Pliocene uplift of the Escarpment mountains and the establishment of summer aridity along the west coast. The remarkably complex flowers are indicative of sunbird pollination, but many smaller birds can also visit. Speciation may be the consequence of allopatric divergence into edaphic-climatic niches. Divergence in flower and inflorescence morphology might be in response to the divergent pressures for nectar conservation in arid regions coupled with the need for signaling to avian pollinators in generally shrubby vegetation.

  4. Toward understanding dog evolutionary and domestication history.

    PubMed

    Galibert, Francis; Quignon, Pascale; Hitte, Christophe; André, Catherine

    2011-03-01

    Dog domestication was probably started very early during the Upper paleolithic period (~35,000 BP), thus well before any other animal or plant domestication. This early process, probably unconscious, is called proto-domestication to distinguish it from the real domestication process that has been dated around 14,000 BC. Genomic DNA analyses have shown recently that domestication started in the Middle East and rapidly expanded into all human populations. Nowadays, the dog population is fragmented in several hundreds of breeds well characterized by their phenotypes that offer a unique spectrum of polymorphism. More recent studies detect genetic signatures that will be useful to highlight breed history as well as the impact of domestication at the DNA level.

  5. Individual heterogeneity in life histories and eco-evolutionary dynamics

    PubMed Central

    Vindenes, Yngvild; Langangen, Øystein

    2015-01-01

    Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population-level processes. Recent developments have provided important steps towards their application to study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long-term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco-evolutionary dynamics. PMID:25807980

  6. Evolutionary Stability of Jointly Evolving Traits in Subdivided Populations.

    PubMed

    Mullon, Charles; Keller, Laurent; Lehmann, Laurent

    2016-08-01

    The evolutionary stability of quantitative traits depends on whether a population can resist invasion by any mutant. While uninvadability is well understood in well-mixed populations, it is much less so in subdivided populations when multiple traits evolve jointly. Here, we investigate whether a spatially subdivided population at a monomorphic equilibrium for multiple traits can withstand invasion by any mutant or is subject to diversifying selection. Our model also explores the correlations among traits arising from diversifying selection and how they depend on relatedness due to limited dispersal. We find that selection tends to favor a positive (negative) correlation between two traits when the selective effects of one trait on relatedness is positively (negatively) correlated to the indirect fitness effects of the other trait. We study the evolution of traits for which this matters: dispersal that decreases relatedness and helping that has positive indirect fitness effects. We find that when dispersal cost is low and the benefits of helping accelerate faster than its costs, selection leads to the coexistence of mobile defectors and sessile helpers. Otherwise, the population evolves to a monomorphic state with intermediate helping and dispersal. Overall, our results highlight the effects of population subdivision for evolutionary stability and correlations among traits. PMID:27420783

  7. Relevance of evolutionary history for food web structure.

    PubMed

    Eklöf, Anna; Helmus, Matthew R; Moore, M; Allesina, Stefano

    2012-04-22

    Explaining the structure of ecosystems is one of the great challenges of ecology. Simple models for food web structure aim at disentangling the complexity of ecological interaction networks and detect the main forces that are responsible for their shape. Trophic interactions are influenced by species traits, which in turn are largely determined by evolutionary history. Closely related species are more likely to share similar traits, such as body size, feeding mode and habitat preference than distant ones. Here, we present a theoretical framework for analysing whether evolutionary history--represented by taxonomic classification--provides valuable information on food web structure. In doing so, we measure which taxonomic ranks better explain species interactions. Our analysis is based on partitioning of the species into taxonomic units. For each partition, we compute the likelihood that a probabilistic model for food web structure reproduces the data using this information. We find that taxonomic partitions produce significantly higher likelihoods than expected at random. Marginal likelihoods (Bayes factors) are used to perform model selection among taxonomic ranks. We show that food webs are best explained by the coarser taxonomic ranks (kingdom to class). Our methods provide a way to explicitly include evolutionary history in models for food web structure.

  8. Natural history collections as windows on evolutionary processes.

    PubMed

    Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W

    2016-02-01

    Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations.

  9. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes

    PubMed Central

    Mei, Qiming; Dvornyk, Volodymyr

    2015-01-01

    Background Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth. Results We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6–4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000–541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth’s geological history. PMID:26352435

  10. Evolutionary history and metabolic insights of ancient mammalian uricases

    PubMed Central

    Kratzer, James T.; Lanaspa, Miguel A.; Murphy, Michael N.; Cicerchi, Christina; Graves, Christina L.; Tipton, Peter A.; Ortlund, Eric A.; Johnson, Richard J.; Gaucher, Eric A.

    2014-01-01

    Uricase is an enzyme involved in purine catabolism and is found in all three domains of life. Curiously, uricase is not functional in some organisms despite its role in converting highly insoluble uric acid into 5-hydroxyisourate. Of particular interest is the observation that apes, including humans, cannot oxidize uric acid, and it appears that multiple, independent evolutionary events led to the silencing or pseudogenization of the uricase gene in ancestral apes. Various arguments have been made to suggest why natural selection would allow the accumulation of uric acid despite the physiological consequences of crystallized monosodium urate acutely causing liver/kidney damage or chronically causing gout. We have applied evolutionary models to understand the history of primate uricases by resurrecting ancestral mammalian intermediates before the pseudogenization events of this gene family. Resurrected proteins reveal that ancestral uricases have steadily decreased in activity since the last common ancestor of mammals gave rise to descendent primate lineages. We were also able to determine the 3D distribution of amino acid replacements as they accumulated during evolutionary history by crystallizing a mammalian uricase protein. Further, ancient and modern uricases were stably transfected into HepG2 liver cells to test one hypothesis that uricase pseudogenization allowed ancient frugivorous apes to rapidly convert fructose into fat. Finally, pharmacokinetics of an ancient uricase injected in rodents suggest that our integrated approach provides the foundation for an evolutionarily-engineered enzyme capable of treating gout and preventing tumor lysis syndrome in human patients. PMID:24550457

  11. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins.

    PubMed

    Henze, Miriam J; Oakley, Todd H

    2015-11-01

    Pancrustacea (Hexapoda plus Crustacea) display an enormous diversity of eye designs, including multiple types of compound eyes and single-chambered eyes, often with color vision and/or polarization vision. Although the eyes of some pancrustaceans are well-studied, there is still much to learn about the evolutionary paths to this amazing visual diversity. Here, we examine the evolutionary history of eyes and opsins across the principle groups of Pancrustacea. First, we review the distribution of lateral and median eyes, which are found in all major pancrustacean clades (Oligostraca, Multicrustacea, and Allotriocarida). At the same time, each of those three clades has taxa that lack lateral and/or median eyes. We then compile data on the expression of visual r-opsins (rhabdomeric opsins) in lateral and median eyes across Pancrustacea and find no evidence for ancient opsin clades expressed in only one type of eye. Instead, opsin clades with eye-specific expression are products of recent gene duplications, indicating a dynamic past, during which opsins often changed expression from one type of eye to another. We also investigate the evolutionary history of peropsins and r-opsins, which are both known to be expressed in eyes of arthropods. By searching published transcriptomes, we discover for the first time crustacean peropsins and suggest that previously reported odonate opsins may also be peropsins. Finally, from analyzing a reconciled, phylogenetic tree of arthropod r-opsins, we infer that the ancestral pancrustacean had four visual opsin genes, which we call LW2, MW1, MW2, and SW. These are the progenitors of opsin clades that later were variously duplicated or lost during pancrustacean evolution. Together, our results reveal a particularly dynamic history, with losses of eyes, duplication and loss of opsin genes, and changes in opsin expression between types of eyes.

  12. Joint Genome Institute's Automation Approach and History

    SciTech Connect

    Roberts, Simon

    2006-07-05

    Department of Energy/Joint Genome Institute (DOE/JGI) collaborates with DOE national laboratories and community users, to advance genome science in support of the DOE missions of clean bio-energy, carbon cycling, and bioremediation.

  13. Deciphering the evolutionary history of open and closed mitosis.

    PubMed

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus.

  14. Evolutionary history of Pacific salmon in dynamic environments

    PubMed Central

    Waples, Robin S; Pess, George R; Beechie, Tim

    2008-01-01

    Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626

  15. Evolutionary history of Pacific salmon in dynamic environments.

    PubMed

    Waples, Robin S; Pess, George R; Beechie, Tim

    2008-05-01

    Contemporary evolution of Pacific salmon (Oncorhynchus spp.) is best viewed in the context of the evolutionary history of the species and the dynamic ecosystems they inhabit. Speciation was complete by the late Miocene, leaving c. six million years for intraspecific diversification. Following the most recent glacial maximum, large areas became available for recolonization. Current intraspecific diversity is thus the product of recent evolution overlaid onto divergent historical lineages forged during recurrent episodes of Pleistocene glaciation. In northwestern North America, dominant habitat features have been relatively stable for the past 5000 years, but salmon ecosystems remain dynamic because of disturbance regimes (volcanic eruptions, landslides, wildfires, floods, variations in marine and freshwater productivity) that occur on a variety of temporal and spatial scales. These disturbances both create selective pressures for adaptive responses by salmon and inhibit long-term divergence by periodically extirpating local populations and creating episodic dispersal events that erode emerging differences. Recent anthropogenic changes are replicated pervasively across the landscape and interrupt processes that allow natural habitat recovery. If anthropogenic changes can be shaped to produce disturbance regimes that more closely mimic (in both space and time) those under which the species evolved, Pacific salmon should be well-equipped to deal with future challenges, just as they have throughout their evolutionary history. PMID:25567626

  16. Evolutionary History of Lagomorphs in Response to Global Environmental Change

    PubMed Central

    Ge, Deyan; Wen, Zhixin; Xia, Lin; Zhang, Zhaoqun; Erbajeva, Margarita; Huang, Chengming; Yang, Qisen

    2013-01-01

    Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C3 plants, while for the diet of leporids, more than 16% of plant species are identified as C4 (31% species are from Poaceae). The ability of several leporid species to consume C4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C4 plants in the late Miocene, the so-called ‘nature’s green revolution’, induced by global environmental change, is suggested to be one of the major ‘ecological opportunities’, which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids

  17. Evolutionary history of lagomorphs in response to global environmental change.

    PubMed

    Ge, Deyan; Wen, Zhixin; Xia, Lin; Zhang, Zhaoqun; Erbajeva, Margarita; Huang, Chengming; Yang, Qisen

    2013-01-01

    Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C(3) plants, while for the diet of leporids, more than 16% of plant species are identified as C(4) (31% species are from Poaceae). The ability of several leporid species to consume C(4) plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C(4) plants in the late Miocene, the so-called 'nature's green revolution', induced by global environmental change, is suggested to be one of the major 'ecological opportunities', which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of leporids. PMID

  18. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)

    PubMed Central

    2010-01-01

    Background Sucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships. Results This study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families. Conclusions The diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events

  19. Climate constrains the evolutionary history and biodiversity of crocodylians.

    PubMed

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-01-01

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions. PMID:26399170

  20. Climate constrains the evolutionary history and biodiversity of crocodylians.

    PubMed

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  1. Climate constrains the evolutionary history and biodiversity of crocodylians

    PubMed Central

    Mannion, Philip D.; Benson, Roger B. J.; Carrano, Matthew T.; Tennant, Jonathan P.; Judd, Jack; Butler, Richard J.

    2015-01-01

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A ‘modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions. PMID:26399170

  2. Revising the recent evolutionary history of equids using ancient DNA

    PubMed Central

    Orlando, Ludovic; Metcalf, Jessica L.; Alberdi, Maria T.; Telles-Antunes, Miguel; Bonjean, Dominique; Otte, Marcel; Martin, Fabiana; Eisenmann, Véra; Mashkour, Marjan; Morello, Flavia; Prado, Jose L.; Salas-Gismondi, Rodolfo; Shockey, Bruce J.; Wrinn, Patrick J.; Vasil'ev, Sergei K.; Ovodov, Nikolai D.; Cherry, Michael I.; Hopwood, Blair; Male, Dean; Austin, Jeremy J.; Hänni, Catherine; Cooper, Alan

    2009-01-01

    The rich fossil record of the family Equidae (Mammalia: Perissodactyla) over the past 55 MY has made it an icon for the patterns and processes of macroevolution. Despite this, many aspects of equid phylogenetic relationships and taxonomy remain unresolved. Recent genetic analyses of extinct equids have revealed unexpected evolutionary patterns and a need for major revisions at the generic, subgeneric, and species levels. To investigate this issue we examine 35 ancient equid specimens from four geographic regions (South America, Europe, Southwest Asia, and South Africa), of which 22 delivered 87–688 bp of reproducible aDNA mitochondrial sequence. Phylogenetic analyses support a major revision of the recent evolutionary history of equids and reveal two new species, a South American hippidion and a descendant of a basal lineage potentially related to Middle Pleistocene equids. Sequences from specimens assigned to the giant extinct Cape zebra, Equus capensis, formed a separate clade within the modern plain zebra species, a phenotypicically plastic group that also included the extinct quagga. In addition, we revise the currently recognized extinction times for two hemione-related equid groups. However, it is apparent that the current dataset cannot solve all of the taxonomic and phylogenetic questions relevant to the evolution of Equus. In light of these findings, we propose a rapid DNA barcoding approach to evaluate the taxonomic status of the many Late Pleistocene fossil Equidae species that have been described from purely morphological analyses. PMID:20007379

  3. Evolutionary history and the effect of biodiversity on plant productivity.

    PubMed

    Cadotte, Marc W; Cardinale, Bradley J; Oakley, Todd H

    2008-11-01

    Loss of biological diversity because of extinction is one of the most pronounced changes to the global environment. For several decades, researchers have tried to understand how changes in biodiversity might impact biomass production by examining how biomass correlates with a number of biodiversity metrics (especially the number of species and functional groups). This body of research has focused on species with the implicit assumption that they are independent entities. However, functional and ecological similarities are shaped by patterns of common ancestry, such that distantly related species might contribute more to production than close relatives, perhaps by increasing niche breadth. Here, we analyze 2 decades of experiments performed in grassland ecosystems throughout the world and examine whether the evolutionary relationships among the species comprising a community predict how biodiversity impacts plant biomass production. We show that the amount of phylogenetic diversity within communities explained significantly more variation in plant community biomass than other measures of diversity, such as the number of species or functional groups. Our results reveal how evolutionary history can provide critical information for understanding, predicting, and potentially ameliorating the effects of biodiversity loss and should serve as an impetus for new biodiversity experiments.

  4. Evolutionary history of contagious asexuality in Daphnia pulex.

    PubMed

    Paland, Susanne; Colbourne, John K; Lynch, Michael

    2005-04-01

    Asexual taxa are short-lived, suggesting that transitions to asexuality represent evolutionary dead-ends. However, with high rates of clonal origin and coexistence of asexuals and sexuals via selective asymmetries, asexuality may persist in the long term as a result of a dynamic equilibrium between clonal origin and extinction. Few such systems have been studied in detail. Here, we investigate the evolutionary history of asexual lineages of Daphnia pulex, which are derived from sexual relatives via the inheritance of a dominant female-limited meiosis-suppressing locus and inhabit ponds throughout northeastern North America (NA). Our extensive sampling and subsequent phylogenetic analysis using mitochondrial sequence data reveals a young and genetically diverse asexual assemblage, reflecting high rates of clonal origin due to the contagious nature of asexuality. Yet, asexuality is restricted to two phylogroups (B and C) with historical and/or present associations with northeastern NA and is absent from a northwestern phylogroup (A), supporting a recent northeastern origin of asexuality in this species. Furthermore, macrogeographic patterns of genetic variability indicate that phylogroups B and C recolonized northeastern NA from opposite directions, yet their presently overlapping geographic distributions are similarly divided into an eastern asexual and a western sexual region. We attribute these patterns to a recent contagious spread of asexuality from a northeastern source. If environment-mediated selective asymmetries play no significant role in determining the outcome of competitive interactions between sexuals and asexuals, regions of contact may be setting the stage for continued asexual conquests.

  5. The promiscuous evolutionary history of the family Bromoviridae.

    PubMed

    Codoñer, Francisco M; Elena, Santiago F

    2008-07-01

    Recombination and segment reassortment are important contributors to the standing genetic variation of RNA viruses and are often involved in the genesis of new, emerging viruses. This study explored the role played by these two processes in the evolutionary radiation of the plant virus family Bromoviridae. The evolutionary history of this family has been explored previously using standard molecular phylogenetic methods, but incongruences have been found among the trees inferred from different gene sequences. This would not be surprising if RNA exchange was a common event, as it is well known that recombination and reassortment of genomes are poorly described by standard phylogenetic methods. In an attempt to reconcile these discrepancies, this study first explored the extent of segment reassortment and found that it was common at the origin of the bromoviruses and cucumoviruses and at least at the origin of alfalfa mosaic virus, American plum line pattern virus and citrus leaf rugose virus. Secondly, recombination analyses were performed on each of the three genomic RNAs and it was found that recombination was very common in members of the genera Bromovirus, Cucumovirus and Ilarvirus. Several cases of recombination involving species from different genera were also identified. Finally, a phylogenetic network was constructed reflecting these genetic exchanges. The network confirmed the taxonomic status of the different genera within the family, despite the phylogenetic noise introduced by genetic exchange.

  6. Evolutionary History, Immigration History, and the Extent of Diversification in Community Assembly

    PubMed Central

    Knope, Matthew L.; Forde, Samantha E.; Fukami, Tadashi

    2012-01-01

    During community assembly, species may accumulate not only by immigration, but also by in situ diversification. Diversification has intrigued biologists because its extent varies even among closely related lineages under similar ecological conditions. Recent research has suggested that some of this puzzling variation may be caused by stochastic differences in the history of immigration (relative timing and order of immigration by founding populations), indicating that immigration and diversification may affect community assembly interactively. However, the conditions under which immigration history affects diversification remain unclear. Here we propose the hypothesis that whether or not immigration history influences the extent of diversification depends on the founding populations’ prior evolutionary history, using evidence from a bacterial experiment. To create genotypes with different evolutionary histories, replicate populations of Pseudomonas fluorescens were allowed to adapt to a novel environment for a short or long period of time (approximately 10 or 100 bacterial generations) with or without exploiters (viral parasites). Each evolved genotype was then introduced to a new habitat either before or after a standard competitor genotype. Most genotypes diversified to a greater extent when introduced before, rather than after, the competitor. However, introduction order did not affect the extent of diversification when the evolved genotype had previously adapted to the environment for a long period of time without exploiters. Diversification of these populations was low regardless of introduction order. These results suggest that the importance of immigration history in diversification can be predicted by the immigrants’ evolutionary past. The hypothesis proposed here may be generally applicable in both micro- and macro-organisms. PMID:22291685

  7. Evolutionary history of the chitin synthases of eukaryotes.

    PubMed

    Morozov, Alexey A; Likhoshway, Yelena V

    2016-06-01

    Chitin synthases are widespread among eukaryotes and known to have a complex evolutionary history in some of the groups. We have reconstructed the chitin synthase phylogeny using the most taxonomically comprehensive dataset currently available and have shown the presence of independently formed paralogous groups in oomycetes, ciliates, fungi, and all diatoms except raphid pennates. There were also two cases of horizontal gene transfer (HGT): transfer from fungus to early diatoms gave rise to diatom paralogous group, while transfer from raphid pennate diatom to Acantamoeba ancestor is, to our knowledge, restricted to a single gene in amoeba. Early evolution of chitin synthases is heavily obscured by paralogy, and further sequencing effort is necessary. PMID:26887391

  8. On the Origin and Evolutionary History of NANOG

    PubMed Central

    Vivien, Céline; Kodjabachian, Laurent; Demeneix, Barbara; Coen, Laurent; Girardot, Fabrice

    2014-01-01

    Though pluripotency is well characterized in mammals, many questions remain to be resolved regarding its evolutionary history. A necessary prerequisite for addressing this issue is to determine the phylogenetic distributions and orthology relationships of the transcription factor families sustaining or modulating this property. In mammals, the NANOG homeodomain transcription factor is one of the core players in the pluripotency network. However, its evolutionary history has not been thoroughly studied, hindering the interpretation of comparative studies. To date, the NANOG family was thought to be monogenic, with numerous pseudogenes described in mammals, including a tandem duplicate in Hominidae. By examining a wide-array of craniate genomes, we provide evidence that the NANOG family arose at the latest in the most recent common ancestor of osteichthyans and that NANOG genes are frequently found as tandem duplicates in sarcopterygians and as a single gene in actinopterygians. Their phylogenetic distribution is thus reminiscent of that recently shown for Class V POU paralogues, another key family of pluripotency-controlling factors. However, while a single ancestral duplication has been reported for the Class V POU family, we suggest that multiple independent duplication events took place during evolution of the NANOG family. These multiple duplications could have contributed to create a layer of complexity in the control of cell competence and pluripotency, which could explain the discrepancies relative to the functional evolution of this important gene family. Further, our analysis does not support the hypothesis that loss of NANOG and emergence of the preformation mode of primordial germ cell specification are causally linked. Our study therefore argues for the need of further functional comparisons between NANOG paralogues, notably regarding the novel duplicates identified in sauropsids and non-eutherian mammals. PMID:24465486

  9. Physalis and physaloids: A recent and complex evolutionary history.

    PubMed

    Zamora-Tavares, María Del Pilar; Martínez, Mahinda; Magallón, Susana; Guzmán-Dávalos, Laura; Vargas-Ponce, Ofelia

    2016-07-01

    The complex evolutionary history of the subtribe Physalinae is reflected in the poor resolution of the relationships of Physalis and the physaloid genera. We hypothesize that this low resolution is caused by recent evolutionary history in a complex geographic setting. The aims of this study were twofold: (1) To determine the phylogenetic relationships of the current genera recognized in Physalinae in order to identify monophyletic groups and resolve the physaloid grade; and (2) to determine the probable causes of the recent divergence in Physalinae. We conducted phylogenetic analyses with maximum likelihood (ML) and Bayesian inference with 50 Physalinae species and 19 others as outgroups, using morphological and molecular data from five plastid and two nuclear regions. A relaxed molecular clock was obtained from the ML topology and ancestral area reconstruction was conducted using the DEC model. The genera Chamaesaracha, Leucophysalis, and Physalis subgenus Rydbergis were recovered as monophyletic. Three clades, Alkekengi-Calliphysalis, Schraderanthus-Tzeltalia, and Witheringia-Brachistus, also received good support. However, even with morphological data and that of the DNA of seven regions, the tree was not completely resolved and many clades remained unsupported. Physalinae diverged at the end of the Miocene (∼9.22Mya) with one trend indicating that the greatest diversification within the subtribe occurred during the last 5My. The Neotropical region presented the highest probability (45%) of being the ancestral area of Physalinae followed by the Mexican Transition Zone (35%). During the Pliocene and Pleistocene, the geographical areas where species were found experienced significant geological and climatic changes, giving rise to rapid and relatively recent diversification events in Physalinae. Thus, recent origin, high diversification, and morphological complexity have contributed, at least with the currently available methods, to the inability to completely

  10. Using evolutionary demography to link life history theory, quantitative genetics and population ecology

    PubMed Central

    Coulson, Tim; Tuljapurkar, Shripad; Childs, Dylan Z

    2010-01-01

    1. There is a growing number of empirical reports of environmental change simultaneously influencing population dynamics, life history and quantitative characters. We do not have a well-developed understanding of links between the dynamics of these quantities. 2. Insight into the joint dynamics of populations, quantitative characters and life history can be gained by deriving a model that allows the calculation of fundamental quantities that underpin population ecology, evolutionary biology and life history. The parameterization and analysis of such a model for a specific system can be used to predict how a population will respond to environmental change. 3. Age-stage-structured models can be constructed from character-demography associations that describe age-specific relationships between the character and: (i) survival; (ii) fertility; (iii) ontogenetic development of the character among survivors; and (iv) the distribution of reproductive allocation. 4. These models can be used to calculate a wide range of useful biological quantities including population growth and structure; terms in the Price equation including selection differentials; estimates of biometric heritabilities; and life history descriptors including generation time. We showcase the method through parameterization of a model using data from a well-studied population of Soay sheep Ovis aries. 5. Perturbation analysis is used to investigate how the quantities listed in summary point 4 change as each parameter in each character-demography function is altered. 6. A wide range of joint dynamics of life history, quantitative characters and population growth can be generated in response to changes in different character-demography associations; we argue this explains the diversity of observations on the consequences of environmental change from studies of free-living populations. 7. The approach we describe has the potential to explain within and between species patterns in quantitative characters, life

  11. Evolutionary History of Hunter-Gatherer Marriage Practices

    PubMed Central

    Walker, Robert S.; Hill, Kim R.; Flinn, Mark V.; Ellsworth, Ryan M.

    2011-01-01

    Background The universality of marriage in human societies around the world suggests a deep evolutionary history of institutionalized pair-bonding that stems back at least to early modern humans. However, marriage practices vary considerably from culture to culture, ranging from strict prescriptions and arranged marriages in some societies to mostly unregulated courtship in others, presence to absence of brideservice and brideprice, and polyandrous to polygynous unions. The ancestral state of early human marriage is not well known given the lack of conclusive archaeological evidence. Methodology Comparative phylogenetic analyses using data from contemporary hunter-gatherers around the world may allow for the reconstruction of ancestral human cultural traits. We attempt to reconstruct ancestral marriage practices using hunter-gatherer phylogenies based on mitochondrial DNA sequences. Results Arranged marriages are inferred to go back at least to first modern human migrations out of Africa. Reconstructions are equivocal on whether or not earlier human marriages were arranged because several African hunter-gatherers have courtship marriages. Phylogenetic reconstructions suggest that marriages in early ancestral human societies probably had low levels of polygyny (low reproductive skew) and reciprocal exchanges between the families of marital partners (i.e., brideservice or brideprice). Discussion Phylogenetic results suggest a deep history of regulated exchange of mates and resources among lineages that enhanced the complexity of human meta-group social structure with coalitions and alliances spanning across multiple residential communities. PMID:21556360

  12. An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction

    PubMed Central

    Susanti, Dwi; Mukhopadhyay, Biswarup

    2012-01-01

    Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe4-S4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe4-S4] cluster and an additional [Fe4-S4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe4-S4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit. PMID:23028926

  13. Evolutionary History of the Plant Pathogenic Bacterium Xanthomonas axonopodis

    PubMed Central

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Saux, Marion Fischer-Le; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes – geographical and ecological speciation – that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25 000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  14. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    PubMed

    Mhedbi-Hajri, Nadia; Hajri, Ahmed; Boureau, Tristan; Darrasse, Armelle; Durand, Karine; Brin, Chrystelle; Fischer-Le Saux, Marion; Manceau, Charles; Poussier, Stéphane; Pruvost, Olivier; Lemaire, Christophe; Jacques, Marie-Agnès

    2013-01-01

    Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar. PMID:23505513

  15. Evolutionary History and Genome Organization of DUF1220 Protein Domains

    PubMed Central

    O’Bleness, Majesta S.; Dickens, C. Michael; Dumas, Laura J.; Kehrer-Sawatzki, Hildegard; Wyckoff, Gerald J.; Sikela, James M.

    2012-01-01

    DUF1220 protein domains exhibit the most extreme human lineage–specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21‐associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ∼28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C‐band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage. PMID:22973535

  16. Evolutionary history and genome organization of DUF1220 protein domains.

    PubMed

    O'Bleness, Majesta S; Dickens, C Michael; Dumas, Laura J; Kehrer-Sawatzki, Hildegard; Wyckoff, Gerald J; Sikela, James M

    2012-09-01

    DUF1220 protein domains exhibit the most extreme human lineage-specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21-associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ~28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C-band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage. PMID:22973535

  17. The evolutionary history of kinetoplastids and their kinetoplasts.

    PubMed

    Simpson, Alastair G B; Lukes, Julius; Roger, Andrew J

    2002-12-01

    Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further

  18. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms.

    PubMed

    Groussman, Ryan D; Parker, Micaela S; Armbrust, E Virginia

    2015-01-01

    Ferroproteins arose early in Earth's history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world's oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  19. Diversity and Evolutionary History of Iron Metabolism Genes in Diatoms

    PubMed Central

    Groussman, Ryan D.; Parker, Micaela S.; Armbrust, E. Virginia

    2015-01-01

    Ferroproteins arose early in Earth’s history, prior to the emergence of oxygenic photosynthesis and the subsequent reduction of bioavailable iron. Today, iron availability limits primary productivity in about 30% of the world’s oceans. Diatoms, responsible for nearly half of oceanic primary production, have evolved molecular strategies for coping with variable iron concentrations. Our understanding of the evolutionary breadth of these strategies has been restricted by the limited number of species for which molecular sequence data is available. To uncover the diversity of strategies marine diatoms employ to meet cellular iron demands, we analyzed 367 newly released marine microbial eukaryotic transcriptomes, which include 47 diatom species. We focused on genes encoding proteins previously identified as having a role in iron management: iron uptake (high-affinity ferric reductase, multi-copper oxidase, and Fe(III) permease); iron storage (ferritin); iron-induced protein substitutions (flavodoxin/ferredoxin, and plastocyanin/cytochrome c6) and defense against reactive oxygen species (superoxide dismutases). Homologs encoding the high-affinity iron uptake system components were detected across the four diatom Classes suggesting an ancient origin for this pathway. Ferritin transcripts were also detected in all Classes, revealing a more widespread utilization of ferritin throughout diatoms than previously recognized. Flavodoxin and plastocyanin transcripts indicate possible alternative redox metal strategies. Predicted localization signals for ferredoxin identify multiple examples of gene transfer from the plastid to the nuclear genome. Transcripts encoding four superoxide dismutase metalloforms were detected, including a putative nickel-coordinating isozyme. Taken together, our results suggest that the majority of iron metabolism genes in diatoms appear to be vertically inherited with functional diversity achieved via possible neofunctionalization of paralogs. This

  20. Ribosome dynamics and the evolutionary history of ribosomes

    NASA Astrophysics Data System (ADS)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  1. Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae).

    PubMed

    Bologna, Marco A; Oliverio, Marco; Pitzalis, Monica; Mariottini, Paolo

    2008-08-01

    Meloid beetles are well characterised by both morphological and biological features. Previous phylogenetic hypotheses based on morphological characters assumed the repeated parallel evolution of complex biological novelties. In this work relationships among several taxa of the four subfamilies and almost all tribes representing meloid diversity are examined by using mitochondrial (16S) and nuclear (ITS2) DNA sequences, in 25 genera (using Anthicidae as outgroup). Secondary structure of 16S and ITS2 rRNAs were modelled. ITS2 structure represents a synapomorphic condition for the family and informative characters at the tribal level. Phylogenetic hypotheses based on separate and combined analysis of the 16S and ITS2 rDNA sequences, and morpho-biological characters were tested, and compared with previous morphological classifications. Molecular dating allowed an outline of the main steps of the evolutionary history of Meloidae, which evolved during Early Cretaceous and then radiated considerably with the adoption of hypermetaboly and parasitic behaviour, and with repeated, parallel evolution of larval phoresy on its hosts.

  2. Natural history and evolutionary principles of gene duplication in fungi.

    PubMed

    Wapinski, Ilan; Pfeffer, Avi; Friedman, Nir; Regev, Aviv

    2007-09-01

    Gene duplication and loss is a powerful source of functional innovation. However, the general principles that govern this process are still largely unknown. With the growing number of sequenced genomes, it is now possible to examine these events in a comprehensive and unbiased manner. Here, we develop a procedure that resolves the evolutionary history of all genes in a large group of species. We apply our procedure to seventeen fungal genomes to create a genome-wide catalogue of gene trees that determine precise orthology and paralogy relations across these species. We show that gene duplication and loss is highly constrained by the functional properties and interacting partners of genes. In particular, stress-related genes exhibit many duplications and losses, whereas growth-related genes show selection against such changes. Whole-genome duplication circumvents this constraint and relaxes the dichotomy, resulting in an expanded functional scope of gene duplication. By characterizing the functional fate of duplicate genes we show that duplicated genes rarely diverge with respect to biochemical function, but typically diverge with respect to regulatory control. Surprisingly, paralogous modules of genes rarely arise, even after whole-genome duplication. Rather, gene duplication may drive the modularization of functional networks through specialization, thereby disentangling cellular systems.

  3. The evolutionary history of cetacean brain and body size.

    PubMed

    Montgomery, Stephen H; Geisler, Jonathan H; McGowen, Michael R; Fox, Charlotte; Marino, Lori; Gatesy, John

    2013-11-01

    Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved. Cetaceans are remarkably diverse, varying in both phenotypes by several orders of magnitude, with notable differences between the two extant suborders, Mysticeti and Odontoceti. We analyzed the evolutionary history of brain and body mass, and relative brain size measured by the encephalization quotient (EQ), using a data set of extinct and extant taxa to capture temporal variation in the mode and direction of evolution. Our results suggest that cetacean brain and body mass evolved under strong directional trends to increase through time, but decreases in EQ were widespread. Mysticetes have significantly lower EQs than odontocetes due to a shift in brain:body allometry following the divergence of the suborders, caused by rapid increases in body mass in Mysticeti and a period of body mass reduction in Odontoceti. The pattern in Cetacea contrasts with that in primates, which experienced strong trends to increase brain mass and relative brain size, but not body mass. We discuss what these analyses reveal about the convergent evolution of large brains, and highlight that until recently the most encephalized mammals were odontocetes, not primates. PMID:24152011

  4. Evolutionary history of LTR retrotransposon chromodomains in plants.

    PubMed

    Novikov, Anton; Smyshlyaev, Georgiy; Novikova, Olga

    2012-01-01

    Chromodomain-containing LTR retrotransposons are one of the most successful groups of mobile elements in plant genomes. Previously, we demonstrated that two types of chromodomains (CHDs) are carried by plant LTR retrotransposons. Chromodomains from group I (CHD_I) were detected only in Tcn1-like LTR retrotransposons from nonseed plants such as mosses (including the model moss species Physcomitrella) and lycophytes (the Selaginella species). LTR retrotransposon chromodomains from group II (CHD_II) have been described from a wide range of higher plants. In the present study, we performed computer-based mining of plant LTR retrotransposon CHDs from diverse plants with an emphasis on spike-moss Selaginella. Our extended comparative and phylogenetic analysis demonstrated that two types of CHDs are present only in the Selaginella genome, which puts this species in a unique position among plants. It appears that a transition from CHD_I to CHD_II and further diversification occurred in the evolutionary history of plant LTR retrotransposons at approximately 400 MYA and most probably was associated with the evolution of chromatin organization. PMID:22611377

  5. The evolutionary history of cetacean brain and body size.

    PubMed

    Montgomery, Stephen H; Geisler, Jonathan H; McGowen, Michael R; Fox, Charlotte; Marino, Lori; Gatesy, John

    2013-11-01

    Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved. Cetaceans are remarkably diverse, varying in both phenotypes by several orders of magnitude, with notable differences between the two extant suborders, Mysticeti and Odontoceti. We analyzed the evolutionary history of brain and body mass, and relative brain size measured by the encephalization quotient (EQ), using a data set of extinct and extant taxa to capture temporal variation in the mode and direction of evolution. Our results suggest that cetacean brain and body mass evolved under strong directional trends to increase through time, but decreases in EQ were widespread. Mysticetes have significantly lower EQs than odontocetes due to a shift in brain:body allometry following the divergence of the suborders, caused by rapid increases in body mass in Mysticeti and a period of body mass reduction in Odontoceti. The pattern in Cetacea contrasts with that in primates, which experienced strong trends to increase brain mass and relative brain size, but not body mass. We discuss what these analyses reveal about the convergent evolution of large brains, and highlight that until recently the most encephalized mammals were odontocetes, not primates.

  6. Incorporating evolutionary history into conservation planning in biodiversity hotspots

    PubMed Central

    Buerki, Sven; Callmander, Martin W.; Bachman, Steven; Moat, Justin; Labat, Jean-Noël; Forest, Félix

    2015-01-01

    There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar. PMID:25561675

  7. Evolutionary history of the ABCB2 genomic region in teleosts

    USGS Publications Warehouse

    Palti, Y.; Rodriguez, M.F.; Gahr, S.A.; Hansen, J.D.

    2007-01-01

    Gene duplication, silencing and translocation have all been implicated in shaping the unique genomic architecture of the teleost MH regions. Previously, we demonstrated that trout possess five unlinked regions encoding MH genes. One of these regions harbors ABCB2 which in all other vertebrate classes is found in the MHC class II region. In this study, we sequenced a BAC contig for the trout ABCB2 region. Analysis of this region revealed the presence of genes homologous to those located in the human class II (ABCB2, BRD2, ??DAA), extended class II (RGL2, PHF1, SYGP1) and class III (PBX2, Notch-L) regions. The organization and syntenic relationships of this region were then compared to similar regions in humans, Tetraodon and zebrafish to learn more about the evolutionary history of this region. Our analysis indicates that this region was generated during the teleost-specific duplication event while also providing insight about potential MH paralogous regions in teleosts. ?? 2006 Elsevier Ltd. All rights reserved.

  8. Incorporating evolutionary history into conservation planning in biodiversity hotspots.

    PubMed

    Buerki, Sven; Callmander, Martin W; Bachman, Steven; Moat, Justin; Labat, Jean-Noël; Forest, Félix

    2015-02-19

    There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar.

  9. Evolutionary history of nematodes associated with sweat bees.

    PubMed

    McFrederick, Quinn S; Taylor, Douglas R

    2013-03-01

    Organisms that live in close association with other organisms make up a large part of the world's diversity. One driver of this diversity is the evolution of host-species specificity, which can occur via reproductive isolation following a host-switch or, given the correct circumstances, via cospeciation. In this study, we explored the diversity and evolutionary history of Acrostichus nematodes that are associated with halictid bees in North America. First, we conducted surveys of bees in Virginia, and found six halictid species that host Acrostichus. To test the hypothesis of cospeciation, we constructed phylogenetic hypotheses of Acrostichus based on three genes. We found Acrostichus puri and Acrostichus halicti to be species complexes comprising cryptic, host-specific species. Although several nodes in the host and symbiont phylogenies were congruent and tests for cospeciation were significant, the host's biogeography, the apparent patchiness of the association across the host's phylogeny, and the amount of evolution in the nematode sequence suggested a mixture of cospeciation, host switching, and extinction events instead of strict cospeciation. Cospeciation can explain the relationships between Ac. puri and its augochlorine hosts, but colonization of Halictus hosts is more likely than cospeciation. The nematodes are vertically transmitted, but sexual transmission is also likely. Both of these transmission modes may explain host-species specificity and congruent bee and nematode phylogenies. Additionally, all halictid hosts come from eusocial or socially polymorphic lineages, suggesting that sociality may be a factor in the suitability of hosts for Acrostichus.

  10. Do miRNAs have a deep evolutionary history?

    PubMed

    Tarver, James E; Donoghue, Philip C J; Peterson, Kevin J

    2012-10-01

    The recent discovery of microRNAs (miRNAs) in unicellular eukaryotes, including miRNAs known previously only from animals or plants, implies that miRNAs have a deep evolutionary history among eukaryotes. This contrasts with the prevailing view that miRNAs evolved convergently in animals and plants. We re-evaluate the evidence and find that none of the 73 plant and animal miRNAs described from protists meet the required criteria for miRNA annotation and, by implication, animals and plants did not acquire any of their respective miRNA genes from the crown ancestor of eukaryotes. Furthermore, of the 159 novel miRNAs previously identified among the seven species of unicellular protists examined, only 28 from the algae Ectocarpus and Chlamydomonas, meet the criteria for miRNA annotation. Therefore, at present only five groups of eukaryotes are known to possess miRNAs, indicating that miRNAs have evolved independently within eukaryotes through exaptation of their shared inherited RNAi machinery.

  11. Incorporating evolutionary history into conservation planning in biodiversity hotspots.

    PubMed

    Buerki, Sven; Callmander, Martin W; Bachman, Steven; Moat, Justin; Labat, Jean-Noël; Forest, Félix

    2015-02-19

    There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar. PMID:25561675

  12. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-02-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  13. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    PubMed Central

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-01-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work. PMID:26830019

  14. Phylogeny and evolutionary history of the blister beetles (Coleoptera, Meloidae).

    PubMed

    Bologna, Marco A; Oliverio, Marco; Pitzalis, Monica; Mariottini, Paolo

    2008-08-01

    Meloid beetles are well characterised by both morphological and biological features. Previous phylogenetic hypotheses based on morphological characters assumed the repeated parallel evolution of complex biological novelties. In this work relationships among several taxa of the four subfamilies and almost all tribes representing meloid diversity are examined by using mitochondrial (16S) and nuclear (ITS2) DNA sequences, in 25 genera (using Anthicidae as outgroup). Secondary structure of 16S and ITS2 rRNAs were modelled. ITS2 structure represents a synapomorphic condition for the family and informative characters at the tribal level. Phylogenetic hypotheses based on separate and combined analysis of the 16S and ITS2 rDNA sequences, and morpho-biological characters were tested, and compared with previous morphological classifications. Molecular dating allowed an outline of the main steps of the evolutionary history of Meloidae, which evolved during Early Cretaceous and then radiated considerably with the adoption of hypermetaboly and parasitic behaviour, and with repeated, parallel evolution of larval phoresy on its hosts. PMID:18514547

  15. Mannosylglycerate: structural analysis of biosynthesis and evolutionary history.

    PubMed

    Borges, Nuno; Jorge, Carla D; Gonçalves, Luís G; Gonçalves, Susana; Matias, Pedro M; Santos, Helena

    2014-09-01

    Halophilic and halotolerant microorganisms adapted to thrive in hot environments accumulate compatible solutes that usually have a negative charge either associated with a carboxylic group or a phosphodiester unit. Mannosylglycerate (MG) has been detected in several members of (hyper)thermophilic bacteria and archaea, in which it responds primarily to osmotic stress. The outstanding ability of MG to stabilize protein structure in vitro as well as in vivo has been convincingly demonstrated. These findings led to an increasingly supported link between MG and microbial adaptation to high temperature. However, the accumulation of MG in many red algae has been known for a long time, and the peculiar distribution of MG in such distant lineages was intriguing. Knowledge on the biosynthetic machinery together with the rapid expansion of genome databases allowed for structural and phylogenetic analyses and provided insight into the distribution of MG. The two pathways for MG synthesis have distinct evolutionary histories and physiological roles: in red algae MG is synthesised exclusively via the single-step pathway and most probably is unrelated with stress protection. In contrast, the two-step pathway is strongly associated with osmoadaptation in (hyper)thermophilic prokaryotes. The phylogenetic analysis of the two-step pathway also reveals a second cluster composed of fungi and mesophilic bacteria, but MG has not been demonstrated in members of this cluster; we propose that the synthase is part of a more complex pathway directed at the synthesis of yet unknown molecules containing the mannosyl-glyceryl unit.

  16. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective

    PubMed Central

    2010-01-01

    Background The teleost order Lophiiformes, commonly known as the anglerfishes, contains a diverse array of marine fishes, ranging from benthic shallow-water dwellers to highly modified deep-sea midwater species. They comprise 321 living species placed in 68 genera, 18 families and 5 suborders, but approximately half of the species diversity is occupied by deep-sea ceratioids distributed among 11 families. The evolutionary origins of such remarkable habitat and species diversity, however, remain elusive because of the lack of fresh material for a majority of the deep-sea ceratioids and incompleteness of the fossil record across all of the Lophiiformes. To obtain a comprehensive picture of the phylogeny and evolutionary history of the anglerfishes, we assembled whole mitochondrial genome (mitogenome) sequences from 39 lophiiforms (33 newly determined during this study) representing all five suborders and 17 of the 18 families. Sequences of 77 higher teleosts including the 39 lophiiform sequences were unambiguously aligned and subjected to phylogenetic analysis and divergence time estimation. Results Partitioned maximum likelihood analysis confidently recovered monophyly for all of the higher taxa (including the order itself) with the exception of the Thaumatichthyidae (Lasiognathus was deeply nested within the Oneirodidae). The mitogenomic trees strongly support the most basal and an apical position of the Lophioidei and a clade comprising Chaunacoidei + Ceratioidei, respectively, although alternative phylogenetic positions of the remaining two suborders (Antennarioidei and Ogcocephaloidei) with respect to the above two lineages are statistically indistinguishable. While morphology-based intra-subordinal relationships for relatively shallow, benthic dwellers (Lophioidei, Antennarioidei, Ogcocephaloidei, Chaunacoidei) are either congruent with or statistically indistinguishable from the present mitogenomic tree, those of the principally deep-sea midwater dwellers

  17. [The history of development of evolutionary methods in St. Petersburg school of computer simulation in biology].

    PubMed

    Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F

    2010-01-01

    The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.

  18. The evolutionary origin and population history of the grauer gorilla.

    PubMed

    Tocheri, Matthew W; Dommain, René; McFarlin, Shannon C; Burnett, Scott E; Troy Case, D; Orr, Caley M; Roach, Neil T; Villmoare, Brian; Eriksen, Amandine B; Kalthoff, Daniela C; Senck, Sascha; Assefa, Zelalem; Groves, Colin P; Jungers, William L

    2016-01-01

    Gorillas living in western central Africa (Gorilla gorilla) are morphologically and genetically distinguishable from those living in eastern central Africa (Gorilla beringei). Genomic analyses show eastern gorillas experienced a significant reduction in population size during the Pleistocene subsequent to geographical isolation from their western counterparts. However, how these results relate more specifically to the recent biogeographical and evolutionary history of eastern gorillas remains poorly understood. Here we show that two rare morphological traits are present in the hands and feet of both eastern gorilla subspecies at strikingly high frequencies (>60% in G. b. graueri; ∼28% in G. b. beringei) in comparison with western gorillas (<1%). The intrageneric distribution of these rare traits suggests that they became common among eastern gorillas after diverging from their western relatives during the early to middle Pleistocene. The extremely high frequencies observed among grauer gorillas-which currently occupy a geographic range more than ten times the size of that of mountain gorillas-imply that grauers originated relatively recently from a small founding population of eastern gorillas. Current paleoenvironmental, geological, and biogeographical evidence supports the hypothesis that a small group of eastern gorillas likely dispersed westward from the Virungas into present-day grauer range in the highlands just north of Lake Kivu, either immediately before or directly after the Younger Dryas interval. We propose that as the lowland forests of central Africa expanded rapidly during the early Holocene, they became connected with the expanding highland forests along the Albertine Rift and enabled the descendants of this small group to widely disperse. The descendant populations significantly expanded their geographic range and population numbers relative to the gorillas of the Virunga Mountains and the Bwindi-Impenetrable Forest, ultimately resulting in the

  19. New insights into the evolutionary history of biological nitrogen fixation.

    PubMed

    Boyd, Eric S; Peters, John W

    2013-01-01

    Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3), accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of biological N2 fixation. One key question is whether the limited availability of fixed nitrogen was a factor in life's origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth's biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained through phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex life sustaining process.

  20. The evolutionary origin and population history of the grauer gorilla.

    PubMed

    Tocheri, Matthew W; Dommain, René; McFarlin, Shannon C; Burnett, Scott E; Troy Case, D; Orr, Caley M; Roach, Neil T; Villmoare, Brian; Eriksen, Amandine B; Kalthoff, Daniela C; Senck, Sascha; Assefa, Zelalem; Groves, Colin P; Jungers, William L

    2016-01-01

    Gorillas living in western central Africa (Gorilla gorilla) are morphologically and genetically distinguishable from those living in eastern central Africa (Gorilla beringei). Genomic analyses show eastern gorillas experienced a significant reduction in population size during the Pleistocene subsequent to geographical isolation from their western counterparts. However, how these results relate more specifically to the recent biogeographical and evolutionary history of eastern gorillas remains poorly understood. Here we show that two rare morphological traits are present in the hands and feet of both eastern gorilla subspecies at strikingly high frequencies (>60% in G. b. graueri; ∼28% in G. b. beringei) in comparison with western gorillas (<1%). The intrageneric distribution of these rare traits suggests that they became common among eastern gorillas after diverging from their western relatives during the early to middle Pleistocene. The extremely high frequencies observed among grauer gorillas-which currently occupy a geographic range more than ten times the size of that of mountain gorillas-imply that grauers originated relatively recently from a small founding population of eastern gorillas. Current paleoenvironmental, geological, and biogeographical evidence supports the hypothesis that a small group of eastern gorillas likely dispersed westward from the Virungas into present-day grauer range in the highlands just north of Lake Kivu, either immediately before or directly after the Younger Dryas interval. We propose that as the lowland forests of central Africa expanded rapidly during the early Holocene, they became connected with the expanding highland forests along the Albertine Rift and enabled the descendants of this small group to widely disperse. The descendant populations significantly expanded their geographic range and population numbers relative to the gorillas of the Virunga Mountains and the Bwindi-Impenetrable Forest, ultimately resulting in the

  1. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  2. Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection.

    PubMed

    Queller, David C

    2014-05-19

    Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher's fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels.

  3. Joint phenotypes, evolutionary conflict and the fundamental theorem of natural selection

    PubMed Central

    Queller, David C.

    2014-01-01

    Multiple organisms can sometimes affect a common phenotype. For example, the portion of a leaf eaten by an insect is a joint phenotype of the plant and insect and the amount of food obtained by an offspring can be a joint trait with its mother. Here, I describe the evolution of joint phenotypes in quantitative genetic terms. A joint phenotype for multiple species evolves as the sum of additive genetic variances in each species, weighted by the selection on each species. Selective conflict between the interactants occurs when selection takes opposite signs on the joint phenotype. The mean fitness of a population changes not just through its own genetic variance but also through the genetic variance for its fitness that resides in other species, an update of Fisher's fundamental theorem of natural selection. Some similar results, using inclusive fitness, apply to within-species interactions. The models provide a framework for understanding evolutionary conflicts at all levels. PMID:24686940

  4. Human evolutionary history and contemporary evolutionary theory provide insight when assessing cultural group selection.

    PubMed

    Fuentes, Agustin; Kissel, Marc

    2016-01-01

    Richerson et al. provide a much needed roadmap for assessing cultural group selection (CGS) theory and for applying it to understanding variation between contemporary human groups. However, the current proposal lacks connection to relevant evidence from the human evolutionary record and requires a better integration with contemporary evolutionary theory. The article also misapplies the F st statistic. PMID:27562510

  5. Backbones of evolutionary history test biodiversity theory for microbes.

    PubMed

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-01

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.

