Sample records for joint fluoroscopy mri

  1. Biplanar x-ray fluoroscopy for sacroiliac joint fusion.

    PubMed

    Vanaclocha-Vanaclocha, Vicente; Verdú-López, Francisco; Sáiz-Sapena, Nieves; Herrera, Juan Manuel; Rivera-Paz, Marlon

    2016-07-01

    Chronic pain originating from the sacroiliac joint (SI) can cause severe dysfunction. Although many patients respond to conservative management with NSAIDs, some do need further treatment in the form of SI joint fusion (SIJF). To achieve safe and successful SIJF, intraoperative x-ray fluoroscopy is mandatory to avoid serious damages to nearby vascular and neural structures. Each step of the procedure has to be confirmed by anteroposterior (AP) and lateral projections. With a single-arm x-ray, the arch has to be moved back and forth for the AP and lateral projections, and this lengthens the procedure. To achieve the same results in less time, the authors introduced simultaneous biplanar fluoroscopy with 2 x-ray arches. After the patient is positioned prone with the legs spread apart in the so-called Da Vinci position, one x-ray arch for the lateral projection is placed at a right angle to the patient, and a second x-ray machine is placed with its arch between the legs of the patient. This allows simultaneous AP and lateral x-ray projections and, in the authors' hands, markedly speeds up the procedure. Biplanar fluoroscopy allows excellent AP and lateral projections to be made quickly at any time during the surgical procedure. This is particularly useful in cases of bilateral SI joint fusion if both sides are done at the same time. The video can be found here: https://youtu.be/TX5gz8c765M .

  2. Fluoroscopy-guided Sacroiliac Joint Steroid Injection for Low Back Pain in a Patient with Osteogenesis Imperfecta.

    PubMed

    Dawson, P U; Rose, R E; Wade, N A

    2015-09-01

    Osteogenesis imperfecta, also known as 'brittle bone disease', is a genetic connective tissue disease. It is characterized by bone fragility and osteopenia (low bone density). In this case, a 57-year old female presented to the University Hospital of the West Indies (UHWI), Physical Medicine and Rehabilitation Clinic with left low back pain rated 6/10 on the numeric rating scale (NRS). Clinically, the patient had sacroiliac joint mediated pain although X-rays did not show the sacroiliac joint changes. Fluoroscopy-guided left sacroiliac joint steroid injection was done. Numeric rating scale and Oswestry Disability Index (ODI) questionnaire were used to evaluate outcome. This was completed at baseline, one week follow-up and at eight weeks post fluoroscopy-guided sacroiliac joint steroid injection. Numeric rating scale improved from 6/10 before the procedure to 0/10 post procedure, and ODI questionnaire score improved from a moderate disability score of 40% to a minimal disability score of 13%. Up to eight weeks, the NRS was 0/10 and ODI remained at minimal disability of 15%. Fluoroscopy-guided sacroiliac joint injection is a known diagnostic and treatment method for sacroiliac joint mediated pain. To our knowledge, this is the first case published on the use of fluoroscopy-guided sacroiliac joint steroid injection in the treatment of sacroiliac joint mediated low back pain in a patient with osteogenesis imperfecta.

  3. Modified fluoroscopy-guided sacroiliac joint injection: a technical report.

    PubMed

    Liliang, Po-Chou; Liang, Cheng-Loong; Lu, Kang; Weng, Hui-Ching; Syu, Fei-Kai

    2014-09-01

    Sacroiliac joint (SIJ) injection can occasionally be challenging. We describe our experience in using conventional technique, and we developed an adjustment to overcome difficulties incurred. Conventional technique required superimposition of the posterior and anterior SIJ lines. If this technique failed to provide entry into the joint, fluoroscopy was slightly adjusted to obtain an oblique view. Of 50 SIJ injections, 29 (58%; 44-72%) were successfully performed using conventional technique. In another 21 procedures, 18 (85.7%; 64-99%) were subsequently completed using oblique view technique. The medial joint line, viewed from this angle, corresponded to the posterior joint line in 17 cases. The lateral joint line corresponded to the posterior joint line in one case. Oblique view technique can improve the success rate of SIJ injection. Wiley Periodicals, Inc.

  4. Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions: an iliac angioplasty exemplar case study.

    PubMed

    Fernández-Gutiérrez, Fabiola; Martínez, Santiago; Rube, Martin A; Cox, Benjamin F; Fatahi, Mahsa; Scott-Brown, Kenneth C; Houston, J Graeme; McLeod, Helen; White, Richard D; French, Karen; Gueorguieva, Mariana; Immel, Erwin; Melzer, Andreas

    2015-10-01

    A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages' durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education.

  5. Value of Examination Under Fluoroscopy for the Assessment of Sacroiliac Joint Dysfunction.

    PubMed

    Eskander, Jonathan P; Ripoll, Juan G; Calixto, Frank; Beakley, Burton D; Baker, Jeffrey T; Healy, Patrick J; Gunduz, O H; Shi, Lizheng; Clodfelter, Jamie A; Liu, Jinan; Kaye, Alan D; Sharma, Sanjay

    2015-01-01

    Pain emanating from the sacroiliac (SI) joint can have variable radiation patterns. Single physical examination tests for SI joint pain are inconsistent with multiple tests increasing both sensitivity and specificity. To evaluate the use of fluoroscopy in the diagnosis of SI joint pain. Prospective double blind comparison study. Pain clinic and radiology setting in urban Veterans Administration (VA) in New Orleans, Louisiana. Twenty-two adult men, patients at a southeastern United States VA interventional pain clinic, presented with unilateral low back pain of more than 2 months' duration. Patients with previous back surgery were excluded from the study. Each patient was given a Gapping test, Patrick (FABERE) test, and Gaenslen test. A second blinded physician placed each patient prone under fluoroscopic guidance, asking each patient to point to the most painful area. Pain was provoked by applying pressure with the heel of the palm in that area to determine the point of maximum tenderness. The area was marked with a radio-opaque object and was placed on the mark with a fluoroscopic imgage. A site within 1 cm of the SI joint was considered as a positive test. This was followed by a diagnostic injection under fluoroscopy with 1 mL 2% lidocaine. A positive result was considered as more than 2 hours of greater than 75% reduction in pain. Then, in 2-3 days this was followed by a therapeutic injection under fluoroscopy with 1 mL 0.5% bupivacaine and 40 mg methylprednisolone. Each patient was reassessed after 6 weeks. The sensitivity and specificity in addition to the positive and negative predictive values were determined for both the conventional examinations, as well as the examination under fluoroscopy. Finally, a receiver operating characteristic (ROC) curve was constructed to evaluate test performance. The sensitivity and specificity of the fluoroscopic examination were 0.82 and 0.80 respectively; Positive predictive value and negative predictive value were 0.93 and

  6. Is There a Relationship Between Body Mass Index and Fluoroscopy Time During Sacroiliac Joint Injection? A Multicenter Cohort Study.

    PubMed

    McCormick, Zachary L; Cushman, Daniel; Lee, David T; Scholten, Paul; Chu, Samuel K; Babu, Ashwin N; Caldwell, Mary; Ziegler, Craig; Ashraf, Humaira; Sundar, Bindu; Clark, Ryan; Gross, Claire; Cara, Jeffrey; McCormick, Kristen; Ross, Brendon; Smith, Clark C; Press, Joel; Smuck, Matthew; Walega, David R

    2016-07-01

    To determine the relationship between BMI and fluoroscopy time during intra-articular sacroiliac joint (SIJ) injections performed for a pain indication. Multicenter retrospective cohort study. Three academic, outpatient pain treatment centers. Patients who underwent fluoroscopy guided SIJ injection with encounter data regarding fluoroscopy time during the procedure and body mass index (BMI). Median and 25-75% Interquartile Range (IQR) fluoroscopy time. 459 SIJ injections (350 patients) were included in this study. Patients had a median age of 57 (IQR 44, 70) years, and 72% were female. The median BMI in the normal weight, overweight, and obese groups were 23 (IQR 21, 24), 27 (IQR 26, 29), and 35 (IQR 32, 40), respectively. There was no significant difference in the median fluoroscopy time recorded between these BMI classes (p = 0.45). First-time SIJ injection (p = 0.53), bilateral injection (p = 0.30), trainee involvement (p = 0.47), and new trainee involvement (trainee participation during the first 2 months of the academic year) (p = 0.85) were not associated with increased fluoroscopy time for any of the three BMI categories. Fluoroscopy time during sacroiliac joint injection is not increased in patients who are overweight or obese, regardless of whether a first-time sacroiliac joint injection was performed, bilateral injections were performed, a trainee was involved, or a new trainee was involved. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study.

    PubMed

    Roach, Koren E; Wang, Bibo; Kapron, Ashley L; Fiorentino, Niccolo M; Saltzman, Charles L; Bo Foreman, K; Anderson, Andrew E

    2016-09-01

    Measurements of joint kinematics are essential to understand the pathomechanics of ankle disease and the effects of treatment. Traditional motion capture techniques do not provide measurements of independent tibiotalar and subtalar joint motion. In this study, high-speed dual fluoroscopy images of ten asymptomatic adults were acquired during treadmill walking at 0.5 m/s and 1.0 m/s and a single-leg, balanced heel-rise. Three-dimensional (3D) CT models of each bone and dual fluoroscopy images were used to quantify in vivo kinematics for the tibiotalar and subtalar joints. Dynamic tibiotalar and subtalar mean joint angles often exhibited opposing trends during captured stance. During both speeds of walking, the tibiotalar joint had significantly greater dorsi/plantarflexion (D/P) angular ROM than the subtalar joint while the subtalar joint demonstrated greater inversion/eversion (In/Ev) and internal/external rotation (IR/ER) than the tibiotalar joint. During balanced heel-rise, only D/P and In/Ev were significantly different between the tibiotalar and subtalar joints. Translational ROM in the anterior/posterior (AP) direction was significantly greater in the subtalar than the tibiotalar joint during walking at 0.5 m/s. Overall, our results support the long-held belief that the tibiotalar joint is primarily responsible for D/P, while the subtalar joint facilitates In/Ev and IR/ER. However, the subtalar joint provided considerable D/P rotation, and the tibiotalar joint rotated about all three axes, which, along with translational motion, suggests that each joint undergoes complex, 3D motion.

  8. Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard.

    PubMed

    Nichols, Jennifer A; Roach, Koren E; Fiorentino, Niccolo M; Anderson, Andrew E

    2016-09-01

    Evidence suggests that the tibiotalar and subtalar joints provide near six degree-of-freedom (DOF) motion. Yet, kinematic models frequently assume one DOF at each of these joints. In this study, we quantified the accuracy of kinematic models to predict joint angles at the tibiotalar and subtalar joints from skin-marker data. Models included 1 or 3 DOF at each joint. Ten asymptomatic subjects, screened for deformities, performed 1.0m/s treadmill walking and a balanced, single-leg heel-rise. Tibiotalar and subtalar joint angles calculated by inverse kinematics for the 1 and 3 DOF models were compared to those measured directly in vivo using dual-fluoroscopy. Results demonstrated that, for each activity, the average error in tibiotalar joint angles predicted by the 1 DOF model were significantly smaller than those predicted by the 3 DOF model for inversion/eversion and internal/external rotation. In contrast, neither model consistently demonstrated smaller errors when predicting subtalar joint angles. Additionally, neither model could accurately predict discrete angles for the tibiotalar and subtalar joints on a per-subject basis. Differences between model predictions and dual-fluoroscopy measurements were highly variable across subjects, with joint angle errors in at least one rotation direction surpassing 10° for 9 out of 10 subjects. Our results suggest that both the 1 and 3 DOF models can predict trends in tibiotalar joint angles on a limited basis. However, as currently implemented, neither model can predict discrete tibiotalar or subtalar joint angles for individual subjects. Inclusion of subject-specific attributes may improve the accuracy of these models. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Sports-Related Groin Pain Secondary to Symphysis Pubis Disorders: Correlation Between MRI Findings and Outcome After Fluoroscopy-Guided Injection of Steroid and Local Anesthetic.

    PubMed

    Byrne, Caoimhe A; Bowden, Dermot J; Alkhayat, Abdullah; Kavanagh, Eoin C; Eustace, Stephen J

    2017-08-01

    The objective of our study was to correlate patterns of injury on preprocedural MRI with outcome after targeted fluoroscopy-guided steroid and local anesthetic injection of the symphysis pubis and its muscular attachments in a group of athletes with chronic groin pain. Forty-five patients with chronic sports-related groin pain underwent MRI of the pelvis and a targeted fluoroscopy-guided symphyseal corticosteroid and local anesthetic injection. Preprocedural MRI was reviewed. The presence or absence of a "superior cleft" sign (i.e., rectus abdominis-adductor longus attachment microtearing), "secondary cleft" sign (i.e., short adductor [gracilis, adductor brevis, and pectineus muscles] attachment microtearing), osteitis pubis, and extrasymphyseal pelvic abnormalities was recorded. Patients were followed up a mean time of 23 months after the procedure, and outcome was recorded. Correlation was made between preprocedural MRI findings and outcome. Forty-two percent of the patients had an isolated superior cleft sign, 7% had an isolated secondary cleft sign, and 11% had isolated osteitis pubis. Thirty-one percent of patients had a more complex injury, and 9% had a normal symphysis pubis. Overall, 89% of the patients experienced an improvement in symptoms. The response was sustained after a minimum of 6 months in 58% of the patients. The presence of the superior cleft sign was more frequently associated with a complete recovery. Fluoroscopy-guided corticosteroid symphyseal injection is a safe and effective treatment of sports-related groin pain. It is more frequently associated with a complete recovery in patients who display an isolated superior cleft sign on MRI. MRI not only is useful in characterizing groin injuries but also may be helpful in predicting response to therapeutic injection.

  10. [Determination of joint contact area using MRI].

    PubMed

    Yoshida, Hidenori; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji

    2009-10-20

    Elevated contact stress on the articular joints has been hypothesized to contribute to articular cartilage wear and joint pain. However, given the limitations of using contact stress and areas from human cadaver specimens to estimate articular joint stress, there is need for an in vivo method to obtain such data. Magnetic resonance imaging (MRI) has been shown to be a valid method of quantifying the human joint contact area, indicating the potential for in vivo assessment. The purpose of this study was to describe a method of quantifying the tibiofemoral joint contact area using MRI. The validity of this technique was established in porcine cadaver specimens by comparing the contact area obtained from MRI with the contact area obtained using pressure-sensitive film (PSF). In particular, we assessed the actual condition of contact by using the ratio of signal intensity of MR images of cartilage surfaces. Two fresh porcine cadaver knees were used. A custom loading apparatus was designed to apply a compressive load to the tibiofemoral joint. We measured the contact area by using MRI and PSF methods. When the ratio of signal intensity of the cartilage surface was 0.9, the error of the contact area between the MR image and PSF was about 6%. These results suggest that this MRI method may be a valuable tool in quantifying joint contact area in vivo.

  11. Fluoroscopy-Guided Sacroiliac Intraarticular Injection via the Middle Portion of the Joint.

    PubMed

    Kurosawa, Daisuke; Murakami, Eiichi; Aizawa, Toshimi

    2017-09-01

    Sacroiliac intraarticular injection is necessary to confirm sacroiliac joint (SIJ) pain and is usually performed via the caudal one-third portion of the joint. However, this is occasionally impossible for anatomical reasons, and the success rate is low in clinical settings. We describe a technique via the middle portion of the joint. Observational study. Enrolled were 69 consecutive patients (27 men and 42 women, with an average age of 53 years) in whom the middle portion of 100 joints was targeted. With the patient lying prone-oblique with the painful side down, a spinal needle was inserted into the middle portion of the joint. Subsequently, the fluoroscopy tube was angled at a caudal tilt of 25-30° to clearly detect the recess between the ilium and sacrum and the needle depth and direction. When the needle reached the posterior joint line, 2% lidocaine was injected after the contrast medium outlined the joint. The success rate of the injection method was 80% (80/100). Among 80 successful cases, four were previously unsuccessful when the conventional method was used. Intraarticular injection using the new technique was unsuccessful in 20 joints; in three of these cases, the conventional method proved successful, and no techniques were successful in the other 17 cases. The injection technique via the middle portion of the joint can overcome some of the difficulties of the conventional injection method and can improve the chances of successful intraarticular injection. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Evaluation of RSA set-up from a clinical biplane fluoroscopy system for 3D joint kinematic analysis.

    PubMed

    Bonanzinga, Tommaso; Signorelli, Cecilia; Bontempi, Marco; Russo, Alessandro; Zaffagnini, Stefano; Marcacci, Maurilio; Bragonzoni, Laura

    2016-01-01

    dinamic roentgen stereophotogrammetric analysis (RSA), a technique currently based only on customized radiographic equipment, has been shown to be a very accurate method for detecting three-dimensional (3D) joint motion. The aim of the present work was to evaluate the applicability of an innovative RSA set-up for in vivo knee kinematic analysis, using a biplane fluoroscopic image system. To this end, the Authors describe the set-up as well as a possible protocol for clinical knee joint evaluation. The accuracy of the kinematic measurements is assessed. the Authors evaluated the accuracy of 3D kinematic analysis of the knee in a new RSA set-up, based on a commercial biplane fluoroscopy system integrated into the clinical environment. The study was organized in three main phases: an in vitro test under static conditions, an in vitro test under dynamic conditions reproducing a flexion-extension range of motion (ROM), and an in vivo analysis of the flexion-extension ROM. For each test, the following were calculated, as an indication of the tracking accuracy: mean, minimum, maximum values and standard deviation of the error of rigid body fitting. in terms of rigid body fitting, in vivo test errors were found to be 0.10±0.05 mm. Phantom tests in static and kinematic conditions showed precision levels, for translations and rotations, of below 0.1 mm/0.2° and below 0.5 mm/0.3° respectively for all directions. the results of this study suggest that kinematic RSA can be successfully performed using a standard clinical biplane fluoroscopy system for the acquisition of slow movements of the lower limb. a kinematic RSA set-up using a clinical biplane fluoroscopy system is potentially applicable and provides a useful method for obtaining better characterization of joint biomechanics.

  13. Diagnostic and interventional MRI of the sacroiliac joints using a 1.5-T open-bore magnet: a one-stop-shopping approach.

    PubMed

    Fritz, Jan; Henes, Jörg C; Thomas, Christoph; Clasen, Stephan; Fenchel, Michael; Claussen, Claus D; Lewin, Jonathan S; Pereira, Philippe L

    2008-12-01

    The objective of our study was to prospectively test the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively. Over a 12-month period, 60 patients (32 women and 28 men; median age, 28 years; age range, 18-49 years) with chronic lower back pain suspected to originate from the sacroiliac joints were enrolled in the study. Based on diagnostic MRI findings, MR fluoroscopy-guided sacroiliac joint injections were performed in 57 (95%) patients. Diagnostic injections (35, 58.3%) were performed if nonspecific or degenerative MRI findings were present. Therapeutic injections (22, 36.7%) were performed in patients with inflammatory arthropathy. In three (5%) patients, no injections were performed. Technical effectiveness was assessed by analyzing, first, the rate of intraarticular injection; second, the time required for the procedure; third, image quality; and, fourth, occurrence of complications and clinical outcome by analyzing pain intensity changes and volume and signal intensity of sacroiliac inflammatory changes. The rate of intraarticular injection was 90.4% (103/114). The mean length of time for the procedure was 50 minutes (range, 34-103 minutes), with exponential shortening over time (p < or = 0.001). The contrast-to-noise ratios of the needle and tissues were sufficiently different for excellent delineation of the needle. No complications occurred. Diagnostic injections identified the sacroiliac joints as generating significant pain in 46.9% (15/32) of the patients. Three months after therapeutic injections, pain intensity had decreased by 62.5% (p < or = 0.001) and the volume and relative signal intensity of inflammatory changes had decreased by 37.5% (p = 0.003) and 47.6% (p < or = 0.001), respectively. We accept the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively for comprehensive diagnosis and therapy of

  14. Ultrasound-guided versus fluoroscopy-guided sacroiliac joint intra-articular injections in the noninflammatory sacroiliac joint dysfunction: a prospective, randomized, single-blinded study.

    PubMed

    Jee, Haemi; Lee, Ji-Hae; Park, Ki Deok; Ahn, Jaeki; Park, Yongbum

    2014-02-01

    To compare the short-term effects and safety of ultrasound (US)-guided sacroiliac joint (SIJ) injections with fluoroscopy (FL)-guided SIJ injections in patients with noninflammatory SIJ dysfunction. Prospective, randomized controlled trial. University hospital. Patients (N=120) with noninflammatory sacroiliac arthritis were enrolled. All procedures were performed using an FL or US apparatus. Subjects were randomly assigned to either the FL or US group. Immediately after the SIJ injections, fluoroscopy was applied to verify the correct placement of the injected medication and intravascular injections. Treatment effects and functional improvement were compared at 2 and 12 weeks after the procedures. The verbal numeric pain scale and Oswestry Disability Index improved at 2 and 12 weeks after the injections without statistical significances between groups. Of 55 US-guided injections, 48 (87.3%) were successful and 7 (12.7%) were missed. The FL-guided SIJ approach exhibited a greater accuracy (98.2%) than the US-guided approach. Vascularization around the SIJ was seen in 34 of 55 patients. Among the 34 patients, 7 had vascularization inside the joint, 23 had vascularization around the joint, and 4 had vascularization both inside and around the joint. Three cases of intravascular injections occurred in the FL group. The US-guided approach may facilitate the identification and avoidance of the critical vessels around or within the SIJ. Function and pain relief significantly improved in both groups without significant differences between groups. The US-guided approach was shown to be as effective as the FL-guided approach in treatment effects. However, diagnostic application in the SIJ may be limited because of the significantly lower accuracy rate (87.3%). Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Pictorial review: MRI of the sternum and sternoclavicular joints.

