Sample records for joint faa-usaf-nasa runway

  1. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  2. An overview of the joint FAA/NASA aircraft/ground runway friction program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.

  3. The Joint Winter Runway Friction Measurement Program: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    Some background information is given together with the scope and objectives of the 5-year, Joint National Aeronautics & Space Administration (NASA)/Transport Canada (TC)/Federal Aviation Administration (FAA) Winter Runway Friction Measurement Program. The range of the test equipment, the selected test sites and a tentative test program schedule are described. NASA considers the success of this program critical in terms of insuring adequate ground handling performance capability in adverse weather conditions for future aircraft being designed and developed as well as improving the safety of current aircraft ground operations.

  4. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  5. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways, phase 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The MCAIR five-degree-of-freedom motion-base simulator (MBS) was used in combination with a six-degree-of-freedom aircraft mathematical model to demonstrate the simulation adequacy on uncrowned runways, under various conditions. Known aircraft parameters were used where possible to increase program credibility. Tire-runway friction models were coordinated with personnel of NASA, Langley Research Center. The F-4 experienced pilots representing NASA, FAA, and USAF participated in the 130 approach-touchdown-rollout demonstration and verified the simulation adequacy.

  6. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  7. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  8. Tire and runway surface research

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1986-01-01

    The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.

  9. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  10. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  11. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  12. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  13. Aging Aircraft 2005, The Joint NASA/FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect Systems (EWIS)Fault Detection

    DTIC Science & Technology

    2005-02-03

    Aging Aircraft 2005 The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft Decision Algorithms for Electrical Wiring Interconnect Systems (EWIS...SUBTITLE Aging Aircraft 2005, The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center, 8W. Taylor St., M/S 190 Hampton, VA 23681 and NAVAIR

  14. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  15. Preliminary test results of the joint FAA-USAF-NASA runway research program. Part 1: Traction measurements of several runways under wet and dry conditions with a Boeing 727, a diagonal-braked vehicle, and a mu-meter

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Yager, T. J.; Sleeper, R. K.; Merritt, L. R.

    1977-01-01

    The stopping distance, brake application velocity, and time of brake application were measured for two modern jet transports, along with the NASA diagonal-braked vehicle and the British Mu-Meter on several runways, which when wetted, cover the range of slipperiness likely to be encountered in the United States. Tests were designed to determine if correlation between the aircraft and friction measuring vehicles exists. The test procedure, data reduction techniques, and preliminary test results obtained with the Boeing 727, the Douglas DC-9, and the ground vehicles are given. Time histories of the aircraft test run parameters are included.

  16. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  17. NASA-FAA-NOAA Partnering Strategy

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2003-01-01

    This viewgraph presentation provides an overview of NASA-FAA (Federal Aviation Administration) and NOAA (National Oceanic and Atmospheric Administration) collaboration efforts particularly in the area of aviation and aircraft safety. Five technology areas are being jointly by these agencies: (1) aviation weather information; (2) weather products; (3) automet technologies; (4) forward looking weather sensors and (5) turbulence controls and mitigation systems. Memorandum of Agreements (MOU) between these agencies are reviewed. A general review of the pros and pitfalls of inter-agency collaborations is also presented.

  18. Runways at small airports are deteriorating because of deferred maintenance: Action needed by FAA and the Congress

    NASA Astrophysics Data System (ADS)

    1982-09-01

    Runways at many small airports are deteriorating faster than necessary because airport owners--usually local governments--have deferred critical maintenance. The result is damage to the runways' basic structure and a shortened useful life if they are not repaired. Based on GAO's review of 46 airports, studies by others, and the views of FAA officials, deferred maintenance is apparently a longstanding nationwide problem. Lack of funds is cited by airport owners as the primary reason for not performing needed maintenance; however, the Federal Aviation Administration's apathy to bring about satisfactory maintenance is a contributing cause. GAO is recommending actions that FAA can take to help ensure that runways at small airports are properly maintained. The Congress should recognize the airport owners' lack of resources to properly maintain airports when considering future revisions to the Airport Improvement Program.

  19. Runway Incursion Prevention: A Technology Solution

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Jones, Denise R.

    2001-01-01

    A runway incursion occurs any time an airplane, vehicle, person or object on the ground creates a collision hazard with an airplane that is taking off or landing at an airport under the supervision of Air Traffic Control (ATC). Despite the best efforts of the Federal Aviation Administration (FAA), runway incursions continue to occur more frequently. The number of incursions reported in the U.S. rose from 186 in 1993 to 431 in 2000, an increase of 132 percent. Recently, the National Transportation Safety Board (NTSB) has made specific recommendations for reducing runway incursions including a recommendation that the FAA require, at all airports with scheduled passenger service, a ground movement safety system that will prevent runway incursions; the system should provide a direct warning capability to flight crews. To this end, NASA and its industry partners have developed an advanced surface movement guidance and control system (A-SMGCS) architecture and operational concept that are designed to prevent runway incursions while also improving operational capability. This operational concept and system design have been tested in both full-mission simulation and operational flight test experiments at major airport facilities. Anecdotal, qualitative, and specific quantitative results will be presented along with an assessment of technology readiness with respect to equipage.

  20. Soil runway friction evaluation in support of USAF C-17 transport aircraft operations

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    A series of NASA Diagonal-Braked Vehicle (DBV) test runs were performed on the soil runway 7/25 at Holland landing zone, Fort Bragg, North Carolina, near Pope Air Force Base in March 1995 at the request of the Air Force C-17 System Program Office. These ground vehicle test results indicated that the dry runway friction level was suitable for planned C-17 transport aircraft landing and take-off operations at various gross weights. These aircraft operations were successfully carried out. On-board aircraft deceleration measurements were comparable to NASA DBV measurements. Additional tests conducted with an Army High Mobility Multi-Purpose Wheeled Vehicle equipped with a portable decelerometer, showed good agreement with NASA DBV data.

  1. FAA/NASA UAS Traffic Management Pilot Program (UPP)

    NASA Technical Reports Server (NTRS)

    Johnson, Ronald D.; Kopardekar, Parimal H.; Rios, Joseph L.

    2018-01-01

    NASA Ames is leading ATM R&D organization. NASA started working on UTM in 2012, it's come a long way primarily due to close relationship with FAA and industry. We have a research transition team between FAA and NASA for UTM. We have a few other RTTs as well. UTM is a great example of collaborative innovation, and now it's reaching very exciting stage of UTM Pilot Project (UPP). NASA is supporting FAA and industry to make the UPP most productive and successful.

  2. Precision Departure Release Capability (PDRC) Overview and Results: NASA to FAA Research Transition

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Davis, Tom.

    2013-01-01

    NASA researchers developed the Precision Departure Release Capability (PDRC) concept to improve the tactical departure scheduling process. The PDRC system is comprised of: 1) a surface automation system that computes ready time predictions and departure runway assignments, 2) an en route scheduling automation tool that uses this information to estimate ascent trajectories to the merge point and computes release times and, 3) an interface that provides two-way communication between the two systems. To minimize technology transfer issues and facilitate its adoption by TMCs and Frontline Managers (FLM), NASA developed the PDRC prototype using the Surface Decision Support System (SDSS) for the Tower surface automation tool, a research version of the FAA TMA (RTMA) for en route automation tool and a digital interface between the two DSTs to facilitate coordination.

  3. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  4. Comparison study on flexible pavement design using FAA (Federal Aviation Administration) and LCN (Load Classification Number) code in Ahmad Yani international airport’s runway

    NASA Astrophysics Data System (ADS)

    Santoso, S. E.; Sulistiono, D.; Mawardi, A. F.

    2017-11-01

    FAA code for airport design has been broadly used by Indonesian Ministry of Aviation since decades ago. However, there is not much comprehensive study about its relevance and efficiency towards current situation in Indonesia. Therefore, a further comparison study on flexible pavement design for airport runway using comparable method has become essential. The main focus of this study is to compare which method between FAA and LCN that offer the most efficient and effective way in runway pavement planning. The comparative methods in this study mainly use the variety of variable approach. FAA code for instance, will use the approach on the aircraft’s maximum take-off weight and annual departure. Whilst LCN code use the variable of equivalent single wheel load and tire pressure. Based on the variables mentioned above, a further classification and rated method will be used to determine which code is best implemented. According to the analysis, it is clear that FAA method is the most effective way to plan runway design in Indonesia with consecutively total pavement thickness of 127cm and LCN method total pavement thickness of 70cm. Although, FAA total pavement is thicker that LCN its relevance towards sustainable and pristine condition in the future has become an essential aspect to consider in design and planning.

  5. Federal Aviation Administration's Runway Incursion Program

    DOT National Transportation Integrated Search

    1997-12-08

    To reverse the upward trend in runway incursions, FAA must have a strong : Runway Incursion Program to solve systemwide problems and expedite : solutions. The Office of Inspector General report recommends that FAA (1) assign specific responsibility f...

  6. Joint EPA/NASA/USAF Interagency Depainting Study

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, M.

    2001-01-01

    Environmental regulations such as National Emission Standards for Hazardous Air Pollutants (NESHAPs) are drivers for the implementation of environmentally compliant methodologies in the manufacture of aerospace hardware. In 1995, the Environmental Protection Agency (EPA) promulgated the NESHAP for the Aerospace Manufacture and Rework (Aerospace NESHAP) industry. Affected facilities were to be in compliance by September 1998. Several aerospace manufacturing operations are regulated within the Aerospace NESHAP including Depainting operations. The National Aeronautics and Space Administration (NASA), EPA, and United States Air Force (USAF) combined resources to evaluate the performance of nine alternative depainting processes. The seven alternative depainting processes were: (1) Chemical stripping (non-methylene chloride); (2) Carbon Dioxide Blasting; (3) Xenon Flashlamp; (4) Carbon Dioxide Laser Stripping; (5) Plastic Media Blasting; (6) Sodium Bicarbonate Wet Stripping; and (7) Waterjet Blasting and Wheat Starch Blasting. All epoxy primer and polyurethane top coat system was applied to 2024-T3 clad and non-clad aluminum test specimens. Approximately 200 test specimens were evaluated in this study. Each coupon was subjected to three, four, or five complete depainting cycles. This paper discusses the conclusions from the study including the test protocol, test parameters, and achievable strip rates for the alternative depainting processes. Test data includes immersion corrosion testing, sandwich corrosion testing and hydrogen embrittlement testing for the non-methylene chloride chemical strippers. Additionally, the cumulative effect of the alternative depainting processes on the metallurgical integrity of the test substrate is addressed with the results from tensile and fatigue evaluations.

  7. Modeling of Instrument Landing System (ILS) localizer signal on runway 25L at Los Angeles International Airport

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Knox, Charles E.

    1994-01-01

    A joint NASA/FAA flight test has been made to record instrument landing system (ILS) localizer receiver signals for use in mathematically modeling the ILS localizer for future simulation studies and airplane flight tracking tasks. The flight test was conducted on a portion of the ILS localizer installed on runway 25L at the Los Angeles International Airport. The tests covered the range from 10 to 32 n.mi. from the localizer antenna. Precision radar tracking information was compared with the recorded localizer deviation data. Data analysis showed that the ILS signal centerline was offset to the left of runway centerline by 0.071 degrees and that no significant bends existed on the localizer beam. Suggested simulation models for the ILS localizer are formed from a statistical analysis.

  8. NASA/FAA helicopter simulator workshop

    NASA Technical Reports Server (NTRS)

    Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)

    1992-01-01

    A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.

  9. NASA Research For Instrument Approaches To Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Elliott, Dawn M.; Perry, R. Brad

    2000-01-01

    Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.

  10. An assessment of predominant causal factors of pilot deviations that contribute to runway incursions

    NASA Astrophysics Data System (ADS)

    Campbell, Denado M.

    The aim of this study was to identify predominant causal factors of pilot deviations in runway incursions over a two-year period. Runway incursion reports were obtained from NASA's Aviation Safety Reporting System (ASRS), and a qualitative method was used by classifying and coding each report to a specific causal factor(s). The causal factors that were used were substantiated by research from the Aircraft Owner's and Pilot's Association that found that these causal factors were the most common in runway incursion incidents and accidents. An additional causal factor was also utilized to determine the significance of pilot training in relation to runway incursions. From the reports examined, it was found that miscommunication and situational awareness have the greatest impact on pilots and are most often the major causes of runway incursions. This data can be used to assist airports, airlines, and the FAA to understand trends in pilot deviations, and to find solutions for specific problem areas in runway incursion incidents.

  11. Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.

  12. Runway Safety Monitor Algorithm for Single and Crossing Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.

    2006-01-01

    The Runway Safety Monitor (RSM) is an aircraft based algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety and Security Program's Synthetic Vision System project. The RSM algorithm provides warnings of runway incursions in sufficient time for pilots to take evasive action and avoid accidents during landings, takeoffs or when taxiing on the runway. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL) during July and August of 2004, and the RSM performance results and lessons learned from those flight tests.

  13. NASA Runway Incursion Prevention System (RIPS) Dallas-Fort Worth Demonstration Performance Analysis

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Evers, Carl; Esche, Jeff; Sleep, Benjamin; Jones, Denise R. (Technical Monitor)

    2002-01-01

    NASA's Aviation Safety Program Synthetic Vision System project conducted a Runway Incursion Prevention System (RIPS) flight test at the Dallas-Fort Worth International Airport in October 2000. The RIPS research system includes advanced displays, airport surveillance system, data links, positioning system, and alerting algorithms to provide pilots with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warnings of runway incursions. This report describes the aircraft and ground based runway incursion alerting systems and traffic positioning systems (Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B)). A performance analysis of these systems is also presented.

  14. Runway Status Lights Evaluation Report

    DOT National Transportation Integrated Search

    1998-09-01

    The Federal Aviation Administration (FAA) conducted a proof-of-concept demonstration of the Runway Status Lights (RWSL) at Boston's Logan International Airport. The RWSL, employing a network of lights on the airport movement surface, conveys informat...

  15. 76 FR 67018 - Notice to Manufacturers of Airport In-Pavement Stationary Runway Weather Information Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ...-Pavement Stationary Runway Weather Information Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of In-Pavement Stationary Runway Weather Information Systems... waivers to foreign manufacturers of Active or Passive In- Pavement Stationary Runway Weather Information...

  16. C-17 on Runway

    NASA Image and Video Library

    2013-11-13

    A U.S. Air Force C-17 transport aircraft sits on the sea ice runway at the National Science Foundation's McMurdo Station in Antarctica following a transit flight from Christchurch, New Zealand that transported IceBridge personnel and gear on Nov. 12, 2013. The C-17 aircraft that fly to Antarctica are operated by the U.S. Air Force's 62nd and 446th Airlift Wings based at Joint Base Lewis-McChord near Seattle, Wash. Credit: NASA/Goddard/George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. NASA/FAA Tailplane Icing Program Overview

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Riley, James T.

    1999-01-01

    The effects of tailplane icing were investigated in a four-year NASA/FAA Tailplane Icing, Program (TIP). This research program was developed to improve the understanding, of iced tailplane aeroperformance and aircraft aerodynamics, and to develop design and training aides to help reduce the number of incidents and accidents caused by tailplane icing. To do this, the TIP was constructed with elements that included icing, wind tunnel testing, dry-air aerodynamic wind tunnel testing, flight tests, and analytical code development. This paper provides an overview of the entire program demonstrating the interconnectivity of the program elements and reports on current accomplishments.

  18. 3. Credit USAF, ca. 1945. Original housed in the Records ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Credit USAF, ca. 1945. Original housed in the Records of the Defense Intelligence Agency. Record Group 373. National Archives. Cartographic and Architectural Branch. Washington, D.C. Aerial orthophoto map 16PS5M79-IV23 of Muroc Flight Test Base (North Base), north faces up with runway at the top and Rogers Dry Lake at the lower right. Ammunition huts (not extant in 1995) appear in a cluster just south of the west end of the runway. Note runway markings on lakebed. Linear feature at very top of image is rocket sled test track designed and built 1944-1945. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  19. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures : Part 1

    DOT National Transportation Integrated Search

    1997-07-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structure...

  20. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures : Part 2

    DOT National Transportation Integrated Search

    1997-07-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structure...

  1. Proceedings of the NASA Workshop on Flight Deck Centered Parallel Runway Approaches in Instrument Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C. (Editor); Scanlon, Charles H. (Editor)

    1996-01-01

    A Government and Industry workshop on Flight-Deck-Centered Parallel Runway Approaches in Instrument Meteorological Conditions (IMC) was conducted October 29, 1996 at the NASA Langley Research Center. This document contains the slides and records of the proceedings of the workshop. The purpose of the workshop was to disclose to the National airspace community the status of ongoing NASA R&D to address the closely spaced parallel runway problem in IMC and to seek advice and input on direction of future work to assure an optimized research approach. The workshop also included a description of a Paired Approach Concept which is being studied at United Airlines for application at the San Francisco International Airport.

  2. A B-52H, on loan to NASA's Dryden Flight Research Center, makes a pass down the runway prior to land

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center, Edwards, California, received an 'H' model B-52 Stratofortress aircraft on July 30, 2001. The B-52H will be used as an air-launch aircraft supporting NASA's flight research and advanced technology demonstration efforts. Dryden received the B-52H from the U.S. Air Force's (USAF) 23rd Bomb Squadron, 5th Bombardment Wing (Air Combat Command), located at Minot AFB, N.D. A USAF crew flew the aircraft to Dryden. The aircraft, USAF tail number 61-0025, will be loaned initially, then later transferred from the USAF to NASA. The B-52H is scheduled to leave Dryden Aug. 2 for de-militarization and Programmed Depot Maintenance (PDM) at Tinker Air Force Base (AFB), Oklahoma. The depot-level maintenance is scheduled to last about six months and includes a thorough maintenance and inspection process. The newly arrived B-52H is slated to replace Dryden's famous B-52B '008,' in the 2003-2004 timeframe. It will take about one year for the B-52H to be ready for flight research duties. This time includes PDM, construction of the new pylon, installation of the flight research instrumentation equipment, and aircraft envelope clearance flights.

  3. 1958 NASA/USAF Space Probes (ABLE-1). Volume 3; Vehicles, Trajectories, and Flight Histories

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The three NASA/USAF lunar probes of August 17, October 13, and November 8, 1958 are described. Details of the program, the vehicles, the payloads, the firings, the tracking, and the results are presented. Principal result was the first experimental verification of a confined radiation zone of the type postulated by Van Allen and others.

  4. Current Practices in Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB)

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.

    2008-01-01

    Significant air traffic increases are anticipated for the future of the National Airspace System (NAS). To cope with future traffic increases, fundamental changes are required in many aspects of the air traffic management process including the planning and use of NAS resources. Two critical elements of this process are the selection of airport runway configurations, and the effective management of active runways. Two specific research areas in NASA's Airspace Systems Program (ASP) have been identified to address efficient runway management: Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB). This report documents efforts in assessing past as well as current work in these two areas.

  5. FAA/NASA En Route Noise Symposium

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A. (Compiler)

    1990-01-01

    Aircraft community noise annoyance is traditionally a concern only in localities near airports. The proposed introduction of large commercial airplanes with advanced turboprop propulsion systems with supersonic propellers has given rise to concerns of noise annoyance in areas previously considered not to be impacted by aircraft noise. A symposium was held to assess the current knowledge of factors important to the impact of en route noise and to aid in the formulation of FAA and NASA programs in the area. Papers were invited on human response to aircraft noise in areas with low ambient noise levels, aircraft noise heard indoors and outdoors, aircraft noise in recreational areas, detection of propeller and jet aircraft noise, and methodological issues relevant to the design of future studies.

  6. The NASA/USAF arcjet research and technology program

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Huston, Edward S.

    1987-01-01

    Direct current arcjets have the potential to provide specific impulses greater than 500 sec with storable propellants, and greater than 1000 sec with hydrogen. This level of performance can provide significant benefits for such applications as orbit transfer, station keeping, orbit change, and maneuvering. The simplicity of the arcjet system and its elements of commonality with state-of-the-art resistojet systems offer a relatively low risk transition to these enhanced levels of performance for low power (0.5 to 1.5 kW) station keeping applications. Arcjets at power levels of 10 to 30 kW are potentially applicable to orbit transfer missions. Furthermore, with the anticipated development of space nuclear power systems, arcjets at greater than 100 kW may become attractive. This paper describes the ongoing NASA/USAF program and describes major recent accomplishments.

  7. An Overview of the Annual NASA Tire/Runway Friction Workshop and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    2005-01-01

    This paper summarizes the organization efforts, objectives, scope, agenda, test procedures and results from eleven years of conducting the NASA Tire/Runway Friction Workshop. The paper will also summarize the lessons learned between 1994 and 2004. A description of the various friction, texture and roughness equipment used during these workshops at NASA Wallops Flight Facility on the eastern shore of Virginia will be provided together with the range of test surfaces available for evaluation. The need for friction measuring equipment calibration centers is discussed and plans for future workshops are identified.

  8. Precision Departure Release Capability (PDRC): NASA to FAA Research Transition

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn; Davis, Thomas J.

    2013-01-01

    departure runway assignments to the Center scheduling tool. The PDRC concept also incorporates earlier NASA and FAA research into automation-assisted CFR coordination. The PDRC concept reduces uncertainty by automatically communicating coordinated release times with seconds-level precision enabling TMCs and FLMs to work with target times rather than windows. NASA has developed a PDRC prototype system that integrates the Center's TMA system with a research prototype Tower decision support tool. A two-phase field evaluation was conducted at NASA's North Texas Research Station in Dallas-Fort Worth. The field evaluation validated the PDRC concept and demonstrated reduced release time uncertainty while being used for tactical departure scheduling of more than 230 operational flights over 29 weeks of operations.

  9. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  10. Joint Winter Runway Friction Program Accomplishments

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew

    2002-01-01

    The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.

  11. FAA/NASA Proceedings, Workshop on Wake Vortex Alleviation and Avoidance. Presented at the U.S. Department of Transportation Research and Special Programs Administration Transportation Systems Center, Cambridge, MA 02142, November 28-29, 1978.

    DOT National Transportation Integrated Search

    1979-10-01

    This document is a record of the joint FAA/NASA Workshop on Wake Vortex Alleviation and Avoidance conducted at the DOT Transportation Systems Center, November 28-29, 1978. The workshop was sponsored by the Federal Aviation Administration to apprise t...

  12. Evaluation of Winter Operational Runway Friction Measurement Equipment, Procedures, and Research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This document produced by the FAA/Industry Winter Runway Friction Measurement and Reporting Working Group, is designed to provide an overview of current information on the present guidance, practices, and procedures for reporting runway pavement surface conditions during winter operations at airports. It contains recommendations on the desirability of providing the best procedural consistency and standardization and discusses the available means to implement the guidance that will result in improved aviation safety at airports during hazardous winter conditions.

  13. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  14. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1

    NASA Technical Reports Server (NTRS)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.

  15. Runway drainage characteristics related to tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1991-01-01

    The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.

  16. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  17. Preliminary human factors findings from the FAA Capstone 3 electronic flight bag : airport surface moving map operational evaluation.

    DOT National Transportation Integrated Search

    2011-05-02

    The Federal Aviation Administration (FAA) Office of Runway Safety is interested in understanding the impact of an airport moving map with ownship position on operational usability and safety. To gather data on the use of this technology, the FAA is s...

  18. NASA Conjunction Assessment Organizational Approach and the Associated Determination of Screening Volume Sizes

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.; Hejduk, Matthew D.

    2015-01-01

    NASA is committed to safety of flight for all of its operational assets Performed by CARA at NASA GSFC for robotic satellites Focus of this briefing Performed by TOPO at NASA JSC for human spaceflight he Conjunction Assessment Risk Analysis (CARA) was stood up to offer this service to all NASA robotic satellites Currently provides service to 70 operational satellites NASA unmanned operational assets Other USG assets (USGS, USAF, NOAA) International partner assets Conjunction Assessment (CA) is the process of identifying close approaches between two orbiting objects; sometimes called conjunction screening The Joint Space Operations Center (JSpOC) a USAF unit at Vandenberg AFB, maintains the high accuracy catalog of space objects, screens CARA-supported assets against the catalog, performs OD tasking, and generates close approach data.

  19. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2

    NASA Technical Reports Server (NTRS)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  20. Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3

    NASA Technical Reports Server (NTRS)

    Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.

  1. NASA diagonal-braked test vehicle evaluation of traction characteristics of grooved and ungrooved runway surfaces at Miami International Airport, Miami, Florida, 8-9 May 1973

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1977-01-01

    Two runways were evaluated under artificially wetted conditions with the NASA diagonal-braked vehicle (DBV). Results of the evaluation which included a pavement drainage analysis, a pavement skid resistance analysis, and a DBV wet/dry stopping distance ratio analysis indicated that the ungrooved runway surfaces had poor water drainage characteristics and poor skid resistance under wet conditions at high speeds especially in rubbercoated areas of the runways. Grooving runways to a transverse 1-1/4 x 1/4 x 1/4 inch pattern greatly improved both the water drainage and pavement skid resistance capability of these asphaltic concrete surfaces.

  2. Air Traffic and Operational Data on Selected US Airports with Parallel Runways

    NASA Technical Reports Server (NTRS)

    Doyle, Thomas M.; McGee, Frank G.

    1998-01-01

    This report presents information on a number of airports in the country with parallel runways and focuses on those that have at least one pair of parallel runways closer than 4300 ft. Information contained in the report describes the airport's current operational activity as obtained through contact with the facility and from FAA air traffic tower activity data for FY 1997. The primary reason for this document is to provide a single source of information for research to determine airports where Airborne Information for Lateral Spacing (AILS) technology may be applicable.

  3. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...

  4. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...

  5. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...

  6. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...

  7. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... project include pavement construction and reconstruction, and include runway grooving to improve skid... course to correct major irregularities in the pavement. Runway resealing or refilling joints as an... Specification P-609) on a pavement the current surface of which consists of that kind of a bituminous surface...

  8. Spot and Runway Departure Advisor (SARDA)

    NASA Technical Reports Server (NTRS)

    Jung, Yoon

    2016-01-01

    Spot and Runway Departure Advisor (SARDA) is a decision support tool to assist airline ramp controllers and ATC tower controllers to manage traffic on the airport surface to significantly improve efficiency and predictability in surface operations. The core function of the tool is the runway scheduler which generates an optimal solution for runway sequence and schedule of departure aircraft, which would minimize system delay and maximize runway throughput. The presentation also discusses the latest status of NASA's current surface research through a collaboration with an airline partner, where a tool is developed for airline ramp operators to assist departure pushback operations. The presentation describes the concept of the SARDA tool and results from human-in-the-loop simulations conducted in 2012 for Dallas-Ft. Worth International Airport and 2014 for Charlotte airport ramp tower.

  9. Benefit Assessment for Metroplex Tactical Runway Configuration Management (mTRCM) in a Simulated Environment

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Robbins, Steven W.; Fenbert, James W.; Hartman, Christopher L.

    2015-01-01

    The System-Oriented Runway Management (SORM) concept is a collection of capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, and monitoring the active runway configuration for suitability given existing factors. This report focuses on the metroplex environment, with two or more proximate airports having arrival and departure operations that are highly interdependent. The myriad of factors that affect metroplex opeations require consideration in arriving at runway configurations that collectively best serve the system as a whole. To assess the metroplex TRCM (mTRCM) benefit, the performance metrics must be compared with the actual historical operations. The historical configuration schedules can be viewed as the schedules produced by subject matter experts (SMEs), and therefore are referred to as the SMEs' schedules. These schedules were obtained from the FAA's Aviation System Performance Metrics (ASPM) database; this is the most representative information regarding runway configuration selection by SMEs. This report focused on a benefit assessment of total delay, transit time, and throughput efficiency (TE) benefits using the mTRCM algorithm at representative volumes for today's traffic at the New York metroplex (N90).

  10. Runway Incursion Prevention System Testing at the Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2005-01-01

    A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.

  11. FAA and NASA UTM Research Transition Team: Communications and Navigation (CN) Working Group (WCG) Kickoff Meeting

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Larrow, Jarrett

    2017-01-01

    This is NASA FAA UTM Research Transition Team Communications and Navigation working group kick off meeting presentation that addresses the followings. Objectives overview Overall timeline and scope Outcomes and expectations Communication method and frequency of meetings Upcoming evaluation Next steps.

  12. Transcript of the Joint FAA/Industry Symposium on Level B Airplane simulator aeromodel validation requirements

    DOT National Transportation Integrated Search

    1996-03-13

    "This is the transcript of the Joint FAA/Industry Symposium on Level B Airplane Simulator Aeromodel Validation Requirements held on March 13-14, 1996, at the Washington Dulles Airport Hilton. The purpose of the meeting was to discuss the aeromodeling...

  13. Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2015-01-01

    One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly

  14. Cockpit Technology for Prevention of General Aviation Runway Incursions

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denise R.

    2007-01-01

    General aviation accounted for 74 percent of runway incursions but only 57 percent of the operations during the four-year period from fiscal year (FY) 2001 through FY2004. Elements of the NASA Runway Incursion Prevention System were adapted and tested for general aviation aircraft. Sixteen General Aviation pilots, of varying levels of certification and amount of experience, participated in a piloted simulation study to evaluate the system for prevention of general aviation runway incursions compared to existing moving map displays. Pilots flew numerous complex, high workload approaches under varying weather and visibility conditions. A rare-event runway incursion scenario was presented, unbeknownst to the pilots, which represented a typical runway incursion situation. The results validated the efficacy and safety need for a runway incursion prevention system for general aviation aircraft.

  15. Runway Incursion Prevention System Simulation Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2002-01-01

    A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.

  16. Analysis of Runway Incursion Data

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2013-01-01

    A statistical analysis of runway incursion (RI) events was conducted to ascertain relevance to the top ten challenges of the National Aeronautics and Space Administration Aviation Safety Program (AvSP). The information contained in the RI database was found to contain data that may be relevant to several of the AvSP top ten challenges. When combined with other data from the FAA documenting air traffic volume from calendar year 2000 through 2011, the structure of a predictive model emerges that can be used to forecast the frequency of RI events at various airports for various classes of aircraft and under various environmental conditions.