  6. The evolutionary history of vertebrate cranial placodes--I: cell type evolution.

    PubMed

    Patthey, Cedric; Schlosser, Gerhard; Shimeld, Sebastian M

    2014-05-01

    Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.

  7. Phylogeography and evolutionary history of rodent-borne hantaviruses.

    PubMed

    Souza, W M; Bello, G; Amarilla, A A; Alfonso, H L; Aquino, V H; Figueiredo, L T M

    2014-01-01

    Hantavirus (Family Bunyaviridae) are mostly associated to rodents and transmitted to man by inhalation of aerosolized infected excreta of these animals. The human infection by hantaviruses can lead to severe diseases such as hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe, and pulmonary syndrome (HPS) in the Americas. To determine the origin, spreading and evolutionary dynamics of rodent-borne hantaviruses, 190 sequences of nucleoprotein (N) of hantaviruses identified in 30 countries, from 1985 to 2010, were retrieved from the GenBank and analyzed using the BEAST program. Our evolutionary analysis indicates that current genetic diversity of N gene of rodent-borne hantaviruses probably was originated around 2000 years ago. Hantavirus harbored by Murinae and Arvicolinae subfamilies, probably, were originated in Asia 500-700 years ago and later spread toward Siberia, Europe, Africa and North America. Hantavirus carried by Neotominae subfamily, probably, emerged 500-600 years ago in Central America and spread toward North America. Finally, hantaviruses associated to Sigmodontinae occurred in Brazil 400 years ago and were, probably, originated from Neotominae-associated virus from northern South America. These data offer subsidies to understand the time-scale and worldwide dissemination dynamics of rodent-borne hantaviruses.

  8. The evolutionary history of lethal metastatic prostate cancer.

    PubMed

    Gundem, Gunes; Van Loo, Peter; Kremeyer, Barbara; Alexandrov, Ludmil B; Tubio, Jose M C; Papaemmanuil, Elli; Brewer, Daniel S; Kallio, Heini M L; Högnäs, Gunilla; Annala, Matti; Kivinummi, Kati; Goody, Victoria; Latimer, Calli; O'Meara, Sarah; Dawson, Kevin J; Isaacs, William; Emmert-Buck, Michael R; Nykter, Matti; Foster, Christopher; Kote-Jarai, Zsofia; Easton, Douglas; Whitaker, Hayley C; Neal, David E; Cooper, Colin S; Eeles, Rosalind A; Visakorpi, Tapio; Campbell, Peter J; McDermott, Ultan; Wedge, David C; Bova, G Steven

    2015-04-16

    Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer. PMID:25830880

  9. Human mutations in glucose 6-phosphate dehydrogenase reflect evolutionary history.

    PubMed

    Notaro, R; Afolayan, A; Luzzatto, L

    2000-03-01

    Glucose 6-phosphate dehydrogenase (G6PD) is a cytosolic enzyme encoded by a housekeeping X-linked gene whose main function is to produce NADPH, a key electron donor in the defense against oxidizing agents and in reductive biosynthetic reactions. Inherited G6PD deficiency is associated with either episodic hemolytic anemia (triggered by fava beans or other agents) or life-long hemolytic anemia. We show here that an evolutionary analysis is a key to understanding the biology of a housekeeping gene. From the alignment of the amino acid (aa) sequence of 52 glucose 6-phosphate dehydrogenase (G6PD) species from 42 different organisms, we found a striking correlation between the aa replacements that cause G6PD deficiency in humans and the sequence conservation of G6PD: two-thirds of such replacements are in highly and moderately conserved (50-99%) aa; relatively few are in fully conserved aa (where they might be lethal) or in poorly conserved aa, where presumably they simply would not cause G6PD deficiency. This is consistent with the notion that all human mutants have residual enzyme activity and that null mutations are lethal at some stage of development. Comparing the distribution of mutations in a human housekeeping gene with evolutionary conservation is a useful tool for pinpointing amino acid residues important for the stability or the function of the corresponding protein. In view of the current explosive increase in full genome sequencing projects, this tool will become rapidly available for numerous other genes.

  10. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis.

    PubMed

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W; Nakhleh, Luay

    2016-06-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of 'network thinking' and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  11. The Evolutionary History of Lethal Metastatic Prostate Cancer

    PubMed Central

    Gundem, Gunes; Van Loo, Peter; Kremeyer, Barbara; Alexandrov, Ludmil B.; Tubio, Jose M.C.; Papaemmanuil, Elli; Brewer, Daniel S.; Kallio, Heini M.L.; Högnäs, Gunilla; Annala, Matti; Kivinummi, Kati; Goody, Victoria; Latimer, Calli; O’Meara, Sarah; Dawson, Kevin J.; Isaacs, William; Emmert-Buck, Michael R; Nykter, Matti; Kote-Jarai, Zsofia; Whitaker, Hayley C.; Neal, David E.; Cooper, Colin S.; Eeles, Rosalind A.; Visakorpi, Tapio; Campbell, Peter J.

    2015-01-01

    Cancers emerge from an on-going Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour1-4. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths5. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported6-8, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and inter-clonal cooperation between multiple subclones9,10. In this study, we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole genome sequencing, we characterised multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen deprivation therapy in prostate cancer. PMID:25830880

  12. The evolutionary history of TLR4 polymorphisms in Europe.

    PubMed

    Plantinga, Theo S; Ioana, Mihai; Alonso, Santos; Izagirre, Neskuts; Hervella, Montserrat; Joosten, Leo A B; van der Meer, Jos W M; de la Rúa, Concepcion; Netea, Mihai G

    2012-01-01

    Infections exert important evolutionary pressures shaping the human genome, especially on genes involved in host defense. A crucial step for host defense is recognition of pathogens by pattern recognition receptors on innate immune cells, among which Toll-like receptor 4 (TLR4) is one of the best known. Genetic variation in TLR4 (Asp299Gly, Thr399Ile) has been recently described. Haplotype frequencies of these polymorphisms differ among African, Asian and European populations, suggesting evolutionary pressures exerted by local infections. The TLR4 299Gly/399Ile haplotype, characteristic mainly of European populations, has relatively high frequency in the Iberian peninsula. This region is also described as refuge area during the last glacial maximum 20,000 years ago, from which repopulation of Europe took place. We speculate that a genetic bottleneck in the Iberian peninsula could have promoted the increased frequency of this haplotype by genetic drift. This hypothesis is supported by three arguments: (1) the West-East gradient of prevalence in the haplotype among European populations; (2) ancient DNA from Neolithic burials in the Iberian peninsula, dated 6,600-4,500 years before present, confirmed the relatively high frequency of this haplotype in the region, and (3) no functional differences between this haplotype and wild-type TLR4 have been found. In contrast, the disappearance of the 299Gly/399Thr haplotype in Europe is most likely due to negative selection due to sepsis. In conclusion, differences in distribution of TLR4 polymorphisms Asp299Gly and Thr399Ile in European populations are most likely due to a combination of population migration events combined with selection due to sepsis. PMID:21968286

  13. Blindsnake evolutionary tree reveals long history on Gondwana.

    PubMed

    Vidal, Nicolas; Marin, Julie; Morini, Marina; Donnellan, Steve; Branch, William R; Thomas, Richard; Vences, Miguel; Wynn, Addison; Cruaud, Corinne; Hedges, S Blair

    2010-08-23

    Worm-like snakes (scolecophidians) are small, burrowing species with reduced vision. Although largely neglected in vertebrate research, knowledge of their biogeographical history is crucial for evaluating hypotheses of snake origins. We constructed a molecular dataset for scolecophidians with detailed sampling within the largest family, Typhlopidae (blindsnakes). Our results demonstrate that scolecophidians have had a long Gondwanan history, and that their initial diversification followed a vicariant event: the separation of East and West Gondwana approximately 150 Ma. We find that the earliest blindsnake lineages, representing two new families described here, were distributed on the palaeolandmass of India+Madagascar named here as Indigascar. Their later evolution out of Indigascar involved vicariance and several oceanic dispersal events, including a westward transatlantic one, unexpected for burrowing animals. The exceptional diversification of scolecophidians in the Cenozoic was probably linked to a parallel radiation of prey (ants and termites) as well as increased isolation of populations facilitated by their fossorial habits. PMID:20356885

  14. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci.

    PubMed

    Fisher, Amanda E; Hasenstab, Kristen M; Bell, Hester L; Blaine, Ellen; Ingram, Amanda L; Columbus, J Travis

    2016-12-01

    Chloridoideae (chloridoid grasses) are a subfamily of ca. 1700 species with high diversity in arid habitats. Until now, their evolutionary relationships have primarily been studied with DNA sequences from the chloroplast, a maternally inherited organelle. Next-generation sequencing is able to efficiently recover large numbers of nuclear loci that can then be used to estimate the species phylogeny based upon bi-parentally inherited data. We sought to test our chloroplast-based hypotheses of relationships among chloridoid species with 122 nuclear loci generated through targeted-enrichment next-generation sequencing, sometimes referred to as hyb-seq. We targeted putative single-copy housekeeping genes, as well as genes that have been implicated in traits characteristic of, or particularly labile in, chloridoids: e.g., drought and salt tolerance. We recovered ca. 70% of the targeted loci (122 of 177 loci) in all 47 species sequenced using hyb-seq. We then analyzed the nuclear loci with Bayesian and coalescent methods and the resulting phylogeny resolves relationships between the four chloridoid tribes. Several novel findings with this data were: the sister lineage to Chloridoideae is unresolved; Centropodia+Ellisochloa are excluded from Chloridoideae in phylogenetic estimates using a coalescent model; Sporobolus subtilis is more closely related to Eragrostis than to other species of Sporobolus; and Tragus is more closely related to Chloris and relatives than to a lineage of mainly New World species. Relationships in Cynodonteae in the nuclear phylogeny are quite different from chloroplast estimates, but were not robust to changes in the method of phylogenetic analysis. We tested the data signal with several partition schemes, a concatenation analysis, and tests of alternative hypotheses to assess our confidence in this new, nuclear estimate of evolutionary relationships. Our work provides markers and a framework for additional phylogenetic studies that sample more

  15. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci.

    PubMed

    Fisher, Amanda E; Hasenstab, Kristen M; Bell, Hester L; Blaine, Ellen; Ingram, Amanda L; Columbus, J Travis

    2016-12-01

    Chloridoideae (chloridoid grasses) are a subfamily of ca. 1700 species with high diversity in arid habitats. Until now, their evolutionary relationships have primarily been studied with DNA sequences from the chloroplast, a maternally inherited organelle. Next-generation sequencing is able to efficiently recover large numbers of nuclear loci that can then be used to estimate the species phylogeny based upon bi-parentally inherited data. We sought to test our chloroplast-based hypotheses of relationships among chloridoid species with 122 nuclear loci generated through targeted-enrichment next-generation sequencing, sometimes referred to as hyb-seq. We targeted putative single-copy housekeeping genes, as well as genes that have been implicated in traits characteristic of, or particularly labile in, chloridoids: e.g., drought and salt tolerance. We recovered ca. 70% of the targeted loci (122 of 177 loci) in all 47 species sequenced using hyb-seq. We then analyzed the nuclear loci with Bayesian and coalescent methods and the resulting phylogeny resolves relationships between the four chloridoid tribes. Several novel findings with this data were: the sister lineage to Chloridoideae is unresolved; Centropodia+Ellisochloa are excluded from Chloridoideae in phylogenetic estimates using a coalescent model; Sporobolus subtilis is more closely related to Eragrostis than to other species of Sporobolus; and Tragus is more closely related to Chloris and relatives than to a lineage of mainly New World species. Relationships in Cynodonteae in the nuclear phylogeny are quite different from chloroplast estimates, but were not robust to changes in the method of phylogenetic analysis. We tested the data signal with several partition schemes, a concatenation analysis, and tests of alternative hypotheses to assess our confidence in this new, nuclear estimate of evolutionary relationships. Our work provides markers and a framework for additional phylogenetic studies that sample more

  16. Evolutionary history of trihelix family and their functional diversification.

    PubMed

    Qin, Yao; Ma, Xin; Yu, Guanghui; Wang, Qi; Wang, Liang; Kong, Lingrang; Kim, Wook; Wang, Hong Wei

    2014-10-01

    In this study, we carried out an evolutionary, transcriptional, and functional analyses of the trihelix transcription factor family. A total of 319 trihelix members, identified from 11 land plant species, were classified into five clades. The results of phylogeny indicate the binding domains of GT1 and GT2 diverged early in the existence of land plants. Genomic localization revealed that the trihelix family members were highly conserved among cereal species, even though some homeologs generated during the tetraploidy of maize were lost. Three-dimensional structural analyses and an examination of subcellular localization of this family supported the involvement of all five clades in transcriptional regulation. Furthermore, the family members from all clades in sorghum and rice showed a broad and dynamic expression pattern in response to abiotic stresses, indicating regulatory subfunctionalization of their original functions. This finding is further supported by the phenotypes of enhanced tolerance to cold, salt, and drought in transgenic plants overexpressing Sb06g023980 and Sb06g024110. In contrast, few Arobidopsis genes showed inducible expression under abiotic stress conditions, which may indicate a functional shift. Finally, our co-expression analysis points to the involvement of this family in various metabolic processes, implying their further functional divergence. PMID:24864043

  17. Solar Ultraviolet and the Evolutionary History of Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Garcia-Pichel, F.

    1998-06-01

    On the basis of photobiological, evolutionary, paleontological, paleoenvironmental and physiological arguments, a time course for the role of solar ultraviolet radiation (UVR, wavelengths below 400 nm) in the ecology and evolution of cyanobacteria is proposed in which three main periods can be distinguished. An initial stage, before the advent of oxygenic photosynthesis, when high environmental fluxes of UVC (wavelengths below 280 nm) and UVB (280-320 nm) may have depressed the ability of protocyanobacteria to develop large populations or restricted them to UVR refuges. A second stage lasting between 500 and 1500 Ma (million years), started with the appearance of true oxygen-evolving cyanobacteria and the concomitant formation of oxygenated (micro)environments under an oxygen free-atmosphere. In this second stage, the age of UV, the overall importance of UVR must have increased substantially, since the incident fluxes of UVC and UVB remained virtually unchanged, but additionally the UVA portion of the spectrum (320-400 nm) suddenly became biologically injurious and extremely reactive oxygen species must have formed wherever oxygen and UVR spatially coincided. The last period began with the gradual oxygenation of the atmosphere and the formation of the stratospheric ozone shield. The physiological stress due to UVC all but disappeared and the effects of UVB were reduced to a large extent. Evidence in support of this dynamics is drawn from the phylogenetic distribution of biochemical UV-defense mechanisms among cyanobacteria and other microorganisms. The specific physical characteristics of UVR and oxygen exposure in planktonic, sedimentary and terrestrial habitats are used to explore the plausible impact of UVR in each of the periods on the ecological distribution of cyanobacteria.

  18. An evolutionary and life history perspective on human male reproductive senescence.

    PubMed

    Bribiescas, Richard G

    2010-08-01

    Unlike menopause, male reproductive senescence does not involve an acute drop in fertility. Men do, however, manifest distinct changes in somatic and gonadal function with age. Moreover, population variation in male reproductive senescence reveals phenotypic plasticity resulting from environmental, lifestyle, and genetic factors. An evolutionary and life history perspective is vital for understanding male reproductive senescence because aging involves biological constraint as well as adjustments to reproductive strategies and the allocation of somatic resources. An awareness of life history-related tradeoffs between energetic and time constraints is especially useful because biological aspects of male senescence are products of environmental challenges and natural selection. This article reviews the adaptive significance of the evolutionary biology of human male senescence with particular attention to population variation. An evolutionary perspective cannot only shed light on the origins and biology of human male senescence but also provide insights into contemporary issues of male aging and health.

  19. Inferring the evolutionary history of gene clusters from phylogenetic and gene order data.

    PubMed

    Lajoie, Mathieu; Bertrand, Denis; El-Mabrouk, Nadia

    2010-04-01

    Gene duplication is frequent within gene clusters and plays a fundamental role in evolution by providing a source of new genetic material upon which natural selection can act. Although classical phylogenetic inference methods provide some insight into the evolutionary history of a gene cluster, they are not sufficient alone to differentiate single- from multiple gene duplication events and to answer other questions regarding the nature and size of evolutionary events. In this paper, we present an algorithm allowing to infer a set of optimal evolutionary histories for a gene cluster in a single species, according to a general cost model involving variable length duplications (in tandem or inverted), deletions, and inversions. We applied our algorithm to the human olfactory receptor and protocadherin gene clusters, showing that the duplication size distribution differs significantly between the two gene families. The algorithm is available through a web interface at http://www-lbit.iro.umontreal.ca/DILTAG/.

  20. Carpological analysis of Phoenix (Arecaceae): contributions to the taxonomy and evolutionary history of the genus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main purpose of this study was, first, to analyze the morphology of seeds of Phoenix spp. and relevant cultivars and to assess the taxonomic value of the information generated as a means of studying the systematics and evolutionary history of the genus Phoenix. We then analyzed seed morphologica...

  1. An Evolutionary History of the Natural Language English and the Artificial Language FORTRAN.

    ERIC Educational Resources Information Center

    Koman, Joseph J., III

    1988-01-01

    Notes similarities between certain aspects of the development of the natural language English and the artificial language FORTRAN. Discusses evolutionary history, grammar, style, syntax, varieties, and attempts at standardization. Emphasizes modifications which natural and artificial languages have undergone. Suggests that some modifications were…

  2. The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo.

    PubMed

    Tocheri, Matthew W; Orr, Caley M; Jacofsky, Marc C; Marzke, Mary W

    2008-04-01

    Molecular evidence indicates that the last common ancestor of the genus Pan and the hominin clade existed between 8 and 4 million years ago (Ma). The current fossil record indicates the Pan-Homo last common ancestor existed at least 5 Ma and most likely between 6 and 7 Ma. Together, the molecular and fossil evidence has important consequences for interpreting the evolutionary history of the hand within the tribe Hominini (hominins). Firstly, parsimony supports the hypothesis that the hand of the last common ancestor most likely resembled that of an extant great ape overall (Pan, Gorilla, and Pongo), and that of an African ape in particular. Second, it provides a context for interpreting the derived changes to the hand that have evolved in various hominins. For example, the Australopithecus afarensis hand is likely derived in comparison with that of the Pan-Homo last common ancestor in having shorter fingers relative to thumb length and more proximo-distally oriented joints between its capitate, second metacarpal, and trapezium. This evidence suggests that these derived features evolved prior to the intensification of stone tool-related hominin behaviors beginning around 2.5 Ma. However, a majority of primitive features most likely present in the Pan-Homo last common ancestor are retained in the hands of Australopithecus, Paranthropus/early Homo, and Homo floresiensis. This evidence suggests that further derived changes to the hands of other hominins such as modern humans and Neandertals did not evolve until after 2.5 Ma and possibly even later than 1.5 Ma, which is currently the earliest evidence of Acheulian technology. The derived hands of modern humans and Neandertals may indicate a morphological commitment to tool-related manipulative behaviors beyond that observed in other hominins, including those (e.g. H. floresiensis) which may be descended from earlier tool-making species. PMID:18380869

  3. Potential for anthropogenic disturbances to influence evolutionary change in the life history of a threatened salmonid

    PubMed Central

    Williams, John G; Zabel, Richard W; Waples, Robin S; Hutchings, Jeffrey A; Connor, William P

    2008-01-01

    Although evolutionary change within most species is thought to occur slowly, recent studies have identified cases where evolutionary change has apparently occurred over a few generations. Anthropogenically altered environments appear particularly open to rapid evolutionary change over comparatively short time scales. Here, we consider a Pacific salmon population that may have experienced life-history evolution, in response to habitat alteration, within a few generations. Historically, juvenile fall Chinook salmon (Oncorhynchus tshawytscha) from the Snake River migrated as subyearlings to the ocean. With changed riverine conditions that resulted from hydropower dam construction, some juveniles now migrate as yearlings, but more interestingly, the yearling migration tactic has made a large contribution to adult returns over the last decade. Optimal life-history models suggest that yearling juvenile migrants currently have a higher fitness than subyearling migrants. Although phenotypic plasticity likely accounts for some of the change in migration tactics, we suggest that evolution also plays a significant role. Evolutionary change prompted by anthropogenic alterations to the environment has general implications for the recovery of endangered species. The case study we present herein illustrates the importance of integrating evolutionary considerations into conservation planning for species at risk. PMID:25567631

  4. Mitochondrial Genome and Nuclear Markers Provide New Insight into the Evolutionary History of Macaques

    PubMed Central

    Jiang, Juan; Yu, Jianqiu; Li, Jing; Li, Peng; Fan, Zhenxin; Niu, Lili; Deng, Jiabo; Yue, Bisong; Li, Jing

    2016-01-01

    The evolutionary history of macaques, genus Macaca, has been under debate due to the short times of divergence. In this study, maternal, paternal, and biparental genetic systems were applied to infer phylogenetic relationships among macaques and to trace ancient hybridization events in their evolutionary history. Using a PCR display method, 17 newly phylogenetically informative Alu insertions were identified from M. assamensis. We combined presence/absence analysis of 84 Alu elements with mitochondrial genomes as well as nuclear sequences (five autosomal genes, two Y chromosomal genes, and one X chromosomal fragment) to reconstruct a robust macaque phylogeny. Topologies generated from different inherited markers were similar supporting six well defined species groups and a close relationship of M. assamensis and M. thibetana, but differed in the placing of M. arctoides. Both Alu elements and nuclear genes supported that M. arctoides was close to the sinica group, whereas the mitochondrial data clustered it into the fascicularis/mulatta lineage. Our results reveal that a sex-biased hybridization most likely occurred in the evolutionary history of M. arctoides, and suggest an introgressive pattern of male-mediated gene flow from the ancestors of M. arctoides to the M. mulatta population followed by nuclear swamping. According to the estimation of divergence dates, the hybridization occurred around 0.88~1.77 mya (nuclear data) or 1.38~2.56 mya (mitochondrial data). In general, our study indicates that a combination of various molecular markers could help explain complicated evolutionary relationships. Our results have provided new insights into the evolutionary history of macaques and emphasize that hybridization might play an important role in macaque evolution. PMID:27135608

  5. An improved approximate-Bayesian model-choice method for estimating shared evolutionary history

    PubMed Central

    2014-01-01

    Background To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. Results By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. Conclusions The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support. PMID:24992937

  6. Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction

    PubMed Central

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11–14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears

  7. Evolutionary history of assassin bugs (insecta: hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction.

    PubMed

    Hwang, Wei Song; Weirauch, Christiane

    2012-01-01

    Assassin bugs are one of the most successful clades of predatory animals based on their species numbers (∼6,800 spp.) and wide distribution in terrestrial ecosystems. Various novel prey capture strategies and remarkable prey specializations contribute to their appeal as a model to study evolutionary pathways involved in predation. Here, we reconstruct the most comprehensive reduviid phylogeny (178 taxa, 18 subfamilies) to date based on molecular data (5 markers). This phylogeny tests current hypotheses on reduviid relationships emphasizing the polyphyletic Reduviinae and the blood-feeding, disease-vectoring Triatominae, and allows us, for the first time in assassin bugs, to reconstruct ancestral states of prey associations and microhabitats. Using a fossil-calibrated molecular tree, we estimated divergence times for key events in the evolutionary history of Reduviidae. Our results indicate that the polyphyletic Reduviinae fall into 11-14 separate clades. Triatominae are paraphyletic with respect to the reduviine genus Opisthacidius in the maximum likelihood analyses; this result is in contrast to prior hypotheses that found Triatominae to be monophyletic or polyphyletic and may be due to the more comprehensive taxon and character sampling in this study. The evolution of blood-feeding may thus have occurred once or twice independently among predatory assassin bugs. All prey specialists evolved from generalist ancestors, with multiple evolutionary origins of termite and ant specializations. A bark-associated life style on tree trunks is ancestral for most of the lineages of Higher Reduviidae; living on foliage has evolved at least six times independently. Reduviidae originated in the Middle Jurassic (178 Ma), but significant lineage diversification only began in the Late Cretaceous (97 Ma). The integration of molecular phylogenetics with fossil and life history data as presented in this paper provides insights into the evolutionary history of reduviids and clears

  8. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

    PubMed Central

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-01-01

    The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359

  9. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates

    PubMed Central

    Zhou, Jin; Zhang, Yao-Yang; Li, Qing-Yun; Cai, Zhong-Hua

    2015-01-01

    Cathepsin L family, an important cysteine protease found in lysosomes, is categorized into cathepsins B, F, H, K, L, S, and W in vertebrates. This categorization is based on their sequence alignment and traditional functional classification, but the evolutionary relationship of family members is unclear. This study determined the evolutionary relationship of cathepsin L family genes in vertebrates through phylogenetic construction. Results showed that cathepsins F, H, S and K, and L and V were chronologically diverged. Tandem-repeat duplication was found to occur in the evolutionary history of cathepsin L family. Cathepsin L in zebrafish, cathepsins S and K in xenopus, and cathepsin L in mice and rats underwent evident tandem-repeat events. Positive selection was detected in cathepsin L-like members in mice and rats, and amino acid sites under positive selection pressure were calculated. Most of these sites appeared at the connection of secondary structures, suggesting that the sites may slightly change spatial structure. Severe positive selection was also observed in cathepsin V (L2) of primates, indicating that this enzyme had some special functions. Our work provided a brief evolutionary history of cathepsin L family and differentiated cathepsins S and K from cathepsin L based on vertebrate appearance. Positive selection was the specific cause of differentiation of cathepsin L family genes, confirming that gene function variation after expansion events was related to interactions with the environment and adaptability. PMID:26221069

  10. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana.

    PubMed

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-06-22

    The effects of the direct interaction between hybridization and speciation-two major contrasting evolutionary processes--are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within--island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50,000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island--ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole.

  11. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia

    PubMed Central

    Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul

    2014-01-01

    Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors. DOI: http://dx.doi.org/10.7554/eLife.02869.001 PMID:25496728

  12. The evolutionary history of genes involved in spoken and written language: beyond FOXP2

    PubMed Central

    Mozzi, Alessandra; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Mascheretti, Sara; Guerini, Franca R.; Riva, Stefania; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2016-01-01

    Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD. PMID:26912479

  13. The evolutionary history of genes involved in spoken and written language: beyond FOXP2.

    PubMed

    Mozzi, Alessandra; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Mascheretti, Sara; Guerini, Franca R; Riva, Stefania; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2016-01-01

    Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD. PMID:26912479

  14. Evolutionary History of the Marsupials and an Analysis of Osteological Characters

    NASA Astrophysics Data System (ADS)

    Szalay, Frederick S.

    1995-01-01

    The aim of this book is to examine a variety of problems in the understanding of the evolutionary history of the marsupials. In his exposition, the author covers developmental and reproductive biology, the cranio-skeletal system (including dentition, skull, and postcranial morphology), and the ecologically related aspects of skeletal morphology. In reviewing the evidence from bones, he presents much new information on both living and fossil groups of marsupials. All groups of marsupials are treated in detail, and in the final chapter their history in space and time and their paleobiogeography are considered.

  15. Cyto-nuclear discordance suggests complex evolutionary history in the cave-dwelling salamander, Eurycea lucifuga.

    PubMed

    Edgington, Hilary A; Ingram, Colleen M; Taylor, Douglas R

    2016-09-01

    Our understanding of the evolutionary history and ecology of cave-associated species has been driven historically by studies of morphologically adapted cave-restricted species. Our understanding of the evolutionary history and ecology of nonrestricted cave species, troglophiles, is limited to a few studies, which present differing accounts of troglophiles' relationship with the cave habitat, and its impact on population dynamics. Here, we used phylogenetics, demographic statistics, and population genetic methods to study lineage divergence, dates of divergence, and population structure in the Cave Salamander, Eurycea lucifuga, across its range. In order to perform these analyses, we sampled 233 individuals from 49 populations, using sequence data from three gene loci as well as genotyping data from 19 newly designed microsatellite markers. We find, as in many other species studied in a phylogeographic context, discordance between patterns inferred from mitochondrial relationships and those inferred by nuclear markers indicating a complicated evolutionary history in this species. Our results suggest Pleistocene-based divergence among three main lineages within E. lucifuga corresponding to the western, central, and eastern regions of the range, similar to patterns seen in species separated in multiple refugia during climatic shifts. The conflict between mitochondrial and nuclear patterns is consistent with what we would expect from secondary contact between regional populations following expansion from multiple refugia. PMID:27648230

  16. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history.

    PubMed

    Kamilar, J M; Tecot, S R

    2015-11-01

    At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. PMID:26249034

  17. A Consensus Tree Approach for Reconstructing Human Evolutionary History and Detecting Population Substructure

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Chi; Blelloch, Guy; Ravi, R.; Schwartz, Russell

    The random accumulation of variations in the human genome over time implicitly encodes a history of how human populations have arisen, dispersed, and intermixed since we emerged as a species. Reconstructing that history is a challenging computational and statistical problem but has important applications both to basic research and to the discovery of genotype-phenotype correlations. In this study, we present a novel approach to inferring human evolutionary history from genetic variation data. Our approach uses the idea of consensus trees, a technique generally used to reconcile species trees from divergent gene trees, adapting it to the problem of finding the robust relationships within a set of intraspecies phylogenies derived from local regions of the genome. We assess the quality of the method on two large-scale genetic variation data sets: the HapMap Phase II and the Human Genome Diversity Project. Qualitative comparison to a consensus model of the evolution of modern human population groups shows that our inferences closely match our best current understanding of human evolutionary history. A further comparison with results of a leading method for the simpler problem of population substructure assignment verifies that our method provides comparable accuracy in identifying meaningful population subgroups in addition to inferring the relationships among them.

  18. The evolutionary history of the development of the pelvic fin/hindlimb

    PubMed Central

    Don, Emily K; Currie, Peter D; Cole, Nicholas J

    2013-01-01

    The arms and legs of man are evolutionarily derived from the paired fins of primitive jawed fish. Few evolutionary changes have attracted as much attention as the origin of tetrapod limbs from the paired fins of ancestral fish. The hindlimbs of tetrapods are derived from the pelvic fins of ancestral fish. These evolutionary origins can be seen in the examination of shared gene and protein expression patterns during the development of pelvic fins and tetrapod hindlimbs. The pelvic fins of fish express key limb positioning, limb bud induction and limb outgrowth genes in a similar manner to that seen in hindlimb development of higher vertebrates. We are now at a point where many of the key players in the development of pelvic fins and vertebrate hindlimbs have been identified and we can now readily examine and compare mechanisms between species. This is yielding fascinating insights into how the developmental programme has altered during evolution and how that relates to anatomical change. The role of pelvic fins has also drastically changed over evolutionary history, from playing a minor role during swimming to developing into robust weight-bearing limbs. In addition, the pelvic fins/hindlimbs have been lost repeatedly in diverse species over evolutionary time. Here we review the evolution of pelvic fins and hindlimbs within the context of the changes in anatomical structure and the molecular mechanisms involved. PMID:22913749

  19. United States -- Mexican joint ventures: A case history approach

    SciTech Connect

    Moore, N.L.; Chidester, R.J.; Hughes, K.R.; Fowler, R.A.

    1993-03-01

    Because the Mexican government has encouraged investment in Mexico by increasing the percentage of ownership of a Mexican business that a US company can hold, joint ventures are more attractive now than they had been in the past. This study provides preliminary information for US renewable energy companies who are interested in forming a joint venture with a Mexican company. This report is not intended to be a complete reference but does identifies a number of important factors that should be observed when forming a Mexican joint venture: (1)Successful joint ventures achieve the goals of each partner. (2)It is essential that all parties agree to the allocation of responsibilities. (3)Put everything in writing. (4)Research in depth the country or countries in which you are considering doing business.

  20. Neutral nuclear variation in Baboons (genus Papio) provides insights into their evolutionary and demographic histories.

    PubMed

    Boissinot, Stéphane; Alvarez, Lauren; Giraldo-Ramirez, Juliana; Tollis, Marc

    2014-12-01

    Baboons (genus Papio) are distributed over most of sub-Saharan Africa and in the southern portion of the Arabian Peninsula. Six distinct morphotypes, with clearly defined geographic distributions, are recognized (the olive, chacma, yellow, Guinea, Kinda, and hamadryas baboons). The evolutionary relationships among baboon forms have long been a controversial issue. Phylogenetic analyses based on mitochondrial DNA sequences revealed that the modern baboon morphotypes are mitochondrially paraphyletic or polyphyletic. The discordance between mitochondrial lineages and morphology is indicative of extensive introgressive hybridization between ancestral baboon populations. To gain insights into the evolutionary relationships among morphotypes and their demographic history, we performed an analysis of nuclear variation in baboons. We sequenced 13 noncoding, putatively neutral, nuclear regions, and scored the presence/absence of 18 polymorphic transposable elements in a sample of 45 baboons belonging to five of the six recognized baboon forms. We found that the chacma baboon is the sister-taxon to all other baboons and the yellow baboon is the sister-taxon to an unresolved northern clade containing the olive, Guinea, and hamadryas baboons. We estimated that the diversification of baboons occurred entirely in the Pleistocene, the earliest split dating ∼1.5 million years ago, and that baboons have experienced relatively large and constant effective population sizes for most of their evolutionary history (∼30,000 to 95,000 individuals).

  1. Genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River (upper Mekong).

    PubMed

    Chen, Weitao; Shen, Yanjun; Gan, Xiaoni; Wang, Xuzhen; He, Shunping

    2016-09-01

    The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai-Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re-examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River. PMID:27648223

  2. Applications of next-generation sequencing to unravelling the evolutionary history of algae.

    PubMed

    Kim, Kyeong Mi; Park, Jun-Hyung; Bhattacharya, Debashish; Yoon, Hwan Su

    2014-02-01

    First-generation Sanger DNA sequencing revolutionized science over the past three decades and the current next-generation sequencing (NGS) technology has opened the doors to the next phase in the sequencing revolution. Using NGS, scientists are able to sequence entire genomes and to generate extensive transcriptome data from diverse photosynthetic eukaryotes in a timely and cost-effective manner. Genome data in particular shed light on the complicated evolutionary history of algae that form the basis of the food chain in many environments. In the Eukaryotic Tree of Life, the fact that photosynthetic lineages are positioned in four supergroups has important evolutionary consequences. We now know that the story of eukaryotic photosynthesis unfolds with a primary endosymbiosis between an ancestral heterotrophic protist and a captured cyanobacterium that gave rise to the glaucophytes, red algae and Viridiplantae (green algae and land plants). These primary plastids were then transferred to other eukaryotic groups through secondary endosymbiosis. A red alga was captured by the ancestor(s) of the stramenopiles, alveolates (dinoflagellates, apicomplexa, chromeridae), cryptophytes and haptophytes, whereas green algae were captured independently by the common ancestors of the euglenophytes and chlorarachniophytes. A separate case of primary endosymbiosis is found in the filose amoeba Paulinella chromatophora, which has at least nine heterotrophic sister species. Paulinella genome data provide detailed insights into the early stages of plastid establishment. Therefore, genome data produced by NGS have provided many novel insights into the taxonomy, phylogeny and evolutionary history of photosynthetic eukaryotes.

  3. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    PubMed

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast.

  4. Neutral Nuclear Variation in Baboons (genus Papio) Provides Insights into their Evolutionary and Demographic Histories

    PubMed Central

    Boissinot, Stéphane; Alvarez, Lauren; Giraldo-Ramirez, Juliana; Tollis, Marc

    2015-01-01

    Baboons (genus Papio) are distributed over most of sub-Saharan Africa and in the southern portion of the Arabian Peninsula. Six distinct morphotypes, with clearly defined geographic distributions, are recognized (the olive, chacma, yellow, Guinea, Kinda and hamadryas baboons). The evolutionary relationships among baboon forms have long been a controversial issue. Phylogenetic analyses based on mitochondrial DNA sequences revealed that the modern baboon morphotypes are mitochondrially paraphyletic or polyphyletic. The discordance between mitochondrial lineages and morphology is indicative of extensive introgressive hybridization between ancestral baboon populations. To gain insights into the evolutionary relationships among morphotypes and their demographic history, we performed an analysis of nuclear variation in baboons. We sequenced 13 non-coding, putatively neutral, nuclear regions and scored the presence/absence of 18 polymorphic transposable elements in a sample of 45 baboons belonging to five of the six recognized baboon forms. We found that the chacma baboon is the sister-taxon to all other baboons and the yellow baboon is the sister-taxon to an unresolved northern clade containing the olive, Guinea and hamadryas baboons. We estimated that the diversification of baboons occurred entirely in the Pleistocene, the earliest split dating ~1.5 million years ago, and that baboons have experienced relatively large and constant population sizes for most of their evolutionary history (~30,000 to 95,000 individuals). PMID:25234435

  5. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

    NASA Astrophysics Data System (ADS)

    Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the

  6. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    PubMed

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of

  7. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    PubMed

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of

  8. Comparative Phylogeographic Analyses Illustrate the Complex Evolutionary History of Threatened Cloud Forests of Northern Mesoamerica

    PubMed Central

    Ornelas, Juan Francisco; Sosa, Victoria; Soltis, Douglas E.; Daza, Juan M.; González, Clementina; Soltis, Pamela S.; Gutiérrez-Rodríguez, Carla; de los Monteros, Alejandro Espinosa; Castoe, Todd A.; Bell, Charles; Ruiz-Sanchez, Eduardo

    2013-01-01

    Comparative phylogeography can elucidate the influence of historical events on current patterns of biodiversity and can identify patterns of co-vicariance among unrelated taxa that span the same geographic areas. Here we analyze temporal and spatial divergence patterns of cloud forest plant and animal species and relate them to the evolutionary history of naturally fragmented cloud forests–among the most threatened vegetation types in northern Mesoamerica. We used comparative phylogeographic analyses to identify patterns of co-vicariance in taxa that share geographic ranges across cloud forest habitats and to elucidate the influence of historical events on current patterns of biodiversity. We document temporal and spatial genetic divergence of 15 species (including seed plants, birds and rodents), and relate them to the evolutionary history of the naturally fragmented cloud forests. We used fossil-calibrated genealogies, coalescent-based divergence time inference, and estimates of gene flow to assess the permeability of putative barriers to gene flow. We also used the hierarchical Approximate Bayesian Computation (HABC) method implemented in the program msBayes to test simultaneous versus non-simultaneous divergence of the cloud forest lineages. Our results show shared phylogeographic breaks that correspond to the Isthmus of Tehuantepec, Los Tuxtlas, and the Chiapas Central Depression, with the Isthmus representing the most frequently shared break among taxa. However, dating analyses suggest that the phylogeographic breaks corresponding to the Isthmus occurred at different times in different taxa. Current divergence patterns are therefore consistent with the hypothesis of broad vicariance across the Isthmus of Tehuantepec derived from different mechanisms operating at different times. This study, coupled with existing data on divergence cloud forest species, indicates that the evolutionary history of contemporary cloud forest lineages is complex and often lineage

  9. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    PubMed

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. PMID:27586287

  10. Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere?

    PubMed

    Bouffaud, Marie-Lara; Renoud, Sébastien; Moënne-Loccoz, Yvan; Muller, Daniel

    2016-01-01

    Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize's ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere. PMID:26902960

  11. Is plant evolutionary history impacting recruitment of diazotrophs and nifH expression in the rhizosphere?

    PubMed Central

    Bouffaud, Marie-Lara; Renoud, Sébastien; Moënne-Loccoz, Yvan; Muller, Daniel

    2016-01-01

    Plant evolutionary history influences the taxonomic composition of the root-associated bacterial community, but whether it can also modulate its functioning is unknown. Here, we tested the hypothesis that crop diversification is a significant factor determining the ecology of the functional group of nitrogen-fixing bacteria the rhizosphere of Poaceae. A greenhouse experiment was carried out using a range of Poaceae, i.e. four Zea mays varieties (from two genetic groups) and teosinte (representing maize’s ancestor), sorghum (from the same Panicoideae subfamily), and wheat (from neighboring Pooideae subfamily), as well as the dicot tomato as external reference. Diazotroph rhizosphere community was characterized at 21 days in terms of size (quantitative PCR of nifH genes), composition (T-RFLP and partial sequencing of nifH alleles) and functioning (quantitative RT-PCR, T-RFLP and partial sequencing of nifH transcripts). Plant species and varieties had a significant effect on diazotroph community size and the number of nifH transcripts per root system. Contrarily to expectations, however, there was no relation between Poaceae evolutionary history and the size, diversity or expression of the rhizosphere diazotroph community. These results suggest a constant selection of this functional group through evolution for optimization of nitrogen fixation in the rhizosphere. PMID:26902960

  12. Contrasting evolutionary patterns in two reef-corals and their possible relationship to life history traits

    SciTech Connect

    Foster, A.B.

    1985-01-01

    Multivariate statistical analyses have been used to redefine species within two genera of reef-corals (Porites and Montastraea) and to trace their evolutionary patterns through a continuous sequence from late Miocene to early Pliocene time. The material studied consists of populations sampled at regular intervals through four stratigraphic sections in the northern Dominican Republic. The results show that species in the first genus (Porites) have relatively short durations, morphologic stability, and narrow spatial distributions. Their overall evolutionary history is characterized by short periods of radiation and widespread extinction, separated by longer periods of stasis. In contrast, species in the second genus (Montastraea) exhibit various different durations and distributions and directional morphologic trends. These differences in patterns may be related to the dissimilar life histories of the two genera. Patterns in the first genus appear more common in organisms having high larval recruitment, high mortality, high genetic variation, and less morphologic distance between species. Patterns in the second genus occur more frequently in slower growing, phenotypically plastic organisms experiencing less recruitment and mortality and showing more morphologic distance between species.

  13. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea.

    PubMed

    Raymann, Kasie; Forterre, Patrick; Brochier-Armanet, Céline; Gribaldo, Simonetta

    2014-01-01

    The archaeal machinery responsible for DNA replication is largely homologous to that of eukaryotes and is clearly distinct from its bacterial counterpart. Moreover, it shows high diversity in the various archaeal lineages, including different sets of components, heterogeneous taxonomic distribution, and a large number of additional copies that are sometimes highly divergent. This has made the evolutionary history of this cellular system particularly challenging to dissect. Here, we have carried out an exhaustive identification of homologs of all major replication components in over 140 complete archaeal genomes. Phylogenomic analysis allowed assigning them to either a conserved and probably essential core of replication components that were mainly vertically inherited, or to a variable and highly divergent shell of extra copies that have likely arisen from integrative elements. This suggests that replication proteins are frequently exchanged between extrachromosomal elements and cellular genomes. Our study allowed clarifying the history that shaped this key cellular process (ancestral components, horizontal gene transfers, and gene losses), providing important evolutionary and functional information. Finally, our precise identification of core components permitted to show that the phylogenetic signal carried by DNA replication is highly consistent with that harbored by two other key informational machineries (translation and transcription), strengthening the existence of a robust organismal tree for the Archaea.

  14. Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history.

    PubMed

    Bronzati, Mario; Montefeltro, Felipe C; Langer, Max C

    2015-05-01

    The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals.

  15. Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history

    PubMed Central

    Bronzati, Mario; Montefeltro, Felipe C.; Langer, Max C.

    2015-01-01

    The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals. PMID:26064649

  16. Diversification events and the effects of mass extinctions on Crocodyliformes evolutionary history.

    PubMed

    Bronzati, Mario; Montefeltro, Felipe C; Langer, Max C

    2015-05-01

    The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals. PMID:26064649

  17. Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131

    PubMed Central

    Sheppard, Anna E.; Pankhurst, Louise; De Maio, Nicola; Moore, Catrin E.; Sebra, Robert; Turner, Paul; Anson, Luke W.; Kasarskis, Andrew; Batty, Elizabeth M.; Kos, Veronica; Wilson, Daniel J.; Phetsouvanh, Rattanaphone; Wyllie, David; Sokurenko, Evgeni; Manges, Amee R.; Johnson, Timothy J.; Price, Lance B.; Peto, Timothy E. A.; Johnson, James R.; Didelot, Xavier; Walker, A. Sarah; Crook, Derrick W.

    2016-01-01

    ABSTRACT Escherichia coli sequence type 131 (ST131) has emerged globally as the most predominant extraintestinal pathogenic lineage within this clinically important species, and its association with fluoroquinolone and extended-spectrum cephalosporin resistance impacts significantly on treatment. The evolutionary histories of this lineage, and of important antimicrobial resistance elements within it, remain unclearly defined. This study of the largest worldwide collection (n = 215) of sequenced ST131 E. coli isolates to date demonstrates that the clonal expansion of two previously recognized antimicrobial-resistant clades, C1/H30R and C2/H30Rx, started around 25 years ago, consistent with the widespread introduction of fluoroquinolones and extended-spectrum cephalosporins in clinical medicine. These two clades appear to have emerged in the United States, with the expansion of the C2/H30Rx clade driven by the acquisition of a blaCTX-M-15-containing IncFII-like plasmid that has subsequently undergone extensive rearrangement. Several other evolutionary processes influencing the trajectory of this drug-resistant lineage are described, including sporadic acquisitions of CTX-M resistance plasmids and chromosomal integration of blaCTX-M within subclusters followed by vertical evolution. These processes are also occurring for another family of CTX-M gene variants more recently observed among ST131, the blaCTX-M-14/14-like group. The complexity of the evolutionary history of ST131 has important implications for antimicrobial resistance surveillance, epidemiological analysis, and control of emerging clinical lineages of E. coli. These data also highlight the global imperative to reduce specific antibiotic selection pressures and demonstrate the important and varied roles played by plasmids and other mobile genetic elements in the perpetuation of antimicrobial resistance within lineages. PMID:27006459

  18. Phylogeography and evolutionary history of hepatitis B virus genotype F in Brazil

    PubMed Central

    2013-01-01

    Background Hepatitis B virus (HBV) genotype F (HBV/F) is considered to be indigenous to the Americas, but its emergence and spread in the continent remain unknown. Previously, only two HBV/F complete genome sequences from Brazil were available, limiting the contribution of Brazilian isolates to the phylogenetic studies of HBV/F. The present study was carried out to assess the proportion and geographic distributions of HBV/F subgenotypes in Brazil, to determine the full-length genomic sequences of HBV/F isolates from different Brazilian geographic regions, and to investigate the detailed evolutionary history and phylogeography of HBV/F in Brazil. Methods Complete HBV/F genomes isolated from 12 Brazilian patients, representing the HBV/F subgenotypes circulating in Brazil, were sequenced and analyzed together with sequences retrieved from GenBank, using the Bayesian coalescent and phylogeographic framework. Results Phylogenetic analysis using all Brazilian HBV/F S-gene sequences available in GenBank showed that HBV/F2a is found at higher frequencies countrywide and corresponds to all sequences isolated in the Brazilian Amazon Basin. In addition, the evolutionary analysis using complete genome sequences estimated an older median ancestral age for the Brazilian HBV/F2a compared to the Brazilian HBV/F1b and HBV/F4 subgenotypes, suggesting that HBV/F2a represents the original native HBV of Brazil. The phylogeographic patterns suggested a north-to-south flow of HBV/F2a from Venezuela to Brazil, whereas HBV/F1b and HBV/F4 strains appeared to have spread from Argentina to Brazil. Conclusions This study suggests a plausible route of introduction of HBV/F subgenotypes in Brazil and demonstrates the usefulness of recently developed computational tools for investigating the evolutionary history of HBV. PMID:23855930

  19. Evolutionary rates in Veronica L. (Plantaginaceae): disentangling the influence of life history and breeding system.

    PubMed

    Müller, Kai; Albach, Dirk C

    2010-01-01

    The evolutionary rate at which DNA sequences evolve is known to differ between different groups of organisms. However, the reasons for these different rates are seldom known. Among plants, the generation-time hypothesis, which states that organisms that reproduce faster also have more DNA substitutions per time, has gained most popularity. We evaluate the generation-time hypothesis using 131 DNA sequences from the plastid trnLF region and the nuclear ribosomal ITS region of the genus Veronica (Plantaginaceae). We also examine the alternative hypothesis that a higher substitution rate is correlated with selfing breeding system. Selfing is associated with annual life history in many organisms and may thus often be the underlying reason for observed correlations of annual life history with other characters. We provide evidence that annual life history is more likely to be the responsible factor for higher substitution rates in Veronica than a selfing breeding system. Nevertheless, the way in which annual life history may influence substitution rate in detail remains unknown, and some possibilities are discussed.

  20. The evolutionary history of Antirrhinum in the Pyrenees inferred from phylogeographic analyses

    PubMed Central

    2014-01-01

    Background The origin and colonisation history after the Quaternary ice ages remain largely unresolved for many plant lineages, mainly owing to a lack of fine-scale studies. Here, we present a molecular phylogeny and a phylogeographic analysis of Antirrhinum, an important model system in plant biology, in the Pyrenees range. Our goal was to reconstruct the evolutionary and colonisation history of four taxa endemic to this region (A. majus subsp. majus, A. majus. subsp. striatum, A. molle, and A. sempervirens) by using a dense sampling strategy, with a total of 452 individuals from 99 populations whose collective distribution spans nearly the entirety of the Pyrenees and adjacent mountains. Results Phylogenetic and phylogeographic analyses of the sequences of two plastid (trnS-trnG and trnK-matK) regions revealed the following: (i) historical relationship between the Pyrenees and Iberia (but not with the Alps); (ii) the long persistence of populations in the Pyrenees, at least since the Late Pleistocene; (iii) three different colonisation histories for populations from the Western, Central, and Eastern Pyrenees; (iv) the deep phylogeographic separation of the eastern and western populations; and (v) the colonisation of southern France from the Eastern Pyrenees. Conclusions The present study underlines the enormous influence of the glacial history of the mountain ranges on the current configuration of intra- and inter-specific genetic diversity in Antirrhinum, as well as the importance of periglacial areas for the survival of species during glacial periods of the Quaternary. PMID:24970688

  1. Comparative evolutionary histories of kisspeptins and kisspeptin receptors in vertebrates reveal both parallel and divergent features.