    PubMed

    Aslam, M; Rajesh, A; Entwisle, J; Jeyapalan, K

    2002-07-01

    The sternum and sternoclavicular joints are difficult to evaluate with plain radiographs. The value of CT in assessing lesions of the sternum and sternoclavicular joints has been well documented, but the potential role of MRI has not been emphasized. We present the MRI techniques, normal appearances and a spectrum of abnormalities, and emphasize the role of MRI as a useful radiological investigation for the sternum and sternoclavicular joints.

  16. Fluoroscopy-Guided Sacroiliac Joint Injection: Description of a Modified Technique.

    PubMed

    Kasliwal, Prasad Jaychand; Kasliwal, Sapana

    2016-02-01

    Sacroiliac joint (SIJ) pathology is a common etiologic cause for 10 - 27% of cases of mechanical low back pain (LBP) below the L5 level. In the absence of definite clinical or radiologic diagnostic criteria, controlled blocks of the SIJ have become the choice assessment method for making the diagnosis of SIJ pain. The SI joint is most often characterized as a large, auricular-shaped, diarthrodial synovial joint. In reality, its synovial characteristic is limited only to the distal third and anterior third. In SIJ interventions, the lateral view has been underutilized. In our technique, we used the lateral view to create a three-dimensional view of the SIJ to aid in gauging the accurateness of the contrast spread and to obtain a precise block. After obtaining appropriate fluoroscopic images, a curved tip spinal needle was directed into the inferior aspect of the SIJ using a posterior approach. As the needle contacts firm tissues on the posterior aspect of the joint, position of the needle tip is checked using lateral fluoroscopy. In the lateral view, the needle tip position is manipulated to keep it in the anterior third of the SIJ and contrast is injected. Our criteria for accurate SIJ block, in posteroanterior (PA) view, is the injection of the contrast medium should outline the joint space and the contrast medium should be seen to travel cephalad along the joint line. In the lateral view, the contrast medium most densely outlines the parameter of the joint. We have utilized this method with good effect in approximately 30 cases over one year. Out of 30 cases, needle position and contrast spread was satisfactory in 28 and 27 cases, respectively. So satisfactory needle placement and contrast spread was in 93% and 87% cases. Pain relief of 80% or more after intra-articular injection of local anesthetic was seen in 50% (15 of 30) patients; pain relief of 50 - 79% was witnessed in 30% (9 of 30) patients. Thus, pain decreased 50% or more in 80% (24 of 30) of the joints

  17. MRI evidence of persistent joint inflammation and progressive joint damage despite clinical remission during treatment of early rheumatoid arthritis.

    PubMed

    Forslind, K; Svensson, B

    2016-01-01

    To determine the value of magnetic resonance imaging (MRI) of bones and joints in patients with recent-onset rheumatoid arthritis (RA) treated for 2 years from diagnosis with disease-modifying anti-rheumatic drugs (DMARDs) and glucocorticoids. Thirteen patients with early RA were treated according to clinical practice and followed with MRI, radiographs, and Disease Activity Score calculated on 28 joints (DAS28) at inclusion (baseline) and after 1, 4, 7, 13, and 25 months. MRI of the dominant wrist and metacarpophalangeal (MCP) joints were assessed for synovitis, bone oedema, and erosions using the RA MRI Score (RAMRIS) and for tenosynovitis by an MRI tenosynovitis scoring method. Radiographs were assessed by the van der Heijde modified Sharp score (SHS). Clinical remission was defined by a DAS28 < 2.6. MRI at baseline detected inflammation in joints and tendons in all patients as well as erosions in 10 out of 13 patients. Over time, the erosion score increased while the synovitis and tenosynovitis scores remained almost unchanged. Bone oedema strongly correlated with synovitis. Synovitis and tenosynovitis correlated well with the erosion score at baseline but not thereafter. The MRI changes showed that joint damage started early and continued in the presence of persistent synovial and tenosynovial inflammation. The observations made in this small study suggest that the treatment goal of 'clinical remission' should be supplemented by a 'joint remission' goal. To this end, MRI is an appropriate tool. Further studies are needed to evaluate the optimal use of MRI in early RA.

  18. Joint reconstruction of PET-MRI by exploiting structural similarity

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Matthias J.; Thielemans, Kris; Pizarro, Luis; Atkinson, David; Ourselin, Sébastien; Hutton, Brian F.; Arridge, Simon R.

    2015-01-01

    Recent advances in technology have enabled the combination of positron emission tomography (PET) with magnetic resonance imaging (MRI). These PET-MRI scanners simultaneously acquire functional PET and anatomical or functional MRI data. As function and anatomy are not independent of one another the images to be reconstructed are likely to have shared structures. We aim to exploit this inherent structural similarity by reconstructing from both modalities in a joint reconstruction framework. The structural similarity between two modalities can be modelled in two different ways: edges are more likely to be at similar positions and/or to have similar orientations. We analyse the diffusion process generated by minimizing priors that encapsulate these different models. It turns out that the class of parallel level set priors always corresponds to anisotropic diffusion which is sometimes forward and sometimes backward diffusion. We perform numerical experiments where we jointly reconstruct from blurred Radon data with Poisson noise (PET) and under-sampled Fourier data with Gaussian noise (MRI). Our results show that both modalities benefit from each other in areas of shared edge information. The joint reconstructions have less artefacts and sharper edges compared to separate reconstructions and the ℓ2-error can be reduced in all of the considered cases of under-sampling.

  19. Factors affecting results of fluoroscopy-guided facet joint injection: Probable differences in the outcome of treatment between pure facet joint hypertrophy and concomitant diseases.

    PubMed

    Albayrak, Akif; Ozkul, Baris; Balioglu, Mehmet Bulent; Atici, Yunus; Gultekin, Muhammet Zeki; Albayrak, Merih Dilan

    2016-01-01

    Retrospective cohort study. Facet joints are considered a common source of chronic low-back pain. To determine whether pathogens related to the facet joint arthritis have any effect on treatment failure. Facet joint injection was applied to 94 patients treated at our hospital between 2011 and 2012 (mean age 59.5 years; 80 women and 14 men). For the purpose of analysis, the patients were divided into two groups. Patients who only had facet hypertrophy were placed in group A (47 patients, 41 women and 6 men, mean age 55.3 years) and patients who had any additional major pathology to facet hypertrophy were placed in group B (47 patients, 39 women and 8 men, mean age 58.9 years). Injections were applied around the facet joint under surgical conditions utilizing fluoroscopy device guidance. A mixture of methylprednisolone and lidocaine was used as the injection ingredient. In terms of Oswestry Disability Index (ODI) and visual analog scale (VAS) scores, no significant difference was found between preinjection and immediate postinjection values in both groups, and the scores of group A patients were significantly lower (P < 0.005) compared with that of group B patients at the end of the third, sixth, and twelfth month. For low-back pain caused by facet hypertrophy, steroid injection around the facet joint is an effective treatment, but if there is an existing major pathology, it is not as effective.

  20. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  1. Hip joint injection

    MedlinePlus

    ... medicine into the joint. The provider uses a real-time x-ray (fluoroscopy) to see where to place ... Wakefield RJ. Arthrocentesis and injection of joints and soft tissue. In: Firestein GS, Budd RC, Gabriel SE, ...

  2. Ultrasound guidance to perform intra-articular injection of gadolinium-based contrast material for magnetic resonance arthrography as an alternative to fluoroscopy: the time is now.

    PubMed

    Messina, Carmelo; Banfi, Giuseppe; Aliprandi, Alberto; Mauri, Giovanni; Secchi, Francesco; Sardanelli, Francesco; Sconfienza, Luca Maria

    2016-05-01

    Magnetic resonance (MR) imaging has been definitively established as the reference standard in the evaluation of joints in the body. Similarly, magnetic resonance arthrography has emerged as a technique that has been proven to increase significantly the diagnostic performance if compared with conventional MR imaging, especially when dealing with fibrocartilage and articular cartilage abnormalities. Diluted gadolinium can be injected in the joint space using different approaches: under palpation using anatomic landmarks or using an imaging guidance, such as fluoroscopy, computed tomography, or ultrasound. Fluoroscopy has been traditionally used, but the involvement of ionizing radiation should represent a remarkable limitation of this modality. Conversely, ultrasound has emerged as a feasible, cheap, quick, and radiation-free modality that can be used to inject joints, with comparable accuracy of fluoroscopy. In the present paper, we discuss the advantages and disadvantages of using fluoroscopy or ultrasound in injecting gadolinium-based contrast agents in joints to perform magnetic resonance arthrography, also in view of the new EuroSAFE Imaging initiative promoted by the European Society of Radiology and the recent updates to the European Atomic Energy Community 2013/59 directive on the medical use of ionizing radiation. • Intra-articular contrast agent injection can be performed using different imaging modalities • Fluoroscopy is widely used, but uses ionizing radiation • Ultrasound is an accurate, quick, and radiation-free modality for joint injection • X-rays should be avoided when other radiation-free modalities can be used.

  3. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    PubMed

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  4. Prospective comparison of virtual fluoroscopy to fluoroscopy and plain radiographs for placement of lumbar pedicle screws.

    PubMed

    Resnick, Daniel K

    2003-06-01

    Fluoroscopy-based frameless stereotactic systems provide feedback to the surgeon using virtual fluoroscopic images. The real-life accuracy of these virtual images has not been compared with traditional fluoroscopy in a clinical setting. We prospectively studied 23 consecutive cases. In two cases, registration errors precluded the use of virtual fluoroscopy. Pedicle probes placed with virtual fluoroscopic imaging were imaged with traditional fluoroscopy in the remaining 21 cases. Position of the probes was judged to be ideal, acceptable but not ideal, or not acceptable based on the traditional fluoroscopic images. Virtual fluoroscopy was used to place probes in for 97 pedicles from L1 to the sacrum. Eighty-eight probes were judged to be in ideal position, eight were judged to be acceptable but not ideal, and one probe was judged to be in an unacceptable position. This probe was angled toward an adjacent disc space. Therefore, 96 of 97 probes placed using virtual fluoroscopy were found to be in an acceptable position. The positive predictive value for acceptable screw placement with virtual fluoroscopy compared with traditional fluoroscopy was 99%. A probe placed with virtual fluoroscopic guidance will be judged to be in an acceptable position when imaged with traditional fluoroscopy 99% of the time.

  5. Image Guidance Technologies for Interventional Pain Procedures: Ultrasound, Fluoroscopy, and CT.

    PubMed

    Wang, Dajie

    2018-01-26

    Chronic pain is a common medical condition. Patients who suffer uncontrolled chronic pain may require interventions including spinal injections and various nerve blocks. Interventional procedures have evolved and improved over time since epidural injection was first introduced for low back pain and sciatica in 1901. One of the major contributors in the improvement of these interventions is the advancement of imaging guidance technologies. The utilization of image guidance has dramatically improved the accuracy and safety of these interventions. The first image guidance technology adopted by pain specialists was fluoroscopy. This was followed by CT and ultrasound. Fluoroscopy can be used to visualize bony structures of the spine. It is still the most commonly used guidance technology in spinal injections. In the recent years, ultrasound guidance has been increasingly adopted by interventionists to perform various injections. Because its ability to visualize soft tissue, vessels, and nerves, this guidance technology appears to be a better option than fluoroscopy for interventions including SGB and celiac plexus blocks, when visualization of the vessels may prevent intravascular injection. The current evidence indicates the efficacies of these interventions are similar between ultrasound guidance and fluoroscopy guidance for SGB and celiac plexus blocks. For facet injections and interlaminar epidural steroid injections, it is important to visualize bony structures in order to perform these procedures accurately and safely. It is worth noting that facet joint injections can be done under ultrasound guidance with equivalent efficacy to fluoroscopic guidance. However, obese patients may present challenge for ultrasound guidance due to its poor visualization of deep anatomical structures. Regarding transforaminal epidural steroid injections, there are limited evidence to support that ultrasound guidance technology has equivalent efficacy and less complications comparing

  6. Double needle technique: an alternative method for performing difficult sacroiliac joint injections.

    PubMed

    Gupta, Sanjeeva

    2011-01-01

    The sacroiliac joint (SIJ) is a common source of low back pain. The most appropriate method of confirming SIJ pain is to inject local anesthesia into the joint to find out if the pain decreases. Unfortunately, although the SIJ is a large joint, it can be difficult to enter due to the complex nature of the joint and variations in anatomy. In my experience a double needle technique for sacroiliac joint injection can increase the chances of accurate injection into the SIJ in difficult cases. After obtaining appropriate fluoroscopic images, the tip of the needle is advanced into the SIJ. Once the tip of the needle is correctly placed, its position is checked under continuous fluoroscopy while moving the C-arm in the right and left oblique directions (dynamic fluoroscopy). On dynamic fluoroscopy the tip of the needle should remain within the joint line and not appear to be on the bone. If the tip of the needle appears to be on the bone a new joint line will need to be identified (the most translucent area through the joint) by dynamic fluoroscopy and another needle advanced into the newly identified joint line. Dynamic fluoroscopy is repeated again to confirm that the tip of the second needle remains within the joint line. Once both needles are in place contrast dye is injected through the needle that is most likely to be in the SIJ. If the contrast dye spread is not satisfactory then it is injected through the other needle. I have used this technique in 10 patients and found it very helpful in accurately performing SIJ injection which can at times be challenging.

  7. Joint pain undergoes a transition in accordance with signal changes of bones detected by MRI in hip osteoarthritis.

    PubMed

    Kamimura, Mikio; Nakamura, Yukio; Ikegami, Shota; Uchiyama, Shigeharu; Kato, Hiroyuki

    2013-01-01

    In this study, we aimed to investigate whether joint pain is derived from cartilage or bone alterations. We reviewed 23 hip joints of 21 patients with primary hip osteoarthritis (OA), which were classified into Kellgren-Laurence (KL) grading I to IV. Plain radiographs and magnetic resonance imaging (MRI) were obtained from all of the 23 joints. Two of the 21 patients had bilateral hip OA. Pain was assessed based on the pain scale of Denis. A Welch t test was performed for age, height, weight, body mass index, bone mineral density, and a Mann-Whitney U test was performed for KL grading. Four of 8 hip joints with pain and OA showed broad signal changes detected by MRI. Fourteen hip joints without pain, but with OA did not show broad signal changes by MRI. Collectively, MRI analyses showed that broad signal changes in OA cases without joint pain or with a slight degree of joint pain were not observed, while broad signal changes were observed in OA cases with deteriorated joint pain. Our findings suggest that hip joint pain might be associated with bone signal alterations in the hips of OA patients.

  8. Controlled, cross-sectional MRI evaluation of joint status in severe haemophilia A patients treated with prophylaxis vs. on demand

    PubMed Central

    Oldenburg, J; Zimmermann, R; Katsarou, O; Theodossiades, G; Zanon, E; Niemann, B; Kellermann, E; Lundin, B

    2015-01-01

    In patients with haemophilia A, factor VIII (FVIII) prophylaxis reduces bleeding frequency and joint damage compared with on-demand therapy. To assess the effect of prophylaxis initiation age, magnetic resonance imaging (MRI) was used to evaluate bone and cartilage damage in patients with severe haemophilia A. In this cross-sectional, multinational investigation, patients aged 12–35 years were assigned to 1 of 5 groups: primary prophylaxis started at age <2 years (group 1); secondary prophylaxis started at age 2 to <6 years (group 2), 6 to <12 years (group 3), or 12−18 years (group 4); or on-demand treatment (group 5). Joint status at ankles and knees was assessed using Compatible Additive MRI scoring (maximum and mean ankle; maximum and mean of all 4 joints) and Gilbert scores in the per-protocol population (n = 118). All prophylaxis groups had better MRI joint scores than the on-demand group. MRI scores generally increased with current patient age and later start of prophylaxis. Ankles were the most affected joints. In group 1 patients currently aged 27−35 years, the median of maximum ankle scores was 0.0; corresponding values in groups 4 and 5 were 17.0 and 18.0, respectively [medians of mean index joint scores: 0.0 (group 1), 8.1 (group 2) and 13.8 (group 4)]. Gilbert scores revealed outcomes less pronounced than MRI scores. MRI scores identified pathologic joint status with high sensitivity. Prophylaxis groups had lower annualized joint bleeds and MRI scores vs. the on-demand group. Primary prophylaxis demonstrated protective effects against joint deterioration compared with secondary prophylaxis. PMID:25470205

  9. Effectiveness of imaging-guided intra-articular injection: a comparison study between fluoroscopy and ultrasound.

    PubMed

    Furtado, Rita Nely Vilar; Pereira, Daniele Freitas; da Luz, Karine Rodrigues; dos Santos, Marla Francisca; Konai, Monique Sayuri; Mitraud, Sonia de Aguiar Vilela; Rosenfeld, Andre; Fernandes, Artur da Rocha Correa; Natour, Jamil

    2013-01-01

    Compare the effectiveness of ultrasound and fluoroscopy to guide intra-articular injections (IAI) in selected cases. A prospective study in our outpatient clinics at the Rheumatology Division at Universidade Federal de São Paulo (UNIFESP), Brazil, was conducted to compare the short-term (4 weeks) effectiveness of ultrasound and fluoroscopy-guided IAI in patients with rheumatic diseases. Inclusion criteria were: adults with refractory synovitis undergoing IAI with glucocorticoid. All patients had IAI performed with triamcinolone hexacetonide (20mg/ml) with varying doses according to the joint injected. A total of 71 rheumatic patients were evaluated (52 women, 44 whites). Mean age was 51.9 ± 13 years and 47 of them (66.2%) were on regular DMARD use. Analysis of the whole sample (71 patients) and hip sub-analysis (23 patients) showed that significant improvement was observed for both groups in terms of pain (P < 0.001). Global analysis also demonstrated better outcomes for patients in the FCG in terms of joint flexion (P < 0.001) and percentage change in joint flexion as compared to the USG. Likert scale score analyses demonstrated better results for the patients in the USG as compared to the FCG at the end of the study (P < 0.05). No statistically significant difference between groups was observed for any other study variable. Imaging-guided IAI improves regional pain in patients with various types of synovitis in the short term. For the vast majority of variables, no significant difference in terms of effectiveness was observed between fluoroscopy and ultrasound guided IAI.

  10. [Imaging of the elbow joint with focus MRI. Part 2: muscles, nerves and synovial membranes].

    PubMed

    Rehm, J; Zeifang, F; Weber, M-A

    2014-03-01

    This review article discusses the magnetic resonance imaging (MRI) features and pathological changes of muscles, nerves and the synovial lining of the elbow joint. Typical imaging findings are illustrated and discussed. In addition, the cross-sectional anatomy and anatomical variants, such as accessory muscles and plicae are discussed. Injuries of the muscles surrounding the elbow joint, as well as chronic irritation are particularly common in athletes. Morphological changes in MRI, for example tennis or golfer's elbow are typical and often groundbreaking. By adapting the examination sequences, imaging planes and slices, complete and incomplete tendon ruptures can be reliably diagnosed. Although the clinical and electrophysiological examinations form the basis for the diagnosis of peripheral neuropathies, MRI provides useful additional information about the precise localization due to its high resolution and good soft tissue contrast and helps to rule out differential diagnoses. Synovial diseases, such as inflammatory arthritis, proliferative diseases and also impinging plicae must be considered in the MRI diagnostics of the elbow joint.

  11. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: initial experience.

    PubMed

    Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria

    Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. MRI of the sacroiliac joints in spondyloarthritis: the added value of intra-articular signal changes for a 'positive MRI'.

    PubMed

    Laloo, Frederiek; Herregods, N; Jaremko, J L; Verstraete, K; Jans, L

    2018-05-01

    To determine if intra-articular signal changes at the sacroiliac joint space on MRI have added diagnostic value for spondyloarthritis, when compared to bone marrow edema (BME). A retrospective study was performed on the MRIs of sacroiliac joints of 363 patients, aged 16-45 years, clinically suspected of sacroiliitis. BME of the sacroiliac joints was correlated to intra-articular sacroiliac joint MR signal changes: high T1 signal, fluid signal, ankylosis and vacuum phenomenon (VP). These MRI findings were correlated with final clinical diagnosis. Sensitivity (SN), specificity (SP), likelihood ratios (LR), predictive values and post-test probabilities were calculated. BME had SN of 68.9%, SP of 74.0% and LR+ of 2.6 for diagnosis of spondyloarthritis. BME in absence of intra-articular signal changes had a lower SN and LR+ for spondyloarthritis (SN = 20.5%, LR+ 1.4). Concomitant BME and high T1 signal (SP = 97.2%, LR + = 10.5), BME and fluid signal (SP = 98.6%, LR + = 10.3) or BME and ankylosis (SP = 100%) had higher SP and LR+ for spondyloarthritis. Concomitant BME and VP had low LR+ for spondyloarthritis (SP = 91%, LR + =0.9). When BME was absent, intra-articular signal changes were less prevalent, but remained highly specific for spondyloarthritis. Our results suggest that both periarticular and intra-articular MR signal of the sacroiliac joint should be examined to determine whether an MRI is 'positive' or 'not positive' for sacroiliitis associated with spondyloarthritis.