  17. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. Volume 1

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A. (Compiler)

    1997-01-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structures at Georgia Institute of Technology, was held to disseminate information on recent developments in advanced technologies to extend the life of high-time aircraft and design longer-life aircraft. Affiliations of the participants included 33% from government agencies and laboratories, 19% from academia, and 48% from industry; in all 240 people were in attendance. Technical papers were selected for presentation at the symposium, after a review of extended abstracts received by the Organizing Committee from a general call for papers.

  18. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. Volume 2

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A. (Compiler)

    1997-01-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structures at Georgia Institute of Technology, was held to disseminate information on recent developments in advanced technologies to extend the life of high-time aircraft and design longer-life aircraft. Affiliations of the participants included 33% from government agencies and laboratories, 19% from academia, and 48% from industry; in all 240 people were in attendance. Technical papers were selected for presentation at the symposium, after a review of extended abstracts received by the Organizing Committee from a general call for papers.

  19. Runway Incursion Prevention for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  20. NASA/FAA general aviation crash dynamics program - An update

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Thomson, R. G.; Carden, H. D.

    1979-01-01

    Work in progress in the NASA/FAA General Aviation Crash Dynamics Program for the development of technology for increased crash-worthiness and occupant survivability of general aviation aircraft is presented. Full-scale crash testing facilities and procedures are outlined, and a chronological summary of full-scale tests conducted and planned is presented. The Plastic and Large Deflection Analysis of Nonlinear Structures and Modified Seat Occupant Model for Light Aircraft computer programs which form part of the effort to predict nonlinear geometric and material behavior of sheet-stringer aircraft structures subjected to large deformations are described, and excellent agreement between simulations and experiments is noted. The development of structural concepts to attenuate the load transmitted to the passenger through the seats and subfloor structure is discussed, and an apparatus built to test emergency locator transmitters in a realistic environment is presented.

  1. Development of a Bayesian Belief Network Runway Incursion and Excursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.

  2. Runway Incursion Prevention System for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel III, Lawrence J.

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  3. Aircraft radial-belted tire evaluation

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.

    1990-01-01

    An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.

  4. National Positioning, Navigation, and Timing Architecture Study

    DTIC Science & Technology

    2008-09-01

    Ballooning • Trip Planning Environment • Tide / Current Measures • BLM Tract Management • Oil Spill Containment • Hazardous Waste Remediation...SMC/GPSW (Aerospace) Adde, Barbara GOVT NASA Alexander, Dexter LTC USA SMDC Alexander, Ken GOVT FAA Rep to NCO Allen, Leonard GOVT FRA...Shawn Lt Col USAF NSSO/PNT Brewer, Mike Col USAF OASD/NII Space Programs Brodsky, Beryl CTR NASA (Overlook) Broussard, Robert CTR AFSPC/A5

  5. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...

  6. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...

  7. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...

  8. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: Second runway; wind...: Second runway; wind conditions. (a) All airports. Paving a second runway on the basis of wind conditions... second runway is oriented with the existing paved runway to achieve the maximum wind coverage, with due...

  9. KSC off-runway contingency operation - Mode 7

    NASA Technical Reports Server (NTRS)

    Maples, Arthur; Doerr, Donald

    1991-01-01

    The possibility of a mishap during a space shuttle landing at Kennedy Space Center (KSC) dictates the need for plans to rescue astronauts from areas other than the Shuttle Landing Facility (SLF). All shuttle landings are unpowered, gliding flight maneuvers, and a deviation from the planned flight profile could result in a shuttle landing or crashing somewhere other than the SLF runway. The geography of the Kennedy Space Center makes helicopter airlifting the only universal means of transportation for the rescue crew. This rescue crew is composed of KSC contractor fire-rescuemen who would ride to the crash scene on USAF HH-3 helicopters. These crews are provided with personal protective suits and training in shallow water, swamp, and dry land rescues. They aid the egress of the crew to a safe area for helicopter pickup and subsequent triage and medevac.

  10. 6. Credit USAF, April, 1945. Original in the possession of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Credit USAF, April, 1945. Original in the possession of Ken G. Oldfield, Laguna Hills, California. View looking west across North Base flightline of XP-80s Shooting Stars undergoing accelerated service tests. HANG-N-A hangars No. 1 (Building 4401) and No. 2 (Building 4402) appear at left of view, with runway control tower (T-65, or Building 4500) at far right. Flight operations offices were in T-42 (Building 4502) at base of control tower; this structure was not extant in 1995. In the background between the control tower and Building 4402 lies T-15, officer's quarters. - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  11. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  12. Bolden at FAA Commercial Space Transportation Conference

    NASA Image and Video Library

    2011-02-09

    NASA Administrator Charles Bolden speaks at the 14th Annual Federal Aviation Administration (FAA) Commercial Space Transport Conference at the Washington Convention Center on Wednesday, Feb. 9, 2001. Photo Credit: (NASA/Carla Cioffi)

  13. Visibility Variability at Seattle, WA and Portland, OR : Insights into the Impacts of Runway Visual Range (RVR) Measurements on Aviation Operations.

    DOT National Transportation Integrated Search

    2001-01-14

    The FAA's new generation Runway Visual Range (RVR) : system was first placed into service in 1994 at several : key airports in the United States. During the last three : years, the Volpe National Transportation Systems Center : has monitored RVR data...

  14. The Space Shuttle Atlantis is towed from the runway at Edwards Air Force Base to NASA Dryden's Mate-Demate Device (MDD) for post-flight processing

    NASA Image and Video Library

    2007-06-22

    Following its landing on June 22, 2007, the Space Shuttle Atlantis is towed from the runway at Edwards Air Force Base to NASA Dryden's Mate-Demate Device (MDD) for post-flight processing in preparation for its return to the Kennedy Space Center in Florida.

  15. Summary proceedings of the joint industry-FAA conference on the development and use of PC-based aviation training devices.

    DOT National Transportation Integrated Search

    1994-11-01

    This report is a summarization of the proceedings of a joint industry FAA conference on the development and use of PC-based aviation training devices (PCATDs) that was held June 16-17, 1994, in Oklahoma City, Oklahoma. Attendees to the conference inc...

  16. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Image and Video Library

    1998-04-30

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  17. Development of a Bayesian Belief Network Runway Incursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.

  18. From Runway to Orbit: Reflections of a NASA Engineer

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Peebles, Curtis L.

    2004-01-01

    In his remarkable memoir Runway to Orbit, Dr. Kenneth W. Iliff - the recently retired Chief Scientist of the NASA Dryden Flight Research Center- tells a highly personal, yet a highly persuasive account of the last forty years of American aeronautical research. His interpretation of events commands respect, because over these years he has played pivotal roles in many of the most important American aeronautics and spaceflight endeavors. Moreover, his narrative covers much of the second half of the first 100 years of flight, a centennial anniversary being celebrated this year. aerospace knowledge. He arrived at the then NASA Flight Research Center in 1962 as a young aeronautical engineer and quickly became involved in two of the seminal projects of modern flight, the X-15 and the lifting bodies. In the process, he pioneered (with Lawrence Taylor) the application of digital computing to the reduction of flight data, arriving at a method known as parameter estimation, now applied the world over. Parameter estimation not only enabled researchers to acquire stability and control derivatives from limited flight data, but in time allowed them to obtain a wide range of aerodynamic effects. Although subsequently involved in dozens of important projects, Dr. Iliff devoted much of his time and energy to hypersonic flight, embodied in the Shuttle orbiter (or as he refers to it, the world s fastest airplane). To him, each Shuttle flight, instrumented to obtain a variety of data, represents a research treasure trove, one that he has mined for years. This book, then, represents the story of Dr. Ken Iliff s passion for flight, his work, and his long and astoundingly productive career. It can be read with profit not just by scientists and engineers, but equally by policy makers, historians, and journalists wishing to better comprehend advancements in flight during the second half of the twentieth century. Dr. Iliff's story is one of immense contributions to the nation s repository of

  19. Characteristics of aeroelastic instabilities in turbomachinery - NASA full scale engine test results

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1979-01-01

    Several aeromechanical programs were conducted in the NASA/USAF Joint Engine System Research Programs. The scope of these programs, the instrumentation, data acquisition and reduction, and the test results are discussed. Data pertinent to four different instabilities were acquired; two types of stall flutter, choke flutter and a system mode instability. The data indicates that each instability has its own unique characteristics. These characteristics are described.

  20. Functional Analysis for an Integrated Capability of Arrival/Departure/Surface Management with Tactical Runway Management

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Okuniek, Nikolai; Lohr, Gary W.; Schaper, Meilin; Christoffels, Lothar; Latorella, Kara A.

    2014-01-01

    The runway is a critical resource of any air transport system. It is used for arrivals, departures, and for taxiing aircraft and is universally acknowledged as a constraining factor to capacity for both surface and airspace operations. It follows that investigation of the effective use of runways, both in terms of selection and assignment as well as the timing and sequencing of the traffic is paramount to the efficient traffic flows. Both the German Aerospace Center (DLR) and NASA have developed concepts and tools to improve atomic aspects of coordinated arrival/departure/surface management operations and runway configuration management. In December 2012, NASA entered into a Collaborative Agreement with DLR. Four collaborative work areas were identified, one of which is called "Runway Management." As part of collaborative research in the "Runway Management" area, which is conducted with the DLR Institute of Flight Guidance, located in Braunschweig, the goal is to develop an integrated system comprised of the three DLR tools - arrival, departure, and surface management (collectively referred to as A/D/S-MAN) - and NASA's tactical runway configuration management (TRCM) tool. To achieve this goal, it is critical to prepare a concept of operations (ConOps) detailing how the NASA runway management and DLR arrival, departure, and surface management tools will function together to the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are assessed through a functional analysis method described in this report. The report first provides the highlevel operational environments for air traffic management (ATM) in Germany and in the U.S., and the descriptions of the DLR's A/D/S-MAN and NASA's TRCM tools at the level of details necessary to compliment the purpose of the study. Functional analyses of each tool and a completed functional analysis of an integrated system design are presented next in the report. Future efforts to fully

  1. Graphical User Interface Development and Design to Support Airport Runway Configuration Management

    NASA Technical Reports Server (NTRS)

    Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa

    2015-01-01

    The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.

  2. X-37 C-Sic CMC Control Surface Components Development [Status of the NASA/Boeing/USAF Orbital Vehicle and Related Efforts

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G; Rivers, H. Kevin; Chen, Victor L.

    2004-01-01

    Carbon/Silicon-Carbide (C-Sic) ceramic matrix composite (CMC) flaperon and ruddervator control surface components are being developed for the X-37 Orbital Vehicle (OV). The results of the prior NASA LaRC led work, aimed at developing C-Sic flaperon and ruddervator components for the X-37, will be reviewed. The status of several on-going and/or planned NASA, USAF, and Boeing programs that will support the development of control surface components for the X-37 OV will also be reviewed. The overall design and development philosophy being employed to assemble a team(s) to develop both: (a) C-Sic hot structure control surface components for the X-37 OV, and (b) carbon-carbon (C-C) hot structure components (a risk-reduction backup option for the OV), will be presented.

  3. The Continued Need for USAF Light Attack post OEF/OIF: A Survey of West African Infrastructure to Support Tactical Air Operations

    DTIC Science & Technology

    2013-04-01

    Mauritania’s two main airfields, at Nouakchott and Atar , have 9,800 foot runways that A-10s could operate from. In addition to those airfields...running road passes through Atar , Zouerat and Bir Moghrein on the way to Algeria. Without the use of the bases at Zouerat and Bir Moghrein the highway...runs almost 400 miles beyond extended duration air support from Atar . With the legacy platforms currently available, the USAF could provide air

  4. Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed

    NASA Image and Video Library

    2006-08-10

    Approaching the runway after the first evaluation flight of the Quiet Spike project, NASA's F-15B testbed aircraft cruises over Roger's Dry Lakebed near the Dryden Flight Research Center. The Quiet Spike was developed by Gulfstream Aerospace as a means of controlling and reducing the sonic boom caused by an aircraft 'breaking' the sound barrier.

  5. The ASLOTS concept: An interactive, adaptive decision support concept for Final Approach Spacing of Aircraft (FASA). FAA-NASA Joint University Program

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1993-01-01

    This presentation outlines a concept for an adaptive, interactive decision support system to assist controllers at a busy airport in achieving efficient use of multiple runways. The concept is being implemented as a computer code called FASA (Final Approach Spacing for Aircraft), and will be tested and demonstrated in ATCSIM, a high fidelity simulation of terminal area airspace and airport surface operations. Objectives are: (1) to provide automated cues to assist controllers in the sequencing and spacing of landing and takeoff aircraft; (2) to provide the controller with a limited ability to modify the sequence and spacings between aircraft, and to insert takeoffs and missed approach aircraft in the landing flows; (3) to increase spacing accuracy using more complex and precise separation criteria while reducing controller workload; and (4) achieve higher operational takeoff and landing rates on multiple runways in poor visibility.

  6. Computer-aided system for detecting runway incursions

    NASA Astrophysics Data System (ADS)

    Sridhar, Banavar; Chatterji, Gano B.

    1994-07-01

    A synthetic vision system for enhancing the pilot's ability to navigate and control the aircraft on the ground is described. The system uses the onboard airport database and images acquired by external sensors. Additional navigation information needed by the system is provided by the Inertial Navigation System and the Global Positioning System. The various functions of the system, such as image enhancement, map generation, obstacle detection, collision avoidance, guidance, etc., are identified. The available technologies, some of which were developed at NASA, that are applicable to the aircraft ground navigation problem are noted. Example images of a truck crossing the runway while the aircraft flies close to the runway centerline are described. These images are from a sequence of images acquired during one of the several flight experiments conducted by NASA to acquire data to be used for the development and verification of the synthetic vision concepts. These experiments provide a realistic database including video and infrared images, motion states from the Inertial Navigation System and the Global Positioning System, and camera parameters.

  7. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...

  8. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...

  9. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...

  10. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway paving...

  11. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...

  12. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway paving...

  13. Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2011-01-01

    A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  14. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  15. Formal Verification of the Runway Safety Monitor

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu; Ciardo, Gianfranco

    2006-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce runway accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems.

  16. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  17. FAA Administrator Babbitt Speaks at Conference

    NASA Image and Video Library

    2011-02-09

    Randy Babbitt, Administrator of the Federal Aviation Administration gives opening remarks at the 14th Annual FAA Commercial Space Transportation Conference at the Washington Convention Center on Wednesday, Feb. 9, 2001. Photo Credit: (NASA/Carla Cioffi)

  18. Runway Incursion Prevention System ADS-B and DGPS Data Link Analysis Dallas-Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Timmerman, J.; Jones, Denise R. (Technical Monitor)

    2001-01-01

    A Runway Incursion Prevention System (RIPS) was tested at the Dallas - Ft. Worth International Airport in October 2000. The system integrated airborne and ground components to provide both pilots and controllers with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warning of runway incursions in order to prevent runway incidents while also improving operational capability. Rockwell Collins provided and supported a prototype Automatic Dependent Surveillance - Broadcast (ADS-B) system using 1090 MHz and a prototype Differential GPS (DGPS) system onboard the NASA Boeing 757 research aircraft. This report describes the Rockwell Collins contributions to the RIPS flight test, summarizes the development process, and analyzes both ADS-B and DGPS data collected during the flight test. In addition, results are report on interoperability tests conducted between the NASA Advanced General Aviation Transport Experiments (AGATE) ADS-B flight test system and the NASA Boeing 757 ADS-B system.

  19. An investigation of air transportation technology at the Massachusetts Institute of Technology, 1990-1991

    NASA Technical Reports Server (NTRS)

    Simpson, Robert W.

    1991-01-01

    Brief summaries are given of research activities at the Massachusetts Institute of Technology (MIT) under the sponsorship of the FAA/NASA Joint University Program. Topics covered include hazard assessment and cockpit presentation issues for microburst alerting systems; the situational awareness effect of automated air traffic control (ATC) datalink clearance amendments; a graphical simulation system for adaptive, automated approach spacing; an expert system for temporal planning with application to runway configuration management; deterministic multi-zone ice accretion modeling; alert generation and cockpit presentation for an integrated microburst alerting system; and passive infrared ice detection for helicopter applications.

  20. Positioning System Accuracy Assessment for the Runway Incursion Prevention System Flight Test at the Dallas/Ft. Worth International Airport

    NASA Technical Reports Server (NTRS)

    Quach, Cuong C.

    2004-01-01

    NASA/Langley Research Center collaborated with the Federal Aviation Administration (FAA) to test a Runway Incursion Prevention System (RIPS) at the Dallas Fort Worth International Airport (DFW) in October 2000. The RIPS combines airborne and ground sensor data with various cockpit displays to improve pilots' awareness of traffic conditions on the airport surface. The systems tested at DFW involved surface radar and data systems that gather and send surface traffic information to a research aircraft outfitted with the RIPS software, cockpit displays, and data link transceivers. The data sent to the airborne systems contained identification and GPS location of traffic. This information was compared with the own-ship location from airborne GPS receivers to generate incursion alerts. A total of 93 test tracks were flown while operating RIPS. This report compares the accuracy of the airborne GPS systems that gave the own-ship position of the research aircraft for the 93 test tracks.

  1. Parallel runway requirement analysis study. Volume 1: The analysis

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Yaghoob S.

    1993-01-01

    The correlation of increased flight delays with the level of aviation activity is well recognized. A main contributor to these flight delays has been the capacity of airports. Though new airport and runway construction would significantly increase airport capacity, few programs of this type are currently underway, let alone planned, because of the high cost associated with such endeavors. Therefore, it is necessary to achieve the most efficient and cost effective use of existing fixed airport resources through better planning and control of traffic flows. In fact, during the past few years the FAA has initiated such an airport capacity program designed to provide additional capacity at existing airports. Some of the improvements that that program has generated thus far have been based on new Air Traffic Control procedures, terminal automation, additional Instrument Landing Systems, improved controller display aids, and improved utilization of multiple runways/Instrument Meteorological Conditions (IMC) approach procedures. A useful element to understanding potential operational capacity enhancements at high demand airports has been the development and use of an analysis tool called The PLAND_BLUNDER (PLB) Simulation Model. The objective for building this simulation was to develop a parametric model that could be used for analysis in determining the minimum safety level of parallel runway operations for various parameters representing the airplane, navigation, surveillance, and ATC system performance. This simulation is useful as: a quick and economical evaluation of existing environments that are experiencing IMC delays, an efficient way to study and validate proposed procedure modifications, an aid in evaluating requirements for new airports or new runways in old airports, a simple, parametric investigation of a wide range of issues and approaches, an ability to tradeoff air and ground technology and procedures contributions, and a way of considering probable

  2. Comprehensive and Highly Accurate Measurements of Crane Runways, Profiles and Fastenings

    PubMed Central

    Dennig, Dirk; Bureick, Johannes; Link, Johannes; Diener, Dmitri; Hesse, Christian; Neumann, Ingo

    2017-01-01

    The process of surveying crane runways has been continually refined due to the competitive situation, modern surveying instruments, additional sensors, accessories and evaluation procedures. Guidelines, such as the International Organization for Standardization (ISO) 12488-1, define target values that must be determined by survey. For a crane runway these are for example the span, the position and height of the rails. The process has to be objective and reproducible. However, common processes of surveying crane runways do not meet these requirements sufficiently. The evaluation of the protocols, ideally by an expert, requires many years of experience. Additionally, the recording of crucial parameters, e.g., the wear of the rail, or the condition of the rail fastening and rail joints, is not regulated and for that reason are often not considered during the measurement. To solve this deficit the Advanced Rail Track Inspection System (ARTIS) was developed. ARTIS is used to measure the 3D position of crane rails, the cross-section of the crane rails, joints and, for the first time, the (crane-rail) fastenings. The system consists of a monitoring vehicle and an external tracking sensor. It makes kinematic observations with the tracking sensor from outside the rail run, e.g., the floor of an overhead crane runway, possible. In this paper we present stages of the development process of ARTIS, new target values, calibration of sensors and results of a test measurement. PMID:28505076

  3. Air-Sea Battle through Joint Training: Power Projection Sustainability

    DTIC Science & Technology

    2014-05-15

    9 generate our decisive advantage.” 39 An example of cross-domain operations employed by the USN and USAF was the release of an AGM-154C Joint...and Herzegovina. While employing a USAF GBU -15 “electro-optically guided” bomb within close range of a USN AGM-84 SLAM-ER, “electronic... 39 U.S. Office of the Chairman, Joint Chiefs of Staff. Capstone Concept for Joint Operations: Joint Force 2020

  4. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    NASA Technical Reports Server (NTRS)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  5. Initiatives to Improve Quality of Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Nichols, Charles

    2017-01-01

    NASA is providing leadership in an international effort linking government and industry resources to speed adoption of additive manufactured (AM) parts. Participants include government agencies (NASA, USAF, NIST, FAA), industry (commercial aerospace, NDE manufacturers, AM equipment manufacturers), standards organizations and academia. NASA is also partnering with its international space exploration organizations such as ESA and JAXA. NDT is identified as a universal need for all aspects of additive manufacturing.

  6. Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.

    1996-01-01

    This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.

  7. Status of runway slipperiness research

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1976-01-01

    Runway slipperiness research performed in the United States and Europe since 1968 is reviewed. Topics discussed include: (1) runway flooding during rainstorms; (2) hydroplaning; (3) identification of slippery runways including the results from ground vehicle friction measurements and attempts to correlate these measurements with aircraft stopping performance; (4) progress and problems associated with the development of antihydroplaning runway surface treatments such as pavement grooving and porous friction course (PFC); and (5) runway rubber deposits and their removal.

  8. NextGen Technologies on the FAA's Standard Terminal Automation Replacement System

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin; Swenson, Harry; Martin, Lynne; Lin, Melody; Cheng, Jinn-Hwei

    2014-01-01

    This paper describes the integration, evaluation, and results from a high-fidelity human-in-the-loop (HITL) simulation of key NASA Air Traffic Management Technology Demonstration - 1 (ATD- 1) technologies implemented in an enhanced version of the FAA's Standard Terminal Automation Replacement System (STARS) platform. These ATD-1 technologies include: (1) a NASA enhanced version of the FAA's Time-Based Flow Management, (2) a NASA ground-based automation technology known as controller-managed spacing (CMS), and (3) a NASA advanced avionics airborne technology known as flight-deck interval management (FIM). These ATD-1 technologies have been extensively tested in large-scale HITL simulations using general-purpose workstations to study air transportation technologies. These general purpose workstations perform multiple functions and are collectively referred to as the Multi-Aircraft Control System (MACS). Researchers at NASA Ames Research Center and Raytheon collaborated to augment the STARS platform by including CMS and FIM advisory tools to validate the feasibility of integrating these automation enhancements into the current FAA automation infrastructure. NASA Ames acquired three STARS terminal controller workstations, and then integrated the ATD-1 technologies. HITL simulations were conducted to evaluate the ATD-1 technologies when using the STARS platform. These results were compared with the results obtained when the ATD-1 technologies were tested in the MACS environment. Results collected from the numerical data show acceptably minor differences, and, together with the subjective controller questionnaires showing a trend towards preferring STARS, validate the ATD-1/STARS integration.

  9. Runway Incursion Prevention System: Demonstration and Testing at the Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Quach, Cuong C.; Young, Steven D.

    2007-01-01

    A Runway Incursion Prevention System (RIPS) was tested at the Dallas-Ft. Worth International Airport (DFW) in October 2000. The system integrated airborne and ground components to provide both pilots and controllers with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warning of runway incursions in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using NASA s Boeing 757 research aircraft and a test van equipped to emulate an incurring aircraft. The system was also demonstrated to over 100 visitors from the aviation community. This paper gives an overview of the RIPS, DFW flight test activities, and quantitative and qualitative results of the testing.

  10. 1. Credit USAF, ca. 1945. Original housed in the Records ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Credit USAF, ca. 1945. Original housed in the Records of the Defense Intelligence Agency. Record Group 373. National Archives. Cartographic and Architectural Branch. Washington, D.C. Oblique aerial photo 16PS5M79-1-0-46-4:3:1146-12:120003500N11745W looks northeast across North Base, then known as Muroc Flight Test Base. Rogers Dry lake is in view to the right, bordered by four hangars; 6,000 foot runway built in 1943 is in background. Fenced area in immediate foreground (not extant in 1995) was a "Chemical Storage Area" also designated a fuel storage facility on some engineering drawings; two small ponds nearby were for sewage sludge. Black square in middle of view is recently oiled or paved parking lot surrounding Building 4340 (T-73), the Recreation Hall/Chapel (not extant in 1995). - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  11. FAA-NASA Sixth International Conference on the Continued Airworthiness of Aircraft Structures

    DTIC Science & Technology

    1995-12-01

    Administration, and Colin G. Drury , State University of New York at Buffalo The Aging Aircraft Nondestructive Inspection Validation Center - A R esource for...William T. Shepherd FAA-Office of Aviation Medicine Washington, DC and Colin G. Drury State University of New York at Buffalo Buffalo, NY INTRODUCTION FAA’s...improvement, changing the task, the operator (inspector), machine, or environment as appropriate, e.g., review in Drury , 1992 (Ref. 1). 2. From the

  12. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  13. NASA Weather Support 2017

    NASA Technical Reports Server (NTRS)

    Carroll, Matt

    2017-01-01

    In the mid to late 1980's, as NASA was studying ways to improve weather forecasting capabilities to reduce excessive weather launch delays and to reduce excessive weather Launch Commit Criteria (LCC) waivers, the Challenger Accident occurred and the AC-67 Mishap occurred.[1] NASA and USAF weather personnel had advance knowledge of extremely high levels of weather hazards that ultimately caused or contributed to both of these accidents. In both cases, key knowledge of the risks posed by violations of weather LCC was not in the possession of final decision makers on the launch teams. In addition to convening the mishap boards for these two lost missions, NASA convened expert meteorological boards focusing on weather support. These meteorological boards recommended the development of a dedicated organization with the highest levels of weather expertise and influence to support all of American spaceflight. NASA immediately established the Weather Support Office (WSO) in the Office of Space Flight (OSF), and in coordination with the United Stated Air Force (USAF), initiated an overhaul of the organization and an improvement in technology used for weather support as recommended. Soon after, the USAF established a senior civilian Launch Weather Officer (LWO) position to provide meteorological support and continuity of weather expertise and knowledge over time. The Applied Meteorology Unit (AMU) was established by NASA, USAF, and the National Weather Service to support initiatives to place new tools and methods into an operational status. At the end of the Shuttle Program, after several weather office reorganizations, the WSO function had been assigned to a weather branch at Kennedy Space Center (KSC). This branch was dismantled in steps due to further reorganization, loss of key personnel, and loss of budget line authority. NASA is facing the loss of sufficient expertise and leadership required to provide current levels of weather support. The recommendation proposed

  14. Progress Toward Future Runway Management

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Brown, Sherilyn A.; Atkins, Stephen; Eisenhawer, Stephen W.; Bott, Terrance F.; Long, Dou; Hasan, Shahab

    2011-01-01

    The runway is universally acknowledged as a constraining factor to capacity in the National Airspace System (NAS). It follows that investigation of the effective use of runways, both in terms of selection and assignment, is paramount to the efficiency of future NAS operations. The need to address runway management is not a new idea; however, as the complexities of factors affecting runway selection and usage increase, the need for effective research in this area correspondingly increases. Under the National Aeronautics and Space Administration s Airspace Systems Program, runway management is a key research area. To address a future NAS which promises to be a complex landscape of factors and competing interests among users and operators, effective runway management strategies and capabilities are required. This effort has evolved from an assessment of current practices, an understanding of research activities addressing surface and airspace operations, traffic flow management enhancements, among others. This work has yielded significant progress. Systems analysis work indicates that the value of System Oriented Runway Management tools is significantly increased in the metroplex environment over that of the single airport case. Algorithms have been developed to provide runway configuration recommendations for a single airport with multiple runways. A benefits analysis has been conducted that indicates the SORM benefits include supporting traffic growth, cost reduction as a result of system efficiency, NAS optimization from metroplex operations, fairness in aircraft operations, and rational decision making.

  15. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  16. Runway incursion severity risk analysis.

    DOT National Transportation Integrated Search

    2012-09-14

    Runway incursions are defined as the unauthorized presence of a vehicle, pedestrian, or aircraft on a runway. Identifying situations or conditions in which runway incursions are more likely to be severe can suggest policy implications and areas for f...

  17. Experiment Description and Results for Arrival Operations Using Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR)

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.

    2013-01-01

    The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.

  18. General view of the Orbiter Discovery on runway 33 at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery on runway 33 at Kennedy Space Center shortly after landing. The orbiter is processed and prepared for being towed to the Orbiter Processing Facility for continued post flight processing and pre flight preparations for its next mission. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  20. Summary of the industry/NASA/FAA workshop on philosophy of automation: Promises and realities

    NASA Technical Reports Server (NTRS)

    Norman, Susan D.

    1990-01-01

    Issues of flight deck automation are multi-faceted and complex. The rapid introduction of advanced computer based technology on to the flight deck of transport category aircraft has had considerable impact on both aircraft operations and the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information between members of the aviation community, an Industry/NASA/FAA workshop was conducted in August 1988. One of the most important conclusions to emerge from the workshop was that the introduction of automation has clearly benefited aviation and has substantially improved the operational safety and efficiency of our air transport system. For example, one carrier stated that they have been flying the Boeing 767 (one of the first aircraft to employ substantial automation) since 1982, and they have never had an accident or incident resulting in damage to the aircraft. Notwithstanding its benefits, many issues associated with the design, certification, and operation of automated aircraft were identified. For example two key conceptual issues were the need for the crew to have a thorough understanding of the system and the importance of defining the pilot's role. With respect to certification, a fundamental issue is the lack of comprehensive human factors requirements in the current regulations. Operational considerations, which have been a factor in incidents involving automation, were also cited. Viewgraphs used in the presentation are given.