    PubMed

    Pasquier, Jérémy; Lafont, Anne-Gaëlle; Tostivint, Hervé; Vaudry, Hubert; Rousseau, Karine; Dufour, Sylvie

    2012-01-01

    During the past decade, the kisspeptin system has been identified in various vertebrates, leading to the discovery of multiple genes encoding both peptides (Kiss) and receptors (Kissr). The investigation of recently published genomes from species of phylogenetic interest, such as a chondrichthyan, the elephant shark, an early sarcopterygian, the coelacanth, a non-teleost actinopterygian, the spotted gar, and an early teleost, the European eel, allowed us to get new insights into the molecular diversity and evolution of both Kiss and Kissr families. We identified four Kissr in the spotted gar and coelacanth genomes, providing the first evidence of four Kissr genes in vertebrates. We also found three Kiss in the coelacanth and elephant shark genomes revealing two new species, in addition to Xenopus, presenting three Kiss genes. Considering the increasing diversity of kisspeptin system, phylogenetic, and synteny analyses enabled us to clarify both Kiss and Kissr classifications. We also could trace back the evolution of both gene families from the early steps of vertebrate history. Four Kissr and four Kiss paralogs may have arisen via the two whole genome duplication rounds (1R and 2R) in early vertebrates. This would have been followed by multiple independent Kiss and Kissr gene losses in the sarcopterygian and actinopterygian lineages. In particular, no impact of the teleost-specific 3R could be recorded on the numbers of teleost Kissr or Kiss paralogs. The origin of their diversity via 1R and 2R, as well as the subsequent occurrence of multiple gene losses, represent common features of the evolutionary histories of Kiss and Kissr families in vertebrates. In contrast, comparisons also revealed un-matching numbers of Kiss and Kissr genes in some species, as well as a large variability of Kiss/Kissr couples according to species. These discrepancies support independent features of the Kiss and Kissr evolutionary histories across vertebrate radiation.

  2. Comparative Evolutionary Histories of Kisspeptins and Kisspeptin Receptors in Vertebrates Reveal Both Parallel and Divergent Features

    PubMed Central

    Pasquier, Jérémy; Lafont, Anne-Gaëlle; Tostivint, Hervé; Vaudry, Hubert; Rousseau, Karine; Dufour, Sylvie

    2012-01-01

    During the past decade, the kisspeptin system has been identified in various vertebrates, leading to the discovery of multiple genes encoding both peptides (Kiss) and receptors (Kissr). The investigation of recently published genomes from species of phylogenetic interest, such as a chondrichthyan, the elephant shark, an early sarcopterygian, the coelacanth, a non-teleost actinopterygian, the spotted gar, and an early teleost, the European eel, allowed us to get new insights into the molecular diversity and evolution of both Kiss and Kissr families. We identified four Kissr in the spotted gar and coelacanth genomes, providing the first evidence of four Kissr genes in vertebrates. We also found three Kiss in the coelacanth and elephant shark genomes revealing two new species, in addition to Xenopus, presenting three Kiss genes. Considering the increasing diversity of kisspeptin system, phylogenetic, and synteny analyses enabled us to clarify both Kiss and Kissr classifications. We also could trace back the evolution of both gene families from the early steps of vertebrate history. Four Kissr and four Kiss paralogs may have arisen via the two whole genome duplication rounds (1R and 2R) in early vertebrates. This would have been followed by multiple independent Kiss and Kissr gene losses in the sarcopterygian and actinopterygian lineages. In particular, no impact of the teleost-specific 3R could be recorded on the numbers of teleost Kissr or Kiss paralogs. The origin of their diversity via 1R and 2R, as well as the subsequent occurrence of multiple gene losses, represent common features of the evolutionary histories of Kiss and Kissr families in vertebrates. In contrast, comparisons also revealed un-matching numbers of Kiss and Kissr genes in some species, as well as a large variability of Kiss/Kissr couples according to species. These discrepancies support independent features of the Kiss and Kissr evolutionary histories across vertebrate radiation. PMID:23272003

  3. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese.

    PubMed

    Ottenburghs, Jente; Megens, Hendrik-Jan; Kraus, Robert H S; Madsen, Ole; van Hooft, Pim; van Wieren, Sipke E; Crooijmans, Richard P M A; Ydenberg, Ronald C; Groenen, Martien A M; Prins, Herbert H T

    2016-08-01

    Phylogenetic incongruence can be caused by analytical shortcomings or can be the result of biological processes, such as hybridization, incomplete lineage sorting and gene duplication. Differentiation between these causes of incongruence is essential to unravel complex speciation and diversification events. The phylogeny of the True Geese (tribe Anserini, Anatidae, Anseriformes) was, until now, contentious, i.e., the phylogenetic relationships and the timing of divergence between the different goose species could not be fully resolved. We sequenced nineteen goose genomes (representing seventeen species of which three subspecies of the Brent Goose, Branta bernicla) and used an exon-based phylogenomic approach (41,736 exons, representing 5887 genes) to unravel the evolutionary history of this bird group. We thereby provide general guidance on the combination of whole genome evolutionary analyses and analytical tools for such cases where previous attempts to resolve the phylogenetic history of several taxa could not be unravelled. Identical topologies were obtained using either a concatenation (based upon an alignment of 6,630,626 base pairs) or a coalescent-based consensus method. Two major lineages, corresponding to the genera Anser and Branta, were strongly supported. Within the Branta lineage, the White-cheeked Geese form a well-supported sub-lineage that is sister to the Red-breasted Goose (Branta ruficollis). In addition, two main clades of Anser species could be identified, the White Geese and the Grey Geese. The results from the consensus method suggest that the diversification of the genus Anser is heavily influenced by rapid speciation and by hybridization, which may explain the failure of previous studies to resolve the phylogenetic relationships within this genus. The majority of speciation events took place in the late Pliocene and early Pleistocene (between 4 and 2millionyears ago), conceivably driven by a global cooling trend that led to the

  4. A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese.

    PubMed

    Ottenburghs, Jente; Megens, Hendrik-Jan; Kraus, Robert H S; Madsen, Ole; van Hooft, Pim; van Wieren, Sipke E; Crooijmans, Richard P M A; Ydenberg, Ronald C; Groenen, Martien A M; Prins, Herbert H T

    2016-08-01

    Phylogenetic incongruence can be caused by analytical shortcomings or can be the result of biological processes, such as hybridization, incomplete lineage sorting and gene duplication. Differentiation between these causes of incongruence is essential to unravel complex speciation and diversification events. The phylogeny of the True Geese (tribe Anserini, Anatidae, Anseriformes) was, until now, contentious, i.e., the phylogenetic relationships and the timing of divergence between the different goose species could not be fully resolved. We sequenced nineteen goose genomes (representing seventeen species of which three subspecies of the Brent Goose, Branta bernicla) and used an exon-based phylogenomic approach (41,736 exons, representing 5887 genes) to unravel the evolutionary history of this bird group. We thereby provide general guidance on the combination of whole genome evolutionary analyses and analytical tools for such cases where previous attempts to resolve the phylogenetic history of several taxa could not be unravelled. Identical topologies were obtained using either a concatenation (based upon an alignment of 6,630,626 base pairs) or a coalescent-based consensus method. Two major lineages, corresponding to the genera Anser and Branta, were strongly supported. Within the Branta lineage, the White-cheeked Geese form a well-supported sub-lineage that is sister to the Red-breasted Goose (Branta ruficollis). In addition, two main clades of Anser species could be identified, the White Geese and the Grey Geese. The results from the consensus method suggest that the diversification of the genus Anser is heavily influenced by rapid speciation and by hybridization, which may explain the failure of previous studies to resolve the phylogenetic relationships within this genus. The majority of speciation events took place in the late Pliocene and early Pleistocene (between 4 and 2millionyears ago), conceivably driven by a global cooling trend that led to the

  5. Reconstruction of caribou evolutionary history in Western North America and its implications for conservation.

    PubMed

    Weckworth, Byron V; Musiani, Marco; McDevitt, Allan D; Hebblewhite, Mark; Mariani, Stefano

    2012-07-01

    The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species. PMID:22612518

  6. Reconstruction of caribou evolutionary history in Western North America and its implications for conservation.

    PubMed

    Weckworth, Byron V; Musiani, Marco; McDevitt, Allan D; Hebblewhite, Mark; Mariani, Stefano

    2012-07-01

    The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species.

  7. A tale of two drug targets: the evolutionary history of BACE1 and BACE2

    PubMed Central

    Southan, Christopher; Hancock, John M.

    2013-01-01

    The beta amyloid (APP) cleaving enzyme (BACE1) has been a drug target for Alzheimer's Disease (AD) since 1999 with lead inhibitors now entering clinical trials. In 2011, the paralog, BACE2, became a new target for type II diabetes (T2DM) having been identified as a TMEM27 secretase regulating pancreatic β cell function. However, the normal roles of both enzymes are unclear. This study outlines their evolutionary history and new opportunities for functional genomics. We identified 30 homologs (UrBACEs) in basal phyla including Placozoans, Cnidarians, Choanoflagellates, Porifera, Echinoderms, Annelids, Mollusks and Ascidians (but not Ecdysozoans). UrBACEs are predominantly single copy, show 35–45% protein sequence identity with mammalian BACE1, are ~100 residues longer than cathepsin paralogs with an aspartyl protease domain flanked by a signal peptide and a C-terminal transmembrane domain. While multiple paralogs in Trichoplax and Monosiga pre-date the nervous system, duplication of the UrBACE in fish gave rise to BACE1 and BACE2 in the vertebrate lineage. The latter evolved more rapidly as the former maintained the emergent neuronal role. In mammals, Ka/Ks for BACE2 is higher than BACE1 but low ratios for both suggest purifying selection. The 5' exons show higher Ka/Ks than the catalytic section. Model organism genomes show the absence of certain BACE human substrates when the UrBACE is present. Experiments could thus reveal undiscovered substrates and roles. The human protease double-target status means that evolutionary trajectories and functional shifts associated with different substrates will have implications for the development of clinical candidates for both AD and T2DM. A rational basis for inhibition specificity ratios and assessing target-related side effects will be facilitated by a more complete picture of BACE1 and BACE2 functions informed by their evolutionary context. PMID:24381583

  8. A natural history of the human mind: tracing evolutionary changes in brain and cognition

    PubMed Central

    Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W

    2008-01-01

    Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300–400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species’ cognitive and linguistic abilities. PMID:18380864

  9. A tale of two drug targets: the evolutionary history of BACE1 and BACE2.

    PubMed

    Southan, Christopher; Hancock, John M

    2013-01-01

    The beta amyloid (APP) cleaving enzyme (BACE1) has been a drug target for Alzheimer's Disease (AD) since 1999 with lead inhibitors now entering clinical trials. In 2011, the paralog, BACE2, became a new target for type II diabetes (T2DM) having been identified as a TMEM27 secretase regulating pancreatic β cell function. However, the normal roles of both enzymes are unclear. This study outlines their evolutionary history and new opportunities for functional genomics. We identified 30 homologs (UrBACEs) in basal phyla including Placozoans, Cnidarians, Choanoflagellates, Porifera, Echinoderms, Annelids, Mollusks and Ascidians (but not Ecdysozoans). UrBACEs are predominantly single copy, show 35-45% protein sequence identity with mammalian BACE1, are ~100 residues longer than cathepsin paralogs with an aspartyl protease domain flanked by a signal peptide and a C-terminal transmembrane domain. While multiple paralogs in Trichoplax and Monosiga pre-date the nervous system, duplication of the UrBACE in fish gave rise to BACE1 and BACE2 in the vertebrate lineage. The latter evolved more rapidly as the former maintained the emergent neuronal role. In mammals, Ka/Ks for BACE2 is higher than BACE1 but low ratios for both suggest purifying selection. The 5' exons show higher Ka/Ks than the catalytic section. Model organism genomes show the absence of certain BACE human substrates when the UrBACE is present. Experiments could thus reveal undiscovered substrates and roles. The human protease double-target status means that evolutionary trajectories and functional shifts associated with different substrates will have implications for the development of clinical candidates for both AD and T2DM. A rational basis for inhibition specificity ratios and assessing target-related side effects will be facilitated by a more complete picture of BACE1 and BACE2 functions informed by their evolutionary context.

  10. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia

    PubMed Central

    Liu, Tong; Park, Yung Chul

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum, is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations. PMID:27761309

  11. Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation

    PubMed Central

    Collen, Ben; Turvey, Samuel T.; Waterman, Carly; Meredith, Helen M. R.; Kuhn, Tyler S.; Baillie, Jonathan E. M.; Isaac, Nick J. B.

    2011-01-01

    Under the impact of human activity, global extinction rates have risen a thousand times higher than shown in the fossil record. The resources available for conservation are insufficient to prevent the loss of much of the world's threatened biodiversity during this crisis. Conservation planners have been forced to prioritize their protective activities, in the context of great uncertainty. This has become known as ‘the agony of choice’. A range of methods have been proposed for prioritizing species for conservation attention; one of the most strongly supported is prioritizing those species that maximize phylogenetic distinctiveness (PD). We evaluate how a composite measure of extinction risk and phylogenetic isolation (EDGE) has been used to prioritize species according to their degree of unique evolutionary history (evolutionary distinctiveness, ED) weighted by conservation urgency (global endangerment, GE). We review PD-based approaches and provide an updated list of EDGE mammals using the 2010 IUCN Red List. We evaluate how robust this method is to changes in phylogenetic uncertainty, knowledge of taxonomy and extinction risk, and examine how mammalian species that rank highly in EDGE score are representative of the collective from which they are drawn. PMID:21844040

  12. Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation.

    PubMed

    Collen, Ben; Turvey, Samuel T; Waterman, Carly; Meredith, Helen M R; Kuhn, Tyler S; Baillie, Jonathan E M; Isaac, Nick J B

    2011-09-27

    Under the impact of human activity, global extinction rates have risen a thousand times higher than shown in the fossil record. The resources available for conservation are insufficient to prevent the loss of much of the world's threatened biodiversity during this crisis. Conservation planners have been forced to prioritize their protective activities, in the context of great uncertainty. This has become known as 'the agony of choice'. A range of methods have been proposed for prioritizing species for conservation attention; one of the most strongly supported is prioritizing those species that maximize phylogenetic distinctiveness (PD). We evaluate how a composite measure of extinction risk and phylogenetic isolation (EDGE) has been used to prioritize species according to their degree of unique evolutionary history (evolutionary distinctiveness, ED) weighted by conservation urgency (global endangerment, GE). We review PD-based approaches and provide an updated list of EDGE mammals using the 2010 IUCN Red List. We evaluate how robust this method is to changes in phylogenetic uncertainty, knowledge of taxonomy and extinction risk, and examine how mammalian species that rank highly in EDGE score are representative of the collective from which they are drawn. PMID:21844040

  13. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    PubMed

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  14. Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation.

    PubMed

    Collen, Ben; Turvey, Samuel T; Waterman, Carly; Meredith, Helen M R; Kuhn, Tyler S; Baillie, Jonathan E M; Isaac, Nick J B

    2011-09-27

    Under the impact of human activity, global extinction rates have risen a thousand times higher than shown in the fossil record. The resources available for conservation are insufficient to prevent the loss of much of the world's threatened biodiversity during this crisis. Conservation planners have been forced to prioritize their protective activities, in the context of great uncertainty. This has become known as 'the agony of choice'. A range of methods have been proposed for prioritizing species for conservation attention; one of the most strongly supported is prioritizing those species that maximize phylogenetic distinctiveness (PD). We evaluate how a composite measure of extinction risk and phylogenetic isolation (EDGE) has been used to prioritize species according to their degree of unique evolutionary history (evolutionary distinctiveness, ED) weighted by conservation urgency (global endangerment, GE). We review PD-based approaches and provide an updated list of EDGE mammals using the 2010 IUCN Red List. We evaluate how robust this method is to changes in phylogenetic uncertainty, knowledge of taxonomy and extinction risk, and examine how mammalian species that rank highly in EDGE score are representative of the collective from which they are drawn.

  15. Evolutionary and demographic history of the Californian scrub white oak species complex: an integrative approach.

    PubMed

    Ortego, Joaquín; Noguerales, Víctor; Gugger, Paul F; Sork, Victoria L

    2015-12-01

    Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter- and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process. PMID:26547661

  16. Cultural and climatic changes shape the evolutionary history of the Uralic languages.

    PubMed

    Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N

    2013-06-01

    Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution.

  17. TriLoNet: Piecing Together Small Networks to Reconstruct Reticulate Evolutionary Histories.

    PubMed

    Oldman, James; Wu, Taoyang; van Iersel, Leo; Moulton, Vincent

    2016-08-01

    Phylogenetic networks are a generalization of evolutionary trees that can be used to represent reticulate processes such as hybridization and recombination. Here, we introduce a new approach called TriLoNet (Trinet Level- one Network algorithm) to construct such networks directly from sequence alignments which works by piecing together smaller phylogenetic networks. More specifically, using a bottom up approach similar to Neighbor-Joining, TriLoNet constructs level-1 networks (networks that are somewhat more general than trees) from smaller level-1 networks on three taxa. In simulations, we show that TriLoNet compares well with Lev1athan, a method for reconstructing level-1 networks from three-leaved trees. In particular, in simulations we find that Lev1athan tends to generate networks that overestimate the number of reticulate events as compared with those generated by TriLoNet. We also illustrate TriLoNet's applicability using simulated and real sequence data involving recombination, demonstrating that it has the potential to reconstruct informative reticulate evolutionary histories. TriLoNet has been implemented in JAVA and is freely available at https://www.uea.ac.uk/computing/TriLoNet.

  18. Consensus between genes and stones in the biogeographic and evolutionary history of Central America

    NASA Astrophysics Data System (ADS)

    Gutiérrez-García, Tania Anaid; Vázquez-Domínguez, Ella

    2013-05-01

    Results from genetic and geologic studies can be combined to elucidate some general patterns of the biogeographic and evolutionary history of Central America (CA) and of its biota. Based on an ample review of geologic, biogeographic and genetic studies, our aim was to examine how common genetic patterns can be linked with geologic processes. Considering information about geologic and tectonic evolution of CA, we subdivided the region into four tectonic blocks: Maya, Chortis, Chorotega and Chocó. Species exchange between North/South America and CA encompasses three events: a first migration during the Late Cretaceous-Early Paleocene, a second through a terrestrial corridor preceding the formation of the Isthmus of Panama (IP), and the third involving a major dispersion through the IP. Such events caused similar genetic differentiation patterns and left a signature on the diversification of extant taxa, which we propose as three evolutionary groups: 1) Mayan, characterized by marked genetic structure and divergence, multiple refugia and formation of cryptic species; 2) Mid-CA, defined by high differentiation at the population level and between highland and lowlands, associated with intense volcanic activity; 3) Panamian, distinguished by migration from north to south and vice versa via de IP, with markedly high species divergence and speciation.

  19. Evolutionary history shapes patterns of mutualistic benefit in Acacia-rhizobial interactions.

    PubMed

    Barrett, Luke G; Zee, Peter C; Bever, James D; Miller, Joseph T; Thrall, Peter H

    2016-07-01

    The ecological and evolutionary factors that drive the emergence and maintenance of variation in mutualistic benefit (i.e., the benefits provided by one partner to another) in mutualistic symbioses are not well understood. In this study, we evaluated the role that host and symbiont phylogeny might play in determining patterns of mutualistic benefit for interactions among nine species of Acacia and 31 strains of nitrogen-fixing rhizobial bacteria. Using phylogenetic comparative methods we compared patterns of variation in mutualistic benefit (host response to inoculation) to rhizobial phylogenies constructed from housekeeping and symbiosis genes; and a multigene host phylogeny. We found widespread genotype-by-genotype variation in patterns of plant growth. A relatively large component of this variation (21-28%) was strongly influenced by the interacting evolutionary histories of both partners, such that phylogenetically similar host species had similar growth responses when inoculated with phylogenetically similar rhizobia. We also found a relatively large nonphylogenetic effect for the average mutualistic benefit provided by rhizobia to plants, such that phylogenetic relatedness did not predict the overall benefit provided by rhizobia across all hosts. We conclude that phylogenetic relatedness should frequently predict patterns of mutualistic benefit in acacia-rhizobial mutualistic interactions; but that some mutualistic traits also evolve independently of the phylogenies. PMID:27241367

  20. Evolutionary histories of soil fungi are reflected in their large-scale biogeography.

    PubMed

    Treseder, Kathleen K; Maltz, Mia R; Hawkins, Bradford A; Fierer, Noah; Stajich, Jason E; McGuire, Krista L

    2014-09-01

    Although fungal communities are known to vary along latitudinal gradients, mechanisms underlying this pattern are not well-understood. We used high-throughput sequencing to examine the large-scale distributions of soil fungi and their relation to evolutionary history. We tested the Tropical Conservatism Hypothesis, which predicts that ancestral fungal groups should be more restricted to tropical latitudes and conditions than would more recently derived groups. We found support for this hypothesis in that older phyla preferred significantly lower latitudes and warmer, wetter conditions than did younger phyla. Moreover, preferences for higher latitudes and lower precipitation levels were significantly phylogenetically conserved among the six younger phyla, possibly because the older phyla possess a zoospore stage that is vulnerable to drought, whereas the younger phyla retain protective cell walls throughout their life cycle. Our study provides novel evidence that the Tropical Conservatism Hypothesis applies to microbes as well as plants and animals. PMID:24912000

  1. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes.

    PubMed

    Mouillot, D; Parravicini, V; Bellwood, D R; Leprieur, F; Huang, D; Cowman, P F; Albouy, C; Hughes, T P; Thuiller, W; Guilhaumon, F

    2016-01-01

    Although coral reefs support the largest concentrations of marine biodiversity worldwide, the extent to which the global system of marine-protected areas (MPAs) represents individual species and the breadth of evolutionary history across the Tree of Life has never been quantified. Here we show that only 5.7% of scleractinian coral species and 21.7% of labrid fish species reach the minimum protection target of 10% of their geographic ranges within MPAs. We also estimate that the current global MPA system secures only 1.7% of the Tree of Life for corals, and 17.6% for fishes. Regionally, the Atlantic and Eastern Pacific show the greatest deficit of protection for corals while for fishes this deficit is located primarily in the Western Indian Ocean and in the Central Pacific. Our results call for a global coordinated expansion of current conservation efforts to fully secure the Tree of Life on coral reefs. PMID:26756609

  2. Evolutionary history underlies plant physiological responses to global change since the last glacial maximum.

    PubMed

    Becklin, Katie M; Medeiros, Juliana S; Sale, Kayla R; Ward, Joy K

    2014-06-01

    Assessing family- and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Here, we used stable carbon isotopes, leaf nitrogen content and stomatal measurements to assess changes in leaf-level physiology in a mixed conifer community that underwent significant changes in composition since the last glacial maximum (LGM) (21 kyr BP). Our results indicate that most plant taxa decreased stomatal conductance and/or maximum photosynthetic capacity in response to changing conditions since the LGM. However, plant families and species differed in the timing and magnitude of these physiological responses, and responses were more similar within families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  3. Inferring the Evolutionary History of Vibrios by Means of Multilocus Sequence Analysis▿ †

    PubMed Central

    Sawabe, Tomoo; Kita-Tsukamoto, Kumiko; Thompson, Fabiano L.

    2007-01-01

    We performed the first broad study aiming at the reconstruction of the evolutionary history of vibrios by means of multilocus sequence analysis of nine genes. Overall, 14 distinct clades were recognized using the SplitsTree decomposition method. Some of these clades may correspond to families, e.g., the clades Salinivibrio and Photobacteria, while other clades, e.g., Splendidus and Harveyi, correspond to genera. The common ancestor of all vibrios was estimated to have been present 600 million years ago. We can define species of vibrios as groups of strains that share >95% gene sequence similarity and >99.4% amino acid identity based on the eight protein-coding housekeeping genes. The gene sequence data were used to refine the standard online electronic taxonomic scheme for vibrios (http://www.taxvibrio.lncc.br). PMID:17704223

  4. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes

    PubMed Central

    Mouillot, D.; Parravicini, V.; Bellwood, D. R.; Leprieur, F.; Huang, D.; Cowman, P. F.; Albouy, C.; Hughes, T. P.; Thuiller, W.; Guilhaumon, F.

    2016-01-01

    Although coral reefs support the largest concentrations of marine biodiversity worldwide, the extent to which the global system of marine-protected areas (MPAs) represents individual species and the breadth of evolutionary history across the Tree of Life has never been quantified. Here we show that only 5.7% of scleractinian coral species and 21.7% of labrid fish species reach the minimum protection target of 10% of their geographic ranges within MPAs. We also estimate that the current global MPA system secures only 1.7% of the Tree of Life for corals, and 17.6% for fishes. Regionally, the Atlantic and Eastern Pacific show the greatest deficit of protection for corals while for fishes this deficit is located primarily in the Western Indian Ocean and in the Central Pacific. Our results call for a global coordinated expansion of current conservation efforts to fully secure the Tree of Life on coral reefs. PMID:26756609

  5. The evolutionary history of calreticulin and calnexin genes in green plants.

    PubMed

    Del Bem, Luiz Eduardo V

    2011-02-01

    Calreticulin and calnexin are Ca(2+)-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca(2+) homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.

  6. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    PubMed

    Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry

    2015-03-01

    Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

  7. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes.

    PubMed

    Mouillot, D; Parravicini, V; Bellwood, D R; Leprieur, F; Huang, D; Cowman, P F; Albouy, C; Hughes, T P; Thuiller, W; Guilhaumon, F

    2016-01-12

    Although coral reefs support the largest concentrations of marine biodiversity worldwide, the extent to which the global system of marine-protected areas (MPAs) represents individual species and the breadth of evolutionary history across the Tree of Life has never been quantified. Here we show that only 5.7% of scleractinian coral species and 21.7% of labrid fish species reach the minimum protection target of 10% of their geographic ranges within MPAs. We also estimate that the current global MPA system secures only 1.7% of the Tree of Life for corals, and 17.6% for fishes. Regionally, the Atlantic and Eastern Pacific show the greatest deficit of protection for corals while for fishes this deficit is located primarily in the Western Indian Ocean and in the Central Pacific. Our results call for a global coordinated expansion of current conservation efforts to fully secure the Tree of Life on coral reefs.

  8. Evolutionary history of the HAP2/GCS1 gene and sexual reproduction in metazoans.

    PubMed

    Steele, Robert E; Dana, Catherine E

    2009-01-01

    The HAP2/GCS1 gene first appeared in the common ancestor of plants, animals, and protists, and is required in the male gamete for fusion to the female gamete in the unicellular organisms Chlamydomonas and Plasmodium. We have identified a HAP2/GCS1 gene in the genome sequence of the sponge Amphimedon queenslandica. This finding provides a continuous evolutionary history of HAP2/GCS1 from unicellular organisms into the metazoan lineage. Divergent versions of the HAP2/GCS1 gene are also present in the genomes of some but not all arthropods. By examining the expression of the HAP2/GCS1 gene in the cnidarian Hydra, we have found the first evidence supporting the hypothesis that HAP2/GCS1 was used for male gamete fusion in the ancestor of extant metazoans and that it retains that function in modern cnidarians.

  9. Evolutionary history underlies plant physiological responses to global change since the last glacial maximum

    PubMed Central

    Becklin, Katie M.; Medeiros, Juliana S.; Sale, Kayla R.; Ward, Joy K.

    2014-01-01

    Assessing family- and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Here, we used stable carbon isotopes, leaf nitrogen content and stomatal measurements to assess changes in leaf-level physiology in a mixed conifer community that underwent significant changes in composition since the last glacial maximum (LGM) (21 kyr BP). Our results indicate that most plant taxa decreased stomatal conductance and/or maximum photosynthetic capacity in response to changing conditions since the LGM. However, plant families and species differed in the timing and magnitude of these physiological responses, and responses were more similar within families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time. PMID:24636555

  10. Linear versus branching depictions of evolutionary history: implications for diagram design.

    PubMed

    Novick, Laura R; Shade, Courtney K; Catley, Kefyn M

    2011-07-01

    This article reports the results of an experiment involving 108 college students with varying backgrounds in biology. Subjects answered questions about the evolutionary history of sets of hominid and equine taxa. Each set of taxa was presented in one of three diagrammatic formats: a noncladogenic diagram found in a contemporary biology textbook or a cladogram in either the ladder or tree format. As predicted, the textbook diagrams, which contained linear components, were more likely than the cladogram formats to yield explanations of speciation as an anagenic process, a common misconception among students. In contrast, the branching cladogram formats yielded more appropriate explanations concerning levels of ancestry than did the textbook diagrams. Although students with stronger backgrounds in biology did better than those with weaker biology backgrounds, they generally showed the same effects of diagrammatic format. Implications of these results for evolution education and for diagram design more generally are discussed. PMID:25164402

  11. New insights into the hepatitis E virus genotype 3 phylodynamics and evolutionary history.

    PubMed

    Mirazo, Santiago; Mir, Daiana; Bello, Gonzalo; Ramos, Natalia; Musto, Héctor; Arbiza, Juan

    2016-09-01

    Hepatitis E virus (HEV) is an emergent hepatotropic virus endemic mainly in Asia and other developing areas. However, in the last decade it has been increasingly reported in high-income countries. Human infecting HEV strains are currently classified into four genotypes (1-4). Genotype 3 (HEV-3) is the prevalent virus genotype and the mostly associated with autochthonous and sporadic cases of HEV in developed areas. The evolutionary history of HEV worldwide remains largely unknown. In this study we reconstructed the spatiotemporal and population dynamics of HEV-3 at global scale, but with particular emphasis in South America, where case reports have increased dramatically in the last years. To achieve this, we applied a Bayesian coalescent-based approach to a comprehensive data set comprising 97 GenBank HEV-3 sequences for which the location and sampling date was documented. Our phylogenetic analyses suggest that the worldwide genetic diversity of HEV-3 can be grouped into two main Clades (I and II) with a Ƭmrca dated in approximately 320years ago (95% HPD: 420-236years) and that a unique independent introduction of HEV-3 seems to have occurred in Uruguay, where most of the human HEV cases in South America have been described. The phylodynamic inference indicates that the population size of this virus suffered substantial temporal variations after the second half of the 20th century. In this sense and conversely to what is postulated to date, we suggest that the worldwide effective population size of HEV-3 is not decreasing and that frequently sources of error in its estimates stem from assumptions that the analyzed sequences are derived from a single panmictic population. Novel insights on the global population dynamics of HEV are given. Additionally, this work constitutes an attempt to further describe in a Bayesian coalescent framework, the phylodynamics and evolutionary history of HEV-3 in the South American region.

  12. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    PubMed Central

    2008-01-01

    Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have played an important role in

  13. Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla.

    PubMed

    Zimmermann, Judith; Wentrup, Cecilia; Sadowski, Miriam; Blazejak, Anna; Gruber-Vodicka, Harald R; Kleiner, Manuel; Ott, Jörg A; Cronholm, Bodil; De Wit, Pierre; Erséus, Christer; Dubilier, Nicole

    2016-07-01

    The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria. PMID:26826340

  14. New insights into the hepatitis E virus genotype 3 phylodynamics and evolutionary history.

    PubMed

    Mirazo, Santiago; Mir, Daiana; Bello, Gonzalo; Ramos, Natalia; Musto, Héctor; Arbiza, Juan

    2016-09-01

    Hepatitis E virus (HEV) is an emergent hepatotropic virus endemic mainly in Asia and other developing areas. However, in the last decade it has been increasingly reported in high-income countries. Human infecting HEV strains are currently classified into four genotypes (1-4). Genotype 3 (HEV-3) is the prevalent virus genotype and the mostly associated with autochthonous and sporadic cases of HEV in developed areas. The evolutionary history of HEV worldwide remains largely unknown. In this study we reconstructed the spatiotemporal and population dynamics of HEV-3 at global scale, but with particular emphasis in South America, where case reports have increased dramatically in the last years. To achieve this, we applied a Bayesian coalescent-based approach to a comprehensive data set comprising 97 GenBank HEV-3 sequences for which the location and sampling date was documented. Our phylogenetic analyses suggest that the worldwide genetic diversity of HEV-3 can be grouped into two main Clades (I and II) with a Ƭmrca dated in approximately 320years ago (95% HPD: 420-236years) and that a unique independent introduction of HEV-3 seems to have occurred in Uruguay, where most of the human HEV cases in South America have been described. The phylodynamic inference indicates that the population size of this virus suffered substantial temporal variations after the second half of the 20th century. In this sense and conversely to what is postulated to date, we suggest that the worldwide effective population size of HEV-3 is not decreasing and that frequently sources of error in its estimates stem from assumptions that the analyzed sequences are derived from a single panmictic population. Novel insights on the global population dynamics of HEV are given. Additionally, this work constitutes an attempt to further describe in a Bayesian coalescent framework, the phylodynamics and evolutionary history of HEV-3 in the South American region. PMID:27264728

  15. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The

  16. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids

    PubMed Central

    vonHoldt, Bridgett M.; Pollinger, John P.; Earl, Dent A.; Knowles, James C.; Boyko, Adam R.; Parker, Heidi; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Jedrzejewska, Bogumila; Sidorovich, Vadim; Greco, Claudia; Randi, Ettore; Musiani, Marco; Kays, Roland; Bustamante, Carlos D.; Ostrander, Elaine A.; Novembre, John; Wayne, Robert K.

    2011-01-01

    High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection. PMID:21566151

  17. The genetic diversity and evolutionary history of hepatitis C virus in Vietnam.

    PubMed

    Li, Chunhua; Yuan, Manqiong; Lu, Ling; Lu, Teng; Xia, Wenjie; Pham, Van H; Vo, An X D; Nguyen, Mindie H; Abe, Kenji

    2014-11-01

    Vietnam has a unique history in association with foreign countries, which may have resulted in multiple introductions of the alien HCV strains to mix with those indigenous ones. In this study, we characterized the HCV sequences in Core-E1 and NS5B regions from 236 Vietnamese individuals. We identified multiple HCV lineages; 6a, 6 e, 6h, 6k, 6l, 6 o, 6p, and two novel variants may represent the indigenous strains; 1a was probably introduced from the US; 1b and 2a possibly originated in East Asia; while 2i, 2j, and 2m were likely brought by French explorers. We inferred the evolutionary history for four major subtypes: 1a, 1b, 6a, and 6 e. The obtained Bayesian Skyline Plots (BSPs) consistently showed the rapid HCV population growth from 1955 to 1963 until 1984 or after, corresponding to the era of the Vietnam War. We also estimated HCV growth rates and reconstructed phylogeographic trees for comparing subtypes 1a, 1b, and HCV-2.

  18. Fossils, phylogenies, and the challenge of preserving evolutionary history in the face of anthropogenic extinctions

    NASA Astrophysics Data System (ADS)

    Huang, Danwei; Goldberg, Emma E.; Roy, Kaustuv

    2015-04-01

    Anthropogenic impacts are endangering many long-lived species and lineages, possibly leading to a disproportionate loss of existing evolutionary history (EH) in the future. However, surprisingly little is known about the loss of EH during major extinctions in the geological past, and thus we do not know whether human impacts are pruning the tree of life in a manner that is unique in the history of life. A major impediment to comparing the loss of EH during past and current extinctions is the conceptual difference in how ages are estimated from paleontological data versus molecular phylogenies. In the former case the age of a taxon is its entire stratigraphic range, regardless of how many daughter taxa it may have produced; for the latter it is the time to the most recent common ancestor shared with another extant taxon. To explore this issue, we use simulations to understand how the loss of EH is manifested in the two data types. We also present empirical analyses of the marine bivalve clade Pectinidae (scallops) during a major Plio-Pleistocene extinction in California that involved a preferential loss of younger species. Overall, our results show that the conceptual difference in how ages are estimated from the stratigraphic record versus molecular phylogenies does not preclude comparisons of age selectivities of past and present extinctions. Such comparisons not only provide fundamental insights into the nature of the extinction process but should also help improve evolutionarily informed models of conservation prioritization.

  19. The genetic diversity and evolutionary history of hepatitis C virus in Vietnam.

    PubMed

    Li, Chunhua; Yuan, Manqiong; Lu, Ling; Lu, Teng; Xia, Wenjie; Pham, Van H; Vo, An X D; Nguyen, Mindie H; Abe, Kenji

    2014-11-01

    Vietnam has a unique history in association with foreign countries, which may have resulted in multiple introductions of the alien HCV strains to mix with those indigenous ones. In this study, we characterized the HCV sequences in Core-E1 and NS5B regions from 236 Vietnamese individuals. We identified multiple HCV lineages; 6a, 6 e, 6h, 6k, 6l, 6 o, 6p, and two novel variants may represent the indigenous strains; 1a was probably introduced from the US; 1b and 2a possibly originated in East Asia; while 2i, 2j, and 2m were likely brought by French explorers. We inferred the evolutionary history for four major subtypes: 1a, 1b, 6a, and 6 e. The obtained Bayesian Skyline Plots (BSPs) consistently showed the rapid HCV population growth from 1955 to 1963 until 1984 or after, corresponding to the era of the Vietnam War. We also estimated HCV growth rates and reconstructed phylogeographic trees for comparing subtypes 1a, 1b, and HCV-2. PMID:25193655

  20. Inside the Melanoplinae: new molecular evidence for the evolutionary history of the Eurasian Podismini (Orthoptera: Acrididae).

    PubMed

    Chintauan-Marquier, Ioana C; Amédégnato, Christiane; Nichols, Richard A; Pompanon, François; Grandcolas, Philippe; Desutter-Grandcolas, Laure

    2014-02-01

    The Podismini are melanopline grasshoppers with a Holarctic distribution and well represented in the Eurasian fauna. To investigate their controversial taxonomy and evolutionary history, we studied 86%, 78% and 33% respectively of the Eurasian, European and Asian Palaearctic genera (Otte, 1995; Eades et al., 2013). We reconstructed parsimony, maximum likelihood and Bayesian phylogenies using fragments of four genes (ITS1, 16S, 12S, CO2). We applied a Bayesian molecular clock to estimate the times of species divergence, and the event-based parsimony method to depict the biogeographic framework of the diversification. Our results suggest that the selected Eurasian Podismini constitute a monophyletic group inside the Melanoplinae, provided it includes the North American genus Phaulotettix. The clades proposed by the present study inside the Podismini do not fit the older morphological or cytological classifications, but are in agreement with more recent proposals. Furthermore, our results can be explained by a plausible biogeographic history in which the present geographical distribution of the Eurasian Podismini resulted from known changes, to the Cenozoic climate and vegetation, induced by major geological events including the genesis of high mountain chains (e.g., Himalayas, Altay, Alps) and large deserts (e.g., Gobi, Karakoum, Taklamakan), and the opening of marginal seas (e.g., Bering, Japanese and Yellow Seas).

  1. ANALYSIS OF ALEXANDRIUM TAMARENSE (DINOPHYCEAE) GENES REVEALS THE COMPLEX EVOLUTIONARY HISTORY OF A MICROBIAL EUKARYOTE().

    PubMed

    Chan, Cheong Xin; Soares, Marcelo B; Bonaldo, Maria F; Wisecaver, Jennifer H; Hackett, Jeremiah D; Anderson, Donald M; Erdner, Deana L; Bhattacharya, Debashish

    2012-10-01

    Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate-specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14-17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2-4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome-wide approaches to infer the tree of microbial eukaryotes.

  2. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids.

    PubMed

    vonHoldt, Bridgett M; Pollinger, John P; Earl, Dent A; Knowles, James C; Boyko, Adam R; Parker, Heidi; Geffen, Eli; Pilot, Malgorzata; Jedrzejewski, Wlodzimierz; Jedrzejewska, Bogumila; Sidorovich, Vadim; Greco, Claudia; Randi, Ettore; Musiani, Marco; Kays, Roland; Bustamante, Carlos D; Ostrander, Elaine A; Novembre, John; Wayne, Robert K

    2011-08-01

    High-throughput genotyping technologies developed for model species can potentially increase the resolution of demographic history and ancestry in wild relatives. We use a SNP genotyping microarray developed for the domestic dog to assay variation in over 48K loci in wolf-like species worldwide. Despite the high mobility of these large carnivores, we find distinct hierarchical population units within gray wolves and coyotes that correspond with geographic and ecologic differences among populations. Further, we test controversial theories about the ancestry of the Great Lakes wolf and red wolf using an analysis of haplotype blocks across all 38 canid autosomes. We find that these enigmatic canids are highly admixed varieties derived from gray wolves and coyotes, respectively. This divergent genomic history suggests that they do not have a shared recent ancestry as proposed by previous researchers. Interspecific hybridization, as well as the process of evolutionary divergence, may be responsible for the observed phenotypic distinction of both forms. Such admixture complicates decisions regarding endangered species restoration and protection.

  3. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.

    PubMed

    Schlosser, Gerhard; Patthey, Cedric; Shimeld, Sebastian M

    2014-05-01

    Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.

  4. The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    PubMed Central

    Jung, Matthieu; Leye, Nafissatou; Vidal, Nicole; Fargette, Denis; Diop, Halimatou; Toure Kane, Coumba; Gascuel, Olivier; Peeters, Martine

    2012-01-01

    Background The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses. PMID:22470456

  5. Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories.

    PubMed

    Gütle, Desirée D; Roret, Thomas; Müller, Stefanie J; Couturier, Jérémy; Lemaire, Stéphane D; Hecker, Arnaud; Dhalleine, Tiphaine; Buchanan, Bob B; Reski, Ralf; Einsle, Oliver; Jacquot, Jean-Pierre

    2016-06-14

    The Calvin-Benson cycle of carbon dioxide fixation in chloroplasts is controlled by light-dependent redox reactions that target specific enzymes. Of the regulatory members of the cycle, our knowledge of sedoheptulose-1,7-bisphosphatase (SBPase) is particularly scanty, despite growing evidence for its importance and link to plant productivity. To help fill this gap, we have purified, crystallized, and characterized the recombinant form of the enzyme together with the better studied fructose-1,6-bisphosphatase (FBPase), in both cases from the moss Physcomitrella patens (Pp). Overall, the moss enzymes resembled their counterparts from seed plants, including oligomeric organization-PpSBPase is a dimer, and PpFBPase is a tetramer. The two phosphatases showed striking structural homology to each other, differing primarily in their solvent-exposed surface areas in a manner accounting for their specificity for seven-carbon (sedoheptulose) and six-carbon (fructose) sugar bisphosphate substrates. The two enzymes had a similar redox potential for their regulatory redox-active disulfides (-310 mV for PpSBPase vs. -290 mV for PpFBPase), requirement for Mg(2+) and thioredoxin (TRX) specificity (TRX f > TRX m). Previously known to differ in the position and sequence of their regulatory cysteines, the enzymes unexpectedly showed unique evolutionary histories. The FBPase gene originated in bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, whereas SBPase arose from an archaeal gene resident in the eukaryotic host. These findings raise the question of how enzymes with such different evolutionary origins achieved structural similarity and adapted to control by the same light-dependent photosynthetic mechanism-namely ferredoxin, ferredoxin-thioredoxin reductase, and thioredoxin. PMID:27226308

  6. Resolving the phylogenetic relationships and evolutionary history of the Drosophila virilis group using multilocus data.

    PubMed

    Morales-Hojas, Ramiro; Reis, Micael; Vieira, Cristina P; Vieira, Jorge

    2011-08-01

    The Drosophila virilis group is one of the major lineages of Drosophila previously recognised and it has been used as a model for different types of studies. It comprises 13 species whose phylogenetic relationships are not well resolved. In the present study, six nuclear genes (Adh, fused, Gpdh, NonA, CG9631 and CG7219) and the mitochondrial ribosomal RNA genes (12S-16S) have been used to estimate the evolutionary tree of the group using different methods of phylogenetic reconstruction. Different competing evolutionary hypotheses have also been compared using the Approximately Unbiased test to further evaluate the robustness of the inferred trees. Results are, in general, consistent with previous studies in recovering the four major lineages of the group (D. virilis phylad, Drosophila montana subphylad, Drosophila kanekoi subphylad and Drosophila littoralis subphylad), although D. kanekoi, D. littoralis and Drosophila ezoana are here inferred to be more closely related to the D. virilis phylad than to the D. montana subphylad. The age of the crown group, estimated with a Bayesian method that assumes a relaxed molecular clock, is placed in the late Miocene (∼ 10 Mya). The oldest lineages also appeared during this period (∼ 7.5 to ∼ 8.9 Mya), while the ages of the basal nodes of the montana subphylad and the virilis phylad are located in the early Pliocene (∼ 4.9 and ∼ 4.1 Mya). Major cladogenesis events correlate to geological and palaeoclimatic occurrences that most likely affected the freshwater and deciduous forests where these species are found. The inferred biogeographical history of the group, based on the statistical dispersal-vicariance analysis, indicates that the last common ancestor of the group had a Holarctic distribution from which the North American and the Eurasian lineages evolved as a result of a vicariant event.

  7. Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects.

    PubMed

    von Cramon-Taubadel, Noreen

    2014-01-01

    The study of cranial variation has a long, and somewhat difficult, history within anthropology. Much of this difficulty is rooted in the historical use of craniometric data to justify essentialist typological racial classification schemes. In the post-war era of the "New Physical Anthropology" (sensu Washburn, 1951), anthropologists began to analyse human variation in an explicitly populationist and evolutionary philosophical and analytical framework. However, even within recent decades, substantially different approaches have been employed; some advocate a focus on the analysis of individual traits or clines, while others are explicitly adaptationist, with a focus on natural selection as the preeminent force of phenotypic diversification. In recent years, a series of studies have analysed craniometric data in an explicitly quantitative genetic framework, which emphasises the importance of neutral forces such as migration, gene flow and genetic drift in creating global patterns of phenotypic diversity. This approach has revealed that global patterns of cranial variation can largely be explained on the basis of neutral theory. Therefore, human cranial data can be productively employed as a proxy for neutral genetic data in archaeological contexts. Moreover, there is a growing recognition that regions of the cranium differ in the extent to which they fit a neutral model of microevolutionary expectation, allowing for a more detailed assessment of patterns of adaptation and phenotypic plasticity within the human skull. Taking an historical perspective, the current state of knowledge regarding patterns of cranial adaptation in response to climatic and dietary effects is reviewed. Further insights will be gained by better incorporating the study of cranial and postcranial variation, as well as understanding the impact of neutral versus non-neutral evolution in creating among-species diversity patterns in primates more generally. However, this will most effectively be

  8. The environmental context of human evolutionary history in Eurasia and Africa

    PubMed Central

    Elton, Sarah

    2008-01-01

    This review has three main aims: (1) to make specific predictions about the habitat of the hypothetical last common ancestor of the chimpanzee/bonobo–human clade; (2) to outline the major trends in environments between 8–6 Ma and the late Pleistocene; and (3) to pinpoint when, and in some cases where, human ancestors evolved to cope with the wide range of habitats they presently tolerate. Several lines of evidence indicate that arboreal environments, particularly woodlands, were important habitats for late Miocene hominids and hominins, and therefore possibly for the last common ancestor of the chimpanzee/bonobo–human clade. However, as there is no clear candidate for this last common ancestor, and because the sampling of fossils and past environments is inevitably patchy, this prediction remains a working hypothesis at best. Nonetheless, as a primate, it is expected that the last common ancestor was ecologically dependent on trees in some form. Understanding past environments is important, as palaeoenvironmental reconstructions provide the context for human morphological and behavioural evolution. Indeed, the impact of climate on the evolutionary history of our species has long been debated. Since the mid-Miocene, the Earth has been experiencing a general cooling trend accompanied by aridification, which intensified during the later Pliocene and Pleistocene. Numerous climatic fluctuations, as well as local, regional and continental geography that influenced weather patterns and vegetation, created hominin environments that were dynamic in space and time. Behavioural flexibility and cultural complexity were crucial aspects of hominin expansion into diverse environments during the Pleistocene, but the ability to exploit varied and varying habitats was established much earlier in human evolutionary history. The development of increasingly complex tool technology facilitated re-expansion into tropical forests. These environments are difficult for obligate bipeds

  9. The Roles of Standing Genetic Variation and Evolutionary History in Determining the Evolvability of Anti-Predator Strategies

    PubMed Central

    Dworkin, Ian; Wagner, Aaron P.

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations. PMID:24955847

  10. The roles of standing genetic variation and evolutionary history in determining the evolvability of anti-predator strategies.

    PubMed

    O'Donnell, Daniel R; Parigi, Abhijna; Fish, Jordan A; Dworkin, Ian; Wagner, Aaron P

    2014-01-01

    Standing genetic variation and the historical environment in which that variation arises (evolutionary history) are both potentially significant determinants of a population's capacity for evolutionary response to a changing environment. Using the open-ended digital evolution software Avida, we evaluated the relative importance of these two factors in influencing evolutionary trajectories in the face of sudden environmental change. We examined how historical exposure to predation pressures, different levels of genetic variation, and combinations of the two, affected the evolvability of anti-predator strategies and competitive abilities in the presence or absence of threats from new, invasive predator populations. We show that while standing genetic variation plays some role in determining evolutionary responses, evolutionary history has the greater influence on a population's capacity to evolve anti-predator traits, i.e. traits effective against novel predators. This adaptability likely reflects the relative ease of repurposing existing, relevant genes and traits, and the broader potential value of the generation and maintenance of adaptively flexible traits in evolving populations.

  11. X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini).

    PubMed

    Tosi, Anthony J; Detwiler, Kate M; Disotell, Todd R

    2005-07-01

    Molecular studies of the guenons suggest that the arboreal Cercopithecus species form a monophyletic group within the tribe Cercopithecini. However, the evolutionary relationships among these arboreal congeners remain poorly resolved. The present work marks the first attempt to reconstruct the history of this group through the phylogenetic analysis of long nuclear sequences. We surveyed 19 guenons and seven outgroup taxa for a approximately 9.3kb fragment of X-chromosomal DNA homologous to a portion of human Xq13.3. Parsimony and maximum likelihood analyses of these sequences consistently recover two strongly-supported patterns within the arboreal Cercopithecus clade: (1) a clustering of members of the cephus and mitis species groups, and (2) a monophyletic aggregate including the mona, neglectus, and diana species groups. Although guenons occasionally hybridize in the wild, interbreeding forms of different species groups do not cluster together as sister-taxa in the X-chromosomal tree, suggesting that the two clades inferred here are not reticulate patterns due to recent gene flow. These clades are most likely the result of either ancestral hybridization or true phylogenetic history. We advocate the latter explanation because the same two aggregates (cephus/mitis and mona/neglectus/diana) are recovered, albeit with weak support, by a number of earlier analyses. Finally, X-chromosomal divergence dates are estimated for a number of nodes in the guenon radiation. The divergence of guenon and papionin lineages at 11.5 (+/-1.3) MYA appears to be a particularly robust estimate since it is inferred from both mitochondrial and X-chromosomal studies, each using different fossil calibration points.