  13. Fluoroscopy

    MedlinePlus

    ... through a clinical facility’s quality assurance program, are fundamental to radiation protection. More information about the principles ... as part of quality assurance program emphasizing radiation management. Health care providers who use fluoroscopy should be ...

  14. Readout-segmented multi-shot diffusion-weighted MRI of the knee joint in patients with juvenile idiopathic arthritis.

    PubMed

    Sauer, Alexander; Li, Mengxia; Holl-Wieden, Annette; Pabst, Thomas; Neubauer, Henning

    2017-10-12

    Diffusion-weighted MRI has been proposed as a new technique for imaging synovitis without intravenous contrast application. We investigated diagnostic utility of multi-shot readout-segmented diffusion-weighted MRI (multi-shot DWI) for synovial imaging of the knee joint in patients with juvenile idiopathic arthritis (JIA). Thirty-two consecutive patients with confirmed or suspected JIA (21 girls, median age 13 years) underwent routine 1.5 T MRI with contrast-enhanced T1w imaging (contrast-enhanced MRI) and with multi-shot DWI (RESOLVE, b-values 0-50 and 800 s/mm 2 ). Contrast-enhanced MRI, representing the diagnostic standard, and diffusion-weighted images at b = 800 s/mm 2 were separately rated by three independent blinded readers at different levels of expertise for the presence and the degree of synovitis on a modified 5-item Likert scale along with the level of subjective diagnostic confidence. Fourteen (44%) patients had active synovitis and joint effusion, nine (28%) patients showed mild synovial enhancement not qualifying for arthritis and another nine (28%) patients had no synovial signal alterations on contrast-enhanced imaging. Ratings by the 1st reader on contrast-enhanced MRI and on DWI showed substantial agreement (κ = 0.74). Inter-observer-agreement was high for diagnosing, or ruling out, active arthritis of the knee joint on contrast-enhanced MRI and on DWI, showing full agreement between 1st and 2nd reader and disagreement in one case (3%) between 1st and 3rd reader. In contrast, ratings in cases of absent vs. little synovial inflammation were markedly inconsistent on DWI. Diagnostic confidence was lower on DWI, compared to contrast-enhanced imaging. Multi-shot DWI of the knee joint is feasible in routine imaging and reliably diagnoses, or rules out, active arthritis of the knee joint in paediatric patients without the need of gadolinium-based i.v. contrast injection. Possibly due to "T2w shine-through" artifacts, DWI does not reliably

  15. Placement of iliosacral screws using 3D image-guided (O-Arm) technology and Stealth Navigation: comparison with traditional fluoroscopy.

    PubMed

    Theologis, A A; Burch, S; Pekmezci, M

    2016-05-01

    We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy. Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers. There were no neuroforaminal breaches in either group. The set-up time for the O-Arm was significantly longer than for the C-Arm, while total time for placement of the screws was significantly shorter for the O-Arm than for the C-Arm (p = 0.001). The mean absorbed radiation dose during fluoroscopy was 1063 mRad (432.5 mRad to 4150 mRad). No radiation was detected on the surgeon during fluoroscopy, or when he left the room during the use of the O-Arm. The mean radiation detected on the cadavers was significantly higher in the O-Arm group (2710 mRem standard deviation (sd) 1922) than during fluoroscopy (11.9 mRem sd 14.8) (p < 0.01). O-Arm/Stealth Navigation allows for faster percutaneous placement of iliosacral screws in a radiation-free environment for surgeons, albeit with the same accuracy and significantly more radiation exposure to cadavers, when compared with standard fluoroscopy. Placement of iliosacral screws with O-Arm/Stealth Navigation can be performed safely and effectively. Cite this article: Bone Joint J 2016;98-B:696-702. ©2016 The British Editorial Society of Bone & Joint Surgery.

  16. Diagnostic accuracy of point-of-care ultrasound for evaluation of early blood-induced joint changes: Comparison with MRI.

    PubMed

    Foppen, W; van der Schaaf, I C; Beek, F J A; Mali, W P T M; Fischer, K

    2018-05-23

    Recurrent joint bleeding is the hallmark of haemophilia. Synovial hypertrophy observed with Magnetic Resonance Imaging (MRI) is associated with an increased risk of future joint bleeding. The aim of this study was to investigate whether point-of-care ultrasound (POC-US) is an accurate alternative for MRI for the detection of early joint changes. In this single centre diagnostic accuracy study, bilateral knees and ankles of haemophilia patients with no or minimal arthropathy on X-rays were scanned using POC-US and 3 Tesla MRI. POC-US was performed by 1 medical doctor, blinded for MRI, according to the "Haemophilia Early Arthropathy Detection with Ultrasound" (HEAD-US) protocol. MRIs were independently scored by 2 radiologists, blinded for clinical data and ultrasound results. Diagnostic accuracy parameters were calculated with 95% confidence intervals (CI). Knees and ankles of 24 haemophilia patients (96 joints), aged 18-34, were studied. Synovial hypertrophy on MRI was observed in 20% of joints. POC-US for synovial tissue was correct (overall accuracy) in 97% (CI: 91-99) with a positive predictive value of 94% (CI: 73-100) and a negative predictive value of 97% (CI: 91-100). The overall accuracy of POC-US for cartilage abnormalities was 91% (CI: 83-96) and for bone surface irregularities 97% (CI: 91-99). POC-US could accurately assess synovial hypertrophy, bone surface irregularities and cartilage abnormalities in haemophilia patients with limited joint disease. As POC-US is an accurate and available alternative for MRI, it can be used for routine evaluation of early joint changes. © 2018 The Authors. Haemophilia published by John Wiley & Sons Ltd.

  17. Whole-body MRI assessment of disease activity and structural damage in rheumatoid arthritis: first step towards an MRI joint count.

    PubMed

    Axelsen, Mette Bjørndal; Eshed, Iris; Duer-Jensen, Anne; Møller, Jakob M; Pedersen, Susanne Juhl; Østergaard, Mikkel

    2014-05-01

    The aim of this study was to investigate the ability of whole-body MRI (WBMRI) to visualize inflammation [synovitis, bone marrow oedema (BME) and enthesitis] and structural damage in patients with RA. The 3T WBMR images were acquired in a head-to-toe scan in 20 patients with RA and at least one swollen or tender joint. Short Tau Inversion Recovery and pre- and post-contrast T1-weighted images were evaluated for readability and the presence/absence of inflammation (synovitis, BME and enthesitis) and structural damage (erosions and fat infiltrations) in 76 peripheral joints, 30 entheseal sites and in the spine. The readability was >70% for all individual joints, except for the most peripheral joints of the hands and feet. Synovitis was most frequent in the wrist, first tarsometatarsal, first CMC joints and glenohumeral joints (67-61%); BME in the wrist, CMC, acromioclavicular and glenohumeral joints (45-35%) and erosions in the wrist, MTP and CMC joints (19-16%). Enthesitis at ≥ 1 site was registered in 16 patients. BME was frequently seen in the cervical (20%) but not the thoracic and lumbar spine, while fat infiltrations and erosions were rare. The intrareader agreement was high (85-100%) for all pathologies. The agreement between WBMRI and clinical findings was low. Peripheral and axial inflammation and structural damage at joints and entheses was frequently identified by WBMRI, and more frequently than by clinical examination. WBMRI is a promising tool for evaluation of the total inflammatory load of inflammation (an MRI joint count) and structural damage in RA patients.

  18. Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation.

    PubMed

    Moosmann, Matthias; Eichele, Tom; Nordby, Helge; Hugdahl, Kenneth; Calhoun, Vince D

    2008-03-01

    An optimized scheme for the fusion of electroencephalography and event related potentials with functional magnetic resonance imaging (BOLD-fMRI) data should simultaneously assess all available electrophysiologic and hemodynamic information in a common data space. In doing so, it should be possible to identify features of latent neural sources whose trial-to-trial dynamics are jointly reflected in both modalities. We present a joint independent component analysis (jICA) model for analysis of simultaneous single trial EEG-fMRI measurements from multiple subjects. We outline the general idea underlying the jICA approach and present results from simulated data under realistic noise conditions. Our results indicate that this approach is a feasible and physiologically plausible data-driven way to achieve spatiotemporal mapping of event related responses in the human brain.

  19. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  20. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation.

    PubMed

    Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita

    2013-03-01

    Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

  1. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  2. Correlation between MRI evidence of degenerative condylar surface changes, induction of articular disc displacement and pathological joint sounds in the temporomandibular joint.

    PubMed

    Honda, Kosuke; Natsumi, Yoshiko; Urade, Masahiro

    2008-12-01

    The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Thirty-seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.

  3. Tensor-product kernel-based representation encoding joint MRI view similarity.

    PubMed

    Alvarez-Meza, A; Cardenas-Pena, D; Castro-Ospina, A E; Alvarez, M; Castellanos-Dominguez, G

    2014-01-01

    To support 3D magnetic resonance image (MRI) analysis, a marginal image similarity (MIS) matrix holding MR inter-slice relationship along every axis view (Axial, Coronal, and Sagittal) can be estimated. However, mutual inference from MIS view information poses a difficult task since relationships between axes are nonlinear. To overcome this issue, we introduce a Tensor-Product Kernel-based Representation (TKR) that allows encoding brain structure patterns due to patient differences, gathering all MIS matrices into a single joint image similarity framework. The TKR training strategy is carried out into a low dimensional projected space to get less influence of voxel-derived noise. Obtained results for classifying the considered patient categories (gender and age) on real MRI database shows that the proposed TKR training approach outperforms the conventional voxel-wise sum of squared differences. The proposed approach may be useful to support MRI clustering and similarity inference tasks, which are required on template-based image segmentation and atlas construction.

  4. [Comparison of the Arthroscopic Finding in the Knee Joint and the MRI - Retrospective Study].

    PubMed

    Šimeček, K; Látal, P; Duda, J; Šimeček, M

    2017-01-01

    PURPOSE OF THE STUDY Our retrospective study presents the comparison of the preoperative magnetic resonance imaging of the knee joint - MRI - and the arthroscopic finding - ASC. Its aim is to find out how a positive or a negative finding of MRI corresponds with the operative finding and how much the experience of radiologist contributes to the conformity. MATERIAL AND METHODS The MRI findings of knee joints treated surgically at two departments in 2013 and 2014 were assessed. The MRI was performed in a total of 470 patients who subsequently underwent an arthroscopic surgery. A conformity or a non-conformity in anterior, posterior horn and complete rupture of both menisci and in partial or complete tear of anterior cruciate ligament - LCA was searched for. The sensitivity, specificity and accuracy of MRI were established. The difference between experienced and less experienced radiologists was evaluated. The analysis of the radiology report, surgical protocol of ASC and medical history in the documentation was performed. The cartilage was not subject to evaluation. The finding of Grade 1 meniscus tear on MRI was evaluated as negative. Grade 2 and Grade 3 were evaluated as positive. RESULTS Comparison of the preoperative MRI and the arthroscopic finding 1. The group with MRI reported 3 % of diagnostic arthroscopies. The control group without MRI (551 ASC) reported 15 % diagnostic arthroscopies. 2. Low sensitivity of MRI (0.67) in negative findings of ASC. It concerned 7 cases in which a pathological finding was identified on a MRI scan, but not by ASC. In two cases the repeated arthroscopy confirmed that a pathology inside the knee joint was overlooked by the arthroscopist. In the remaining five cases, the clinical finding improved without a repeated surgery. 3. High sensitivity of MRI is shown in the most frequent finding - posterior horn of medial meniscus (0.94). 4. Lower sensitivity (0.76) in partial and (0.83) in complete ACL tear. It increases to 0.93 if

  5. CT fluoroscopy-guided robotically-assisted lung biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Fichtinger, Gabor; Taylor, Russell H.; Banovac, Filip; Cleary, Kevin

    2006-03-01

    Lung biopsy is a common interventional radiology procedure. One of the difficulties in performing the lung biopsy is that lesions move with respiration. This paper presents a new robotically assisted lung biopsy system for CT fluoroscopy that can automatically compensate for the respiratory motion during the intervention. The system consists of a needle placement robot to hold the needle on the CT scan plane, a radiolucent Z-frame for registration of the CT and robot coordinate systems, and a frame grabber to obtain the CT fluoroscopy image in real-time. The CT fluoroscopy images are used to noninvasively track the motion of a pulmonary lesion in real-time. The position of the lesion in the images is automatically determined by the image processing software and the motion of the robot is controlled to compensate for the lesion motion. The system was validated under CT fluoroscopy using a respiratory motion simulator. A swine study was also done to show the feasibility of the technique in a respiring animal.

  6. MO-DE-201-03: This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahey, F.

    Fundamental knowledge of radiologic anatomy and physiology is critical for medical physicists. Many physicists are exposed to this topic only in graduate school, and knowledge is seldom formally evaluated or assessed after Part I of the ABR exam. Successful interactions with clinicians, including surgeons, radiologists, and oncologists requires that the medical physicist possess this knowledge. This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine. We will review structural anatomy, manipulation of tissue contrast, the marriage between anatomy and physiology, and explore how medical imaging exploits normalmore » and pathological processes in the body to generate contrast. Learning Objectives: Review radiologic anatomy. Examine techniques to manipulate tissue contrast in radiology. Integrate anatomy and physiology in molecular imaging.« less

  7. Sea urchin puncture resulting in PIP joint synovial arthritis: case report and MRI study.

    PubMed

    Liram, N; Gomori, M; Perouansky, M

    2000-01-01

    Of the 600 species of sea urchins, approximately 80 may be venomous to humans. The long spined or black sea urchin, Diadema setosum may cause damage by the breaking off of its brittle spines after they penetrate the skin. Synovitis followed by arthritis may be an unusual but apparently not a rare sequel to such injury, when implantation occurs near a joint. In this case report, osseous changes were not seen by plain x-rays. Magnetic resonance imaging (MRI) was used to expose the more salient features of both soft tissue and bone changes of black sea urchin puncture injury 30 months after penetration. In all likelihood, this type of injury may be more common than the existing literature at present suggests. It is believed to be the first reported case in this part of the world as well as the first MRI study describing this type of joint pathology. Local and systemic reactions to puncture injuries from sea urchin spines have been described previously. These may range from mild, local irritation lasting a few days to granuloma formation, infection and on occasions systemic illness. The sea urchin spines are composed of calcium carbonate with proteinaceous covering. The covering tends to cause immune reactions of variable presentation. There are only a handful of reported cases with sea urchin stings on record, none of them from the Red Sea. However, this condition is probably more common than is thought and can present difficulty in diagnosis. In this case report, the inflammation responded well to heat treatment, mobilization and manipulation of the joint in its post acute and chronic stages. As some subtle changes in soft tissues and the changes in bone were not seen either on plain x-rays or ultrasound scan, gadolinium-enhanced MRI was used to unveil the marked changes in the joint.

  8. TU-AB-BRA-06: BEST IN PHYSICS (JOINT IMAGING-THERAPY): An MRI Compatible Externally and Internally Deformable Lung Motion Phantom for Multi-Modality IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabouri, P; Sawant, A; Arai, T

    Purpose: MRI has become an attractive tool for tumor motion management. Current MR-compatible phantoms are only capable of reproducing translational motion. This study describes the construction and validation of a more realistic, MRI-compatible lung phantom that is deformable internally as well as externally. We demonstrate a radiotherapy application of this phantom by validating the geometric accuracy of the open-source deformable image registration software NiftyReg (UCL, UK). Methods: The outer shell of a commercially-available dynamic breathing torso phantom was filled with natural latex foam with eleven water tubes. A rigid foam cut-out served as the diaphragm. A high-precision programmable, in-house, MRI-compatiblemore » motion platform was used to drive the diaphragm. The phantom was imaged on a 3T scanner (Philips, Ingenia). Twenty seven tumor traces previously recorded from lung cancer patients were programmed into the phantom and 2D+t image sequences were acquired using a sparse-sampling sequence k-t BLAST (accn=3, resolution=0.66×0.66×5mm3; acquisition-time=110ms/slice). The geometric fidelity of the MRI-derived trajectories was validated against those obtained via fluoroscopy using the on board kV imager on a Truebeam linac. NiftyReg was used to perform frame by frame deformable image registration. The location of each marker predicted by using NiftyReg was compared with the values calculated by intensity-based segmentation on each frame. Results: In all cases, MR trajectories were within 1 mm of corresponding fluoroscopy trajectories. RMSE between centroid positions obtained from segmentation with those obtained by NiftyReg varies from 0.1 to 0.21 mm in the SI direction and 0.08 to 0.13 mm in the LR direction showing the high accuracy of deformable registration. Conclusion: We have successfully designed and demonstrated a phantom that can accurately reproduce deformable motion under a variety of imaging modalities including MRI, CT and x

  9. Magnetic Resonance Imaging (MRI) Evaluation for Anterior Disc Displacement of the Temporomandibular Joint.

    PubMed

    Yang, Zhongjun; Wang, Mingguo; Ma, Yingwei; Lai, Qingguo; Tong, Dongdong; Zhang, Fenghe; Dong, Lili

    2017-02-08

    BACKGROUND Magnetic resonance imaging (MRI) is the criterion standard imaging technique for visualization of the temporomandibular joint (TMJ) region, and is currently considered the optimum modality for comprehensive evaluation in patients with temporomandibular joint disorder (TMD). This study was aimed at finding the value of MRI in pre-clinical diagnosis of TMJ disc displacement. MATERIAL AND METHODS Patients primarily diagnosed as having anterior disc displacement by clinical symptoms and X-ray were selected in the present study. MRI was used to evaluate surrounding anatomical structures and position, as well as morphological and signal intensity change between patients and normal controls. RESULTS Posterior band position was significantly different between the patient group and control group. At the maximum opened-mouth position, the location of disc intermediate zone returned to normal. At closed-mouth position, the thickness of anterior and middle, but not posterior, band increased. The motion range of the condyle in the anterior disc displacement without reduction (ADDWR) patient group was significantly less than the value in the anterior disc displacement with reduction (ADDR) patient group and the control group. Whether at closed-mouth position or maximum opened-mouth position, the exudate volume in the patient group was greater than in the normal group. CONCLUSIONS MRI can be successfully used to evaluate multiple morphological changes at different mouth positions of normal volunteers and patients. The disc-condyle relationship can serve as an important indicator in assessing anterior disc displacement, and can be used to distinguish disc displacement with or without reduction.

  10. Magnetic Resonance Imaging (MRI) Evaluation for Anterior Disc Displacement of the Temporomandibular Joint

    PubMed Central

    Yang, Zhongjun; Wang, Mingguo; Ma, Yingwei; Lai, Qingguo; Tong, Dongdong; Zhang, Fenghe; Dong, Lili

    2017-01-01

    Background Magnetic resonance imaging (MRI) is the criterion standard imaging technique for visualization of the temporomandibular joint (TMJ) region, and is currently considered the optimum modality for comprehensive evaluation in patients with temporomandibular joint disorder (TMD). This study was aimed at finding the value of MRI in pre-clinical diagnosis of TMJ disc displacement. Material/Methods Patients primarily diagnosed as having anterior disc displacement by clinical symptoms and X-ray were selected in the present study. MRI was used to evaluate surrounding anatomical structures and position, as well as morphological and signal intensity change between patients and normal controls. Results Posterior band position was significantly different between the patient group and control group. At the maximum opened-mouth position, the location of disc intermediate zone returned to normal. At closed-mouth position, the thickness of anterior and middle, but not posterior, band increased. The motion range of the condyle in the anterior disc displacement without reduction (ADDWR) patient group was significantly less than the value in the anterior disc displacement with reduction (ADDR) patient group and the control group. Whether at closed-mouth position or maximum opened-mouth position, the exudate volume in the patient group was greater than in the normal group. Conclusions MRI can be successfully used to evaluate multiple morphological changes at different mouth positions of normal volunteers and patients. The disc-condyle relationship can serve as an important indicator in assessing anterior disc displacement, and can be used to distinguish disc displacement with or without reduction. PMID:28176754

  11. Diagnostic reliability of 3.0-T MRI for detecting osseous abnormalities of the temporomandibular joint.

    PubMed

    Sawada, Kunihiko; Amemiya, Toshihiko; Hirai, Shigenori; Hayashi, Yusuke; Suzuki, Toshihiro; Honda, Masahiko; Sisounthone, Johnny; Matsumoto, Kunihito; Honda, Kazuya

    2018-01-01

    We compared the diagnostic reliability of 3.0-T magnetic resonance imaging (MRI) for detection of osseous abnormalities of the temporomandibular joint (TMJ) with that of the gold standard, cone-beam computed tomography (CBCT). Fifty-six TMJs were imaged with CBCT and MRI, and images of condyles and fossae were independently assessed for the presence of osseous abnormalities. The accuracy, sensitivity, and specificity of 3.0-T MRI were 0.88, 1.0, and 0.73, respectively, in condyle evaluation and 0.91, 0.75, and 0.95 in fossa evaluation. The McNemar test showed no significant difference (P > 0.05) between MRI and CBCT in the evaluation of osseous abnormalities in condyles and fossae. The present results indicate that 3.0-T MRI is equal to CBCT in the diagnostic evaluation of osseous abnormalities of the mandibular condyle.

  12. In Vivo Measurements of the Ischiofemoral Space in Recreationally Active Participants During Dynamic Activities: A High-Speed Dual Fluoroscopy Study.