  1. GSOSTATS Database: USAF Synchronous Satellite Catalog Data Conversion Software. User's Guide and Software Maintenance Manual, Version 2.1

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.; Babic, Slavoljub

    1994-01-01

    The United States Air Force (USAF) provides NASA Lewis Research Center with monthly reports containing the Synchronous Satellite Catalog and the associated Two Line Mean Element Sets. The USAF Synchronous Satellite Catalog supplies satellite orbital parameters collected by an automated monitoring system and provided to Lewis Research Center as text files on magnetic tape. Software was developed to facilitate automated formatting, data normalization, cross-referencing, and error correction of Synchronous Satellite Catalog files before loading into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). This document contains the User's Guide and Software Maintenance Manual with information necessary for installation, initialization, start-up, operation, error recovery, and termination of the software application. It also contains implementation details, modification aids, and software source code adaptations for use in future revisions.

  2. Development of the Runway Incursion Advisory and Alerting System (RIAAS): Research Summary

    NASA Technical Reports Server (NTRS)

    Jones, Denise R. (Technical Monitor); Cassell, Rick

    2005-01-01

    This report summarizes research conducted on an aircraft based Runway Incursion Advisory and Alerting System (RIAAS) developed under a cooperative agreement between Rannoch Corporation and the NASA Langley Research Center. A summary of RIAAS is presented along with results from simulation and flight testing, safety benefits, and key technical issues.

  3. Quiet Short-Haul Research Aircraft Joint Navy/NASA Sea Trials

    NASA Technical Reports Server (NTRS)

    Queen, S.; Cochrane, J.

    1982-01-01

    The Quiet Short-Haul Research Aircraft (QSRA) is a flight facility which Ames Research Center is using to conduct a broad program of terminal area and low-speed, propulsive-life flight research. A joint Navy/NASA flight research program used the QSRA to investigate the application of advanced propulsive-lift technology to the naval aircraft-carrier environment. Flight performance of the QSRA is presented together with the results or the joint Navy/NASA flight program. During the joint program, the QSRA operated aboard the USS Kitty Hawk for 4 days, during which numerous unarrested landings and free deck takeoffs were accomplished. These operations demonstrated that a large aircraft incorporating upper-surface-blowing, propulsive-life technology can be operated in the aircraft-carrier environment without any unusual problems.

  4. Joint NASA-ESA Outer Planet Mission study overview

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.

    2009-04-01

    In 2008, ESA and NASA performed joint studies of two highly capable scientific missions to the outer planets: the Europa Jupiter System Mission (EJSM) and the Titan Saturn System Mission (TSSM). Joint Science Definition Teams (JSDTs) were formed with U.S. and European membership to guide study activities that were conducted collaboratively by engineering teams working on both sides of the Atlantic. EJSM comprises the Jupiter Europa Orbiter (JEO) that would be provided by NASA and the Jupiter Ganymede Orbiter (JGO) that would be provided by ESA. Both spacecraft would be launched independently in 2020, and arrive 6 years later for a 3-4 year mission within the Jupiter System. Both orbiters would explore Jupiter's system on trajectories that include flybys of Io (JEO only), Europa (JEO only), Ganymede and Callisto. The operation of JEO would culminate in orbit around Europa while that of JGO would culminate in orbit around Ganymede. Synergistic and coordinated observations would be planned. The Titan Saturn System Mission (TSSM) comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the lake lander. The mission would launch in 2020 and arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfière would last at least 6-12 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a ~2-year orbit around Titan. Synergistic and coordinated observations would be planned between the orbiter and in situ elements. The ESA contribution to this joint endeavor will be implemented as the first Cosmic Vision Large-class (L1) mission; the NASA contribution will be implemented as the Outer Planet Flagship Mission. The contribution to each mission is being reviewed and

  5. Interval Management with Spacing to Parallel Dependent Runways (IMSPIDR) Experiment and Results

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swieringa, Kurt A.; Capron, William R.

    2012-01-01

    An area in aviation operations that may offer an increase in efficiency is the use of continuous descent arrivals (CDA), especially during dependent parallel runway operations. However, variations in aircraft descent angle and speed can cause inaccuracies in estimated time of arrival calculations, requiring an increase in the size of the buffer between aircraft. This in turn reduces airport throughput and limits the use of CDAs during high-density operations, particularly to dependent parallel runways. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) concept uses a trajectory-based spacing tool onboard the aircraft to achieve by the runway an air traffic control assigned spacing interval behind the previous aircraft. This paper describes the first ever experiment and results of this concept at NASA Langley. Pilots flew CDAs to the Dallas Fort-Worth airport using airspeed calculations from the spacing tool to achieve either a Required Time of Arrival (RTA) or Interval Management (IM) spacing interval at the runway threshold. Results indicate flight crews were able to land aircraft on the runway with a mean of 2 seconds and less than 4 seconds standard deviation of the air traffic control assigned time, even in the presence of forecast wind error and large time delay. Statistically significant differences in delivery precision and number of speed changes as a function of stream position were observed, however, there was no trend to the difference and the error did not increase during the operation. Two areas the flight crew indicated as not acceptable included the additional number of speed changes required during the wind shear event, and issuing an IM clearance via data link while at low altitude. A number of refinements and future spacing algorithm capabilities were also identified.

  6. Elements affecting runway traction

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1974-01-01

    The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.

  7. Aerial view of Runway 33 at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This aerial view shows the approach on Runway 33 at the KSC Shuttle Landing Facility. The runway is 15,000 feet long, with 1,000-foot paved overruns at each end; 300 feet wide (about length of football field), with 50-foot asphalt shoulders each side; 16 inches thick in the center, and 15 inches thick on sides. It has a slope of 24 inches from the center line to the edge for drainage. The single landing strip is considered two runways, depending on approach -- Runway 15 from northwest, Runway 33 from southeast.

  8. NASA/FAA North Texas Research Station Overview

    NASA Technical Reports Server (NTRS)

    Borchers, Paul F.

    2012-01-01

    NTX Research Staion: NASA research assets embedded in an interesting operational air transport environment. Seven personnel (2 civil servants, 5 contractors). ARTCC, TRACON, Towers, 3 air carrier AOCs(American, Eagle and Southwest), and 2 major airports all within 12 miles. Supports NASA Airspace Systems Program with research products at all levels (fundamental to system level). NTX Laboratory: 5000 sq ft purpose-built, dedicated, air traffic management research facility. Established data links to ARTCC, TRACON, Towers, air carriers, airport and NASA facilities. Re-configurable computer labs, dedicated radio tower, state-of-the-art equipment.

  9. Runway Operations Planning: A Two-Stage Heuristic Algorithm

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.

  10. Simulations - Joint NASA-USSR Mission - JSC

    NASA Image and Video Library

    1975-02-25

    S75-22187 (25 Feb. 1975) --- Two ASTP crewmen look over food cans and packages in the Soyuz orbital module trainer in Building 35 during Apollo-Soyuz Test Project joint crew training at NASA's Johnson Space Center. They are astronaut Thomas P. Stafford (left), commander of the American ASTP prime crew; and cosmonaut Aleksey A. Leonov, commander of the Soviet ASTP first (prime) crew. The training session simulated activity on the second day in Earth orbit.

  11. Review of factors affecting aircraft wet runway performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.

    1983-01-01

    Problems associated with aircraft operations on wet runways are discussed and major factors which influence tire/runway braking and cornering traction capability are identified including runway characteristics, tire hydroplaning, brake system anomalies, and pilot inputs. Research results from investigations conducted at the Langley Aircraft Landing Loads and Traction Facility and from tests with instrumented ground vehicles and aircraft are summarized to indicate the effects of different aircraft, tire, and runway parameters. Several promising means are described for improving tire/runway water drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction performance on wet runways.

  12. Operational Space Weather in USAF Education

    NASA Astrophysics Data System (ADS)

    Smithtro, C.; Quigley, S.

    2006-12-01

    Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.

  13. Runway Operations Planning: A Two-Stage Solution Methodology

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. Thus, Runway Operations Planning (ROP) is a critical component of airport operations planning in general and surface operations planning in particular. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, may be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. Generating optimal runway operations plans was approached in with a 'one-stage' optimization routine that considered all the desired objectives and constraints, and the characteristics of each aircraft (weight class, destination, Air Traffic Control (ATC) constraints) at the same time. Since, however, at any given point in time, there is less uncertainty in the predicted demand for departure resources in terms of weight class than in terms of specific aircraft, the ROP problem can be parsed into two stages. In the context of the Departure Planner (OP) research project, this paper introduces Runway Operations Planning (ROP) as part of the wider Surface Operations Optimization (SOO) and describes a proposed 'two stage' heuristic algorithm for solving the Runway Operations Planning (ROP) problem. Focus is specifically given on including runway crossings in the planning process of runway operations. In the first stage, sequences of departure class slots and runwy crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the

  14. Runway Scheduling Using Generalized Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  15. Air to air view of Endeavour, OV-105, atop SCA approaches Ellington runway

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Air to air view of Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, approaches touchdown for a brief stopover at Ellington Field, near JSC. Visible below the spacecraft/aircraft combination are the NASA T-38 flight line, NASA aircraft hangars and facilities, and a runway. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. The spacecraft and aircraft-tandem left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Science Division (ISD).

  16. NASA nvPM Test

    NASA Technical Reports Server (NTRS)

    Lobo, Prem; Klettlinger, Jennifer; Podboy, Derek

    2017-01-01

    This presentation is a brief summary of the data collected under a NASAFAA partnership test campaign completed in October 2016 in the NASA CE-5 test facility. The results discussed in this presentation are gaseous (NASA) and Particle (FAA).

  17. Digital avionics systems - Overview of FAA/NASA/industry-wide briefing

    NASA Technical Reports Server (NTRS)

    Larsen, William E.; Carro, Anthony

    1986-01-01

    The effects of incorporating digital technology into the design of aircraft on the airworthiness criteria and certification procedures for aircraft are investigated. FAA research programs aimed at providing data for the functional assessment of aircraft which use digital systems for avionics and flight control functions are discussed. The need to establish testing, assurance assessment, and configuration management technologies to insure the reliability of digital systems is discussed; consideration is given to design verification, system performance/robustness, and validation technology.

  18. Enroute NASA/FAA low-frequency propfan test in Alabama (October 1987): A versatile atmospheric aircraft long-range noise prediction system

    NASA Astrophysics Data System (ADS)

    Tsouka, Despina G.

    In order to obtain a flight-to-static noise prediction of an advanced Turboprop (propfan) Aircraft, FAA went on an elaboration of the data that were measured during a full scale measuring program that was conducted by NASA and FAA/DOT/TSC on October 1987 in Alabama. The elaboration process was based on aircraft simulation to a point source, on an atmospheric two dimensional noise model, on the American National Standard algorithm for the calculation of atmospheric absortion, and on the DOT/TSC convention for ground reflection effects. Using the data of the Alabama measurements, the present paper examines the development of a generalized, flexible and more accurate process for the evaluation of the static and flight low-frequency long-range noise data. This paper also examines the applicability of the assumptions made by the Integrated Noise Model about linear propagation, of the three dimensional Hamiltonian Rays Tracing model and of the Weyl-Van der Pol model. The model proposes some assumptions in order to increase the calculations flexibility without significant loss of accuracy. In addition, it proposes the usage of the three dimensional Hamiltonian Rays Tracing model and the Weyl-Van der Pol model in order to increase the accuracy and to ensure the generalization of noise propagation prediction over grounds with variable impedance.

  19. Some effects of grooved runway configurations on aircraft tire braking traction under flooded runway conditions

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1973-01-01

    An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.

  20. System Oriented Runway Management: A Research Update

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Brown, Sherilyn A.; Stough, Harry P., III; Eisenhawer, Steve; Atkins, Stephen; Long, Dou

    2011-01-01

    The runway configuration used by an airport has significant implications with respect to its capacity and ability to effectively manage surface and airborne traffic. Aircraft operators rely on runway configuration information because it can significantly affect an airline's operations and planning of their resources. Current practices in runway management are limited by a relatively short time horizon for reliable weather information and little assistance from automation. Wind velocity is the primary consideration when selecting a runway configuration; however when winds are below a defined threshold, discretion may be used to determine the configuration. Other considerations relevant to runway configuration selection include airport operator constraints, weather conditions (other than winds) traffic demand, user preferences, surface congestion, and navigational system outages. The future offers an increasingly complex landscape for the runway management process. Concepts and technologies that hold the potential for capacity and efficiency increases for both operations on the airport surface and in terminal and enroute airspace are currently under investigation. Complementary advances in runway management are required if capacity and efficiency increases in those areas are to be realized. The System Oriented Runway Management (SORM) concept has been developed to address this critical part of the traffic flow process. The SORM concept was developed to address all aspects of runway management for airports of varying sizes and to accommodate a myriad of traffic mixes. SORM, to date, addresses the single airport environment; however, the longer term vision is to incorporate capabilities for multiple airport (Metroplex) operations as well as to accommodate advances in capabilities resulting from ongoing research. This paper provides an update of research supporting the SORM concept including the following: a concept of overview, results of a TRCM simulation, single

  1. Final-Approach Spacing Aids (FASA) evaluation for terminal-area, time-based air traffic control

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Capron, William R.; Lohr, Gary W.; Crawford, Daniel J.; Tang, Dershuen A.; Rodgers, William G., Jr.

    1993-01-01

    A jointly funded (NASA/FAA) real-time simulation study was conducted at NASA Langley Research Center to gather comparative performance data among three candidate final-approach spacing aid (FASA) display formats. Several objective measures of controller performance and their display eye-scan behavior as well as subjective workload and rating questionnaires were used. For each of two representative pattern-speed procedures (a 170-knot procedure and a 210-knot procedure with speed control aiding), data were gathered, via twelve FAA controllers, using four final-controller display format conditions (manual/ARTS 3, graphic marker, DICE countdown, and centerline slot marker). Measured runway separations were more precise with both the graphic marker and DICE countdown formats than with the centerline slot marker and both (graphic and DICE) improved precision relative to the manual/ARTS 3 format. For three separate rating criteria, the subject controllers ranked the FASA formats in the same order: graphic marker, DICE countdown, and centerline slot marker. The increased precision measured with the 210-knot pattern-speed procedure may indicate the potential for the application of speed-control aiding where higher pattern speeds are practical after the base-to-final turn. Also presented are key FASA issues, a rationale for the formats selected for testing, and their description.

  2. Considerations on the relationship between white and red centerline runway lights and RVR (Runway Visual Range).

    DOT National Transportation Integrated Search

    1972-01-01

    The runway visual range (RVR) for a Type L-850 bidirectional centerline runway light has been calculated for the red and white output ports at three different current settings for both day and night illuminance thresholds. The calculations are based ...

  3. Air to air view of Endeavour, OV-105, atop SCA approaches Ellington runway

    NASA Image and Video Library

    1991-05-06

    S91-36097 (6 May 1991) --- Air to air view of Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, approaches touchdown for a brief stopover at Ellington Field, near JSC. Visible below the spacecraft/aircraft combination are the NASA T-38 flight line, NASA aircraft hangars and facilities, and a runway. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. The spacecraft and aircraft-tandem left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Science Division (ISD).

  4. Runway safety

    DOT National Transportation Integrated Search

    2010-02-12

    Information provided through analysis of runway incursions is useful in many ways. Analysis of the errors made by pilots, controllers, and vehicle drivers is the first step toward developing error mitigation strategies. Furthermore, successful design...

  5. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  6. Aerial view of Endeavour, OV-105, parked on Ellington Field runway

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This aerial view looks down on Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, parked on an Ellington Field runway. The tail cone added to OV-105 to enhance the aerodynamics of the spacecraft/aircraft transport system is clearly visible. Ground transportation vehicles (cars, trucks) and a crowd surround OV-105 and NASA 911. Ceremonies were held during OV-105's brief stopover at Ellington Field, near JSC. The new space vehicle, sans SCA, was rolled out of Rockwell's Palmdale facility on 04-25-91. This again brings the total of NASA Shuttles available for flight assignment to four. The spacecraft and aircraft-tandem left Houston later on this day headed for a stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a NASA T-38 aircraft by Sheri J. Dunnette of JSC's Image Sciences Division (ISD).

  7. USAF Support to Low Intensity Conflict: Three Case Studies From the 1980s

    DTIC Science & Technology

    1994-06-01

    included armed reconnaissance provided by AC- 130H gunships, and an airdrop of USAF Combat Control Teams and Army Rangers . The main body for the...performance of elite units such as Delta Force, SEALS, Rangers , etc. did not justify the money spent or their claims of eliteness. AU Library Document M-43828...48Adkin, 132. 23 Figure 1 Task Organization for Joint Task Force 120. CJTF 120 Carribean Peacekeeping Force CTF 121 Airborne CTF 123 Rangers

  8. The Fanconi anemia pathway requires FAA phosphorylation and FAA/FAC nuclear accumulation

    PubMed Central

    Yamashita, Takayuki; Kupfer, Gary M.; Naf, Dieter; Suliman, Ahmed; Joenje, Hans; Asano, Shigetaka; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with at least eight complementation groups (A–H). Two FA genes, corresponding to complementation groups A and C, have been cloned, but the function of the FAA and FAC proteins remains unknown. We have recently shown that the FAA and FAC proteins bind and form a nuclear complex. In the current study, we analyzed the FAA and FAC proteins in normal lymphoblasts and lymphoblasts from multiple FA complementation groups. In contrast to normal controls, FA cells derived from groups A, B, C, E, F, G, and H were defective in the formation of the FAA/FAC protein complex, the phosphorylation of the FAA protein, and the accumulation of the FAA/FAC protein complex in the nucleus. These biochemical events seem to define a signaling pathway required for the maintenance of genomic stability and normal hematopoiesis. Our results support the idea that multiple gene products cooperate in the FA Pathway. PMID:9789045

  9. Evaluation of the Terminal Area Precision Scheduling and Spacing System for Performance-Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy

    2013-01-01

    The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and

  10. Runway Scheduling for Charlotte Douglas International Airport

    NASA Technical Reports Server (NTRS)

    Malik, Waqar A.; Lee, Hanbong; Jung, Yoon C.

    2016-01-01

    This paper describes the runway scheduler that was used in the 2014 SARDA human-in-the-loop simulations for CLT. The algorithm considers multiple runways and computes optimal runway times for departures and arrivals. In this paper, we plan to run additional simulation on the standalone MRS algorithm and compare the performance of the algorithm against a FCFS heuristic where aircraft avail of runway slots based on a priority given by their positions in the FCFS sequence. Several traffic scenarios corresponding to current day traffic level and demand profile will be generated. We also plan to examine the effect of increase in traffic level (1.2x and 1.5x) and observe trends in algorithm performance.

  11. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Verma, Savita Arora

    2011-01-01

    Parallel runway operations have been found to increase capacity within the National Airspace but poor visibility conditions reduce the use of these operations. The NextGen and SESAR Programs have identified the capacity benefits from increased use of closely-space parallel runway. Previous research examined the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This simulation study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: two levels of flight deck automation (current-day flight deck automation and auto speed control future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Results show the operations in this study were acceptable and safe. Subjective workload, when using the pairing procedures and tools, was generally low for both controllers and pilots, and situation awareness was typically moderate to high. Pilot workload was influenced by display type and automation condition. Further research on pairing and off-nominal conditions is required however, this investigation identified promising findings about the feasibility of closely-spaced parallel runway operations.

  12. Evaluation of a driving simulator for ground-vehicle operator training

    DOT National Transportation Integrated Search

    2006-01-31

    Improving runway safety is part of the Federal Aviation Administration (FAA) Flight Plan (FAA, 2005) with annual goals established for the reduction of runway incursions, including vehicle pedestrian deviations (VPDs). Reducing VPDs is a difficult ta...

  13. The runway model of drug self-administration

    PubMed Central

    Ettenberg, Aaron

    2009-01-01

    Behavioral scientists have employed operant runways as a means of investigating the motivational impact of incentive stimuli for the better part of the past 100 years. In this task, the speed with which a trained animal traverses a long straight alley for positive incentive stimuli, like food or water, provides a reliable index of the subject’s motivation to seek those stimuli. The runway is therefore a particularly appropriate tool for investigating the drug-seeking behavior of animals working for drugs of abuse. The current review describes our laboratory’s work over the past twenty years developing and implementing an operant runway model of drug self-administration. Procedures are described that methodologically dissociate the antecedent motivational processes that induce an animal to seek a drug, from the positive reinforcing consequences of actually earning the drug. Additional work is reviewed on the use of the runway method as a means of modeling the factors that often result in a “relapse” of drug self-administration after a period of abstinence (i.e., a response reinstatement test), as are runway studies that revealed the presence of opposing positive and negative consequences of self-administered cocaine. This body of work suggests that the runway method has served as a powerful behavioral tool for the study of the behavioral and neurobiological basis of drug self-administration. PMID:19032964

  14. Los Angeles International Airport Runway Incursion Studies: Phase III--Center-Taxiway Simulation

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    2004-01-01

    Phase III of the Los Angeles International Airport Runway Incursion Studies was conducted, under an agreement with HNTB Corporation, at the NASA Ames FutureFlight Central (FFC) facility in June 2003. The objective of the study was the evaluation of a new center-taxiway concept at LAX. This study is an extension of the Phase I and Phase II studies previously conducted at FFC. This report presents results from Phase III of the study, in which a center-taxiway concept between runways 25L and 25R was simulated and evaluated. Phase III data were compared objectively against the Baseline data. Subjective evaluations by participating LAX controllers were obtained with regard to workload, efficiency, and safety criteria. To facilitate a valid comparison between Baseline and Phase III data, the same scenarios were used for Phase III that were tested during Phases I and II. This required briefing participating controllers on differences in airport and airline operations between 2001 and today.

  15. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  16. NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project

    NASA Image and Video Library

    2006-08-10

    NASA's F-15B testbed aircraft in flight during the first evaluation flight of the joint NASA/Gulfstream Quiet Spike project. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  17. Electronic System for Preventing Airport Runway Incursions

    NASA Technical Reports Server (NTRS)

    Dabney, Richard; Elrod, Susan

    2009-01-01

    A proposed system of portable illuminated signs, electronic monitoring equipment, and radio-communication equipment for preventing (or taking corrective action in response to) improper entry of aircraft, pedestrians, or ground vehicles onto active airport runways is described. The main overall functions of the proposed system would be to automatically monitor aircraft ground traffic on or approaching runways and to generate visible and/or audible warnings to affected pilots, ground-vehicle drivers, and control-tower personnel when runway incursions take place.

  18. Pilot Evaluations of Runway Status Light System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.; Smith, R. Marshall

    1996-01-01

    This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.

  19. Effect of Uncertainty on Deterministic Runway Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2012-01-01

    Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.

  20. Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida

    NASA Image and Video Library

    1991-05-02

    NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters.

  1. Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1: Algorithm Development

    NASA Technical Reports Server (NTRS)

    Trani, A. A.; Hobeika, A. G.; Sherali, H.; Kim, B. J.; Sadam, C. K.

    1990-01-01

    A description and results are presented of a study to locate and design rapid runway exits under realistic airport conditions. The study developed a PC-based computer simulation-optimization program called REDIM (runway exit design interactive model) to help future airport designers and planners to locate optimal exits under various airport conditions. The model addresses three sets of problems typically arising during runway exit design evaluations. These are the evaluations of existing runway configurations, addition of new rapid runway turnoffs, and the design of new runway facilities. The model is highly interactive and allows a quick estimation of the expected value of runway occupancy time. Aircraft populations and airport environmental conditions are among the multiple inputs to the model to execute a viable runway location and geometric design solution. The results presented suggest that possible reductions on runway occupancy time (ROT) can be achieved with the use of optimally tailored rapid runway designs for a given aircraft population. Reductions of up to 9 to 6 seconds are possible with the implementation of 30 m/sec variable geometry exits.

  2. KSC-2013-1073

    NASA Image and Video Library

    2013-01-11

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a new 12-inch water main is being installed as part of a water/wastewater revitalizing plan. The main will provide water to the area around the shuttle landing facility's Landing Aids Control Building and fire station. NASA’s space shuttle runway is a unique national asset designed to enable the recovery of the agency’s fleet of space shuttle orbiters. The shuttle landing facility is a single, 15,000-foot long concrete runway oriented to the southeast and northwest. Air traffic control is provided from a control tower built to FAA standards. Fire and emergency response services are also available from an onsite facility. For more information, visit http://kscpartnerships.ksc.nasa.gov/slf.htm Photo credit: NASA/Tim Jacobs

  3. KSC-2013-1074

    NASA Image and Video Library

    2013-01-11

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a new 12-inch water main is being installed as part of a water/wastewater revitalizing plan. The main will provide water to the area around the shuttle landing facility's Landing Aids Control Building and fire station. NASA’s space shuttle runway is a unique national asset designed to enable the recovery of the agency’s fleet of space shuttle orbiters. The shuttle landing facility is a single, 15,000-foot long concrete runway oriented to the southeast and northwest. Air traffic control is provided from a control tower built to FAA standards. Fire and emergency response services are also available from an onsite facility. For more information, visit http://kscpartnerships.ksc.nasa.gov/slf.htm Photo credit: NASA/Tim Jacobs

  4. KSC-2013-1077

    NASA Image and Video Library

    2013-01-11

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a new 12-inch water main is being installed as part of a water/wastewater revitalizing plan. The main will provide water to the area around the shuttle landing facility's Landing Aids Control Building and fire station. NASA’s space shuttle runway is a unique national asset designed to enable the recovery of the agency’s fleet of space shuttle orbiters. The shuttle landing facility is a single, 15,000-foot long concrete runway oriented to the southeast and northwest. Air traffic control is provided from a control tower built to FAA standards. Fire and emergency response services are also available from an onsite facility. For more information, visit http://kscpartnerships.ksc.nasa.gov/slf.htm Photo credit: NASA/Tim Jacobs

  5. KSC-2013-1078

    NASA Image and Video Library

    2013-01-11

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a new 12-inch water main is being installed as part of a water/wastewater revitalizing plan. The main will provide water to the area around the shuttle landing facility's Landing Aids Control Building and fire station. NASA’s space shuttle runway is a unique national asset designed to enable the recovery of the agency’s fleet of space shuttle orbiters. The shuttle landing facility is a single, 15,000-foot long concrete runway oriented to the southeast and northwest. Air traffic control is provided from a control tower built to FAA standards. Fire and emergency response services are also available from an onsite facility. For more information, visit http://kscpartnerships.ksc.nasa.gov/slf.htm Photo credit: NASA/Tim Jacobs

  6. KSC-2013-1075

    NASA Image and Video Library

    2013-01-11

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a new 12-inch water main is being installed as part of a water/wastewater revitalizing plan. The main will provide water to the area around the shuttle landing facility's Landing Aids Control Building and fire station. NASA’s space shuttle runway is a unique national asset designed to enable the recovery of the agency’s fleet of space shuttle orbiters. The shuttle landing facility is a single, 15,000-foot long concrete runway oriented to the southeast and northwest. Air traffic control is provided from a control tower built to FAA standards. Fire and emergency response services are also available from an onsite facility. For more information, visit http://kscpartnerships.ksc.nasa.gov/slf.htm Photo credit: NASA/Tim Jacobs

  7. KSC-2013-1076

    NASA Image and Video Library

    2013-01-11

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a new 12-inch water main is being installed as part of a water/wastewater revitalizing plan. The main will provide water to the area around the shuttle landing facility's Landing Aids Control Building and fire station. NASA’s space shuttle runway is a unique national asset designed to enable the recovery of the agency’s fleet of space shuttle orbiters. The shuttle landing facility is a single, 15,000-foot long concrete runway oriented to the southeast and northwest. Air traffic control is provided from a control tower built to FAA standards. Fire and emergency response services are also available from an onsite facility. For more information, visit http://kscpartnerships.ksc.nasa.gov/slf.htm Photo credit: NASA/Tim Jacobs

  8. Leadership Competencies for the USAF Acquisition Community

    DTIC Science & Technology

    2002-04-01

    RAND National Defense Fellow writing on leadership for the 21st USAF) labeled “the intellectual progeny of Burn’s transformational theory .”21 In 1999...1) a historical perspective of leadership and management in academic theory , (2) challenges facing the USAF that suggest a new leadership paradigm...the question at hand. Her research reflects a more studied academic understanding of leadership and management theory than does the work of Brolin

  9. SARDA - Technologies for NextGen

    NASA Image and Video Library

    2015-04-22

    The Spot and Runway Departure Advisor, or SARDA, is NASA's contribution to improving the efficiency of airport surface operations. SARDA is comprised of software-based decision support tools for controllers in the FAA tower and in the airline ramp towers. It uses intelligent schedulers to provide surface management capabilities, including departure metering and advisories for individual aircraft movement at various locations on the airport surface.

  10. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy

    2011-01-01

    Parallel Runway operations have been found to increase capacity within the National Airspace (NAS) however, poor visibility conditions reduce this capacity [1]. Much research has been conducted to examine the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s(+/- 10s error) at a coupling point that is about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: Two levels of flight deck automation (current-day flight deck automation, and a prototype future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Data showed that the operations in this study were found to be acceptable and safe. Workload when using the pairing procedures and tools was generally low for both controllers and pilots, and situation awareness (SA) was typically moderate to high. There were some differences based upon the display and automation conditions for the pilots. Future research should consider the refinement of the concepts and tools for pilot and controller displays and automation for parallel runway concepts.