  12. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    PubMed

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates.

  13. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    PubMed

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates. PMID:23811436

  14. Phylogenetic relationships and evolutionary history of the Mesoamerican endemic freshwater fish family Profundulidae (Cyprinodontiformes: Actinopterygii).

    PubMed

    Morcillo, Felipe; Ornelas-García, Claudia Patricia; Alcaraz, Lourdes; Matamoros, Wilfredo A; Doadrio, Ignacio

    2016-01-01

    Freshwater fishes of Profundulidae, which until now was composed of two subgenera, represent one of the few extant fish families endemic to Mesoamerica. In this study we investigated the phylogenetic relationships and evolutionary history of the eight recognized extant species (from 37 populations) of Profundulidae using three mitochondrial and one nuclear gene markers (∼2.9 Kbp). We applied a Bayesian species delimitation method as a first approach to resolving speciation patterns within Profundulidae considering two different scenarios, eight-species and twelve-species models, obtained in a previous phylogenetic analysis. Based on our results, each of the two subgenera was resolved as monophyletic, with a remarkable molecular divergence of 24.5% for mtDNA and 7.8% for nDNA uncorrected p distances, and thus we propose that they correspond to separate genera. Moreover, we propose a conservative taxonomic hypothesis with five species within Profundulus and three within Tlaloc, although both eight-species and twelve-species models were highly supported by the bayesian species delimitation analysis, providing additional evidence of higher taxonomic diversity than currently recognized in this family. According to our divergence time estimates, the family originated during the Upper Oligocene 26 Mya, and Profundulus and Tlaloc diverged in the Upper Oligocene or Lower Miocene about 20 Mya.

  15. Transcriptome analysis reveals pathogenicity and evolutionary history of the pathogenic oomycete Pythium insidiosum.

    PubMed

    Krajaejun, Theerapong; Lerksuthirat, Tassanee; Garg, Gagan; Lowhnoo, Tassanee; Yingyong, Wanta; Khositnithikul, Rommanee; Tangphatsornruang, Sithichoke; Suriyaphol, Prapat; Ranganathan, Shoba; Sullivan, Thomas D

    2014-07-01

    Oomycetes form a unique group of microorganisms that share hyphal morphology with fungi. Most of pathogenic oomycetes infect plants, while some species are capable of infecting animals. Pythium insidiosum is the only oomycete that can infect both humans and animals, and causes a life-threatening infectious disease, called 'pythiosis'. Controlling an infection caused by P. insidiosum is problematic because effective antimicrobial drugs are not available. Information on the biology and pathogenesis of P. insidiosum is limited. We generated a P. insidiosum transcriptome of 26 735 unigenes, using the 454 sequencing platform. As adaptations to increased temperature inside human hosts are required for a successful pathogen, we generated P. insidiosum transcriptomes at 28 °C and 37 °C and identified 625 up-regulated and 449 down-regulated genes at 37 °C. Comparing the proteomes of oomycetes, fungi, and parasites provided clues on the evolutionary history of P. insidiosum. Potential virulence factors of P. insidiosum, including putative effectors, were identified. Pythium insidiosum harbored an extensive repertoire of ∼ 300 elicitin domain-containing proteins. The transcriptome, presented herein, provides an invaluable resource for exploring P. insidiosum's biology, pathogenesis, and evolution. PMID:25088078

  16. Mitochondrial DNA variation reveals recent evolutionary history of main Boa constrictor clades.

    PubMed

    Hynková, Ivana; Starostová, Zuzana; Frynta, Daniel

    2009-09-01

    We sequenced a 1114-bp fragment of cytochrome b gene in six subspecies (115 samples) of Boa constrictor and detected 67 haplotypes. Our analyses revealed the presence of two distinct clades, one from Central America (CA) including the neighboring part of South America west of the Andes, and the other covering the rest of South America (SA). Sequence divergence between CA and SA clades is about 5-7%, which roughly corresponds to a separation at the time of uplift of the Colombian Andes following formation of the Panama Isthmus before 3.5 Myr Sequence divergence within the SA and CA clades is only 2-3%, suggesting a fairly recent spread of these clades Into their current geographic ranges. Thus, we may not be dealing with taxa with a markedly old evolutionary history. Because juveniles of B. constrictor feed mostly on small rodents, we hypothesized that spread of this species was allowed by a new food source represented by murold rodents that appeared after closure of the Panama portal. With respect to the taxonomy, B. c. imperator may be elevated to full species rank. Within the SA clade, a haplotype of Argentinian B. c. occidentalis is markedly distinct, while the remaining haplotype groups analyzed are distributed throughout large ranges and may all belong to a single nominotypic subspecies.

  17. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura)

    PubMed Central

    Pereyra, Martín O.; Womack, Molly C.; Barrionuevo, J. Sebastián; Blotto, Boris L.; Baldo, Diego; Targino, Mariane; Ospina-Sarria, Jhon Jairo; Guayasamin, Juan M.; Coloma, Luis A.; Hoke, Kim L.; Grant, Taran; Faivovich, Julián

    2016-01-01

    Most anurans possess a tympanic middle ear (TME) that transmits sound waves to the inner ear; however, numerous species lack some or all TME components. To understand the evolution of these structures, we undertook a comprehensive assessment of their occurrence across anurans and performed ancestral character state reconstructions. Our analysis indicates that the TME was completely lost at least 38 independent times in Anura. The inferred evolutionary history of the TME is exceptionally complex in true toads (Bufonidae), where it was lost in the most recent common ancestor, preceding a radiation of >150 earless species. Following that initial loss, independent regains of some or all TME structures were inferred within two minor clades and in a radiation of >400 species. The reappearance of the TME in the latter clade was followed by at least 10 losses of the entire TME. The many losses and gains of the TME in anurans is unparalleled among tetrapods. Our results show that anurans, and especially bufonid toads, are an excellent model to study the behavioural correlates of earlessness, extratympanic sound pathways, and the genetic and developmental mechanisms that underlie the morphogenesis of TME structures. PMID:27677839

  18. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    PubMed

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  19. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils

    PubMed Central

    Morrissey, Ember M.; Franklin, Rima B.

    2015-01-01

    Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetland soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (CO2 and CH4 production, and extracellular enzyme activity). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of α- and γ-proteobacteria in these wetland soils preferred saltwater, while many β-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences. PMID:26483764

  20. Evaluating evolutionary history in the face of high gene tree discordance in Australian Gehyra (Reptilia: Gekkonidae).

    PubMed

    Sistrom, M; Hutchinson, M; Bertozzi, T; Donnellan, S

    2014-07-01

    Species tree methods have provided improvements for estimating species relationships and the timing of diversification in recent radiations by allowing for gene tree discordance. Although gene tree discordance is often observed, most discordance is attributed to incomplete lineage sorting rather than other biological phenomena, and the causes of discordance are rarely investigated. We use species trees from multi-locus data to estimate the species relationships, evolutionary history and timing of diversification among Australian Gehyra-a group renowned for taxonomic uncertainty and showing a large degree of gene tree discordance. We find support for a recent Asian origin and two major clades: a tropically adapted clade and an arid adapted clade, with some exceptions, but no support for allopatric speciation driven by chromosomal rearrangement in the group. Bayesian concordance analysis revealed high gene tree discordance and comparisons of Robinson-Foulds distances showed that discordance between gene trees was significantly higher than that generated by topological uncertainty within each gene. Analysis of gene tree discordance and incomplete taxon sampling revealed that gene tree discordance was high whether terminal taxon or gene sampling was maximized, indicating discordance is due to biological processes, which may be important in contributing to gene tree discordance in many recently diversified organisms.

  1. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history.

    PubMed

    Boisvert, Catherine Anne

    2009-01-15

    The origin of salamanders and their interrelationships to the two other modern amphibian orders (frogs and caecilians) are problematic owing to an 80-100 million year gap in the fossil record between the Carboniferous to the Lower Jurassic. This is compounded by a scarcity of adult skeletal characters linking the early representatives of the modern orders to their stem-group in the Paleozoic. The use of ontogenetic characters can be of great use in the resolution of these questions. Growth series of all ten modern salamander families (a 120 cleared and stained larvae) were examined for pattern and timing of vertebral elements chondrification and ossification. The primitive pattern is that of the neural arches developing before the centra, while the reverse represents the derived condition. Both the primitive and derived conditions are observed within the family Hynobiidae, whereas only the derived condition is observed in all other salamanders. This provides support to the claims that Hynobiidae is both the most basal of modern families and potentially polyphyletic (with Ranodon and Hybobius forming the most basal clade and Salamandrella being a part of the most derived clade). This provides insight into a unique event in salamander evolutionary history and suggests that the developmental pattern switch occurred between the Triassic and the mid-Jurassic before the last major radiation.

  2. Evaluating evolutionary history in the face of high gene tree discordance in Australian Gehyra (Reptilia: Gekkonidae)

    PubMed Central

    Sistrom, M; Hutchinson, M; Bertozzi, T; Donnellan, S

    2014-01-01

    Species tree methods have provided improvements for estimating species relationships and the timing of diversification in recent radiations by allowing for gene tree discordance. Although gene tree discordance is often observed, most discordance is attributed to incomplete lineage sorting rather than other biological phenomena, and the causes of discordance are rarely investigated. We use species trees from multi-locus data to estimate the species relationships, evolutionary history and timing of diversification among Australian Gehyra—a group renowned for taxonomic uncertainty and showing a large degree of gene tree discordance. We find support for a recent Asian origin and two major clades: a tropically adapted clade and an arid adapted clade, with some exceptions, but no support for allopatric speciation driven by chromosomal rearrangement in the group. Bayesian concordance analysis revealed high gene tree discordance and comparisons of Robinson–Foulds distances showed that discordance between gene trees was significantly higher than that generated by topological uncertainty within each gene. Analysis of gene tree discordance and incomplete taxon sampling revealed that gene tree discordance was high whether terminal taxon or gene sampling was maximized, indicating discordance is due to biological processes, which may be important in contributing to gene tree discordance in many recently diversified organisms. PMID:24642886

  3. Evolutionary History of LINE-1 in the Major Clades of Placental Mammals

    PubMed Central

    Waters, Paul D.; Dobigny, Gauthier; Waddell, Peter J.; Robinson, Terence J.

    2007-01-01

    Background LINE-1 constitutes an important component of mammalian genomes. It has a dynamic evolutionary history characterized by the rise, fall and replacement of subfamilies. Most data concerning LINE-1 biology and evolution are derived from the human and mouse genomes and are often assumed to hold for all placentals. Methodology To examine LINE-1 relationships, sequences from the 3′ region of the reverse transcriptase from 21 species (representing 13 orders across Afrotheria, Xenarthra, Supraprimates and Laurasiatheria) were obtained from whole genome sequence assemblies, or by PCR with degenerate primers. These sequences were aligned and analysed. Principal Findings Our analysis reflects accepted placental relationships suggesting mostly lineage-specific LINE-1 families. The data provide clear support for several clades including Glires, Supraprimates, Laurasiatheria, Boreoeutheria, Xenarthra and Afrotheria. Within the afrotherian LINE-1 (AfroLINE) clade, our tree supports Paenungulata, Afroinsectivora and Afroinsectiphillia. Xenarthran LINE-1 (XenaLINE) falls sister to AfroLINE, providing some support for the Atlantogenata (Xenarthra+Afrotheria) hypothesis. Significance LINEs and SINEs make up approximately half of all placental genomes, so understanding their dynamics is an essential aspect of comparative genomics. Importantly, a tree of LINE-1 offers a different view of the root, as long edges (branches) such as that to marsupials are shortened and/or broken up. Additionally, a robust phylogeny of diverse LINE-1 is essential in testing that site-specific LINE-1 insertions, often regarded as homoplasy-free phylogenetic markers, are indeed unique and not convergent. PMID:17225861

  4. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts. PMID:27457081

  5. Conflict between genetic and phenotypic differentiation: the evolutionary history of a 'lost and rediscovered' shorebird.

    PubMed

    Rheindt, Frank E; Székely, Tamás; Edwards, Scott V; Lee, Patricia L M; Burke, Terry; Kennerley, Peter R; Bakewell, David N; Alrashidi, Monif; Kosztolányi, András; Weston, Michael A; Liu, Wei-Ting; Lei, Wei-Pan; Shigeta, Yoshimitsu; Javed, Sálim; Zefania, Sama; Küpper, Clemens

    2011-01-01

    Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind.

  6. Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans

    PubMed Central

    2013-01-01

    Background With the aim to increase the knowledge on the evolution of coleopteran genomes, we investigated through cytogenetics and nucleotide sequence analysis Mariner transposons in three Scarabaeinae species (Coprophanaeus cyanescens, C. ensifer and Diabroctis mimas). Results The cytogenetic mapping revealed an accumulation of Mariner transposon in the pericentromeric repetitive regions characterized as rich in heterochromatin and C 0 t-1 DNA fraction (DNA enriched with high and moderately repeated sequences). Nucleotide sequence analysis of Mariner revealed the presence of two major groups of Mariner copies in the three investigated coleoptera species. Conclusions The Mariner is accumulated in the centromeric area of the coleopteran chromosomes probably as a consequence of the absence of recombination in the heterochromatic regions. Our analysis detected high diversification of Mariner sequences during the evolutionary history of the group. Furthermore, comparisons between the coleopterans sequences with other insects and mammals, suggest that the horizontal transfer (HT) could have acted in the spreading of the Mariner in diverse non-related animal groups. PMID:24286129

  7. Evolutionary history of redox metal-binding domains across the tree of life.

    PubMed

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G; Bhattacharya, Debashish

    2014-05-13

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet.

  8. Evolutionary history of the Azteca-like mariner transposons and their host ants.

    PubMed

    Palomeque, Teresa; Sanllorente, Olivia; Maside, Xulio; Vela, Jesús; Mora, Pablo; Torres, María I; Periquet, Georges; Lorite, Pedro

    2015-08-01

    Three different complete mariner elements were found in the genome of the ant Tapinoma nigerrimum. One (Tnigmar-Mr) was interrupted by a 900-bp insertion that corresponded to an incomplete member of a fourth mariner element, called Azteca. In this work, we isolate and characterize full-length Tnigmar-Az elements in T. nigerrimum. The purpose of this study is to clarify the evolutionary history of Azteca elements and their hosts as well as the possible existence of horizontal transfer processes. For this, Azteca-like elements were also retrieved from the available sequences of various ant genomes, representing four different ant subfamilies: Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae. The tree topology resulting for the Azteca-like elements bore very little resemblance to that of their respective hosts. The pervasive presence of Azteca-like elements in all ant genomes, together with the observation that extant copies are usually younger than the genomes that host them, could be explained either by lineage sorting or by recent horizontal transfer of active elements. However, the finding of closer genetic relationships between elements than between the ants that host them is consistent with the latter scenario. This is clearly observed in Sinvmar-Az, Tnigmar-Az, Acepmar-Az, and Cflomar-Az elements, suggesting the existence of horizontal transfer processes. On the contrary, some elements displayed more divergence than did the hosts harboring them. This may reflect either further horizontal transfer events or random lineage sorting.

  9. Phylogenetic relationships and evolutionary history of the Mesoamerican endemic freshwater fish family Profundulidae (Cyprinodontiformes: Actinopterygii).

    PubMed

    Morcillo, Felipe; Ornelas-García, Claudia Patricia; Alcaraz, Lourdes; Matamoros, Wilfredo A; Doadrio, Ignacio

    2016-01-01

    Freshwater fishes of Profundulidae, which until now was composed of two subgenera, represent one of the few extant fish families endemic to Mesoamerica. In this study we investigated the phylogenetic relationships and evolutionary history of the eight recognized extant species (from 37 populations) of Profundulidae using three mitochondrial and one nuclear gene markers (∼2.9 Kbp). We applied a Bayesian species delimitation method as a first approach to resolving speciation patterns within Profundulidae considering two different scenarios, eight-species and twelve-species models, obtained in a previous phylogenetic analysis. Based on our results, each of the two subgenera was resolved as monophyletic, with a remarkable molecular divergence of 24.5% for mtDNA and 7.8% for nDNA uncorrected p distances, and thus we propose that they correspond to separate genera. Moreover, we propose a conservative taxonomic hypothesis with five species within Profundulus and three within Tlaloc, although both eight-species and twelve-species models were highly supported by the bayesian species delimitation analysis, providing additional evidence of higher taxonomic diversity than currently recognized in this family. According to our divergence time estimates, the family originated during the Upper Oligocene 26 Mya, and Profundulus and Tlaloc diverged in the Upper Oligocene or Lower Miocene about 20 Mya. PMID:26364972

  10. Evolutionary History and Conservation Status of Cave Crayfishes Along the Cumberland Plateau

    NASA Astrophysics Data System (ADS)

    Buhay, J. E.; Crandall, K. A.

    2005-05-01

    Obligate cave-dwelling crayfish species are found only in southeastern United States, Mexico, and Cuba. Most species are considered to be endangered because of surface pollution threats to groundwater and small geographic distributions. There are currently three subterranean species of the genus Orconectes found along the Cumberland Plateau, a worldwide hotspot of cave biodiversity. The objectives of my dissertation research are to: 1) delineate species' boundaries using molecular genetic data in a phylogenetic framework, 2) examine evolutionary history of each species using Nested Clade Analysis, and 3) assess conservation status of each species using measures of effective population size and genetic diversity. This research project has uncovered a new species of cave crayfish along the border of Tennessee and Kentucky, an area previously thought to have "intergrades" between two subspecies of O. australis. It appears that Cambarus gentryi, a surface-dwelling burrowing species, is the closest living ancestor to the cave Orconectes assemblage on the Plateau. The origin appears to be Eastern Kentucky, with range expansions occuring southward down the Plateau. Although controversial, these cave species exhibit high levels of genetic diversity, especially in comparison to surface-dwellers. Conservation efforts should focus on protecting `high-traffic' areas to maintain gene flow and prevent isolation.

  11. Geologic framework, evolutionary history, and distribution of hydrocarbon in Jizhong depression

    SciTech Connect

    Zha, Q.

    1983-03-01

    North China basin is a large Mesozoic to Cenozoic sedimentary basin in eastern China. A result of strong block-faulting activities, the inner part of the basin reveals the characteristics of multiple uplifts and depressions. Each depression is generally an independent exploration unit. The practice of exploration in recent years has proved the following: taking each depression as an individual unit, the basic geologic framework and evolutionary history are quickly determined. This is very important in order to achieve the best effects in petroleum exploration. Jizhong depression is located at the western part of the North China basin. This area is about 25,000 km/sup 2/ (9650 mi/sup 2/). Extensive seismic surveys and several hundred exploration wells have been completed during the past few years, resulting in the discovery of Renqiu and other oil fields. Taking the Jizhong depression as an example, the writer has considered the four following problems: Pre-Tertiary fault blocks and their distributional form, Some characteristics of block-faulting activities; Block-faulting in relation to the controlling of Tertiary sediments and structures; and the types of oil and/or gas pools. In the future, the exploration of the buried-hill gas or oil pools will continue. This should expedite the exploration for the other two types of oil or gas pools. In addition, we should pay much attention to exploration for Tertiary stratigraphic-lithologic oil or gas pools.

  12. On the evolutionary history of Ephedra: Cretaceous fossils and extant molecules

    PubMed Central

    Rydin, Catarina; Pedersen, Kaj Raunsgaard; Friis, Else Marie

    2004-01-01

    Gnetales comprise three unusual genera of seed plants, Ephedra, Gnetum, and Welwitschia. Their extraordinary morphological diversity suggests that they are survivors of an ancient, more diverse group. Gnetalean antiquity is also supported by fossil data. Dispersed “ephedroid” (polyplicate) pollen first appeared in the Permian >250 million years ago (Myr), and a few megafossils document the presence of gnetalean features in the early Cretaceous. The Cretaceous welwitschioid seedling Cratonia cotyledon dates the split between Gnetum and Welwitschia to before 110 Myr. Ages and character evolution of modern diversity are, however, controversial, and, based on molecular data, it has recently been suggested that Ephedra is very young, only 8–32 Myr. Here, we present data on the evolutionary history of Ephedra. Fossil seeds from Buarcos, Portugal, unequivocally link one type of Cretaceous polyplicate pollen to Ephedra and document that plants with unique characters, including the peculiar naked male gametophyte, were established already in the Early Cretaceous. Clades in our molecular phylogeny of extant species correspond to geographical regions, with African species in a basal grade/clade. The study demonstrates extremely low divergence in both molecular and morphological characters in Ephedra. Features observed in the fossils are present in all major extant clades, showing that modern species have retained unique reproductive characters for >110 million years. A recent origin of modern species of Ephedra would imply that the Cretaceous Ephedra fossils discussed here were members of widespread, now extinct sister lineage(s), and that no morphological innovations characterized the second diversification. PMID:15545612

  13. Evolutionary history of redox metal-binding domains across the tree of life.

    PubMed

    Harel, Arye; Bromberg, Yana; Falkowski, Paul G; Bhattacharya, Debashish

    2014-05-13

    Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet. PMID:24778258

  14. Multilocus sequence typing of hospital-associated Enterococcus faecium from Brazil reveals their unique evolutionary history.

    PubMed

    Titze-de-Almeida, Ricardo; Van Belkum, Alex; Felipe, Maria Sueli Soares; Zanella, Rosemeire C; Top, Janetta; Willems, Rob J L

    2006-01-01

    We studied the genetic relationships between vancomycin-susceptible (n = 11) and -resistant Enterococcus faecium (VRE, n = 20) recovered from Brazil using a multilocus sequence typing (MLST) scheme. Grouping of allelic profiles revealed six clusters of related sequence types (STs) that differ in no more than two of the seven alleles. Of these, one cluster harbored 16 of the 20 isolates recovered during the first VRE outbreak in Brazil. The ampicillin and gentamicin resistance profiles were stable in the isolates that clustered within the groups I-III. Comparison with the allelic profiles of 139 E. faecium from different geographical regions and origins found in the international database http://www.mlst.net revealed that the Brazilian outbreak clone did not cluster in the previously named complex-17. This genetic complex contains hospital epidemic and clinical isolates recovered from different countries and continents. Twenty two of the 31 Brazilian isolates, including the VRE outbreak clone, clustered apart from the E. faecium isolates from the database, suggesting that these Brazilian isolates have a distinct evolutionary history. PMID:16922628

  15. Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents.

    PubMed

    Sallam, Hesham M; Seiffert, Erik R; Steiper, Michael E; Simons, Elwyn L

    2009-09-29

    The early evolutionary and paleobiogeographic history of the diverse rodent clade Hystricognathi, which contains Hystricidae (Old World porcupines), Caviomorpha (the endemic South American rodents), and African Phiomorpha (cane rats, dassie rats, and blesmols) is of great interest to students of mammalian evolution, but remains poorly understood because of a poor early fossil record. Here we describe the oldest well-dated hystricognathous rodents from an earliest late Eocene (approximately 37 Ma) fossil locality in the Fayum Depression of northern Egypt. These taxa exhibit a combination of primitive and derived features, the former shared with Asian "baluchimyine" rodents, and the latter shared with Oligocene phiomorphs and caviomorphs. Phylogenetic analysis incorporating morphological, temporal, geographic, and molecular information places the new taxa as successive sister groups of crown Hystricognathi, and supports an Asian origin for stem Hystricognathi and an Afro-Arabian origin for crown Hystricognathi, stem Hystricidae, and stem Caviomorpha. Molecular dating of early divergences within Hystricognathi, using a Bayesian "relaxed clock" approach and multiple fossil calibrations, suggests that the split between Hystricidae and the phiomorph-caviomorph clade occurred approximately 39 Ma, and that phiomorphs and caviomorphs diverged approximately 36 Ma. These results are remarkably congruent with our phylogenetic results and the fossil record of hystricognathous rodent evolution in Afro-Arabia and South America. PMID:19805363

  16. Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates.

    PubMed

    Lukes, Julius; Leander, Brian S; Keeling, Patrick J

    2009-06-16

    The majority of eukaryotic diversity is hidden in protists, yet our current knowledge of processes and structures in the eukaryotic cell is almost exclusively derived from multicellular organisms. The increasing sensitivity of molecular methods and growing interest in microeukaryotes has only recently demonstrated that many features so far considered to be universal for eukaryotes actually exist in strikingly different versions. In other words, during their long evolutionary histories, protists have solved general biological problems in many more ways than previously appreciated. Interestingly, some groups have broken more rules than others, and the Euglenozoa and the Alveolata stand out in this respect. A review of the numerous odd features in these 2 groups allows us to draw attention to the high level of convergent evolution in protists, which perhaps reflects the limits that certain features can be altered. Moreover, the appearance of one deviation in an ancestor can constrain the set of possible downstream deviations in its descendents, so features that might be independent functionally, can still be evolutionarily linked. What functional advantage may be conferred by the excessive complexity of euglenozoan and alveolate gene expression, organellar genome structure, and RNA editing and processing has been thoroughly debated, but we suggest these are more likely the products of constructive neutral evolution, and as such do not necessarily confer any selective advantage at all.

  17. The Evolutionary History of Daphniid α-Carbonic Anhydrase within Animalia

    PubMed Central

    Culver, Billy W.; Morton, Philip K.

    2015-01-01

    Understanding the mechanisms that drive acid-base regulation in organisms is important, especially for organisms in aquatic habitats that experience rapidly fluctuating pH conditions. Previous studies have shown that carbonic anhydrases (CAs), a family of zinc metalloenzymes, are responsible for acid-base regulation in many organisms. Through the use of phylogenetic tools, this present study attempts to elucidate the evolutionary history of the α-CA superfamily, with particular interest in the emerging model aquatic organism Daphnia pulex. We provide one of the most extensive phylogenies of the evolution of α-CAs, with the inclusion of 261 amino acid sequences across taxa ranging from Cnidarians to Homo sapiens. While the phylogeny supports most of our previous understanding on the relationship of how α-CAs have evolved, we find that, contrary to expectations, amino acid conservation with bacterial α-CAs supports the supposition that extracellular α-CAs are the ancestral state of animal α-CAs. Furthermore, we show that two cytosolic and one GPI-anchored α-CA in Daphnia genus have homologs in sister taxa that are possible candidate genes to study for acid-base regulation. In addition, we provide further support for previous findings of a high rate of gene duplication within Daphnia genus, as compared with other organisms. PMID:25893130

  18. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    PubMed Central

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  19. Skipping across the tropics: the evolutionary history of sawtail surgeonfishes (Acanthuridae: Prionurus).

    PubMed

    Ludt, William B; Rocha, Luiz A; Erdmann, Mark V; Chakrabarty, Prosanta

    2015-03-01

    Fishes described as "anti-equatorial" have disjunct distributions, inhabiting temperate habitat patches on both sides of the tropics. Several alternative hypotheses suggest how and when species with disjunct distributions crossed uninhabitable areas, including: ancient vicariant events, competitive exclusion from the tropics, and more recent dispersal during Pliocene and Pleistocene glacial periods. Surgeonfishes in the genus Prionurus can provide novel insight into this pattern as its member species have disjunct distributions inhabiting either temperate latitudes, cold-water upwellings in the tropics, or low diversity tropical reef ecosystems. Here the evolutionary history and historical biogeography of Prionurus is examined using a dataset containing both mitochondrial and nuclear data for all seven extant species. Our results indicate that Prionurus is monophyletic and Miocene in origin. Several relationships remain problematic, including the placement of the Australian P. microlepidotus, and the relationship between P. laticlavius and P. punctatus. Equatorial divergence events between temperate western Pacific habitats occurred at least twice in Prionurus: once in the Miocene and again in the late Pliocene/early Pleistocene. Three species with tropical affinities, P. laticlavius, P. punctatus, and P. biafraensis, form a clade that originated in the Pliocene. These results suggest that a variety of mechanisms may regulate the disjunct distribution of temperate fishes, and provide support for both older and younger equatorial crossing events. They also suggest that interspecific competitive exclusion may be influential in fishes with "anti-equatorial" distributions.

  20. Unraveling the evolutionary history of the Chilostoma Fitzinger, 1833 (Mollusca, Gastropoda, Pulmonata) lineages in Greece.

    PubMed

    Psonis, Nikolaos; Vardinoyannis, Katerina; Mylonas, Moisis; Poulakakis, Nikos

    2015-10-01

    The land snails of the genus Chilostoma Fitzinger, 1833 that includes, in Greece, the (sub)genera Cattania, Josephinella and Thiessea, are highly diversified and present high levels of endemism. However, their evolutionary history is unknown and their taxonomy is complex and continuously revised. The aim of this study is to investigate the phylogenetic relationships of the lineages of the genus Chilostoma distributed in Greece based on partial DNA sequences of two mitochondrial DNA (16S rRNA and COI) genes. Complete sequences of one nuclear gene (ITS1) representing the major mitochondrial lineages were also analyzed. The phylogenetic trees revealed three distinct major clades that correspond to the three (sub)genera. Several taxonomical incongruencies were made obvious, thus, raising questions about the "true" number of species in each clade, while rendering a taxonomic re-evaluation necessary. From a phylogeographic point of view, it seems that the three major phylogenetic clades were separated in the late Miocene. They started differentiating into distinct species during the Pliocene and Pleistocene through several vicariance and dispersal events.

  1. Evolutionary history of Indian Ocean nycteribiid bat flies mirroring the ecology of their hosts.

    PubMed

    Tortosa, Pablo; Dsouli, Najla; Gomard, Yann; Ramasindrazana, Beza; Dick, Carl W; Goodman, Steven M

    2013-01-01

    Bats and their parasites are increasingly investigated for their role in maintenance and transmission of potentially emerging pathogens. The islands of the western Indian Ocean hold nearly 50 bat species, mostly endemic and taxonomically well studied. However, investigation of associated viral, bacterial, and external parasites has lagged behind. In the case of their ectoparasites, more detailed information should provide insights into the evolutionary history of their hosts, as well as pathogen cycles in these wild animals. Here we investigate species of Nycteribiidae, a family of obligate hematophagous wingless flies parasitizing bats. Using morphological and molecular approaches, we describe fly species diversity sampled on Madagascar and the Comoros for two cave-roosting bat genera with contrasting ecologies: Miniopterus and Rousettus. Within the sampling area, 11 endemic species of insect-feeding Miniopterus occur, two of which are common to Madagascar and Comoros, while fruit-consuming Rousettus are represented by one species endemic to each of these zones. Morphological and molecular characterization of flies reveals that nycteribiids associated with Miniopterus bats comprise three species largely shared by most host species. Flies of M. griveaudi, one of the two bats found on Madagascar and certain islands in the Comoros, belong to the same taxon, which accords with continued over-water population exchange of this bat species and the lack of inter-island genetic structuring. Flies parasitizing Rousettus belong to two distinct species, each associated with a single host species, again in accordance with the distribution of each endemic bat species.

  2. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history.

    PubMed

    Boisvert, Catherine Anne

    2009-01-15

    The origin of salamanders and their interrelationships to the two other modern amphibian orders (frogs and caecilians) are problematic owing to an 80-100 million year gap in the fossil record between the Carboniferous to the Lower Jurassic. This is compounded by a scarcity of adult skeletal characters linking the early representatives of the modern orders to their stem-group in the Paleozoic. The use of ontogenetic characters can be of great use in the resolution of these questions. Growth series of all ten modern salamander families (a 120 cleared and stained larvae) were examined for pattern and timing of vertebral elements chondrification and ossification. The primitive pattern is that of the neural arches developing before the centra, while the reverse represents the derived condition. Both the primitive and derived conditions are observed within the family Hynobiidae, whereas only the derived condition is observed in all other salamanders. This provides support to the claims that Hynobiidae is both the most basal of modern families and potentially polyphyletic (with Ranodon and Hybobius forming the most basal clade and Salamandrella being a part of the most derived clade). This provides insight into a unique event in salamander evolutionary history and suggests that the developmental pattern switch occurred between the Triassic and the mid-Jurassic before the last major radiation. PMID:19025964

  3. Resolving the Evolutionary History of Campanula (Campanulaceae) in Western North America

    PubMed Central

    Wendling, Barry M.; Galbreath, Kurt E.; DeChaine, Eric G.

    2011-01-01

    Recent phylogenetic works have begun to address long-standing questions regarding the systematics of Campanula (Campanulaceae). Yet, aspects of the evolutionary history, particularly in northwestern North America, remain unresolved. Thus, our primary goal in this study was to infer the phylogenetic positions of northwestern Campanula species within the greater Campanuloideae tree. We combined new sequence data from 5 markers (atpB, rbcL, matK, and trnL-F regions of the chloroplast and the nuclear ITS) representing 12 species of Campanula with previously published datasets for worldwide campanuloids, allowing us to include approximately 75% of North American Campanuleae in a phylogenetic analysis of the Campanuloideae. Because all but one of North American Campanula species are nested within a single campanuloid subclade (the Rapunculus clade), we conducted a separate set of analyses focused specifically on this group. Our findings show that i) the campanuloids have colonized North America at least 6 times, 4 of which led to radiations, ii) all but one North American campanuloid are nested within the Rapunculus clade, iii) in northwestern North America, a C. piperi – C. lasiocarpa ancestor gave rise to a monophyletic Cordilleran clade that is sister to a clade containing C. rotundifolia, iv) within the Cordilleran clade, C. parryi var. parryi and C. parryi var. idahoensis exhibit a deep, species-level genetic divergence, and v) C. rotundifolia is genetically diverse across its range and polyphyletic. Potential causes of diversification and endemism in northwestern North America are discussed. PMID:21931605

  4. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions

    PubMed Central

    2011-01-01

    Background Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Results Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Conclusions Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2

  5. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data

    PubMed Central

    2014-01-01

    , externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult’s flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories. PMID:24646345

  6. Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis.

    PubMed

    Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Piñeiro-Hermida, Sergio; Arriba-Barredo, Miren; Villanueva-Millán, María Jesús; M de Pancorbo, Marian

    2015-01-01

    The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies. PMID:26659590

  7. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution

    PubMed Central

    Murtagh, Veronica J.; O'Meally, Denis; Sankovic, Natasha; Delbridge, Margaret L.; Kuroki, Yoko; Boore, Jeffrey L.; Toyoda, Atsushi; Jordan, Kristen S.; Pask, Andrew J.; Renfree, Marilyn B.; Fujiyama, Asao; Graves, Jennifer A. Marshall; Waters, Paul D.

    2012-01-01

    We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis–brain expressed genes on the X. PMID:22128133

  8. A comparative phylogeographic study reveals discordant evolutionary histories of alpine ground beetles (Coleoptera, Carabidae).

    PubMed

    Weng, Yi-Ming; Yang, Man-Miao; Yeh, Wen-Bin

    2016-04-01

    Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain-island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice-free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain-island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long-term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65-1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges. PMID:27066226

  9. Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis

    PubMed Central

    Cardoso, Sergio; Palencia-Madrid, Leire; Piñeiro-Hermida, Sergio; Arriba-Barredo, Miren; Villanueva-Millán, María Jesús; M. de Pancorbo, Marian

    2015-01-01

    The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies. PMID:26659590

  10. Evolutionary history and novel biotic interactions determine plant responses to elevated CO2 and nitrogen fertilization.

    PubMed

    Wooliver, Rachel; Senior, John K; Schweitzer, Jennifer A; O'Reilly-Wapstra, Julianne M; Langley, J Adam; Chapman, Samantha K; Bailey, Joseph K

    2014-01-01

    evolutionary history and introduced species will shape community productivity in a changing world.

  11. Taxonomic affinities and evolutionary history of the Early Pleistocene hominids of Java: dentognathic evidence.

    PubMed

    Kaifu, Yousuke; Baba, Hisao; Aziz, Fachroel; Indriati, Etty; Schrenk, Friedemann; Jacob, Teuku

    2005-12-01

    Temporal changes, within-group variation, and phylogenetic positions of the Early Pleistocene Javanese hominids remain unclear. Recent debate focused on the age of the oldest Javanese hominids, but the argument so far includes little morphological basis for the fossils. To approach these questions, we analyzed a comprehensive dentognathic sample from Sangiran, which includes most of the existing hominid mandibles and teeth from the Early Pleistocene of Java. The sample was divided into chronologically younger and older groups. We examined morphological differences between these chronological groups, and investigated their affinities with other hominid groups from Africa and Eurasia. The results indicated that 1) there are remarkable morphological differences between the chronologically younger and older groups of Java, 2) the chronologically younger group is morphologically advanced, showing a similar degree of dentognathic reduction to that of Middle Pleistocene Chinese H. erectus, and 3) the chronologically older group exhibits some features that are equally primitive as or more primitive than early H. erectus of Africa. These findings suggest that the evolutionary history of early Javanese H. erectus was more dynamic than previously thought. Coupled with recent discoveries of the earliest form of H. erectus from Dmanisi, Georgia, the primitive aspects of the oldest Javanese hominid remains suggest that hominid groups prior to the grade of ca. 1.8-1.5 Ma African early H. erectus dispersed into eastern Eurasia during the earlier Early Pleistocene, although the age of the Javanese hominids themselves is yet to be resolved. Subsequent periods of the Early Pleistocene witnessed remarkable changes in the Javanese hominid record, which are ascribed either to significant in situ evolution or replacement of populations.

  12. Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis.

    PubMed

    Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Piñeiro-Hermida, Sergio; Arriba-Barredo, Miren; Villanueva-Millán, María Jesús; M de Pancorbo, Marian

    2015-01-01

    The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies.

  13. Characterization and depositional and evolutionary history of the Apollo 17 deep drill core

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Lauer, H. V., Jr.; Gose, W. A.

    1979-01-01

    With a depth resolution of about 0.5 cm, the stratigraphy of the approximately 3 m Apollo 17 deep drill core by measurement of the total FeO concentration is characterized along with the FMR surface exposure (maturity) index Is/FeO, the metallic iron concentration Fe-vsm, and the FMR linewidth delta-H. For stratigraphic characterization, the first two parameters are the most important. Most of the core is characterized by a FeO concentration of approximately 15.5 wt. %; there is a more mafic zone in the upper approximately 75 cm where the maximum FeO concentration is approximately 18.5 wt. %, and a more felsic zone between approximately 225 and 260 cm where the minimum FeO concentration is approximately 14.0%. As indicated by Is/FeO, most of the soil in the core is submature to mature; the only immature zone is located between approximately 20 and 60 cm and is one of the most distinctive features in the core. A two stage model for the depositional and evolutionary history of the Apollo 17 deep drill core is proposed: (1) deposition by one event approximately 110 m.y. ago or deposition by a sequence of closely spaced events initating a maximum of approximately 200 m.y. ago and terminating approximately 110 m.y. ago, (2) in situ reworking (gardening) to a depth of approximately 26 cm in the period between approximately 110 m.y. ago and the present day.

  14. The evolutionary history of the allopolyploid Squalius alburnoides (Cyprinidae) complex in the northern Iberian Peninsula

    PubMed Central

    Cunha, C; Doadrio, I; Abrantes, J; Coelho, M M

    2011-01-01

    Understanding the population structure, population dynamics and processes that give rise to polyploidy and helps to maintain it is central to our knowledge of the evolution of asexual vertebrates. Previous studies revealed high genetic diversity and several reproductive pathways in the southern populations of the Squalius alburnoides hybrid complex. In contrast, lower genetic variability and the associated limited chance of introducing new genetic combinations may threaten the survival of the northern Mondego populations. We analysed the genetic diversity and structure of nine populations of S. alburnoides in the Iberian Peninsula using microsatellite loci to provide further insights on the evolutionary history of this complex. Special attention was given to the less-studied northern populations (Mondego and Douro basins). Marked population structure, a high frequency of private alleles and a high diversity of some biotypes in the Douro basin indicate that some northern populations may not be at high risk of extinction, contrary to what was expected. The genetic diversity found in the northern Douro populations contradicts the general trend of remarkable genetic impoverishment northwards that occurs in other species and regions. The results indicate the possible existence of a glacial refugium in the Rabaçal River, corroborating findings in other species of this region. Historical events seem to have affected the geographical patterns of genetic variability found among and within the northern and southern populations of this complex and contributed to different patterns of genome composition. Therefore, historical events might have a major role in the long-term persistence of some polyploid hybrid taxa. PMID:20531449

  15. Molecular phylogenetics and evolutionary history of ariid catfishes revisited: a comprehensive sampling

    PubMed Central

    Betancur-R, Ricardo

    2009-01-01

    Background Ariids or sea catfishes are one of the two otophysan fish families (out of about 67 families in four orders) that inhabit mainly marine and brackish waters (although some species occur strictly in fresh waters). The group includes over 150 species placed in ~29 genera and two subfamilies (Galeichthyinae and Ariinae). Despite their global distribution, ariids are largely restricted to the continental shelves due in part to their specialized reproductive behavior (i.e., oral incubation). Thus, among marine fishes, ariids offer an excellent opportunity for inferring historical biogeographic scenarios. Phylogenetic hypotheses available for ariids have focused on restricted geographic areas and comprehensive phylogenies are still missing. This study inferred phylogenetic hypotheses for 123 ariid species in 28 genera from different biogeographic provinces using both mitochondrial and nuclear sequences (up to ~4 kb). Results While the topologies obtained support the monophyly of basal groups, up to ten genera validated in previous morphological studies were incongruent with the molecular topologies. New World ariines were recovered as paraphyletic and Old World ariines were grouped into a well-supported clade that was further divided into subclades mainly restricted to major Gondwanan landmasses. A general area cladogram derived from the area cladograms of ariines and three other fish groups was largely congruent with the geological area cladogram of Gondwana. Nonetheless, molecular clock estimations provided variable results on the timing of ariine diversification (~105-41 mya). Conclusion This study provides the most comprehensive phylogeny of sea catfishes to date and highlights the need for re-assessment of their classification. While from a topological standpoint the evolutionary history of ariines is mostly congruent with vicariance associated with the sequence of events during Gondwanan fragmentation, ambiguous divergence time estimations hinders

  16. A comparative phylogeographic study reveals discordant evolutionary histories of alpine ground beetles (Coleoptera, Carabidae).

    PubMed

    Weng, Yi-Ming; Yang, Man-Miao; Yeh, Wen-Bin

    2016-04-01

    Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain-island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice-free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain-island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long-term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65-1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.

  17. One Species, Three Pleistocene Evolutionary Histories: Phylogeography of the Italian Crested Newt, Triturus carnifex

    PubMed Central

    Canestrelli, Daniele; Salvi, Daniele; Maura, Michela; Bologna, Marco A.; Nascetti, Giuseppe

    2012-01-01

    Phylogeographic patterns of temperate species from the Mediterranean peninsulas have been investigated intensively. Nevertheless, as more phylogeographies become available, either unique patterns or new lines of concordance continue to emerge, providing new insights on the evolution of regional biotas. Here, we investigated the phylogeography and evolutionary history of the Italian crested newt, Triturus carnifex, through phylogenetic, molecular dating and population structure analyses of two mitochondrial gene fragments (ND2 and ND4; overall 1273 bp). We found three main mtDNA lineages having parapatric distribution and estimated divergence times between Late Pliocene and Early Pleistocene. One lineage (S) was widespread south of the northern Apennine chain and was further geographically structured into five sublineages, likely of Middle Pleistocene origin. The second lineage (C) was widespread throughout the Padano–Venetian plain and did not show a clear phylogeographic structure. The third lineage (N) was observed in only two populations located on western Croatia/Slovenia. Results of analysis of molecular variance suggested that partitioning populations according to the geographic distribution of these lineages and sublineages explains 76% of the observed genetic variation. The phylogeographic structure observed within T. carnifex and divergence time estimates among its lineages, suggest that responses to Pleistocene environmental changes in this single species have been as diverse as those found previously among several codistributed temperate species combined. Consistent with the landscape heterogeneity, physiographic features, and palaeogeographical evolution of its distribution range, these responses encompass multiple refugia along the Apennine chain, lowland refugia in large peri-coastal plains, and a ‘cryptic’ northern refugium. PMID:22848590

  18. The Evolutionary History of Sarco(endo)plasmic Calcium ATPase (SERCA)

    PubMed Central

    Altshuler, Ianina; Vaillant, James J.; Xu, Sen; Cristescu, Melania E.

    2012-01-01

    Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na+/K+ transporters, H+/K+ transporters, and plasma membrane Ca2+ pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca2+ into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain. PMID:23285113

  19. The evolutionary history of sarco(endo)plasmic calcium ATPase (SERCA).

    PubMed

    Altshuler, Ianina; Vaillant, James J; Xu, Sen; Cristescu, Melania E

    2012-01-01

    Investigating the phylogenetic relationships within physiologically essential gene families across a broad range of taxa can reveal the key gene duplication events underlying their family expansion and is thus important to functional genomics studies. P-Type II ATPases represent a large family of ATP powered transporters that move ions across cellular membranes and includes Na(+)/K(+) transporters, H(+)/K(+) transporters, and plasma membrane Ca(2+) pumps. Here, we examine the evolutionary history of one such transporter, the Sarco(endo)plasmic reticulum calcium ATPase (SERCA), which maintains calcium homeostasis in the cell by actively pumping Ca(2+) into the sarco(endo)plasmic reticulum. Our protein-based phylogenetic analyses across Eukaryotes revealed two monophyletic clades of SERCA proteins, one containing animals, fungi, and plants, and the other consisting of plants and protists. Our analyses suggest that the three known SERCA proteins in vertebrates arose through two major gene duplication events after the divergence from tunicates, but before the separation of fishes and tetrapods. In plants, we recovered two SERCA clades, one being the sister group to Metazoa and the other to Apicomplexa clade, suggesting an ancient duplication in an early eukaryotic ancestor, followed by subsequent loss of one copy in Opisthokonta, the other in protists, and retention of both in plants. We also report relatively recent and independent gene duplication events within invertebrate taxa including tunicates and the leech Helobdella robusta. Thus, it appears that both ancient and recent gene duplication events have played an important role in the evolution of this ubiquitous gene family across the eukaryotic domain.

  20. Joint palaeoclimate reconstruction from pollen data via forward models and climate histories

    NASA Astrophysics Data System (ADS)

    Parnell, Andrew C.; Haslett, John; Sweeney, James; Doan, Thinh K.; Allen, Judy R. M.; Huntley, Brian

    2016-11-01

    We present a method and software for reconstructing palaeoclimate from pollen data with a focus on accounting for and reducing uncertainty. The tools we use include: forward models, which enable us to account for the data generating process and hence the complex relationship between pollen and climate; joint inference, which reduces uncertainty by borrowing strength between aspects of climate and slices of the core; and dynamic climate histories, which allow for a far richer gamut of inferential possibilities. Through a Monte Carlo approach we generate numerous equally probable joint climate histories, each of which is represented by a sequence of values of three climate dimensions in discrete time, i.e. a multivariate time series. All histories are consistent with the uncertainties in the forward model and the natural temporal variability in climate. Once generated, these histories can provide most probable climate estimates with uncertainty intervals. This is particularly important as attention moves to the dynamics of past climate changes. For example, such methods allow us to identify, with realistic uncertainty, the past century that exhibited the greatest warming. We illustrate our method with two data sets: Laguna de la Roya, with a radiocarbon dated chronology and hence timing uncertainty; and Lago Grande di Monticchio, which contains laminated sediment and extends back to the penultimate glacial stage. The procedure is made available via an open source R package, Bclim, for which we provide code and instructions.

  1. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases.

    PubMed

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-01-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  2. Evolutionary history of human disease genes reveals phenotypic connections and comorbidity among genetic diseases

    NASA Astrophysics Data System (ADS)

    Park, Solip; Yang, Jae-Seong; Kim, Jinho; Shin, Young-Eun; Hwang, Jihye; Park, Juyong; Jang, Sung Key; Kim, Sanguk

    2012-10-01

    The extent to which evolutionary changes have impacted the phenotypic relationships among human diseases remains unclear. In this work, we report that phenotypically similar diseases are connected by the evolutionary constraints on human disease genes. Human disease groups can be classified into slowly or rapidly evolving classes, where the diseases in the slowly evolving class are enriched with morphological phenotypes and those in the rapidly evolving class are enriched with physiological phenotypes. Our findings establish a clear evolutionary connection between disease classes and disease phenotypes for the first time. Furthermore, the high comorbidity found between diseases connected by similar evolutionary constraints enables us to improve the predictability of the relative risk of human diseases. We find the evolutionary constraints on disease genes are a new layer of molecular connection in the network-based exploration of human diseases.

  3. Evolutionary history of larval skeletal morphology in sea urchin Echinometridae (Echinoidea: Echinodermata) as deduced from mitochondrial DNA molecular phylogeny.

    PubMed

    Kinjo, Sonoko; Shirayama, Yoshihisa; Wada, Hiroshi

    2008-01-01

    The larval skeletons of sea urchins show considerable morphological diversity, even between closely related species, although the evolutionary history and functional significance of this diversity are poorly understood. To infer the evolutionary history of the skeletal morphology, we focused on echinometrid species for which the morphological variation in larval skeletons had been investigated qualitatively and quantitatively. We reconstructed the phylogenetic relationships among 14 echinometrid species based on mitochondrial ND1 and ND2 genes and mapped the morphological characters onto the resultant trees. The monophyly of each genus in the Echinometridae was well supported by our results, as was the close affinity between Colobocentrotus, Heterocentrotus, and Echinometra. The mapping of the morphological characters of the larval skeletons indicated that the length, direction, and density of spines on the postoral rods was well conserved in each group of Echinometridae and that the abundance of spines and the size and shape of the body skeleton changed relatively frequently and hence were less conserved. In Echinometrid species, morphological variation in relatively unconserved features tends to be associated with latitudinal distributions, rather than phylogenetic relationships, indicating that the morphological diversity of larval skeletons could have been caused by adaptation to the habitat environment. Some morphological differences, however, seem to be nonfunctional and generated by the constraints on larval skeletogenesis. Thus, echinometrid species can be a good model with which to study the evolutionary history from both ecological and developmental standpoints. PMID:18803780

  4. How much can history constrain adaptive evolution? A real-time evolutionary approach of inversion polymorphisms in Drosophila subobscura.