    PubMed

    Atkins, Penny R; Fiorentino, Niccolo M; Aoki, Stephen K; Peters, Christopher L; Maak, Travis G; Anderson, Andrew E

    2017-10-01

    Ischiofemoral impingement (IFI) is a dynamic process, but its diagnosis is often based on static, supine images. To couple 3-dimensional (3D) computed tomography (CT) models with dual fluoroscopy (DF) images to quantify in vivo hip motion and the ischiofemoral space (IFS) in asymptomatic participants during weightbearing activities and evaluate the relationship of dynamic measurements with sex, hip kinematics, and the IFS measured from axial magnetic resonance imaging (MRI). Cross-sectional study; Level of evidence, 3. Eleven young, asymptomatic adults (5 female) were recruited. 3D reconstructions of the femur and pelvis were generated from MRI and CT. The axial and 3D IFS were measured from supine MRI. In vivo hip motion during weightbearing activities was quantified using DF. The bone-to-bone distance between the lesser trochanter and ischium was measured dynamically. The minimum and maximum IFS were determined and evaluated against hip joint angles using a linear mixed-effects model. The minimum IFS occurred during external rotation for 10 of 11 participants. The IFS measured from axial MRI (mean, 23.7 mm [95% CI, 19.9-27.9]) was significantly greater than the minimum IFS observed during external rotation (mean, 10.8 mm [95% CI, 8.3-13.7]; P < .001), level walking (mean, 15.5 mm [95% CI, 11.4-19.7]; P = .007), and incline walking (mean, 15.8 mm [95% CI, 11.6-20.1]; P = .004) but not for standing. The IFS was reduced with extension (β = 0.66), adduction (β = 0.22), and external rotation (β = 0.21) ( P < .001 for all) during the dynamic activities observed. The IFS was smaller in female than male participants for standing (mean, 20.9 mm [95% CI, 19.3-22.3] vs 30.4 mm [95% CI, 27.2-33.8], respectively; P = .034), level walking (mean, 8.8 mm [95% CI, 7.5-9.9] vs 21.1 mm [95% CI, 18.7-23.6], respectively; P = .001), and incline walking (mean, 9.1 mm [95% CI, 7.4-10.8] vs 21.3 mm [95% CI, 18.8-24.1], respectively; P = .003). Joint angles between the sexes were not

  13. A systematic review of the uses of fluoroscopy in dentistry.

    PubMed

    Uzbelger Feldman, Daniel; Yang, Jie; Susin, Cristiano

    2010-01-01

    To determine the quality of the evidence for the uses of fluoroscopy in dentistry. A systematic review using Ovid and MEDLINE was conducted to identify papers showing the uses of fluoroscopy in dentistry published between 1953 and September 2009. Human, animal and phantom/skull/mannequin studies on fluoroscopy with regard to its diagnostic value, research performance, and clinical and safety applications in dentistry were included in this analysis. Studies that were not in English, as well as those that employed fluoroscopy in dentistry without the use of image intensification, were excluded. Articles were evaluated, classified and graded by levels of evidence. Fifty-five out of 139 papers fulfilled the inclusion criteria. Amongst them, 19 were related to diagnosis, 15 to research, 12 to clinical and nine to safety applications. Fluoroscopy has contributed to nine different areas of dentistry. Also, it was used on 895 dental patients, 37 animals and 17 phantoms/skulls/mannequins. Two randomised controlled trials, two cohort studies, two case controls, 48 case reports and one expert opinion were found. Fluoroscopy with image intensification has been a useful, but not consistently used tool in dentistry for over 50 years. Several lines of evidence have shown fluoroscopy's diagnostic potential, research use, and clinical and safety applications in dentistry.

  14. Exploring cartilage damage in gout using 3-T MRI: distribution and associations with joint inflammation and tophus deposition.

    PubMed

    Popovich, I; Dalbeth, N; Doyle, A; Reeves, Q; McQueen, F M

    2014-07-01

    Few imaging studies have investigated cartilage in gout. Magnetic resonance imaging (MRI) can image cartilage damage and also reveals other features of gouty arthropathy. The objective was to develop and validate a system for quantifying cartilage damage in gout. 3-T MRI scans of the wrist were obtained in 40 gout patients. MRI cartilage damage was quantified using an adaptation of the radiographic Sharp van der Heijde score. Two readers scored cartilage loss at 7 wrist joints: 0 (normal), 1 (partial narrowing), 2 (complete narrowing) and concomitant osteoarthritis was recorded. Bone erosion, bone oedema and synovitis were scored (RAMRIS) and tophi were assessed. Correlations between radiographic and MRI cartilage scores were investigated, as was the reliability of the MRI cartilage score and its associations. The GOut MRI Cartilage Score (GOMRICS) was highly correlated with the total Sharp van der Heijde (SvdH) score and the joint space narrowing component (R = 0.8 and 0.71 respectively, p < 0.001). Reliability was high (intraobserver, interobserver ICCs = 0.87 [0.57-0.97], 0.64 [0.41-0.79] respectively), and improved on unenhanced scans; interobserver ICC = 0.82 [0.49-0.95]. Cartilage damage was predominantly focal (82% of lesions) and identified in 40 out of 280 (14%) of joints. Cartilage scores correlated with bone erosion (R = 0.57), tophus size (R = 0.52), and synovitis (R = 0.55), but not bone oedema scores. Magnetic resonance imaging can be used to investigate cartilage in gout. Cartilage damage was relatively uncommon, focal, and associated with bone erosions, tophi and synovitis, but not bone oedema. This emphasises the unique pathophysiology of gout.

  15. Real-time MRI of the temporomandibular joint at 15 frames per second-A feasibility study.

    PubMed

    Krohn, Sebastian; Gersdorff, Nikolaus; Wassmann, Torsten; Merboldt, Klaus-Dietmar; Joseph, Arun A; Buergers, Ralf; Frahm, Jens

    2016-12-01

    The purpose of this study was to develop and evaluate a novel method for real-time MRI of TMJ function at high temporal resolution and with two different contrasts. Real-time MRI was based on undersampled radial fast low angle shot (FLASH) acquisitions with iterative image reconstruction by regularized nonlinear inversion. Real-time MRI movies with T1 contrast were obtained with use of a radiofrequency-spoiled FLASH sequence, while movies with T2/T1 contrast employed a gradient-refocused FLASH version. TMJ function was characterized in 40 randomly selected volunteers by sequential 20s acquisitions of both the right and left joint during voluntary opening and closing of the mouth (in a medial, central and lateral oblique sagittal section perpendicular to the long axis of the condylar head). All studies were performed on a commercial MRI system at 3T using the standard head coil, while online reconstruction was achieved with a bypass computer fully integrated into the MRI system. As a first result, real-time MRI studies of the right and left TMJ were successfully performed in all 40 subjects (80 joints) within a total examination time per subject of only 15min. Secondly, at an in-plane resolution of 0.75mm and 5mm section thickness, the achieved temporal resolution was 66.7ms per image or 15 frames per second. Thirdly, both T1-weighted and T2/T1-weighted real-time MRI movies provided information about TMJ function such as disc position, condyle mobility and disc-condyle relationship. While T1 contrast offers a better delineation of structures during rapid jaw movements, T2/T1 contrast was rated superior for characterizing the articular disc. In conclusion, the proposed real-time MRI method may become a robust and efficient tool for the clinical assessment of TMJ function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Radiation exposure from fluoroscopy during orthopedic surgical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, S.A.

    1989-11-01

    The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of thismore » study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.« less

  17. Performance evaluation of image-intensifier-TV fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    van der Putten, Wilhelm J.; Bouley, Shawn

    1995-05-01

    Through use of a computer model and an aluminum low contrast phantom developed in-house, a method has been developed which is able to grade the imaging performance of fluoroscopy systems through use of a variable, K. This parameter was derived from Rose's model of image perception and is here used as a figure of merit to grade fluoroscopy systems. From Rose's model for an ideal system, a typical value of K for the perception of low contrast details should be between 3 and 7, assuming threshold vision by human observers. Thus, various fluoroscopy systems are graded with different values of K, with a lower value of K indicating better imaging performance of the system. A series of fluoroscopy systems have been graded where the best system produces a value in the low teens, while the poorest systems produce a value in the low twenties. Correlation with conventional image quality measurements is good and the method has the potential for automated assessment of image quality.

  18. Note: Progress on the use of MgB2 superconducting joint technique for the development of MgB2 magnets for magnetic resonance imaging (MRI).

    PubMed

    Kim, Y G; Song, J B; Kim, J C; Kim, J M; Yoo, B H; Yun, S B; Hwang, D Y; Lee, H G

    2017-08-01

    This note presents a superconducting joint technique for the development of MgB 2 magnetic resonance imaging (MRI) magnets. The MgB 2 superconducting joint was fabricated by a powder processing method using Mg and B powders to establish a wire-bulk-wire connection. The joint resistance measured using a field-decay method was <10 -14 Ω, demonstrating that the proposed joint technique could be employed for developing "next-generation" MgB 2 MRI magnets operating in the persistent current mode.

  19. MRI-based modeling for radiocarpal joint mechanics: validation criteria and results for four specimen-specific models.

    PubMed

    Fischer, Kenneth J; Johnson, Joshua E; Waller, Alexander J; McIff, Terence E; Toby, E Bruce; Bilgen, Mehmet

    2011-10-01

    The objective of this study was to validate the MRI-based joint contact modeling methodology in the radiocarpal joints by comparison of model results with invasive specimen-specific radiocarpal contact measurements from four cadaver experiments. We used a single validation criterion for multiple outcome measures to characterize the utility and overall validity of the modeling approach. For each experiment, a Pressurex film and a Tekscan sensor were sequentially placed into the radiocarpal joints during simulated grasp. Computer models were constructed based on MRI visualization of the cadaver specimens without load. Images were also acquired during the loaded configuration used with the direct experimental measurements. Geometric surface models of the radius, scaphoid and lunate (including cartilage) were constructed from the images acquired without the load. The carpal bone motions from the unloaded state to the loaded state were determined using a series of 3D image registrations. Cartilage thickness was assumed uniform at 1.0 mm with an effective compressive modulus of 4 MPa. Validation was based on experimental versus model contact area, contact force, average contact pressure and peak contact pressure for the radioscaphoid and radiolunate articulations. Contact area was also measured directly from images acquired under load and compared to the experimental and model data. Qualitatively, there was good correspondence between the MRI-based model data and experimental data, with consistent relative size, shape and location of radioscaphoid and radiolunate contact regions. Quantitative data from the model generally compared well with the experimental data for all specimens. Contact area from the MRI-based model was very similar to the contact area measured directly from the images. For all outcome measures except average and peak pressures, at least two specimen models met the validation criteria with respect to experimental measurements for both articulations

  20. Sacroiliac Joint Interventions.

    PubMed

    Soto Quijano, David A; Otero Loperena, Eduardo

    2018-02-01

    Sacroiliac joint (SIJ) pain is an important cause of lower back problems. Multiple SIJ injection techniques have been proposed over the years to help in the diagnosis and treatment of this condition. However, the SIJ innervation is complex and variable, and truly intra-articular injections are sometimes difficult to obtain. Different sacroiliac joint injections have shown to provide pain relief in patients suffering this ailment. Various techniques for intraarticular injections, sacral branch blocks and radiofrequency ablation, both fluoroscopy guided and ultrasound guided are discussed in this paper. Less common techniques like prolotherapy, platelet rich plasma injections and botulism toxin injections are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comparative study of the detection of joint injury in early-stage rheumatoid arthritis by magnetic resonance imaging of the wrist and finger joints and physical examination.

    PubMed

    Tamai, Mami; Kawakami, Atsushi; Iwamoto, Naoki; Kawashiri, Shin-Ya; Fujikawa, Keita; Aramaki, Toshiyuki; Kita, Junko; Okada, Akitomo; Koga, Tomohiro; Arima, Kazuhiko; Kamachi, Makoto; Yamasaki, Satoshi; Nakamura, Hideki; Ida, Hiroaki; Origuchi, Tomoki; Takao, Shoichiro; Aoyagi, Kiyoshi; Uetani, Masataka; Eguchi, Katsumi

    2011-03-01

    To verify whether magnetic resonance imaging (MRI)-proven joint injury is sensitive as compared with joint injury determined by physical examination. MRI of the wrist and finger joints of both hands was examined in 51 early-stage rheumatoid arthritis (RA) patients by both plain and gadolinium diethylenetriaminepentaacetic acid-enhanced MRI. Synovitis, bone edema, and bone erosion (the latter two included as bone lesions at the wrist joints); metacarpophalangeal joints; and proximal interphalangeal joints were considered as MRI-proven joint injury. Japan College of Rheumatology-certified rheumatologists had given a physical examination just before the MRI study. The presence of tender and/or swollen joints in the same fields as MRI was considered as joint injury on physical examination. The association of MRI-proven joint injury with physical examination-proven joint injury was examined. A total of 1,110 sites were available to be examined. MRI-proven joint injury was found in 521 sites, whereas the other 589 sites were normal. Physical examination-proven joint injury was found in 305 sites, which was significantly low as compared with MRI-proven joint injury (P = 1.1 × 10(-12) versus MRI). Joint injury on physical examination was not found in 81.5% of the sites where MRI findings were normal. Furthermore, an association of the severity of MRI-proven joint injury with that of joint injury on physical examination was clearly demonstrated (P = 1.6 × 10(-15), r(s) = 0.469). Our present data suggest that MRI is not only sensitive but accurately reflects the joint injury in patients with early-stage RA. Copyright © 2011 by the American College of Rheumatology.

  2. Image segmentation and registration for the analysis of joint motion from 3D MRI

    NASA Astrophysics Data System (ADS)

    Hu, Yangqiu; Haynor, David R.; Fassbind, Michael; Rohr, Eric; Ledoux, William

    2006-03-01

    We report an image segmentation and registration method for studying joint morphology and kinematics from in vivo MRI scans and its application to the analysis of ankle joint motion. Using an MR-compatible loading device, a foot was scanned in a single neutral and seven dynamic positions including maximal flexion, rotation and inversion/eversion. A segmentation method combining graph cuts and level sets was developed which allows a user to interactively delineate 14 bones in the neutral position volume in less than 30 minutes total, including less than 10 minutes of user interaction. In the subsequent registration step, a separate rigid body transformation for each bone is obtained by registering the neutral position dataset to each of the dynamic ones, which produces an accurate description of the motion between them. We have processed six datasets, including 3 normal and 3 pathological feet. For validation our results were compared with those obtained from 3DViewnix, a semi-automatic segmentation program, and achieved good agreement in volume overlap ratios (mean: 91.57%, standard deviation: 3.58%) for all bones. Our tool requires only 1/50 and 1/150 of the user interaction time required by 3DViewnix and NIH Image Plus, respectively, an improvement that has the potential to make joint motion analysis from MRI practical in research and clinical applications.

  3. Feasibility of zero or near zero fluoroscopy during catheter ablation procedures.

    PubMed

    Haegeli, Laurent M; Stutz, Linda; Mohsen, Mohammed; Wolber, Thomas; Brunckhorst, Corinna; On, Chol-Jun; Duru, Firat

    2018-04-03

    Awareness of risks associated with radiation exposure to patients and medical staff has significantly increased. It has been reported before that the use of advanced three-dimensional electro-anatomical mapping (EAM) system significantly reduces fluoroscopy time, however this study aimed for zero or near zero fluoroscopy ablation to assess its feasibility and safety in ablation of atrial fibrillation (AF) and other tachyarrhythmias in a "real world" experience of a single tertiary care center. This was a single-center study where ablation procedures were attempted without fluoroscopy in 34 consecutive patients with different tachyarrhythmias under the support of EAM system. When transseptal puncture (TSP) was needed, it was attempted under the guidance of intracardiac echocardiography (ICE). Among 34 patients consecutively enrolled in this study, 28 (82.4%) patients were referred for radiofrequency ablation (RFA) of AF, 3 (8.8%) patients for ablation of right ventricular outflow tract (RVOT) ventricular extrasystole (VES), 1 (2.9%) patient for ablation of atrioventricular nodal reentry tachycardia (AVNRT), 2 (5.9%) patients for typical atrial flutter ablation. In 21 (62%) patients the entire procedure was carried out without the use of fluoroscopy. Among 28 AF patients, 15 (54%) patients underwent ablation without the use of fluoroscopy and among these 15 patients, 10 (67%) patients required TSP under ICE guidance while 5 (33%) patients the catheters were introduced to left atrium through a patent foramen ovale. In 13 AF patients, fluoroscopy was only required for double TSP. The total procedure time of AF ablation was 130 ± 50 min. All patients referred for atrial flutter, AVNRT, and VES of the RVOT ablation did not require any fluoroscopy. This study demonstrates the feasibility of zero or near zero fluoroscopy procedure including TSP with the support of EAM and ICE guidance in a "real world" experience of a single tertiary care center. When fluoroscopy was

  4. Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.

    PubMed

    Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico

    2017-07-01

    To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Digital methods for reducing radiation exposure during medical fluoroscopy

    NASA Astrophysics Data System (ADS)

    Edmonds, Ernest W.; Rowlands, John A.; Hynes, David M.; Toth, B. D.; Porter, Anthony J.

    1990-07-01

    There is increased concern over radiation exposure to the general population from many sources. One of the most significant sources is that received by the patient during medical diagnostic procedures, and of these, the procedure with the greatest potential hazard is fluoroscopy. The legal limit for fluoroscopy in most jurisdictions is SR per minute skin exposure rate. Fluoroscopes are often operated in excess of this figure, and in the case of interventional procedures, fluorocopy times may exceed 20 minutes. With improvements in medical technology these procedures are being performed more often, and also are being carried out on younger age groups. Radiation exposure during fluoroscopy, both to patient and operator, is therefore becoming a matter of increasing concern to regulating authorities, and it is incumbent on us to develop digital technology to minimise the radiation hazard in these procedures. This paper explores the technical options available for radiation exposure reduction, including pulsed fluoroscopy, digital noise reduction, or simple reduction in exposure rate to the x-ray image intensifier. We also discuss educational aspects of fluoroscopy which radiologists should be aware of which can be more important than the technological solutions. A "work in progress" report gives a completely new approach to the implementation of a large number of possible digital algorithms, for the investigation of clinical efficacy.

  6. Accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints.

    PubMed

    Siegenthaler, Andreas; Mlekusch, Sabine; Trelle, Sven; Schliessbach, Juerg; Curatolo, Michele; Eichenberger, Urs

    2012-08-01

    Cervical zygapophysial joint nerve blocks typically are performed with fluoroscopic needle guidance. Descriptions of ultrasound-guided block of these nerves are available, but only one small study compared ultrasound with fluoroscopy, and only for the third occipital nerve. To evaluate the potential usefulness of ultrasound-guidance in clinical practice, studies that determine the accuracy of this technique using a validated control are essential. The aim of this study was to determine the accuracy of ultrasound-guided nerve blocks of the cervical zygapophysial joints using fluoroscopy as control. Sixty volunteers were studied. Ultrasound-imaging was used to place the needle to the bony target of cervical zygapophysial joint nerve blocks. The levels of needle placement were determined randomly (three levels per volunteer). After ultrasound-guided needle placement and application of 0.2 ml contrast dye, fluoroscopic imaging was performed for later evaluation by a blinded pain physician and considered as gold standard. Raw agreement, chance-corrected agreement κ, and chance-independent agreement Φ between the ultrasound-guided placement and the assessment using fluoroscopy were calculated to quantify accuracy. One hundred eighty needles were placed in 60 volunteers. Raw agreement was 87% (95% CI 81-91%), κ was 0.74 (0.64-0.83), and Φ 0.99 (0.99-0.99). Accuracy varied significantly between the different cervical nerves: it was low for the C7 medial branch, whereas all other levels showed very good accuracy. Ultrasound-imaging is an accurate technique for performing cervical zygapophysial joint nerve blocks in volunteers, except for the medial branch blocks of C7.

  7. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  8. Comparison of Ultrasound-Guided and Fluoroscopy-Assisted Antegrade Common Femoral Artery Puncture Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, Michael M.; Goh, Gerard S.; Power, Sarah

    PurposeTo prospectively compare the procedural time and complication rates of ultrasound-guided and fluoroscopy-assisted antegrade common femoral artery (CFA) puncture techniques.Materials and MethodsHundred consecutive patients, undergoing a vascular procedure for which an antegrade approach was deemed necessary/desirable, were randomly assigned to undergo either ultrasound-guided or fluoroscopy-assisted CFA puncture. Time taken from administration of local anaesthetic to vascular sheath insertion in the superficial femoral artery (SFA), patients’ age, body mass index (BMI), fluoroscopy radiation dose, haemostasis method and immediate complications were recorded. Mean and median values were calculated and statistically analysed with unpaired t tests.ResultsSixty-nine male and 31 female patients underwent antegrademore » puncture (mean age 66.7 years). The mean BMI was 25.7 for the ultrasound-guided (n = 53) and 25.3 for the fluoroscopy-assisted (n = 47) groups. The mean time taken for the ultrasound-guided puncture was 7 min 46 s and for the fluoroscopy-assisted technique was 9 min 41 s (p = 0.021). Mean fluoroscopy dose area product in the fluoroscopy group was 199 cGy cm{sup 2}. Complications included two groin haematomas in the ultrasound-guided group and two retroperitoneal haematomas and one direct SFA puncture in the fluoroscopy-assisted group.ConclusionUltrasound-guided technique is faster and safer for antegrade CFA puncture when compared to the fluoroscopic-assisted technique alone.« less

  9. SU-G-JeP4-12: Real-Time Organ Motion Monitoring Using Ultrasound and KV Fluoroscopy During Lung SBRT Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omari, E; Tai, A; Li, X

    Purpose: Real-time ultrasound monitoring during SBRT is advantageous in understanding and identifying motion irregularities which may cause geometric misses. In this work, we propose to utilize real-time ultrasound to track the diaphragm in conjunction with periodical kV fluoroscopy to monitor motion of tumor or landmarks during SBRT delivery. Methods: Transabdominal Ultrasound (TAUS) b-mode images were collected from 10 healthy volunteers using the Clarity Autoscan System (Elekta). The autoscan transducer, which has a center frequency of 5 MHz, was utilized for the scans. The acquired images were contoured using the Clarity Automatic Fusion and Contouring workstation software. Monitoring sessions of 5more » minute length were observed and recorded. The position correlation between tumor and diaphragm could be established with periodic kV fluoroscopy periodically acquired during treatment with Elekta XVI. We acquired data using a tissue mimicking ultrasound phantom with embedded spheres placed on a motion stand using ultrasound and kV Fluoroscopy. MIM software was utilized for image fusion. Correlation of diaphragm and target motion was also validated using 4D-MRI and 4D-CBCT. Results: The diaphragm was visualized as a hyperechoic region on the TAUS b-mode images. Volunteer set-up can be adjusted such that TAUS probe will not interfere with treatment beams. A segment of the diaphragm was contoured and selected as our tracking structure. Successful monitoring sessions of the diaphragm were recorded. For some volunteers, diaphragm motion over 2 times larger than the initial motion has been observed during tracking. For the phantom study, we were able to register the 2D kV Fluoroscopy with the US images for position comparison. Conclusion: We demonstrated the feasibility of tracking the diaphragm using real-time ultrasound. Real-time tracking can help in identifying such irregularities in the respiratory motion which is correlated to tumor motion. We also showed the

  10. [Evaluation of Artificial Hip Joint with Radiofrequency Heating Issues during MRI Examination: A Comparison between 1.5 T and 3 T].