  11. NASA UAS Update

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey Ervin; Mulac, Brenda Lynn

    2010-01-01

    Last year may prove to be a pivotal year for the National Aeronautics and Space Administration (NASA) in the Unmanned Aircraft Systems (UAS) arena, especially in relation to routine UAS access to airspace as NASA accepted an invitation to join the UAS Executive Committee (UAS ExCom). The UAS ExCom is a multi-agency, Federal executive-level committee comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA with the goals to: 1) Coordinate and align efforts between key Federal Government agencies to achieve routine safe federal public UAS operations in the National Airspace System (NAS); 2) Coordinate and prioritize technical, procedural, regulatory, and policy solutions needed to deliver incremental capabilities; 3) Develop a plan to accommodate the larger stakeholder community at the appropriate time; and 4) Resolve conflicts between Federal Government agencies (FAA, DoD, DHS, and NASA), related to the above goals. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. In order to meet that need, technical, procedural, regulatory, and policy solutions are required to deliver incremental capabilities leading to routine access. The formation of the UAS ExCom is significant in that it represents a tangible commitment by FAA senior leadership to address the UAS access challenge. While the focus of the ExCom is government owned and operated UAS, civil UAS operations are bound to benefit by the progress made in achieving routine access for government UAS. As the UAS ExCom was forming, NASA's Aeronautics Research Mission Directorate began to show renewed interest in UAS, particularly in relation to the future state of the air transportation system under the Next Generation Air Transportation System (NextGen). NASA made funding from the American

  12. The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft

    NASA Image and Video Library

    2006-08-16

    The control panel for the joint NASA/Gulfstream Quiet Spike project, located in the backseat of NASA's F-15B testbed aircraft. The project seeks to verify the structural integrity of the multi-segmented, articulating spike attachment designed to reduce and control a sonic boom.

  13. TRIZ Tool for Optimization of Airport Runway

    NASA Astrophysics Data System (ADS)

    Rao, K. Venkata; Selladurai, V.; Saravanan, R.

    TRIZ tool is used for conceptual design and layout of the novel ascending and descending runway model for the effective utilization of short length airports. Handling bigger aircrafts at smaller airports become the necessity for economic consideration and for the benefit of vast airliners and the aspiring air travelers of the region. The authors’ proposal of ascending and descending runway would enable the operational need of wide body aircrafts such as Boeing 747 and Airbus A380-800. Negotiating take-off and landing of bigger aircrafts at less than 10000 feet runway is an optimization solution. This conceptual model and the theoretical design with its layout is dealt in this paper as Part - I. The computer-aided design and analysis using MATLAB with Simulink tool box to confirm the adequacy of the runway length for the bigger aircrafts at smaller airports is however dealt in subsequent papers.

  14. The Fight Deck Perspective of the NASA Langley AILS Concept

    NASA Technical Reports Server (NTRS)

    Rine, Laura L.; Abbott, Terence S.; Lohr, Gary W.; Elliott, Dawn M.; Waller, Marvin C.; Perry, R. Brad

    2000-01-01

    Many US airports depend on parallel runway operations to meet the growing demand for day to day operations. In the current airspace system, Instrument Meteorological Conditions (IMC) reduce the capacity of close parallel runway operations; that is, runways spaced closer than 4300 ft. These capacity losses can result in landing delays causing inconveniences to the traveling public, interruptions in commerce, and increased operating costs to the airlines. This document presents the flight deck perspective component of the Airborne Information for Lateral Spacing (AILS) approaches to close parallel runways in IMC. It represents the ideas the NASA Langley Research Center (LaRC) AILS Development Team envisions to integrate a number of components and procedures into a workable system for conducting close parallel runway approaches. An initial documentation of the aspects of this concept was sponsored by LaRC and completed in 1996. Since that time a number of the aspects have evolved to a more mature state. This paper is an update of the earlier documentation.

  15. A B-52H, tail number 61-0025, arrives at NASA's Dryden Flight Research Center after landing July 30,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Dryden Flight Research Center, Edwards, California, received an 'H' model B-52 Stratofortress aircraft on July 30, 2001. The B-52H will be used as an air-launch aircraft supporting NASA's flight research and advanced technology demonstration efforts. Dryden received the B-52H from the U.S. Air Force's (USAF) 23rd Bomb Squadron, 5th Bombardment Wing (Air Combat Command), located at Minot AFB, N.D. A USAF crew flew the aircraft to Dryden. The aircraft, USAF tail number 61-0025, will be loaned initially, then later transferred from the USAF to NASA. The B-52H is scheduled to leave Dryden Aug. 2 for de-militarization and Programmed Depot Maintenance (PDM) at Tinker Air Force Base (AFB), Oklahoma. The depot-level maintenance is scheduled to last about six months and includes a thorough maintenance and inspection process. The newly arrived B-52H is slated to replace Dryden's famous B-52B '008,' in the 2003-2004 timeframe. It will take about one year for the B-52H to be ready for flight research duties. This time includes PDM, construction of the new pylon, installation of the flight research instrumentation equipment, and aircraft envelope clearance flights.

  16. Evaluation of Scheduling Methods for Multiple Runways

    NASA Technical Reports Server (NTRS)

    Bolender, Michael A.; Slater, G. L.

    1996-01-01

    Several scheduling strategies are analyzed in order to determine the most efficient means of scheduling aircraft when multiple runways are operational and the airport is operating at different utilization rates. The study compares simulation data for two and three runway scenarios to results from queuing theory for an M/D/n queue. The direction taken, however, is not to do a steady-state, or equilibrium, analysis since this is not the case during a rush period at a typical airport. Instead, a transient analysis of the delay per aircraft is performed. It is shown that the scheduling strategy that reduces the delay depends upon the density of the arrival traffic. For light traffic, scheduling aircraft to their preferred runways is sufficient; however, as the arrival rate increases, it becomes more important to separate traffic by weight class. Significant delay reduction is realized when aircraft that belong to the heavy and small weight classes are sent to separate runways with large aircraft put into the 'best' landing slot.

  17. Economic utilization of general aviation airport runways

    NASA Technical Reports Server (NTRS)

    Piper, R. R.

    1971-01-01

    The urban general aviation airport economics is studied in detail. The demand for airport services is discussed, and the different types of users are identified. The direct cost characteristics of the airport are summarized; costs to the airport owner are largely fixed, and, except at certain large airports, weight is not a significant factor in airport costs. The efficient use of an existing airport facility is explored, with the focus on the social cost of runway congestion as traffic density at the airport build up and queues form. The tradeoff between aircraft operating costs and airport costs is analyzed in terms of runway length. The transition from theory to practice is treated, and the policy of charging prices only on aircraft storage and fuel is felt likely to continue. Implications of the study from the standpoint of public policy include pricing that spreads traffic peaks to improve runway utilization, and pricing that discriminates against aircraft requiring long runways and causes owners to adopt V/STOL equipment.

  18. System-Oriented Runway Management Concept of Operations

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Atkins, Stephen

    2015-01-01

    This document describes a concept for runway management that maximizes the overall efficiency of arrival and departure operations at an airport or group of airports. Specifically, by planning airport runway configurations/usage, it focuses on the efficiency with which arrival flights reach their parking gates from their arrival fixes and departure flights exit the terminal airspace from their parking gates. In the future, the concept could be expanded to include the management of other limited airport resources. While most easily described in the context of a single airport, the concept applies equally well to a group of airports that comprise a metroplex (i.e., airports in close proximity that share resources such that operations at the airports are at least partially dependent) by including the coordination of runway usage decisions between the airports. In fact, the potential benefit of the concept is expected to be larger in future metroplex environments due to the increasing need to coordinate the operations at proximate airports to more efficiently share limited airspace resources. This concept, called System-Oriented Runway Management (SORM), is further broken down into a set of airport traffic management functions that share the principle that operational performance must be measured over the complete surface and airborne trajectories of the airport's arrivals and departures. The "system-oriented" term derives from the belief that the traffic management objective must consider the efficiency of operations over a wide range of aircraft movements and National Airspace System (NAS) dynamics. The SORM concept is comprised of three primary elements: strategic airport capacity planning, airport configuration management, and combined arrival/departure runway planning. Some aspects of the SORM concept, such as using airport configuration management1 as a mechanism for improving aircraft efficiency, are novel. Other elements (e.g., runway scheduling, which is a part

  19. Throughput Benefit Assessment for Tactical Runway Configuration Management (TRCM)

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Fenbert, James W.

    2014-01-01

    The System-Oriented Runway Management (SORM) concept is a collection of needed capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, monitoring the active runway configuration for suitability given existing factors, based on a 90 minute planning horizon. This study evaluates the throughput benefits using a representative sample of today's traffic volumes at three airports: Memphis International Airport (MEM), Dallas-Fort Worth International Airport (DFW), and John F. Kennedy International Airport (JFK). Based on this initial assessment, there are statistical throughput benefits for both arrivals and departures at MEM with an average of 4% for arrivals, and 6% for departures. For DFW, there is a statistical benefit for arrivals with an average of 3%. Although there is an average of 1% benefit observed for departures, it is not statistically significant. For JFK, there is a 12% benefit for arrivals, but a 2% penalty for departures. The results obtained are for current traffic volumes and should show greater benefit for increased future demand. This paper also proposes some potential TRCM algorithm improvements for future research. A continued research plan is being worked to implement these improvements and to re-assess the throughput benefit for today and future projected traffic volumes.

  20. Analysis of WakeVAS Benefits Using ACES Build 3.2.1

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.

    2005-01-01

    The FAA and NASA are currently engaged in a Wake Turbulence Research Program to revise wake turbulence separation standards, procedures, and criteria to increase airport capacity while maintaining or increasing safety. The research program is divided into three phases: Phase I near term procedural enhancements; Phase II wind dependent Wake Vortex Advisory System (WakeVAS) Concepts of Operations (ConOps); and Phase III farther term ConOps based on wake prediction and sensing. This report contains an analysis that evaluates the benefits of a closely spaced parallel runway (CSPR) Phase I ConOps, a single runway and CSPR Phase II ConOps and a single runway Phase III ConOps. A series of simulation runs were performed using the Airspace Concepts Evaluation System (ACES) Build 3.21 air traffic simulator to provide an initial assessment of the reduction in delay and cost savings obtained by the use of a WakeVAS at selected U.S. airports. The ACES simulator is being developed by NASA Ames Research Center as part of the Virtual Airspace Modelling and Simulation (VAMS) program.

  1. KSC-07pd0920

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Al Wassel, a representative from the FAA Office of Commercial Space, addresses the media on the KSC Shuttle Landing Facility. At left is the F-104 pilot, Rick Svetkoff. At right is Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd0921

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Jim Ball, KSC Spaceport Development manager, addresses the media. Behind him are Pilot Rick Svetkoff; Al Wassel, a representative from the FAA Office of Commercial Space; and Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd0919

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- Bill Parsons, director of Kennedy Space Center, addresses the media at the KSC Shuttle Landing Facility after a test flight of the Starfighter F-104. Behind Parsons, at left, is the pilot Rick Svetkoff. At right is Al Wassel, a representative from the FAA Office of Commercial Space. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd0922

    NASA Image and Video Library

    2007-04-17

    KENNEDY SPACE CENTER, FLA. -- After a test flight of the Starfighter F-104, Pilot Rick Svetkoff addresses the media on the KSC Shuttle Landing Facility. Behind him are Al Wassel (left), a representative from the FAA Office of Commercial Space, and (right) Bill Parsons, director of Kennedy Space Center. The aircraft is taking part in a series of pathfinder test missions from the space shuttle runway. Two flights will generate test data to validate sonic boom assumptions about the potential impacts of suborbital and orbital commercial spaceflight from the facility. NASA is assessing the environmental impact of such flights. Starfighters Inc. of Clearwater, Fla., will perform the flights to help in assessing suborbital space launch trajectories from the runway and paving the way for future commercial space tourism and research flights from the facility. Photo credit: NASA/Kim Shiflett

  5. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  6. Results of a joint NOAA/NASA sounder simulation study

    NASA Technical Reports Server (NTRS)

    Phillips, N.; Susskind, Joel; Mcmillin, L.

    1988-01-01

    This paper presents the results of a joint NOAA and NASA sounder simulation study in which the accuracies of atmospheric temperature profiles and surface skin temperature measuremnents retrieved from two sounders were compared: (1) the currently used IR temperature sounder HIRS2 (High-resolution Infrared Radiation Sounder 2); and (2) the recently proposed high-spectral-resolution IR sounder AMTS (Advanced Moisture and Temperature Sounder). Simulations were conducted for both clear and partial cloud conditions. Data were analyzed at NASA using a physical inversion technique and at NOAA using a statistical technique. Results show significant improvement of AMTS compared to HIRS2 for both clear and cloudy conditions. The improvements are indicated by both methods of data analysis, but the physical retrievals outperform the statistical retrievals.

  7. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  8. MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Runavot, Josette; Ousley, Gilbert W.

    1988-01-01

    The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.

  9. NASA Synthetic Vision EGE Flight Test

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.

    2002-01-01

    NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.

  10. AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY CONSTRUCTION

    NASA Technical Reports Server (NTRS)

    1974-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY CONSTRUCTION KSC-374C-10236.33 108-KSC-374C-10236.33, P-15911, ARCHIVE-04477 Shuttle runway facility construction progress - oblique vertical, altitude 3,000 ft. time 1030 - direction south - south half from center.

  11. Wet runways. [aircraft landing and directional control

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1975-01-01

    Aircraft stopping and directional control performance on wet runways is discussed. The major elements affecting tire/ground traction developed by jet transport aircraft are identified and described in terms of atmospheric, pavement, tire, aircraft system and pilot performance factors or parameters. Research results are summarized, and means for improving or restoring tire traction/aircraft performance on wet runways are discussed.

  12. USAF shale oil program status

    NASA Technical Reports Server (NTRS)

    Delaney, C. L.

    1984-01-01

    The test and evaluation program on shale derived fuel being conducted by the Air Force is intended to accomplish the minimum amount of testing necessary to assure both the safe use of shale oil derived turbine fuels in operational USAF aircraft and its compatibility with USAF handling systems. This program, which was designed to take advantage of existing R&D testing programs, began in 1981. However, due to a problem in acquiring the necessary fuel, the testing program was suspended until July 1983 when an additional sample of shale derived fuel was received. Tentatively, the Air Force is planning to make three relatively minor revisions to the procurement specifications requirements for the production shale derived fuel. These are: (1) Aromatic Contest (min) - 9% (by volume); (2) Nitrogen (max - 20 ppm by weight); and (3) Antioxidants - 9.1 g/100 gal (U.S.)

  13. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 2; Complete Set of Plotted Data

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  14. Human risk factors associated with pilots in runway excursions.

    PubMed

    Chang, Yu-Hern; Yang, Hui-Hua; Hsiao, Yu-Jung

    2016-09-01

    A breakdown analysis of civil aviation accidents worldwide indicates that the occurrence of runway excursions represents the largest portion among all aviation occurrence categories. This study examines the human risk factors associated with pilots in runway excursions, by applying a SHELLO model to categorize the human risk factors and to evaluate the importance based on the opinions of 145 airline pilots. This study integrates aviation management level expert opinions on relative weighting and improvement-achievability in order to develop four kinds of priority risk management strategies for airline pilots to reduce runway excursions. The empirical study based on experts' evaluation suggests that the most important dimension is the liveware/pilot's core ability. From the perspective of front-line pilots, the most important risk factors are the environment, wet/containment runways, and weather issues like rain/thunderstorms. Finally, this study develops practical strategies for helping management authorities to improve major operational and managerial weaknesses so as to reduce the human risks related to runway excursions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 3,700 USAF Junior Acquisition Officers! Rebalance USAF Manning Priorities Now

    DTIC Science & Technology

    2017-04-06

    duties because they represent basically “no-cost” manpower to the headquarters and base -level leaders. The USAF pays for their military salary and...Colonel, United States Air Force A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor: Colonel...academic research paper are those of the author and do not reflect the official policy or position of the US government, the Department of Defense

  16. Dream Chaser Rolls Through Tow Tests at NASA Armstrong

    NASA Image and Video Library

    2017-05-20

    In this 2-minute, 41-second video, Sierra Nevada Corporation (SNC) puts its Dream Chaser engineering test vehicle through a series of ground tests at NASA's Armstrong Flight Research Center at Edwards Air Force Base, CA, to prepare for upcoming captive-carry and free-flight tests later this year. During this 60-mph tow test, a pickup truck pulled the Dream Chaser test vehicle on Edward’s runway to validate the performance of the spacecraft's nose skid, brakes, tires, and other systems. The company has performed the tests at 10 mph, 20 mph, and 40 mph over the last few months to lead up to the 60-mph runway test. Range and taxi tow tests are standard for winged vehicles that touchdown on a runway to prove the overall spacecraft handling post-landing.

  17. 14 CFR 151.9 - Runway clear zones: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...

  18. 14 CFR 151.9 - Runway clear zones: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...

  19. 14 CFR 151.9 - Runway clear zones: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...

  20. 14 CFR 151.9 - Runway clear zones: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...

  1. 14 CFR 151.9 - Runway clear zones: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway clear zones: General. 151.9 Section 151.9 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... above the elevation of the runway or 50 feet above the terrain at the outer extremity of the clear zone...

  2. NASA HS3 Global Hawk on the Wing

    NASA Image and Video Library

    2013-08-30

    The NASA Wallops T-34 chase aircraft intercepted Global Hawk 872 on its descent to runway 28 at NASA's Wallops Flight Facility in Wallops Island, Va. This photo of the Global Hawk was taken from the chase plane after finishing its third science flight. For more information about NASA's HS3 mission, visit: www.nasa.gov/HS3 Credit: NASA/ Brea Reeves NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Aviation infrastructure : challenges associated with building and maintaining runways

    DOT National Transportation Integrated Search

    2000-10-05

    This testimony focuses on challenges associated with building new runways and with ensuring that existing runways are properly maintained. Recent flight delays and cancellations as well as significant media attention to them have heightened public co...

  4. Shuttle Challenger landing on Runway 17 at Edwards at end of 51-B mission

    NASA Image and Video Library

    1985-05-06

    51B-S-071 (6 May 1985) --- The Space Shuttle Challenger lands on Runway 17 at Edwards Air Force Base to complete a week in space for its seven-member crew and a variety of payload. The vehicle stopped at 9:12:05 a.m. (PDT), May 6, 1985. Onboard were astronauts Robert F. Overmyer, Frederick D. Gregory, Don L. Lind, Norman E. Thagard and William E. Thornton of National Aeronautics and Space Administration (NASA); and payload specialists Lodewijk van den Berg and Taylor G. Wang.

  5. Shuttle landing runway modification to improve tire spin-up wear performance

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.; Stubbs, Sandy M.

    1988-01-01

    This paper presents the results of a series of tire spin-up wear tests on a simulated Kennedy Space Center (KSC) runway that were carried out to investigate the tire wear problem for Space Shuttle landings on the KSC runway and to test several modifications of the runway surface designed to alleviate the problem. It was found that the runway surface produced by a concrete smoothing machine using cutters spaced one and three-quarters blades per centimeter provided adequate wet cornering while limiting spin-up wear. Based on the test results, the KSC runway was smoothed for about 1066 m at each end, leaving the original high friction surface, for better wet steering and braking, in the 2438-m central section.

  6. Evaluation of high pressure water blast with rotating spray bar for removing paint and rubber deposits from airport runways, and review of runway slipperiness problems created by rubber contamination

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Griswold, G. D.

    1975-01-01

    A high pressure water blast with rotating spray bar treatment for removing paint and rubber deposits from airport runways is studied. The results of the evaluation suggest that the treatment is very effective in removing above surface paint and rubber deposits to the point that pavement skid resistance is restored to trafficked but uncontaminated runway surface skid resistance levels. Aircraft operating problems created by runway slipperiness are reviewed along with an assessment of the contributions that pavement surface treatments, surface weathering, traffic polishing, and rubber deposits make in creating or alleviating runway slipperiness. The results suggest that conventional surface treatments for both portland cement and asphaltic concrete runways are extremely vulnerable to rubber deposit accretions which can produce runway slipperiness conditions for aircraft operations as or more slippery than many snow and ice-covered runway conditions. Pavement grooving surface treatments are shown to be the least vulnerable to rubber deposits accretion and traffic polishing of the surface treatments examined.

  7. The DARPA/USAF Falcon Program Small Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  8. European Action Plan for the Prevention of Runway Incursions

    DOT National Transportation Integrated Search

    2017-11-20

    This version of European Action Plan for the Prevention of Runway Incursions (EAPPRI) recognises the emergence of EU provisions intended to improve runway safety in Europe. However, like its predecessors, this third version of EAPPRI continues to rec...

  9. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  10. Measures to increase airfield capacity by changing aircraft runway occupancy characteristics

    NASA Technical Reports Server (NTRS)

    Gosling, G. D.; Kanafani, A.; Rockaday, S. L. M.

    1981-01-01

    Airfield capacity and aircraft runway occupancy characteristics were studied. Factors that caused runway congestion and airfield crowding were identified. Several innovations designed to alleviate the congestion are discussed. Integrated landing management, the concept that the operation of the final approach and runway should be considered in concert, was identified as underlying all of the innovations.

  11. Sampling and Data Gathering Strategies for Future USAF Anthropometry

    DTIC Science & Technology

    1976-02-01

    of USAF body size data. The approach we suggest would be less costly and more responsive to the needs of the USAF than periodic massive surveys...has been that many of these photographs were taken primarily for somatotyping rather than for measure- ment. Another source of difficulty has been...goals and we have recently i j accepted responsibility under an AMRL research contract to demonstrate that this is so. V Of all the non-standard

  12. SOHO Mission Interruption Joint NASA/ESA Investigation Board

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Contact with the SOlar Heliospheric Observatory (SOHO) spacecraft was lost in the early morning hours of June 25, 1998, Eastern Daylight Time (EDT), during a planned period of calibrations, maneuvers, and spacecraft reconfigurations. Prior to this the SOHO operations team had concluded two years of extremely successful science operations. A joint European Space Agency (ESA)/National Aeronautics and Space Administration (NASA) engineering team has been planning and executing recovery efforts since loss of contact with some success to date. ESA and NASA management established the SOHO Mission Interruption Joint Investigation Board to determine the actual or probable cause(s) of the SOHO spacecraft mishap. The Board has concluded that there were no anomalies on-board the SOHO spacecraft but that a number of ground errors led to the major loss of attitude experienced by the spacecraft. The Board finds that the loss of the SOHO spacecraft was a direct result of operational errors, a failure to adequately monitor spacecraft status, and an erroneous decision which disabled part of the on-board autonomous failure detection. Further, following the occurrence of the emergency situation, the Board finds that insufficient time was taken by the operations team to fully assess the spacecraft status prior to initiating recovery operations. The Board discovered that a number of factors contributed to the circumstances that allowed the direct causes to occur. The Board strongly recommends that the two Agencies proceed immediately with a comprehensive review of SOHO operations addressing issues in the ground procedures, procedure implementation, management structure and process, and ground systems. This review process should be completed and process improvements initiated prior to the resumption of SOHO normal operations.

  13. National blueprint for runway safety

    DOT National Transportation Integrated Search

    2000-10-01

    The Blueprint describes the processes : employed to measurably reduce the risks : associated with runway incursions and surface : incidents. It sets expectations, establishes : accountability, communicates information, : and defines new and improved ...

  14. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    NASA Technical Reports Server (NTRS)

    Clark, John S. (Editor)

    1991-01-01

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  15. The JOVE initiative - A NASA/university Joint Venture in space science

    NASA Technical Reports Server (NTRS)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  16. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308

  17. FAA Aviation Forecast Conference Proceedings (16th)

    DTIC Science & Technology

    1991-02-01

    FORECASTS The FAA forecasting process is a continuous one which involves FAA Forecast Branch’s interaction with various FAA Offices and Services... process uses various economic and aviation data bases, the outputs of several econometric models and equations, and other analytical techniques. The FAA...workload measures, summarized numerically in the table on page 8, are the resultant forecasts of this process and are used annually by the agency for

  18. FAA aviation forecasts : fiscal years 1997-2008

    DOT National Transportation Integrated Search

    1997-03-01

    This report contains the Fiscal Years 1997-2008 Federal Aviation Administration (FAA) forecasts of aviation activity at FAA facilities. These include airports with both FAA and contract control towers, air route traffic control centers, and flight se...

  19. FAA Loran early implementation project

    DOT National Transportation Integrated Search

    1990-03-01

    The Early Implementation Project (EIP), established by FAA Administrator Admiral : Donald C. Engen, was the initial step in the process of Loran integration into the : National Airsace System (NAS). The EIP was designed to give the FAA and the Loran ...

  20. Comparison of Procedures for Dual and Triple Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Ballinger, Deborah; Subramanian Shobana; Kozon, Thomas

    2012-01-01

    A human-in-the-loop high fidelity flight simulation experiment was conducted, which investigated and compared breakout procedures for Very Closely Spaced Parallel Approaches (VCSPA) with two and three runways. To understand the feasibility, usability and human factors of two and three runway VCSPA, data were collected and analyzed on the dependent variables of breakout cross track error and pilot workload. Independent variables included number of runways, cause of breakout and location of breakout. Results indicated larger cross track error and higher workload using three runways as compared to 2-runway operations. Significant interaction effects involving breakout cause and breakout location were also observed. Across all conditions, cross track error values showed high levels of breakout trajectory accuracy and pilot workload remained manageable. Results suggest possible avenues of future adaptation for adopting these procedures (e.g., pilot training), while also showing potential promise of the concept.

  1. Modelling runway incursion severity.

    PubMed

    Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y

    2015-06-01

    Analysis of the causes underlying runway incursions is fundamental for the development of effective mitigation measures. However, there are significant weaknesses in the current methods to model these factors. This paper proposes a structured framework for modelling causal factors and their relationship to severity, which includes a description of the airport surface system architecture, establishment of terminological definitions, the determination and collection of appropriate data, the analysis of occurrences for severity and causes, and the execution of a statistical analysis framework. It is implemented in the context of U.S. airports, enabling the identification of a number of priority interventions, including the need for better investigation and causal factor capture, recommendations for airfield design, operating scenarios and technologies, and better training for human operators in the system. The framework is recommended for the analysis of runway incursions to support safety improvements and the methodology is transferable to other areas of aviation safety risk analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Joint IKI/ROSCOSMOS - NASA Science Definition Team and concept mission to Venus based on Venera-D

    NASA Astrophysics Data System (ADS)

    Zasova, L.; Senske, D.; Economou, T.; Eismont, N.; Esposito, L.; Gerasimov, M.; Gorinov, D.; Ignatiev, N.; Ivanov, M.; Jessup, K. Lea; Khatuntsev, I.; Korablev, O.; Kremic, T.; Limaye, S.; Lomakin, I.; Martynov, A.; Ocampo, A.; Vaisberg, O.; Burdanov, A.

    2017-09-01

    NASA and IKI/Roscosmos established in 2015 a Joint Science Definition Team (JSDT), a key task of which was to codify the synergy between the goals of Venera-D with those of NASA. In addition, the JSDT studied potential NASA provided mission augmentations (experiments /elements) that could to fill identified science gaps. The first report to NASA - IKI/Roscosmos was provided in January 2017. The baseline Venera-D concept includes two elements, and orbiter and a lander, with potential contributions consisting of an aerial platform/balloon, small long-lived surface stations or a sub-satellite.

  3. KENNEDY SPACE CENTER, FLA. -- Two control towers are seen at the edge of the KSC Shuttle Landing Facility, the old one in front and the nearly completed new tower in back. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.

    NASA Image and Video Library

    2003-12-17

    KENNEDY SPACE CENTER, FLA. -- Two control towers are seen at the edge of the KSC Shuttle Landing Facility, the old one in front and the nearly completed new tower in back. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.

  4. KENNEDY SPACE CENTER, FLA. -- A new control tower is nearing completion at the KSC Shuttle Landing Facility. It will replace the old tower in use since 1987. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.

    NASA Image and Video Library

    2003-12-17

    KENNEDY SPACE CENTER, FLA. -- A new control tower is nearing completion at the KSC Shuttle Landing Facility. It will replace the old tower in use since 1987. The old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.

  5. KENNEDY SPACE CENTER, FLA. -- The existing control tower seen here at the edge of the KSC Shuttle Landing Facility is being replaced. In use since 1987, the old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.

    NASA Image and Video Library

    2003-12-17

    KENNEDY SPACE CENTER, FLA. -- The existing control tower seen here at the edge of the KSC Shuttle Landing Facility is being replaced. In use since 1987, the old tower stands only 20 feet above the runway surface, too low to see the launch pads to the east. During nighttime landing operations, those inside the tower have been hindered by the eight-billion candlepower xenon lights that illuminate the runway. The new control tower is built atop an existing mound, rising nearly 100 feet over the midpoint of the runway. The height gives controllers a spectacular 360-degree view of NASA-KSC and northern Brevard County. The new facility will also replace the SLF Operations Building. The operations building is home to the Military Radar Unit that monitors NASA-KSC airspace 24 hours a day, as well as runway light controls, navigational aids, weather and wind speed instrumentation, and gate controls. In the new tower, the computer displays will be fully modernized to Federal Aviation Administration standards with touch-screen technology. Construction on the new facility began in February 2003 and is nearly ready for occupancy. Only some final inspections and approvals remain. A support building and Public Affairs viewing deck, to be used for observing future landing operations, will be added and are already in work.

  6. 14 CFR 77.2 - Definition of terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... planning document or military service military airport planning document. Precision instrument runway means... military airport layout plan; any other FAA planning document, or military service military airport planning document. Utility runway means a runway that is constructed for and intended to be used by...

  7. Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Neitzke, Kurt W.

    2012-01-01

    A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.

  8. AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY

    NASA Technical Reports Server (NTRS)

    1975-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY KSC-375C-10036.32 108-KSC-375C-10036.32, P-21425, ARCHIVE-04501 Aerial oblique of Shuttle Landing Facility. Pouring concrete on runway. Direction North - Altitude 100'.