    PubMed

    Fragata, I; Lopes-Cunha, M; Bárbaro, M; Kellen, B; Lima, M; Santos, M A; Faria, G S; Santos, M; Matos, M; Simões, P

    2014-12-01

    Chromosomal inversions are present in a wide range of animals and plants, having an important role in adaptation and speciation. Although empirical evidence of their adaptive value is abundant, the role of different processes underlying evolution of chromosomal polymorphisms is not fully understood. History and selection are likely to shape inversion polymorphism variation to an extent yet largely unknown. Here, we perform a real-time evolution study addressing the role of historical constraints and selection in the evolution of these polymorphisms. We founded laboratory populations of Drosophila subobscura derived from three locations along the European cline and followed the evolutionary dynamics of inversion polymorphisms throughout the first 40 generations. At the beginning, populations were highly differentiated and remained so throughout generations. We report evidence of positive selection for some inversions, variable between foundations. Signs of negative selection were more frequent, in particular for most cold-climate standard inversions across the three foundations. We found that previously observed convergence at the phenotypic level in these populations was not associated with convergence in inversion frequencies. In conclusion, our study shows that selection has shaped the evolutionary dynamics of inversion frequencies, but doing so within the constraints imposed by previous history. Both history and selection are therefore fundamental to predict the evolutionary potential of different populations to respond to global environmental changes.

  5. Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks.

    PubMed

    Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R

    2015-07-01

    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant-herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen

  6. Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree–herbivore networks

    PubMed Central

    Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R

    2015-01-01

    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen

  7. Classification of metatarsophalangeal joint plantar plate injuries: history and physical examination variables.

    PubMed

    Nery, Caio; Coughlin, Michael J; Baumfeld, Daniel; Raduan, Fernando C; Mann, Tania Szejnfeld; Catena, Fernanda

    2014-01-01

    Although metatarsophalangeal (MTP) plantar plate tears are common, they are still often missed. The purpose of this study is to find the best clinical variables to define and grade the plantar plate injuries. Sixty-eight patients (100 MTP joints) were graded arthroscopically and divided into five groups (0 to IV) according to the anatomical classification. Their medical records were reviewed to establish correlations of clinical findings with the anatomical lesions. The positive correlations found were acute pain, widening of the interdigital space, loss of ground touch, positivity of the MTP joint drawer test, reduction of the toe purchase, and toe supination. The drawer test is the most reliable and accurate tool to classify and grade the plantar plate lesion, followed by ground touch and rotational deformities. It is possible to improve the accuracy of diagnosis of plantar plate tears by means of the combination of both clinical history and physical examination data.

  8. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum.

    PubMed

    Kelly, Amy; Proctor, Robert H; Belzile, Francois; Chulze, Sofia N; Clear, Randall M; Cowger, Christina; Elmer, Wade; Lee, Theresa; Obanor, Friday; Waalwijk, Cees; Ward, Todd J

    2016-10-01

    Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective

  9. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum.

    PubMed

    Kelly, Amy; Proctor, Robert H; Belzile, Francois; Chulze, Sofia N; Clear, Randall M; Cowger, Christina; Elmer, Wade; Lee, Theresa; Obanor, Friday; Waalwijk, Cees; Ward, Todd J

    2016-10-01

    Fusarium graminearum and 21 related species comprising the F. sambucinum species complex lineage 1 (FSAMSC-1) are the most important Fusarium Head Blight pathogens of cereal crops world-wide. FSAMSC-1 species typically produce type B trichothecenes. However, some F. graminearum strains were recently found to produce a novel type A trichothecene (NX-2) resulting from functional variation in the trichothecene biosynthetic enzyme Tri1. We used a PCR-RFLP assay targeting the TRI1 gene to identify the NX-2 allele among a global collection of 2515 F. graminearum. NX-2 isolates were only found in southern Canada and the northern U.S., where they were observed at low frequency (1.8%), but over a broader geographic range and set of cereal hosts than previously recognized. Phylogenetic analyses of TRI1 and adjacent genes produced gene trees that were incongruent with the history of species divergence within FSAMSC-1, indicating trans-species evolution of ancestral polymorphism. In addition, placement of NX-2 strains in the TRI1 gene tree was influenced by the accumulation of nonsynonymous substitutions associated with the evolution of the NX-2 chemotype, and a significant (P<0.001) change in selection pressure was observed along the NX-2 branch (ω=1.16) in comparison to other branches (ω=0.17) in the TRI1 phylogeny. Parameter estimates were consistent with positive selection for specific amino-acid changes during the evolution of NX-2, but direct tests of positive selection were not significant. Phylogenetic analyses of fourfold degenerate sites and intron sequences in TRI1 indicated the NX-2 chemotype had a single evolutionary origin and evolved recently from a type B ancestor. Our results indicate the NX-2 chemotype may be indigenous, and possibly endemic, to southern Canada and the northern U.S. In addition, we demonstrate that the evolution of TRI1 within FSAMSC-1 has been complex, with evidence of trans-species evolution and chemotype-specific shifts in selective

  10. Mitochondrial evidence for multiple radiations in the evolutionary history of small apes

    PubMed Central

    2010-01-01

    Background Gibbons or small apes inhabit tropical and subtropical rain forests in Southeast Asia and adjacent regions, and are, next to great apes, our closest living relatives. With up to 16 species, gibbons form the most diverse group of living hominoids, but the number of taxa, their phylogenetic relationships and their phylogeography is controversial. To further the discussion of these issues we analyzed the complete mitochondrial cytochrome b gene from 85 individuals representing all gibbon species, including most subspecies. Results Based on phylogenetic tree reconstructions, several monophyletic clades were detected, corresponding to genera, species and subspecies. A significantly supported branching pattern was obtained for members of the genus Nomascus but not for the genus Hylobates. The phylogenetic relationships among the four genera were also not well resolved. Nevertheless, the new data permitted the estimation of divergence ages for all taxa for the first time and showed that most lineages emerged during four short time periods. In the first, between ~6.7 and ~8.3 mya, the four gibbon genera diverged from each other. In the second (~3.0 - ~3.9 mya) and in the third period (~1.3 - ~1.8 mya), Hylobates and Hoolock differentiated. Finally, between ~0.5 and ~1.1 mya, Hylobates lar diverged into subspecies. In contrast, differentiation of Nomascus into species and subspecies was a continuous and prolonged process lasting from ~4.2 until ~0.4 mya. Conclusions Although relationships among gibbon taxa on various levels remain unresolved, the present study provides a more complete view of the evolutionary and biogeographic history of the hylobatid family, and a more solid genetic basis for the taxonomic classification of the surviving taxa. We also show that mtDNA constitutes a useful marker for the accurate identification of individual gibbons, a tool which is urgently required to locate hunting hotspots and select individuals for captive breeding programs

  11. Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp.

    PubMed

    Li, Xi-Yin; Zhang, Xiao-Juan; Li, Zhi; Hong, Wei; Liu, Wei; Zhang, Jun; Gui, Jian-Fang

    2014-09-01

    Polyploidy lineages, despite very rare in vertebrates, have been proposed to play significant role in speciation and evolutionary success, but the occurrence history and consequences are still largely unknown. In this study, we used the conserved Dmrt1 to analyze polyploidy occurrence and evolutionary process in polyploid gibel carp. We identified two divergent Dmrt1 genes and respectively localized the two genes on three homologous chromosomes. Subsequently, the corresponding full-length cDNAs and genomic sequences of Dmrt1 genes were also characterized from the closely related species including Carassius auratus auratus and Cyprinus carpio, and their two Dmrt1 genes were respectively localized on two homologous chromosomes. Significantly, the evolutionary relationship analyses among cDNA and genomic DNA sequences of these Dmrt1 genes revealed two rounds of polyploidy origins in the gibel carp: an early polyploidy might result in an common tetraploid ancestor of Carassius auratus gibelio, Carassius auratus auratus and Cyprinus carpio before 18.49 million years ago (Mya), and an late polyploidy might occur from evolutionary branch of Carassius auratus at around 0.51 Mya, which lead to the occurrence of the hexaploid gibel carp. Therefore, this study provides clear genetic evidence for understanding occurrence time and historical process of polyploidy in polyploid vertebrates.

  12. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    PubMed

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions. PMID:23598358

  13. Evolutionary optimization of life-history traits in the sea beet Beta vulgaris subsp. maritima: Comparing model to data

    NASA Astrophysics Data System (ADS)

    Hautekèete, N.-C.; Van Dijk, H.; Piquot, Y.; Teriokhin, A.

    2009-01-01

    At evolutionary equilibrium, ecological factors will determine the optimal combination of life-history trait values of an organism. This optimum can be assessed by assuming that the species maximizes some criterion of fitness such as the Malthusian coefficient or lifetime reproductive success depending on the degree of density-dependence. We investigated the impact of the amount of resources and habitat stability on a plant's age at maturity and life span by using an evolutionary optimization model in combination with empirical data. We conducted this study on sea beet, Beta vulgaris subsp. maritima, because of its large variation in life span and age at first reproduction along a latitudinal gradient including considerable ecological variation. We also compared the consequence in our evolutionary model of maximizing either the Malthusian coefficient or the lifetime reproductive success. Both the data analysis and the results of evolutionary modeling pointed to habitat disturbance and resources like length of the growing season as factors negatively related to life span and age at maturity in sea beet. Resource availability had a negative theoretical influence with the Malthusian coefficient as the chosen optimality criterion, while there was no influence in the case of lifetime reproductive success. As suggested by previous theoretical work the final conclusion on what criterion is more adequate depends on the assumptions of how in reality density-dependence restrains population growth. In our case of sea beet data R0 seems to be less appropriate than λ.

  14. The complex evolutionary history of big-eared horseshoe bats (Rhinolophus macrotis complex): insights from genetic, morphological and acoustic data

    PubMed Central

    Sun, Keping; Kimball, Rebecca T.; Liu, Tong; Wei, Xuewen; Jin, Longru; Jiang, Tinglei; Lin, Aiqing; Feng, Jiang

    2016-01-01

    Palaeoclimatic oscillations and different landscapes frequently result in complex population-level structure or the evolution of cryptic species. Elucidating the potential mechanisms is vital to understanding speciation events. However, such complex evolutionary patterns have rarely been reported in bats. In China, the Rhinolophus macrotis complex contains a large form and a small form, suggesting the existence of a cryptic bat species. Our field surveys found these two sibling species have a continuous and widespread distribution with partial sympatry. However, their evolutionary history has received little attention. Here, we used extensive sampling, morphological and acoustic data, as well as different genetic markers to investigate their evolutionary history. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial data identified three reciprocally monophyletic lineages: one representing all small forms from Southwest China, and the other two containing all large forms from Central and Southeast China, respectively. The large form showed paraphyly with respect to the small form. However, clustering analyses of microsatellite and Chd1 gene sequences support two divergent clusters separating the large form and the small form. Moreover, morphological and acoustic analyses were consistent with nuclear data. This unusual pattern in the R. macrotis complex might be accounted for by palaeoclimatic oscillations, shared ancestral polymorphism and/or interspecific hybridization. PMID:27748429

  15. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait

    PubMed Central

    2012-01-01

    Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eye)spot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-)recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene (co-)recruitment is

  16. Complex evolutionary history of the Mexican stoneroller Campostoma ornatum Girard, 1856 (Actinopterygii: Cyprinidae)

    PubMed Central

    2011-01-01

    River paleosystem, where the southern group originated. Within groups, a complex reticulate biogeographic history for C. ornatum populations emerges, following the taxon pulse theory and mainly related with Pliocene tecto-volcanic processes. In the northern group, several events of vicariance promoted by river or drainage isolation episodes were found, but within both groups, the phylogeographic patterns suggest the occurrence of several events of river capture and fauna interchange. The Yaqui River supports the most diverse populations of C. ornatum, with several events of dispersal and isolation within the basin. Based on our genetic results, we defined three ESUs within C. ornatum as a first attempt to promote the conservation of the evolutionary processes determining the genetic diversity of this species. They will likely be revealed as a valuable tool for freshwater conservation policies in northwest Mexico, where many environmental problems concerning the use of water have rapidly arisen in recent decades. PMID:21639931

  17. The Crustal Evolutionary History of the Cathaysia Block from the Paleoproterozoic to Mesozoic

    NASA Astrophysics Data System (ADS)

    Longming, L.; Sun, M.; Wang, Y.; Xing, G.

    2010-12-01

    The understanding of crustal evolution of the Cathaysia Block can provide important insights into the process of the assembly, growth and breakup of the supercontinents in the history of the Earth. However, much controversy exist on the evolution of this continental block. Questions need to be answered include whether the Cathaysia Block represents an ancient continent; timing of the assembly of this block with the Yangtze Block; the geodynamic environment responsible for the late Mesozoic volcanic activities in the coastal area of the Cathaysia Block. This thesis provides important geochemical and geochronological data, which enable us to tackle these outstanding problems. The crustal evolutionary history is elucidated in the context of global supercontinent evolution. Gneissic granites in NW Fujian Province gave Paleoproterozoic to Neoarchean (1.9 to 2.6 Ga) and Paleoproterozoic ages (~1.85 Ga) for the zircon cores and zoned rims, respectively. The geochemical data indicate that their precursor magmas were formed by partial melting of sedimentary rocks while their enclosed clinopyroxenites came from an arc-related affinity upper mantle source. Therefore our data show that the Cathaysia Block went through a complete Paleoproterozoic tectonic cycle from subduction to collision at ~1.85 Ga, we interpret which was related to the assembly of the Columbia. The detrital zircons from the schists of the Zhoutan Group are predominantly Neoproterozoic (1.0-0.826 Ga), suggesting that the Zhoutan Group deposited in a back-arc basin in the Neoproterozoic rather than Mesoproterozoic. Moreover, subordinate detrital zircons give 1.9-1.4 Ga ages and minor zircons yield Neoarchaean (~2.5 Ga) age. Because 1.0-0.82 Ga old rocks are common at the southeastern margin of the Yangtze Block, while the 1.9-1.4 Ga rocks occur in the Cathaysia Block, we suggest that the Neoproterozoic sediments originated both from the Yangtze and Cathaysia Blocks and the timing of the final assembly between

  18. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.

    PubMed

    Larson-Johnson, Kathryn

    2016-01-01

    As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales.

  19. GR 290 (Romano’s Star). II. Light History and Evolutionary State

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Maryeva, O.; Nesci, R.; Calabresi, M.; Chieffi, A.; Galleti, S.; Gualandi, R.; Haver, R.; Mills, O. F.; Osborn, W. H.; Pasquali, A.; Rossi, C.; Vasilyeva, T.; Viotti, R. F.

    2016-06-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf-Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18-19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992-1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B - V color index has been constant within ±0.1m despite the 1.5m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992-94 was equivalent to late-B-type, while, during 2002-2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600-4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002-2014 period, we find that the Rosseland radius R2/3, changed between the minimum and maximum luminosity phases by a factor of three while Teff varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ˜1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently, GR 290 falls in the H

  20. GR 290 (Romano’s Star). II. Light History and Evolutionary State

    NASA Astrophysics Data System (ADS)

    Polcaro, V. F.; Maryeva, O.; Nesci, R.; Calabresi, M.; Chieffi, A.; Galleti, S.; Gualandi, R.; Haver, R.; Mills, O. F.; Osborn, W. H.; Pasquali, A.; Rossi, C.; Vasilyeva, T.; Viotti, R. F.

    2016-06-01

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a low luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1m despite the 1.5m change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R2/3, changed between the minimum and maximum luminosity phases by a factor of three while Teff varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently, GR 290

  1. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History[OPEN

    PubMed Central

    Hohmann, Nora; Wolf, Eva M.

    2015-01-01

    The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304

  2. Reasoning about Evolutionary History: Post-Secondary Students' Knowledge of Most Recent Common Ancestry and Homoplasy

    ERIC Educational Resources Information Center

    Morabito, Nancy P.; Catley, Kefyn M.; Novick, Laura R.

    2010-01-01

    Evolution curricula are replete with information about Darwin's theory of evolution as well as microevolutionary mechanisms underlying this process of change. However, other fundamental facets of evolutionary theory, particularly those related to macroevolution are often missing. One crucial idea typically overlooked is that of most recent common…

  3. The evolutionary history of an invasive species: alligator weed, Alternanthera philoxeroides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The eco-evolutionary mechanisms of biological invasions are still not thoroughly understood. Alligator weed, Alternanthera philoxeroides (Martius) Gisebach (Amaranthaceae), is a plant native to South America and a weed in Australia and other countries. To better understand its success as an invader,...

  4. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History.

    PubMed

    Hohmann, Nora; Wolf, Eva M; Lysak, Martin A; Koch, Marcus A

    2015-10-01

    The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization. PMID:26410304

  5. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    PubMed Central

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  6. The Impact of History on Our Perception of Evolutionary Events: Endosymbiosis and the Origin of Eukaryotic Complexity

    PubMed Central

    Keeling, Patrick J.

    2014-01-01

    Evolutionary hypotheses are correctly interpreted as products of the data they set out to explain, but they are less often recognized as being heavily influenced by other factors. One of these is the history of preceding thought, and here I look back on historically important changes in our thinking about the role of endosymbiosis in the origin of eukaryotic cells. Specifically, the modern emphasis on endosymbiotic explanations for numerous eukaryotic features, including the cell itself (the so-called chimeric hypotheses), can be seen not only as resulting from the advent of molecular and genomic data, but also from the intellectual acceptance of the endosymbiotic origin of mitochondria and plastids. This transformative idea may have unduly affected how other aspects of the eukaryotic cell are explained, in effect priming us to accept endosymbiotic explanations for endogenous processes. Molecular and genomic data, which were originally harnessed to answer questions about cell evolution, now so dominate our thinking that they largely define the question, and the original questions about how eukaryotic cellular architecture evolved have been neglected. This is unfortunate because, as Roger Stanier pointed out, these cellular changes represent life’s “greatest single evolutionary discontinuity,” and on this basis I advocate a return to emphasizing evolutionary cell biology when thinking about the origin of eukaryotes, and suggest that endogenous explanations will prevail when we refocus on the evolution of the cell. PMID:24492708

  7. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history.

    PubMed

    Risso, Valeria A; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A; Gaucher, Eric A; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2015-02-01

    Local protein interactions ("molecular context" effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations.

  8. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences.

    PubMed

    Zheng, Xiaoyan; Cai, Danying; Potter, Daniel; Postman, Joseph; Liu, Jing; Teng, Yuanwen

    2014-11-01

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus.

  9. What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals.

    PubMed

    Danchin, Etienne G J

    2011-11-01

    Horizontal gene transfer (HGT), the transmission of a gene from one species to another by means other than direct vertical descent from a common ancestor, has been recognized as an important phenomenon in the evolutionary biology of prokaryotes. In eukaryotes, in contrast, the importance of HGT has long been overlooked and its evolutionary significance has been considered to be mostly negligible. However, a series of genome analyses has now shown that HGT not only do probably occur at a higher frequency than originally thought in eukaryotes but recent examples have also shown that they have been subject to natural selection, thus suggesting a significant role in the evolutionary history of the receiver species. Surprisingly, these examples are not from protists in which integration and fixation of foreign genes intuitively appear relatively straightforward, because there is no clear distinction between the germline and the somatic genome. Instead, these examples are from nematodes, multicellular animals that do have distinct cells and tissues and do possess a separate germline. Hence, the mechanisms of gene transfer appears in this case much more complicated. In this commentary, I will further discuss two recent publications that describe HGT in nematodes, one that highlights the importance of HGT in the emergence of plant parasitism and another one that probably represents the most convincing example of a potential transfer between two different metazoan animals, an insect and a nematode.

  10. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history.

    PubMed

    Risso, Valeria A; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A; Gaucher, Eric A; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2015-02-01

    Local protein interactions ("molecular context" effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  11. Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data

    PubMed Central

    Gutenkunst, Ryan N.; Hernandez, Ryan D.; Williamson, Scott H.; Bustamante, Carlos D.

    2009-01-01

    Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand years ago (95% confidence interval: 40–270 kya). This is earlier than other genetic studies, in part because we incorporate migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17–43 kya), long after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB) and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3–26.9 kya), and our analysis yields no evidence for subsequent migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations accurately predicts the frequency spectrum of

  12. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing

    PubMed Central

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J.; Zhang, Nancy R.

    2016-01-01

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/. PMID:27573852

  13. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.

    PubMed

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J; Zhang, Nancy R

    2016-09-13

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/. PMID:27573852

  14. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes.

    PubMed

    Bielejec, Filip; Baele, Guy; Vrancken, Bram; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe

    2016-08-01

    Model-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST (http://beast.bio.ed.ac.uk, last accessed 9 May 2016). The integration of JavaScript D3 libraries (www.d3.org, last accessed 9 May 2016) offers novel interactive web-based visualization capacities that are not restricted to spatial traits and extend to any discrete or continuously valued trait for any organism of interest. PMID:27189542

  15. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes.

    PubMed

    Bielejec, Filip; Baele, Guy; Vrancken, Bram; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe

    2016-08-01

    Model-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST (http://beast.bio.ed.ac.uk, last accessed 9 May 2016). The integration of JavaScript D3 libraries (www.d3.org, last accessed 9 May 2016) offers novel interactive web-based visualization capacities that are not restricted to spatial traits and extend to any discrete or continuously valued trait for any organism of interest.

  16. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing.

    PubMed

    Jiang, Yuchao; Qiu, Yu; Minn, Andy J; Zhang, Nancy R

    2016-09-13

    Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. Here, we propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single-nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy and compare against existing methods. Canopy is an open-source R package available at https://cran.r-project.org/web/packages/Canopy/.

  17. Evolutionary relationships among food habit, loss of flight, and reproductive traits: life-history evolution in the Silphinae (Coleoptera: Silphidae).

    PubMed

    Ikeda, Hiroshi; Kagaya, Takashi; Kubota, Kohei; Abe, Toshio

    2008-08-01

    Flightlessness in insects is generally thought to have evolved due to changes in habitat environment or habitat isolation. Loss of flight may have changed reproductive traits in insects, but very few attempts have been made to assess evolutionary relationships between flight and reproductive traits in a group of related species. We elucidated the evolutionary history of flight loss and its relationship to evolution in food habit, relative reproductive investment, and egg size in the Silphinae (Coleoptera: Silphidae). Most flight-capable species in this group feed primarily on vertebrate carcasses, whereas flightless or flight-dimorphic species feed primarily on soil invertebrates. Ancestral state reconstruction based on our newly constructed molecular phylogenetic tree implied that flight muscle degeneration occurred twice in association with food habit changes from necrophagy to predatory, suggesting that flight loss could evolve independently from changes in the environmental circumstances per se. We found that total egg production increased with flight loss. We also found that egg size increased with decreased egg number following food habit changes in the lineage leading to predaceous species, suggesting that selection for larger larvae intensified with the food habit change. This correlated evolution has shaped diverse life-history patterns among extant species of Silphinae.

  18. Evolutionary history of the Tricladida and the Platyhelminthes: an up-to-date phylogenetic and systematic account.

    PubMed

    Riutort, Marta; Álvarez-Presas, Marta; Lázaro, Eva; Solà, Eduard; Paps, Jordi

    2012-01-01

    Within the free-living platyhelminths, the triclads, or planarians, are the best-known group, largely as a result of long-standing and intensive research on regeneration, pattern formation and Hox gene expression. However, the group's evolutionary history has been long debated, with controversies ranging from their phyletic structure and position within the Metazoa to the relationships among species within the Tricladida. Over the the last decade, with the advent of molecular phylogenies, some of these issues have begun to be resolved. Here, we present an up-to-date summary of the main phylogenetic changes and novelties with some comments on their evolutionary implications. The phylum has been split into two groups, and the position of the main group (the Rhabdithophora and the Catenulida), close to the Annelida and the Mollusca within the Lophotrochozoa, is now clear. Their internal relationships, although not totally resolved, have been clarified. Tricladida systematics has also experienced a revolution since the implementation of molecular data. The terrestrial planarians have been demonstrated to have emerged from one of the freshwater families, giving a different view of their evolution and greatly altering their classification. The use of molecular data is also facilitating the identification of Tricladida species by DNA barcoding, allowing better knowledge of their distribution and genetic diversity. Finally, molecular phylogenetic and phylogeographical analyses, taking advantage of recent data, are beginning to give a clear picture of the recent history of the Dugesia and Schmidtea species in the Mediterranean. PMID:22450992

  19. Evolutionary history of the Tricladida and the Platyhelminthes: an up-to-date phylogenetic and systematic account.

    PubMed

    Riutort, Marta; Álvarez-Presas, Marta; Lázaro, Eva; Solà, Eduard; Paps, Jordi

    2012-01-01

    Within the free-living platyhelminths, the triclads, or planarians, are the best-known group, largely as a result of long-standing and intensive research on regeneration, pattern formation and Hox gene expression. However, the group's evolutionary history has been long debated, with controversies ranging from their phyletic structure and position within the Metazoa to the relationships among species within the Tricladida. Over the the last decade, with the advent of molecular phylogenies, some of these issues have begun to be resolved. Here, we present an up-to-date summary of the main phylogenetic changes and novelties with some comments on their evolutionary implications. The phylum has been split into two groups, and the position of the main group (the Rhabdithophora and the Catenulida), close to the Annelida and the Mollusca within the Lophotrochozoa, is now clear. Their internal relationships, although not totally resolved, have been clarified. Tricladida systematics has also experienced a revolution since the implementation of molecular data. The terrestrial planarians have been demonstrated to have emerged from one of the freshwater families, giving a different view of their evolution and greatly altering their classification. The use of molecular data is also facilitating the identification of Tricladida species by DNA barcoding, allowing better knowledge of their distribution and genetic diversity. Finally, molecular phylogenetic and phylogeographical analyses, taking advantage of recent data, are beginning to give a clear picture of the recent history of the Dugesia and Schmidtea species in the Mediterranean.

  20. Evolutionary History and Phylodynamics of Influenza A and B Neuraminidase (NA) Genes Inferred from Large-Scale Sequence Analyses

    PubMed Central

    Xu, Jianpeng; Davis, C. Todd; Christman, Mary C.; Rivailler, Pierre; Zhong, Haizhen; Donis, Ruben O.; Lu, Guoqing

    2012-01-01

    Background Influenza neuraminidase (NA) is an important surface glycoprotein and plays a vital role in viral replication and drug development. The NA is found in influenza A and B viruses, with nine subtypes classified in influenza A. The complete knowledge of influenza NA evolutionary history and phylodynamics, although critical for the prevention and control of influenza epidemics and pandemics, remains lacking. Methodology/Principal findings Evolutionary and phylogenetic analyses of influenza NA sequences using Maximum Likelihood and Bayesian MCMC methods demonstrated that the divergence of influenza viruses into types A and B occurred earlier than the divergence of influenza A NA subtypes. Twenty-three lineages were identified within influenza A, two lineages were classified within influenza B, and most lineages were specific to host, subtype or geographical location. Interestingly, evolutionary rates vary not only among lineages but also among branches within lineages. The estimated tMRCAs of influenza lineages suggest that the viruses of different lineages emerge several months or even years before their initial detection. The dN/dS ratios ranged from 0.062 to 0.313 for influenza A lineages, and 0.257 to 0.259 for influenza B lineages. Structural analyses revealed that all positively selected sites are at the surface of the NA protein, with a number of sites found to be important for host antibody and drug binding. Conclusions/Significance The divergence into influenza type A and B from a putative ancestral NA was followed by the divergence of type A into nine NA subtypes, of which 23 lineages subsequently diverged. This study provides a better understanding of influenza NA lineages and their evolutionary dynamics, which may facilitate early detection of newly emerging influenza viruses and thus improve influenza surveillance. PMID:22808012

  1. Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa).

    PubMed

    Schwentner, Martin; Bosch, Thomas C G

    2015-10-01

    The genus Hydra has long served as a model system in comparative immunology, developmental and evolutionary biology. Despite its relevance for fundamental research, Hydra's evolutionary origins and species level diversity are not well understood. Detailed previous studies using molecular techniques identified several clades within Hydra, but how these are related to described species remained largely an open question. In the present study, we compiled all published sequence data for three mitochondrial and nuclear genes (COI, 16S and ITS), complemented these with some new sequence data and delimited main genetic lineages (=hypothetical species) objectively by employing two DNA barcoding approaches. Conclusions on the species status of these main lineages were based on inferences of reproductive isolation. Relevant divergence times within Hydra were estimated based on relaxed molecular clock analyses with four genes (COI, 16S, EF1α and 28S) and four cnidarians fossil calibration points All in all, 28 main lineages could be delimited, many more than anticipated from earlier studies. Because allopatric distributions were common, inferences of reproductive isolation often remained ambiguous but reproductive isolation was rarely refuted. Our results support three major conclusions which are central for Hydra research: (1) species level diversity was underestimated by molecular studies; (2) species affiliations of several crucial 'workhorses' of Hydra evolutionary research were wrong and (3) crown group Hydra originated ∼200mya. Our results demonstrate that the taxonomy of Hydra requires a thorough revision and that evolutionary studies need to take this into account when interspecific comparisons are made. Hydra originated on Pangea. Three of four extant groups evolved ∼70mya ago, possibly on the northern landmass of Laurasia. Consequently, Hydra's cosmopolitan distribution is the result of transcontinental and transoceanic dispersal.

  2. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis.

    PubMed

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-08-03

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis.

  3. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis.

    PubMed

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. PMID:27324918

  4. Graphing evolutionary pattern and process: a history of techniques in archaeology and paleobiology.

    PubMed

    Lyman, R Lee

    2009-02-01

    Graphs displaying evolutionary patterns are common in paleontology and in United States archaeology. Both disciplines subscribed to a transformational theory of evolution and graphed evolution as a sequence of archetypes in the late nineteenth and early twentieth centuries. U.S. archaeologists in the second decade of the twentieth century, and paleontologists shortly thereafter, developed distinct graphic styles that reflected the Darwinian variational model of evolution. Paleobiologists adopted the view of a species as a set of phenotypically variant individuals and graphed those variations either as central tendencies or as histograms of frequencies of variants. Archaeologists presumed their artifact types reflected cultural norms of prehistoric artisans and the frequency of specimens in each type reflected human choice and type popularity. They graphed cultural evolution as shifts in frequencies of specimens representing each of several artifact types. Confusion of pattern and process is exemplified by a paleobiologist misinterpreting the process illustrated by an archaeological graph, and an archaeologist misinterpreting the process illustrated by a paleobiological graph. Each style of graph displays particular evolutionary patterns and implies particular evolutionary processes. Graphs of a multistratum collection of prehistoric mammal remains and a multistratum collection of artifacts demonstrate that many graph styles can be used for both kinds of collections.

  5. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    PubMed Central

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis. PMID:27324918

  6. The evolutionary history of sharp- and blunt-snouted lenok (Brachymystax lenok (Pallas, 1773)) and its implications for the paleo-hydrological history of Siberia

    PubMed Central

    2008-01-01

    Background Broad-scale phylogeographic studies of freshwater organisms provide not only an invaluable framework for understanding the evolutionary history of species, but also a genetic imprint of the paleo-hydrological dynamics stemming from climatic change. Few such studies have been carried out in Siberia, a vast region over which the extent of Pleistocene glaciation is still disputed. Brachymystax lenok is a salmonid fish distributed throughout Siberia, exhibiting two forms hypothesized to have undergone extensive range expansion, genetic exchange, and multiple speciation. A comprehensive phylogeographic investigation should clarify these hypotheses as well as provide insights on Siberia's paleo-hydrological stability. Results Molecular-sequence (mtDNA) based phylogenetic and morphological analysis of Brachymystax throughout Siberia support that sharp- and blunt-snouted lenok are independent evolutionary lineages, with the majority of their variation distributed among major river basins. Their evolutionary independence was further supported through the analysis of 11 microsatellite loci in three areas of sympatry, which revealed little to no evidence of introgression. Phylogeographic structure reflects climatic limitations, especially for blunt-snouted lenok above 56° N during one or more glacial maxima. Presumed glacial refugia as well as interbasin exchange were not congruent for the two lineages, perhaps reflecting differing dispersal abilities and response to climatic change. Inferred demographic expansions were dated earlier than the Last Glacial Maximum (LGM). Evidence for repeated trans-basin exchange was especially clear between the Amur and Lena catchments. Divergence of sharp-snouted lenok in the Selenga-Baikal catchment may correspond to the isolation of Lake Baikal in the mid-Pleistocene, while older isolation events are apparent for blunt-snouted lenok in the extreme east and sharp-snouted lenok in the extreme west of their respective

  7. Sealable joint steel sheet piling for groundwater control and remediation: Case histories

    SciTech Connect

    Smyth, D.; Jowett, R.; Gamble, M.

    1997-12-31

    The Waterloo Barrier{trademark} steel sheet piling (patents pending) incorporates a cavity at each interlocking joint that is flushed clean and injected with sealant after the piles have been driven into the ground to form a vertical cutoff wall. The installation and sealing procedures allow for a high degree of quality assurance and control. Bulk wall hydraulic conductivities of 10{sup -8} to 10{sup -10} cm/sec have been demonstrated at field installations. Recent case histories are presented in which Waterloo Barrier{trademark} cutoff walls are used to prevent off-site migration of contaminated groundwater or soil gases to adjacent property and waterways. Full enclosures to isolate DNAPL source zones or portions of contaminated aquifers for pilot-scale remediation testing will also be described. Monitoring data will be used to demonstrate the effectiveness of the Waterloo Barrier{trademark} in these applications.

  8. On the evolutionary and biogeographic history of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.).

    PubMed

    DeChaine, Eric G; Anderson, Stacy A; McNew, Jennifer M; Wendling, Barry M

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting

  9. On the evolutionary and biogeographic history of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.).

    PubMed

    DeChaine, Eric G; Anderson, Stacy A; McNew, Jennifer M; Wendling, Barry M

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting

  10. On the Evolutionary and Biogeographic History of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.)

    PubMed Central

    DeChaine, Eric G.; Anderson, Stacy A.; McNew, Jennifer M.; Wendling, Barry M.

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting

  11. Breakpoint regions and homologous synteny blocks in chromosomes have different evolutionary histories.

    PubMed

    Larkin, Denis M; Pape, Greg; Donthu, Ravikiran; Auvil, Loretta; Welge, Michael; Lewin, Harris A

    2009-05-01

    The persistence of large blocks of homologous synteny and a high frequency of breakpoint reuse are distinctive features of mammalian chromosomes that are not well understood in evolutionary terms. To gain a better understanding of the evolutionary forces that affect genome architecture, synteny relationships among 10 amniotes (human, chimp, macaque, rat, mouse, pig, cattle, dog, opossum, and chicken) were compared at <1 human-Mbp resolution. Homologous synteny blocks (HSBs; N = 2233) and chromosome evolutionary breakpoint regions (EBRs; N = 1064) were identified from pairwise comparisons of all genomes. Analysis of the size distribution of HSBs shared in all 10 species' chromosomes (msHSBs) identified three (>20 Mbp) that are larger than expected by chance. Gene network analysis of msHSBs >3 human-Mbp and EBRs <1 Mbp demonstrated that msHSBs are significantly enriched for genes involved in development of the central nervous and other organ systems, whereas EBRs are enriched for genes associated with adaptive functions. In addition, we found EBRs are significantly enriched for structural variations (segmental duplications, copy number variants, and indels), retrotransposed and zinc finger genes, and single nucleotide polymorphisms. These results demonstrate that chromosome breakage in evolution is nonrandom and that HSBs and EBRs are evolving in distinctly different ways. We suggest that natural selection acts on the genome to maintain combinations of genes and their regulatory elements that are essential to fundamental processes of amniote development and biological organization. Furthermore, EBRs may be used extensively to generate new genetic variation and novel combinations of genes and regulatory elements that contribute to adaptive phenotypes.

  12. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; Zhulin, Igor B.

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  13. Establishing Precise Evolutionary History of a Gene Improves Predicting Disease Causing Missense Mutations

    PubMed Central

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; Zhulin, Igor B.

    2015-01-01

    Purpose Predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are likely benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, while inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and moreover are implicated in protection from coronary heart disease. Methods We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism’s fitness. Results Removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. Conclusion The results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well. PMID:26890452

  14. Genomic Data from Extinct North American Camelops Revise Camel Evolutionary History.

    PubMed

    Heintzman, Peter D; Zazula, Grant D; Cahill, James A; Reyes, Alberto V; MacPhee, Ross D E; Shapiro, Beth

    2015-09-01

    Recent advances in paleogenomic technologies have enabled an increasingly detailed understanding of the evolutionary relationships of now-extinct mammalian taxa. However, a number of enigmatic Quaternary species have never been characterized with molecular data, often because available fossils are rare or are found in environments that are not optimal for DNA preservation. Here, we analyze paleogenomic data extracted from bones attributed to the late Pleistocene western camel, Camelops cf. hesternus, a species that was distributed across central and western North America until its extinction approximately 13,000 years ago. Despite a modal sequence length of only around 35 base pairs, we reconstructed high-coverage complete mitochondrial genomes and low-coverage partial nuclear genomes for each specimen. We find that Camelops is sister to African and Asian bactrian and dromedary camels, to the exclusion of South American camelids (llamas, guanacos, alpacas, and vicuñas). These results contradict previous morphology-based phylogenetic models for Camelops, which suggest instead a closer relationship between Camelops and the South American camelids. The molecular data imply a Late Miocene divergence of the Camelops clade from lineages that separately gave rise to the extant camels of Eurasia. Our results demonstrate the increasing capacity of modern paleogenomic methods to resolve evolutionary relationships among distantly related lineages. PMID:26037535

  15. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe

    2007-01-01

    Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669

  16. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins.

    PubMed

    Burki, Fabien; Okamoto, Noriko; Pombert, Jean-François; Keeling, Patrick J

    2012-06-01

    An important missing piece in the puzzle of how plastids spread across the eukaryotic tree of life is a robust evolutionary framework for the host lineages. Four assemblages are known to harbour plastids derived from red algae and, according to the controversial chromalveolate hypothesis, these all share a common ancestry. Phylogenomic analyses have consistently shown that stramenopiles and alveolates are closely related, but haptophytes and cryptophytes remain contentious; they have been proposed to branch together with several heterotrophic groups in the newly erected Hacrobia. Here, we tested this question by producing a large expressed sequence tag dataset for the katablepharid Roombia truncata, one of the last hacrobian lineages for which genome-level data are unavailable, and combined this dataset with the recently completed genome of the cryptophyte Guillardia theta to build an alignment composed of 258 genes. Our analyses strongly support haptophytes as sister to the SAR group, possibly together with telonemids and centrohelids. We also confirmed the common origin of katablepharids and cryptophytes, but these lineages were not related to other hacrobians; instead, they branch with plants. Our study resolves the evolutionary position of haptophytes, an ecologically critical component of the oceans, and proposes a new hypothesis for the origin of cryptophytes.

  17. Whole-genome sequencing of uropathogenic Escherichia coli reveals long evolutionary history of diversity and virulence.

    PubMed

    Lo, Yancy; Zhang, Lixin; Foxman, Betsy; Zöllner, Sebastian

    2015-08-01

    Uropathogenic Escherichia coli (UPEC) are phenotypically and genotypically very diverse. This diversity makes it challenging to understand the evolution of UPEC adaptations responsible for causing urinary tract infections (UTI). To gain insight into the relationship between evolutionary divergence and adaptive paths to uropathogenicity, we sequenced at deep coverage (190×) the genomes of 19 E. coli strains from urinary tract infection patients from the same geographic area. Our sample consisted of 14 UPEC isolates and 5 non-UTI-causing (commensal) rectal E. coli isolates. After identifying strain variants using de novo assembly-based methods, we clustered the strains based on pairwise sequence differences using a neighbor-joining algorithm. We examined evolutionary signals on the whole-genome phylogeny and contrasted these signals with those found on gene trees constructed based on specific uropathogenic virulence factors. The whole-genome phylogeny showed that the divergence between UPEC and commensal E. coli strains without known UPEC virulence factors happened over 32 million generations ago. Pairwise diversity between any two strains was also high, suggesting multiple genetic origins of uropathogenic strains in a small geographic region. Contrasting the whole-genome phylogeny with three gene trees constructed from common uropathogenic virulence factors, we detected no selective advantage of these virulence genes over other genomic regions. These results suggest that UPEC acquired uropathogenicity long time ago and used it opportunistically to cause extraintestinal infections.

  18. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins

    PubMed Central

    Burki, Fabien; Okamoto, Noriko; Pombert, Jean-François; Keeling, Patrick J.

    2012-01-01

    An important missing piece in the puzzle of how plastids spread across the eukaryotic tree of life is a robust evolutionary framework for the host lineages. Four assemblages are known to harbour plastids derived from red algae and, according to the controversial chromalveolate hypothesis, these all share a common ancestry. Phylogenomic analyses have consistently shown that stramenopiles and alveolates are closely related, but haptophytes and cryptophytes remain contentious; they have been proposed to branch together with several heterotrophic groups in the newly erected Hacrobia. Here, we tested this question by producing a large expressed sequence tag dataset for the katablepharid Roombia truncata, one of the last hacrobian lineages for which genome-level data are unavailable, and combined this dataset with the recently completed genome of the cryptophyte Guillardia theta to build an alignment composed of 258 genes. Our analyses strongly support haptophytes as sister to the SAR group, possibly together with telonemids and centrohelids. We also confirmed the common origin of katablepharids and cryptophytes, but these lineages were not related to other hacrobians; instead, they branch with plants. Our study resolves the evolutionary position of haptophytes, an ecologically critical component of the oceans, and proposes a new hypothesis for the origin of cryptophytes. PMID:22298847

  19. Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses

    PubMed Central

    Shi, Mang; Lin, Xian-Dan; Vasilakis, Nikos; Tian, Jun-Hua; Li, Ci-Xiu; Chen, Liang-Jun; Eastwood, Gillian; Diao, Xiu-Nian; Chen, Ming-Hui; Chen, Xiao; Qin, Xin-Cheng; Widen, Steven G.; Wood, Thomas G.; Tesh, Robert B.; Xu, Jianguo; Holmes, Edward C.

    2015-01-01

    ABSTRACT Viruses of the family Flaviviridae are important pathogens of humans and other animals and are currently classified into four genera. To better understand their diversity, evolutionary history, and genomic flexibility, we used transcriptome sequencing (RNA-seq) to search for the viruses related to the Flaviviridae in a range of potential invertebrate and vertebrate hosts. Accordingly, we recovered the full genomes of five segmented jingmenviruses and 12 distant relatives of the known Flaviviridae (“flavi-like” viruses) from a range of arthropod species. Although these viruses are highly divergent, they share a similar genomic plan and common ancestry with the Flaviviridae in the NS3 and NS5 regions. Remarkably, although these viruses fill in major gaps in the phylogenetic diversity of the Flaviviridae, genomic comparisons reveal important changes in genome structure, genome size, and replication/gene regulation strategy during evolutionary history. In addition, the wide diversity of flavi-like viruses found in invertebrates, as well as their deep phylogenetic positions, suggests that they may represent the ancestral forms from which the vertebrate-infecting viruses evolved. For the vertebrate viruses, we expanded the previously mammal-only pegivirus-hepacivirus group to include a virus from the graceful catshark (Proscyllium habereri), which in turn implies that these viruses possess a larger host range than is currently known. In sum, our data show that the Flaviviridae infect a far wider range of hosts and exhibit greater diversity in genome structure than previously anticipated. IMPORTANCE The family Flaviviridae of RNA viruses contains several notorious human pathogens, including dengue virus, West Nile virus, and hepatitis C virus. To date, however, our understanding of the biodiversity and evolution of the Flaviviridae has largely been directed toward vertebrate hosts and their blood-feeding arthropod vectors. Therefore, we investigated an

  20. The Pleistocene glaciations and the evolutionary history of the polytypic snail species Arianta arbustorum (Gastropoda, Pulmonata, Helicidae).

    PubMed

    Gittenberger, E; Piel, W H; Groenenberg, D S J

    2004-01-01

    The evolutionary history of the snail Arianta arbustorum is controversial. This diverse, polytypic species has two distinct forms: one, with a globular shell and closed umbilicus, is found from lowland to high altitudes; the other, with a depressed shell and open umbilicus, is found at a few scattered, high altitude localities. What is the origin of these two forms? Some believe that the depressed shell is a recent, local, ecotypic adaptation to alpine environments. Others believe that this form is a relic of an ancestral condition that may have survived the Pleistocene glaciations on nunatak-like montane refugia, while the globular shell is a derived condition and its presence at high altitudes follows post-Pleistocene recolonisation. We analysed a portion of the mitochondrial gene cytochrome oxidase I for 100 snails of the species A. arbustorum, three additional Arianta species, and nine outgroup taxa from five genera, in order to understand the phylogeographic history of the species. Despite some confounding artefacts that are likely due to introgression among the morphological forms, the resulting phylogeny shows that the depressed shell is plesiomorphic, while the globular shell is derived. Moreover, their disparate histories suggest that the depressed shell variety survived the glaciations in pockets of alpine refugia, while the globular shell variety recolonised the alpine environment post-glacially. PMID:15022758

  1. The Pleistocene glaciations and the evolutionary history of the polytypic snail species Arianta arbustorum (Gastropoda, Pulmonata, Helicidae).

    PubMed

    Gittenberger, E; Piel, W H; Groenenberg, D S J

    2004-01-01

    The evolutionary history of the snail Arianta arbustorum is controversial. This diverse, polytypic species has two distinct forms: one, with a globular shell and closed umbilicus, is found from lowland to high altitudes; the other, with a depressed shell and open umbilicus, is found at a few scattered, high altitude localities. What is the origin of these two forms? Some believe that the depressed shell is a recent, local, ecotypic adaptation to alpine environments. Others believe that this form is a relic of an ancestral condition that may have survived the Pleistocene glaciations on nunatak-like montane refugia, while the globular shell is a derived condition and its presence at high altitudes follows post-Pleistocene recolonisation. We analysed a portion of the mitochondrial gene cytochrome oxidase I for 100 snails of the species A. arbustorum, three additional Arianta species, and nine outgroup taxa from five genera, in order to understand the phylogeographic history of the species. Despite some confounding artefacts that are likely due to introgression among the morphological forms, the resulting phylogeny shows that the depressed shell is plesiomorphic, while the globular shell is derived. Moreover, their disparate histories suggest that the depressed shell variety survived the glaciations in pockets of alpine refugia, while the globular shell variety recolonised the alpine environment post-glacially.

  2. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition.

    PubMed

    Vandermoten, Sophie; Haubruge, Eric; Cusson, Michel

    2009-12-01

    Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C5) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C5). The reactions leading to the production of geranyl diphosphate (C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate (C20), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway.

  3. Evolutionary Functions of Social Play: Life Histories, Sex Differences, and Emotion Regulation

    ERIC Educational Resources Information Center

    LaFreniere, Peter

    2011-01-01

    Many research findings about animal play apply to children's play, revealing structural and functional similarities with mammals in general and primates in particular. After an introduction to life-history theory, and before turning to humans, the author reviews research about the two mammals in which play has been studied the most extensively:…

  4. The effect of talo-crural joint manipulation on range of motion at the ankle joint in subjects with a history of ankle injury.

    PubMed

    Andersen, Skye; Fryer, Gary A; McLaughlin, Patrick

    2003-07-01

    Introduction: There is little research available on the effects of peripheral joint manipulation. Only a few studies have examined the effect of manipulation on ankle range of motion, with conflicting results. This study aimed to determine whether a single high-velocity, low-amplitude (HVLA) thrust manipulation to the talo-crural joint altered ankle range of motion in subjects with a history of lateral ligament sprain.Methods: Male and female volunteers (N=52) with a history of lateral ligament sprain were randomly assigned into either an experimental group (n=26) or a control group (n=26). Those in the experimental group received a single HVLA thrust to the talo-crural joint, whilst those in the control group received no treatment intervention. Pre-test and post-test measurements of passive dorsiflexion range of motion were taken.Results: No significant changes in dorsiflexion range of motion were detected between manipulated ankles and those of control subjects using dependent and independent t-tests. Ankles that cavitated displayed a greater mean DFR and large effect size (d=0.8) compared to those that did not gap and cavitate, but analysis with ANOVA revealed these differences to be not significant.Conclusion: HVLA manipulation of the ankle did not increase dorsiflexion range of motion in subjects with a history of lateral ligament sprain.

  5. Evolutionary history of the third chromosome gene arrangements of Drosophila pseudoobscura inferred from inversion breakpoints.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2011-08-01

    The third chromosome of Drosophila pseudoobscura is polymorphic for numerous gene arrangements that form classical clines in North America. The polytene salivary chromosomes isolated from natural populations revealed changes in gene order that allowed the different gene arrangements to be linked together by paracentric inversions representing one of the first cases where genetic data were used to construct a phylogeny. Although the inversion phylogeny can be used to determine the relationships among the gene arrangements, the cytogenetic data are unable to infer the ancestral arrangement or the age of the different chromosome types. These are both important properties if one is to infer the evolutionary forces responsible for the spread and maintenance of the chromosomes. Here, we employ the nucleotide sequences of 18 regions distributed across the third chromosome in 80-100 D. pseudoobscura strains to test whether five gene arrangements are of unique or multiple origin, what the ancestral arrangement was, and what are the ages of the different arrangements. Each strain carried one of six commonly found gene arrangements and the sequences were used to infer their evolutionary relationships. Breakpoint regions in the center of the chromosome supported monophyly of the gene arrangements, whereas regions at the ends of the chromosome gave phylogenies that provided less support for monophyly of the chromosomes either because the individual markers did not have enough phylogenetically informative sites or genetic exchange scrambled information among the gene arrangements. A data set where the genetic markers were concatenated strongly supported a unique origin of the different gene arrangements. The inversion polymorphism of D. pseudoobscura is estimated to be about a million years old. We have also shown that the generated phylogeny is consistent with the cytological phylogeny of this species. In addition, the data presented here support hypothetical as the ancestral

  6. Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage.