    PubMed

    Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami

    2016-06-01

    In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.

  11. Percutaneous Facet Screw Fixation in the Treatment of Symptomatic Recurrent Lumbar Facet Joint Cyst: A New Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoretti, Nicolas, E-mail: amorettinicolas@yahoo.fr; Gallo, Giacomo, E-mail: giacomo.gallo83@gmail.com; Bertrand, Anne-Sophie, E-mail: asbertrand3@hotmail.com

    We present a case of percutaneous treatment of symptomatic recurrent lumbar facet joint cyst resistant to all medical treatments including facet joint steroid injection. Percutaneous transfacet fixation was then performed at L4–L5 level with a cannulated screw using CT and fluoroscopy guidance. The procedure time was 30 min. Using the visual analog scale (VAS), pain decreased from 9.5, preoperatively, to 0 after the procedure. At 6-month follow-up, an asymptomatic cystic recurrence was observed, which further reduced at the 1-year follow-up. Pain remained stable (VAS at 0) during all follow-ups. CT- and fluoroscopy-guided percutaneous cyst rupture associated with facet screw fixation couldmore » be an alternative to surgery in patients suffering from a symptomatic recurrent lumbar facet joint cyst.« less

  12. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com; Papas, Stylianos, E-mail: vascular@drpapas.com; Pantziara, Maria, E-mail: mgpantziara@gmail.com

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  13. Reliability and clinical features associated with the IPSG MRI tibiotalar and subtalar joint scores in children, adolescents and young adults with haemophilia.

    PubMed

    Brunel, T; Lobet, S; Deschamps, K; Hermans, C; Peerlinck, K; Vandesande, J; Pialat, J-B

    2018-01-01

    To assess the reliability of the IPSG MRI scale for tibiotalar (TTJ) and subtalar joint (STJ) changes in young haemophilic patients, correlating MRI findings with functional scores and 3D-rearfoot kinematics. A total of 37 haemophilic patients underwent bilateral MRI of the footankle, clinical evaluation and quantitative assessment of their 3D-rearfoot kinematics during walking. TTJ and STJ soft tissues were assessed twice along with osteochondral changes by two radiologists using the IPSG MRI scale. Inter- and intra-observer reproducibility of MRI scoring were tested by means of kappa statistics. Correlational analyses were performed between MRI findings and the Haemophilia Joint Health Score 2.1 (HJHS) and 3D-rearfoot kinematic data. The intra-reader reliability of MRI scoring was good to excellent (Kappa: 0.62-1), whereas the inter-reader reliability was moderate to good (Kappa: 0.54-0.79). Weak yet significant correlations were found between the frontal plane rearfoot range of motion (ROM) during loading response of gait and STJ score, as well as between frontal plane rearfoot ROM during the terminal stance phase and the rearfoot osteochondral lesions. The IPSG score appears applicable to not only the TTJ but also the STJ. Contrary to TTJ lesions, those of the STJ do not correlate with the HJHS but do with 3D-rearfoot kinematic data. © 2017 John Wiley & Sons Ltd.

  14. Does fluoroscopy improve outcomes in paediatric forearm fracture reduction?

    PubMed

    Menachem, S; Sharfman, Z T; Perets, I; Arami, A; Eyal, G; Drexler, M; Chechik, O

    2016-06-01

    To compare the radiographic results of paediatric forearm fracture reduced with and without fluoroscopic enhancement to investigate whether fractures reduced under fluoroscopic guidance would have smaller residual deformities and lower rates of re-reduction and surgery. A retrospective cohort analysis was conducted comparing paediatric patients with acute forearm fracture in two trauma centres. Demographics and radiographic data from paediatric forearm fractures treated in Trauma Centre A with the aid of a C-arm fluoroscopy were compared to those treated without fluoroscopy in Trauma Centre B. Re-reduction, late displacement, post-reduction deformity, and need for surgical intervention were compared between the two groups. The cohort included 229 children (175 boys and 54 girls, mean age 9.41±3.2 years, range 1-16 years) with unilateral forearm fractures (83 manipulated with fluoroscopy and 146 without). Thirty-four (15%) children underwent re-reduction procedures in the emergency department. Fifty-three (23%) children had secondary displacement in the cast, of which 18 were operated on, 20 were re-manipulated, and the remaining 15 were kept in the cast with an acceptable deformity. Twenty-nine additional children underwent operation for reasons other than secondary displacement. There were no significant differences in re-reduction and surgery rates or in post-reduction deformities between the two groups. The use of fluoroscopy during reduction of forearm fractures in the paediatric population apparently does not have a significant effect on patient outcomes. Reductions performed without fluoroscopy were comparably accurate in correcting deformities in both coronal and sagittal planes. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Fluoroscopy Learning Curve in Hip Arthroscopy-A Single Surgeon's Experience.

    PubMed

    Smith, Kevin M; Duplantier, Neil L; Crump, Kimbelyn H; Delgado, Domenica A; Sullivan, Stephanie L; McCulloch, Patrick C; Harris, Joshua D

    2017-10-01

    To determine if (1) absorbed radiation dose and (2) fluoroscopy time decreased with experience over the first 100 cases of a single surgeon's hip arthroscopy practice. Subjects who underwent hip arthroscopy for symptomatic femoroacetabular impingement and labral injury were eligible for analysis. Inclusion criteria included the first 100 subjects who underwent hip arthroscopy by a single surgeon (December 2013 to December 2014). Subject demographics, procedure details, fluoroscopy absorbed dose (milligray [mGy]), and time were recorded. Subjects were categorized by date of surgery to one of 4 possible groups (25 per group). One-way analysis of variance was used to determine if a significant difference in dose (mGy) or time was present between groups. Simple linear regression analysis was performed to determine the relation between case number and both radiation dose and fluoroscopy time. Subjects underwent labral repair (n = 93), cam osteoplasty (n = 90), and pincer acetabuloplasty (n = 65). There was a significant (P < .001 for both) linear regression between case number and both radiation dose and fluoroscopy time. A significant difference in mGy was observed between groups, group 1 the highest and group 4 the lowest amounts of radiation (P = .003). Comparing individual groups, group 4 was found to have a significantly lower amount of radiation than group 1 (P = .002), though it was not significantly lower than that of group 2 (P = .09) or group 3 (P = .08). A significant difference in fluoroscopy time was observed between groups, group 1 the highest and group 4 the lowest times (P = .05). Comparing individual groups, group 4 was found to have a significantly lower fluoroscopy time than group 1 (P = .039). Correction for weight, height, and body mass index all revealed the same findings: significant (P < .05) differences in both dose and time across groups. The absorbed dose of radiation and fluoroscopy time decreased significantly over the first 100

  16. Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus

    2012-02-01

    Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.

  17. Improved accuracy and precision of tracer kinetic parameters by joint fitting to variable flip angle and dynamic contrast enhanced MRI data.

    PubMed

    Dickie, Ben R; Banerji, Anita; Kershaw, Lucy E; McPartlin, Andrew; Choudhury, Ananya; West, Catharine M; Rose, Chris J

    2016-10-01

    To improve the accuracy and precision of tracer kinetic model parameter estimates for use in dynamic contrast enhanced (DCE) MRI studies of solid tumors. Quantitative DCE-MRI requires an estimate of precontrast T1 , which is obtained prior to fitting a tracer kinetic model. As T1 mapping and tracer kinetic signal models are both a function of precontrast T1 it was hypothesized that its joint estimation would improve the accuracy and precision of both precontrast T1 and tracer kinetic model parameters. Accuracy and/or precision of two-compartment exchange model (2CXM) parameters were evaluated for standard and joint fitting methods in well-controlled synthetic data and for 36 bladder cancer patients. Methods were compared under a number of experimental conditions. In synthetic data, joint estimation led to statistically significant improvements in the accuracy of estimated parameters in 30 of 42 conditions (improvements between 1.8% and 49%). Reduced accuracy was observed in 7 of the remaining 12 conditions. Significant improvements in precision were observed in 35 of 42 conditions (between 4.7% and 50%). In clinical data, significant improvements in precision were observed in 18 of 21 conditions (between 4.6% and 38%). Accuracy and precision of DCE-MRI parameter estimates are improved when signal models are fit jointly rather than sequentially. Magn Reson Med 76:1270-1281, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures: a phantom study.

    PubMed

    Tystad Lund, Kjetil; Tangen, Geir Arne; Manstad-Hulaas, Frode

    2017-01-01

    To explore the possible benefits of electromagnetic (EM) navigation versus conventional fluoroscopy during abdominal aortic endovascular procedures. The study was performed on a phantom representing the abdominal aorta. Intraoperative cone beam computed tomography (CBCT) of the phantom was acquired and merged with a preoperative multidetector CT (MDCT). The CBCT was performed with a reference plate fixed to the phantom that, after merging the CBCT with the MDCT, facilitated registration of the MDCT volume with the EM space. An EM field generator was stationed near the phantom. Navigation software was used to display EM-tracked instruments within the 3D image volume. Fluoroscopy was performed using a C-arm system. Five operators performed a series of renal artery cannulations using modified instruments, alternatingly using fluoroscopy or EM navigation as the sole guidance method. Cannulation durations and associated radiation dosages were noted along with the number of cannulations complicated by loss of guidewire insertion. A total of 120 cannulations were performed. The median cannulation durations were 41.5 and 34.5 s for the fluoroscopy- and EM-guided cannulations, respectively. No significant difference in cannulation duration was found between the two modalities (p = 0.736). Only EM navigation showed a significant reduction in cannulation duration in the latter half of its cannulation series compared with the first half (p = 0.004). The median dose area product for fluoroscopy was 0.0836 [Formula: see text]. EM-guided cannulations required a one-time CBCT dosage of 3.0278 [Formula: see text]. Three EM-guided and zero fluoroscopy-guided cannulations experienced loss of guidewire insertion. Our findings indicate that EM navigation is not inferior to fluoroscopy in terms of the ability to guide endovascular interventions. Its utilization may be of particular interest in complex interventions where adequate visualization or minimal use of contrast agents is

  19. Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy.

    PubMed

    Kim, Sang Do; Jessel, Rebecca; Zurakowski, David; Millis, Michael B; Kim, Young-Jo

    2012-12-01

    Several available compositional MRIs seem to detect early osteoarthritis before radiographic appearance. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been most frequently used in clinical studies and reportedly predicts premature joint failure in patients undergoing Bernese periacetabular osteotomies (PAOs). We asked, given regional variations in biochemical composition in dysplastic hips, whether the dGEMRIC index of the anterior joint would better predict premature joint failure after PAOs than the coronal dGEMRIC index as previously reported. We retrospectively reviewed 43 hips in 41 patients who underwent Bernese PAO for hip dysplasia. Thirty-seven hips had preserved joints after PAOs and six were deemed premature failures based on pain, joint space narrowing, or subsequent THA. We used dGEMRIC to determine regional variations in biochemical composition. Preoperative demographic and clinical outcome score, radiographic measures of osteoarthritis and severity of dysplasia, and dGEMRIC indexes from different hip regions were analyzed in a multivariable regression analysis to determine the best predictor of premature joint failure. Minimum followup was 24 months (mean, 32 months; range, 24-46 months). The two cohorts were similar in age and sex distribution. Severity of dysplasia was similar as measured by lateral center-edge, anterior center-edge, and Tönnis angles. Preoperative pain, joint space width, Tönnis grade, and coronal and sagittal dGEMRIC indexes differed between groups. The dGEMRIC index in the anterior weightbearing region of the hip was lower in the prematurely failed group and was the best predictor. Success of PAO depends on the amount of preoperative osteoarthritis. These degenerative changes are seen most commonly in the anterior joint. The dGEMRIC index of the anterior joint may better predict premature joint failure than radiographic measures of hip osteoarthritis and coronal dGEMRIC index. Level II, prognostic study. See

  20. Zero-fluoroscopy permanent pacemaker implantation using Ensite NavX system: Clinical viability or fanciful technique?

    PubMed

    Guo, Ping; Qiu, Jie; Wang, Yan; Chen, Guangzhi; Proietti, Riccardo; Fadhle, Al-Selmi; Zhao, Chunxia; Wen Wang, Dao

    2018-02-01

    Fluoroscopy is the imaging modality routinely used for cardiac device implantation and electrophysiological procedures. Due to the rising concern regarding the harmful effects of radiation exposure to both the patients and operation staffs, novel 3D mapping systems have been developed and implemented in electrophysiological procedure for the navigation of catheters inside the heart chambers. Their applicability in cardiac device implantation has been rarely reported. Our aim is to evaluate the feasibility and safety of permanent pacemaker implantation without fluoroscopy. From January 2012 to June 2016, six patients (50 ± 15 years, four of six were female, one of who was at the 25th week of gestation) who underwent permanent pacemaker implantation were included (zero-fluoroscopy group). Data from 20 consecutive cases of implantation performed under fluoroscopy guidance were chosen as a control group (fluoroscopy group). Total implantation procedure time for single-chamber pacemaker was 51.3 ± 13.1 minutes in the zero-fluoroscopy group and 42.6 ± 7.4 minutes in the fluoroscopy group (P  =  0.155). The implantation procedural time for a dual-chamber pacemaker was 88.3 ± 19.6 minutes and 67.3 ± 7.6 minutes in the zero-fluoroscopy and fluoroscopy groups (P  =  0.013), respectively. No complications were observed during the procedure and the follow-up in the two groups, and all pacemakers worked with satisfactory parameters. Ensite NavX system can be used as a reliable and safe zero-fluoroscopy approach for the implantation of single- or dual-chamber permanent pacemakers in specific patients, such as pregnant women or in extreme situations when the x-ray machine is not available. © 2017 The Authors. Pacing and Clinical Electrophysiology published by Wiley Periodicals, Inc.

  1. Classical fluoroscopy criteria poorly predict right ventricular lead septal positioning by comparison with echocardiography.

    PubMed

    Squara, Fabien; Scarlatti, Didier; Riccini, Philippe; Garret, Gauthier; Moceri, Pamela; Ferrari, Emile

    2018-03-13

    Fluoroscopic criteria have been described for the documentation of septal right ventricular (RV) lead positioning, but their accuracy remains questioned. Consecutive patients undergoing pacemaker or defibrillator implantation were prospectively included. RV lead was positioned using postero-anterior and left anterior oblique 40° incidences, and right anterior oblique 30° to rule out coronary sinus positioning when suspected. RV lead positioning using fluoroscopy was compared to true RV lead positioning as assessed by transthoracic echocardiography (TTE). Precise anatomical localizations were determined with both modalities; then, RV lead positioning was ultimately dichotomized into two simple clinically relevant categories: RV septal or RV free wall. Accuracy of fluoroscopy for RV lead positioning was then assessed by comparison with TTE. We included 100 patients. On TTE, 66/100 had a septal RV lead and 34/100 had a free wall RV lead. Fluoroscopy had moderate agreement with TTE for precise anatomical localization of RV lead (k = 0.53), and poor agreement for septal/free wall localization (k = 0.36). For predicting septal RV lead positioning, classical fluoroscopy criteria had a high sensitivity (95.5%; 63/66 patients having a septal RV lead on TTE were correctly identified by fluoroscopy) but a very low specificity (35.3%; only 12/34 patients having a free wall RV lead on TTE were correctly identified by fluoroscopy). Classical fluoroscopy criteria have a poor accuracy for identifying RV free wall leads, which are most of the time misclassified as septal. This raises important concerns about the efficacy and safety of RV lead positioning using classical fluoroscopy criteria.

  2. C-arm positioning using virtual fluoroscopy for image-guided surgery

    NASA Astrophysics Data System (ADS)

    de Silva, T.; Punnoose, J.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M. D.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-03-01

    Introduction: Fluoroscopically guided procedures often involve repeated acquisitions for C-arm positioning at the cost of radiation exposure and time in the operating room. A virtual fluoroscopy system is reported with the potential of reducing dose and time spent in C-arm positioning, utilizing three key advances: robust 3D-2D registration to a preoperative CT; real-time forward projection on GPU; and a motorized mobile C-arm with encoder feedback on C-arm orientation. Method: Geometric calibration of the C-arm was performed offline in two rotational directions (orbit α, orbit β). Patient registration was performed using image-based 3D-2D registration with an initially acquired radiograph of the patient. This approach for patient registration eliminated the requirement for external tracking devices inside the operating room, allowing virtual fluoroscopy using commonly available systems in fluoroscopically guided procedures within standard surgical workflow. Geometric accuracy was evaluated in terms of projection distance error (PDE) in anatomical fiducials. A pilot study was conducted to evaluate the utility of virtual fluoroscopy to aid C-arm positioning in image guided surgery, assessing potential improvements in time, dose, and agreement between the virtual and desired view. Results: The overall geometric accuracy of DRRs in comparison to the actual radiographs at various C-arm positions was PDE (mean ± std) = 1.6 ± 1.1 mm. The conventional approach required on average 8.0 ± 4.5 radiographs spent "fluoro hunting" to obtain the desired view. Positioning accuracy improved from 2.6o ± 2.3o (in α) and 4.1o ± 5.1o (in β) in the conventional approach to 1.5o ± 1.3o and 1.8o ± 1.7o, respectively, with the virtual fluoroscopy approach. Conclusion: Virtual fluoroscopy could improve accuracy of C-arm positioning and save time and radiation dose in the operating room. Such a system could be valuable to training of fluoroscopy technicians as well as

  3. Severe bone marrow edema on sacroiliac joint MRI increases the risk of low BMD in patients with axial spondyloarthritis.

    PubMed

    Kim, Ha Neul; Jung, Joon-Yong; Hong, Yeon Sik; Park, Sung-Hwan; Kang, Kwi Young

    2016-03-02

    To determine the association between inflammatory and structural lesions on sacroiliac joint (SIJ) MRI and BMD and to identify risk factors for low BMD in patients with axial spondyloarthritis (axSpA). Seventy-six patients who fulfilled the ASAS axSpA criteria were enrolled. All underwent SIJ MRI and BMD measurement at the lumbar spine, femoral neck, and total hip. Inflammatory and structural lesions on SIJ MRI were scored. Laboratory tests and assessment of radiographic and disease activity were performed at the time of MRI. The association between SIJ MRI findings and BMD was evaluated. Among the 76 patients, 14 (18%) had low BMD. Patients with low BMD showed significantly higher bone marrow edema (BME) and deep BME scores on MRI than those with normal BMD (p < 0.047 and 0.007, respectively). Inflammatory lesions on SIJ MRI correlated with BMD at the femoral neck and total hip. Multivariate analysis identified the presence of deep BME on SIJ MRI, increased CRP, and sacroiliitis on X-ray as risk factors for low BMD (OR = 5.6, 14.6, and 2.5, respectively). The presence of deep BME on SIJ MRI, increased CRP levels, and severity of sacroiliitis on X-ray were independent risk factors for low BMD.

  4. A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI.

    PubMed

    Lyu, Mengye; Liu, Yilong; Xie, Victor B; Feng, Yanqiu; Guo, Hua; Wu, Ed X

    2017-02-16

    PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient.

  5. Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.

    PubMed

    Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K

    2015-08-01

    A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.

  6. T2 Mapping of the Sacroiliac Joints With 3-T MRI: A Preliminary Study.

    PubMed

    Lefebvre, Guillaume; Bergère, Antonin; Rafei, Mazen El; Duhamel, Alain; Teixeira, Pedro; Cotten, Anne

    2017-08-01

    The objective of this study was to assess the feasibility of T2 relaxation time measurements of the sacroiliac joints. The sacroiliac joints of 40 patients were imaged by 3-T MRI using an oblique axial multislice multiecho spin-echo T2-weighted sequence. Manual plotting and automatic subdivision of ROIs allowed us to obtain T2 values for up to 48 different areas per patient (posterior and anterior parts, sacral, intermediate, and iliac parts). Intraand interobserver reproducibility of T2 values were calculated after independent assessment by two musculoskeletal radiologists. A total of 1656 measurement sites could be analyzed. Mean (± SD) T2 values were 40.6 ± 6.7 ms and 41.2 ± 6.3 ms for observer 1 and 39.9 ± 6.6 ms for observer 2. The intraobserver intraclass correlation coefficient was 0.72 (95% CI, 0.70-0.74), and the interobserver intraclass correlation coefficient was 0.71 (95% CI, 0.68-0.72). Our study shows the feasibility of T2 relaxation time measurements at the sacroiliac joints.