  9. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  10. Endeavour, Orbiter Vehicle (OV) 105, atop SCA NASA 911 at Ellington Field

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, is parked on an Ellington Field runway during a stopover on its way to the Kennedy Space Center (KSC). A ground crew member, at the top of a mobile stairway, prepares to open NASA 911's hatch to welcome the flight crew to Houston. Others on the runway look up at the massive aircraft carrying the newest addition to the Space Shuttle fleet. This view is a good profile of SCA/OV-105 and shows the orbiter/ aircraft attach points. The spacecraft and aircraft-tandem left Houston later on this day and headed for another stop in Mississippi before landing in Florida on 05-07-91. Ellington Field is near JSC.

  11. A digital beamforming processor for the joint DoD/NASA space based radar mission

    NASA Technical Reports Server (NTRS)

    Fischman, Mark A.; Le, Charles; Rosen, Paul A.

    2004-01-01

    The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.

  12. Probabilistic computer model of optimal runway turnoffs

    NASA Technical Reports Server (NTRS)

    Schoen, M. L.; Preston, O. W.; Summers, L. G.; Nelson, B. A.; Vanderlinden, L.; Mcreynolds, M. C.

    1985-01-01

    Landing delays are currently a problem at major air carrier airports and many forecasters agree that airport congestion will get worse by the end of the century. It is anticipated that some types of delays can be reduced by an efficient optimal runway exist system allowing increased approach volumes necessary at congested airports. A computerized Probabilistic Runway Turnoff Model which locates exits and defines path geometry for a selected maximum occupancy time appropriate for each TERPS aircraft category is defined. The model includes an algorithm for lateral ride comfort limits.

  13. AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY AND PARKING APRON

    NASA Technical Reports Server (NTRS)

    1974-01-01

    AERIAL OF SHUTTLE LANDING FACILITY [SLF] RUNWAY AND PARKING APRON KSC-374C-10236.23 108-KSC-374C-10236.23, P-15909, ARCHIVE-04476 Shuttle runway facility construction progress - oblique vertical, altitude 1,000 ft. Time 1100 - direction E - Shuttle Park area.

  14. Benefits Assessment for Single-Airport Tactical Runway Configuration Management Tool (TRCM)

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamonogkolkij, Nipa; Lohr, Gary W.

    2015-01-01

    The System-Oriented Runway Management (SORM) concept was developed as part of the Airspace Systems Program (ASP) Concepts and Technology Development (CTD) Project, and is composed of two basic capabilities: Runway Configuration Management (RCM), and Combined Arrival/Departure Runway Scheduling (CADRS). RCM is the process of designating active runways, monitoring the active runway configuration for suitability given existing factors, and predicting future configuration changes; CADRS is the process of distributing arrivals and departures across active runways based on local airport and National Airspace System (NAS) goals. The central component in the SORM concept is a tool for taking into account all the various factors and producing a recommendation for what would be the optimal runway configuration, runway use strategy, and aircraft sequence, considering as many of the relevant factors required in making this type of decision, and user preferences, if feasible. Three separate tools were initially envisioned for this research area, corresponding to the time scale in which they would operate: Strategic RCM (SRCM), with a planning horizon on the order of several hours, Tactical RCM (TRCM), with a planning horizon on the order of 90 minutes, and CADRS, with a planning horizon on the order of 15-30 minutes[1]. Algorithm development was initiated in all three of these areas, but the most fully developed to date is the TRCM algorithm. Earlier studies took a high-level approach to benefits, estimating aggregate benefits across most of the major airports in the National Airspace Systems (NAS), for both RCM and CADRS [2]. Other studies estimated the benefit of RCM and CADRS using various methods of re-sequencing arrivals to reduce delays3,4, or better balancing of arrival fixes5,6. Additional studies looked at different methods for performing the optimization involved in selecting the best Runway Configuration Plan (RCP) to use7-10. Most of these previous studies were high

  15. Use of Very Weak Radiation Sources to Determine Aircraft Runway Position

    NASA Technical Reports Server (NTRS)

    Drinkwater, Fred J., III; Kibort, Bernard R.

    1965-01-01

    Various methods of providing runway information in the cockpit during the take-off and landing roll have been proposed. The most reliable method has been to use runway distance markers when visible. Flight tests were used to evaluate the feasibility of using weak radio-active sources to trigger a runway distance counter in the cockpit. The results of these tests indicate that a weak radioactive source would provide a reliable signal by which this indicator could be operated.

  16. Runway safety : it's everybody's business

    DOT National Transportation Integrated Search

    2001-07-01

    This booklet tells pilots and controllers what they can do to help prevent runway incursions by helping them to avoid situations that reduce errors and alerting them to situations as extra vigilance is required. It also provides information on how co...

  17. An analysis of runway incursion "Hot Spots" incidents : with deidentified reports excerpts : volume 2

    DOT National Transportation Integrated Search

    2002-10-24

    The analysis set was limited to runway incursion incidents that occurred : between January 1, 2000 and June 30,2002. : The runway incursion incidents included incidents involving eitherhold : line transgressions or actual runway penetrations. : ...

  18. An analysis of runway incursion "Hot Spots" incidents : with deidentified reports excerpts : volume 1

    DOT National Transportation Integrated Search

    2002-10-24

    The analysis set was limited to runway incursion incidents that occurred : between January 1, 2000 and June 30,2002. : The runway incursion incidents included incidents involving eitherhold : line transgressions or actual runway penetrations. : ...

  19. NASA's Use of Human Behavior Models for Concept Development and Evaluation

    NASA Technical Reports Server (NTRS)

    Gore, Brian F.

    2012-01-01

    Overview of NASA's use of computational approaches and methods to support research goals, of human performance models, with a focus on examples of the methods used in Code TH and TI at NASA Ames, followed by an in depth review of MIDAS' current FAA work.

  20. NASA Conducts "Out of Sight" Drone Tests in Nevada

    NASA Image and Video Library

    2016-10-27

    Shareable video highlighting NASA's work with the Federal Aviation Administration (FAA) to develop an air traffic management platform for drones, called the Unmanned Aircraft Systems Traffic Management system or UTM.

  1. Science and Technology (S and T) Roadmap Collaboration between SMC, NASA, and Government Partners

    NASA Technical Reports Server (NTRS)

    Betser, Joseph; Ewart, Roberta; Chandler, Faith

    2016-01-01

    National Security Space (NSS) presents multi-faceted S and T challenges. We must continually innovate enterprise and information management; provide decision support; develop advanced materials; enhance sensor technology; transform communication technology; develop advanced propulsion and resilient space architectures and capabilities; and enhance multiple additional S and T domains. These challenges are best met by leveraging advanced S and T research and technology development from a number of DoD agencies and civil agencies such as NASA. The authors of this paper have engaged in these activities since 2006 and over the past decade developed multiple strategic S and T relationships. This paper highlights the Office of the Space Missile Systems Center (SMC) Chief Scientist (SMC/ST) collaboration with the NASA Office of Chief Technologist (NASA OCT), which has multiple S and T activities that are relevant to NSS. In particular we discuss the development of the Technology Roadmaps that benefit both Civil Space and NSS. Our collaboration with NASA OCT has been of mutual benefit to multiple participants. Some of the other DoD components include the Defense Advanced Research Projects agency (DARPA), Air Force Research Laboratory (AFRL), Naval Research Laboratory (NRL), The USAF Office of Chief Scientist, the USAF Science Advisory Board (SAB), Space and Naval Warfare Systems Command (SPAWAR), and a number of other services and agencies. In addition, the human talent is a key enabler of advanced S and T activities; it is absolutely critical to have a strong supply of talent in the fields of Science Technology, Engineering, and Mathematics (STEM). Consequently, we continually collaborate with the USAF Institute of Technology (AFIT), other service academies and graduate schools, and other universities and colleges. This paper highlights the benefits that result from such strategic S and T partnerships and recommends a way forward that will continually build upon these

  2. 32 CFR 842.12 - HQ USAF claims responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administrative Management Program (CAMP) reviews. (2) Implements claims and tort litigation policies, issues... LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.12 HQ USAF claims responsibility. (a...

  3. An Assessment of the USAFE School Board Test Program

    DTIC Science & Technology

    2002-07-01

    2000. USAFE Strategic Plan on Dependent Education, Headquarters, USAFE, October 1998. Vajont ES, http://www.vajo-es.eu.odedodea.edu/ Vogelweh ES...Pordenone ES K–6 109 2/2/0 Vajont ES K–6 157 2/2/0 Aviano AB 4 1,365 11/11/1 4/4/1 10/0 Incirlik ES K–6 475 3/3/0 Incirlik HS 7–12 217...Aviano) K–6 109 AF SB VAJONT ES (Aviano) K–6 157 AVIANO ES K–6 629 AVIANO HS 7–12 470 VICENZA ES K–6 480 A IAC VICENZA HS 7–12 251

  4. 14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...

  5. 14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...

  6. 14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...

  7. 14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...

  8. 14 CFR 151.13 - Federal-aid Airport Program: Policy affecting landing aid requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (ALS). (2) In-runway lighting. (3) High intensity runway lighting. (4) Runway distance markers. For the purposes of this section “approach lighting system (ALS)” is a standard configuration of aeronautical... ALS and ILS, has been programmed by the FAA with funds then available therefor; (b) An extension of 3...

  9. A Runway Surface Monitor using Internet of Things

    NASA Astrophysics Data System (ADS)

    Troiano, Amedeo; Pasero, Eros

    2014-05-01

    The monitoring of runway surfaces, for the detection of ice formation or presence of water, is an important issue for reducing maintenance costs and improving traffic safety. An innovative sensor was developed to detect the presence of ice or water on its surface, and its repeatability, stability and reliability were assessed in different simulations and experiments, performed both in laboratory and in the field. Three sensors were embedded in the runway of the Turin-Caselle airport, in the north-west of Italy, to check the state of its surface. Each sensor was connected to a GPRS modem to send the collected data to a common database. The entire system was installed about three years ago, and up to now it shows correct work and automatic reactivation after malfunctions without any external help. The state of the runway surface is virtual represented in an internet website, using the Internet of Things features and opening new scenarios.

  10. FAA Pilot Knowledge Tests: Learning or Rote Memorization?

    NASA Technical Reports Server (NTRS)

    Casner, Stephen M.; Jones, Karen M.; Puentes, Antonio; Irani, Homi

    2004-01-01

    The FAA pilot knowledge test is a multiple-choice assessment tool designed to measure the extent to which applicants for FAA pilot certificates and ratings have mastered a corpus of required aeronautical knowledge. All questions that appear on the test are drawn from a database of questions that is made available to the public. The FAA and others are concerned that releasing test questions may encourage students to focus their study on memorizing test questions. To investigate this concern, we created our own database of questions that differed from FAA questions in four different ways. Our first three question types were derived by modifying existing FAA questions: (1) rewording questions and answers; (2) shuffling answers; and (3) substituting different figures for problems that used figures. Our last question type posed a question about required knowledge for which no FAA question currently exists. Forty-eight student pilots completed one of two paper-and-pencil knowledge tests that contained a mix of these experimental questions. The results indicate significantly lower scores for some question types when compared to unaltered FAA questions to which participants had prior access.

  11. A model-based approach for detection of runways and other objects in image sequences acquired using an on-board camera

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang

    1994-01-01

    This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.

  12. Spot and Runway Departure Advisor

    NASA Technical Reports Server (NTRS)

    Jung, Yoon Chul

    2013-01-01

    The Spot and Runway Departure Advisor (SARDA) is a research prototype of a decision support tool for ATC tower controllers to assist in manging and controlling traffic on the surface of an airport. SARDA employs a scheduler to generate an optimal runway schedule and gate push-back - spot release sequence and schedule that improves efficiency of surface operations. The advisories for ATC tower controllers are displayed on an Electronic Flight Strip (EFS) system. The human-in-the-loop simulation of the SARDA tool was conducted for east operations of Dallas-Ft. Worth International Airport (DFW) to evaluate performance of the SARDA tool and human factors, such as situational awareness and workload. The results indicates noticeable taxi delay reduction and fuel savings by using the SARDA tool. Reduction in controller workload were also observed throughout the scenario runs. The future plan includes modeling and simulation of the ramp operations of the Charlotte International Airport, and develop a decision support tool for the ramp controllers.

  13. USAF/SCEEE Graduate Student Summer Support Program (1982). Management and Technical Report.

    DTIC Science & Technology

    1982-10-01

    AD-A130 767 USAF/SCEEE GRADUATE STUDENT SUMMER SUPPORT PROGRAM (1982) MANAGEMENT AND..(U) SOUTHEASTERN CENTER FORELECTRICAL ENGINEERING EDUCATION INC...SUMMER SUPPORT PROGRAM Conducted by Southeastern Center for Electrical Engineering Education under USAF Contract Number F49620-82-C-0035 MANAGEMENT ...UNITED STATES AIR FORCE GRADUATE STUDENT SL24MER SUPPORT PROGRAM 1982 PROGRAM MANAGEMENT AND TECHNICAL REPORT SOUTHEASTERN CENTER FOR ELECTRICAL

  14. Initial Concept for Terminal Area Conflict Detection, Alerting, and Resolution Capability on or Near the Airport Surface

    NASA Technical Reports Server (NTRS)

    Green, David F.; Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.

    2009-01-01

    The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. In this report, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS). CAAT research is conducted jointly under NASA's Airspace Systems Program, Airportal Project and the Aviation Safety Program, Integrated Intelligent Flight Deck Project.

  15. USAF/SCEEE Graduate Student Summer Research Program (1984). Program Management Report. Volume 1.

    DTIC Science & Technology

    1984-10-01

    AFRL -TN-87, Air Force . Weapons Laboratory , Kirtland Air Foce...Mexico Research Location: Air Force Weapons Laboratory , NTATT, Kirtland Air Force Base, Albuquerque, NM 87117 .. USAF Research Contact: Dr. Carl E. Baum...Albuquerque, NM 87131 ... Research Location: Air Force Weapons Laboratory Kirtland Air Force Base Albuquerque, New Mexico 87117 USAF

  16. NASA's Participation in Joint SatOPS Compatibility Efforts 2009-2010

    NASA Technical Reports Server (NTRS)

    Smith, Danford

    2010-01-01

    Many U.S. government organizations build or fly space systems: a) NASA, NOAA, Navy, Air Force, NRO, ORS. Others? b) Through the Joint SatOps Compatibility Committee (JSCC) we have increased the grass-roots interaction between many of these organizations. c) We all deal with many of the same challenges: More rapid deployments, lower budgets; Advancing technologies - frameworks, clouds, virtualization; Evolving concepts - automation, situational awareness, enterprise mngt. Standardization - formal or by common use. There is an inherently governmental role in creating the business case for contractors and commercial product vendors to move in directions beneficial to multiple government space organizations.

  17. NASA's UAS [Unmanned Aircraft Systems] Related Activities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey

    2012-01-01

    NASA continues to operate all sizes of UAS in all classes of airspace both domestically and internationally. Missions range from highly complex operations in coordination with piloted aircraft, ground, and space systems in support of science objectives to single aircraft operations in support of aeronautics research. One such example is a scaled commercial transport aircraft being used to study recovery techniques due to large upsets. NASA's efforts to support routine UAS operations continued on several fronts last year. At the national level in the United States (U.S.), NASA continued its support of the UAS Executive Committee (ExCom) comprised of the Federal Aviation Administration (FAA), Department of Defense (DoD), Department of Homeland Security (DHS), and NASA. The committee was formed in recognition of the need of UAS operated by these agencies to access to the National Airspace System (NAS) to support operational, training, development and research requirements. Recommendations were received on how to operate both manned and unmanned aircraft in class D airspace and plans are being developed to validate and implement those recommendations. In addition the UAS ExCom has begun developing recommendations for how to achieve routine operations in remote areas as well as for small UAS operations in class G airspace. As well as supporting the UAS ExCom, NASA is a participant in the recently formed Aviation Rule Making Committee for UAS. This committee, established by the FAA, is intended to propose regulatory guidance which would enable routine civil UAS operations. As that effort matures NASA stands ready to supply the necessary technical expertise to help that committee achieve its objectives. By supporting both the UAS ExCom and UAS ARC, NASA is positioned to provide its technical expertise across the full spectrum of UAS airspace access related topic areas. The UAS NAS Access Project got underway this past year under the leadership of NASA s Aeronautics

  18. Air Traffic Control Experimentation and Evaluation with the NASA ATS-6 Satellite : Volume 7. Aircraft Antenna Evaluation Test

    DOT National Transportation Integrated Search

    1976-09-01

    Aircraft L-band antennas designed for satellite communication were evaluated using an FAA KC-135 aircraft and the NASA ATS-6 satellite. All tests were performed between September 1974 and April 1975 as one component of the U.S. DOT/FAA aeronautical t...

  19. NASA Ames ATM Research

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.

    2000-01-01

    The NASA Ames research Center, in cooperation with the FAA and the industry, has a series of major research efforts underway that are aimed at : 1) improving the flow of traffic in the national airspace system; and 2) helping to define the future air traffic management system. The purpose of this presentation will be to provide a brief summary of some of these activities.

  20. Evaluation of the effects of one year's operation of the dynamic preferential runway system. [human reactions to overflight air traffic pattern

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1974-01-01

    The FAA introduced an experimental aircraft operations program at JFK Airport called the Dynamic Preferential Runway System (DPRS) in the summer of 1971. The program is designed to distribute air traffic as equally as possible over the surrounding communities, to limit periods of continuous overflight and to vary the same hours of overflight from day to day. After a full year's operation, an evaluation was made of the system's effectiveness. All of the operation's goals were moderately achieved with the greatest relief in reduced overflight afforded the most heavily impacted areas. Few residents, however, were aware of DPRS or felt that it had greatly reduced annoyance or represented a major effort by the aircraft authorities. Statistical analyses of reported annoyance obtained from two independent surveys in 1969 and 1972 reveal limited reductions in annoyance in 1972, with shifts from reported high annoyance to moderate annoyance.

  1. Runway image shape as a cue for judgment of approach angle.

    DOT National Transportation Integrated Search

    1979-11-01

    One cue for visual judgment of glidepath angle has been referred to as form ratio. Form ratio is defined as the ratio of vertical height of the runway to width of the far end in the runway retinal image. The ability of pilots to judge form ratios was...

  2. Shuttle Challenger landing on Runway 17 at Edwards at end of 51-B mission

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Shuttle Challenger lands on Runway 17 at Edwards at end of 51-B mission. The photo is a rear view of the shuttle landing gear touching the runway, with clouds of dirt trailing behind it. The nose gear is still in the air (071); Side view of the Challenger landing gear touching the runway (072).

  3. 78 FR 57674 - Order Limiting Operations at Newark Liberty International Airport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... season. This waiver applies only to EWR slots for the following days and local times: (1) March 30... runway 4L/22R. Runway 4L/22R will be open during that period with reduced runway length. Night and... five or more consecutive days. However, the FAA does not routinely grant general waivers to the usage...

  4. Flight tests of IFR landing approach systems for helicopters

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  5. Effects of various runway lighting parameters upon the relation between runway visual range and visual range of centerline and edge lights in fog

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.

  6. Exploration of the Theoretical Physical Capacity of the John F. Kennedy International Airport Runway System

    NASA Technical Reports Server (NTRS)

    Neitzke, Kurt W.; Guerreiro, Nelson M.

    2014-01-01

    A design study was completed to explore the theoretical physical capacity (TPC) of the John F. Kennedy International Airport (KJFK) runway system for a northflow configuration assuming impedance-free (to throughput) air traffic control functionality. Individual runways were modeled using an agent-based, airspace simulation tool, the Airspace Concept Evaluation System (ACES), with all runways conducting both departures and arrivals on a first-come first-served (FCFS) scheduling basis. A realistic future flight schedule was expanded to 3.5 times the traffic level of a selected baseline day, September 26, 2006, to provide a steady overdemand state for KJFK runways. Rules constraining departure and arrival operations were defined to reflect physical limits beyond which safe operations could no longer be assumed. Safety buffers to account for all sources of operational variability were not included in the TPC estimate. Visual approaches were assumed for all arrivals to minimize inter-arrival spacing. Parallel runway operations were assumed to be independent based on lateral spacing distances. Resulting time intervals between successive airport operations were primarily constrained by same-runway and then by intersecting-runway spacing requirements. The resulting physical runway capacity approximates a theoretical limit that cannot be exceeded without modifying runway interaction assumptions. Comparison with current KJFK operational limits for a north-flow runway configuration indicates a substantial throughput gap of approximately 48%. This gap may be further analyzed to determine which part may be feasibly bridged through the deployment of advanced systems and procedures, and which part cannot, because it is either impossible or not cost-effective to control. Advanced systems for bridging the throughput gap may be conceptualized and simulated using this same experimental setup to estimate the level of gap closure achieved.

  7. The USAF Academy Honor System.

    DTIC Science & Technology

    1988-04-01

    Dec 1986, p. H- 8 . 3. Hosmer, Clark, Colonel (Retired), USAF. Personal Interview, 29 September 1987. 4 . Maus, Steven A. Cadet Wing Honor Education...the basic procedures of the Honor System. A. Strongly Agree 8 % B. Agree 53% C. Neutral 21% D. Disagree 14% E. Strongly Disagree 4 % 28. It is possible...DISTRIBUTION/AVAILABILITY OF REPORT STATEMENT "A" 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; Distribution is unlimited. 4

  8. Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Collins, J. G.; Swift, R. N.; Butler, M. L.

    1980-01-01

    Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain).

  9. NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane

    NASA Image and Video Library

    2016-11-29

    NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.

  10. FAA Directives System

    DOT National Transportation Integrated Search

    1992-08-26

    Consistent with the Federal Aviation Administration's mission to foster a safe, : secure, and efficient aviation system is the need for an effective and efficient : process for communitcating policy and procedures. The FAA Directives System : provide...

  11. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  12. Acoustic Evaluation and Recommended Controls for Runway Supervisory Units, Laughlin AFB, Texas.

    DTIC Science & Technology

    1980-02-01

    NR ), given in Table 2 and shown in Figures 8 through 12 , are the arithmetic differences between exterior and interior noise levels. No difference...ORG. REPORT MUM4MR , ,IT]VPARINACCI, Capt, USAF- BSC Consultant, Acoustics Evaluation Engr CAROLYN M. JONES, 2LT USAF, BSC Consultant, Industria ...Documents.,") Block 12 . Report Date. Enter here the day, month, and year or month and year as shown on the cover, Block 13. Number of Pages. Enter

  13. Budget Treatment Issues for FAA Funding Options

    DOT National Transportation Integrated Search

    1997-01-01

    Revenues from aviation excise taxes currently fund the majority of the programs : of the Federal Aviation Administration (FAA). The FAA also receives a portion : of its budget from the general tax revenue of the federal government. One goal : of the ...

  14. 32 CFR 256.6 - Runway classification by aircraft type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Runway classification by aircraft type. 256.6... type. Class A runways S-2, VC-6, C-1, C-2, TC-4C, U-10, U-11, LU-16, TU-16, HU-16, C-7, C-8, C-12, C-47...-130, A-7, A-38, AV-8, P-2, P-3, T-29, T-33, T-37, T-39, T-1, HC-130B, C-131, C-140, C-5A, KC-97, F-9...

  15. 32 CFR 256.6 - Runway classification by aircraft type.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Runway classification by aircraft type. 256.6... type. Class A runways S-2, VC-6, C-1, C-2, TC-4C, U-10, U-11, LU-16, TU-16, HU-16, C-7, C-8, C-12, C-47...-130, A-7, A-38, AV-8, P-2, P-3, T-29, T-33, T-37, T-39, T-1, HC-130B, C-131, C-140, C-5A, KC-97, F-9...

  16. Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  17. Space Shuttle Atlantis landing at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, Ca

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis landed at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  18. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing to Include Parallel Runway Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2011-01-01

    This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations

  19. NASA's Role in Aeronautics: A Workshop. Volume 7: Background papers

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The nature and implications of the current state of U.S. aviation in a world setting are examined as well as their significance for NASA's role in the nation's aeronautical future. The outlook for the 1980's is examined from the point of view of legislation, economics and finance; petroleum; manpower, metallic materials, general aviation; military aviation; transport aircraft developments; and helicopters. Possible NASA assistance to DOD and the FAA is examined and the evolution of NACA and NASA in aeronautics and of NASA's aeronautics capabilities are described.

  20. Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation

    NASA Technical Reports Server (NTRS)

    Mckissick,Burnell T.; Rico-Cusi, Fernando J.; Murdoch, Jennifer; Oseguera-Lohr, Rosa M.; Stough, Harry P, III; O'Connor, Cornelius J.; Syed, Hazari I.

    2009-01-01

    A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions.

  1. NASA USRP Internship Final Report

    NASA Technical Reports Server (NTRS)

    Black, Jesse A.

    2010-01-01

    The purpose of this report is to describe the body of work I have produced as a NASA USRP intern in the spring 2010. My mentor during this time was Richard Birr and I assisted him with many tasks in the advanced systems group in the engineering design lab at NASA's Kennedy space center. The main priority was and scenario modeling for the FAA's next generation air traffic control system and also developing next generation range systems for implementation at Kennedy space center. Also of importance was the development of wiring diagrams for the portable communications terminal for the desert rats program.

  2. FAA Financial Requirements

    DOT National Transportation Integrated Search

    1997-06-04

    In June 1995, the FAA developed a "total requirements" estimate for the period : FY 97-FY 02 to help explain the difficulty of supporting a dynamic, growing : aviation industry under a federal budget picture which projected flat or reduced : funding ...

  3. 14 CFR 47.19 - FAA Aircraft Registry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 47.19 Section 47.19 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRCRAFT REGISTRATION General § 47.19 FAA Aircraft Registry. Each application, request, notification, or other...

  4. Historic First Landing of NASA's P-3B in Antarctica

    NASA Image and Video Library

    2014-01-03

    NASA's first ever historic P-3B landing in McMurdo Station, Antarctica on the sea ice runway, which occurred on Nov. 16, 2013. It took the craft 5 days to reach Antarctica from the NASA Wallops Flight Facility in Wallops Island, Virginia. You can see the IceBridge Team waiting to greet the flight crew as they taxied for the very first time right up to the IceBridge team tents. Credit: NASA/Justin Miller/Indiana University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Optimum runway orientation relative to crosswinds

    NASA Technical Reports Server (NTRS)

    Falls, L. W.; Brown, S. C.

    1972-01-01

    Specific magnitudes of crosswinds may exist that could be constraints to the success of an aircraft mission such as the landing of the proposed space shuttle. A method is required to determine the orientation or azimuth of the proposed runway which will minimize the probability of certain critical crosswinds. Two procedures for obtaining the optimum runway orientation relative to minimizing a specified crosswind speed are described and illustrated with examples. The empirical procedure requires only hand calculations on an ordinary wind rose. The theoretical method utilizes wind statistics computed after the bivariate normal elliptical distribution is applied to a data sample of component winds. This method requires only the assumption that the wind components are bivariate normally distributed. This assumption seems to be reasonable. Studies are currently in progress for testing wind components for bivariate normality for various stations. The close agreement between the theoretical and empirical results for the example chosen substantiates the bivariate normal assumption.

  6. An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing

    NASA Technical Reports Server (NTRS)

    Houston, Vincent E.; Barmore, Bryan

    2009-01-01

    The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.

  7. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  8. High Energy Laser on the Joint Strike Fighter: A Reality in 2025?

    DTIC Science & Technology

    2007-02-26

    10 October 2006. 19. Siegman , A.E., Nemes, G., Serna, J. “How to (Maybe) Measure Laser Beam Quality,” in DPSS (Diode Pumped Solid State) Lasers ...AIR WAR COLLEGE AIR UNIVERSITY HIGH ENERGY LASER ON THE JOINT STRIKE FIGHTER A REALITY IN 2025? by Jeffrey A. Hausmann, Lt Col, USAF A...00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE High Energy Laser on the Joint Strike Fighter a Reality in 2025? 5a. CONTRACT NUMBER 5b. GRANT

  9. Action-specific effects in aviation: what determines judged runway size?

    PubMed

    Gray, Rob; Navia, José Antonio; Allsop, Jonathan

    2014-01-01

    Several recent studies have shown that the performance of a skill that involves acting on a goal object can influence one's judgment of the size of that object. The present study investigated this effect in an aviation context. Novice pilots were asked to perform a series of visual approach and landing manoeuvres in a flight simulator. After each landing, participants next performed a task in which runway size was judged for different simulated altitudes. Gaze behaviour and control stick kinematics were also analyzed. There were significant relationships between judged runway size and multiple action-related variables including touchdown velocity, time fixating the runway, and the magnitude and frequency of control inputs. These findings suggest that relationship between the perception of a target object and action is not solely determined by performance success or failure but rather involves a relationship between multiple variables that reflect the actor's ability.

  10. Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 1

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar (Editor)

    1992-01-01

    More than 110 papers were presented at this Symposium, sponsored by the U.S. Air Force Phillips Laboratory, the University of Houston-Clear Lake, and NASA JSC. The technical areas covered were Intelligent Systems, Automation and Robotics, Human Factors and Life Sciences, and Environmental Interactions. The U.S. Air Force and NASA programmatic overviews and panel discussions were also held in each technical area. These proceedings, along with the comments and suggestions made by the panelists and keynote speakers, will be used in assessing the progress made in joint USAF/NASA projects and activities. Furthermore, future collaborative/joint programs will also be identified. The symposium proceedings includes papers covering various disciplines presented by experts from NASA, the Air Force, universities, and industry.

  11. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  12. Braking, steering, and wear performance of radial-belted and bias-ply aircraft tires

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Davis, Pamela A.; Stubbs, Sandy M.; Martinson, Veloria J.

    1992-01-01

    Preliminary steering, braking, and tread wear performance results from testing of radial-belted and bias-ply aircraft tires at NASA Langley are described. An overview of the joint NASA/FAA/industry START program is presented. Attention is given to the Langley Test Facility, equipment and future activities.