    PubMed

    Wichmann, Ignacio A; Zavala, Kattina; Hoffmann, Federico G; Vandewege, Michael W; Corvalán, Alejandro H; Amigo, Julio D; Owen, Gareth I; Opazo, Juan C

    2016-10-10

    Genes related to human diseases should be natural targets for evolutionary studies, since they could provide clues regarding the genetic bases of pathologies and potential treatments. Here we studied the evolution of the reprimo gene family, a group of tumor-suppressor genes that are implicated in p53-mediated cell cycle arrest. These genes, especially the reprimo duplicate located on human chromosome 2, have been associated with epigenetic modifications correlated with transcriptional silencing and cancer progression. We demonstrate the presence of a third reprimo lineage that, together with the reprimo and reprimo-like genes, appears to have been differentially retained during the evolutionary history of vertebrates. We present evidence that these reprimo lineages originated early in vertebrate evolution and expanded as a result of the two rounds of whole genome duplications that occurred in the last common ancestor of vertebrates. The reprimo gene has been lost in birds, and the third reprimo gene lineage has been retained in only a few distantly related species, such as coelacanth and gar. Expression analyses revealed that the reprimo paralogs are mainly expressed in the nervous system. Different vertebrate lineages have retained different reprimo paralogs, and even in species that have retained multiple copies, only one of them is heavily expressed.

  7. Genetic viability and population history of the giant panda, putting an end to the "evolutionary dead end"?

    PubMed

    Zhang, Baowei; Li, Ming; Zhang, Zejun; Goossens, Benoît; Zhu, Lifeng; Zhang, Shanning; Hu, Jinchu; Bruford, Michael W; Wei, Fuwen

    2007-08-01

    The giant panda (Ailuropoda melanoleuca) is currently threatened by habitat loss, fragmentation, and human persecution. Its dietary specialization, habitat isolation, and reproductive constraints have led to a perception that this is a species at an "evolutionary dead end," destined for deterministic extinction in the modern world. Here we examine this perception by a comprehensive investigation of its genetic diversity, population structure, and demographic history across its geographic range. We present analysis of 655 base pairs of mitochondrial (mt) control region (CR) DNA and 10 microsatellite loci for samples from its 5 extant mountain populations (Qinling, Minshan, Qionglai, Liangshan, and Lesser Xiangling). Surprisingly, extant populations display average to high levels of CR and microsatellite diversity compared with other bear species. Genetic differentiation among populations was significant in most cases but was markedly higher between Qinling and the other mountain ranges, suggesting, minimally, that the Qinling population should comprise a separate management unit for conservation purposes. Recent demographic inference using microsatellite markers demonstrated a clear genetic signature for population decline starting several thousands years ago or even further back in the past, and being accelerated and enhanced by the expansion of human populations. Importantly, these data suggest that the panda is not a species at an evolutionary "dead end," but in common with other large carnivores, has suffered demographically at the hands of human pressure. Conservation strategies should therefore focus on the restoration and protection of wild habitat and the maintenance of the currently substantial regional genetic diversity, through active management of disconnected populations. PMID:17513881

  8. Deep under the sea: unraveling the evolutionary history of the deep-sea squat lobster Paramunida (Decapoda, Munididae).

    PubMed

    Cabezas, Patricia; Sanmartín, Isabel; Paulay, Gustav; Macpherson, Enrique; Machordom, Annie

    2012-06-01

    The diversification of Indo-Pacific marine fauna has long captivated the attention of evolutionary biologists. Previous studies have mainly focused on coral reef or shallow water-associated taxa. Here, we present the first attempt to reconstruct the evolutionary history--phylogeny, diversification, and biogeography--of a deep-water lineage. We sequenced the molecular markers 16S, COI, ND1, 18S, and 28S for nearly 80% of the nominal species of the squat lobster genus Paramunida. Analyses of the molecular phylogeny revealed an accelerated diversification in the late Oligocene-Miocene followed by a slowdown in the rate of lineage accumulation over time. A parametric biogeographical reconstruction showed the importance of the southwest Pacific area, specifically the island arc of Fiji, Tonga, Vanuatu, Wallis, and Futuna, for diversification of squat lobsters, probably associated with the global warming, high tectonic activity, and changes in oceanic currents that took place in this region during the Oligocene-Miocene period. These results add strong evidence to the hypothesis that the Neogene was a period of major diversification for marine organisms in both shallow and deep waters.

  9. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    PubMed

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. PMID:22845876

  10. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    PubMed

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants.

  11. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  12. Evolutionary history and phylogenetic relationship between Auxis thazard and Auxis rochei inferred from COI sequences of mtDNA.

    PubMed

    Kumar, Girish; Kunal, Swaraj Priyaranjan; Shyama, S K

    2013-01-01

    Tunas of the genus Auxis are cosmopolitan species and the smallest members of the tribe Thunnini, the true tunas. In the present study, COI sequences of mtDNA were employed to examine the evolutionary history and phylogenetic relationship between A. thazard and A. rochei. A total of 29 COI sequences were retrieved from NCBI. Historic demographic analyses of sequence data showed that A. thazard has undergone sudden population expansion in the past while population size of A. rochei has been remain constant for long period. Non-significant value of Tajimas's D (P = 0.22400) and Fu's FS (P = 0.21400) test fail to reject the null hypothesis of neutral evolution for A. rochei. Phylogenetic analyses of nucleotide sequences demonstrated separate clusters for both species and are strongly supported by 98% bootstrap value. The results of the present study suggest the recent founding of A. thazard in world ocean while A. rochei represents the ancestral species. PMID:24084241

  13. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers

    PubMed Central

    Lachance, Joseph; Vernot, Benjamin; Elbers, Clara C.; Ferwerda, Bart; Froment, Alain; Bodo, Jean-Marie; Lema, Godfrey; Fu, Wenqing; Nyambo, Thomas B.; Rebbeck, Timothy R.; Zhang, Kun; Akey, Joshua M.; Tishkoff, Sarah A.

    2012-01-01

    Summary To reconstruct modern human evolutionary history and identify loci that have shaped hunter-gatherer adaptation, we sequenced the whole-genomes of five individuals in each of three different hunter-gatherer populations at > 60x coverage: Pygmies from Cameroon and Khoesan-speaking Hadza and Sandawe from Tanzania. We identify 13.4 million variants, substantially increasing the set of known human variation. We found evidence of archaic introgression in all three populations and the distribution of time to most recent common ancestors from these regions is similar to that observed for introgressed regions in Europeans. Additionally, we identify numerous loci that harbor signatures of local adaptation, including genes involved in immunity, metabolism, olfactory and taste perception, reproduction, and wound healing. Within the Pygmy population, we identify multiple highly differentiated loci that play a role in growth and anterior pituitary function and are associated with height. PMID:22840920

  14. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera.

    PubMed

    Wallberg, Andreas; Han, Fan; Wellhagen, Gustaf; Dahle, Bjørn; Kawata, Masakado; Haddad, Nizar; Simões, Zilá Luz Paulino; Allsopp, Mike H; Kandemir, Irfan; De la Rúa, Pilar; Pirk, Christian W; Webster, Matthew T

    2014-10-01

    The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system- and sperm motility-related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees.

  15. DNA methylation and somatic mutations converge on cell cycle and define similar evolutionary histories in brain tumors

    PubMed Central

    Johnson, Brett E.; Hong, Chibo; Hamilton, Emily G.; Bell, Robert J.A.; Smirnov, Ivan V.; Reis, Gerald F.; Phillips, Joanna J.; Barnes, Michael J.; Idbaih, Ahmed; Alentorn, Agusti; Kloezeman, Jenneke J.; Lamfers, Martine L. M.; Bollen, Andrew W.; Taylor, Barry S.; Molinaro, Annette M.; Olshen, Adam B.; Chang, Susan M.; Song, Jun S.; Costello, Joseph F.

    2015-01-01

    Summary The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution. PMID:26373278

  16. DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors.

    PubMed

    Mazor, Tali; Pankov, Aleksandr; Johnson, Brett E; Hong, Chibo; Hamilton, Emily G; Bell, Robert J A; Smirnov, Ivan V; Reis, Gerald F; Phillips, Joanna J; Barnes, Michael J; Idbaih, Ahmed; Alentorn, Agusti; Kloezeman, Jenneke J; Lamfers, Martine L M; Bollen, Andrew W; Taylor, Barry S; Molinaro, Annette M; Olshen, Adam B; Chang, Susan M; Song, Jun S; Costello, Joseph F

    2015-09-14

    The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution. PMID:26373278

  17. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history.

    PubMed

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts' biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods.

  18. The evolutionary history of the ribosome and its relevance to the search for life elsewhere in the universe

    NASA Astrophysics Data System (ADS)

    Fox, George E.

    2011-10-01

    Evidence pertaining to the evolutionary history of the ribosome is reviewed and is discussed in the context of the origin of life as we know it on the Earth. The implications for the search for life elsewhere are also discussed. If extraterrestrial life is found that has complex protein synthesis machinery, it will be of interest to determine if it represents a second genesis of life. It is argued that a comparison with the translation machinery of Earth life will be able to resolve the issue. If such extraterrestrial life were concluded to have arisen from the same genesis as Earth life, then examination of the ribosomal RNAs will provide further insight. In particular, it would in many scenarios be possible to determine how recently an organism found on another body such as Mars had been transferred to or from the Earth. Thus, forward contamination could be distinguished from interplanetary transfer.

  19. A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms.

    PubMed

    Costa, José Hélio; McDonald, Allison E; Arnholdt-Schmitt, Birgit; Fernandes de Melo, Dirce

    2014-11-01

    A classification scheme based on protein phylogenies and sequence harmony method was used to clarify the taxonomic distribution and evolutionary history of the alternative oxidase (AOX) in angiosperms. A large data set analyses showed that AOX1 and AOX2 subfamilies were distributed into 4 phylogenetic clades: AOX1a-c/1e, AOX1d, AOX2a-c and AOX2d. High diversity in AOX family compositions was found. While the AOX2 subfamily was not detected in monocots, the AOX1 subfamily has expanded (AOX1a-e) in the large majority of these plants. In addition, Poales AOX1b and 1d were orthologous to eudicots AOX1d and then renamed as AOX1d1 and 1d2. AOX1 or AOX2 losses were detected in some eudicot plants. Several AOX2 duplications (AOX2a-c) were identified in eudicot species, mainly in the asterids. The AOX2b originally identified in eudicots in the Fabales order (soybean, cowpea) was divergent from AOX2a-c showing some specific amino acids with AOX1d and then it was renamed as AOX2d. AOX1d and AOX2d seem to be stress-responsive, facultative and mutually exclusive among species suggesting a complementary role with an AOX1(a) in stress conditions. Based on the data collected, we present a model for the evolutionary history of AOX in angiosperms and highlight specific areas where further research would be most beneficial.

  20. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    PubMed

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. PMID:25681678

  1. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    PubMed

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species.

  2. [Evolutionary history of Metazoa, ancestral status of the bilateria clonal reproduction, and semicolonial origin of the mollusca].

    PubMed

    Martynov, A V

    2013-01-01

    Evolutionary history of any metazoan group is a history of the entire ontogenetic cycles instead of separate stages and genes only. Ontogeny in the most objective way links two key components of the biological systematics: historically-independent characters attribution and phylogeny itself. A general theory encompassing "static" traditional taxonomy and dynamic evolutionary process, based on the ontogenetic transformation of the organisms' shape is suggested here to term as ontogenetic systematics. As an important practical implication of the ontogenetic systematics, a new model of the bilaterian metazoans evolution is suggested. The new model considers asexual clonal reproduction as a central feature of the ancestral ontogenetic cycles of basal Bilateria. The new scenario resolves several notable contradictions, e.g. morphological, ontogenetic and molecular similarities of Pogonophora, Vestimentifera, Phoronida simultaneously to protostomian Spiralia (Lophotrochozoa) and Deuterostomia. The suggested model implies individuation (possibly multiple) of ancestral semicolonial sedentary group as a major factor of the basal Bilateria diversification. In the late Ediacaran and early Cambrian thus existed ancestral bilaterian group that shared characters of both Spiralia and Deuterostomia and possessed polyp-shape body and cephalic secretory shield (like in modern Pterobranchia and Vestimentifera), that later on reduced in various lines. This ancestral taxon in rank of supraphylum is suggested to term as Carmaphora (shield-bearers). Presence of the enigmatic sedentary fossil of the genus Cloudina with vestimentiferan-like tubes and evident clonal reproduction already in the late Ediacaran, and most recent found of an unquestionable pterobranch already in the early Cambrian support the new model of Bilateria evolution.

  3. A large-scale genomic approach affords unprecedented resolution for the molecular epidemiology and evolutionary history of contagious caprine pleuropneumonia.

    PubMed

    Dupuy, Virginie; Verdier, Axel; Thiaucourt, François; Manso-Silván, Lucía

    2015-01-01

    Contagious caprine pleuropneumonia (CCPP), caused by Mycoplasma capricolum subsp. capripneumoniae (Mccp), is a devastating disease of domestic goats and of some wild ungulate species. The disease is currently spreading in Africa and Asia and poses a serious threat to disease-free areas. A comprehensive view of the evolutionary history and dynamics of Mccp is essential to understand the epidemiology of CCPP. Yet, analysing the diversity of genetically monomorphic pathogens, such as Mccp, is complicated due to their low variability. In this study, the molecular epidemiology and evolution of CCPP was investigated using a large-scale genomic approach based on next-generation sequencing technologies, applied to a sample of strains representing the global distribution of this disease. A highly discriminatory multigene typing system was developed, allowing the differentiation of 24 haplotypes among 25 Mccp strains distributed in six genotyping groups, which showed some correlation with geographic origin. A Bayesian approach was used to infer the first robust phylogeny of the species and to date the principal events of its evolutionary history. The emergence of Mccp was estimated only at about 270 years ago, which explains the low genetic diversity of this species despite its high mutation rate, evaluated at 1.3 × 10(-6) substitutions per site per year. Finally, plausible scenarios were proposed to elucidate the evolution and dynamics of CCPP in Asia and Africa, though limited by the paucity of Mccp strains, particularly in Asia. This study shows how combining large-scale genomic data with spatial and temporal data makes it possible to obtain a comprehensive view of the epidemiology of CCPP, a precondition for the development of improved disease surveillance and control measures. PMID:26149260

  4. Escape to Alcatraz: evolutionary history of slender salamanders (Batrachoseps) on the islands of San Francisco Bay

    PubMed Central

    Martínez-Solano, Iñigo; Lawson, Robin

    2009-01-01

    Background Island populations are excellent model systems for studies of phenotypic, ecological and molecular evolution. In this study, molecular markers of mitochondrial and nuclear derivation were used to investigate the evolution, structure and origin of populations of the California slender salamander (Batrachoseps attenuatus) inhabiting the six major islands of San Francisco Bay, formed following the rising of sea level around 9,000 years ago. Results There was a high degree of congruence in the results of analyses of nucleotide and allozyme data, both of which strongly support the hypothesis that, for the majority of the islands, salamanders are descended from hilltop populations that became isolated with the formation of the Bay ca. 9,000 years ago. There are two exceptions (Alcatraz and Yerba Buena) where the evidence suggests that salamander populations are wholly or in part, the result of anthropogenic introductions. Comparison of the molecular data and the interpretations drawn therefrom with an earlier morphological study of many of the same salamander populations show some of the same evolutionary trends. Conclusion In spite of marked differences between the evolutionary rates of the two kinds of molecular markers, both indicate distinctive and similar patterns of population structure for B. attenuatus in the San Francisco Bay Area and its islands. With the two noted exceptions, it is clear that most island populations were established prior to the 9,000 years since the formation of the Bay. Results of coalescence-based analyses suggest that for most island populations the mtDNA lineages from which they were derived date from the Pleistocene. It can be said that, based on observed values of genetic diversity, the last 9,000 years of evolution on these islands have been characterized by relative stability, with the occasional extinction of some haplotypes or alleles that were formerly shared between island and mainland populations but overall

  5. A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda)

    PubMed Central

    2013-01-01

    Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence

  6. Ancient mitochondrial genomes clarify the evolutionary history of New Zealand's enigmatic acanthisittid wrens.

    PubMed

    Mitchell, Kieren J; Wood, Jamie R; Llamas, Bastien; McLenachan, Patricia A; Kardailsky, Olga; Scofield, R Paul; Worthy, Trevor H; Cooper, Alan

    2016-09-01

    The New Zealand acanthisittid wrens are the sister-taxon to all other "perching birds" (Passeriformes) and - including recently extinct species - represent the most diverse endemic passerine family in New Zealand. Consequently, they are important for understanding both the early evolution of Passeriformes and the New Zealand biota. However, five of the seven species have become extinct since the arrival of humans in New Zealand, complicating evolutionary analyses. The results of morphological analyses have been largely equivocal, and no comprehensive genetic analysis of Acanthisittidae has been undertaken. We present novel mitochondrial genome sequences from four acanthisittid species (three extinct, one extant), allowing us to resolve the phylogeny and revise the taxonomy of acanthisittids. Reanalysis of morphological data in light of our genetic results confirms a close relationship between the extant rifleman (Acanthisitta chloris) and an extinct Miocene wren (Kuiornis indicator), making Kuiornis a useful calibration point for molecular dating of passerines. Our molecular dating analyses reveal that the stout-legged wrens (Pachyplichas) diverged relatively recently from a more gracile (Xenicus-like) ancestor. Further, our results suggest a possible Early Oligocene origin of the basal Lyall's wren (Traversia) lineage, which would imply that Acanthisittidae survived the Oligocene marine inundation of New Zealand and therefore that the inundation was not complete. PMID:27261250

  7. Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America.

    PubMed

    Campitelli, Brandon E; Stinchcombe, John R

    2014-08-01

    Disentangling the historical evolutionary processes that contribute to patterns of phenotypic and genetic variation is important for understanding contemporary patterns of both traits of interest and genetic diversity of a species. Ipomoea hederacea is a self-compatible species whose geographic origin is contested, and previous work suggests that although there are signals of adaptation (significant leaf shape and flowering time clines), no population structure or neutral genetic differentiation of I. hederacea populations was detected. Here, we use DNA sequence data to characterize patterns of genetic variation to establish a more detailed understanding of the current and historical processes that may have generated the patterns of genetic variation in this species. We resequenced ca. 5000 bp across 7 genes for 192 individuals taken from 24 populations in North America. Our results indicate that North American I. hederacea populations are ubiquitously genetically depauperate, and patterns of nucleotide diversity are consistent with population expansion. Contrary to previous findings, we discovered significant population subdivision and isolation-by-distance, but genetic structure was spatially discontinuous, potentially implicating long-distance dispersal. We further found significant genetic differentiation at sequenced loci but nearly fourfold stronger differentiation at the leaf shape locus, strengthening evidence that the leaf shape locus is under divergent selection. We propose that North American I. hederacea has experienced a recent founder event, and/or population dynamics are best described by a metapopulation model (high turnover and dispersal), leading to low genetic diversity and a patchy genetic distribution.

  8. Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress.

    PubMed

    Gonzalez, Andrew; Bell, Graham

    2013-01-19

    Whether evolution will be rapid enough to rescue declining populations will depend upon population size, the supply of genetic variation, the degree of maladaptation and the historical direction of selection. We examined whether the level of environmental stress experienced by a population prior to abrupt environmental change affects the probability of evolutionary rescue (ER). Hundreds of populations of two species of yeast, Saccharomyces cerevisiae and Saccharomyces paradoxus were exposed to a range of sublethal concentrations of salt for approximately a hundred generations before transfer to a concentration of salt lethal to the ancestor (150 g l(-1) NaCl). The fitness of surviving populations of both species was a quadratic function of yield: fitness was greatest for large populations that had been selected on low salt concentrations (less than 20 g l(-1) NaCl) and small populations that had adapted to high salt (more than 80 g l(-1) NaCl). However, differences occurred between species in the probability of ER. The frequency of ER was positively correlated with salt concentration for S. cerevisiae, but negatively correlated with salt concentration in S. paradoxus. These results not only demonstrate that past environmental conditions can determine the probability of ER after abrupt environmental change, but also suggest that there may even be differences between closely related species that are worth further exploration.

  9. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer.

    PubMed

    Hashimshony, Tamar; Feder, Martin; Levin, Michal; Hall, Brian K; Yanai, Itai

    2015-03-12

    The concept of germ layers has been one of the foremost organizing principles in developmental biology, classification, systematics and evolution for 150 years (refs 1 - 3). Of the three germ layers, the mesoderm is found in bilaterian animals but is absent in species in the phyla Cnidaria and Ctenophora, which has been taken as evidence that the mesoderm was the final germ layer to evolve. The origin of the ectoderm and endoderm germ layers, however, remains unclear, with models supporting the antecedence of each as well as a simultaneous origin. Here we determine the temporal and spatial components of gene expression spanning embryonic development for all Caenorhabditis elegans genes and use it to determine the evolutionary ages of the germ layers. The gene expression program of the mesoderm is induced after those of the ectoderm and endoderm, thus making it the last germ layer both to evolve and to develop. Strikingly, the C. elegans endoderm and ectoderm expression programs do not co-induce; rather the endoderm activates earlier, and this is also observed in the expression of endoderm orthologues during the embryology of the frog Xenopus tropicalis, the sea anemone Nematostella vectensis and the sponge Amphimedon queenslandica. Querying the phylogenetic ages of specifically expressed genes reveals that the endoderm comprises older genes. Taken together, we propose that the endoderm program dates back to the origin of multicellularity, whereas the ectoderm originated as a secondary germ layer freed from ancestral feeding functions. PMID:25487147

  10. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history.

    PubMed

    Sansom, Robert S; Randle, Emma; Donoghue, Philip C J

    2015-02-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem-gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates.

  11. Evolutionary history of the conifer root rot fungus Heterobasidion annosum sensu lato.

    PubMed

    Dalman, K; Olson, A; Stenlid, J

    2010-11-01

    We investigated two hypotheses for the origin of the root rot fungus Heterobasidion annosum species complex: (i) that geology has been an important factor for the speciation (ii) that co-evolutionary processes with the hosts drove the divergence of the pathogen species. The H. annosum species complex consists of five species: three occur in Europe, H. annosum s.s., Heterobasidion parviporum and Heterobasidion abietinum, and two in North America, Heterobasidion irregulare and Heterobasidion occidentale; all with different but partially overlapping host preferences. The evolution of the H. annosum species complex was studied using six partially sequenced genes, between 10 and 30 individuals of each species were analysed. Neighbour-joining trees were constructed for each gene, and a Bayesian tree was built for the combined data set. In addition, haplotype networks were constructed to illustrate the species relationships. For three of the genes, H. parviporum and H. abietinum share haplotypes supporting recent divergence and/or possible gene flow. We propose that the H. annosum species complex originated in Laurasia and that the H. annosum s.s./H. irregulare and H. parviporum/H. abietinum/H. occidentale ancestral species emerged between 45 and 60 Ma in the Palaearctic, well after the radiation of the host genera. Our data imply that H. irregulare and H. occidentale were colonizing North America via different routes. In conclusion, plate tectonics are likely to have been the main factor influencing Heterobasidion speciation and biogeography. PMID:20964759

  12. Complete mitochondrial genomes reveal phylogeny relationship and evolutionary history of the family Felidae.

    PubMed

    Zhang, W Q; Zhang, M H

    2013-01-01

    Many mitochondrial DNA sequences are used to estimate phylogenetic relationships among animal taxa and perform molecular phylogenetic evolution analysis. With the continuous development of sequencing technology, numerous mitochondrial sequences have been released in public databases, especially complete mitochondrial DNA sequences. Using multiple sequences is better than using single sequences for phylogenetic analysis of animals because multiple sequences have sufficient information for evolutionary process reconstruction. Therefore, we performed phylogenetic analyses of 14 species of Felidae based on complete mitochondrial genome sequences, with Canis familiaris as an outgroup, using neighbor joining, maximum likelihood, maximum parsimony, and Bayesian inference methods. The consensus phylogenetic trees supported the monophyly of Felidae, and the family could be divided into 2 subfamilies, Felinae and Pantherinae. The genus Panthera and species tigris were also studied in detail. Meanwhile, the divergence of this family was estimated by phylogenetic analysis using the Bayesian method with a relaxed molecular clock, and the results shown were consistent with previous studies. In summary, the evolution of Felidae was reconstructed by phylogenetic analysis based on mitochondrial genome sequences. The described method may be broadly applicable for phylogenetic analyses of anima taxa. PMID:24065666

  13. Whole Genome Sequencing Allows Better Understanding of the Evolutionary History of Leptospira interrogans Serovar Hardjo

    PubMed Central

    Llanes, Alejandro; Restrepo, Carlos Mario; Rajeev, Sreekumari

    2016-01-01

    The genome of a laboratory-adapted strain of Leptospira interrogans serovar Hardjo was sequenced and analyzed. Comparison of the sequenced genome with that recently published for a field isolate of the same serovar revealed relatively high sequence conservation at the nucleotide level, despite the different biological background of both samples. Conversely, comparison of both serovar Hardjo genomes with those of L. borgpetersenii serovar Hardjo showed extensive differences between the corresponding chromosomes, except for the region occupied by their rfb loci. Additionally, comparison of the serovar Hardjo genomes with those of different L. interrogans serovars allowed us to detect several genomic features that may confer an adaptive advantage to L. interrogans serovar Hardjo, including a possible integrated plasmid and an additional copy of a cluster encoding a membrane transport system known to be involved in drug resistance. A phylogenomic strategy was used to better understand the evolutionary position of the Hardjo serovar among L. interrogans serovars and other Leptospira species. The proposed phylogeny supports the hypothesis that the presence of similar rfb loci in two different species may be the result of a lateral gene transfer event. PMID:27442015

  14. Conservation implications of the evolutionary history and genetic diversity hotspots of the snowshoe hare.

    PubMed

    Cheng, Ellen; Hodges, Karen E; Melo-Ferreira, José; Alves, Paulo C; Mills, L Scott

    2014-06-01

    With climate warming, the ranges of many boreal species are expected to shift northward and to fragment in southern peripheral ranges. To understand the conservation implications of losing southern populations, we examined range-wide genetic diversity of the snowshoe hare (Lepus americanus), an important prey species that drives boreal ecosystem dynamics. We analysed microsatellite (8 loci) and mitochondrial DNA sequence (cytochrome b and control region) variation in almost 1000 snowshoe hares. A hierarchical structure analysis of the microsatellite data suggests initial subdivision in two groups, Boreal and southwestern. The southwestern group further splits into Greater Pacific Northwest and U.S. Rockies. The genealogical information retrieved from mtDNA is congruent with the three highly differentiated and divergent groups of snowshoe hares. These groups can correspond with evolutionarily significant units that might have evolved in separate refugia south and east of the Pleistocene ice sheets. Genetic diversity was highest at mid-latitudes of the species' range, and genetic uniqueness was greatest in southern populations, consistent with substructuring inferred from both mtDNA and microsatellite analyses at finer levels of analysis. Surprisingly, snowshoe hares in the Greater Pacific Northwest mtDNA lineage were more closely related to black-tailed jackrabbits (Lepus californicus) than to other snowshoe hares, which may result from secondary introgression or shared ancestral polymorphism. Given the genetic distinctiveness of southern populations and minimal gene flow with their northern neighbours, fragmentation and loss of southern boreal habitats could mean loss of many unique alleles and reduced evolutionary potential.

  15. Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family

    PubMed Central

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  16. Whole Genome Sequencing Allows Better Understanding of the Evolutionary History of Leptospira interrogans Serovar Hardjo.

    PubMed

    Llanes, Alejandro; Restrepo, Carlos Mario; Rajeev, Sreekumari

    2016-01-01

    The genome of a laboratory-adapted strain of Leptospira interrogans serovar Hardjo was sequenced and analyzed. Comparison of the sequenced genome with that recently published for a field isolate of the same serovar revealed relatively high sequence conservation at the nucleotide level, despite the different biological background of both samples. Conversely, comparison of both serovar Hardjo genomes with those of L. borgpetersenii serovar Hardjo showed extensive differences between the corresponding chromosomes, except for the region occupied by their rfb loci. Additionally, comparison of the serovar Hardjo genomes with those of different L. interrogans serovars allowed us to detect several genomic features that may confer an adaptive advantage to L. interrogans serovar Hardjo, including a possible integrated plasmid and an additional copy of a cluster encoding a membrane transport system known to be involved in drug resistance. A phylogenomic strategy was used to better understand the evolutionary position of the Hardjo serovar among L. interrogans serovars and other Leptospira species. The proposed phylogeny supports the hypothesis that the presence of similar rfb loci in two different species may be the result of a lateral gene transfer event.

  17. A mitogenic view on the evolutionary history of the Holarctic freshwater gadoid, burbot (Lota lota).

    PubMed

    Van Houdt, J K J; De Cleyn, L; Perretti, A; Volckaert, F A M

    2005-07-01

    Climatic oscillations during the Pleistocene epoch had a dramatic impact on the distribution of biota in the northern hemisphere. In order to trace glacial refugia and postglacial colonization routes on a global scale, we studied mitochondrial DNA sequence variation in a freshwater fish (burbot, Lota lota; Teleostei, Gadidae) with a circumpolar distribution. The subdivision of burbot in the subspecies Lota lota lota (Eurasia and Alaska) and Lota lota maculosa (North America, south of the Great Slave Lake) was reflected in two distinct mitochondrial lineages (average genetic distance is 2.08%). The lota form was characterized by 30 closely related haplotypes and a large part of its range (from Central Europe to Beringia) was characterized by two widespread ancestral haplotypes, implying that transcontinental exchange/migration was possible for cold-adapted freshwater taxa in recent evolutionary time. However, the derived mitochondrial variants observed in peripheral populations point to a recent separation from the core group and postglacial recolonization from distinct refugia. Beringia served as refuge from where L. l. lota dispersed southward into North America after the last glacial maximum. Genetic variation in the maculosa form consisted of three mitochondrial clades, which were linked to at least three southern refugia in North America. Two mitochondrial clades east of the Continental Divide (Mississippian and Missourian clades) had a distinct geographical distribution in the southern refuge zones but intergraded in the previously glaciated area. The third clade (Pacific) was exclusively found west of the Continental Divide. PMID:15969726

  18. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  19. Interactome Mapping Reveals the Evolutionary History of the Nuclear Pore Complex

    PubMed Central

    Obado, Samson O.; Brillantes, Marc; Uryu, Kunihiro; Zhang, Wenzhu; Ketaren, Natalia E.; Chait, Brian T.; Field, Mark C.; Rout, Michael P.

    2016-01-01

    The nuclear pore complex (NPC) is responsible for nucleocytoplasmic transport and constitutes a hub for control of gene expression. The components of NPCs from several eukaryotic lineages have been determined, but only the yeast and vertebrate NPCs have been extensively characterized at the quaternary level. Significantly, recent evidence indicates that compositional similarity does not necessarily correspond to homologous architecture between NPCs from different taxa. To address this, we describe the interactome of the trypanosome NPC, a representative, highly divergent eukaryote. We identify numerous new NPC components and report an exhaustive interactome, allowing assignment of trypanosome nucleoporins to discrete NPC substructures. Remarkably, despite retaining similar protein composition, there are exceptional architectural dissimilarities between opisthokont (yeast and vertebrates) and excavate (trypanosomes) NPCs. Whilst elements of the inner core are conserved, numerous peripheral structures are highly divergent, perhaps reflecting requirements to interface with divergent nuclear and cytoplasmic functions. Moreover, the trypanosome NPC has almost complete nucleocytoplasmic symmetry, in contrast to the opisthokont NPC; this may reflect divergence in RNA export processes at the NPC cytoplasmic face, as we find evidence supporting Ran-dependent mRNA export in trypanosomes, similar to protein transport. We propose a model of stepwise acquisition of nucleocytoplasmic mechanistic complexity and demonstrate that detailed dissection of macromolecular complexes provides fuller understanding of evolutionary processes. PMID:26891179

  20. Comparative evolutionary histories of chitinase genes in the Genus zea and Family poaceae.

    PubMed Central

    Tiffin, Peter

    2004-01-01

    Patterns of DNA sequence diversity vary widely among genes encoding proteins that protect plants against pathogens and herbivores. Comparative studies may help determine whether these differences are due to the strength of selection acting on different types of defense, in different evolutionary lineages, or both. I analyzed sequence diversity at three chitinases, a well-studied component of defense, in two species of Zea and several Poaceae taxa. Although the Zea species are closely related and these genes code for proteins with similar biochemical function, patterns of diversity vary widely within and among species. Intraspecific diversity at chiB, chiI, and Z. mays ssp. parviglumis chiA are consistent with a neutral-equilibrium model whereas chiA had no segregating sites within Z. diploperennis--consistent with a recent and strong selective sweep. Codons identified as having diverged among Poaceae taxa in response to positive selection were significantly overrepresented among targets of selection in Arabis, suggesting common responses to selection in distantly related plant taxa. Divergence of the recent duplicates chiA and chiB is consistent with positive selection but relaxed constraint cannot be rejected. Weak evidence for adaptive divergence of these duplicated downstream components of defense contrasts with strong evidence for adaptive divergence of genes involved in pathogen recognition. PMID:15280246

  1. Peculiar Evolutionary History of miR390-Guided TAS3-Like Genes in Land Plants

    PubMed Central

    Krasnikova, Maria S.; Goryunov, Denis V.; Troitsky, Alexey V.; Solovyev, Andrey G.; Ozerova, Lydmila V.; Morozov, Sergey Y.

    2013-01-01

    PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of all Physcomitrella patens miR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing of Marchantia polymorpha genomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads of M. polymorpha at NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution. PMID:24302881

  2. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    PubMed

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  3. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    PubMed

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  4. Different Histories, Different Destinies‒Impact of Evolutionary History and Population Genetic Structure on Extinction Risk of the Adriatic Spined Loaches (Genus Cobitis; Cypriniformes, Actinopterygii).

    PubMed

    Buj, Ivana; Ćaleta, Marko; Marčić, Zoran; Šanda, Radek; Vukić, Jasna; Mrakovčić, Milorad

    2015-01-01

    The region of Balkans is often considered as an ichthyologic "hot spot", with a great number of species and high portion of endemics living in fresh waters in a relatively small area. The Adriatic watershed in Croatia and Herzegovina is inhabited by six spined loach species (genus Cobitis) whose extinction risk estimations were based solely on their extent of occurrence (and/or area of occupancy) and its fragmentation, and conservation proposals do not consider diversity below species level. In this investigation we employed molecular genetic methods to describe present genetic structure of the Adriatic spined loaches and reveal their demographic history. The divergence of the Adriatic lineages inside the genus Cobitis started in Miocene and lasted until Pleistocene epoch. Geological events responsible for shaping recent diversity of spined loaches in the Adriatic basin are: the Dinarid Mountains upwelling, the evolution of Dinaric Lake system, local tectonic activity, river connections during glaciations and differences in sea level. Even though all the investigated species inhabit karstic rivers located in the same geographic area and that were subject of similar geological events, the results obtained reveal great differences in their genetic diversity and structure and point out the necessity of different conservation measures to ensure their future viability. High level of genetic polymorphism is characteristic for species located more to the south. Two species comprised of more than one population have completely different intraspecific structure; populations of C. illyrica are genetically distinct and represent separate evolutionary significant units, whereas intraspecific structure of C. narentana corresponds to metapopulational pattern. Without population genetic data, evolutionary significant units could be easily misidentified. Furthermore, the obtained results affirm that population genetic measurements are able to detect differences among closely

  5. Different Histories, Different Destinies‒Impact of Evolutionary History and Population Genetic Structure on Extinction Risk of the Adriatic Spined Loaches (Genus Cobitis; Cypriniformes, Actinopterygii)

    PubMed Central

    Buj, Ivana; Ćaleta, Marko; Marčić, Zoran; Šanda, Radek; Vukić, Jasna; Mrakovčić, Milorad

    2015-01-01

    The region of Balkans is often considered as an ichthyologic “hot spot”, with a great number of species and high portion of endemics living in fresh waters in a relatively small area. The Adriatic watershed in Croatia and Herzegovina is inhabited by six spined loach species (genus Cobitis) whose extinction risk estimations were based solely on their extent of occurrence (and/or area of occupancy) and its fragmentation, and conservation proposals do not consider diversity below species level. In this investigation we employed molecular genetic methods to describe present genetic structure of the Adriatic spined loaches and reveal their demographic history. The divergence of the Adriatic lineages inside the genus Cobitis started in Miocene and lasted until Pleistocene epoch. Geological events responsible for shaping recent diversity of spined loaches in the Adriatic basin are: the Dinarid Mountains upwelling, the evolution of Dinaric Lake system, local tectonic activity, river connections during glaciations and differences in sea level. Even though all the investigated species inhabit karstic rivers located in the same geographic area and that were subject of similar geological events, the results obtained reveal great differences in their genetic diversity and structure and point out the necessity of different conservation measures to ensure their future viability. High level of genetic polymorphism is characteristic for species located more to the south. Two species comprised of more than one population have completely different intraspecific structure; populations of C. illyrica are genetically distinct and represent separate evolutionary significant units, whereas intraspecific structure of C. narentana corresponds to metapopulational pattern. Without population genetic data, evolutionary significant units could be easily misidentified. Furthermore, the obtained results affirm that population genetic measurements are able to detect differences among closely

  6. Different Histories, Different Destinies‒Impact of Evolutionary History and Population Genetic Structure on Extinction Risk of the Adriatic Spined Loaches (Genus Cobitis; Cypriniformes, Actinopterygii).

    PubMed

    Buj, Ivana; Ćaleta, Marko; Marčić, Zoran; Šanda, Radek; Vukić, Jasna; Mrakovčić, Milorad

    2015-01-01

    The region of Balkans is often considered as an ichthyologic "hot spot", with a great number of species and high portion of endemics living in fresh waters in a relatively small area. The Adriatic watershed in Croatia and Herzegovina is inhabited by six spined loach species (genus Cobitis) whose extinction risk estimations were based solely on their extent of occurrence (and/or area of occupancy) and its fragmentation, and conservation proposals do not consider diversity below species level. In this investigation we employed molecular genetic methods to describe present genetic structure of the Adriatic spined loaches and reveal their demographic history. The divergence of the Adriatic lineages inside the genus Cobitis started in Miocene and lasted until Pleistocene epoch. Geological events responsible for shaping recent diversity of spined loaches in the Adriatic basin are: the Dinarid Mountains upwelling, the evolution of Dinaric Lake system, local tectonic activity, river connections during glaciations and differences in sea level. Even though all the investigated species inhabit karstic rivers located in the same geographic area and that were subject of similar geological events, the results obtained reveal great differences in their genetic diversity and structure and point out the necessity of different conservation measures to ensure their future viability. High level of genetic polymorphism is characteristic for species located more to the south. Two species comprised of more than one population have completely different intraspecific structure; populations of C. illyrica are genetically distinct and represent separate evolutionary significant units, whereas intraspecific structure of C. narentana corresponds to metapopulational pattern. Without population genetic data, evolutionary significant units could be easily misidentified. Furthermore, the obtained results affirm that population genetic measurements are able to detect differences among closely

  7. Revisiting evolutionary dead ends in sockeye salmon ( Oncorhynchus nerka) life history

    USGS Publications Warehouse

    Pavey, S.A.; Hamon, T.R.; Nielsen, J.L.

    2007-01-01

    This study challenges recent hypotheses about sockeye salmon (Oncorhynchus nerka) colonization based on life history and broadens the pathways that investigators should consider when studying sockeye colonization of novel habitats. Most sockeye populations exhibit lake-type life histories. Riverine populations are thought to be more likely to stray from their natal stream to spawn and therefore colonize new habitat. We examined genetic relationships among five geographically proximate sockeye populations from the Aniakchak region of the Alaska Peninsula, Alaska. Specifically, we sought to determine if the genetic population structure was consistent with the hypothesis that a riverine population colonized a recently available upriver volcanic caldera lake, and whether recent volcanism led to genetic bottlenecks in these sockeye populations. Heterozygosity and allelic richness were not higher in the riverine population. Patterns of genetic divergence suggested that the geographically proximate riverine sockeye population did not colonize the lake; the caldera populations were more genetically divergent from the downstream riverine population (FST  =  0.047) than a lake-type population in a different drainage (FST  =  0.018). Our results did not suggest the presence of genetic bottlenecks in the caldera populations.

  8. The tree as evolutionary icon: TREE in the Natural History Museum, London.

    PubMed

    Hellström, Nils Petter

    2011-01-01

    As part of the Darwin celebrations in 2009, the Natural History Museum in London unveiled TREE, the first contemporary artwork to win a permanent place in the Museum. While the artist claimed that the inspiration for TREE came from Darwin's famous notebook sketch of branching evolution, sometimes referred to as his "tree of life" drawing, this article emphasises the apparent incongruity between Darwin's sketch and the artist's design -- best explained by other, complementary sources of inspiration. In the context of the Museum's active participation in struggles over science and religion, the effect of the new artwork is contradictory. TREE celebrates Darwinian evolutionism, but it resonates with deep-rooted, mythological traditions of tree symbolism to do so. This complicates the status of the Museum space as one of disinterested, secular science, but it also contributes, with or without the intentions of the Museum's management, to consolidate two sometimes conflicting strains within the Museum's history. TREE celebrates human effort, secular science and reason -- but it also evokes long-standing mythological traditions to inspire reverence and remind us of our humble place in the world.

  9. Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

    PubMed Central

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David; Harholt, Jesper

    2013-01-01

    The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins. PMID:24146880

  10. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus

    PubMed Central

    Neupane, Achal; Nepal, Madhav P; Benson, Benjamin V; MacArthur, Kenton J; Piya, Sarbottam

    2013-01-01

    Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution. PMID:24317362

  11. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes.

    PubMed

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David; Harholt, Jesper

    2013-01-01

    The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.

  12. Using 16O/18O to Determine the Evolutionary History of the R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey; Geballe, Tom; Welch, Douglas; Tisserand, Patrick

    2013-08-01

    Of the Galactic hydrogen-deficient carbon (HdC) and R Coronae Borealis (RCB) stars for which oxygen isotopic ratios can be measured, all of them show 16O/18O < 5, values that are orders of magnitude lower than measured in other stars (the Solar value is 500). This suggests that most if not all HdC and RCB stars are highly enriched in 18O. This is an important clue in determining the evolutionary pathways of HdC and RCB stars, for which two models have been proposed: the double degenerate (white dwarf (WD) merger), and the final helium-shell flash (FF). No overproduction of 18O is expected in the FF scenario. However, some RCB stars also show characteristics, such as 13C and Lithium, seen in FF stars. Therefore, we are conducting a survey all the RCB stars in the LMC and SMC for the characteristics of a WD merger or a FF. Most of the stars have been surveyed for 13C already and we plan to survey them for Lithium in the future. This proposal is to use Gemini/Flamingos-2 to survey all the stars, which are cool enough to show CO bands, for the presence of 18O near 2.3 micron. The Magellanic Clouds provide an unbiased, relatively complete sample of RCB stars which are at a known distance so their bolometric luminosities can be used in our stellar evolution models. This survey, combined with our models, will reveal the true fraction of RCB stars formed by each of the proposed scenarios.

  13. Using 16O/18O to Determine the Evolutionary History of the R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey; Geballe, Tom; Welch, Douglas; Tisserand, Patrick

    2014-08-01

    All of the Galactic hydrogen-deficient carbon (HdC) and R Coronae Borealis (RCB) stars for which oxygen isotopic ratios can be measured, show 16O/18O < 5, values that are orders of magnitude lower than measured in other stars (the Solar value is 500). This suggests that most if not all HdC and RCB stars are highly enriched in 18O. This is an important clue to determining the evolutionary pathways of HdC and RCB stars, for which two models have been proposed: the double degenerate (white dwarf (WD) merger), and the final helium-shell flash (FF). No overproduction of 18O is expected in the FF scenario. However, some RCB stars also show characteristics, such as 13C and Lithium, seen in FF stars. Therefore, we are conducting a survey of all the RCB stars in the LMC and SMC for the characteristics of a WD merger or a FF. Most of the stars have been surveyed for 13C already, and we are also planning to survey them for Lithium. But no RCB star in the Magellanic Clouds has been observed for 18O. The Magellanic Clouds provide an unbiased, relatively complete sample of RCB stars which are at a known distance so their bolometric luminosities can be used in our stellar evolution models. This proposal is to use Gemini/Flamingos-2 to survey all of the Magellanic Cloud stars, which are cool enough to show CO bands, for the presence of 18O near 2.3 micron. This survey, combined with our stellar evolution models, will reveal the true fraction of RCB stars formed by each of the proposed scenarios.

  14. Clarifying phylogenetic relationships and the evolutionary history of the bivalve order Arcida (Mollusca: Bivalvia: Pteriomorphia).

    PubMed

    Combosch, David J; Giribet, Gonzalo

    2016-01-01

    The systematics of the bivalve order Arcida constitutes an unresolved conundrum in bivalve systematics. The current definition of Arcida encompasses two superfamilies: Limopsoidea, which includes the recent families Philobryidae and Limopsidae, and Arcoidea, which encompasses the families Arcidae, Cucullaeidae, Noetiidae, Glycymerididae and Parallelodontidae. This classification, however, is controversial particularly with respect to the position and taxonomic status of Glycymerididae. Previous molecular phylogenies were limited either by the use of only a single molecular marker or by including only a few limopsoid and glycymeridid taxa. The challenging nature of Arcida taxonomy and the controversial results of some of the previous studies, prompted us to use a broad range of taxa (55 species), three nuclear markers (18S rRNA, 28S rRNA and histone H3) and a wide range of algorithmic approaches. This broad but stringent approach led to a number of results that differ significantly from previous studies. We provide the first molecular evidence that supports the separation of Arcoidea from Limopsoidea, although the exact position of Glycymerididae remains unresolved, and the monophyly of Limopsoidea is algorithm-dependent. In addition, we present the first time-calibrated evolutionary tree of Arcida relationships, indicating a significant increase in the diversification of arcidan lineages at the beginning of the Cretaceous, around 140Ma. The monophyly of Arcida, which has been supported previously, was confirmed in all our analyses. Although relationships among families remain somehow unresolved we found support for the monophyly of most arcidan families, at least under some analytical conditions (i.e., Glycymerididae, Noetiidae, Philobryidae, and Limopsidae). However, Arcidae, and particularly Arcinae, remain a major source of inconsistency in the current system of Arcida classification and are in dire need of taxonomic revision.

  15. Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements, and past and present distribution within its native range

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. We integrated classic and Bayesian phylogeographic methods with a paleodistribution modeling approach to study the demographic patterns that shaped the distribut...

  16. Placing Intelligence into an Evolutionary Framework or How "g" Fits into the "r-K" Matrix of Life-History Traits Including Longevity

    ERIC Educational Resources Information Center

    Rushton, J. Philippe

    2004-01-01

    First, I describe why intelligence (Spearman's "g") can only be fully understood through "r-K" theory, which places it into an evolutionary framework along with brain size, longevity, maturation speed, and several other life-history traits. The "r-K" formulation explains why IQ predicts longevity and also why the gap in mortality rates between…

  17. Molecular phylogeny and evolutionary history of the Eurasiatic orchid genus Himantoglossum s.l. (Orchidaceae)

    PubMed Central

    Sramkó, Gábor; Attila, Molnár V.; Hawkins, Julie A.; Bateman, Richard M.

    2014-01-01

    Background and Aims Lizard orchids of the genus Himantoglossum include many of Eurasia's most spectacular orchids, producing substantial spikes of showy flowers. However, until recently the genus had received only limited, and entirely traditional, systematic study. The aim of the current work was to provide a more robust molecular phylogeny in order to better understand the evolutionary relationships among species of particular conservation concern. Methods All putative species of Himantoglossum s.l. were sampled across its geographical range. A large subsample of the 153 populations studied contributed to an initial survey of nuclear ribosomal internal transcribed spacer (nrITS) ribotypes. Smaller subsets were then sequenced for four plastid regions and the first intron of the low-copy-number nuclear gene LEAFY. Rooted using Steveniella as outgroup, phylogenetic trees were generated using parsimony and Bayesian methods from each of the three datasets, supplemented with a ribotype network. Key Results The resulting trees collectively determined the order of branching of the early divergent taxa as Himantoglossum comperianum > H. robertianum group > H. formosum, events that also involved significant morphological divergence. Relaxed molecular clock dating suggested that these divergences preceded the Pleistocene glaciations (the origin of the H. robertianum group may have coincided with the Messinian salinity crisis) and occurred in Asia Minor and/or the Caucasus. Among more controversial taxa of the H. hircinum-jankae clade, which are only subtly morphologically divergent, topological resolution was poorer and topological incongruence between datasets was consequently greater. Conclusions Plastid sequence divergence is broadly consistent with prior, morphologically circumscribed taxa and indicates a division between H. hircinum–adriaticum to the west of the Carpathians and H. jankae–caprinum (plus local endemics) to the east, a distinction also suggested by nr

  18. Pollutant dehalogenation capability may depend on the trophic evolutionary history of the organism: PBDEs in freshwater food webs.

    PubMed

    Bartrons, Mireia; Grimalt, Joan O; de Mendoza, Guillermo; Catalan, Jordi

    2012-01-01

    Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms' trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having scarce

  19. Retroposed elements and their flanking regions resolve the evolutionary history of xenarthran mammals (armadillos, anteaters, and sloths).

    PubMed

    Möller-Krull, Maren; Delsuc, Frédéric; Churakov, Gennady; Marker, Claudia; Superina, Mariella; Brosius, Jürgen; Douzery, Emmanuel J P; Schmitz, Jürgen

    2007-11-01

    Armadillos, anteaters, and sloths (Order Xenarthra) comprise 1 of the 4 major clades of placental mammals. Isolated in South America from the other continental landmasses, xenarthrans diverged over a period of about 65 Myr, leaving more than 200 extinct genera and only 31 living species. The presence of both ancestral and highly derived anatomical features has made morphoanatomical analyses of the xenarthran evolutionary history difficult, and previous molecular analyses failed to resolve the relationships within armadillo subfamilies. We investigated the presence/absence patterns of retroposons from approximately 7,400 genomic loci, identifying 35 phylogenetically informative elements and an additional 39 informative rare genomic changes (RGCs). DAS-short interspersed elements (SINEs), previously described only in the Dasypus novemcinctus genome, were found in all living armadillo genera, including the previously unsampled Chlamyphorus, but were noticeably absent in sloths. The presence/absence patterns of the phylogenetically informative retroposed elements and other RGCs were then compared with data from the DNA sequences of the more than 12-kb flanking regions of these retroposons. Together, these data provide the first fully resolved genus tree of xenarthrans. Interestingly, multiple evidence supports the grouping of Chaetophractus and Zaedyus as a sister group to Euphractus within Euphractinae, an association that was not previously demonstrated. Also, flanking sequence analyses favor a close phylogenetic relationship between Cabassous and Tolypeutes within Tolypeutinae. Finally, the phylogenetic position of the subfamily Chlamyphorinae is resolved by the noncoding sequence data set as the sister group of Tolypeutinae. The data provide a stable phylogenetic framework for further evolutionary investigations of xenarthrans and important information for defining conservation priorities to save the diversity of one of the most curious groups of mammals.