  7. Quantitative in vivo MRI evaluation of lumbar facet joints and intervertebral discs using axial T2 mapping.

    PubMed

    Stelzeneder, David; Messner, Alina; Vlychou, Marianna; Welsch, Goetz H; Scheurecker, Georg; Goed, Sabine; Pieber, Karin; Pflueger, Verena; Friedrich, Klaus M; Trattnig, Siegfried

    2011-11-01

    To assess the feasibility of T2 mapping of lumbar facet joints and intervertebral discs in a single imaging slab and to compare the findings with morphological grading. Sixty lumbar spine segments from 10 low back pain patients and 5 healthy volunteers were examined by axial T2 mapping and morphological MRI at 3.0 Tesla. Regions of interest were drawn on a single slice for the facet joints and the intervertebral discs (nucleus pulposus, anterior and posterior annulus fibrosus). The Weishaupt grading was used for facet joints and the Pfirrmann score was used for morphological disc grading ("normal" vs. "abnormal" discs). The inter-rater agreement was excellent for the facet joint T2 evaluation (r = 0.85), but poor for the morphological Weishaupt grading (kappa = 0.15). The preliminary results show similar facet joint T2 values in segments with normal and abnormal Pfirrmann scores. There was no difference in mean T2 values between facet joints in different Weishaupt grading groups. Facet joint T2 values showed a weak correlation with T2 values of the posterior annulus (r = 0.32) This study demonstrates the feasibility of a combined T2 mapping approach for the facet joints and intervertebral discs using a single axial slab.

  8. Detection of electrophysiology catheters in noisy fluoroscopy images.

    PubMed

    Franken, Erik; Rongen, Peter; van Almsick, Markus; ter Haar Romeny, Bart

    2006-01-01

    Cardiac catheter ablation is a minimally invasive medical procedure to treat patients with heart rhythm disorders. It is useful to know the positions of the catheters and electrodes during the intervention, e.g. for the automatization of cardiac mapping. Our goal is therefore to develop a robust image analysis method that can detect the catheters in X-ray fluoroscopy images. Our method uses steerable tensor voting in combination with a catheter-specific multi-step extraction algorithm. The evaluation on clinical fluoroscopy images shows that especially the extraction of the catheter tip is successful and that the use of tensor voting accounts for a large increase in performance.

  9. Feasibility Study of Needle Placement in Percutaneous Vertebroplasty: Cone-Beam Computed Tomography Guidance Versus Conventional Fluoroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braak, Sicco J., E-mail: sjbraak@gmail.com; Zuurmond, Kirsten, E-mail: kirsten.zuurmond@philips.com; Aerts, Hans C. J., E-mail: hans.cj.aerts@philips.com

    2013-08-01

    ObjectiveTo investigate the accuracy, procedure time, fluoroscopy time, and dose area product (DAP) of needle placement during percutaneous vertebroplasty (PVP) using cone-beam computed tomography (CBCT) guidance versus fluoroscopy.Materials and MethodsOn 4 spine phantoms with 11 vertebrae (Th7-L5), 4 interventional radiologists (2 experienced with CBCT guidance and two inexperienced) punctured all vertebrae in a bipedicular fashion. Each side was randomization to either CBCT guidance or fluoroscopy. CBCT guidance is a sophisticated needle guidance technique using CBCT, navigation software, and real-time fluoroscopy. The placement of the needle had to be to a specific target point. After the procedure, CBCT was performed tomore » determine the accuracy, procedure time, fluoroscopy time, and DAP. Analysis of the difference between methods and experience level was performed.ResultsMean accuracy using CBCT guidance (2.61 mm) was significantly better compared with fluoroscopy (5.86 mm) (p < 0.0001). Procedure time was in favor of fluoroscopy (7.39 vs. 10.13 min; p = 0.001). Fluoroscopy time during CBCT guidance was lower, but this difference is not significant (71.3 vs. 95.8 s; p = 0.056). DAP values for CBCT guidance and fluoroscopy were 514 and 174 mGy cm{sup 2}, respectively (p < 0.0001). There was a significant difference in favor of experienced CBCT guidance users regarding accuracy for both methods, procedure time of CBCT guidance, and added DAP values for fluoroscopy.ConclusionCBCT guidance allows users to perform PVP more accurately at the cost of higher patient dose and longer procedure time. Because procedural complications (e.g., cement leakage) are related to the accuracy of the needle placement, improvements in accuracy are clinically relevant. Training in CBCT guidance is essential to achieve greater accuracy and decrease procedure time/dose values.« less

  10. A simple ergonomic measure reduces fluoroscopy time during ERCP: A multivariate analysis.

    PubMed

    Jowhari, Fahd; Hopman, Wilma M; Hookey, Lawrence

    2017-03-01

    Background and study aims  Endoscopic retrograde cholangiopancreatgraphy (ERCP) carries a radiation risk to patients undergoing the procedure and the team performing it. Fluoroscopy time (FT) has been shown to have a linear relationship with radiation exposure during ERCP. Recent modifications to our ERCP suite design were felt to impact fluoroscopy time and ergonomics. This multivariate analysis was therefore undertaken to investigate these effects, and to identify and validate various clinical, procedural and ergonomic factors influencing the total fluoroscopy time during ERCP. This would better assist clinicians with predicting prolonged fluoroscopic durations and to undertake relevant precautions accordingly. Patients and methods  A retrospective analysis of 299 ERCPs performed by 4 endoscopists over an 18-month period, at a single tertiary care center was conducted. All inpatients/outpatients (121 males, 178 females) undergoing ERCP for any clinical indication from January 2012 to June 2013 in the chosen ERCP suite were included in the study. Various predetermined clinical, procedural and ergonomic factors were obtained via chart review. Univariate analyses identified factors to be included in the multivariate regression model with FT as the dependent variable. Results  Bringing the endoscopy and fluoroscopy screens next to each other was associated with a significantly lesser FT than when the screens were separated further (-1.4 min, P  = 0.026). Other significant factors associated with a prolonged FT included having a prior ERCP (+ 1.4 min, P  = 0.031), and more difficult procedures (+ 4.2 min for each level of difficulty, P  < 0.001). ERCPs performed by high-volume endoscopists used lesser FT vs. low-volume endoscopists (-1.82, P = 0.015). Conclusions  Our study has identified and validated various factors that affect the total fluoroscopy time during ERCP. This is the first study to show that decreasing the distance

  11. Evaluation of Water Content in Lumbar Intervertebral Discs and Facet Joints Before and After Physiological Loading Using T2 Mapping MRI.

    PubMed

    Yamabe, Daisuke; Murakami, Hideki; Chokan, Kou; Endo, Hirooki; Oikawa, Ryosuke; Sawamura, Shoitsu; Doita, Minoru

    2017-12-15

    T2 mapping was used to quantify the water content of lumbar spine intervertebral discs (IVDs) and facet joints before and after physiological loading. The aim of this study was to clarify the interaction between lumbar spine IVD and facet joints as load-bearing structures by measuring the water content of their matrix after physiological loading using T2 mapping magnetic resonance imaging (MRI). To date, few reports have functionally evaluated lumbar spine IVD and facet joints, and their interaction in vivo. T2 mapping may help detect changes in the water content of IVD and articular cartilage of facet joints before and after physiological loading, thereby enabling the evaluation of changes in interacted water retention between IVD and facet joints. Twenty asymptomatic volunteers (10 female and 10 male volunteers; mean age, 19.3 years; age range, 19-20 years) underwent MRI before and after physiological loading such as lumbar flexion, extension, and rotation. Each IVD from L1/2 to L5/S1 was sliced at center of the disc space, and the T2 value was measured at the nucleus pulposus (NP), anterior annulus fibrosus (AF), posterior AF, and bilateral facet joints. In the NP, T2 values significantly decreased after exercise at every lumbar spinal level. In the anterior AF, there were no significant differences in T2 values at any level. In the posterior AF, T2 values significantly increased only at L4/5. In the bilateral facet joints, T2 values significantly decreased after exercise at every level. There was a significant decrease in the water content of facet joints and the NP at every lumbar spinal level after dynamic loading by physical lumbar exercise. These changes appear to play an important and interactional role in the maintenance of the interstitial matrix in the IVD NP and cartilage in the facet joint. 3.

  12. [COMPARISON OF FEMORAL CONDYLAR TWIST ANGLE IN THREE DIMENSIONAL RECONSTRUCTION DIGITAL MODELS OF KNEE JOINT BASED ON TWO DIMENSIONAL IMAGES OF MRI AND CT].

    PubMed

    Huang, Zan; Li, Yanlin; Hu, Meng; Li, Jian; You, Zhimin; Wang, Guoliang; He, Chuan

    2015-02-01

    To study the difference of femoral condylar twist angle (CTA) measurement in three dimensional (3-D) reconstruction digital models of human knee joint based on the two dimensional (2-D) images of MRI and CT so as to provide a reference for selecting the best method of CTA measurement in preoperative design for the femoral prosthesis rotational position. The CTA of 10 human cadaveric knee joint was measured in 3-D digital models based on MRI (group A), in 3-D digital models based on CT (group B), in the cadaveric knee joint with cartilage (group C), and in the cadaveric knee joint without cartilage (group D), respectively. The statistical analysis of the differences was made among the measurements of the CTA. The CTA values measured in 3-D digital models were (6.43 ± 0.53) degrees in group A and (3.31 ± 1.07) degrees in group B, showing significant difference (t = 10.235, P = 0.000). The CTA values measured in the cadaveric knee joint were (5.21 ± 1.28) degrees in group C and (3.33 ± 1.12) degrees in group D, showing significant difference (t = 5.770, P = 0.000). There was significant difference in the CTA values between group B and group C (t = 5.779, P = 0.000), but no significant difference was found between group A and group C (t = 3.219, P = 0.110). The CTA values measured in the 3-D digital models based on MRI are closer to the actual values measured in the knee joint with cartilage, and benefit for preoperative plan.

  13. A New Joint-Blade SENSE Reconstruction for Accelerated PROPELLER MRI

    PubMed Central

    Lyu, Mengye; Liu, Yilong; Xie, Victor B.; Feng, Yanqiu; Guo, Hua; Wu, Ed X.

    2017-01-01

    PROPELLER technique is widely used in MRI examinations for being motion insensitive, but it prolongs scan time and is restricted mainly to T2 contrast. Parallel imaging can accelerate PROPELLER and enable more flexible contrasts. Here, we propose a multi-step joint-blade (MJB) SENSE reconstruction to reduce the noise amplification in parallel imaging accelerated PROPELLER. MJB SENSE utilizes the fact that PROPELLER blades contain sharable information and blade-combined images can serve as regularization references. It consists of three steps. First, conventional blade-combined images are obtained using the conventional simple single-blade (SSB) SENSE, which reconstructs each blade separately. Second, the blade-combined images are employed as regularization for blade-wise noise reduction. Last, with virtual high-frequency data resampled from the previous step, all blades are jointly reconstructed to form the final images. Simulations were performed to evaluate the proposed MJB SENSE for noise reduction and motion correction. MJB SENSE was also applied to both T2-weighted and T1-weighted in vivo brain data. Compared to SSB SENSE, MJB SENSE greatly reduced the noise amplification at various acceleration factors, leading to increased image SNR in all simulation and in vivo experiments, including T1-weighted imaging with short echo trains. Furthermore, it preserved motion correction capability and was computationally efficient. PMID:28205602

  14. Virtual bronchoscopic navigation without X-ray fluoroscopy to diagnose peripheral pulmonary lesions: a randomized trial.

    PubMed

    Asano, Fumihiro; Ishida, Takashi; Shinagawa, Naofumi; Sukoh, Noriaki; Anzai, Masaki; Kanazawa, Kenya; Tsuzuku, Akifumi; Morita, Satoshi

    2017-12-11

    Transbronchial biopsy for peripheral pulmonary lesions is generally performed under X-ray fluoroscopy. Virtual bronchoscopic navigation (VBN) is a method in which virtual images of the bronchial route to the lesion are produced based on CT images obtained before VBN, and the bronchoscope is guided using these virtual images, improving the diagnostic yield of peripheral pulmonary lesions. VBN has the possibility of eliminating the need for X-ray fluoroscopy in the bronchoscopic diagnosis of peripheral lesions. To determine whether VBN can be a substitute for X-ray fluoroscopy, a randomized multicenter trial (non-inferiority trial) was performed in VBN and X-ray fluoroscopy (XRF) -assisted groups. The non-inferiority margin in the VBN-assisted group compared with the XRF-assisted group was set at 15%. The subjects consisted of 140 patients with peripheral pulmonary lesions with a mean diameter > 3 cm. In the VBN-assisted group, the bronchoscope was guided to the lesion using a VBN system without X-ray fluoroscopy. In the XRF-assisted group, the same bronchoscope was guided to the lesion under X-ray fluoroscopy. Subsequently, in both groups, the lesion was visualized using endobronchial ultrasonography with a guide sheath (EBUS/GS), and biopsy was performed. In this serial procedure, X-ray fluoroscopy was not used in the VBNA group. The subjects of analysis consisted of 129 patients. The diagnostic yield was 76.9% (50/65) in the VBN-assisted group and 85.9% (55/64) in the XRF-assisted group. The difference in the diagnostic yield between the two groups was -9.0% (95% confidence interval: -22.3% ~ 4.3%). The non-inferiority of the VBN-assisted group could not be confirmed. The rate of visualizing lesions by EBUS was 95.4% (62/65) in the VBN-assisted group and 96.9% (62/64) in the XRF-assisted group, being high in both groups. On EBUS/GS, a bronchoscope and biopsy instruments may be guided to the lesions using VBN without X-ray fluoroscopy, but X-ray fluoroscopy is

  15. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    PubMed

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P < 0.001) and lateral ( P < 0.001) compartment of the knee and in the tibial cartilage of the medial compartment ( P < 0.001). Conclusion In this study, alterations of the cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  16. Direct comparison of intra-articular versus intravenous delayed gadolinium-enhanced MRI of hip joint cartilage.

    PubMed

    Zilkens, Christoph; Miese, Falk; Kim, Young-Jo; Jäger, Marcus; Mamisch, Tallal C; Hosalkar, Harish; Antoch, Gerald; Krauspe, Rüdiger; Bittersohl, Bernd

    2014-01-01

    To investigate the potential of delayed gadolinium-enhanced magnetic resonance imaging in cartilage (dGEMRIC) after intra-articular (ia) contrast agent administration at 3 Tesla (T), a paired study comparing intravenous (iv) dGEMRIC (standard) with ia-dGEMRIC was performed. Thirty-five symptomatic patients with suspected cartilage damage underwent ia- and iv-dGEMRIC. MRI was performed with a 3T system wherein the interval between both measurements was 2 weeks. For iv-dGEMRIC, FDA approved Gd-DOTA(-) was injected intravenously 45 min before the MRI scan. For ia-dGEMRIC, 10-20 mL of a 2 mM solution of Gd- DOTA(-) was injected under fluoroscopic guidance 30 min before the MRI scan. Both ia- and iv-dGEMRIC demonstrated the typical T1Gd pattern in hip joint cartilage with increasing values toward the superior regions in acetabular cartilage reflecting the higher glycosaminoglycan (GAG) content in the main weight-bearing area. Correlation analysis revealed a moderate correlation between both techniques (r = 0.439, P-value < 0.001), whereas the T1Gd values for iv-dGEMRIC were significantly higher than those for ia-dGEMRIC. This corresponds with the Bland-Altman plot analysis, which revealed a systemic bias (higher T1Gd values after iv gadolinium application) of ∼70 ms. Ia-dGEMRIC was able to reveal the characteristic T1Gd pattern in hip joint cartilage confirming the sensitivity of ia-dGEMRIC for GAG. In addition, there was a significant correlation between iv-dGEMRIC and ia-dGEMRIC. However, the T1Gd values after ia contrast media application were significantly lower than those after iv application that has to be considered for future studies. Copyright © 2013 Wiley Periodicals, Inc.

  17. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.

    PubMed

    Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J

    2014-01-01

    This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.

  18. Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse.

    PubMed

    Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R

    2016-01-01

    In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Safety profile of sural nerve in posterolateral approach to the ankle joint: MRI study.

    PubMed

    Ellapparadja, Pregash; Husami, Yaya; McLeod, Ian

    2014-05-01

    The posterolateral approach to ankle joint is well suited for ORIF of posterior malleolar fractures. There are no major neurovascular structures endangering this approach other than the sural nerve. The sural nerve is often used as an autologous peripheral nerve graft and provides sensation to the lateral aspect of the foot. The aim of this paper is to measure the precise distance of the sural nerve from surrounding soft tissue structures so as to enable safe placement of skin incision in posterolateral approach. This is a retrospective image review study involving 64 MRI scans. All measurements were made from Axial T1 slices. The key findings of the paper is the safety window for the sural nerve from the lateral border of tendoachilles (TA) is 7 mm, 1.3 cm and 2 cm at 3 cm above ankle joint, at the ankle joint and at the distal tip of fibula respectively. Our study demonstrates the close relationship of the nerve in relation to TA and fibula in terms of exact measurements. The safety margins established in this study should enable the surgeon in preventing endangerment of the sural nerve encountered in this approach.

  20. MRI evidence of structural changes in the sacroiliac joints of patients with non-radiographic axial spondyloarthritis even in the absence of MRI inflammation.

    PubMed

    Maksymowych, Walter P; Wichuk, Stephanie; Dougados, Maxime; Jones, Heather; Szumski, Annette; Bukowski, Jack F; Marshall, Lisa; Lambert, Robert G

    2017-06-06

    Studies have shown that structural lesions may be present in patients with non-radiographic axial spondyloarthritis (nr-axSpA). However, the relevance of structural lesions in these patients is unclear, particularly without signs of inflammation on magnetic resonance imaging (MRI). We assessed the presence of structural lesions at baseline on MRI in the sacroiliac joints (SIJ) of patients with nr-axSpA with and without SIJ inflammation on MRI. Bone marrow edema (BME) was assessed on short tau inversion recovery (STIR) scans from 185 patients with nr-axSpA, by two independent readers at baseline using the Spondyloarthritis Research Consortium of Canada (SPARCC) score. Structural lesions were evaluated on T1 weighted spin echo scans, with readers blinded to STIR scans, using the SPARCC MRI SIJ structural score. Disease characteristics and structural lesions were compared in patients with SIJ BME (score ≥2) and without SIJ BME (score <2). Both SIJ BME and structural lesions scores were available for 183 patients; 128/183 (69.9%) patients had SIJ BME scores ≥2 and 55/183 (30.1%) had scores <2. Frequencies of MRI structural lesions in patients with vs without SIJ BME were: erosions (45.3% vs 10.9%, P < 0.001), backfill (20.3% vs 0%, P < 0.001), fat metaplasia (10.9% vs 1.8%, P = 0.04), and ankylosis (2.3% vs 1.8%, P = ns). Significantly more patients with both SIJ BME and structural lesions were male and/or HLA-B27 positive than patients with only SIJ BME. Mean (SD) spinal scores (23 discovertebral units) were significantly higher in patients with SIJ structural lesions than without: 6.5 (11.5) vs 3.3 (5.1), respectively, P = 0.01. In patients with nr-axSpA, SIJ structural lesions, particularly erosions, may be present on MRI when radiographs are normal or inconclusive, even in patients negative for MRI SIJ inflammation. They may reflect more severe disease with greater spinal inflammation. ClinicalTrials.gov, NCT01258738 . Registered on 9

  1. Within-subject joint independent component analysis of simultaneous fMRI/ERP in an auditory oddball paradigm

    PubMed Central

    MANGALATHU-ARUMANA, J.; BEARDSLEY, S. A.; LIEBENTHAL, E.

    2012-01-01

    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post- central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI. PMID:22377443

  2. Carotid artery stenting with double cerebral embolic protection in asymptomatic patients - a diffusion-weighted MRI controlled study.

    PubMed

    Vuruskan, Ertan; Saracoglu, Erhan; Ergun, Ugur; Poyraz, Fatih; Duzen, İrfan Veysel

    2017-01-01

    The aim of this study was to compare the simultaneous double-protection method (proximal balloon plus distal filter) with distal-filter protection or proximal-balloon protection alone in asymptomatic patients during carotid artery stenting. 119 consecutive patients were investigated for carotid artery stentings in the extracranial internal carotid artery with the use of distal filters (n = 41, 34.4 %), proximal balloon (MoMa) protection (n = 40, 33.6 %) or double protection (n = 38, 31.9 %). Magnetic resonance imaging (MRI) was performed on all patients before the procedure, and control diffusion-weighted MRI (DW-MRI) was obtained within 24-48 h after the procedure. Procedural data, complications, success rate, major adverse cardiovascular events, and MRI findings were collected. New cerebral high-intensity (HI) lesions were observed in 47 (39.4 %) patients. HI lesions were observed in 22 (53.6 %), 15 (37.5 %), and 10 (26.3 %) of the patients with distal filters, proximal protection, and double protection, respectively (p = 0.004). The average number of HI lesions on DW-MRI was 1.80 in the distal-filter group, 0.90 in the proximal-balloon group, and 0.55 in the double-protection group (p < 0.001). Procedure and fluoroscopy times were slightly longer in the double-protection group compared to the distal- or proximal-protection groups (p = 0.001). The double (proximal plus distal) cerebral embolic protection technique is safe and effective for minimizing the risk of cerebral embolization, even in patients with asymptomatic carotid artery stenosis, despite slightly longer procedure and fluoroscopy times.
.