  13. Project CHECO Southeast Asia Report. Forward Airfields for Tactical Airlift in SEA

    DTIC Science & Technology

    1970-06-15

    publications, this is an authen- tic s-sment of the effectiveness of USAF airpower in PACOM. ef /o a , Major General, USAF I/ m i ii l UNCLASSIFIED...Australian Air Force (RAAF) crews were airborne 35,569 times in 1969, with cargo that ranged from troops to chickens, cement , rice, ammunition, cattle...Runway surfaces--clay, laterite , limestone, light steel matting (M8Al), or sod, depending on the aircraft involved-- were expected to sustain 700 traffic

  14. FAA computer security : recommendations to address continuing weaknesses

    DOT National Transportation Integrated Search

    2000-12-01

    In September, testimony before the Committee on Science, House of Representatives, focused on the Federal Aviation Administration's (FAA) computer security program. In brief, we reported that FAA's agency-wide computer security program has serious, p...

  15. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  16. 78 FR 51809 - Seventeenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  17. 78 FR 8684 - Fifteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint with EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  18. 78 FR 25134 - Sixteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  19. 78 FR 66418 - Eighteenth Meeting: RTCA Special Committee 217-Aeronautical Databases Joint With EUROCAE WG-44...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... Committee 217--Aeronautical Databases Joint With EUROCAE WG-44--Aeronautical Databases AGENCY: Federal... Committee 217--Aeronautical Databases Joint with EUROCAE WG-44--Aeronautical Databases. SUMMARY: The FAA is... Databases being held jointly with EUROCAE WG-44--Aeronautical Databases. DATES: The meeting will be held...

  20. FAA Helicopter/Heliport Research, Engineering, and Development Bibiliography, 1964-1986.

    DTIC Science & Technology

    1986-11-01

    Systems Control Technology) FAA/RD-82/16 FAA/PM-85/8 BURNHAM, DAVID C. (Transportation System Center) FAA-RD-78-143 21 CHAMBEKS, HAiR (Y W. (FAA Tecnnical...prediction methods for drive engines, gearboxes, jets with and without bypass flow, as well as noise reduction and performance losses for partly sonic inlets...engines, single stream and coaxial Jets, and gearboxes are also included, as well as noise reduction and performance loss *s of partly sonic inlet& and

  1. NASA and X PRIZE Announce Winners of Lunar Lander Challenge

    NASA Image and Video Library

    2009-11-05

    NASA and the X PRIZE Foundation announced the winners of the Northrop Grumman Lunar Lander Challenge at an awards ceremony at the Rayburn House Office Building, Thursday, Nov. 5, 2009 in Washington, DC. From left to right, George Nield, Associate Administrator of Commercial Space Transportation, FAA; Charles Bolden, NASA Administrator; Doug Comstock, Director, Innovative Partnerships Program, NASA; David Masten, CEO, Masten Space Systems; Phil Eaton, VP, Operations, Armadillo Aerospace; U.S. Rep. Ralph Hall (R-TX); Peter Diamandis, Chairman and CEO, X PRIZE Foundation and Mitch Waldman, VP, Advanced Programs & Technology, Northrop Grumman. Photo Credit: (NASA/Carla Cioffi)

  2. Wake vortex effects on parallel runway operations

    DOT National Transportation Integrated Search

    2003-01-06

    Aircraft wake vortex behavior in ground effect between two parallel runways at Frankfurt/Main International Airport was studied. The distance and time of vortex demise were examined as a function of crosswind, aircraft type, and a measure of atmosphe...

  3. Non-airborne conflicts: The causes and effects of runway transgressions

    NASA Technical Reports Server (NTRS)

    Tarrel, Richard J.

    1985-01-01

    The 1210 ASRS runway transgression reports are studied and expanded to yield descriptive statistics. Additionally, a one of three subset was studied in detail for purposes of evaluating the causes, risks, and consequences behind trangression events. Occurrences are subdivided by enabling factor and flight phase designations. It is concluded that a larger risk of collision is associated with controller enabled departure transgressions over all other categories. The influence of this type is especially evident during the period following the air traffic controllers' strike of 1981. Causal analysis indicates that, coincidentally, controller enabled departure transgressions also, show the strongest correlations between causal factors. It shows that departure errors occur more often when visibility is reduced, and when multiple takeoff runways or intersection takeoffs are employed. In general, runway transgressions attributable to both pilot and controller errors arise from three problem areas: information transfer, awareness, and spatial judgement. Enhanced awareness by controllers will probably reduce controller enabled incidents.

  4. Studies of Contaminated Runways,

    DTIC Science & Technology

    1980-01-01

    slide friction we refer to the friction which is produced due to the relative motion between a rubber tyre and a hard runway. tThis type of friction is... rubber planing" and a tyre exposed to such a process shows damages in form of a local sticky surface or a locally worn-off layer. The steam, which...macrostructure causes when dry together with a rubber tyre brake numbers Prom 0.7 to 1.1 depending on the rubber mixture and inflation pressure. On this type of

  5. Systems engineering in a joint program environment: the joint helmet-mounted cueing system

    NASA Astrophysics Data System (ADS)

    Wilkins, Donald F.

    1999-07-01

    The Joint Helmet Mounted Cueing System (JHMCS) is a design program involving two airframe companies (Boeing and Lockheed Martin), two services (USAF and USN) and four aircraft platforms: the F-22, the F-16, the F/A-18 and the F-15. Developing equipment requirements for the combined operational and environmental needs of these diverse communities is a significant challenge. In addition, the team is geographically dispersed which presented challenges in communication and coordination. This paper details the lessons learned in producing a cost-effective design within a short development schedule and makes recommendations for future development programs.

  6. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  7. 14 CFR 39.5 - When does FAA issue airworthiness directives?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false When does FAA issue airworthiness directives? 39.5 Section 39.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES § 39.5 When does FAA issue airworthiness directives? FAA issues...

  8. 14 CFR 39.5 - When does FAA issue airworthiness directives?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false When does FAA issue airworthiness directives? 39.5 Section 39.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES § 39.5 When does FAA issue airworthiness directives? FAA issues...

  9. 14 CFR 39.5 - When does FAA issue airworthiness directives?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false When does FAA issue airworthiness directives? 39.5 Section 39.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES § 39.5 When does FAA issue airworthiness directives? FAA issues...

  10. 14 CFR 39.5 - When does FAA issue airworthiness directives?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false When does FAA issue airworthiness directives? 39.5 Section 39.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES § 39.5 When does FAA issue airworthiness directives? FAA issues...

  11. 14 CFR 39.5 - When does FAA issue airworthiness directives?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false When does FAA issue airworthiness directives? 39.5 Section 39.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS DIRECTIVES § 39.5 When does FAA issue airworthiness directives? FAA issues...

  12. Potential Cost Savings Ideas for FAA and Users

    DOT National Transportation Integrated Search

    1997-06-04

    The intent of this paper is to catalogue potential cost-savings ideas which : impact both the FAA and the aviation community. These ideas have come from : various sources including MITRE, Coopers & Lybrand (C&L), FAA studies, General : Accounting Off...

  13. FAA statistical handbook of aviation, calendar year 1988

    DOT National Transportation Integrated Search

    1988-08-15

    The FAA Statistical Handbook of Aviation is published annually by the Federal Aviation Administration (FAA). The handbook is provided here in MS Excel. format as downloadable files and as text tables that can be viewed in PDF format. The prime purpos...

  14. Upgraded FAA Airfield Capacity Model. Volume 2. Technical Description of Revisions

    DTIC Science & Technology

    1981-02-01

    the threshold t k a the time at which departure k is released FIGURE 3-1 TIME AXIS DIAGRAM OF SINGLE RUNWAY OPERATIONS 3-2 J"- SIGMAR the standard...standard deviation of the interarrival time. SIGMAR - the standard deviation of the arrival runway occupancy time. A-5 SINGLE - program subroutine for

  15. STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down at a speed of approximately 205 knots (235 miles per hour) on concrete runway 22 at Edwards Air Force Base (AFB), California. Nose landing gear (NLG) is deployed and rides above runway surface prior touchdown. Mojave desert scrub brush appears in the foreground with mountain range appearing in the background.

  16. Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development

    NASA Technical Reports Server (NTRS)

    Trani, A. A.; Hobeika, A. G.; Kim, B. J.; Nunna, V.; Zhong, C.

    1992-01-01

    The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user.

  17. Determination of optimal trajectories for an aircraft returning to the runway following a complete loss of thrust after takeoff

    NASA Astrophysics Data System (ADS)

    Gordon, Craig A.

    This thesis examines the ability of a small, single-engine airplane to return to the runway following an engine failure shortly after takeoff. Two sets of trajectories are examined. One set of trajectories has the airplane fly a straight climb on the runway heading until engine failure. The other set of trajectories has the airplane perform a 90° turn at an altitude of 500 feet and continue until engine failure. Various combinations of wind speed, wind direction, and engine failure times are examined. The runway length required to complete the entire flight from the beginning of the takeoff roll to wheels stop following the return to the runway after engine failure is calculated for each case. The optimal trajectories following engine failure consist of three distinct segments: a turn back toward the runway using a large bank angle and angle of attack; a straight glide; and a reversal turn to align the airplane with the runway. The 90° turn results in much shorter required runway lengths at lower headwind speeds. At higher headwind speeds, both sets of trajectories are limited by the length of runway required for the landing rollout, but the straight climb cases generally require a lower angle of attack to complete the flight. The glide back to the runway is performed at an airspeed below the best glide speed of the airplane due to the need to conserve potential energy after the completion of the turn back toward the runway. The results are highly dependent on the rate of climb of the airplane during powered flight. The results of this study can aid the pilot in determining whether or not a return to the runway could be performed in the event of an engine failure given the specific wind conditions and runway length at the time of takeoff. The results can also guide the pilot in determining the takeoff profile that would offer the greatest advantage in returning to the runway.

  18. FAA Vertical Flight Bibliography, 1962 - 1994

    DTIC Science & Technology

    1994-08-01

    high altitude conditions. A UH-1H aircraft will be used. This project is similar to the work documented in FAA/CT-TN87/40 "Heliport Approach and... work . TITLE: TEST PLAN FOR HELICOPTER VISUAL SEGMENT APPROACH LIGHTING SYSTEM (HALS) REPORT #: FAA/CT-TN88/19 NTIS: N/ A DATE: November 1988 AUTHORS...Hiering, Robert H. Ahlers) (NTIS: N/ A ) RD-64-4 State-of-the-Art Survey for Minimum Approach , Landing and Takeoff Intervals as Dictated by Wakes

  19. Overview of Research Transition Products

    NASA Technical Reports Server (NTRS)

    Robinson, John

    2014-01-01

    Demonstrate increased, more consistent use of Performance- Based Navigation (PBN). Accelerate transfer of NASA scheduling and spacing technologies for inclusion in late mid-term NAS. During high-fidelity human-in-the-loop simulations of Terminal Sequencing and Spacing, air traffic controllers have significantly improved their use of PBN procedures during busy traffic periods without increased workload. Executed an aggressive, short timeframe development schedule. Developed TSS prototype based upon FAA operational systems. Conducted multiple joint FAA/NASA human-in-the-loop simulations. Performed repeated incremental deliveries of tech transfer material to non-traditional RTT stakeholders. Will continue to participate in later phases of FAA acquisition process. ATD-1 transferred Terminal Sequencing and Spacing (TSS) technologies to the FAA. TSS enables routine use of underutilized advanced avionics and PBN procedures. Potential benefits to airlines operating at initial TSS sites estimated to be $300-400M/year. FAA is planning for an initial capability in the NAS in 2018.

  20. X-48C Flies Over Intersecting Runways

    NASA Image and Video Library

    2013-02-28

    The X-48C Hybrid Wing Body research aircraft flew over the intersection of several runways adjacent to the compass rose on Rogers Dry Lake at Edwards Air Force Base during one of the sub-scale aircraft's final test flights on Feb. 28, 2013.

  1. Advisory Circular checklist and status of other FAA publications

    DOT National Transportation Integrated Search

    1997-08-15

    This 1997 circular transmits the revised checklist of the Federal Aviation : Administration's (FAA) Advisory Circulars (AC's). It also lists certain other : FAA publications sold by the Superintendent of Documents.

  2. Benefits Assessment for Tactical Runway Configuration Management Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.

    2013-01-01

    The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.

  3. Large Unmanned Aircraft System Operations in the National Airspace System - the NASA 2007 Western States Fire Missions

    NASA Technical Reports Server (NTRS)

    Buoni, Gregory P.; Howell, Kathleen M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) Ikhana (ee-kah-nah) project executed the 2007 Western States Fire Missions over several of the western United States using an MQ-9 unmanned aircraft system (UAS) in partnership with the NASA Ames Research Center, the United States Forest Service, and the National Interagency Fire Center. The missions were intended to supply infrared imagery of wildfires to firefighters on the ground within 10 minutes of data acquisition. For each of the eight missions, the NASA DFRC notified the Federal Aviation Administration (FAA) of specific flight plans within three or fewer days of the flight. The FAA Certificate of Waiver or Authorization (commonly referred to as a COA ) process was used to obtain access to the United States National Airspace System. Significant time and resources were necessary to develop the COA application, perform mission planning, and define and approve emergency landing sites. Unique aspects of flying unmanned aircraft created challenges to mission operations. Close coordination with FAA headquarters and air traffic control resulted in safe and successful missions that assisted firefighters by providing near-real-time imagery of selected wildfires.

  4. USAF Bioenvironmental Noise Data Handbook. Volume 156. HH-1N In-flight Crew Noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-11-01

    The HH-IN is a USAF multi-purpose utility helicopter providing support for various USAF missions. This report provides measured data defining the bioacoustic environments at flight crew locations inside this helicopter during normal flight operations. Data are reported for two locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  5. 77 FR 47492 - Thirteenth Meeting: RTCA Special Committee 217, Terrain and Airport Mapping Databases, Joint With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... Committee 217, Terrain and Airport Mapping Databases, Joint With EUROCAE WG-44 AGENCY: Federal Aviation... 217, Terrain and Airport Mapping Databases, Joint with EUROCAE WG-44. SUMMARY: The FAA is issuing this... Mapping Databases, Joint with EUROCAE WG-44. DATES: The meeting will be held September 10-14, 2012, from 9...

  6. Review of NASA antiskid braking research

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1982-01-01

    NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flights tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.

  7. DC-8 Airborne Laboratory arrival at NASA Dryden

    NASA Image and Video Library

    1997-12-29

    NASA's DC-8 Airborne Science platform landed at Edwards Air Force Base, California, to join the fleet of aircraft at NASA's Dryden Flight Research Center. The white aircraft with a blue stripe running horizontally from the nose to the tail is shown with its main landing gear just above the runway. The former airliner is a "dash-72" model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces.

  8. Global positioning system for general aviation: Joint FAA-NASA Seminar. [conferences

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Programs to examine and develop means to utilize the global positioning system (GPS) for civil aviation functions are described. User requirements in this regard are discussed, the development of technologies in the areas of antennas, receivers, and signal processors for the GPS are examined, and modifications to the GPS to fit operational and design criteria are evaluated.

  9. Atmospheric Turbulence Effects on Near-Ground Wake Vortex Demise

    DOT National Transportation Integrated Search

    2008-01-20

    The Federal Aviation Administration (FAA) and National Aeronautics and Space Administration (NASA) have been working jointly on a phased approach to implement wake avoidance solutions designed to safely reduce wake turbulence separation standards in ...

  10. Lessons Learned During TBCC Design for the NASA-AFRL Joint System Study

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.; Espinosa, A. M.

    2013-01-01

    NASA and the Air Force Research Laboratory are involved in a Joint System Study (JSS) on Two-Stage-to-Orbit (TSTO) vehicles. The JSS will examine the performance, operability and analysis uncertainty of unmanned, fully reusable, TSTO launch vehicle concepts. NASA is providing a vehicle concept using turbine-based combined cycle (TBCC) propulsion on the booster stage and an all-rocket orbiter. The variation in vehicle and mission requirements for different potential customers, combined with analysis uncertainties, make it problematic to define optimum vehicle types or concepts, but the study is being used by NASA for tool assessment and development, and to identify technology gaps. Preliminary analyses were performed on the entire TBCC booster concept; then higher-fidelity analyses were performed for particular areas to verify results or reduce analysis uncertainties. Preliminary TBCC system analyses indicated that there would be sufficient thrust margin over its mission portion. The higher fidelity analyses, which included inlet and nozzle performance corrections for significant area mismatches between TBCC propulsion requirements versus the vehicle design, resulted in significant performance penalties from the preliminary results. TBCC system design and vehicle operation assumptions were reviewed to identify items to mitigate these performance penalties. The most promising items were then applied and analyses rerun to update performance predictions. A study overview is given to orient the reader, quickly focusing upon the NASA TBCC booster and low speed propulsion system. Details for the TBCC concept and the analyses performed are described. Finally, a summary of "Lessons Learned" are discussed with suggestions to improve future study efforts.

  11. Group 13 1990 ASCAN Ochoa talks to NASA staff pilot during T-38A training

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Astronaut candidate (ASCAN) Ellen Ochoa reviews T-38A flight procedures with a NASA staff pilot while standing on an Ellington Field runway. Later, Ochoa, along with classmates from the Group 13 1990 Astronaut class, took a T-38A familiarization flight. Ellington Field is located near JSC.

  12. Implementation of the FAA research and development electromagnetic database

    NASA Technical Reports Server (NTRS)

    Mcdowall, R. L.; Grush, D. J.; Cook, D. M.; Glynn, M. S.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has been assisting the FAA in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and ground-based lightning research projects. An outline of the data currently available in FRED is presented. The data sources which the FAA intends to incorporate into FRED are listed. In addition, it describes how the researchers may access and use the FRED menu system.

  13. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  14. Anthropometric accommodation in USAF cockpits

    NASA Technical Reports Server (NTRS)

    Zehner, Gregory F.

    1994-01-01

    Over the past three years, a new set of methodologies has been developed to specify and evaluate anthropometric accommodation in USAF crewstation designs. These techniques are used to improve the ability of the pilot to reach controls, to safely escape the aircraft, to achieve adequate mobility and comfort, and to assure full access to the visual field both inside and outside the aircraft. This paper summarized commonly encountered aircraft accommodation problems, explains the failure of the traditional 'percentile man' design concept to resolve these difficulties, and suggests an alternative approach for improving cockpit design to better accommodate today's more heterogeneous flying population.

  15. STS-30 crew poses with NASA administrators in front of OV-104 on EAFB runway

    NASA Image and Video Library

    1989-05-08

    STS030-S-130 (8 May 1989) --- Astronaut crew members who manned the Space Shuttle Atlantis for just over four days pose with NASA officials following the safe landing of their spacecraft (which forms the backdrop for the picture). Left to right are Rear Admiral Richard H. Truly, acting NASA Administrator; astronauts David M. Walker, Mark C. Lee, Mary L. Cleave, Ronald J. Grabe and Norman E. Thagard; and Dale D. Myers, NASA Deputy Administrator.

  16. STS-30 crew poses with NASA administrators in front of OV-104 on EAFB runway

    NASA Image and Video Library

    1989-05-08

    STS030-S-129 (8 May 1989) --- Astronaut crew members who manned the Space Shuttle Atlantis for just over four days pose with NASA officials following the safe landing of their spacecraft (which forms the backdrop for the picture). Left to right are Rear Admiral Richard H. Truly, acting NASA Administrator; astronauts David M. Walker, Mark C. Lee, Mary L. Cleave, Ronald J. Grabe and Norman E. Thagard; and Dale D. Myers, NASA Deputy Administrator.

  17. Method and device for landing aircraft dependent on runway occupancy time

    NASA Technical Reports Server (NTRS)

    Ghalebsaz Jeddi, Babak (Inventor)

    2012-01-01

    A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.

  18. STS-33 Discovery, OV-103, MLG touches down on EAFB concrete runway 04

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touchdown is documented at Edwards Air Force Base (EAFB), California, on concrete runway 04. Views look forward from the space shuttle main engines (SSMEs) to the crew compartment as OV-103 glides down the runway. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).

  19. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  20. Airport pavement marking evaluation for reducing runway incursion

    DOT National Transportation Integrated Search

    2001-02-01

    This study was undertaken to evaluate the widening of airport pavement marking in order to enhance their recognition. Results of this evaluation are aimed at reducing the potential of runway incursions and incidents by making airports pavement markin...

  1. Situational Leadership Theory to the USAF Officer Training School.

    DTIC Science & Technology

    1988-04-01

    Commanders Develop Leadership Styles ................... 4 FeedbacK Systems .............................................. 5 Conclusion...7 Leadership Styles ....................... . ..................... 9 CHAPTER THREE--THE SITUATIONAL LEADERSHIP THEORY AND OTS The USAF Officer...53 . 6 P N 5p* LIST OF ILLUSTRATIONS a- I" TABLES TABLE P-I-- Leadership Styles Matched With Maturity Levels

  2. Systems Analysis of NASA Aviation Safety Program: Final Report

    NASA Technical Reports Server (NTRS)

    Jones, Sharon M.; Reveley, Mary S.; Withrow, Colleen A.; Evans, Joni K.; Barr, Lawrence; Leone, Karen

    2013-01-01

    A three-month study (February to April 2010) of the NASA Aviation Safety (AvSafe) program was conducted. This study comprised three components: (1) a statistical analysis of currently available civilian subsonic aircraft data from the National Transportation Safety Board (NTSB), the Federal Aviation Administration (FAA), and the Aviation Safety Information Analysis and Sharing (ASIAS) system to identify any significant or overlooked aviation safety issues; (2) a high-level qualitative identification of future safety risks, with an assessment of the potential impact of the NASA AvSafe research on the National Airspace System (NAS) based on these risks; and (3) a detailed, top-down analysis of the NASA AvSafe program using an established and peer-reviewed systems analysis methodology. The statistical analysis identified the top aviation "tall poles" based on NTSB accident and FAA incident data from 1997 to 2006. A separate examination of medical helicopter accidents in the United States was also conducted. Multiple external sources were used to develop a compilation of ten "tall poles" in future safety issues/risks. The top-down analysis of the AvSafe was conducted by using a modification of the Gibson methodology. Of the 17 challenging safety issues that were identified, 11 were directly addressed by the AvSafe program research portfolio.

  3. STS-33 Discovery, OV-103, MLG touches down on concrete runway 04 at EAFB

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on concrete runway 04 at Edwards Air Force Base (EAFB), California, at 16:31:02 pm Pacific Standard Time (PST). This view captures OV-103's profile (port side) as it glides down the runway.

  4. Implementation of the FAA research and development electromagnetic database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowall, R.L.; Grush, D.J.; Cook, D.M.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has been assisting the Federal Aviation Administration (FAA) in developing a database of information about lightning. The FAA Research and Development Electromagnetic Database (FRED) will ultimately contain data from a variety of airborne and groundbased lightning research projects. This paper contains an outline of the data currently available in FRED. It also lists the data sources which the FAA intends to incorporate into FRED. In addition, it describes how the researcher may access and use the FRED menu system. 2 refs., 12 figs.

  5. STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's port side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.

  6. STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's starboard side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.

  7. Upgraded FAA Airfield Capacity Model. Volume 1. Supplemental User’s Guide

    DTIC Science & Technology

    1981-02-01

    SIGMAR (P4.0) cc 1-4 -standard deviation, in seconds, of arrival runway occupancy time (R.O.T.). SIGMAA (F4.0) cc 5-8 -standard deviation, in seconds...iI SI GMAC - The standard deviation of the time from departure clearance to start of roll. SIGMAR - The standard deviation of the arrival runway

  8. Rollout and Turnoff (ROTO) Guidance and Information Displays: Effect on Runway Occupancy Time in Simulated Low-Visibility Landings

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Hankins, Walter W., III; Barker, L. Keith

    2001-01-01

    This report examines a rollout and turnoff (ROTO) system for reducing the runway occupancy time for transport aircraft in low-visibility weather. Simulator runs were made to evaluate the system that includes a head-up display (HUD) to show the pilot a graphical overlay of the runway along with guidance and steering information to a chosen exit. Fourteen pilots (airline, corporate jet, and research pilots) collectively flew a total of 560 rollout and turnoff runs using all eight runways at Hartsfield Atlanta International Airport. The runs consisted of 280 runs for each of two runway visual ranges (RVRs) (300 and 1200 ft). For each visual range, half the runs were conducted with the HUD information and half without. For the runs conducted with the HUD information, the runway occupancy times were lower and more consistent. The effect was more pronounced as visibility decreased. For the 1200-ft visibility, the runway occupancy times were 13% lower with HUD information (46.1 versus 52.8 sec). Similarly, for the 300-ft visibility, the times were 28% lower (45.4 versus 63.0 sec). Also, for the runs with HUD information, 78% (RVR 1200) and 75% (RVR 300) had runway occupancy times less than 50 sec, versus 41 and 20%, respectively, without HUD information.

  9. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  10. Reliability Modeling Methodology for Independent Approaches on Parallel Runways Safety Analysis

    NASA Technical Reports Server (NTRS)

    Babcock, P.; Schor, A.; Rosch, G.

    1998-01-01

    This document is an adjunct to the final report An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies. That report presents the results of our analysis of the problem of simultaneous but independent, approaches of two aircraft on parallel runways (independent approaches on parallel runways, or IAPR). This introductory chapter presents a brief overview and perspective of approaches and methodologies for performing safety analyses for complex systems. Ensuing chapter provide the technical details that underlie the approach that we have taken in performing the safety analysis for the IAPR concept.

  11. Asymptomatic Wolff-Parkinson-White Pattern ECG in USAF Aviators.

    PubMed

    Davenport, Eddie D; Rupp, Karen A N; Palileo, Edwin; Haynes, Jared

    2017-01-01

    Wolff-Parkinson-White (WPW) pattern is occasionally found in asymptomatic aviators during routine ECGs. Aeromedical concerns regarding WPW pattern include risk of dysrhythmia or sudden cardiac death (SCD), thus affecting the safety of flight. The purpose of this study was to determine the prevalence and outcomes of aviators with asymptomatic WPW pattern and assess for risk factors that contribute to progression to dysrhythmia or symptoms. The U.S. Air Force (USAF) ECG library database containing over 1.2 million ECGs collected over the past 68 yr was used to identify 638 individual aviators with WPW pattern. Demographic, medical history, and outcome data were obtained by medical record review. Aviators who developed high risk features defined as symptoms, arrhythmia, or ablation of a high risk pathway, were compared to those who remained asymptomatic. Prevalence of WPW pattern was 0.30% among all USAF aviators. Of the 638 individuals, 64 (10%) progressed to the combined endpoint of SCD, arrhythmia, and/or ablation of a high risk pathway over 6868 patient years, with average follow-up of 10.5 yr. There were two sudden cardiac deaths (0.3%). Annual risk of possible sudden incapacitation was 0.95% and of SCD 0.03%. Those that progressed to high risk were significantly younger, had lower diastolic blood pressure, lower total cholesterol, and better physical fitness testing scores. WPW pattern on ECG found in asymptomatic aviators confers < 1% annual risk of arrhythmia or incapacitating events with the highest risk in the younger, healthier, and most fit populations.Davenport ED, Rupp KAN, Palileo E, Haynes J. Asymptomatic Wolff-Parkinson-White pattern ECG in USAF aviators. Aerosp Med Hum Perform. 2017; 88(1):56-60.

  12. Black Box Testing: Experiments with Runway Incursion Advisory Alerting System

    NASA Technical Reports Server (NTRS)

    Mukkamala, Ravi

    2005-01-01

    This report summarizes our research findings on the Black box testing of Runway Incursion Advisory Alerting System (RIAAS) and Runway Safety Monitor (RSM) system. Developing automated testing software for such systems has been a problem because of the extensive information that has to be processed. Customized software solutions have been proposed. However, they are time consuming to develop. Here, we present a less expensive, and a more general test platform that is capable of performing complete black box testing. The technique is based on the classification of the anomalies that arise during Monte Carlo simulations. In addition, we also discuss a generalized testing tool (prototype) that we have developed.

  13. Index of FAA Office of Aviation Medicine Reports: 1961-1991

    DTIC Science & Technology

    1992-01-01

    82174.- DOT/FAA/AM-92/1 Index of FAA Office of Aviation Medicine Reports: Office of Aviation Medicine Washington, D.C. 20591 1961 through 1991 AD-A245...Subtitle j5. Report Date January 1992 INDEX TO FAA OFFICE OF AVIATION MEDICINE REPORTS: 6 Performing Organizoaton Code 1961 THROUGH 1991 __I B...Covered 12. Sponsoring Agency Name and Address Office of Aviation Medicine Federal Aviation Administration 800 Idependence Avenue, S.W. 14. Sponsoring

  14. Media and staff in the NASA News Center at Kennedy Space Center

    NASA Image and Video Library

    2007-06-22

    Media and staff in the NASA News Center at Kennedy Space Center applaud the successful landing of Atlantis, visible on the television screens, at NASA's Dryden Flight Research Center at Edwards Air Force Base in California. Returning from mission STS-117, Atlantis touched down on runway 22 at Edwards on orbit 219 after 13 days, 20 hours and 12 minutes in space. The landing was diverted to California due to marginal weather at the Kennedy Space Center. Main gear touchdown was at 3:49:38 p.m. EDT on runway 22. Nose gear touchdown was at 3:49:49 p.m. and wheel stop was at 3:50:48 p.m. This was the 51st landing for the Space Shuttle Program at Edwards Air Force Base. The mission to the International Space Station was a success, installing the S3/S4 truss. The returning crew of seven includes astronaut Sunita Williams, who was flight engineer on the Expedition 15 crew. She achieved a new milestone, a record-setting flight at 194 days, 18 hours and 58 minutes, the longest single spaceflight ever by a female astronaut or cosmonaut.

  15. NASA Administrator Dan Goldin talks with STS-78 crew

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Administrator Dan Goldin (left) chats with STS-78 Mission Commander Terence 'Tom' Henricks (center) and KSC Director Jay Honeycutt underneath the orbiter Columbia. Columbia and her seven-member crew touched down on Runway 33 of KSC's Shuttle Landing Facility at 8:36 a.m. EDT, July 7, bringing to a close the longest Shuttle flight to date. STS-78, which also was the 78th Shuttle flight, lasted 16 days, 21 minutes and 47 seconds.