  20. A Comprehensive tRNA Genomic Survey Unravels the Evolutionary History of tRNA Arrays in Prokaryotes

    PubMed Central

    Tran, Tam T.T.; Belahbib, Hassiba; Bonnefoy, Violaine; Talla, Emmanuel

    2016-01-01

    Considering the importance of tRNAs in the translation machinery, scant attention has been paid to tRNA array units defined as genomic regions containing at least 20 tRNA genes with a minimal tRNA gene density of two tRNA genes per kilobase. Our analysis of Acidithiobacillus ferrivorans CF27 and Acidithiobacillus ferrooxidans ATCC 23270T genomes showed that both display a tRNA array unit with syntenic conservation which mainly contributed to the tRNA gene redundancy in these two organisms. Our investigations into the occurrence and distribution of tRNA array units revealed that 1) this tRNA organization is limited to few phyla and mainly found in Gram-positive bacteria; and 2) the presence of tRNA arrays favors the redundancy of tRNA genes, in particular those encoding the core tRNA isoacceptors. Finally, comparative array organization revealed that tRNA arrays were acquired through horizontal gene transfer (from Firmicutes or unknown donor), before being subjected to tRNA rearrangements, deletions, and duplications. In Bacilli, the most parsimonious evolutionary history involved two common ancestors and the acquisition of their arrays arose late in evolution, in the genera branches. Functional roles of the array units in organism lifestyle, selective genetic advantage and translation efficiency, as well as the evolutionary advantages of organisms harboring them were proposed. Our study offers new insight into the structural organization and evolution of tRNA arrays in prokaryotic organisms. PMID:26710853

  1. Pollutant dehalogenation capability may depend on the trophic evolutionary history of the organism: PBDEs in freshwater food webs.

    PubMed

    Bartrons, Mireia; Grimalt, Joan O; de Mendoza, Guillermo; Catalan, Jordi

    2012-01-01

    Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms' trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having scarce

  2. Ancient collagen reveals evolutionary history of the endemic South American 'ungulates'.

    PubMed

    Buckley, Michael

    2015-05-01

    Since the late eighteenth century, fossils of bizarre extinct creatures have been described from the Americas, revealing a previously unimagined chapter in the history of mammals. The most bizarre of these are the 'native' South American ungulates thought to represent a group of mammals that evolved in relative isolation on South America, but with an uncertain affinity to any particular placental lineage. Many authors have considered them descended from Laurasian 'condylarths', which also includes the probable ancestors of perissodactyls and artiodactyls, whereas others have placed them either closer to the uniquely South American xenarthrans (anteaters, armadillos and sloths) or the basal afrotherians (e.g. elephants and hyraxes). These hypotheses have been debated owing to conflicting morphological characteristics and the hitherto inability to retrieve molecular information. Of the 'native' South American mammals, only the toxodonts and litopterns persisted until the Late Pleistocene-Early Holocene. Owing to known difficulties in retrieving ancient DNA (aDNA) from specimens from warm climates, this research presents a molecular phylogeny for both Macrauchenia patachonica (Litopterna) and Toxodon platensis (Notoungulata) recovered using proteomics-based (liquid chromatography-tandem mass spectrometry) sequencing analyses of bone collagen. The results place both taxa in a clade that is monophyletic with the perissodactyls, which today are represented by horses, rhinoceroses and tapirs. PMID:25833851

  3. Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’

    PubMed Central

    Buckley, Michael

    2015-01-01

    Since the late eighteenth century, fossils of bizarre extinct creatures have been described from the Americas, revealing a previously unimagined chapter in the history of mammals. The most bizarre of these are the ‘native’ South American ungulates thought to represent a group of mammals that evolved in relative isolation on South America, but with an uncertain affinity to any particular placental lineage. Many authors have considered them descended from Laurasian ‘condylarths’, which also includes the probable ancestors of perissodactyls and artiodactyls, whereas others have placed them either closer to the uniquely South American xenarthrans (anteaters, armadillos and sloths) or the basal afrotherians (e.g. elephants and hyraxes). These hypotheses have been debated owing to conflicting morphological characteristics and the hitherto inability to retrieve molecular information. Of the ‘native’ South American mammals, only the toxodonts and litopterns persisted until the Late Pleistocene–Early Holocene. Owing to known difficulties in retrieving ancient DNA (aDNA) from specimens from warm climates, this research presents a molecular phylogeny for both Macrauchenia patachonica (Litopterna) and Toxodon platensis (Notoungulata) recovered using proteomics-based (liquid chromatography–tandem mass spectrometry) sequencing analyses of bone collagen. The results place both taxa in a clade that is monophyletic with the perissodactyls, which today are represented by horses, rhinoceroses and tapirs. PMID:25833851

  4. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    PubMed

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled. PMID:26154449

  5. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    PubMed

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  6. Diversification trajectories and evolutionary life-history traits in early sharks and batoids.

    PubMed

    Kriwet, Jürgen; Kiessling, Wolfgang; Klug, Stefanie

    2009-03-01

    Different interpretations on the timing of early diversification and radiation of modern sharks and batoids (Neoselachii) in the Earth's history exist and are related to discrepancies in taxonomic and phylogenetic interpretations favouring a Late Triassic or earliest Jurassic diversification and subsequent radiation event, respectively. Sampling standardization based on pooled taxonomic occurrences made it possible to overcome the problem of a much richer neoselachian record in the Late Jurassic than earlier on. The standardized pattern of genus richness is one of low and fairly constant diversity in the Late Triassic and earliest Jurassic with a steep rise in the Toarcian (ca 180Myr ago), representing the maximum diversification rate in the Jurassic towards a Middle and Late Jurassic plateau. The major Toarcian diversification agrees with the conclusions based on phylogenetic analyses, but is in conflict with older interpretations based on raw data. Early Jurassic expansion of neoselachians was opportunistic in the aftermath of the end-Triassic mass extinction and the reasons for their rapid diversification and radiation probably include small body size, short lifespans and oviparity, enabling faster ecological reorganizations and innovations in body plans for adapting to changing environmental conditions. PMID:19129130

  7. Phylogeny and evolutionary history of Old World suboscine birds (Aves: Eurylaimides)

    USGS Publications Warehouse

    Moyle, R.G.; Chesser, R.T.; Prum, R.O.; Schikler, P.; Cracraft, J.

    2006-01-01

    Molecular and morphological data were used to derive a phylogenetic hypothesis for the Eurylaimides, an Old World bird group now known to be distributed pantropically, and to investigate the evolution and biogeography of the group. Phylogenetic results indicated that the Eurylaimides consist of two monophyletic groups, the pittas (Pittidae) and the broadbills (Eurylaimidae sensu lato), and that the broadbills consist of two highly divergent clades, one containing the sister genera Smithornis and Calyptomena, the other containing Pseudocalyptomena graueri, Sapayoa aenigma, the asity genera Philepitta and Neodrepanis, and five Asian genera. Our results indicate that over a ~10 million year time span in the early Tertiary, the Eurylaimides came to inhabit widely disjunct tropical regions and evolved disparate morphology, diet, and breeding behavior. Biogeographically, although a southern origin for the lineage is likely, time estimates for major lineage splitting do not correspond to Gondwanan vicariance events, and the biogeographic history of the crown clade is better explained by Laurasian climatic and geological processes. In particular, the timing and phylogenetic pattern suggest a likely Laurasian origin for the sole New World representative of the group, Sapayoa aenigma.

  8. Whole-genome sequencing of tibetan macaque (Macaca Thibetana) provides new insight into the macaque evolutionary history.

    PubMed

    Fan, Zhenxin; Zhao, Guang; Li, Peng; Osada, Naoki; Xing, Jinchuan; Yi, Yong; Du, Lianming; Silva, Pedro; Wang, Hongxing; Sakate, Ryuichi; Zhang, Xiuyue; Xu, Huailiang; Yue, Bisong; Li, Jing

    2014-06-01

    introgression event between them. Moreover, demographic inferences revealed that TM exhibited a similar demographic history as other macaques until 0.5 Ma, but then it maintained a lower effective population size until present time. Our study has provided new insight into the macaque evolutionary history, confirming hybridization events between macaque species groups based on genome-wide data. PMID:24648498

  9. Whole-genome sequencing of tibetan macaque (Macaca Thibetana) provides new insight into the macaque evolutionary history.

    PubMed

    Fan, Zhenxin; Zhao, Guang; Li, Peng; Osada, Naoki; Xing, Jinchuan; Yi, Yong; Du, Lianming; Silva, Pedro; Wang, Hongxing; Sakate, Ryuichi; Zhang, Xiuyue; Xu, Huailiang; Yue, Bisong; Li, Jing

    2014-06-01

    introgression event between them. Moreover, demographic inferences revealed that TM exhibited a similar demographic history as other macaques until 0.5 Ma, but then it maintained a lower effective population size until present time. Our study has provided new insight into the macaque evolutionary history, confirming hybridization events between macaque species groups based on genome-wide data.

  10. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation

    PubMed Central

    2011-01-01

    Background Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Results Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. Conclusions The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100

  11. Evolutionary History of Helicobacter pylori Sequences Reflect Past Human Migrations in Southeast Asia

    PubMed Central

    Breurec, Sebastien; Guillard, Bertrand; Hem, Sopheak; Brisse, Sylvain; Dieye, Fatou Bintou; Huerre, Michel; Oung, Chakravuth; Raymond, Josette; Sreng Tan, Tek; Thiberge, Jean-Michel; Vong, Sirenda; Monchy, Didier; Linz, Bodo

    2011-01-01

    The human population history in Southeast Asia was shaped by numerous migrations and population expansions. Their reconstruction based on archaeological, linguistic or human genetic data is often hampered by the limited number of informative polymorphisms in classical human genetic markers, such as the hypervariable regions of the mitochondrial DNA. Here, we analyse housekeeping gene sequences of the human stomach bacterium Helicobacter pylori from various countries in Southeast Asia and we provide evidence that H. pylori accompanied at least three ancient human migrations into this area: i) a migration from India introducing hpEurope bacteria into Thailand, Cambodia and Malaysia; ii) a migration of the ancestors of Austro-Asiatic speaking people into Vietnam and Cambodia carrying hspEAsia bacteria; and iii) a migration of the ancestors of the Thai people from Southern China into Thailand carrying H. pylori of population hpAsia2. Moreover, the H. pylori sequences reflect iv) the migrations of Chinese to Thailand and Malaysia within the last 200 years spreading hspEasia strains, and v) migrations of Indians to Malaysia within the last 200 years distributing both hpAsia2 and hpEurope bacteria. The distribution of the bacterial populations seems to strongly influence the incidence of gastric cancer as countries with predominantly hspEAsia isolates exhibit a high incidence of gastric cancer while the incidence is low in countries with a high proportion of hpAsia2 or hpEurope strains. In the future, the host range expansion of hpEurope strains among Asian populations, combined with human motility, may have a significant impact on gastric cancer incidence in Asia. PMID:21818291

  12. Cenozoic Exhumation History and Evolutionary Model For The Central Catalan Coastal Ranges (ne Spain)

    NASA Astrophysics Data System (ADS)

    Gaspar-Escribano, J. M.; Garcia-Castellanos, D.; Roca, E.; Juez-Larre, J.; Cloetingh, S.

    We have studied the Cenozoic exhumation history of the Catalan Coastal Ranges (NE Spain) and propose a model for its kinematic evolution. Two difficulties appear when reconstructing the geological evolution of the study area: (1) Neogene fault extensional reactivation overrides former compressional structures, leading to uncertainties of fault slips and amounts of exhumation and hence misinter- pretation of basin evolution; (2) Absence of parts of the sedimentary record impedes a complete description of timing and significance of erosion-sedimentation during the corresponding time interval. We address these problems by using multiple data sets as constraints for a kinematic model. The observations accounted for in the model consist of: (1) Partially reconstructed geological sections based on seismics and/or sedimentological studies; and (2) New fission track data, that were translated in terms of exhumation to validate the evolu- tionary model. In order to quantitatively link these observations, we use a fault block model that as- sumes vertical shear and incorporates flexural isostasy and surface transport (erosion and sedimentation). Modifying input fault geometries and velocities we can adjust modeling predictions with the observed geometry and exhumation-time diagrams. A gradual variation of effective elastic thickness (low value~5 km offshore, higher value ~25 km in the Ebro Basin) is required to fit exhumation curves derived and the topog- raphy in the Littoral Range. Results of our model provide constraints on the evolution of the region in terms of topography and fault activity. The mass balance between deposition and erosion is also calculated, indicating significant out-of-plane surface transport.

  13. Evolutionary history of a widespread tree species Acer mono in East Asia.

    PubMed

    Guo, Xi-Di; Wang, Hong-Fang; Bao, Lei; Wang, Tian-Ming; Bai, Wei-Ning; Ye, Jun-Wei; Ge, Jian-Ping

    2014-11-01

    East Asia has the most diverse temperate flora in the world primarily due to the lack of Pleistocene glaciation and the geographic heterogeneity. Although increasing phylogeography studies in this region provided more proofs in this issue, discrepancies and uncertainty still exist, especially in northern temperate deciduous broad-leaved and coniferous mixed forest region (II). And a widespread plant species could reduce the complexity to infer the relationship between diversity and physiographical pattern. Hence, we studied the evolution history of a widespread temperate tree, Acer mono, populations in region II and the influence of physiographic patterns on intraspecific genetic diversity. Analyses of chloroplast sequences and nuclear microsatellites indicated high levels of genetic diversity. The diversity distribution was spatially heterogeneous and a latitudinal cline existed in both markers. The spatial distribution pattern between genetic diversity within A. mono and the diversity at species level was generally consistent. Western subtropical evergreen broad-leaved forest subregion (IVb) had a unique ancient chloroplast clade (CP3) and a nuclear gene pool (GP5) with dominance indicating the critical role of this area in species diversification. Genetic data and ecological niche model results both suggested that populations in region II disappeared during the last glacial maximum (LGM) and recovered from south of Changbai Mt. and the Korean Peninsula. Two distribution centers were likely during the LGM, one in the north edge of warm temperate deciduous broad-leaved forest region (III) and another in the south edge of region III. This was reflected by the genetic pattern with two spatially independent genetic groups. This study highlights the key role of region III in sustaining genetic diversity in the northern range and connecting diversity between southern and northern range. We elucidated the diversity relationship between vegetation regions which could

  14. Evolutionary history of a widespread tree species Acer mono in East Asia.

    PubMed

    Guo, Xi-Di; Wang, Hong-Fang; Bao, Lei; Wang, Tian-Ming; Bai, Wei-Ning; Ye, Jun-Wei; Ge, Jian-Ping

    2014-11-01

    East Asia has the most diverse temperate flora in the world primarily due to the lack of Pleistocene glaciation and the geographic heterogeneity. Although increasing phylogeography studies in this region provided more proofs in this issue, discrepancies and uncertainty still exist, especially in northern temperate deciduous broad-leaved and coniferous mixed forest region (II). And a widespread plant species could reduce the complexity to infer the relationship between diversity and physiographical pattern. Hence, we studied the evolution history of a widespread temperate tree, Acer mono, populations in region II and the influence of physiographic patterns on intraspecific genetic diversity. Analyses of chloroplast sequences and nuclear microsatellites indicated high levels of genetic diversity. The diversity distribution was spatially heterogeneous and a latitudinal cline existed in both markers. The spatial distribution pattern between genetic diversity within A. mono and the diversity at species level was generally consistent. Western subtropical evergreen broad-leaved forest subregion (IVb) had a unique ancient chloroplast clade (CP3) and a nuclear gene pool (GP5) with dominance indicating the critical role of this area in species diversification. Genetic data and ecological niche model results both suggested that populations in region II disappeared during the last glacial maximum (LGM) and recovered from south of Changbai Mt. and the Korean Peninsula. Two distribution centers were likely during the LGM, one in the north edge of warm temperate deciduous broad-leaved forest region (III) and another in the south edge of region III. This was reflected by the genetic pattern with two spatially independent genetic groups. This study highlights the key role of region III in sustaining genetic diversity in the northern range and connecting diversity between southern and northern range. We elucidated the diversity relationship between vegetation regions which could

  15. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst

    PubMed Central

    2013-01-01

    Background Patterns of biodiversity in the subterranean realm are typically different from those encountered on the Earth’s surface. The Dinaric karst of Croatia, Slovenia and Bosnia and Herzegovina is a global hotspot of subterranean biodiversity. How this was achieved and why this is so remain largely unresolved despite a long tradition of research. To obtain insights into the colonisation of the Dinaric Karst and the effects of the subterranean realm on its inhabitants, we studied the tertiary relict Congeria, a unique cave-dwelling bivalve (Dreissenidae), using a combination of biogeographical, molecular, morphological, and paleontological information. Results Phylogenetic and molecular clock analyses using both nuclear and mitochondrial markers have shown that the surviving Congeria lineage has actually split into three distinct species, i.e., C. kusceri, C. jalzici sp. nov. and C. mulaomerovici sp. nov., by vicariant processes in the late Miocene and Pliocene. Despite millions of years of independent evolution, analyses have demonstrated a great deal of shell similarity between modern Congeria species, although slight differences in hinge plate structure have enabled the description of the two new species. Ancestral plesiomorphic shell forms seem to have been conserved during the processes of cave colonisation and subsequent lineage isolation. In contrast, shell morphology is divergent within one of the lineages, probably due to microhabitat differences. Conclusions Following the turbulent evolution of the Dreissenidae during the Tertiary and major radiations in Lake Pannon, species of Congeria went extinct. One lineage survived, however, by adopting a unique life history strategy that suited it to the underground environment. In light of our new data, an alternative scenario for its colonisation of the karst is proposed. The extant Congeria comprises three sister species that, to date, have only been found to live in 15 caves in the Dinaric karst. Inter

  16. Mars: the evolutionary history of the northern lowlands based on crater counting and geologic mapping

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.; Skinner, J.A.

    2011-01-01

    The geologic history of planetary surfaces is most effectively determined by joining geologic mapping and crater counting which provides an iterative, qualitative and quantitative method for defining relative ages and absolute model ages. Based on this approach, we present spatial and temporal details regarding the evolution of the Martian northern plains and surrounding regions. The highland–lowland boundary (HLB) formed during the pre-Noachian and was subsequently modified through various processes. The Nepenthes Mensae unit along the northern margins of the cratered highlands, was formed by HLB scarp-erosion, deposition of sedimentary and volcanic materials, and dissection by surface runoff between 3.81 and 3.65 Ga. Ages for giant polygons in Utopia and Acidalia Planitiae are ~ 3.75 Ga and likely reflect the age of buried basement rocks. These buried lowland surfaces are comparable in age to those located closer to the HLB, where a much thinner, post-HLB deposit is mapped. The emplacement of the most extensive lowland surfaces ended between 3.75 and 3.4 Ga, based on densities of craters generally View the MathML source> 3 km in diameter. Results from the polygonal terrain support the existence of a major lowland depocenter shortly after the pre-Noachian formation of the northern lowlands. In general, northern plains surfaces show gradually younger ages at lower elevations, consistent local to regional unit emplacement and resurfacing between 3.6 and 2.6 Ga. Elevation levels and morphology are not necessarily related, and variations in ages within the mapped units are found, especially in units formed and modified by multiple geological processes. Regardless, most of the youngest units in the northern lowlands are considered to be lavas, polar ice, or thick mantle deposits, arguing against the ocean theory during the Amazonian Period (younger than about 3.15 Ga). All ages measured in the closest vicinity of the steep dichotomy escarpment are also 3.7 Ga or

  17. Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems.

    PubMed

    Rogers, Sally L; Kaufman, Jim

    2016-08-01

    CD1 genes encode cell surface molecules that present lipid antigens to various kinds of T lymphocytes of the immune system. The structures of CD1 genes and molecules are like the major histocompatibility complex (MHC) class I system, the loading of antigen and the tissue distribution for CD1 molecules are like those in the class II system, and phylogenetic analyses place CD1 between class I and class II sequences, altogether leading to the notion that CD1 is a third ancient system of antigen presentation molecules. However, thus far, CD1 genes have only been described in mammals, birds and reptiles, leaving major questions as to their origin and evolution. In this review, we recount a little history of the field so far and then consider what has been learned about the structure and functional attributes of CD1 genes and molecules in marsupials, birds and reptiles. We describe the central conundrum of CD1 evolution, the genomic location of CD1 genes in the MHC and/or MHC paralogous regions in different animals, considering the three models of evolutionary history that have been proposed. We describe the natural killer (NK) receptors NKR-P1 and ligands, also found in different genomic locations for different animals. We discuss the consequence of these three models, one of which includes the repudiation of a guiding principle for the last 20 years, that two rounds of genome-wide duplication at the base of the vertebrates provided the extra MHC genes necessary for the emergence of adaptive immune system of jawed vertebrates. PMID:27457887

  18. Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: pliocene vicariance, morphological convergence and character displacement.

    PubMed

    Bendiksby, Mika; Schumacher, Trond; Gussarova, Galina; Nais, Jamili; Mat-Salleh, Kamarudin; Sofiyanti, Nery; Madulid, Domingo; Smith, Stephen A; Barkman, Todd

    2010-11-01

    The aim of the present study is to elucidate the evolutionary history of the enigmatic holoparasitic Rafflesiaceae. More specifically, floral morphological evolution is interpreted in a molecular phylogenetic context, the biogeographic history of the family is investigated, and the possibility of character displacement to have been operating in this family is assessed. Parsimony and Bayesian methods are used to estimate phylogeny and divergence times among Rafflesiaceae species based on nuclear and mitochondrial DNA sequence data from Barkman et al. (2008) as well as new sequence data from additional samples and an additional genetic marker, the plastid 16S. Ancestral areas are inferred using dispersal-vicariance analysis (DIVA) as well a more recently developed parametric likelihood method (LAGRANGE), now including an update that allows for estimation over the posterior distribution of dated trees. Our extended molecular phylogeny of Rafflesiaceae implies a general lack of morphological synapomorphies as well as a high level of morphological homoplasy. In particular, a high level of floral morphological homoplasy is detected among Rafflesia species suggestive of similar patterns of pollinator-based selection in different geographic areas, and multiple instances of divergent floral size evolution is consistent with a model of character displacement. Initial diversification of Rafflesiaceae during the Late Cretaceous was followed by a long period of no-net diversification, likely due to extinctions caused by a Late Eocene to Miocene dramatic reduction in rainforest cover. A Late Miocene to Early Pliocene rise in sea-level probably caused the vicariant diversification observed between areas of endemism. The most recent species divergences are concordant with Pleistocene changes in climate and sea-levels, but apparently with no successful inter-area migrations, supportive of savannah, rather than rainforest, covered landbridges. An explosive increase in net

  19. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau.

    PubMed

    Shang, Hui-Ying; Li, Zhong-Hu; Dong, Miao; Adams, Robert P; Miehe, Georg; Opgenoorth, Lars; Mao, Kang-Shan

    2015-05-15

    All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper.

  20. A new late Eocene Bicornucythere species (Ostracoda, Crustacea) from Myanmar, and its significance for the evolutionary history of the genus.

    PubMed

    Yamaguchi, Tatsuhiko; Suzuki, Hisashi; Soe, Aung-Naing; Htike, Thaung; Nomura, Ritsuo; Takai, Masanaru

    2015-02-17

    The ostracode genus Bicornucythere (Ostracoda, Crustacea) is abundant in modern-day eutrophic marine bays, and is widely distributed in estuaries and inner bays throughout East Asia, including in China, Korea, Japan, and the Russian Far East. The evolutionary history of Bicornucythere is poorly understood. Here, we report on a new species of Bicornucythere (Bicornucythere concentrica sp. nov.) from the upper Eocene Yaw Formation in the Central Myanmar Basin. The oldest previously known Bicornucythere taxon, Bicornucythere secedens, was reported from lower Miocene strata in India, although a molecular phylogeny suggests that the genus first appeared in the Late Cretaceous. Bicornucythere concentrica sp. nov. is at least 10.9 million years older than the earliest known B. secedens. The new species occurs with Ammonia subgranulosa, a benthic foraminifer, an association that is representative of brackish water conditions in modern Asian bays. Our findings indicate that extant genera have inhabited Asian bays since the late Eocene. The paleobiogeography of Bicornucythere indicates that the taxon was dispersed onto Indian coasts during the collision between the Indian and Eurasian plates.

  1. Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918

    PubMed Central

    Nelson, Martha I.; Viboud, Cécile; Simonsen, Lone; Bennett, Ryan T.; Griesemer, Sara B.; St. George, Kirsten; Taylor, Jill; Spiro, David J.; Sengamalay, Naomi A.; Ghedin, Elodie; Taubenberger, Jeffery K.; Holmes, Edward C.

    2008-01-01

    The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized. PMID:18463694

  2. Next-generation sequencing analysis of lager brewing yeast strains reveals the evolutionary history of interspecies hybridization

    PubMed Central

    Okuno, Miki; Kajitani, Rei; Ryusui, Rie; Morimoto, Hiroya; Kodama, Yukiko; Itoh, Takehiko

    2016-01-01

    The lager beer yeast Saccharomyces pastorianus is considered an allopolyploid hybrid species between S. cerevisiae and S. eubayanus. Many S. pastorianus strains have been isolated and classified into two groups according to geographical origin, but this classification remains controversial. Hybridization analyses and partial PCR-based sequence data have indicated a separate origin of these two groups, whereas a recent intertranslocation analysis suggested a single origin. To clarify the evolutionary history of this species, we analysed 10 S. pastorianus strains and the S. eubayanus type strain as a likely parent by Illumina next-generation sequencing. In addition to assembling the genomes of five of the strains, we obtained information on interchromosomal translocation, ploidy, and single-nucleotide variants (SNVs). Collectively, these results indicated that the two groups of strains share S. cerevisiae haploid chromosomes. We therefore conclude that both groups of S. pastorianus strains share at least one interspecific hybridization event and originated from a common parental species and that differences in ploidy and SNVs between the groups can be explained by chromosomal deletion or loss of heterozygosity. PMID:26732986

  3. Phylogeography of Chinese cherry (Prunus pseudocerasus Lindl.) inferred from chloroplast and nuclear DNA: insights into evolutionary patterns and demographic history.

    PubMed

    Chen, T; Chen, Q; Luo, Y; Huang, Z-L; Zhang, J; Tang, H-R; Pan, D-M; Wang, X-R

    2015-07-01

    Chinese cherry (Prunus pseudocerasus Lindl.) is a commercially valuable fruit crop in China. In order to obtain new insights into its evolutionary history and provide valuable recommendations for resource conservation, phylogeographic patterns of 26 natural populations (305 total individuals) from six geographic regions were analyzed using chloroplast and nuclear DNA fragments. Low levels of haplotype and nucleotide diversity were found in these populations, especially in landrace populations. It is likely that a combined effect of botanical characteristics impact the effective population size, such as inbreeding mating system, long life span, as well as vegetative reproduction. In addition, strong bottleneck effect caused by domestication, together with founder effect after dispersal and subsequent demographic expansion, might also accelerate the reduction of the genetic variation in landrace populations. Interestingly, populations from Longmen Mountain (LMM) and Daliangshan Mountain (DLSM) exhibited relatively higher levels of genetic diversity, inferring the two historical genetic diversity centers of the species. Moreover, moderate population subdivision was also detected by both chloroplast DNA (GST = 0.215; NST = 0.256) and nuclear DNA (GST = 0.146; NST = 0.342), respectively. We inferred that the episodes of efficient gene flow through seed dispersal, together with features of long generation cycle and inbreeding mating system, were likely the main contributors causing the observed phylogeographic patterns. Finally, factors that led to the present demographic patterns of populations from these regions and taxonomic varieties were also discussed.

  4. Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling.

    PubMed

    Jakob, Sabine S; Rödder, Dennis; Engler, Jan O; Shaaf, Salar; Ozkan, Hakan; Blattner, Frank R; Kilian, Benjamin

    2014-03-01

    Studies of Hordeum vulgare subsp. spontaneum, the wild progenitor of cultivated barley, have mostly relied on materials collected decades ago and maintained since then ex situ in germplasm repositories. We analyzed spatial genetic variation in wild barley populations collected rather recently, exploring sequence variations at seven single-copy nuclear loci, and inferred the relationships among these populations and toward the genepool of the crop. The wild barley collection covers the whole natural distribution area from the Mediterranean to Middle Asia. In contrast to earlier studies, Bayesian assignment analyses revealed three population clusters, in the Levant, Turkey, and east of Turkey, respectively. Genetic diversity was exceptionally high in the Levant, while eastern populations were depleted of private alleles. Species distribution modeling based on climate parameters and extant occurrence points of the taxon inferred suitable habitat conditions during the ice-age, particularly in the Levant and Turkey. Together with the ecologically wide range of habitats, they might contribute to structured but long-term stable populations in this region and their high genetic diversity. For recently collected individuals, Bayesian assignment to geographic clusters was generally unambiguous, but materials from genebanks often showed accessions that were not placed according to their assumed geographic origin or showed traces of introgression from cultivated barley. We assign this to gene flow among accessions during ex situ maintenance. Evolutionary studies based on such materials might therefore result in wrong conclusions regarding the history of the species or the origin and mode of domestication of the crop, depending on the accessions included.

  5. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts.

    PubMed

    Chang, Shang-Lin; Leu, Jun-Yi; Chang, Tien-Hsien

    2015-08-01

    Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species.

  6. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history.

    PubMed

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts' biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods. PMID:27291078

  7. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history

    PubMed Central

    Zhang, Yan-Kai; Chen, Ya-Ting; Yang, Kun; Qiao, Ge-Xia; Hong, Xiao-Yue

    2016-01-01

    Reproductive endosymbionts have been shown to have wide-ranging effects on many aspects of their hosts’ biology. A first step to understanding how these endosymbionts interact with their hosts is to determine their incidences. Here, we screened for four reproductive endosymbionts (Wolbachia, Cardinium, Spiroplasma and Rickettsia) in 28 populations of spider mites (Acari: Tetranychidae) representing 12 species. Each of the four endosymbionts were identified in at least some of the tested specimens, and their infection patterns showed variations at the species-level and population-level, suggesting their distributions can be correlated with both the phylogeny and ecology of the hosts. Co-infections of unrelated bacteria, especially double infections of Wolbachia and Cardinium within the same individuals were common. Spiroplasma and Rickettsia infections were specific to particular host species, respectively. Further, the evolutionary histories of these endosymbionts were inferred by comparing the phylogenies of them and their hosts. These findings can help to clarify the interactions between endosymbionts and arthropods. PMID:27291078

  8. The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion

    PubMed Central

    Du, Hai; Liang, Zhe; Zhao, Sen; Nan, Ming-Ge; Phan Tran, Lam-Son; Lu, Kun; Huang, Yu-Bi; Li, Jia-Na

    2015-01-01

    R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication. PMID:26047035

  9. The Evolutionary History of R2R3-MYB Proteins Across 50 Eukaryotes: New Insights Into Subfamily Classification and Expansion.

    PubMed

    Du, Hai; Liang, Zhe; Zhao, Sen; Nan, Ming-Ge; Tran, Lam-Son Phan; Lu, Kun; Huang, Yu-Bi; Li, Jia-Na

    2015-06-05

    R2R3-MYB proteins (2R-MYBs) are one of the main transcription factor families in higher plants. Since the evolutionary history of this gene family across the eukaryotic kingdom remains unknown, we performed a comparative analysis of 2R-MYBs from 50 major eukaryotic lineages, with particular emphasis on land plants. A total of 1548 candidates were identified among diverse taxonomic groups, which allowed for an updated classification of 73 highly conserved subfamilies, including many newly identified subfamilies. Our results revealed that the protein architectures, intron patterns, and sequence characteristics were remarkably conserved in each subfamily. At least four subfamilies were derived from early land plants, 10 evolved from spermatophytes, and 19 from angiosperms, demonstrating the diversity and preferential expansion of this gene family in land plants. Moreover, we determined that their remarkable expansion was mainly attributed to whole genome and segmental duplication, where duplicates were preferentially retained within certain subfamilies that shared three homologous intron patterns (a, b, and c) even though up to 12 types of patterns existed. Through our integrated distributions, sequence characteristics, and phylogenetic tree analyses, we confirm that 2R-MYBs are old and postulate that 3R-MYBs may be evolutionarily derived from 2R-MYBs via intragenic domain duplication.

  10. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera.

    PubMed

    Wallberg, Andreas; Han, Fan; Wellhagen, Gustaf; Dahle, Bjørn; Kawata, Masakado; Haddad, Nizar; Simões, Zilá Luz Paulino; Allsopp, Mike H; Kandemir, Irfan; De la Rúa, Pilar; Pirk, Christian W; Webster, Matthew T

    2014-10-01

    The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system- and sperm motility-related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees. PMID:25151355

  11. Conflict between Genetic and Phenotypic Differentiation: The Evolutionary History of a ‘Lost and Rediscovered’ Shorebird

    PubMed Central

    Rheindt, Frank E.; Székely, Tamás; Edwards, Scott V.; Lee, Patricia L. M.; Burke, Terry; Kennerley, Peter R.; Bakewell, David N.; Alrashidi, Monif; Kosztolányi, András; Weston, Michael A.; Liu, Wei-Ting; Lei, Wei-Pan; Shigeta, Yoshimitsu; Javed, Sálim; Zefania, Sama; Küpper, Clemens

    2011-01-01

    Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind. PMID:22096515

  12. Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.).

    PubMed

    Payen, Thibaut; Murat, Claude; Martin, Francis

    2016-08-01

    Truffles are ascomycete fungi belonging to genus Tuber, and they form ectomycorrhizal associations with trees and shrubs. Transposable elements constitute more than 50 % of the black Périgord truffle (Tuber melanosporum) genome, which are mainly class 1 gypsy retrotransposons, but their impact on its genome is unknown. The aims of this study are to investigate the diversity of gypsy retrotransposons in this species and their evolutionary history by analysing the reference genome and six resequenced genomes of different geographic accessions. Using the reverse transcriptase sequences, six different gypsy retrotransposon clades were identified. Tmt1 and Tmt6 are the most abundant transposable elements, representing 14 and 13 % of the T. melanosporum genome, respectively. Tmt6 showed a major burst of proliferation between 1 and 4 million years ago, but evidence of more recent transposition was observed. Except for Tmt2, the other clades tend to aggregate, and their mode of transposition excluded the master copy model. This suggests that each new copy has the same probability of transposing as other copies. This study provides a better view of the diversity and dynamic nature of gypsy retrotransposons in T. melanosporum. Even if the major gypsy retrotransposon bursts are old, some elements seem to have transposed recently, suggesting that they may continue to model the truffle genomes. PMID:27025914

  13. Inferences of evolutionary history of a widely distributed mangrove species, Bruguiera gymnorrhiza, in the Indo-West Pacific region

    PubMed Central

    Urashi, Chie; Teshima, Kosuke M; Minobe, Sumiko; Koizumi, Osamu; Inomata, Nobuyuki

    2013-01-01

    Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo-West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier. PMID:23919167

  14. Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau

    PubMed Central

    Shang, Hui-Ying; Li, Zhong-Hu; Dong, Miao; Adams, Robert P.; Miehe, Georg; Opgenoorth, Lars; Mao, Kang-Shan

    2015-01-01

    All Qinghai-Tibetan Plateau (QTP) endemic species are assumed to have originated recently, although very rare species most likely diverged early. These ancient species provide an excellent model to examine the origin and evolution of QTP endemic plants in response to the QTP uplifts and the climate changes that followed in this high altitude region. In this study, we examined these hypotheses by employing sequence variation from multiple nuclear and chloroplast DNA of 239 individuals of Juniperus microsperma and its five congeners. Both phylogenetic and population genetic analyses revealed that J. microsperma diverged from its sister clade comprising two species with long isolation around the Early Miocene, which corresponds to early QTP uplift. Demographic modeling and coalescent tests suggest that J. microsperma experienced an obvious bottleneck event during the Quaternary when the global climate greatly oscillated. The results presented here support the hypotheses that the QTP uplifts and Quaternary climate changes played important roles in shaping the evolutionary history of this rare juniper. PMID:25977142

  15. The evolutionary history of maternal plant-manipulation and larval feeding behaviours in attelabid weevils (Coleoptera; Curculionoidea).

    PubMed

    Kobayashi, Chisato; Okuyama, Yudai; Kawazoe, Kazuhide; Kato, Makoto

    2012-08-01

    Attelabid weevils manipulate specific structures of their host plants in a species-specific manner, e.g., cutting a shoot, cutting a leaf, rolling a leaf, or constructing sophisticated wrapped leaf rolls, presumably to secure the survivorship of eggs or larvae. To depict the evolutionary history of maternal plant-manipulation behaviours and larval feeding strategies of the family Attelabidae, molecular phylogenetic analyses were conducted by sequencing the nuclear 18S and 28S ribosomal DNA and the mitochondrial cytochrome oxidase subunit I genes. Our analyses indicated that the attelabid weevils form a monophyletic group, and that maternal plant-cutting behaviour originated in a common ancestor of Attelabidae, but was subsequently lost in several lineages. Monophyly of the subfamily Attelabinae was also recovered with high support, but the subfamily Rhynchitinae was not recovered as monophyletic. By employing maximum-likelihood-based ancestral state reconstructions, larval leaf-blade feeding was inferred to have evolved from boring of cut shoots/petioles. Moreover, maternal leaf-rolling behaviours likely originated independently in the Attelabinae and Byctiscini lineages, and in several Deporaini lineages. As the sophisticated behaviours constructing wrapped leaf rolls of Attelabinae originated only once and has not been lost from the lineage, these complex and innovative behaviours may have contributed to the success and diversification of the lineage.

  16. Evolutionary thinking

    PubMed Central

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  17. Evolutionary history of Ichthyosaura alpestris (Caudata, Salamandridae) inferred from the combined analysis of nuclear and mitochondrial markers.

    PubMed

    Recuero, Ernesto; Buckley, David; García-París, Mario; Arntzen, Jan W; Cogălniceanu, Dan; Martínez-Solano, Iñigo

    2014-12-01

    ) the remaining populations, including subspecies I. a. serdara, I. a. reiseri and I. a. montenegrina and part of subspecies I. a. alpestris, plus samples from Vlasina. Our time estimates are consistent with ages based on the fossil record and suggest a widespread distribution for the I. alpestris ancestor, with the split of the major eastern and western lineages during the Miocene, in the Tortonian. Our study provides a solid, comprehensive background on the evolutionary history of the species based on the most complete combined (mtDNA+nDNA+allozymes) dataset to date. The combination of the historical perspective provided by coalescent-based analyses of mitochondrial and nuclear DNA variation with individual-based multilocus assignment methods based on multiple nuclear markers (allozymes) also allowed identification of instances of discordance across markers that highlight the complexity and dynamism of past and ongoing evolutionary processes in the species.

  18. The evolutionary history of the rediscovered Austrian population of the giant centipede Scolopendra cingulata Latreille 1829 (Chilopoda, Scolopendromorpha).

    PubMed

    Oeyen, Jan Philip; Funke, Sebastian; Böhme, Wolfgang; Wesener, Thomas

    2014-01-01

    The thermophilous giant centipede Scolopendra cingulata is a voracious terrestrial predator, which uses its modified first leg pair and potent venom to capture prey. The highly variable species is the most common of the genus in Europe, occurring from Portugal in the west to Iran in the east. The northernmost occurrences are in Hungary and Romania, where it abides in small isolated fringe populations. We report the rediscovery of an isolated Austrian population of Scolopendra cingulata with the first explicit specimen records for more than 80 years and provide insights into the evolutionary history of the northernmost populations utilizing fragments of two mitochondrial genes, COI and 16S, comprising 1,155 base pairs. We test the previously proposed hypothesis of a speciation by distance scenario, which argued for a simple range expansion of the species from the southeast, via Romania, Hungary and finally to Austria, based on a comprehensive taxon sampling from seven countries, including the first European mainland samples. We argue that more complex patterns must have shaped the current distribution of S. cingulata and that the Austrian population should be viewed as an important biogeographical relict in a possible microrefugium. The unique haplotype of the Austrian population could constitute an important part of the species genetic diversity and we hope that this discovery will initiate protective measures not only for S. cingulata, but also for its habitat, since microrefugia are likely to host further rare thermophilous species. Furthermore, we take advantage of the unprecedented sampling to provide the first basic insights into the suitability of the COI fragment as a species identifying barcode within the centipede genus Scolopendra.

  19. Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history.

    PubMed

    Filella, Iolanda; Peñuelas, Josep

    2003-09-01

    We studied the interspecific and intraspecific variation in the development of water stress and in the use of different water and nitrogen sources during the spring (wet season) and summer (dry season) in a shrub community in NE Spain. We measured shoot water potentials, stable deuterium isotopic composition (delta D) of xylem sap, leaf mass per area, leaf N and C concentrations, gas exchange, leaf delta(13)C, and leaf delta(15)N of the dominant species (Quercus coccifera, Arbutus unedo, Pistacia lentiscus, Erica multiflora, Globularia alypum). The delta D, the delta(13)C and the shoot water potential values showed diurnal, seasonal, intraspecific and interspecific variation in the source and use of water. There was also seasonal, intraspecific and interspecific variation in the foliar delta(15)N and N concentrations. In summer, some species (A. unedo, P. lentiscus and E. multiflora) presented significantly different delta D values in morning and afternoon measurements likely indicating that they used different sources of water during the day, and a dual root system in these species. We conjecture that dew may be one of these water sources. Species predawn water potential was negatively correlated with species xylem water delta D. There was also a positive correlation between delta(13)C and delta D in P. lentiscus, species for which we took additional samples from nearby sites. These results suggest that the access to water from greater depths allowed the maintenance of more favourable plant water supply. Multivariate principal component analysis based on the studied hydrological and isotope variables clearly separated the seasons (wet spring and dry summer) and the species. The species resulted separated according to their evolutionary history (Pre-Mediterranean and Mediterranean) and the associated root and functional traits. These results show water (and nitrogen) partitioning among coexisting species of the same functional type (Mediterranean woody shrubs

  20. The evolutionary history of the rediscovered Austrian population of the giant centipede Scolopendra cingulata Latreille 1829 (Chilopoda, Scolopendromorpha).

    PubMed

    Oeyen, Jan Philip; Funke, Sebastian; Böhme, Wolfgang; Wesener, Thomas

    2014-01-01

    The thermophilous giant centipede Scolopendra cingulata is a voracious terrestrial predator, which uses its modified first leg pair and potent venom to capture prey. The highly variable species is the most common of the genus in Europe, occurring from Portugal in the west to Iran in the east. The northernmost occurrences are in Hungary and Romania, where it abides in small isolated fringe populations. We report the rediscovery of an isolated Austrian population of Scolopendra cingulata with the first explicit specimen records for more than 80 years and provide insights into the evolutionary history of the northernmost populations utilizing fragments of two mitochondrial genes, COI and 16S, comprising 1,155 base pairs. We test the previously proposed hypothesis of a speciation by distance scenario, which argued for a simple range expansion of the species from the southeast, via Romania, Hungary and finally to Austria, based on a comprehensive taxon sampling from seven countries, including the first European mainland samples. We argue that more complex patterns must have shaped the current distribution of S. cingulata and that the Austrian population should be viewed as an important biogeographical relict in a possible microrefugium. The unique haplotype of the Austrian population could constitute an important part of the species genetic diversity and we hope that this discovery will initiate protective measures not only for S. cingulata, but also for its habitat, since microrefugia are likely to host further rare thermophilous species. Furthermore, we take advantage of the unprecedented sampling to provide the first basic insights into the suitability of the COI fragment as a species identifying barcode within the centipede genus Scolopendra. PMID:25251436

  1. Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa

    PubMed Central

    Engel, Dimitri; Jöst, Hanna; Wink, Michael; Börstler, Jessica; Bosch, Stefan; Garigliany, Mutien-Marie; Jöst, Artur; Czajka, Christina; Lühken, Renke; Ziegler, Ute; Groschup, Martin H.; Pfeffer, Martin; Becker, Norbert; Schmidt-Chanasit, Jonas

    2016-01-01

    ABSTRACT Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. PMID:26838717

  2. Incorporating allelic variation for reconstructing the evolutionary history of organisms from multiple genes: An example from Rosa in North America.

    PubMed

    Joly, Simon; Bruneau, Anne

    2006-08-01

    Allelic variation within individuals holds information regarding the relationships of organisms, which is expected to be particularly important for reconstructing the evolutionary history of closely related taxa. However, little effort has been committed to incorporate such information for reconstructing the phylogeny of organisms. Haplotype trees represent a solution when one nonrecombinant marker is considered, but there is no satisfying method when multiple genes are to be combined. In this paper, we propose an algorithm that converts a distance matrix of alleles to a distance matrix among organisms. This algorithm allows the incorporation of allelic variation for reconstructing the phylogeny of organisms from one or more genes. The method is applied to reconstruct the phylogeny of the seven native diploid species of Rosa sect. Cinnamomeae in North America. The glyceralgehyde 3-phosphate dehydrogenase (GAPDH), the triose phosphate isomerase (TPI), and the malate synthase (MS) genes were sequenced for 40 individuals from these species. The three genes had little genetic variation, and most species showed incomplete lineage sorting, suggesting these species have a recent origin. Despite these difficulties, the networks (NeighborNet) of organisms reconstructed from the matrix obtained with the algorithm recovered groups that more closely match taxonomic boundaries than did the haplotype trees. The combined network of individuals shows that species west of the Rocky Mountains, Rosa gymnocarpa and R. pisocarpa, form exclusive groups and that together they are distinct from eastern species. In the east, three groups were found to be exclusive: R. nitida-R. palustris, R. foliolosa, and R. blanda-R. woodsii. These groups are congruent with the morphology and the ecology of species. The method is also useful for representing hybrid individuals when the relationships are reconstructed using a phylogenetic network. PMID:16969938

  3. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3'-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix-hairpin-Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  4. Evolutionary History of Wild Barley (Hordeum vulgare subsp. spontaneum) Analyzed Using Multilocus Sequence Data and Paleodistribution Modeling

    PubMed Central

    Jakob, Sabine S.; Rödder, Dennis; Engler, Jan O.; Shaaf, Salar; Özkan, Hakan; Blattner, Frank R.; Kilian, Benjamin

    2014-01-01

    Studies of Hordeum vulgare subsp. spontaneum, the wild progenitor of cultivated barley, have mostly relied on materials collected decades ago and maintained since then ex situ in germplasm repositories. We analyzed spatial genetic variation in wild barley populations collected rather recently, exploring sequence variations at seven single-copy nuclear loci, and inferred the relationships among these populations and toward the genepool of the crop. The wild barley collection covers the whole natural distribution area from the Mediterranean to Middle Asia. In contrast to earlier studies, Bayesian assignment analyses revealed three population clusters, in the Levant, Turkey, and east of Turkey, respectively. Genetic diversity was exceptionally high in the Levant, while eastern populations were depleted of private alleles. Species distribution modeling based on climate parameters and extant occurrence points of the taxon inferred suitable habitat conditions during the ice-age, particularly in the Levant and Turkey. Together with the ecologically wide range of habitats, they might contribute to structured but long-term stable populations in this region and their high genetic diversity. For recently collected individuals, Bayesian assignment to geographic clusters was generally unambiguous, but materials from genebanks often showed accessions that were not placed according to their assumed geographic origin or showed traces of introgression from cultivated barley. We assign this to gene flow among accessions during ex situ maintenance. Evolutionary studies based on such materials might therefore result in wrong conclusions regarding the history of the species or the origin and mode of domestication of the crop, depending on the accessions included. PMID:24586028

  5. Expansion Mechanisms and Evolutionary History on Genes Encoding DNA Glycosylases and Their Involvement in Stress and Hormone Signaling

    PubMed Central

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2016-01-01

    DNA glycosylases catalyze the release of methylated bases. They play vital roles in the base excision repair pathway and might also function in DNA demethylation. At least three families of DNA glycosylases have been identified, which included 3′-methyladenine DNA glycosylase (MDG) I, MDG II, and HhH-GPD (Helix–hairpin–Helix and Glycine/Proline/aspartate (D)). However, little is known on their genome-wide identification, expansion, and evolutionary history as well as their expression profiling and biological functions. In this study, we have genome-widely identified and evolutionarily characterized these family members. Generally, a genome encodes only one MDG II gene in most of organisms. No MDG I or MDG II gene was detected in green algae. However, HhH-GPD genes were detectable in all available organisms. The ancestor species contain small size of MDG I and HhH-GPD families. These two families were mainly expanded through the whole-genome duplication and segmental duplication. They were evolutionarily conserved and were generally under purifying selection. However, we have detected recent positive selection among the Oryza genus, which might play roles in species divergence. Further investigation showed that expression divergence played important roles in gene survival after expansion. All of these family genes were expressed in most of developmental stages and tissues in rice plants. High ratios of family genes were downregulated by drought and fungus pathogen as well as abscisic acid (ABA) and jasmonic acid (JA) treatments, suggesting a negative regulation in response to drought stress and pathogen infection through ABA- and/or JA-dependent hormone signaling pathway. PMID:27026054

  6. Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history.