  3. Spatial variation of fixed charge density in knee joint cartilage from sodium MRI - Implication on knee joint mechanics under static loading.

    PubMed

    Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2016-10-03

    The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Range of Hip Joint Motion Is Correlated With MRI-Verified Cam Deformity in Adolescent Elite Skiers

    PubMed Central

    Agnvall, Cecilia; Swärd Aminoff, Anna; Todd, Carl; Jonasson, Pall; Thoreson, Olof; Swärd, Leif; Karlsson, Jon; Baranto, Adad

    2017-01-01

    Background: Radiologically verified cam-type femoroacetabular impingement (FAI) has been shown to correlate with reduced internal rotation, reduced passive hip flexion, and a positive anterior impingement test. Purpose: To validate how a clinical examination of the hip joint correlates with magnetic resonance imaging (MRI)–verified cam deformity in adolescents. Study Design: Cross-sectional study; Level of evidence, 3. Methods: The sample group consisted of 102 adolescents with the mean age 17.7 ± 1.4 years. The hip joints were examined using MRI for measurements of the presence of cam (α-angle ≥55°) and clinically for range of motion (ROM) in both supine and sitting positions. The participants were divided into a cam and a noncam group based on the results of the MRI examination. Passive hip flexion, internal rotation, anterior impingement, and the FABER (flexion, abduction, and external rotation) test were used to test both hips in the supine position. With the participant sitting, the internal/external rotation of the hip joint was measured in 3 different positions of the pelvis (neutral, maximum anteversion, and retroversion) and lumbar spine (neutral, maximum extension, and flexion). Results: Differences were found between the cam and noncam groups in terms of the anterior impingement test (right, P = .010; left, P = .006), passive supine hip flexion (right: mean, 5°; cam, 117°; noncam, 122° [P = .05]; and left: mean, 8.5°; cam, 116°; noncam, 124.5° [P = .001]), supine internal rotation (right: mean, 4.9°; cam, 24°; noncam, 29° [P = .022]; and left: mean, 4.8°; cam, 26°; noncam, 31° [P = .028]), sitting internal rotation with the pelvis and lumbar spine in neutral (right: mean, 7.95°; cam, 29°; noncam, 37° [P = .001]; and left: mean, 6.5°; cam, 31.5°; noncam, 38° [P = .006]), maximum anteversion of the pelvis and extension of the lumbar spine (right: mean, 5.2°; cam, 20°; noncam, 25° [P = .004]; and left: mean, 5.85°; cam, 20

  5. Preliminary study of rib articulated model based on dynamic fluoroscopy images

    NASA Astrophysics Data System (ADS)

    Villard, Pierre-Frederic; Escamilla, Pierre; Kerrien, Erwan; Gorges, Sebastien; Trousset, Yves; Berger, Marie-Odile

    2014-03-01

    We present in this paper a preliminary study of rib motion tracking during Interventional Radiology (IR) fluoroscopy guided procedures. It consists in providing a physician with moving rib three-dimensional (3D) models projected in the fluoroscopy plane during a treatment. The strategy is to help to quickly recognize the target and the no-go areas i.e. the tumor and the organs to avoid. The method consists in i) elaborating a kinematic model of each rib from a preoperative computerized tomography (CT) scan, ii) processing the on-line fluoroscopy image and iii) optimizing the parameters of the kinematic law such as the transformed 3D rib projected on the medical image plane fit well with the previously processed image. The results show a visually good rib tracking that has been quantitatively validated by showing a periodic motion as well as a good synchronism between ribs.

  6. MO-DE-BRA-04: Hands-On Fluoroscopy Safety Training with Real-Time Patient and Staff Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderhoek, M; Bevins, N

    Purpose: Fluoroscopically guided interventions (FGI) are routinely performed across many different hospital departments. However, many involved staff members have minimal training regarding safe and optimal use of fluoroscopy systems. We developed and taught a hands-on fluoroscopy safety class incorporating real-time patient and staff dosimetry in order to promote safer and more optimal use of fluoroscopy during FGI. Methods: The hands-on fluoroscopy safety class is taught in an FGI suite, unique to each department. A patient equivalent phantom is set on the patient table with an ion chamber positioned at the x-ray beam entrance to the phantom. This provides a surrogatemore » measure of patient entrance dose. Multiple solid state dosimeters (RaySafe i2 dosimetry systemTM) are deployed at different distances from the phantom (0.1, 1, 3 meters), which provide surrogate measures of staff dose. Instructors direct participating clinical staff to operate the fluoroscopy system as they view live fluoroscopic images, patient entrance dose, and staff doses in real-time. During class, instructors work with clinical staff to investigate how patient entrance dose, staff doses, and image quality are affected by different parameters, including pulse rate, magnification, collimation, beam angulation, imaging mode, system geometry, distance, and shielding. Results: Real-time dose visualization enables clinical staff to directly see and learn how to optimize their use of their own fluoroscopy system to minimize patient and staff dose, yet maintain sufficient image quality for FGI. As a direct result of the class, multiple hospital departments have implemented changes to their imaging protocols, including reduction of the default fluoroscopy pulse rate and increased use of collimation and lower dose fluoroscopy modes. Conclusion: Hands-on fluoroscopy safety training substantially benefits from real-time patient and staff dosimetry incorporated into the class. Real-time dose

  7. A feature-based approach to combine functional MRI, structural MRI and EEG brain imaging data.

    PubMed

    Calhoun, V; Adali, T; Liu, J

    2006-01-01

    The acquisition of multiple brain imaging types for a given study is a very common practice. However these data are typically examined in separate analyses, rather than in a combined model. We propose a novel methodology to perform joint independent component analysis across image modalities, including structural MRI data, functional MRI activation data and EEG data, and to visualize the results via a joint histogram visualization technique. Evaluation of which combination of fused data is most useful is determined by using the Kullback-Leibler divergence. We demonstrate our method on a data set composed of functional MRI data from two tasks, structural MRI data, and EEG data collected on patients with schizophrenia and healthy controls. We show that combining data types can improve our ability to distinguish differences between groups.

  8. Automated planning of MRI scans of knee joints

    NASA Astrophysics Data System (ADS)

    Bystrov, Daniel; Pekar, Vladimir; Young, Stewart; Dries, Sebastian P. M.; Heese, Harald S.; van Muiswinkel, Arianne M.

    2007-03-01

    A novel and robust method for automatic scan planning of MRI examinations of knee joints is presented. Clinical knee examinations require acquisition of a 'scout' image, in which the operator manually specifies the scan volume orientations (off-centres, angulations, field-of-view) for the subsequent diagnostic scans. This planning task is time-consuming and requires skilled operators. The proposed automated planning system determines orientations for the diagnostic scan by using a set of anatomical landmarks derived by adapting active shape models of the femur, patella and tibia to the acquired scout images. The expert knowledge required to position scan geometries is learned from previous manually planned scans, allowing individual preferences to be taken into account. The system is able to automatically discriminate between left and right knees. This allows to use and merge training data from both left and right knees, and to automatically transform all learned scan geometries to the side for which a plan is required, providing a convenient integration of the automated scan planning system in the clinical routine. Assessment of the method on the basis of 88 images from 31 different individuals, exhibiting strong anatomical and positional variability demonstrates success, robustness and efficiency of all parts of the proposed approach, which thus has the potential to significantly improve the clinical workflow.

  9. Taking two to tango: fMRI analysis of improvised joint action with physical contact

    PubMed Central

    Belyk, Michel; Brown, Steven

    2018-01-01

    Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation. PMID:29324862

  10. Fluoroscopy-Guided Pull-Through Gastrostomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitton, M. B., E-mail: pitton@radiologie.klinik.uni-mainz.de; Herber, S.; Dueber, C.

    2008-01-15

    The purpose of this study was to simplify a fluoroscopy guided gastrostomy technique using pull-type tubes which are traditionally introduced with gastroscopic assistance. The stomach was transorally probed with a 5-Fr catheter and a guidewire. A second access was performed percutaneously through the anterior abdominal and gastric wall using an 8-Fr sheath and an 8-Fr guiding catheter. A duplicated guidewire was introduced through the guiding catheter in order to result in a great custom-made loop within the stomach. The transoral guidewire was captured and tightened with this loop and the guiding catheter, and both were subsequently pulled by the transoralmore » guidewire until the tip of the guiding catheter exited the mouth. A thread was fed through the guiding catheter for fixation of the pull-type gastrostomy tube. Finally, the fixed tube was pulled through the esophagus into the stomach and through the abdominal wall until the anterior gastric wall fixed the retention plate of the tube. Thirty-seven patients (28 male, 9 female; age, 65.1 {+-} 14.4 years) with miscellaneous indications for percutaneous gastrostomies were supplied with pull-type gastrostomy catheters in a fluoroscopy technique without endoscopic assistance. Twenty-five of the 37 patients (67.6%) had undergone unsuccessful preceding gastroscopically guided PEG attempts because of tumor stenosis (n = 12) or impossible transillumination of the abdominal wall (n = 13). All procedures were technically successful, without major complications. Particularly, all patients with frustrating gastroscopic attempts were successfully provided with pull-type gastrostomy tubes. Five minor complications occurred: one tube loss during the passage of the hypopoharynx because of a torn thread, one transient small leakage alongside the tube (both successfully treated), and three cases of transient moderate local pain without leakage (symptomatic treatment). We conclude that this fluoroscopy-guided pull

  11. Fluoroscopy-guided reduction and fibular nail fixation to manage unstable ankle fractures in patients with diabetes: a retrospective cohort study.

    PubMed

    Ashman, B D; Kong, C; Wing, K J; Penner, M J; Bugler, K E; White, T O; Younger, A S E

    2016-09-01

    Patients with diabetes are at increased risk of wound complications after open reduction and internal fixation of unstable ankle fractures. A fibular nail avoids large surgical incisions and allows anatomical reduction of the mortise. We retrospectively reviewed the results of fluoroscopy-guided reduction and percutaneous fibular nail fixation for unstable Weber type B or C fractures in 24 adult patients with type 1 or type 2 diabetes. The re-operation rate for wound dehiscence or other indications such as amputation, mortality and functional outcomes was determined. Two patients developed lateral side wound infection, one of whom underwent wound debridement. Three other patients required re-operation for removal of symptomatic hardware. No patient required a below-knee amputation. Six patients died during the study period for unrelated reasons. At a median follow-up of 12 months (7 to 38) the mean Short Form-36 Mental Component Score and Physical Component Score were 53.2 (95% confidence intervals (CI) 48.1 to 58.4) and 39.3 (95% CI 32.1 to 46.4), respectively. The mean Visual Analogue Score for pain was 3.1 (95% 1.4 to 4.9). The mean Ankle Osteoarthritis Scale total score was 32.9 (95% CI 16.0 to 49.7). Fluoroscopy-guided reduction and fibular nail fixation of unstable ankle fractures in patients with diabetes was associated with a low incidence of wound and overall complications, while providing effective surgical fixation. Cite this article: Bone Joint J 2016;98-B:1197-1201. ©2016 The British Editorial Society of Bone & Joint Surgery.

  12. CTA with fluoroscopy image fusion guidance in endovascular complex aortic aneurysm repair.

    PubMed

    Sailer, A M; de Haan, M W; Peppelenbosch, A G; Jacobs, M J; Wildberger, J E; Schurink, G W H

    2014-04-01

    To evaluate the effect of intraoperative guidance by means of live fluoroscopy image fusion with computed tomography angiography (CTA) on iodinated contrast material volume, procedure time, and fluoroscopy time in endovascular thoraco-abdominal aortic repair. CTA with fluoroscopy image fusion road-mapping was prospectively evaluated in patients with complex aortic aneurysms who underwent fenestrated and/or branched endovascular repair (FEVAR/BEVAR). Total iodinated contrast material volume, overall procedure time, and fluoroscopy time were compared between the fusion group (n = 31) and case controls (n = 31). Reasons for potential fusion image inaccuracy were analyzed. Fusion imaging was feasible in all patients. Fusion image road-mapping was used for navigation and positioning of the devices and catheter guidance during access to target vessels. Iodinated contrast material volume and procedure time were significantly lower in the fusion group than in case controls (159 mL [95% CI 132-186 mL] vs. 199 mL [95% CI 170-229 mL], p = .037 and 5.2 hours [95% CI 4.5-5.9 hours] vs. 6.3 hours (95% CI 5.4-7.2 hours), p = .022). No significant differences in fluoroscopy time were observed (p = .38). Respiration-related vessel displacement, vessel elongation, and displacement by stiff devices as well as patient movement were identified as reasons for fusion image inaccuracy. Image fusion guidance provides added value in complex endovascular interventions. The technology significantly reduces iodinated contrast material dose and procedure time. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  13. A stress MRI of the shoulder for evaluation of ligamentous stabilizers in acute and chronic acromioclavicular joint instabilities.

    PubMed

    Izadpanah, Kaywan; Winterer, Jan; Vicari, Marco; Jaeger, Martin; Maier, Dirk; Eisebraun, Leonie; Ute Will, Jutta; Kotter, Elmar; Langer, Mathias; Südkamp, Norbert P; Hennig, Jürgen; Weigel, Mathias

    2013-06-01

    To show the feasibility of a stress magnetic resonance imaging (MRI) as a new method for simultaneous evaluation of the morphology and the functional integrity of the acromioclavicular joint (ACJ) ligamentous stabilizers. MRI of four volunteers, 10 patients with acute, and six with chronic ACJ injuries was performed using a 0.25 T open MRI scanner. A 2D-proton-density and a 3D-gradient-echo sequence at rest and under 6.5 kg shoulder traction were performed. Comparative measurements of the coracoclavicular and the acromioclavicular distance were performed. Additionally, the conoid and trapezoid ligament lengths were measured with multiplanar reconstructions. MRI at rest correctly identified tears of the coracoclavicular and the acromioclavicular ligaments in eight patients suffering acute ACJ injuries. Stress application helped to distinguish between partial and complete coracoclavicular ligament tears in two cases. Insufficiency of the ACJ ligaments was present in all acute and chronic ACJ injuries. Stress application in chronic ACJ ligaments revealed isolated insufficiency of the conoid ligament in three cases and of the trapezoid ligament in one case. Combined insufficiency was present in two cases. Stress MRI facilitates simultaneous acquisition of morphologic and functional information of the ACJ stabilizers. In acute ACJ injuries it helps to distinguish between partial and complete ligament tears. In chronic ACJ injuries it provides functional information of the ligament regrinds. Copyright © 2012 Wiley Periodicals, Inc.

  14. Medial joint line bone bruising at MRI complicating acute ankle inversion injury: what is its clinical significance?

    PubMed

    Chan, V O; Moran, D E; Shine, S; Eustace, S J

    2013-10-01

    To assess the incidence and clinical significance of medial joint line bone bruising following acute ankle inversion injury. Forty-five patients who underwent ankle magnetic resonance imaging (MRI) within 2 weeks of acute ankle inversion injury were included in this prospective study. Integrity of the lateral collateral ligament complex, presence of medial joint line bone bruising, tibio-talar joint effusion, and soft-tissue swelling were documented. Clinical follow-up at 6 months was carried out to determine the impact of injury on length of time out of work, delay in return to normal walking, delay in return to sports activity, and persistence of medial joint line pain. Thirty-seven patients had tears of the anterior talofibular ligament (ATFL). Twenty-six patients had medial joint line bone bruising with altered marrow signal at the medial aspect of the talus and congruent surface of the medial malleolus. A complete ATFL tear was seen in 92% of the patients with medial joint line bone bruising (p = 0.05). Patients with an ATFL tear and medial joint line bone bruising had a longer delay in return to normal walking (p = 0.0002), longer delay in return to sports activity (p = 0.0001), and persistent medial joint line pain (p = 0.0003). There was no statistically significant difference in outcome for the eight patients without ATFL tears. Medial joint line bone bruising following an acute ankle inversion injury was significantly associated with a complete ATFL tear, longer delay in the return to normal walking and sports activity, as well as persistent medial joint line pain. Its presence should prompt detailed assessment of the lateral collateral ligament complex, particularly the ATFL. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Semi-automated intra-operative fluoroscopy guidance for osteotomy and external-fixator.

    PubMed

    Lin, Hong; Samchukov, Mikhail L; Birch, John G; Cherkashin, Alexander

    2006-01-01

    This paper outlines a semi-automated intra-operative fluoroscopy guidance and monitoring approach for osteotomy and external-fixator application in orthopedic surgery. Intra-operative Guidance module is one component of the "LegPerfect Suite" developed for assisting the surgical correction of lower extremity angular deformity. The Intra-operative Guidance module utilizes information from the preoperative surgical planning module as a guideline to overlay (register) its bone outline semi-automatically with the bone edge from the real-time fluoroscopic C-Arm X-Ray image in the operating room. In the registration process, scaling factor is obtained automatically through matching a fiducial template in the fluoroscopic image and a marker in the module. A triangle metal plate, placed on the operating table is used as fiducial template. The area of template image within the viewing area of the fluoroscopy machine is obtained by the image processing techniques such as edge detection and Hough transformation to extract the template from other objects in the fluoroscopy image. The area of fiducial template from fluoroscopic image is then compared with the area of the marker from the planning so as to obtain the scaling factor. After the scaling factor is obtained, the user can use simple operations by mouse to shift and rotate the preoperative planning to overlay the bone outline from planning with the bone edge from fluoroscopy image. In this way osteotomy levels and external fixator positioning on the limb can guided by the computerized preoperative plan.

  16. AAPM/RSNA physics tutorial for residents: physics of flat-panel fluoroscopy systems: Survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more.

    PubMed

    Nickoloff, Edward Lee

    2011-01-01

    This article reviews the design and operation of both flat-panel detector (FPD) and image intensifier fluoroscopy systems. The different components of each imaging chain and their functions are explained and compared. FPD systems have multiple advantages such as a smaller size, extended dynamic range, no spatial distortion, and greater stability. However, FPD systems typically have the same spatial resolution for all fields of view (FOVs) and are prone to ghosting. Image intensifier systems have better spatial resolution with the use of smaller FOVs (magnification modes) and tend to be less expensive. However, the spatial resolution of image intensifier systems is limited by the television system to which they are coupled. Moreover, image intensifier systems are degraded by glare, vignetting, spatial distortions, and defocusing effects. FPD systems do not have these problems. Some recent innovations to fluoroscopy systems include automated filtration, pulsed fluoroscopy, automatic positioning, dose-area product meters, and improved automatic dose rate control programs. Operator-selectable features may affect both the patient radiation dose and image quality; these selectable features include dose level setting, the FOV employed, fluoroscopic pulse rates, geometric factors, display software settings, and methods to reduce the imaging time. © RSNA, 2011.

  17. How well can step-off and gap distances be reduced when treating intra-articular distal radius fractures with fragment specific fixation when using fluoroscopy.

    PubMed

    Thiart, M; Ikram, A; Lamberts, R P

    2016-12-01

    Although fragment specific fixation has proved to be an effective treatment regime, it has not been established how successfully this treatment could be performed using fluoroscopy and what the added value of arthroscopy could be. Establish gap and step-off distances after in intra-articular distal radius fractures that have been treated with fragment specific fixation while using fluoroscopy. Forty-four patients with an intra-articular distal radius fracture were treated with fragment specific fixation while using fluoroscopy. After the treatment of the intra-articular distal radius fracture with fragment specific fixation and the use of fluoroscopy, but before the completion of the surgical intervention, all gap, and step-off distances were determined by using arthroscopy. In addition, the joint was checked for any other wrist pathologies. Arthroscopy after the surgical intervention showed that in 37 patients no gap distances could be detected, while in six patients a gap distance of≤2mm was found and in one patient, a gap distance of 3mm. Similarly, arthroscopy revealed no step-off distances in 33 patients, while in 11 patients a step-off distance of≤2mm was found. Although additional wrist pathologies were found in 48% of our population, only one patient needed surgical intervention. Three months after the surgical intervention wrist flexion was 41±10°, wrist extension 51±17°, ulnar deviation 19±10°, radial deviation 32±12° while patients could pronate and supinate their wrist to 85±5° and 74±20°, respectively. Intra-articular distal radius fractures can be treated successfully with fragment specific fixation and the use of fluoroscopy. As almost all gap and step-off distances could be reduced to an acceptable level, the scope for arthroscopy to further improve this treatment regime is limited. The functional outcome scores that were found 3 months after the surgical intervention were similar to what has been reported in other studies using

  18. Implementation of a near-zero fluoroscopy approach in interventional electrophysiology: impact of operator experience.