  16. Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal

    DTIC Science & Technology

    2014-04-01

    ER D C/ G SL T R- 14 -1 1 Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal G eo te ch ni ca l a nd S tr...Field Evaluation of Ultra-High Pressure Water Systems for Runway Rubber Removal Aaron B. Pullen Applied Research Associates, Inc. 421 Oak Avenue...collaboration with Applied Research Associates, Inc. (ARA). Several types of commercial UHPW water blasting systems were tested on an ungrooved portland cement

  17. NASA GRC UAS Project: Communications Modeling and Simulation Status

    NASA Technical Reports Server (NTRS)

    Kubat, Greg

    2013-01-01

    The integration of Unmanned Aircraft Systems (UAS) in the National Airspace represents new operational concepts required in civil aviation. These new concepts are evolving as the nation moves toward the Next Generation Air Transportation System (NextGen) under the leadership of the Joint Planning and Development Office (JPDO), and through ongoing work by the Federal Aviation Administration (FAA). The desire and ability to fly UAS in the National Air Space (NAS) in the near term has increased dramatically, and this multi-agency effort to develop and implement a national plan to successfully address the challenges of UAS access to the NAS in a safe and timely manner is well underway. As part of the effort to integrate UAS in the National Airspace, NASA Glenn Research Center is currently involved with providing research into Communications systems and Communication system operations in order to assist with developing requirements for this implementation. In order to provide data and information regarding communication systems performance that will be necessary, NASA GRC is tasked with developing and executing plans for simulations of candidate future UAS command and control communications, in line with architectures and communications technologies being developed and/or proposed by NASA and relevant aviation organizations (in particular, RTCA SC-203). The simulations and related analyses will provide insight into the ability of proposed communications technologies and system architectures to enable safe operation of UAS, meeting UAS in the NAS project goals (including performance requirements, scalability, and interoperability), and ultimately leading to a determination of the ability of NextGen communication systems to accommodate UAS. This presentation, compiled by the NASA GRC team, will provide a view of the overall planned simulation effort and objectives, a description of the simulation concept and status of the design and development that has occurred to date.

  18. STS-34 Atlantis, OV-104, touches down on runway 23 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 Atlantis, Orbiter Vehicle (OV) 104, main landing gear (MLG) touches down on Runway 23 dry lake bed at Edwards Air Force Base (EAFB), California. The nose landing gear rides above runway before touchdown as the MLG wheels produce a cloud of dust. OV-104's port side profile is captured as it glides by at a speed of approximately 195 knots (224 miles per hour).

  19. Operational Art and Aircraft Runway Requirements

    DTIC Science & Technology

    1989-12-01

    Center for Aerospace Doctrine, Research. and Education (AUCADRE). They are dedicaled to the advancement of the art and science -.f applying aerospace...36112-5532. Operational Art and * Aircraft Runway Requirements C. 0 M. 0 Thank you for your assistance Report No. AU-ARI-CP-89-4 Operational Art and...publication. iiU ABSTRACT A commander exercises operational art to achieve strategic goals through his design, organization, and conduct of campaigns. In

  20. An Overview of Current Capabilities and Research Activities in the Airspace Operations Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher

    2014-01-01

    The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results

  1. Preliminary Human-in-the-Loop Assessment of Procedures for Very-Closely-Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Lozito, Sandra C.; Ballinger, Deborah S.; Trot, Greg; Hardy, Gordon H.; Panda, Ramesh C.; Lehmer, Ronald D.; Kozon, Thomas E.

    2010-01-01

    Demand in the future air transportation system concept is expected to double or triple by 2025 [1]. Increasing airport arrival rates will help meet the growing demand that could be met with additional runways but the expansion airports is met with environmental challenges for the surrounding communities when using current standards and procedures. Therefore, changes to airport operations can improve airport capacity without adding runways. Building additional runways between current ones, or moving them closer, is a potential solution to meeting the increasing demand, as addressed by the Terminal Area Capacity Enhancing Concept (TACEC). TACEC requires robust technologies and procedures that need to be tested such that operations are not compromised under instrument meteorological conditions. The reduction of runway spacing for independent simultaneous operations dramatically exacerbates the criticality of wake vortex incursion and the calculation of a safe and proper breakout maneuver. The study presented here developed guidelines for such operations by performing a real-time, human-in-the-loop simulation using precision navigation, autopilot-flown approaches, with the pilot monitoring aircraft spacing and the wake vortex safe zone during the approach.

  2. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  3. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  4. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  5. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  6. 32 CFR 728.58 - Federal Aviation Agency (FAA) beneficiaries.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Federal Aviation Agency (FAA) beneficiaries. 728.58 Section 728.58 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY PERSONNEL... Federal Agencies § 728.58 Federal Aviation Agency (FAA) beneficiaries. (a) Beneficiaries. Air Traffic...

  7. Functional Activity of the Fanconi Anemia Protein FAA Requires FAC Binding and Nuclear Localization

    PubMed Central

    Näf, Dieter; Kupfer, Gary M.; Suliman, Ahmed; Lambert, Kathleen; D’Andrea, Alan D.

    1998-01-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by genomic instability, cancer susceptibility, and cellular hypersensitivity to DNA-cross-linking agents. Eight complementation groups of FA (FA-A through FA-H) have been identified. Two FA genes, corresponding to complementation groups FA-A and FA-C, have been cloned, but the functions of the encoded FAA and FAC proteins remain unknown. We have recently demonstrated that FAA and FAC interact to form a nuclear complex. In this study, we have analyzed a series of mutant forms of the FAA protein with respect to functional activity, FAC binding, and nuclear localization. Mutation or deletion of the amino-terminal nuclear localization signal (NLS) of FAA results in loss of functional activity, loss of FAC binding, and cytoplasmic retention of FAA. Replacement of the NLS sequence with a heterologous NLS sequence, derived from the simian virus 40 T antigen, results in nuclear localization but does not rescue functional activity or FAC binding. Nuclear localization of the FAA protein is therefore necessary but not sufficient for FAA function. Mutant forms of FAA which fail to bind to FAC also fail to promote the nuclear accumulation of FAC. In addition, wild-type FAC promotes the accumulation of wild-type FAA in the nucleus. Our results suggest that FAA and FAC perform a concerted function in the cell nucleus, required for the maintenance of chromosomal stability. PMID:9742112

  8. NASA Officials in MCC to decide whether to land Apollo 16 or cancel landing

    NASA Technical Reports Server (NTRS)

    1972-01-01

    NASA Officials gather around a console in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) prior to the making of a decision whether to land Apollo 16 on the moon or to abort the landing. Seated, left to right, are Dr. Christopher C. Kraft Jr., Director of the Manned Spacecraft Center (MSC), and Brig. Gen. James A. McDivitt (USAF), Manager, Apollo Spacecraft Program Office, MSC; and standing, left to right, are Dr. Rocco A. Petrone, Apollo Program Director, Office Manned Space Flight (OMSF), NASA HQ.; Capt. John K. Holcolmb (U.S. Navy, Ret.), Director of Apollo Operations, OMSF; Sigurd A. Sjoberg, Deputy Director, MSC; Capt. Chester M. Lee (U.S. Navy, Ret.), Apollo Mission Director, OMSF; Dale D. Myers, NASA Associate Administrator for Manned Space Flight; and Dr. George M. Low, NASA Deputy Administrator.

  9. Course structure-runway 28R San Francisco Airport.

    DOT National Transportation Integrated Search

    1973-09-01

    The TSC electromagnetic scattering model is used to dtermine the expected ILS localizer performance for the planned 28R runway at San Francisco airport. It is found that the V-Ring and the 14/6 Alford array as well as the larger 22/8 Alford array ope...

  10. NDE research efforts at the FAA Center for Aviation Systems Reliability

    NASA Technical Reports Server (NTRS)

    Thompson, Donald O.; Brasche, Lisa J. H.

    1992-01-01

    The Federal Aviation Administration-Center for Aviation Systems Reliability (FAA-CASR), a part of the Institute for Physical Research and Technology at Iowa State University, began operation in the Fall of 1990 with funding from the FAA. The mission of the FAA-CASR is to develop quantitative nondestructive evaluation (NDE) methods for aircraft structures and materials including prototype instrumentation, software, techniques, and procedures and to develop and maintain comprehensive education and training programs in aviation specific inspection procedures and practices. To accomplish this mission, FAA-CASR brings together resources from universities, government, and industry to develop a comprehensive approach to problems specific to the aviation industry. The problem areas are targeted by the FAA, aviation manufacturers, the airline industry and other members of the aviation business community. This consortium approach ensures that the focus of the efforts is on relevant problems and also facilitates effective transfer of the results to industry.

  11. Report of a workshop on human-automation interaction in NGATS

    DOT National Transportation Integrated Search

    2006-10-01

    This report reviews the findings of a workshop held in Arlington, VA may 10 and 11, 2006 to consider needs for research on human-automation interaction to support NASA/FAA Joint Planning and Development Office. Participants included representatives f...

  12. Controlled Impact Demonstration

    NASA Image and Video Library

    1984-12-01

    The Controlled Impact Demonstration (or colloquially the Crash In the Desert) was a joint project between NASA and the Federal Aviation Administration (FAA) that intentionally crashed a remotely controlled Boeing 720 aircraft to acquire data and test new technologies that might help passengers and crew survive. The crash required more than four years of preparation by NASA Ames Research Center, Langley Research Center, Dryden Flight Research Center, the FAA, and General Electric. After numerous test runs, the plane was crashed on December 1, 1984. The test went generally according to plan, and produced a spectacular fireball that required more than an hour to extinguish. The FAA concluded that about one-quarter of the passengers would have survived, that the antimisting kerosene test fuel did not sufficiently reduce the risk of fire, and that several changes to equipment in the passenger compartment of aircraft were needed. NASA concluded that a head-up display and with microwave landing system would have helped the pilot more safely fly the aircraft.

  13. SURF IA Conflict Detection and Resolution Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Barker, Glover D.

    2012-01-01

    The Enhanced Traffic Situational Awareness on the Airport Surface with Indications and Alerts (SURF IA) algorithm was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. SURF IA is designed to increase flight crew situation awareness of the runway environment and facilitate an appropriate and timely response to potential conflict situations. The purpose of the study was to evaluate the performance of the SURF IA algorithm under various runway scenarios, multiple levels of conflict detection and resolution (CD&R) system equipage, and various levels of horizontal position accuracy. This paper gives an overview of the SURF IA concept, simulation study, and results. Runway incursions are a serious aviation safety hazard. As such, the FAA is committed to reducing the severity, number, and rate of runway incursions by implementing a combination of guidance, education, outreach, training, technology, infrastructure, and risk identification and mitigation initiatives [1]. Progress has been made in reducing the number of serious incursions - from a high of 67 in Fiscal Year (FY) 2000 to 6 in FY2010. However, the rate of all incursions has risen steadily over recent years - from a rate of 12.3 incursions per million operations in FY2005 to a rate of 18.9 incursions per million operations in FY2010 [1, 2]. The National Transportation Safety Board (NTSB) also considers runway incursions to be a serious aviation safety hazard, listing runway incursion prevention as one of their most wanted transportation safety improvements [3]. The NTSB recommends that immediate warning of probable collisions/incursions be given directly to flight crews in the cockpit [4].

  14. Heritage, Image and Identity: The Evolution of USAF Leadership

    DTIC Science & Technology

    2011-02-16

    up-in-coming “ Generation Z ” (also known as the “Net or Digital Generation”), which is the most connected and high-tech generation ever seen. 40...for future RPA warrior leaders. 43 The USAF has already set the ground work to position “ Generation Z ” RPA pilots for future senior leadership

  15. STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A small cloud of dust forms behind MLG as OV-103 begins to slow down as it passes a series of runway lights. EAFB and Dryden Flight Research Facility (DFRF) buildings and hangars appear in the background.

  16. STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The main landing gear (MLG) of Discovery, Orbiter Vehicle (OV) 103, rides along concrete runway 22 at Edwards Air Force Base (EAFB), California, bringing mission STS-31 to an end. The nose landing gear (NLG) is suspended above the runway prior to touchdown and wheel stop which occurred at 6:51:00 am (Pacific Daylight Time (PDT)). View shows OV-103's starboard side and deployed rudder/speedbrake. EAFB facilities are seen in the distance.

  17. FAA Flight Plan 2009-2013

    DOT National Transportation Integrated Search

    2009-01-01

    The Flight Plan is the strategic plan for the agency, the plan to help us prepare for the future. The majority of FAAs responsibilities are our core functionsour everyday roles and responsibilitieswhich are not specifically highlighted in th...

  18. NASA Experience with Pogo in Human Spaceflight Vehicles

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    2008-01-01

    An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA s subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system. Now, more than 30 years later, NASA is developing two new launch vehicles, the Ares I crew launch vehicle propelling the Orion crew excursion vehicle, and the Ares V cargo launch vehicle. A new generation of engineers must again exercise NASA s system engineering method for pogo mitigation during design, development and verification.

  19. Wake turbulence limits on paired approaches to parallel runways

    DOT National Transportation Integrated Search

    2002-07-01

    Wake turbulence considerations currently restrict the use of parallel runways less than 2500 ft (762 m) apart. : However, wake turbulence is not a factor if there are appropriate limits on allowed longitudinal pair spacings : and/or allowed crosswind...

  20. Near-term Horizontal Launch for Flexible Operations: Results of the DARPA/NASA Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Wilhite, Alan W.; Schaffer, Mark G.; Huebner, Lawrence D.; Voland, Randall T.; Voracek, David F.

    2012-01-01

    Horizontal launch has been investigated for 60 years by over 130 different studies. During this time only one concept, Pegasus, has ever been in operation. The attractiveness of horizontal launch is the capability to provide a "mobile launch pad" that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and provide precise placement for orbital intercept, rendezvous, or reconnaissance. A jointly sponsored study by DARPA and NASA, completed in 2011, explored the trade space of horizontal launch system concepts which included an exhaustive literature review of the past 70 years. The Horizontal Launch Study identified potential near- and mid-term concepts capable of delivering 15,000 lb payloads to a 28.5 due East inclination, 100 nautical-mile low-Earth orbit. Results are presented for a range of near-term system concepts selected for their availability and relatively low design, development, test, and evaluation (DDT&E) costs. This study identified a viable low-cost development path forward to make a robust and resilient horizontal launch capability a reality.

  1. An analysis of runway-taxiway transgressions at controlled airports

    DOT National Transportation Integrated Search

    1981-04-01

    The purpose of this study was to determine the cause of aircraft making inadvertent or unauthorized takeoffs and transgressions onto active runways during takeoff and landing operations. The study was conducted in four phases: (1) Prior studies by FA...

  2. 77 FR 4219 - FAA-Approved Portable Oxygen Concentrators; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ...-1343; Amdt. No. 121-358] FAA-Approved Portable Oxygen Concentrators; Technical Amendment AGENCY... amending regulations relating to operating rules for FAA approved portable oxygen concentrators (POC... Certain Portable Oxygen Concentrator Devices Onboard Aircraft'' (70 FR 40156). SFAR 106 permits passengers...

  3. STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down at a speed of approximately 205 knots (235 miles per hour) on concrete runway 22 at Edwards Air Force Base (AFB), California. Nose landing gear (NLG) is deployed and rides above runway surface prior touchdown. Rear view captures OV-103 as it glides past photographer to wheel stop showing the tail section (speedbrake/rudder) and three space shuttle main engines (SSMEs). Mojave desert scrub brush appears in the foreground with aircraft hangar appearing in the background.

  4. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  5. 14 CFR 11.25 - How does FAA issue rules?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Whom to call if you have questions about the rulemaking document. (5) The date, time, and place of any... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false How does FAA issue rules? 11.25 Section 11... RULES GENERAL RULEMAKING PROCEDURES Rulemaking Procedures General § 11.25 How does FAA issue rules? (a...

  6. Ambient sound levels at four Department of Interior conservation units in support of Homestead Air Base reuse supplemental environmental impact statement

    DOT National Transportation Integrated Search

    1999-06-01

    The Federal Aviation Administration (FAA), in cooperation with the United States Air Force (USAF), is developing a Supplemental Environmental Impact Statement (SEIS) in support of the planned commercialization of Homestead Air Base in Southern Florid...

  7. FAA Energy Order 1053.1A - Energy and Water Management Program For FAA Buildings and Facilities

    DOT National Transportation Integrated Search

    1996-12-27

    This order provides Federal Aviation Administration (FAA) policies, procedures, and organizational responsibilities, in a focused and expanded agency energy and water planning and conservation program, for complying with the national mandates for the...

  8. A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank

    2004-01-01

    The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.

  9. Evaluation of a Tactical Surface Metering Tool for Charlotte Douglas International Airport via Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Lee, Hanbong; Dulchinos, Victoria L.; Martin, Lynne; Stevens, Lindsay; Jung, Yoon; Chevalley, Eric; Jobe, Kim; Parke, Bonny

    2017-01-01

    NASA has been working with the FAA and aviation industry partners to develop and demonstrate new concepts and technologies that integrate arrival, departure, and surface traffic management capabilities. In March 2017, NASA conducted a human-in-the-loop (HITL) simulation for integrated surface and airspace operations, modeling Charlotte Douglas International Airport, to evaluate the operational procedures and information requirements for the tactical surface metering tool, and data exchange elements between the airline controlled ramp and ATC Tower. In this paper, we focus on the calibration of the tactical surface metering tool using various metrics measured from the HITL simulation results. Key performance metrics include gate hold times from pushback advisories, taxi-in-out times, runway throughput, and departure queue size. Subjective metrics presented in this paper include workload, situational awareness, and acceptability of the metering tool and its calibration.

  10. Evaluation of a Tactical Surface Metering Tool for Charlotte Douglas International Airport Via Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Lee, Hanbong; Martin, Lynne; Stevens, Lindsay; Jung, Yoon; Dulchinos, Victoria; Chevalley, Eric; Jobe, Kim; Parke, Bonny

    2017-01-01

    NASA has been working with the FAA and aviation industry partners to develop and demonstrate new concepts and technologies that integrate arrival, departure, and surface traffic management capabilities. In March 2017, NASA conducted a human-in-the-loop (HITL) simulation for integrated surface and airspace operations, modeling Charlotte Douglas International Airport, to evaluate the operational procedures and information requirements for the tactical surface metering tool, and data exchange elements between the airline controlled ramp and ATC Tower. In this paper, we focus on the calibration of the tactical surface metering tool using various metrics measured from the HITL simulation results. Key performance metrics include gate hold times from pushback advisories, taxi-in/out times, runway throughput, and departure queue size. Subjective metrics presented in this paper include workload, situational awareness, and acceptability of the metering tool and its calibration

  11. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  12. FAA Certificated Maintenance Agencies Directory (1997)

    DOT National Transportation Integrated Search

    1997-05-06

    This advisory circular (AC) transmits a consolidated directory of all : certificated Federal Aviation Administration (FAA) repair stations and : manufacturer's maintenance facilities. The repair stations and manufacturer's : maintenance facilities we...

  13. STS-26 Discovery, OV-103, touches down on dry lakebed runway 17 at EAFB

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on dry lakebed runway 17 at Edwards Air Force Base (EAFB), California. A cloud of dust forms behind MLG as OV-103 begins to slow down as it passes portable runway lights. Taken from the rear of the orbiter, view shows the space shuttle main engines (SSMEs) and the speedbrake/rudder deployed on tail section.

  14. STS-34 Atlantis, OV-104, touches down on runway 23 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 Atlantis, Orbiter Vehicle (OV) 104, main landing gear (MLG) touches down on Runway 23 dry lake bed at Edwards Air Force Base (EAFB), California. The nose landing gear rides above runway before touchdown as the MLG wheels produce a cloud of dust. OV-104's port side profile is captured as it glides by at a speed of approximately 195 knots (224 miles per hour). The tail section with deployed speedbrake/rudder and space shuttle main engines (SSMEs) are visible.

  15. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Administrator Lori Garver listens to astronaut Tracy Caldwell Dyson (off camera) at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  16. 76 FR 6094 - FAA Public Forum To Conduct Regulatory Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 27 and 29 FAA Public Forum To Conduct Regulatory Review AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of.... Attendees are not required to register for the Heli-Expo conference to participate in this public forum. FOR...

  17. Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.

    1997-01-01

    This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.

  18. A fresh look at runway incursions: onboard surface movement awareness and alerting system based on SVS

    NASA Astrophysics Data System (ADS)

    Vernaleken, Christoph; Mihalic, Lamir; Güttler, Mathias; Klingauf, Uwe

    2006-05-01

    Increasing traffic density on the aerodrome surface due to the continuous worldwide growth in the number of flight operations does not only cause capacity and efficiency problems, but also increases the risk of serious incidents and accidents on the airport movement area. Of these, Runway Incursions are the by far most safety-critical. In fact, the worst-ever accident in civil aviation, the collision of two Boeing B747s on Tenerife in 1977 with 583 fatalities, was caused by a Runway Incursion. Therefore, various Runway Safety programs have recently been initiated around the globe, often focusing on ground-based measures such as improved surveillance. However, as a lack of flight crew situational awareness is a key causal factor in many Runway Incursion incidents and accidents, there is a strong need for an onboard solution, which should be capable of interacting cooperatively with ground-based ATM systems, such as A-SMGCS where available. This paper defines the concept of preventive and reactive Runway Incursion avoidance and describes a Surface Movement Awareness & Alerting System (SMAAS) designed to alert the flight crew if they are at risk of infringing a runway. Both the SVS flight deck displays and the corresponding alerting algorithms utilize an ED 99A/RTCA DO-272A compliant aerodrome database, as well as airport operational, traffic and clearance data received via ADS-B or other data links, respectively. The displays provide the crew with enhanced positional, operational, clearance and traffic awareness, and they are used to visualize alerts. A future enhancement of the system will provide intelligent alerting for conflicts caused by surrounding traffic.

  19. NASA Simulation Capabilities

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2017-01-01

    This presentation provides a high-level overview of NASA's Future ATM Concepts Evaluation Tool (FACET) with a high-level description of the system's inputs and outputs. This presentation is designed to support the joint simulations that NASA and the Chinese Aeronautical Establishment (CAE) will conduct under an existing Memorandum of Understanding.

  20. The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.

  1. 75 FR 10552 - Sixth Meeting-RTCA Special Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... 217: Joint With EUROCAE WG- 44 Terrain and Airport Mapping Databases AGENCY: Federal Aviation... Airport Mapping Databases. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 217: Joint with EUROCAE WG-44 Terrain and Airport Mapping Databases. DATES: The...

  2. 76 FR 27744 - Eighth Meeting-RTCA Special Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping Databases AGENCY: Federal Aviation... Airport Mapping Databases. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 217: Joint with EUROCAE WG-44 Terrain and Airport Mapping Databases. DATES: The...

  3. 76 FR 54527 - Ninth Meeting-RTCA Special Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... 217: Joint With EUROCAE WG- 44 Terrain and Airport Mapping Databases AGENCY: Federal Aviation... Airport Mapping Databases. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 217: Joint with EUROCAE WG-44 Terrain and Airport Mapping Databases. DATES: The...

  4. 76 FR 6179 - Eighth Meeting-RTCA Special Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... Committee 217: Joint With EUROCAE WG-44 Terrain and Airport Mapping Databases AGENCY: Federal Aviation... Airport Mapping Databases. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 217: Joint with EUROCAE WG-44 Terrain and Airport Mapping Databases. DATES: The...

  5. F-15 ACTIVE touches down on Edwards AFB runway

    NASA Image and Video Library

    1998-04-14

    The F-15 ACTIVE touches down on the Edwards runway following its April 14, 1998 flight. The nose is high while the canards have their rear edge raised. the aircraft's speed brake, located on the top of the aircraft behind the canopy, is also raised.

  6. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    NASA Astrophysics Data System (ADS)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  7. SR-71A Taking Off with Test Fixture Mounted Atop the Aft Section of the Aircraft and F-18 Chase Airc

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first

  8. Results of low power deicer tests on a swept inlet component in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection System were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  9. Results of Low Power Deicer tests on a swept inlet component in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Shin, Jaiwon

    1993-01-01

    Tests were conducted under a USAF/NASA Low Power Deicer program on two expulsive technologies to examine system performance on hardware representative of a modern aircraft part. The BF Goodrich Electro-Expulsive Deicing System and Pneumatic Impulse Ice Protection system were installed on a swept, compound curve, engine inlet component with varying leading edge radius, and tested through a range of icing and system operating conditions in the NASA Lewis Icing Research Tunnel. A description of the experimental procedure and results, including residual ice thickness, shed ice particle size, and changes in system energy/pressure characteristics are presented.

  10. Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth E.

    2010-01-01

    ) NASA and the San Diego Zoo for a joint challenge in biomimicry (5) NASA and the FAA Center of Excellence for Commercial Space Flight for five collaborative projects (6) NASA and ESA for a Space Medicine Workshop (July 2011) (7) NASA and Tufts University for an education pilot (8) Establishment of long-term contracts (August 2011) to enable future challenges (9) Establishment of a new Center of Excellence for Collaborative Innovation (July 2011) for all federal agencies in the US

  11. STS-38 Atlantis, Orbiter Vehicle (OV) 104, lands on runway 33 at KSC SLF

    NASA Image and Video Library

    1990-11-20

    STS038-S-041 (20 Nov 1990) --- STS-38 Atlantis, Orbiter Vehicle (OV) 104, lands on runway 33 at Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). The main landing gear (MLG) has just touched down on the runway surface as the nose landing gear (NLG) glides above it. The Department of Defense (DOD)-devoted mission came to an end (with complete wheel stop) at 4:43:37 pm (Eastern Standard Time (EST)).

  12. Project CHECO Southeast Asia Report. USAF Tactics Against Air & Ground Defenses in SEA, November 1968 - May 1970

    DTIC Science & Technology

    1970-09-25

    EB-66 Orbits for Drone Flight .......................... 50 16. ( EB-66 Orbits in Support of B-52 Mission ................ 50I 3 ix I~WI ’CNON.11...outmaneuver it. During the period of this report, while SAMs were fired at several USAF aircraft and shot down several drones , the USAF lost no manned...Oblique camaras had beendesigned to allow photography from a safe distance, but the heavy tree cover in Laos usually required vertical photography for

  13. 77 FR 29749 - Twelfth Meeting: RTCA Special Committee 217, Joint with EUROCAE WG-44, Terrain and Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Committee 217, Joint with EUROCAE WG-44, Terrain and Airport Mapping Databases AGENCY: Federal Aviation... 217, Joint with EUROCAE WG-44, Terrain and Airport Mapping Databases. SUMMARY: The FAA is issuing this..., Terrain and Airport Mapping Databases. DATES: The meeting will be held June 18-22, 2012, from 9:00 a.m.-5...

  14. 78 FR 31626 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ...In accordance with the Paperwork Reduction Act of 1995, FAA invites public comments about our intention to request the Office of Management and Budget (OMB) approval for to renew an information collection. Feedback from surveys to be conducted under this generic information collection will be used in the prevention of runway collisions and in the medication of the severity and frequency of runway incursions.

  15. Index to FAA Office of Aviation Medicine reports : 1961 through 1995.

    DOT National Transportation Integrated Search

    1996-01-01

    An index to Federal Aviation Administration (FAA) Office of Aviation Medicine Reports (1964-1995) and Civil Aeromedical Institute Reports is presented for those engaged in aviation medicine and related activities. The index lists all FAA aviation med...

  16. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Deputy Administrator Lori Garver, far left at table, answers a students question at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. Garver is joined on the panel by NASA astronaut Tracy Caldwell Dyson, center, and NASA Aerospace Engineer Sabrina Thompson. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  17. Aircraft performance in slippery runway conditions : a simulation study of the accuracy and limitations of real-time runway friction estimation based on airplane onboard data.

    DOT National Transportation Integrated Search

    2015-04-01

    Runway overrun accidents occurring during landings in slippery conditions continue to occur frequently worldwide. After a : number of specific landing overrun accidents in the U.S., the National Transportation Safety Board (NTSB) issued a safety : re...

  18. Special Features of the Air to Space Neutron Transport Problem

    DTIC Science & Technology

    2017-09-14

    Fig. 5 from (NOAA, NASA , USAF, 1976, p. 13). .......................................................... 194 Atmospheric density as a function of...75 Physical constants for 1976 U.S. Standard Atmosphere. (NOAA, NASA ... NASA , USAF, 1976, p. 3), and computed base temperatures and pressures from the surface to 86 geometric kilometers

  19. Will Empowerment of USAF Program Managers Mitigate the Acquisitions Crisis

    DTIC Science & Technology

    2016-06-10

    FAR Federal Acquisition Regulations GAO Government Accountability Office MDAP Major Defense Acquisition Program USAF United States Air Force ix...actually run the project. The Government Accountability Office (GAO),2 along with many other organizations, including Congress in their 2016 National...1 Government Accountability Office (GAO), GAO-06-110, Best Practices: Better Support of Weapons Systems Program Managers Needed to

  20. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  1. SR-71 Tail #844 Landing at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    1996-01-01

    -looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This aircraft was returned to the USAF inventory and was the first

  2. SR-71A - in Flight from Below at Takeoff

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Propulsion Laboratory in Pasadena, California. An upward-looking ultraviolet video camera placed in the SR-71's nosebay studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. Earlier in its history, Dryden had a decade of past experience at sustained speeds above Mach 3. Two YF-12A aircraft and an SR-71 designated as a YF-12C were flown at the center between December 1969 and November 1979 in a joint NASA/USAF program to learn more about the capabilities and limitations of high-speed, high-altitude flight. The YF-12As were prototypes of a planned interceptor aircraft based on a design that later evolved into the SR-71 reconnaissance aircraft. Dave Lux was the NASA SR-71 project manger for much of the decade of the 1990s, followed by Steve Schmidt. Developed for the USAF as reconnaissance aircraft more than 30 years ago, SR-71s are still the world's fastest and highest-flying production aircraft. The aircraft can fly at speeds of more than 2,200 miles per hour (Mach 3+, or more than three times the speed of sound) and at altitudes of over 85,000 feet. The Lockheed Skunk Works (now Lockheed Martin) built the original SR-71 aircraft. Each aircraft is 107.4 feet long, has a wingspan of 55.6 feet, and is 18.5 feet high (from the ground to the top of the rudders, when parked). Gross takeoff weight is about 140,000 pounds, including a possible fuel weight of 80,280 pounds. The airframes are built almost entirely of titanium and titanium alloys to withstand heat generated by sustained Mach 3 flight. Aerodynamic control surfaces consist of all-moving vertical tail surfaces, ailerons on the outer wings, and elevators on the trailing edges between the engine exhaust nozzles. The two SR-71s at Dryden have been assigned the following NASA tail numbers: NASA 844 (A model), military serial 61-7980 and NASA 831 (B model), military serial 61-7956. From 1990 through 1994, Dryden also had another 'A' model, NASA 832, military serial 61-7971. This

  3. 78 FR 72011 - Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 460 Interpretation Concerning Involvement of NASA Astronauts During a Licensed Launch or Reentry AGENCY: Federal Aviation...\\ Human Space Flight Requirements Final Rule, 71 FR at 75618. As can be seen, the FAA's concern with space...