    PubMed

    Filella, Iolanda; Peñuelas, Josep

    2003-09-01

    We studied the interspecific and intraspecific variation in the development of water stress and in the use of different water and nitrogen sources during the spring (wet season) and summer (dry season) in a shrub community in NE Spain. We measured shoot water potentials, stable deuterium isotopic composition (delta D) of xylem sap, leaf mass per area, leaf N and C concentrations, gas exchange, leaf delta(13)C, and leaf delta(15)N of the dominant species (Quercus coccifera, Arbutus unedo, Pistacia lentiscus, Erica multiflora, Globularia alypum). The delta D, the delta(13)C and the shoot water potential values showed diurnal, seasonal, intraspecific and interspecific variation in the source and use of water. There was also seasonal, intraspecific and interspecific variation in the foliar delta(15)N and N concentrations. In summer, some species (A. unedo, P. lentiscus and E. multiflora) presented significantly different delta D values in morning and afternoon measurements likely indicating that they used different sources of water during the day, and a dual root system in these species. We conjecture that dew may be one of these water sources. Species predawn water potential was negatively correlated with species xylem water delta D. There was also a positive correlation between delta(13)C and delta D in P. lentiscus, species for which we took additional samples from nearby sites. These results suggest that the access to water from greater depths allowed the maintenance of more favourable plant water supply. Multivariate principal component analysis based on the studied hydrological and isotope variables clearly separated the seasons (wet spring and dry summer) and the species. The species resulted separated according to their evolutionary history (Pre-Mediterranean and Mediterranean) and the associated root and functional traits. These results show water (and nitrogen) partitioning among coexisting species of the same functional type (Mediterranean woody shrubs

  7. Osteological Observations on the Alytid Anura Latonia nigriventer with Comments on Functional Morphology, Biogeography, and Evolutionary History.

    PubMed

    Biton, Rebecca; Boistel, Renaud; Rabinovich, Rivka; Gafny, Sarig; Brumfeld, Vlad; Bailon, Salvador

    2016-09-01

    The Hula Painted Frog (Latonia nigriventer) is a rare frog species endemic to the Hula Valley, Israel. The species is the sole relict of a clade that was widespread mainly in Europe from the Oligocene until the beginning of the Pleistocene. The osteological characteristics of L. nigriventer are described based on X-ray microtomography scans of extant specimens and Pleistocene bones from the Hula Valley, to elucidate the evolutionary history of Alytidae and more specifically of Latonia. Based on the osteological description of L. nigriventer, we now better understand the differences, between Latonia and its sister taxon Discoglossus. They differ mainly in their cranial structure with the reinforced skull of Latonia having powerful jaws. Latonia nigriventer can achieve great force while closing its jaws, due to increased adductor muscle insertion surfaces as expressed by the presence of an additional paracoronoid process and an enlarged upper margin of the postero-lateral wall of the lower jaw. In addition, a wider pterygoid fossa and higher canthus postero-lateralis of the frontoparietal, compared to that of Discoglossus, also suggest the presence of well-developed adductor muscles. Furthermore, L. nigriventer have particularly strong skulls as expressed by: long articulations between different skull elements, interdigitation in the contact area between the nasals and between nasals and the frontoparietals, and fused frontoparietals. Both males and females L. nigriventer have very robust forelimbs, as indicated by well-developed medial crests of the humerus. Based on limited eastern Mediterranean paleontological data, we can only suspect that the dispersal of Latonia into the Levant from Asia Minor occurred at some point during the Miocene or later. The first appearance of L. nigriventer in the Hula Valley, its current habitat, dates to approximately 780 thousand years ago at the archaeological site of Gesher Benot Ya'aqov. J. Morphol. 277:1131-1145, 2016. © 2016

  8. Evolutionary History of the Grey-Faced Sengi, Rhynchocyon udzungwensis, from Tanzania: A Molecular and Species Distribution Modelling Approach

    PubMed Central

    Ricci, Silvia; Rovero, Francesco

    2013-01-01

    Rhynchocyon udzungwensis is a recently described and poorly understood sengi (giant elephant-shrew) endemic to two small montane forests in Southern Tanzania, and surrounded in lower forests by R. cirnei reichardi. In this study, we investigate the molecular genetic relationship between R. udzungwensis and R. c. reichardi, and the possible role that shifting species distributions in response to climate fluctuations may have played in shaping their evolutionary history. Rhynchocyon udzungwensis and R. c. reichardi individuals were sampled from five localities for genetic analyses. Three mitochondrial and two nuclear loci were used to construct species trees for delimitation and to determine whether introgression was detectable either from ancient or ongoing hybridization. All species-tree results show R. udzungwensis and R. c. reichardi as distinct lineages, though mtDNA shows evidence of introgression in some populations. Nuclear loci of each species were monophyletic, implying introgression is exclusively historical. Because we found evidence of introgression, we used distribution data and species distribution modelling for present, glacial, and interglacial climate cycles to predict how shifting species distributions may have facilitated hybridization in some populations. Though interpretations are affected by the limited range of these species, a likely scenario is that the mtDNA introgression found in eastern mid-elevation populations was facilitated by low numbers of R. udzungwensis that expanded into lowland heavily occupied R. c. reichardi areas during interglacial climate cycles. These results imply that relationships within the genus Rhynchocyon may be confounded by porous species boundaries and introgression, even if species are not currently sympatric. PMID:24015252

  9. The Evolutionary History of the Rediscovered Austrian Population of the Giant Centipede Scolopendra cingulata Latreille 1829 (Chilopoda, Scolopendromorpha)

    PubMed Central

    Oeyen, Jan Philip; Funke, Sebastian; Böhme, Wolfgang; Wesener, Thomas

    2014-01-01

    The thermophilous giant centipede Scolopendra cingulata is a voracious terrestrial predator, which uses its modified first leg pair and potent venom to capture prey. The highly variable species is the most common of the genus in Europe, occurring from Portugal in the west to Iran in the east. The northernmost occurrences are in Hungary and Romania, where it abides in small isolated fringe populations. We report the rediscovery of an isolated Austrian population of Scolopendra cingulata with the first explicit specimen records for more than 80 years and provide insights into the evolutionary history of the northernmost populations utilizing fragments of two mitochondrial genes, COI and 16S, comprising 1,155 base pairs. We test the previously proposed hypothesis of a speciation by distance scenario, which argued for a simple range expansion of the species from the southeast, via Romania, Hungary and finally to Austria, based on a comprehensive taxon sampling from seven countries, including the first European mainland samples. We argue that more complex patterns must have shaped the current distribution of S. cingulata and that the Austrian population should be viewed as an important biogeographical relict in a possible microrefugium. The unique haplotype of the Austrian population could constitute an important part of the species genetic diversity and we hope that this discovery will initiate protective measures not only for S. cingulata, but also for its habitat, since microrefugia are likely to host further rare thermophilous species. Furthermore, we take advantage of the unprecedented sampling to provide the first basic insights into the suitability of the COI fragment as a species identifying barcode within the centipede genus Scolopendra. PMID:25251436

  10. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).

    PubMed

    Meseguer, Andrea S; Lobo, Jorge M; Ree, Richard; Beerling, David J; Sanmartín, Isabel

    2015-03-01

    integrative approach to historical biogeography-that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics-could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events.

  11. Integrating Fossils, Phylogenies, and Niche Models into Biogeography to Reveal Ancient Evolutionary History: The Case of Hypericum (Hypericaceae)

    PubMed Central

    Meseguer, Andrea S.; Lobo, Jorge M.; Ree, Richard; Beerling, David J.; Sanmartín, Isabel

    2015-01-01

    integrative approach to historical biogeography—that combines sources of evidence as diverse as paleontology, ecology, and phylogenetics—could help us obtain more accurate reconstructions of ancient evolutionary history. It also reveals the confounding effect different rates of extinction across regions have in biogeography, sometimes leading to ancestral areas being erroneously inferred as recent colonization events. PMID:25398444

  12. Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements and past and present distribution within its native range.

    PubMed

    Chifflet, L; Rodriguero, M S; Calcaterra, L A; Rey, O; Dinghi, P A; Baccaro, F B; Souza, J L P; Follett, P; Confalonieri, V A

    2016-04-01

    The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380,000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.

  13. Evolutionary history of the little fire ant Wasmannia auropunctata before global invasion: inferring dispersal patterns, niche requirements and past and present distribution within its native range.

    PubMed

    Chifflet, L; Rodriguero, M S; Calcaterra, L A; Rey, O; Dinghi, P A; Baccaro, F B; Souza, J L P; Follett, P; Confalonieri, V A

    2016-04-01

    The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380,000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions. PMID:26780687

  14. The Effect of Velocity of Joint Mobilization on Corticospinal Excitability in Individuals With a History of Ankle Sprain.

    PubMed

    Fisher, Beth E; Piraino, Andrew; Lee, Ya-Yun; Smith, Jo Armour; Johnson, Sean; Davenport, Todd E; Kulig, Kornelia

    2016-07-01

    Study Design Controlled laboratory study. Background Joint mobilization and manipulation decrease pain and improve patient function. Yet, the processes underlying these changes are not well understood. Measures of corticospinal excitability provide insight into potential mechanisms mediated by the central nervous system. Objectives To investigate the differential effects of joint mobilization and manipulation at the talocrural joint on corticospinal excitability in individuals with resolved symptoms following ankle sprain. Methods Twenty-seven participants with a history of ankle sprain were randomly assigned to the control, joint mobilization, or thrust manipulation group. The motor-evoked potential (MEP) and cortical silent period (CSP) of the tibialis anterior and gastrocnemius were obtained with transcranial magnetic stimulation at rest and during active contraction of the tibialis anterior. The slopes of MEP/CSP input/output curves and the maximal MEP/CSP values were calculated to indicate corticospinal excitability. Behavioral measures, including ankle dorsiflexion and dynamic balance, were evaluated. Results A repeated-measures analysis of variance of the MEP slope showed a significant group-by-time interaction for the tibialis anterior at rest (P = .002) and during active contraction (P = .042). After intervention, the thrust manipulation group had an increase in corticospinal excitability, while the corticospinal excitability decreased in the mobilization group. The thrust manipulation group, but not other groups, also demonstrated a significant increase in the maximal MEP amplitude of the tibialis anterior after intervention. Conclusion The findings suggest that joint manipulation and mobilization have different effects on corticospinal excitability. The increased corticospinal excitability following thrust manipulation may provide a window for physical therapists to optimize muscle recruitment and subsequently movement. The trial was registered at

  15. Evolutionary history of black grouse major histocompatibility complex class IIB genes revealed through single locus sequence-based genotyping

    PubMed Central

    2013-01-01

    Background Gene duplications are frequently observed in the Major Histocompatibility Complex (MHC) of many species, and as a consequence loci belonging to the same MHC class are often too similar to tell apart. In birds, single locus genotyping of MHC genes has proven difficult due to concerted evolution homogenizing sequences at different loci. But studies on evolutionary history, mode of selection and heterozygosity correlations on the MHC cannot be performed before it is possible to analyse duplicated genes separately. In this study we investigate the architecture and evolution of the MHC class IIB genes in black grouse. We developed a sequence-based genotyping method for separate amplification of the two black grouse MHC class IIB genes BLB1 and BLB2. Based on this approach we are able to study differences in structure and selection between the two genes in black grouse and relate these results to the chicken MHC structure and organization. Results Sequences were obtained from 12 individuals and separated into alleles using the software PHASE. We compared nucleotide diversity measures and employed selection tests for BLB1 and BLB2 to explore their modes of selection. Both BLB1 and BLB2 are transcribed and display classic characteristics of balancing selection as predicted for expressed MHC class IIB genes. We found evidence for both intra- and interlocus recombination or gene conversion, as well as indication for positive but differential selection at both loci. Moreover, the two loci appear to be linked. Phylogenetic analyses revealed orthology of the black grouse MHC class IIB genes to the respective BLB loci in chicken. Conclusions The results indicate that the duplication of the BLB gene occurred before the species divergence into black grouse, chicken and pheasant. Further, we conclude that BLB1 and BLB2 in black grouse are subjected to homogenizing concerted evolution due to interlocus genetic exchange after species divergence. The loci are in linkage

  16. Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster.

    PubMed

    Travers, Laura M; Garcia-Gonzalez, Francisco; Simmons, Leigh W

    2015-01-01

    The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a 'live fast die young' life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating. Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and harmful effects of seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy. PMID:26482533

  17. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies

    PubMed Central

    Hsieh, PingHsun; Woerner, August E.; Wall, Jeffrey D.; Lachance, Joseph; Tishkoff, Sarah A.; Gutenkunst, Ryan N.; Hammer, Michael F.

    2016-01-01

    Comparisons of whole-genome sequences from ancient and contemporary samples have pointed to several instances of archaic admixture through interbreeding between the ancestors of modern non-Africans and now extinct hominids such as Neanderthals and Denisovans. One implication of these findings is that some adaptive features in contemporary humans may have entered the population via gene flow with archaic forms in Eurasia. Within Africa, fossil evidence suggests that anatomically modern humans (AMH) and various archaic forms coexisted for much of the last 200,000 yr; however, the absence of ancient DNA in Africa has limited our ability to make a direct comparison between archaic and modern human genomes. Here, we use statistical inference based on high coverage whole-genome data (greater than 60×) from contemporary African Pygmy hunter-gatherers as an alternative means to study the evolutionary history of the genus Homo. Using whole-genome simulations that consider demographic histories that include both isolation and gene flow with neighboring farming populations, our inference method rejects the hypothesis that the ancestors of AMH were genetically isolated in Africa, thus providing the first whole genome-level evidence of African archaic admixture. Our inferences also suggest a complex human evolutionary history in Africa, which involves at least a single admixture event from an unknown archaic population into the ancestors of AMH, likely within the last 30,000 yr. PMID:26888264

  18. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies.

    PubMed

    Hsieh, PingHsun; Woerner, August E; Wall, Jeffrey D; Lachance, Joseph; Tishkoff, Sarah A; Gutenkunst, Ryan N; Hammer, Michael F

    2016-03-01

    Comparisons of whole-genome sequences from ancient and contemporary samples have pointed to several instances of archaic admixture through interbreeding between the ancestors of modern non-Africans and now extinct hominids such as Neanderthals and Denisovans. One implication of these findings is that some adaptive features in contemporary humans may have entered the population via gene flow with archaic forms in Eurasia. Within Africa, fossil evidence suggests that anatomically modern humans (AMH) and various archaic forms coexisted for much of the last 200,000 yr; however, the absence of ancient DNA in Africa has limited our ability to make a direct comparison between archaic and modern human genomes. Here, we use statistical inference based on high coverage whole-genome data (greater than 60×) from contemporary African Pygmy hunter-gatherers as an alternative means to study the evolutionary history of the genus Homo. Using whole-genome simulations that consider demographic histories that include both isolation and gene flow with neighboring farming populations, our inference method rejects the hypothesis that the ancestors of AMH were genetically isolated in Africa, thus providing the first whole genome-level evidence of African archaic admixture. Our inferences also suggest a complex human evolutionary history in Africa, which involves at least a single admixture event from an unknown archaic population into the ancestors of AMH, likely within the last 30,000 yr. PMID:26888264

  19. Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster

    PubMed Central

    Travers, Laura M.; Garcia-Gonzalez, Francisco; Simmons, Leigh W.

    2015-01-01

    The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a ‘live fast die young’ life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating. Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and harmful effects of seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy. PMID:26482533

  20. Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster.

    PubMed

    Travers, Laura M; Garcia-Gonzalez, Francisco; Simmons, Leigh W

    2015-10-20

    The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a 'live fast die young' life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating. Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and harmful effects of seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy.

  1. Nme Gene Family Evolutionary History Reveals Pre-Metazoan Origins and High Conservation between Humans and the Sea Anemone, Nematostella vectensis

    PubMed Central

    Desvignes, Thomas; Pontarotti, Pierre; Bobe, Julien

    2010-01-01

    Background The Nme gene family is involved in multiple physiological and pathological processes such as cellular differentiation, development, metastatic dissemination, and cilia functions. Despite the known importance of Nme genes and their use as clinical markers of tumor aggressiveness, the associated cellular mechanisms remain poorly understood. Over the last 20 years, several non-vertebrate model species have been used to investigate Nme functions. However, the evolutionary history of the family remains poorly understood outside the vertebrate lineage. The aim of the study was thus to elucidate the evolutionary history of the Nme gene family in Metazoans. Methodology/Principal Findings Using a total of 21 eukaryote species including 14 metazoans, the evolutionary history of Nme genes was reconstructed in the metazoan lineage. We demonstrated that the complexity of the Nme gene family, initially thought to be restricted to chordates, was also shared by the metazoan ancestor. We also provide evidence suggesting that the complexity of the family is mainly a eukaryotic innovation, with the exception of Nme8 that is likely to be a choanoflagellate/metazoan innovation. Highly conserved gene structure, genomic linkage, and protein domains were identified among metazoans, some features being also conserved in eukaryotes. When considering the entire Nme family, the starlet sea anemone is the studied metazoan species exhibiting the most conserved gene and protein sequence features with humans. In addition, we were able to show that most of the proteins known to interact with human NME proteins were also found in starlet sea anemone. Conclusion/Significance Together, our observations further support the association of Nme genes with key cellular functions that have been conserved throughout metazoan evolution. Future investigations of evolutionarily conserved Nme gene functions using the starlet sea anemone could shed new light on a wide variety of key developmental and

  2. Encounter history modeling of joint mark-recapture, tag-resighting and tag-recovery data under temporary emigration

    USGS Publications Warehouse

    Barker, R.J.; Burnham, K.P.; White, Gary C.

    2004-01-01

    We describe a joint analysis of mark-recapture, tag-resight and tag-recovery data that directly models the encounter history of an animal. The probability of the encounter history for each animal is partitioned into survival, recapture, resighting, and recovery components, and a component for the probability that the animal is never encountered again. Temporary migration enters into the likelihood through the recapture component, and movement of marked animals in and out of the area where they are subject to capture is modeled using a Markov chain. Random temporary emigration and permanent emigration are special cases. An important feature of directly modeling the encounter histories is that covariates that are specific to individuals can be included in the analysis. The model is applied to a brown trout tagging data set and provides strong evidence of Markovian temporary emigration. The new model is needed to provide correct estimates of trout survival probabilities which are shown to depend on the length of the fish at first capture.

  3. Hallmarks in the history of orthopaedic implants for trauma and joint replacement.

    PubMed

    Markatos, Konstantinos; Tsoucalas, Gregory; Sgantzos, Markos

    2016-08-01

    This manuscript represents an attempt to review orthopaedic implants and reconstructive orthopaedic surgery for lower limbs lesions or trauma mainly in the 20th century. We emphasized on the type of implants, the biomaterials and their evolution, and we also engaged in a special reference for the pioneers of orthopaedic implant surgery and the innovative designers of those implants, in such a way to understand the ways and the stages through which they evolved to their present forms, as well as the scientific principles that affected their design and progress. A correlation between the evolution of implants and several relevant disciplines (biomaterial chemists and engineers, biomechanics) that developed simultaneously with orthopaedic reconstructive joint surgery is present since the first attempts to reconstruct a damaged joint. In the future, further progress is anticipated in the use of biomaterials, more compatible towards human biology, with minimally invasive applications and a perpetually increased life span. This progress depicts a phenomenon directly related to a multilevel, multifactorial and interdisciplinary scientific and technological field with many expectations. PMID:27598960

  4. Students' Preconceptions about Evolution: How Accurate Is the Characterization as "Lamarckian" when Considering the History of Evolutionary Thought?

    ERIC Educational Resources Information Center

    Kampourakis, Kostas; Zogza, Vasso

    2007-01-01

    In this paper, the main points of Lamarck's and Darwin's theoretical conceptual schemes about evolution are compared to those derived from 15 years old students' explanations of evolutionary episodes. We suggest that secondary students' preconceptions should not be characterized as "Lamarckian", because they are essentially different from the…

  5. New prospects for deducing the evolutionary history of metabolic pathways in prokaryotes: Aromatic biosynthesis as a case-in-point

    NASA Astrophysics Data System (ADS)

    Ahmad, Suhail; Jensen, Roy A.

    1988-03-01

    Metabolic pathways of prokaryotes are more biochemically diverse than is generally recognized. Distinctive biochemical features are shared by phylogenetic clusters. The hierarchical levels of characterstate clustering depends upon evolutionary events which fortuitously became fixed in the genome of a common ancestor. Prokaryotes can now be ordered on a phylogenetic tree. This allows the evolutionary steps that underlie the construction and regulation of appropriately complex biochemical pathways to be traced in an evolutionary progression of prokaryote types that house these pathways. Essentially the approach is to deduce ancestral character states at ever deeper phylogenetic levels, utilizing logical principles of maximum parsimony. The current perspective on the evolution of the biochemical pathway for biosynthesis of aromatic amino acids is developed as a case-in-point model for analyses that should be feasible with many major metabolic systems. Phenylalanine biosynthesis probably arose prior to the addition of branches leading to tyrosine and tryptophan. An evolutionary scenario is developed that begins with non-enzymatic reactions which may have operated in primitive systems, followed by the evolution of an enzymatic system that pre-dated the divergence of major lineages of modern eubacteria (Gram-positive bacteria, Gram-negative purple bacteria, and cyanobacteria).

  6. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack

    PubMed Central

    Nguyen, Nga N. T.; Ranwez, Vincent; Vile, Denis; Soulié, Marie-Christine; Dellagi, Alia; Expert, Dominique; Gosti, Françoise

    2014-01-01

    Multigenic families of Plant Defensin type 1 (PDF1) have been described in several species, including the model plant Arabidopsis thaliana as well as zinc tolerant and hyperaccumulator A. halleri. In A. thaliana, PDF1 transcripts (AtPDF1) accumulate in response to pathogen attack following synergic activation of ethylene/jasmonate pathways. However, in A. halleri, PDF1 transcripts (AhPDF1) are constitutively highly accumulated. Through an evolutionary approach, we investigated the possibility of A. halleri or A. thaliana species specialization in different PDF1s in conveying zinc tolerance and/or the response to pathogen attack via activation of the jasmonate (JA) signaling pathway. The accumulation of each PDF1 from both A. halleri and A. thaliana was thus compared in response to zinc excess and MeJA application. In both species, PDF1 paralogues were barely or not at all responsive to zinc. However, regarding the PDF1 response to JA signaling activation, A. thaliana had a higher number of PDF1s responding to JA signaling activation. Remarkably, in A. thaliana, a slight but significant increase in zinc tolerance was correlated with activation of the JA signaling pathway. In addition, A. halleri was found to be more tolerant to the necrotrophic pathogen Botrytis cinerea than A. thaliana. Since PDF1s are known to be promiscuous antifungal proteins able to convey zinc tolerance, we propose, on the basis of the findings of this study, that high constitutive PDF1 transcript accumulation in A. halleri is a potential way to skip the JA signaling activation step required to increase the PDF1 transcript level in the A. thaliana model species. This could ultimately represent an adaptive evolutionary process that would promote a PDF1 joint effect on both zinc tolerance and the response to pathogens in the A. halleri extremophile species. PMID:24653728

  7. Evolutionary tinkering of the expression of PDF1s suggests their joint effect on zinc tolerance and the response to pathogen attack.

    PubMed

    Nguyen, Nga N T; Ranwez, Vincent; Vile, Denis; Soulié, Marie-Christine; Dellagi, Alia; Expert, Dominique; Gosti, Françoise

    2014-01-01

    Multigenic families of Plant Defensin type 1 (PDF1) have been described in several species, including the model plant Arabidopsis thaliana as well as zinc tolerant and hyperaccumulator A. halleri. In A. thaliana, PDF1 transcripts (AtPDF1) accumulate in response to pathogen attack following synergic activation of ethylene/jasmonate pathways. However, in A. halleri, PDF1 transcripts (AhPDF1) are constitutively highly accumulated. Through an evolutionary approach, we investigated the possibility of A. halleri or A. thaliana species specialization in different PDF1s in conveying zinc tolerance and/or the response to pathogen attack via activation of the jasmonate (JA) signaling pathway. The accumulation of each PDF1 from both A. halleri and A. thaliana was thus compared in response to zinc excess and MeJA application. In both species, PDF1 paralogues were barely or not at all responsive to zinc. However, regarding the PDF1 response to JA signaling activation, A. thaliana had a higher number of PDF1s responding to JA signaling activation. Remarkably, in A. thaliana, a slight but significant increase in zinc tolerance was correlated with activation of the JA signaling pathway. In addition, A. halleri was found to be more tolerant to the necrotrophic pathogen Botrytis cinerea than A. thaliana. Since PDF1s are known to be promiscuous antifungal proteins able to convey zinc tolerance, we propose, on the basis of the findings of this study, that high constitutive PDF1 transcript accumulation in A. halleri is a potential way to skip the JA signaling activation step required to increase the PDF1 transcript level in the A. thaliana model species. This could ultimately represent an adaptive evolutionary process that would promote a PDF1 joint effect on both zinc tolerance and the response to pathogens in the A. halleri extremophile species. PMID:24653728

  8. Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to Pleistocene climate change in China.

    PubMed

    Li, Jing; Wan, Qian; Guo, Yan-Ping; Abbott, Richard J; Rao, Guang-Yuan

    2014-02-01

    Quaternary climatic oscillations greatly influenced the distribution and pattern of biodiversity in the Northern Hemisphere. Here we examine how such oscillations in South East Asia may have affected the demographic and evolutionary history of a polyploid plant complex associated with semi-dry habitats. We analyzed plastid and nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequence variation within the Chrysanthemum indicum complex (Asteraceae), which comprises diploid and polyploid plants distributed throughout China. In total, 368 individuals from 47 populations across the geographical range of the complex were analyzed. We show that the relatively widespread tetraploid form of C. indicum expanded its range southward in the Pleistocene, possibly during the most recent or previous glacial period when conditions became drier and forests retreated in southern China. In marked contrast, diploid and other polyploid members of the complex failed to expand their ranges at these times or have since undergone range contractions in contrast to tetraploid C. indicum. We conclude that hybridization and gene flow between taxa occurred frequently during the evolutionary history of the complex, causing considerable sharing of chlorotypes and ITS types. Nevertheless, taxa within ploidy levels could be largely distinguished according to chlorotype and/or ITS type.

  9. Inferring the evolutionary history of Mo-dependent nitrogen fixation from phylogenetic studies of nifK and nifDK.

    PubMed

    Hartmann, Linda S; Barnum, Susan R

    2010-07-01

    The ability to fix nitrogen is widely, but sporadically distributed among the Bacteria and Archaea suggesting either a vertically inherited, ancient function with widespread loss across genera or an adaptive feature transferred laterally between co-inhabitants of nitrogen-poor environments. As previous phylogenetic studies of nifH and nifD have not completely resolved the evolutionary history of nitrogenase, sixty nifD, nifK, and combined nifDK genes were analyzed using Bayesian, maximum likelihood, and parsimony algorithms to determine whether the individual and combined datasets could provide additional information. The results show congruence between the 16S and nifDK phylogenies at the phyla level and generally support vertical descent with loss. However, statistically significant differences between tree topographies suggest a complex evolutionary history with the underlying pattern of vertical descent obscured by recurring lateral transfer events and different patterns of evolution between the genes. Results support inheritance from the Last Common ancestor or an ancient lateral transfer of the nif genes between Bacteria and Archaea, ongoing gene transfer between cohabitants of similar biogeographic regions, acquisition of nitrogen-fixing capability via symbiosis islands, possible xenologous displacement of one gene in the operon, and possible retention of ancestral genes in heterocystous cyanobacteria. Analyses support the monophyly of the Cyanobacteria, alphabetagamma-Proteobacteria, and Actinobacteria (Frankia) and provide strong support for the placement of Frankia nif genes at the base of combined the Cyanobacteria/Proteobacteria clades.

  10. Evolutionary History of the Smyd Gene Family in Metazoans: A Framework to Identify the Orthologs of Human Smyd Genes in Drosophila and Other Animal Species

    PubMed Central

    Calpena, Eduardo; Palau, Francesc; Espinós, Carmen; Galindo, Máximo Ibo

    2015-01-01

    The Smyd gene family code for proteins containing a conserved core consisting of a SET domain interrupted by a MYND zinc finger. Smyd proteins are important in epigenetic control of development and carcinogenesis, through posttranslational modifications in histones and other proteins. Previous reports indicated that the Smyd family is quite variable in metazoans, so a rigorous phylogenetic reconstruction of this complex gene family is of central importance to understand its evolutionary history and functional diversification or conservation. We have performed a phylogenetic analysis of Smyd protein sequences, and our results show that the extant metazoan Smyd genes can be classified in three main classes, Smyd3 (which includes chordate-specific Smyd1 and Smyd2 genes), Smyd4 and Smyd5. In addition, there is an arthropod-specific class, SmydA. While the evolutionary history of the Smyd3 and Smyd5 classes is relatively simple, the Smyd4 class has suffered several events of gene loss, gene duplication and lineage-specific expansions in the animal phyla included in our analysis. A more specific study of the four Smyd4 genes in Drosophila melanogaster shows that they are not redundant, since their patterns of expression are different and knock-down of individual genes can have dramatic phenotypes despite the presence of the other family members. PMID:26230726

  11. Evolutionary history of the greater white-toothed shrew (Crocidura russula) inferred from analysis of mtDNA, Y, and X chromosome markers.

    PubMed

    Brändli, Laura; Handley, Lori-Jayne Lawson; Vogel, Peter; Perrin, Nicolas

    2005-12-01

    We investigate the evolutionary history of the greater white-toothed shrew across its distribution in northern Africa and mainland Europe using sex-specific (mtDNA and Y chromosome) and biparental (X chromosome) markers. All three loci confirm a large divergence between eastern (Tunisia and Sardinia) and western (Morocco and mainland Europe) lineages, and application of a molecular clock to mtDNA divergence estimates indicates a more ancient separation (2.25 M yr ago) than described by some previous studies, supporting claims for taxonomic revision. Moroccan ancestry for the mainland European population is inconclusive from phylogenetic trees, but is supported by greater nucleotide diversity and a more ancient population expansion in Morocco than in Europe. Signatures of rapid population expansion in mtDNA, combined with low X and Y chromosome diversity, suggest a single colonization of mainland Europe by a small number of Moroccan shrews >38 K yr ago. This study illustrates that multilocus genetic analyses can facilitate the interpretation of species' evolutionary history but that phylogeographic inference using X and Y chromosomes is restricted by low levels of observed polymorphism.

  12. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).

    PubMed

    Botero-Castro, Fidel; Tilak, Marie-ka; Justy, Fabienne; Catzeflis, François; Delsuc, Frédéric; Douzery, Emmanuel J P

    2013-12-01

    Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of

  13. Dounreay PFR irradiation history for the joint US/UK actinide sample exposures

    SciTech Connect

    Raman, S.; Murphy, B.D.; Nestor, C.W. Jr.

    1995-07-01

    The operating history of the Dounreay Prototype Fast Reactor is presented to the extent that it is relevant to the irradiation of actinide specimens that were subsequently analyzed at Oak Ridge National Laboratory (ORNL). Three fuel pins with actinide samples were irradiated from July 1982 to July 1988 and returned to ORNL for analysis. They contained isotopes of elements from thorium to curium. The times when each of these fuel pins were in the reactor core are described as are the operating power levels and neutron spectra. The appendices give daily power levels of the reactor as well as six-group neutron energy spectra for various times and axial positions in the core.

  14. The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai-Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus (Solanaceae).

    PubMed

    Wan, Dong-Shi; Feng, Jian-Ju; Jiang, De-Chun; Mao, Kang-Shan; Duan, Yuan-Wen; Miehe, Georg; Opgenoorth, Lars

    2016-04-01

    Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai-Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well-differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (F ST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary

  15. The Quaternary evolutionary history, potential distribution dynamics, and conservation implications for a Qinghai-Tibet Plateau endemic herbaceous perennial, Anisodus tanguticus (Solanaceae).

    PubMed

    Wan, Dong-Shi; Feng, Jian-Ju; Jiang, De-Chun; Mao, Kang-Shan; Duan, Yuan-Wen; Miehe, Georg; Opgenoorth, Lars

    2016-04-01

    Various hypotheses have been proposed about the Quaternary evolutionary history of plant species on the Qinghai-Tibet Plateau (QTP), yet only a handful of studies have considered both population genetics and ecological niche context. In this study, we proposed and compared climate refugia hypotheses based on the phylogeographic pattern of Anisodus tanguticus (three plastid DNA fragments and nuclear internal transcribed spacer regions from 32 populations) and present and past species distribution models (SDMs). We detected six plastid haplotypes in two well-differentiated lineages. Although all haplotypes could be found in its western (sampling) area, only haplotypes from one lineage occurred in its eastern area. Meanwhile, most genetic variations existed between populations (F ST = 0.822). The SDMs during the last glacial maximum and last interglacial periods showed range fragmentation in the western area and significant range contraction in the eastern area, respectively, in comparison with current potential distribution. This species may have undergone intraspecific divergence during the early Quaternary, which may have been caused by survival in different refugia during the earliest known glacial in the QTP, rather than geological isolation due to orogenesis events. Subsequently, climate oscillations during the Quaternary resulted in a dynamic distribution range for this species as well as the distribution pattern of its plastid haplotypes and nuclear genotypes. The interglacial periods may have had a greater effect on A. tanguticus than the glacial periods. Most importantly, neither genetic data nor SDM alone can fully reveal the climate refugia history of this species. We also discuss the conservation implications for this important Tibetan folk medicine plant in light of these findings and SDMs under future climate models. Together, our results underline the necessity to combine phylogeographic and SDM approaches in future investigations of the Quaternary

  16. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    PubMed Central

    2012-01-01

    Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota. PMID:23181628

  17. The Evolutionary History of DROSOPHILA BUZZATII. III. Cytogenetic Relationships between Two Sibling Species of the Buzzatii Cluster

    PubMed Central

    Ruiz, A.; Wasserman, M.

    1982-01-01

    Drosophila buzzatii has been found sympatric in Argentina with a closely-related sibling species, D. serido. The biogeographical, reproductive and chromosomal data allow us to combine these species into an evolutionary unit, the buzzatii cluster. Salivary gland chromosomes also have been used to determine their phylogenetic relationships with other closely related species, showing that the buzzatii cluster species share two inversions—2d2 and 2s6—with the species of the martensis cluster. Both clusters arose from South American populations of the ancestor of the mulleri complex, and we propose to include D. buzzatii and D. serido in the mulleri complex of the repleta group. PMID:17246089

  18. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier

    PubMed Central

    2010-01-01

    Background The genomes of higher plants are, on the majority, polyploid, and hybridisation is more frequent in plants than in animals. Both polyploidisation and hybridisation contribute to increased variability within species, and may transfer adaptations between species in a changing environment. Studying these aspects of evolution within a diversified species complex could help to clarify overall spatial and temporal patterns of plant speciation. The Arabidopsis lyrata complex, which is closely related to the model plant Arabidopsis thaliana, is a perennial, outcrossing, herbaceous species complex with a circumpolar distribution in the Northern Hemisphere as well as a disjunct Central European distribution in relictual habitats. This species complex comprises three species and four subspecies, mainly diploids but also several tetraploids, including one natural hybrid. The complex is ecologically, but not fully geographically, separated from members of the closely related species complex of Arabidopsis halleri, and the evolutionary histories of both species compexes have largely been influenced by Pleistocene climate oscillations. Results Using DNA sequence data from the nuclear encoded cytosolic phosphoglucoisomerase and Internal Transcribed Spacers 1 and 2 of the ribosomal DNA, as well as the trnL/F region from the chloroplast genome, we unravelled the phylogeography of the various taxonomic units of the A. lyrata complex. We demonstrate the existence of two major gene pools in Central Europe and Northern America. These two major gene pools are constructed from different taxonomic units. We also confirmed that A. kamchatica is the allotetraploid hybrid between A. lyrata and A. halleri, occupying the amphi-Beringian area in Eastern Asia and Northern America. This species closes the large distribution gap of the various other A. lyrata segregates. Furthermore, we revealed a threefold independent allopolyploid origin of this hybrid species in Japan, China, and

  19. A joint history of the nature of genetic variation and the nature of schizophrenia.

    PubMed

    Kendler, K S

    2015-02-01

    This essay traces the history of concepts of genetic variation and schizophrenia from Darwin and Mendel to the present. For Darwin, the important form of genetic variation for evolution is continuous in nature and small in effect. Biometricians led by Pearson agreed and developed statistical genetic approaches utilizing trait correlations in relatives. Mendel studied discontinuous traits and subsequent Mendelians, led by Bateson, assumed that important genetic variation was large in effect producing discontinuous phenotypes. Although biometricians studied 'insanity', schizophrenia genetics under Kraepelin and Rüdin utilized Mendelian approaches congruent with their anatomical-clinical disease model of dementia praecox. Fisher showed, assuming many genes of small effect, Mendelian and Biometrical models were consilient. Echoing prior conflicts, psychiatric genetics since then has utilized both biometrical models, largely in twins, and Mendelian models, based on advancing molecular techniques. In 1968, Gottesman proposed a polygenic model for schizophrenia based on a threshold version of Fisher's theory. Since then, rigorous studies of the schizophrenia spectrum suggest that genetic risk for schizophrenia is more likely continuous than categorical. The last 5 years has seen increasingly convincing evidence from genome-wide association study (GWAS) and sequencing that genetic risk for schizophrenia is largely polygenic, and congruent with Fisher's and Gottesman's models. The gap between biometrical and molecular Mendelian models for schizophrenia has largely closed. The efforts to ground a categorical biomedical model of schizophrenia in Mendelian genetics have failed. The genetic risk for schizophrenia is widely distributed in human populations so that we all carry some degree of risk.

  20. Look before You Leap: Underestimating Chinese Student History, Chinese University Setting and Chinese University Steering in Sino-British HE Joint Ventures?

    ERIC Educational Resources Information Center

    Dow, Ewan G.

    2010-01-01

    This article makes the case--in three parts--that many Anglo-Chinese university collaborations (joint ventures) to date have seriously underestimated Chinese (student) history, the Chinese university setting and Chinese national governmental steering as part of the process of "glocalisation". Recent turbulence in this particular HE collaborative…

  1. Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference.

    PubMed

    Davis, Edward Byrd

    2005-03-01

    Palaeobiologists have investigated the evolutionary responses to extinct organisms to climate change, and have also used extinct organisms to reconstruct palaeoclimates. There is evidence of a disconnection between climate change and evolution that suggest that organism may not be accurate paleoclimate indicators. Here, marmots (Marmota sp.) are used as a case study to examine whether similarity of climate preferences is correlated with evolutionary relatedness of species. This study tests for a relationship between phylogenetic distance and 'climate distance' of species with a clade. There should be a significant congruence between maximus likelihood distance and standardized Euclidian distance between climates if daughter species tend to say in environments similar to parent species. Marmots make a good test case because there are many extant species, their phylogenetics are well established and individual survival is linked to climatic factors. A Mantel test indicates a significant correlation between climate and phylogenetic distance matrices, but this relationship explains only a small fraction of the variance (regression R(2) = 0.114). These results that (i) closely related species of marmots tend to stay in similar environments; (ii) marmots may be more susceptible than may mammals to global climate change; and (iii) because of the considerable noise in this system, the correlation cannot be used for detailed palaeoclimate reconstruction.

  2. Comparison of climate space and phylogeny of Marmota (Mammalia: Rodentia) indicates a connection between evolutionary history and climate preference

    PubMed Central

    Davis, Edward Byrd

    2005-01-01

    Palaeobiologists have investigated the evolutionary responses of extinct organisms to climate change, and have also used extinct organisms to reconstruct palaeoclimates. There is evidence of a disconnection between climate change and evolution that suggests that organisms may not be accurate palaeoclimate indicators. Here, marmots (Marmota sp.) are used as a case study to examine whether similarity of climate preferences is correlated with evolutionary relatedness of species. This study tests for a relationship between phylogenetic distance and `climate distance' of species within a clade. There should be a significant congruence between maximum likelihood distance and standardized Euclidian distance between climates if daughter species tend to stay in environments similar to parent species. Marmots make a good test case because there are many extant species, their phylogenies are well established and individual survival is linked to climatic factors. A Mantel test indicates a significant correlation between climate and phylogenetic distance matrices, but this relationship explains only a small fraction of the variance (regression R2=0.114). These results suggest that (i) closely related species of marmots tend to stay in similar environments; (ii) marmots may be more susceptible than many mammals to global climate change; and (iii) because of the considerable noise in this system, the correlation cannot be used for detailed palaeoclimate reconstruction. PMID:15799948

  3. Students' Preconceptions About Evolution: How Accurate is the Characterization as ``Lamarckian'' when Considering the History of Evolutionary Thought?

    NASA Astrophysics Data System (ADS)

    Kampourakis, Kostas; Zogza, Vasso

    2007-03-01

    In this paper, the main points of Lamarck’s and Darwin’s theoretical conceptual schemes about evolution are compared to those derived from 15 years old students’ explanations of evolutionary episodes. We suggest that secondary students’ preconceptions should not be characterized as “Lamarckian”, because they are essentially different from the ideas that Lamarck himself possessed. Most students in our research believed that needs directly impose changes on animal bodies in order to survive in a given environment and accepted the possibility of extinction whereas Lamarck believed that it was the effect of use or disuse that would produce changes on body structures and that species would transform but would not die out. We conclude that the relationship between secondary students’ ideas and historical views on evolution should be treated more skeptically, given the differences in the historical, social and cultural contexts, and that instruction should focus on students’ ideas of need-driven evolution as well as on the role of chance in the evolutionary process.

  4. A joint history of the nature of genetic variation and the nature of schizophrenia.

    PubMed

    Kendler, K S

    2015-02-01

    This essay traces the history of concepts of genetic variation and schizophrenia from Darwin and Mendel to the present. For Darwin, the important form of genetic variation for evolution is continuous in nature and small in effect. Biometricians led by Pearson agreed and developed statistical genetic approaches utilizing trait correlations in relatives. Mendel studied discontinuous traits and subsequent Mendelians, led by Bateson, assumed that important genetic variation was large in effect producing discontinuous phenotypes. Although biometricians studied 'insanity', schizophrenia genetics under Kraepelin and Rüdin utilized Mendelian approaches congruent with their anatomical-clinical disease model of dementia praecox. Fisher showed, assuming many genes of small effect, Mendelian and Biometrical models were consilient. Echoing prior conflicts, psychiatric genetics since then has utilized both biometrical models, largely in twins, and Mendelian models, based on advancing molecular techniques. In 1968, Gottesman proposed a polygenic model for schizophrenia based on a threshold version of Fisher's theory. Since then, rigorous studies of the schizophrenia spectrum suggest that genetic risk for schizophrenia is more likely continuous than categorical. The last 5 years has seen increasingly convincing evidence from genome-wide association study (GWAS) and sequencing that genetic risk for schizophrenia is largely polygenic, and congruent with Fisher's and Gottesman's models. The gap between biometrical and molecular Mendelian models for schizophrenia has largely closed. The efforts to ground a categorical biomedical model of schizophrenia in Mendelian genetics have failed. The genetic risk for schizophrenia is widely distributed in human populations so that we all carry some degree of risk. PMID:25134695

  5. Do the Historical Biogeography and Evolutionary History of the Digenean Margotrema spp. across Central Mexico Mirror Those of Their Freshwater Fish Hosts (Goodeinae)?

    PubMed Central

    Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E.; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2014-01-01

    Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host

  6. Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia.

    PubMed

    Janssens, Steven B; Vandelook, Filip; De Langhe, Edmond; Verstraete, Brecht; Smets, Erik; Vandenhouwe, Ines; Swennen, Rony

    2016-06-01

    Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species-rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo-Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent. The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses. All three Musaceae genera - Ensete, Musa and Musella - originated in northern Indo-Burma during the early Eocene. Musa species dispersed from 'northwest to southeast' into Southeast Asia with only few back-dispersals towards northern Indo-Burma. Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards.

  7. Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea.

    PubMed

    Biewer, M; Lechner, S; Hasselmann, M

    2016-01-01

    Studying the fate of duplicated genes provides informative insight into the evolutionary plasticity of biological pathways to which they belong. In the paralogous sex-determining genes complementary sex determiner (csd) and feminizer (fem) of honey bee species (genus Apis), only heterozygous csd initiates female development. Here, the full-length coding sequences of the genes csd and fem of the phylogenetically basal dwarf honey bee Apis florea are characterized. Compared with other Apis species, remarkable evolutionary changes in the formation and localization of a protein-interacting (coiled-coil) motif and in the amino acids coding for the csd characteristic hypervariable region (HVR) are observed. Furthermore, functionally different csd alleles were isolated as genomic fragments from a random population sample. In the predicted potential specifying domain (PSD), a high ratio of πN/πS=1.6 indicated positive selection, whereas signs of balancing selection, commonly found in other Apis species, are missing. Low nucleotide diversity on synonymous and genome-wide, non-coding sites as well as site frequency analyses indicated a strong impact of genetic drift in A. florea, likely linked to its biology. Along the evolutionary trajectory of ~30 million years of csd evolution, episodic diversifying selection seems to have acted differently among distinct Apis branches. Consistently low amino-acid differences within the PSD among pairs of functional heterozygous csd alleles indicate that the HVR is the most important region for determining allele specificity. We propose that in the early history of the lineage-specific fem duplication giving rise to csd in Apis, A. florea csd stands as a remarkable example for the plasticity of initial sex-determining signals. PMID:26153222

  8. Differing Evolutionary Histories of the ACTN3*R577X Polymorphism among the Major Human Geographic Groups

    PubMed Central

    Amorim, Carlos Eduardo G.; Acuña-Alonzo, Victor; Salzano, Francisco M.; Bortolini, Maria Cátira; Hünemeier, Tábita

    2015-01-01

    It has been proposed that the functional ACTN3*R577X polymorphism might have evolved due to selection in Eurasian human populations. To test this possibility we surveyed all available population-based data for this polymorphism and performed a comprehensive evolutionary analysis of its genetic diversity, in order to assess the action of adaptive and random mechanisms on its variation across human geographical distribution. The derived 577X allele increases in frequency with distance from Africa, reaching the highest frequencies on the American continent. Positive selection, detected by an extended haplotype homozygosisty test, was consistent only with the Eurasian data, but simulations with neutral models could not fully explain the results found in the American continent. It is possible that particularities of Native American population structure could be responsible for the observed allele frequencies, which would have resulted from a complex interaction between selective and random factors. PMID:25706920

  9. Differing evolutionary histories of the ACTN3*R577X polymorphism among the major human geographic groups.

    PubMed

    Amorim, Carlos Eduardo G; Acuña-Alonzo, Victor; Salzano, Francisco M; Bortolini, Maria Cátira; Hünemeier, Tábita

    2015-01-01

    It has been proposed that the functional ACTN3*R577X polymorphism might have evolved due to selection in Eurasian human populations. To test this possibility we surveyed all available population-based data for this polymorphism and performed a comprehensive evolutionary analysis of its genetic diversity, in order to assess the action of adaptive and random mechanisms on its variation across human geographical distribution. The derived 577X allele increases in frequency with distance from Africa, reaching the highest frequencies on the American continent. Positive selection, detected by an extended haplotype homozygosisty test, was consistent only with the Eurasian data, but simulations with neutral models could not fully explain the results found in the American continent. It is possible that particularities of Native American population structure could be responsible for the observed allele frequencies, which would have resulted from a complex interaction between selective and random factors. PMID:25706920

  10. Evolutionary and dispersal history of Eurasian house mice Mus musculus clarified by more extensive geographic sampling of mitochondrial DNA

    PubMed Central

    Suzuki, H; Nunome, M; Kinoshita, G; Aplin, K P; Vogel, P; Kryukov, A P; Jin, M-L; Han, S-H; Maryanto, I; Tsuchiya, K; Ikeda, H; Shiroishi, T; Yonekawa, H; Moriwaki, K

    2013-01-01

    We examined the sequence variation of mitochondrial DNA control region and cytochrome b gene of the house mouse (Mus musculus sensu lato) drawn from ca. 200 localities, with 286 new samples drawn primarily from previously unsampled portions of their Eurasian distribution and with the objective of further clarifying evolutionary episodes of this species before and after the onset of human-mediated long-distance dispersals. Phylogenetic analysis of the expanded data detected five equally distinct clades, with geographic ranges of northern Eurasia (musculus, MUS), India and Southeast Asia (castaneus, CAS), Nepal (unspecified, NEP), western Europe (domesticus, DOM) and Yemen (gentilulus). Our results confirm previous suggestions of Southwestern Asia as the likely place of origin of M. musculus and the region of Iran, Afghanistan, Pakistan, and northern India, specifically as the ancestral homeland of CAS. The divergence of the subspecies lineages and of internal sublineage differentiation within CAS were estimated to be 0.37–0.47 and 0.14–0.23 million years ago (mya), respectively, assuming a split of M. musculus and Mus spretus at 1.7 mya. Of the four CAS sublineages detected, only one extends to eastern parts of India, Southeast Asia, Indonesia, Philippines, South China, Northeast China, Primorye, Sakhalin and Japan, implying a dramatic range expansion of CAS out of its homeland during an evolutionary short time, perhaps associated with the spread of agricultural practices. Multiple and non-coincident eastward dispersal events of MUS sublineages to distant geographic areas, such as northern China, Russia and Korea, are inferred, with the possibility of several different routes. PMID:23820581

  11. Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): different histories but common traits.

    PubMed

    Rojo, Verónica; Martínez-Lage, Andrés; Giovannotti, Massimo; González-Tizón, Ana M; Nisi Cerioni, Paola; Caputo Barucchi, Vincenzo; Galán, Pedro; Olmo, Ettore; Naveira, Horacio

    2015-09-01

    Satellite DNAs compose a large portion of all higher eukaryotic genomes. The turnover of these highly repetitive sequences is an important element in genome organization and evolution. However, information about the structure and dynamics of reptilian satellite DNA is still scarce. Two satellite DNA families, HindIII and TaqI, have been previously characterized in four species of the genus Iberolacerta. These families showed different chromosomal locations, abundances, and evolutionary rates. Here, we extend the study of both satellite DNAs (satDNAs) to the remaining Iberolacerta species, with the aim to investigate the patterns of variability and factors influencing the evolution of these repetitive sequences. Our results revealed disparate patterns but also common traits in the evolutionary histories of these satellite families: (i) each satellite DNA is made up of a library of monomer variants or subfamilies shared by related species; (ii) species-specific profiles of satellite repeats are shaped by expansions and/or contractions of different variants from the library; (iii) different turnover rates, even among closely related species, result in great differences in overall sequence homogeneity and in concerted or non-concerted evolution patterns, which may not reflect the phylogenetic relationships among taxa. Contrasting turnover rates are possibly related to genomic constraints such as karyotype architecture and the interspersed organization of diverging repeat variants in satellite arrays. Moreover, rapid changes in copy number, especially in the