  4. Calibration validation for the new generation runway visual range system

    DOT National Transportation Integrated Search

    2000-07-01

    A forward scattermeter, consisting of transmitter and receiver heads mounted on a fork, is used in the New Genreration Runway Visual Range (NGRVR) System to assess the clarity of the atmosphere. The scattermeter is calibrated by comparison with refer...

  5. First NASA Aviation Safety Program Weather Accident Prevention Project Annual Review

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2000-01-01

    The goal of this Annual Review was to present NASA plans and accomplishments that will impact the national aviation safety goal. NASA's WxAP Project focuses on developing the following products: (1) Aviation Weather Information (AWIN) technologies (displays, sensors, pilot decision tools, communication links, etc.); (2) Electronic Pilot Reporting (E-PIREPS) technologies; (3) Enhanced weather products with associated hazard metrics; (4) Forward looking turbulence sensor technologies (radar, lidar, etc.); (5) Turbulence mitigation control system designs; Attendees included personnel from various NASA Centers, FAA, National Weather Service, DoD, airlines, aircraft and pilot associations, industry, aircraft manufacturers and academia. Attendees participated in discussion sessions aimed at collecting aviation user community feedback on NASA plans and R&D activities. This CD is a compilation of most of the presentations presented at this Review.

  6. Is the USAF Officer Corps a Fighting Force?

    DTIC Science & Technology

    1988-05-01

    quottin)j analysis, and operational audit . Following work moasurent and 14 computAtions, th., standards 4uro staffed and approved by NQ USAF *rnl...occupation group in the Air Force. 9 Most recently# Senator John Glenn has asked the GAO to conduct an audit of pilot requirements.1 9 This information...AlIocdtion System," Air Force Times, 14 September 1987, p. 6. 9. Pat )alton, " Audit Pilot Requirements, Glenn Asks GAO," Air Forte Times, 18 January 1988

  7. FAA Rotorcraft Research, Engineering, and Development Bibliography 1962-1989

    DTIC Science & Technology

    1990-05-01

    Albert G. Delucien) (NTIS: ADA 102 521) FAA/CT-88/10 Digital Systems Validation Handbook - Volume II (R.L. McDowall, Hardy P. Curd, Lloyd N. Popish... Digital Systems in Avionics and Flight Control Applications, Handbook - Volume I, (Ellis F. Hilt, Donald Eldredge, Jeff Webb, Charles Lucius, Michael S...Structure Statistics of Helicopter GPS Navigation with the Magnavox Z-Set (Robert D. Till) FAA/CT-82/115 Handbook - Volume I, Validation of Digital

  8. Cold Weather Wind Turbines: A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Bubenheim, David; Chiang, Erick; Goldman, Peter; Kohout, Lisa; Norton, Gary; Kliss, Mark (Technical Monitor)

    1997-01-01

    Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The National Science Foundation (NSF), NASA, and the Department of Energy (DOE) have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIRs independently managed by each agency but coordinated by NASA. The NSF grant addressed issues associated with the South Pole application and a 3 kW direct drive unit is being tested there in anticipation of the 100 kW unit operation. The DOE-NREL contract focused on development of the 100 kW direct drive generator. The NASA SBIR focused on the development of the 100 kW direct drive wind turbine. The success of this effort has required coordination and team involvement of federal agencies and the industrial partners. Designs of the wind turbine and component performance testing results will be presented. Plans for field testing of wind turbines, based on this design, in village energy systems in Alaska and in energy production at the South Pole Station will be discussed. Also included will be a discussion of terrestrial and space use of hybrid energy systems, including renewable energy sources, such as the wind turbine, to support remote communities.

  9. Beyond Coordination: Joint Planning and Program Execution. The IHPRPT Materials Working Group

    NASA Technical Reports Server (NTRS)

    Stropki, Michael A.; Cleyrat, Danial A.; Clinton, Raymond G., Jr.; Rogacki, John R. (Technical Monitor)

    2000-01-01

    "Partnership is more than just coordination," stated then-Commander of the Air Force Research Laboratory (AFRL), Major General Dick Paul (USAF-Ret), at this year's National Space and Missile Materials Symposium. His comment referred to the example of the joint planning and program execution provided by the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Materials Working Group (IMWG). Most people agree that fiscal pressures imposed by shrinking budgets have made it extremely difficult to build upon our existing technical capabilities. In times of sufficient budgets, building advanced systems poses no major difficulties. However, with today's budgets, realizing enhanced capabilities and developing advanced systems often comes at an unaffordable cost. Overcoming this problem represents both a challenge and an opportunity to develop new business practices that allow us to develop advanced technologies within the restrictions imposed by current funding levels. Coordination of technology developments between different government agencies and organizations is a valuable tool for technology transfer. However, rarely do the newly developed technologies have direct applicability to other ongoing programs. Technology requirements are typically determined up-front during the program planning stage so that schedule risk can be minimized. The problem with this process is that the costs associated with the technology development are often borne by a single program. Additionally, the potential exists for duplication of technical effort. Changing this paradigm is a difficult process but one that can be extremely worthwhile should the right opportunity arise. The IMWG is one such example where NASA, the DoD, and industry have developed joint requirements that are intended to satisfy multiple program needs. More than mere coordination, the organizations comprising the group come together as partners, sharing information and resources, proceeding from a joint roadmap.

  10. USAF Bioenvironmental Noise Data Handbook. Volume 155. CH-3 in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The CH-3 is a USAF tactical combat transport helicopter. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. Data are reported for nine locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C weighted and A weighted sound levels, preferred speech interference level, perceived noise levels and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  11. NASA technical advances in aircraft occupant safety. [clear air turbulence detectors, fire resistant materials, and crashworthiness

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1978-01-01

    NASA's aviation safety technology program examines specific safety problems associated with atmospheric hazards, crash-fire survival, control of aircraft on runways, human factors, terminal area operations hazards, and accident factors simulation. While aircraft occupants are ultimately affected by any of these hazards, their well-being is immediately impacted by three specific events: unexpected turbulence encounters, fire and its effects, and crash impact. NASA research in the application of laser technology to the problem of clear air turbulence detection, the development of fire resistant materials for aircraft construction, and to the improvement of seats and restraint systems to reduce crash injuries are reviewed.

  12. The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2000-12-08

    The X-40 sub-scale technology demonstrator and its U.S. Army CH-47 Chinook helicopter mothership fly over a dry lakebed runway during a captive-carry test flight from NASA's Dryden Flight Research Center, Edwards, California. The X-40 is attached to a sling which is suspended from the CH-47 by a 110-foot-long cable during the tests, while a small parachute trails behind to provide stability. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.

  13. Investigation Into The Needs of Part 135 Operators to Access Airports Restricted Under FAR Part 135 Sections 135.213, 135.219 and/or 135.225

    NASA Technical Reports Server (NTRS)

    Eckert, Clifford A.; Stough, H. P. (Technical Monitor)

    2002-01-01

    NASA and the FAA have joint interests and responsibilities for developing guidelines and standards for cockpit displays of Flight Information Services (FIS) information and for developing enhancements to the planned FAA Data Link (FISDL) services. NASA and the FAA have established responsibilities in connection with development tasks for enhancements to the FISDL project. This report is the result of NASA Task 2, "Weather Support Concept- Part 135 Operations." The objective of the task was to determine the needs of Part 135 operators as they relate to FAA Part 135 Sections 135.213, 135.219 and 135.225, which pertain to weather reporting requirements at destination airports. This report discusses the results of two questionnaires completed by volunteer Part 135 operators that questioned their operations, their needs for flying to airports without weather reporting compatibilities, and suggestions for modifying FARs 135.213, 135.219 and 135.225. The operators pointed out airports in areas of the CONUS that were needed for IFR operations but lacked weather reporting capabilities and they offered practical suggestions for changes to the FARs. Related to operators's needs, and discussed in this report, were the Fractional Ownership NPRM and the possible impact of GPS WAAS and LAAS approaches.

  14. Information Security: Serious Weakness Put State Department and FAA Operations at Risk

    DOT National Transportation Integrated Search

    1998-05-19

    Testimony focuses on the results of recent reviews of computer security at the Department of State and the Federal Aviation Administration (FAA). Makes specific recommendations for improving State and FAA's information security posture. Highlights be...

  15. Air Traffic Control: Immature Software Acquisition Processes Increase FAA System Acquisition Risks

    DOT National Transportation Integrated Search

    1997-03-01

    The General Accounting Office (GAO) at the request of Congress reviewed (1) : the maturity of Federal Aviation Administration's (FAA's) Air Traffic Control : (ATC) modernization software acquisition processes, and (2) the steps/actions : FAA has unde...

  16. Year 2000 Computing Crisis: FAA Must Act Quickly to Prevent System Failures

    DOT National Transportation Integrated Search

    1998-02-01

    Testimony before House of Representatives on FAA's reliance on information processing, where the agency stood remained at risk, and recommendations needed to increase the likelihood that FAA systems would be Year 2000 compliant by January.

  17. Air Traffic Control: Status of FAA's Standard Terminal Automation Replacement System Project

    DOT National Transportation Integrated Search

    1997-03-01

    Since the early 1980s, FAA's modernization efforts have experienced lengthy : schedule delays and substantial cost overruns. Because of such problems, in : 1994, FAA restructured its acquisition of the Terminal Advanced Automation : System into more ...

  18. USAF Dental Service Mercury Hygiene Report, Calendar Year 1980.

    DTIC Science & Technology

    1981-12-01

    the floor. Mercury Vapor Analyzer Used No. calibration No. of clinics Percent reported MV2 - Bacharach 81 67.5 14 Hopcalite tubes 8 6.7 Jerome model...instruments which could determine TWA: hopcalite tubes (8), Jerome with dosimeter coils (5), and 3M monitor (3). All 16 of these surveys showed mercury...vapor levels. This quantification requires sampling using the Jerome with a dosimeter coil, hopcalite tubes, or the 3M monitor. The USAF Occupational

  19. Drone Technology and Future Aviation on This Week @NASA – August 5, 2016

    NASA Image and Video Library

    2016-08-05

    On Aug. 2, NASA’s Associate Administrator for Aeronautics Jaiwon Shin, representatives from the Federal Aviation Administration (FAA), aviation industry leaders and the academic research community participated in a workshop hosted by the White House Office of Science and Technology Policy (OSTP) to discuss Drones and the Future of Aviation. The event was designed to explore airspace integration issues; public and commercial uses; and safety, security, and privacy concerns related to this emerging technology. NASA is working with the FAA on a traffic management system that will enable pilots of these aircraft to fly safely in the national airspace. Also, Maryland Storms Imaged from Space, Io’s Collapsing Atmosphere, Orion Crew Module Moved, AstrOlympics, and more!

  20. Joint Center for Satellite Data Assimilation Overview and Research Activities

    NASA Astrophysics Data System (ADS)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  1. NASA's B-52 takes the X-38 aloft for the seventh free flight of the program, July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The X-38, mounted beneath the right wing of NASA's B-52, climbed from the runway at Edwards Air Force Base for the seventh free flight test of the X-38, July 10, 2001. The X-38 was released at 37,500 feet and completed a thirteen minute glide flight to a landing on Rogers Dry Lake.

  2. NASA's B-52 takes the X-38 aloft for the seventh free flight of the program, July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-38, mounted beneath the right wing of NASA's B-52, climbed from the runway at Edwards Air Force Base for the seventh free flight test of the X-38, July 10, 2001. The X-38 was released at 37,500 feet and completed a thirteen minute glide flight to a landing on Rogers Dry Lake.

  3. HL-10 in flight, turning to line up with lakebed runway 18

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This photo shows the HL-10 in flight, turning to line up with lakebed runway 18. The pilot for this flight, the 29th of the HL-10 series, was Bill Dana. The HL-10 reached a peak altitude of 64,590 feet and a top speed of Mach 1.59 on this particular flight. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful flight testing of the HL-10. These lessons, when combined with information from it's sister ship, the M2-F2/F3, provided an excellent starting

  4. Air Traffic Control: Complete and Enforced Architecture Needed for FAA Systems Modernization

    DOT National Transportation Integrated Search

    1997-02-01

    Because of the size, complexity, and importance of FAA's air traffic control : (ATC) modernization, the General Accounting Office (GAO) reviewed it to : determine (1) whether FAA has a target architecture(s), and associated : subarchitectures, to gui...

  5. Airport Surface Delays and Causes: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Chin, David K.; Goldberg, Jay; Tang, Tammy

    1997-01-01

    This report summarizes FAA Program Analysis and Operations Research Service (ASD-400)/Lockheed Martin activities and findings related to airport surface delays and causes, in support of NASA Langley Research Center's Terminal Area Productivity (TAP) Program. The activities described in this report were initiated in June 1995. A preliminary report was published on September 30, 1995. The final report incorporates data collection forms filled out by traffic managers, other FAA staff, and an airline for the New York City area, some updates, data previously requested from various sources to support this analysis, and further quantification and documentation than in the preliminary report. This final report is based on data available as of April 12, 1996. This report incorporates data obtained from review and analysis of data bases and literature, discussions/interviews with engineers, air-traffic staff, other FAA technical personnel, and airline staff, site visits, and a survey on surface delays and causes. It includes analysis of delay statistics; preliminary findings and conclusions on surface movement, surface delay sources and causes, runway occupancy time (ROT), and airport characteristics impacting surface operations and delays; and site-specific data on the New York City area airports, which are the focus airports for this report.

  6. Tests of highly loaded skids on a concrete runway

    NASA Technical Reports Server (NTRS)

    Stubbs, Sandy M.; Daugherty, Robert H.

    1994-01-01

    Skids have been used at various times for aircraft landing gear ever since the Wright Flyer appeared in the early 1900's. Typically, skids have been employed as aircraft landing gear either at low speeds or at low bearing pressures. Tests were conducted to examine the friction and wear characteristics of various metals sliding on a rough, grooved concrete runway. The metals represented potential materials for an overload protection skid for the Space Shuttle orbiter. Data from tests of six skid specimens conducted at higher speeds and bearing pressures than those of previous tests in the open literature are presented. Skids constructed of tungsten with embedded carbide chips exhibited the lowest wear, whereas a skid constructed of Inconel 718 exhibited high wear rates. Friction coefficients for all the skid specimens were moderate and would provide adequate stopping performance on a long runway. Because of its low wear rate, a skid constructed of tungsten with embedded carbide chips is considered to be a likely candidate for an aircraft skid or overload protection skid.

  7. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Astronaut and Expeditions 23 and 24 Flight Engineer, Tracy Caldwell Dyson, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Caldwell Dyson recently returned from a six-month stay aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  8. NASA Administrator Dan Goldin and Bob Sieck on SLF

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA Administrator Daniel S. Goldin (center) and KSC Director of Shuttle Operations Robert B. Sieck (right) discuss the successful conclusion of the STS-81 mission with Mission Commander Michael A. Baker (left). They are underneath the Space Shuttle orbiter Atlantis after the space plane landed on Runway 33 at the KSC Shuttle Landing Facility at 9:22:44 a.m. EST Jan. 22 to conclude the fifth Shuttle-Mir docking mission. At main gear touchdown, the STS-81 mission duration was 10 days, 4 hours, 55 minutes. This was the 34th KSC landing in Shuttle history.

  9. 14 CFR 145.223 - FAA inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND... compliance with this chapter. (b) A certificated repair station may not contract for the performance of a... noncertificated person that the FAA may make an inspection and observe the performance of the noncertificated...

  10. 14 CFR 157.7 - FAA determinations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (a) The FAA will conduct an aeronautical study of an airport proposal and, after consultations with... existing or contemplated traffic patterns of neighboring airports; the effects the proposed action would... local law, ordinance or regulation, or state or other Federal regulation. Aeronautical studies and...

  11. 14 CFR 157.7 - FAA determinations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) The FAA will conduct an aeronautical study of an airport proposal and, after consultations with... existing or contemplated traffic patterns of neighboring airports; the effects the proposed action would... local law, ordinance or regulation, or state or other Federal regulation. Aeronautical studies and...

  12. Simplified Aircraft-Based Paired Approach: Concept Definition and Initial Analysis

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Lohr, Gary W.; McKissick, Burnell T.; Abbott, Terence S.; Geurreiro, Nelson M.; Volk, Paul

    2013-01-01

    Simplified Aircraft-based Parallel Approach (SAPA) is an advanced concept proposed by the Federal Aviation Administration (FAA) to support dependent parallel approach operations to runways with lateral spacing closer than 2500 ft. At the request of the FAA, NASA performed an initial assessment of the potential performance and feasibility of the SAPA concept, including developing and assessing an operational implementation of the concept and conducting a Monte Carlo wake simulation study to examine the longitudinal spacing requirements. The SAPA concept was shown to have significant operational advantages in supporting the pairing of aircraft with dissimilar final approach speeds. The wake simulation study showed that support for dissimilar final approach speeds could be significantly enhanced through the use of a two-phased altitudebased longitudinal positioning requirement, with larger longitudinal positioning allowed for higher altitudes out of ground effect and tighter longitudinal positioning defined for altitudes near and in ground effect. While this assessment is preliminary and there are a number of operational issues still to be examined, it has shown the basic SAPA concept to be technically and operationally feasible.

  13. Fall of the Fighter Generals: The Future of USAF Leadership

    DTIC Science & Technology

    2001-06-01

    World War II, Colonel S . F. Giffen argued that one of the great lessons to be...Generals: The Future of USAF Leadership Contract Number Grant Number Program Element Number Author( s ) Danskine, Wm. Bruce Project Number Task...results of World War II led to the separation of part of the Army to form an independent Air Force. Or the transition can be smooth, such as when the

  14. 5. Credit USAF, ca. 1942. Original housed in the Photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Credit USAF, ca. 1942. Original housed in the Photograph Files, AFFTC/HO, Edwards AFB, California. View of Bell Aircraft XP-59A Airacomet in flight. This was the United States military's first jet propelled aircraft which was extensively flight tested in secrecy at the Muroc Flight Test Base (North Base). - Edwards Air Force Base, North Base, North Base Road, Boron, Kern County, CA

  15. Supplier Development: A Long-Term Supportability Option For USAF Engines

    DTIC Science & Technology

    2012-02-01

    Supply Chain Management Practices..................8 AF and DoD Regulations "Limitation or Hoax" Can USAF Develop Suppliers...integrated supply chain management (SCM) process providing engines and parts, aiding in the ability of the depots to meet the warfighter‟s needs. The... supply chain has struggled in the past to support the warfighter with enough engines to accomplish the mission. The engine supply chain management

  16. 4. Credit USAF, ca. 1945. Original housed in the Muroc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit USAF, ca. 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Photographic copy of photograph captioned "Hangar No. 2 Hydraulics Room." Location within Building 4402 not determined. - Edwards Air Force Base, North Base, Hangar No. 2, First & A Streets, Boron, Kern County, CA

  17. USAF Environmental Noise Data Handbook. Volume 150: C-140 in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The C-140 is a USAF transport aircraft used for operational support. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Date are reported for seven locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  18. FAA (Federal Aviation Administration) Aviation Forecasts: Fiscal Years 1989-2000

    DTIC Science & Technology

    1989-03-01

    predict interim business cycles. FAA FORECAST ECONOMIC ASSUMPTIONS FISCAL YEARS 1989 - 2000 HISTORICAL FORECAST PERCENT AVERAGE ANNUAL GROWTH ECONOMIC ...During previous economic cycles, changes in the general aviation industry have generally paralleled changes in business activity. Empirical results have...FiFAA-APO 89- MARCH 198 US eat e T of 0rrs orci Fedra Aviatio Ad instato 0 NA II I1 Technical Report Documentation Page 1 ReotN.2. Government

  19. NASA's B-52B launch aircraft takes off carrying the second X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 7.

  20. NASA's B-52B launch aircraft takes off carrying the third X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, California, on November 16, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 10.

  1. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    NASA Astronaut and Expeditions 23 and 24 Flight Engineer, Tracy Caldwell Dyson, far left, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Caldwell Dyson recently returned from a six-month stay aboard the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  2. Application of Pi Preform Composite Joints in Fabrication of NASA Composite Crew Module Demonstration Structure

    NASA Technical Reports Server (NTRS)

    Higgins, John E.; Pelham, Larry

    2008-01-01

    This paper will describe unique and extensive use of pre-woven and impregnated pi cross-sections in fabrication of a carbon composite demonstration structure for the Composite Crew Module (CCM) Program. The program is managed by the NASA Safety and Engineering Center with participants from ten NASA Centers and AFRL. Multiple aerospace contractors are participating in the design development, tooling and fabrication effort as well. The goal of the program is to develop an agency wide design team for composite habitable spacecraft. The specific goals for this development project are: a) To gain hands on experience in design, building and testing a composite crew module. b) To validate key assumptions by resolving composite spacecraft design details through fabrication and testing of hardware. This paper will focus on the design and fabrication issues supporting selection of the Lockheed Martin patented Pi pre-form to provide sound composite joints a numerous locations in the structure. This abstract is based on Preliminary Design data. The final design will continue to evolve through the fall of 2007 with fabrication mostly completed by conference date.

  3. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program

    NASA Technical Reports Server (NTRS)

    Roudakov, Alexander S.; Semenov, Vyacheslav L.; Hicks, John W.

    1998-01-01

    Under a contract with NASA, a joint Central Institute of Aviation Motors (CIAM) and NASA team recently conducted the fourth flight test of a dual-mode scramjet aboard the CIAM Hypersonic Flying Laboratory, 'Kholod'. With an aim test Mach 6.5 objective, the successful launch was conducted at the Sary Shagan test range in central Kazakstan on February 12, 1998. Ground-launch, rocket boosted by a modified Russian SA5 missile, the redesigned scramjet was accelerated to a new maximum velocity greater than Mach 6.4. This launch allowed for the measurement of the fully supersonic combustion mode under actual flight conditions. The primary program objective was the flight-to-ground correlation of measured data with preflight analysis and wind-tunnel tests in Russia and potentially in the United States. This paper describes the development and objectives of the program as well as the technical details of the scramjet and SA5 redesign to achieve the Mach 6.5 aim test condition. An overview of the launch operation is also given. Finally, preliminary flight test results are presented and discussed.

  4. Joint Force Quarterly. Number 19, Summer 1998

    DTIC Science & Technology

    1998-08-01

    Shelton, USA Publisher ADVISORY COMMITTEE LTG Richard A. Chilcoat, USA ■ National Defense University Chairman BG David A. Armstrong, USA (Ret.) ■ Office of...College Maj Gen Richard L. Engel, USAF ■ Industrial College of the Armed Forces Maj Gen Timothy A. Kinnan, USAF ■ Air War College Col David M. Lumsden...BOARD Hans Binnendijk ■ National Defense University Chairman Richard K. Betts ■ Columbia University Col J. Lee Blank, USAF ■ National War College Col

  5. Ground effects in FAA's Integrated Noise Model

    DOT National Transportation Integrated Search

    2000-01-01

    The lateral attenuation algorithm in the Federal Aviation Administration's (FAA) Integrated Noise Model (INM) has historically been based on the two regression equations described in the Society of Automotive Engineers' (SAE) Aerospace Information Re...

  6. Women's History Month at NASA

    NASA Image and Video Library

    2011-03-14

    Valerie Jarrett, senior advisor and assistant to the president for Public Engagement and Intergovernmental Affairs for the Obama administration, speaks at a Women's History Month event at NASA Headquarters, Wednesday, March 16, 2011 in Washington. The event entitled Women Inspiring the Next Generation to Reveal the Unknown is a joint venture with NASA and the White House Council on Women and Girls. Photo Credit: (NASA/Carla Cioffi)

  7. Application of frequency domain handling qualities criteria to the longitudinal landing task

    NASA Technical Reports Server (NTRS)

    Sarrafian, S. K.; Powers, B. G.

    1985-01-01

    Under NASA sponsorship, an in-flight simulation of the longitudinal handling qualities of several configurations for the approach and landing tasks was performed on the USAF/AFWAL Total In-Flight Simulator by the Calspan Corporation. The basic configuration was a generic transport airplane with static instability. The control laws included proportional plus integral gain loops to produce pitch-rate and angle-of-attack feedback loops. The evaluation task was a conventional visual approach to a flared touchdown at a designated spot on the runway with a lateral offset. The general conclusions were that the existing criteria are based on pitch-attitude response and that these characteristics do not adequately discriminate between the good and bad configurations of this study. This paper describes the work that has been done to further develop frequency-based criteria in an effort to provide better correlation with the observed data.

  8. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  9. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  10. FAA Air Traffic Control Operations Concepts. Volume 7. ATCT (Airport Traffic Control Towers) Tower Controllers

    DTIC Science & Technology

    1989-04-21

    kift rIn FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS V olum e V iI:.................... ATCT Tower Controllers AmELECTE JUL 2 11989 21 April 1989 A...01 022.3013209-87-B 11 a FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS VOLUME VII: ATCT TOWER CONTROLLERS CDRL Bl 12, VOL. VII CONTRACT DTF-AO1-85-Y...INCORPORATED 7150 Campus Drive, Suite 100 Colorado Springs, CO 80920 (719) 590-5100 DOT/FAA/AP-87-0i (VOL#7) 21 April 1989 FAA AIR TRAFFIC CONTROL OPERATIONS

  11. NASA's approach to space commercialization

    NASA Technical Reports Server (NTRS)

    Gillam, Isaac T., IV

    1986-01-01

    The NASA Office of Commercial Programs fosters private participation in commercially oriented space projects. Five Centers for the Commercial Development of Space encourage new ideas and perform research which may yield commercial processes and products for space ventures. Joint agreements allow companies who present ideas to NASA and provide flight hardware access to a free launch and return from orbit. The experimenters furnish NASA with sufficient data to demonstrate the significance of the results. Ground-based tests are arranged for smaller companies to test the feasibility of concepts before committing to the costs of developing hardware. Joint studies of mutual interest are performed by NASA and private sector researchers, and two companies have signed agreements for a series of flights in which launch costs are stretched out to meet projected income. Although Shuttle flights went on hold following the Challenger disaster, extensive work continues on the preparation of commercial research payloads that will fly when Shuttle flights resume.

  12. 14 CFR 169.5 - FAA determination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false FAA determination. 169.5 Section 169.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... facility is reasonably necessary for use in air commerce or in the interests of national defense; that it...

  13. 14 CFR 169.5 - FAA determination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false FAA determination. 169.5 Section 169.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... facility is reasonably necessary for use in air commerce or in the interests of national defense; that it...

  14. 14 CFR 169.5 - FAA determination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false FAA determination. 169.5 Section 169.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... facility is reasonably necessary for use in air commerce or in the interests of national defense; that it...

  15. 14 CFR 169.5 - FAA determination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false FAA determination. 169.5 Section 169.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... facility is reasonably necessary for use in air commerce or in the interests of national defense; that it...

  16. 14 CFR 169.5 - FAA determination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false FAA determination. 169.5 Section 169.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS... facility is reasonably necessary for use in air commerce or in the interests of national defense; that it...

  17. Aviation Safety: FAA Generally Agrees With But is Slow in Implementing Safety Recommendations

    DOT National Transportation Integrated Search

    1996-09-23

    The Federal Aviation Administration (FAA), within the Department of : Transportation (DOT), is responsible for promoting safety in civil air : transportation. General Accounting Office (GAO) and DOT's Office of Inspector : General review FAA's safety...

  18. Credit USAF, 7 September 1945. Original housed in the Muroc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit USAF, 7 September 1945. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. View of the mess hall, looking to the north. Sign over door reads "MFTB Muroc Flight Test Base Base Mess." - Edwards Air Force Base, North Base, Base Mess Hall T-27, Third Street, Boron, Kern County, CA

  19. USAF (United States Air Force) bioenvironmental noise data handbook. Volume 2: Index

    NASA Astrophysics Data System (ADS)

    Cole, J. N.; Peachey, N. J.

    1983-03-01

    This report is an index which identifies the individual volumes published during the 1975-1982 period by the Air Force Aerospace Medical Research Laboratory (AFAMRL) as a multi-volume report, ""USAF Bioenvironmental Noise Data Handbook'', AMRL-TR-75-50 and lists those aircraft, ground equipment and other systems reported there in.

  20. KC-135 Winglet Program Review

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a joint NASA/USAF program to develop flight test winglets on a KC-135 aircraft are reviewed. The winglet development from concept through wind tunnel and flight tests is discussed. Predicted, wind tunnel, and flight test results are compared for the performance, loads and flutter characteristics of the winglets. The flight test winglets had a variable winglet cant and incidence angle capability which enabled a limited evaluation of the effects of these geometry changes.