    PubMed

    Wannagat, Severin; Loehr, Lena; Lask, Sebastian; Völk, Katharina; Karaköse, Tamer; Özcelik, Cemil; Mügge, Andreas; Wutzler, Alexander

    2018-04-01

    Catheter ablation is performed under fluoroscopic guidance. Reduction of radiation dose for patients and staff is emphasized by current recommendations. Previous studies have shown that lower operator experience leads to increased radiation dose. On the other hand, less experienced operators may depend even more on fluoroscopic guidance. Our study aimed to evaluate feasibility and efficacy of a non-fluoroscopic approach in different training levels. From January 2017, a near-zero fluoroscopy approach was established in two centers. Four operators (beginner, 1st year fellow, 2nd year fellow, expert) were instructed to perform the complete procedure with the use of a 3-D mapping system without fluoroscopy. A historical cohort that underwent procedures with fluoroscopy use served as control group. Dose area product (DPA), procedure duration, acute procedural success, and complications were compared between the groups and for each operator. Procedures were performed in 157 patients. The first 100 patients underwent procedures with fluoroscopic guidance, the following 57 procedures were performed with the near-zero fluoroscopy approach. The results show a significant reduction in DPA for all operators immediately after implementation of the near-zero fluoroscopy protocol (control 637 ± 611 μGy/m 2 ; beginner 44.1 ± 79.5 μGy/m 2 , p = 0.002; 1st year fellow 24.3 ± 46.4.5 μGy/m 2 , p = 0.001; 2nd year fellow 130.3 ± 233.3 μGy/m 2 , p = 0.003; expert 9.3 ± 37.4 μGy/m 2 , P < 0.001). Procedure duration, acute success, and complications were not significantly different between the groups. Our results show a 90% reduction of DPA shortly after implementation of a near-zero fluoroscopy approach in interventional electrophysiology even in operators in training.

  19. 3D/2D image registration method for joint motion analysis using low-quality images from mini C-arm machines

    NASA Astrophysics Data System (ADS)

    Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang

    2017-03-01

    A 3D kinematic measurement of joint movement is crucial for orthopedic surgery assessment and diagnosis. This is usually obtained through a frame-by-frame registration of the 3D bone volume to a fluoroscopy video of the joint movement. The high cost of a high-quality fluoroscopy imaging system has hindered the access of many labs to this application. This is while the more affordable and low-dosage version, the mini C-arm, is not commonly used for this application due to low image quality. In this paper, we introduce a novel method for kinematic analysis of joint movement using the mini C-arm. In this method the bone of interest is recovered and isolated from the rest of the image using a non-rigid registration of an atlas to each frame. The 3D/2D registration is then performed using the weighted histogram of image gradients as an image feature. In our experiments, the registration error was 0.89 mm and 2.36° for human C2 vertebra. While the precision is still lacking behind a high quality fluoroscopy machine, it is a good starting point facilitating the use of mini C-arms for motion analysis making this application available to lower-budget environments. Moreover, the registration was highly resistant to the initial distance from the true registration, converging to the answer from anywhere within +/-90° of it.

  20. Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis

    DTIC Science & Technology

    2015-10-01

    osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model, translational research. 3. OVERALL PROJECT...intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage. Degenerative changes in the cartilage and joint space...successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are continuing to obtain 18- month MRI scans for

  1. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will

  2. Joint multi-object registration and segmentation of left and right cardiac ventricles in 4D cine MRI

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Jan; Kepp, Timo; Schmidt-Richberg, Alexander; Handels, Heinz

    2014-03-01

    The diagnosis of cardiac function based on cine MRI requires the segmentation of cardiac structures in the images, but the problem of automatic cardiac segmentation is still open, due to the imaging characteristics of cardiac MR images and the anatomical variability of the heart. In this paper, we present a variational framework for joint segmentation and registration of multiple structures of the heart. To enable the simultaneous segmentation and registration of multiple objects, a shape prior term is introduced into a region competition approach for multi-object level set segmentation. The proposed algorithm is applied for simultaneous segmentation of the myocardium as well as the left and right ventricular blood pool in short axis cine MRI images. Two experiments are performed: first, intra-patient 4D segmentation with a given initial segmentation for one time-point in a 4D sequence, and second, a multi-atlas segmentation strategy is applied to unseen patient data. Evaluation of segmentation accuracy is done by overlap coefficients and surface distances. An evaluation based on clinical 4D cine MRI images of 25 patients shows the benefit of the combined approach compared to sole registration and sole segmentation.

  3. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint.

    PubMed

    Henderson, Christopher E; Higginson, Jill S; Barrance, Peter J

    2011-01-01

    Knee osteoarthritis (OA) detrimentally impacts the lives of millions of older Americans through pain and decreased functional ability. Unfortunately, the pathomechanics and associated deviations from joint homeostasis that OA patients experience are not well understood. Alterations in mechanical stress in the knee joint may play an essential role in OA; however, existing literature in this area is limited. The purpose of this study was to evaluate the ability of an existing magnetic resonance imaging (MRI)-based modeling method to estimate articular cartilage contact area in vivo. Imaging data of both knees were collected on a single subject with no history of knee pathology at three knee flexion angles. Intra-observer reliability and sensitivity studies were also performed to determine the role of operator-influenced elements of the data processing on the results. The method's articular cartilage contact area estimates were compared with existing contact area estimates in the literature. The method demonstrated an intra-observer reliability of 0.95 when assessed using Pearson's correlation coefficient and was found to be most sensitive to changes in the cartilage tracings on the peripheries of the compartment. The articular cartilage contact area estimates at full extension were similar to those reported in the literature. The relationships between tibiofemoral articular cartilage contact area and knee flexion were also qualitatively and quantitatively similar to those previously reported. The MRI-based knee modeling method was found to have high intra-observer reliability, sensitivity to peripheral articular cartilage tracings, and agreeability with previous investigations when using data from a single healthy adult. Future studies will implement this modeling method to investigate the role that mechanical stress may play in progression of knee OA through estimation of articular cartilage contact area.

  4. Fluoroscopy guided percutaneous renal access in prone position

    PubMed Central

    Sharma, Gyanendra R; Maheshwari, Pankaj N; Sharma, Anshu G; Maheshwari, Reeta P; Heda, Ritwik S; Maheshwari, Sakshi P

    2015-01-01

    Percutaneous nephrolithotomy is a very commonly done procedure for management of renal calculus disease. Establishing a good access is the first and probably the most crucial step of this procedure. A proper access is the gateway to success. However, this crucial step has the steepest learning curve for, in a fluoroscopy guided access, it involves visualizing a three dimensional anatomy on a two dimensional fluoroscopy screen. This review describes the anatomical basis of the renal access. It provides a literature review of all aspects of percutaneous renal access along with the advances that have taken place in this field over the years. The article describes a technique to determine the site of skin puncture, the angle and depth of puncture using a simple mathematical principle. It also reviews the common problems faced during the process of puncture and dilatation and describes the ways to overcome them. The aim of this article is to provide the reader a step by step guide for percutaneous renal access. PMID:25789297

  5. Hybrid Approach for Biliary Interventions Employing MRI-Guided Bile Duct Puncture with Near-Real-Time Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wybranski, Christian, E-mail: Christian.Wybranski@uk-koeln.de; Pech, Maciej; Lux, Anke

    ObjectiveTo assess the feasibility of a hybrid approach employing MRI-guided bile duct (BD) puncture for subsequent fluoroscopy-guided biliary interventions in patients with non-dilated (≤3 mm) or dilated BD (≥3 mm) but unfavorable conditions for ultrasonography (US)-guided BD puncture.MethodsA total of 23 hybrid interventions were performed in 21 patients. Visualization of BD and puncture needles (PN) in the interventional MR images was rated on a 5-point Likert scale by two radiologists. Technical success, planning time, BD puncture time and positioning adjustments of the PN as well as technical success of the biliary intervention and complication rate were recorded.ResultsVisualization even of third-order non-dilated BDmore » and PN was rated excellent by both radiologists with good to excellent interrater agreement. MRI-guided BD puncture was successful in all cases. Planning and BD puncture times were 1:36 ± 2.13 (0:16–11:07) min. and 3:58 ± 2:35 (1:11–9:32) min. Positioning adjustments of the PN was necessary in two patients. Repeated capsular puncture was not necessary in any case. All biliary interventions were completed successfully without major complications.ConclusionA hybrid approach which employs MRI-guided BD puncture for subsequent fluoroscopy-guided biliary intervention is feasible in clinical routine and yields high technical success in patients with non-dilated BD and/or unfavorable conditions for US-guided puncture. Excellent visualization of BD and PN in near-real-time interventional MRI allows successful cannulation of the BD.« less

  6. Low dose tomographic fluoroscopy: 4D intervention guidance with running prior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, Barbara; Kuntz, Jan; Brehm, Marcus

    Purpose: Today's standard imaging technique in interventional radiology is the single- or biplane x-ray fluoroscopy which delivers 2D projection images as a function of time (2D+T). This state-of-the-art technology, however, suffers from its projective nature and is limited by the superposition of the patient's anatomy. Temporally resolved tomographic volumes (3D+T) would significantly improve the visualization of complex structures. A continuous tomographic data acquisition, if carried out with today's technology, would yield an excessive patient dose. Recently the authors proposed a method that enables tomographic fluoroscopy at the same dose level as projective fluoroscopy which means that if scanning time ofmore » an intervention guided by projective fluoroscopy is the same as that of an intervention guided by tomographic fluoroscopy, almost the same dose is administered to the patient. The purpose of this work is to extend authors' previous work and allow for patient motion during the intervention.Methods: The authors propose the running prior technique for adaptation of a prior image. This adaptation is realized by a combination of registration and projection replacement. In a first step the prior is deformed to the current position via affine and deformable registration. Then the information from outdated projections is replaced by newly acquired projections using forward and backprojection steps. The thus adapted volume is the running prior. The proposed method is validated by simulated as well as measured data. To investigate motion during intervention a moving head phantom was simulated. Real in vivo data of a pig are acquired by a prototype CT system consisting of a flat detector and a continuously rotating clinical gantry.Results: With the running prior technique it is possible to correct for motion without additional dose. For an application in intervention guidance both steps of the running prior technique, registration and replacement, are

  7. [New ultrasound navigational system in extracorporeal lithotripsy: decreased fluoroscopy and radiation].

    PubMed

    Abid, N; Ravier, E; Codas, R; Crouzet, S; Martin, X

    2013-09-01

    Extracorporeal shock wave lithotripsy is the most common method of treatment for kidney stones. Both fluoroscopy and ultrasound imaging can be used to locate stones, but fluoroscopy is more frequently employed. Evaluation of a new stereotaxic navigational system: the stone was located using an ultrasound probe, and its 3D location was saved. The table automatically moved to position the stone at the focal point. A real-time follow-up was possible during treatment. Our objective was to demonstrate a decrease in the use of fluoroscopy to locate kidney stones for extracorporeal shock wave lithotripsy through the use of a 3D ultrasound stone locking system. Prospective analysis of the case records of the 20 patients preceding and the 20 patients succeeding the arrival of the ultrasound stone locking system Visio-Track (EDAP-TMS). We used a Student test to compare age, BMI, kidney stone size, number of shock waves and administered energy. Patient characteristics were comparable. The average age was 55 years old and the average kidney stone size was 10.7 mm. Radiation duration was 174.8 seconds in the group without Visio-Track versus 57.1 seconds in the group with it (P<0.0001). A similar result was observed for radiation doses: 5197.25 mGy x cm2 for the group without versus 1987.6 mGy x cm2 for the group with Visio-Track (P=0.0033). The stone locking system Visio-Track reduced fluoroscopy in our first group of patients, which decreased the patient's individual absorbed irradiation dose. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  9. Effective Dose of CT- and Fluoroscopy-Guided Perineural/Epidural Injections of the Lumbar Spine: A Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmid, Gebhard; Schmitz, Alexander; Borchardt, Dieter

    The objective of this study was to compare the effective radiation dose of perineural and epidural injections of the lumbar spine under computed tomography (CT) or fluoroscopic guidance with respect to dose-reduced protocols. We assessed the radiation dose with an Alderson Rando phantom at the lumbar segment L4/5 using 29 thermoluminescence dosimeters. Based on our clinical experience, 4-10 CT scans and 1-min fluoroscopy are appropriate. Effective doses were calculated for CT for a routine lumbar spine protocol and for maximum dose reduction; as well as for fluoroscopy in a continuous and a pulsed mode (3-15 pulses/s). Effective doses under CTmore » guidance were 1.51 mSv for 4 scans and 3.53 mSv for 10 scans using a standard protocol and 0.22 mSv and 0.43 mSv for the low-dose protocol. In continuous mode, the effective doses ranged from 0.43 to 1.25 mSv for 1-3 min of fluoroscopy. Using 1 min of pulsed fluoroscopy, the effective dose was less than 0.1 mSv for 3 pulses/s. A consequent low-dose CT protocol reduces the effective dose compared to a standard lumbar spine protocol by more than 85%. The latter dose might be expected when applying about 1 min of continuous fluoroscopy for guidance. A pulsed mode further reduces the effective dose of fluoroscopy by 80-90%.« less

  10. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  11. The practical application of signal detection theory to image quality assessment in x-ray image intensifier-TV fluoroscopy.

    PubMed

    Marshall, N W

    2001-06-01

    This paper applies a published version of signal detection theory to x-ray image intensifier fluoroscopy data and compares the results with more conventional subjective image quality measures. An eight-bit digital framestore was used to acquire temporally contiguous frames of fluoroscopy data from which the modulation transfer function (MTF(u)) and noise power spectrum were established. These parameters were then combined to give detective quantum efficiency (DQE(u)) and used in conjunction with signal detection theory to calculate contrast-detail performance. DQE(u) was found to lie between 0.1 and 0.5 for a range of fluoroscopy systems. Two separate image quality experiments were then performed in order to assess the correspondence between the objective and subjective methods. First, image quality for a given fluoroscopy system was studied as a function of doserate using objective parameters and a standard subjective contrast-detail method. Following this, the two approaches were used to assess three different fluoroscopy units. Agreement between objective and subjective methods was good; doserate changes were modelled correctly while both methods ranked the three systems consistently.

  12. Treatment of recurrent patellar dislocation via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial patellofemoral ligament.

    PubMed

    Li, Li; Wang, Hongbo; He, Yun; Si, Yu; Zhou, Hongyu; Wang, Xin

    2018-06-01

    Recurrent patellar dislocations were treated via knee arthroscopy combined with C-arm fluoroscopy, and reconstruction of the medial patellofemoral ligaments. Between October 2013 and March 2017, 52 cases of recurrent patellar dislocation [27 males and 25 females; age, 16-47 years (mean, 21.90 years)] were treated. Arthroscopic exploration was performed and patellofemoral joint cartilage injuries were repaired. It was subsequently determined whether it was necessary to release the lateral patellofemoral support belt. Pre-operative measurements were used to decide whether tibial tubercle osteotomy was required. Medial patellofemoral ligaments were reconstructed using autologous semitendinosus tendons. Smith and Nephew model 3.5 line anchors were used to double-anchor the medial patellofemoral margin. On the femoral side, the medial patellofemoral ligament was fixed using 7-cm, absorbable, interfacial compression screws. All cases were followed for 1-40 months (average, 21 months). The Q angle, tibial tuberosity trochlear groove distance, Insall-Salvati index, patellofemoral angle, lateral patellofemoral angle and lateral shift were evaluated on X-Ray images using the picture archiving and communication system. Subjective International Knee Documentation Committee (IKDC) knee joint functional scores and Lysholm scores were recorded. Post-operative fear was absent, and no patellar re-dislocation or re-fracture was noted during follow-up. At the end of follow-up, the patellofemoral angle (0.22±4.23°), lateral patellofemoral angle (3.44±1.30°), and lateral shift (0.36+0.14°) differed significantly from the pre-operative values (all, P<0.05). Furthermore, IKDC and Lysholm scores (87.84+3.74 and 87.48+3.35, respectively) differed significantly from the pre-operative values (both, P<0.05). These findings suggest that, in the short term, recurrent patellar dislocation treatment via knee arthroscopy combined with C-arm fluoroscopy and reconstruction of the medial

  13. Intraoperative positioning of mobile C-arms using artificial fluoroscopy

    NASA Astrophysics Data System (ADS)

    Dressel, Philipp; Wang, Lejing; Kutter, Oliver; Traub, Joerg; Heining, Sandro-Michael; Navab, Nassir

    2010-02-01

    In trauma and orthopedic surgery, imaging through X-ray fluoroscopy with C-arms is ubiquitous. This leads to an increase in ionizing radiation applied to patient and clinical staff. Placing these devices in the desired position to visualize a region of interest is a challenging task, requiring both skill of the operator and numerous X-rays for guidance. We propose an extension to C-arms for which position data is available that provides the surgeon with so called artificial fluoroscopy. This is achieved by computing digitally reconstructed radiographs (DRRs) from pre- or intraoperative CT data. The approach is based on C-arm motion estimation, for which we employ a Camera Augmented Mobile C-arm (CAMC) system, and a rigid registration of the patient to the CT data. Using this information we are able to generate DRRs and simulate fluoroscopic images. For positioning tasks, this system appears almost exactly like conventional fluoroscopy, however simulating the images from the CT data in realtime as the C-arm is moved without the application of ionizing radiation. Furthermore, preoperative planning can be done on the CT data and then visualized during positioning, e.g. defining drilling axes for pedicle approach techniques. Since our method does not require external tracking it is suitable for deployment in clinical environments and day-to-day routine. An experiment with six drillings into a lumbar spine phantom showed reproducible accuracy in positioning the C-arm, ranging from 1.1 mm to 4.1 mm deviation of marker points on the phantom compared in real and virtual images.

  14. JointMMCC: Joint Maximum-Margin Classification and Clustering of Imaging Data

    PubMed Central

    Filipovych, Roman; Resnick, Susan M.; Davatzikos, Christos

    2012-01-01

    A number of conditions are characterized by pathologies that form continuous or nearly-continuous spectra spanning from the absence of pathology to very pronounced pathological changes (e.g., normal aging, Mild Cognitive Impairment, Alzheimer's). Moreover, diseases are often highly heterogeneous with a number of diagnostic subcategories or subconditions lying within the spectra (e.g., Autism Spectrum Disorder, schizophrenia). Discovering coherent subpopulations of subjects within the spectrum of pathological changes may further our understanding of diseases, and potentially identify subconditions that require alternative or modified treatment options. In this paper, we propose an approach that aims at identifying coherent subpopulations with respect to the underlying MRI in the scenario where the condition is heterogeneous and pathological changes form a continuous spectrum. We describe a Joint Maximum-Margin Classification and Clustering (JointMMCC) approach that jointly detects the pathologic population via semi-supervised classification, as well as disentangles heterogeneity of the pathological cohort by solving a clustering subproblem. We propose an efficient solution to the non-convex optimization problem associated with JointMMCC. We apply our proposed approach to an MRI study of aging, and identify coherent subpopulations (i.e., clusters) of cognitively less stable adults. PMID:22328179

  15. Percutaneous foot joint needle placement using a C-arm flat-panel detector CT.

    PubMed

    Wiewiorski, Martin; Takes, Martin Thanh Long; Valderrabano, Victor; Jacob, Augustinus Ludwig

    2012-03-01

    Image guidance is valuable for diagnostic injections in foot orthopaedics. Flat-detector computed tomography (FD-CT) was implemented using a C-arm, and the system was tested for needle guidance in foot joint injections. FD-CT-guided joint infiltration was performed in 6 patients referred from the orthopaedic department for diagnostic foot injections. All interventions were performed utilising a flat-panel fluoroscopy system utilising specialised image guidance and planning software. Successful infiltration was defined by localisation of contrast media depot in the targeted joint. The pre- and post-interventional numeric analogue scale (NAS) pain score was assessed. All injections were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of symptoms was noted by all 6 participants. FD-CT-guided joint infiltration is a feasible method for diagnostic infiltration of midfoot and hindfoot joints. The FD-CT approach may become an alternative to commonly used 2D-fluoroscopically guidance.

  16. First metatarsal closing base wedge osteotomy using real-time fluoroscopy.

    PubMed

    Toepp, F C; Salcedo, M

    1991-01-01

    A minimal incision surgery approach to metatarsus primus adductus is presented. The percutaneous closing base wedge osteotomy is performed using real-time intraoperative fluoroscopy. The advantages and disadvantages of this minimal incision surgical procedure are discussed.

  17. Teaching Dental Students to Understand the Temporomandibular Joint Using MRI: Comparison of Conventional and Digital Learning Methods.

    PubMed

    Arús, Nádia A; da Silva, Átila M; Duarte, Rogério; da Silveira, Priscila F; Vizzotto, Mariana B; da Silveira, Heraldo L D; da Silveira, Heloisa E D

    2017-06-01

    The aims of this study were to evaluate and compare the performance of dental students in interpreting the temporomandibular joint (TMJ) with magnetic resonance imaging (MRI) scans using two learning methods (conventional and digital interactive learning) and to examine the usability of the digital learning object (DLO). The DLO consisted of tutorials about MRI and anatomic and functional aspects of the TMJ. In 2014, dental students in their final year of study who were enrolled in the elective "MRI Interpretation of the TMJ" course comprised the study sample. After exclusions for nonattendance and other reasons, 29 of the initial 37 students participated in the study, for a participation rate of 78%. The participants were divided into two groups: a digital interactive learning group (n=14) and a conventional learning group (n=15). Both methods were assessed by an objective test applied before and after training and classes. Aspects such as support and training requirements, complexity, and consistency of the DLO were also evaluated using the System Usability Scale (SUS). A significant between-group difference in the posttest results was found, with the conventional learning group scoring better than the DLO group, indicated by mean scores of 9.20 and 8.11, respectively, out of 10. However, when the pretest and posttest results were compared, both groups showed significantly improved performance. The SUS score was 89, which represented a high acceptance of the DLO by the users. The students who used the conventional method of learning showed superior performance in interpreting the TMJ using MRI compared to the group that used digital interactive learning.

  18. Radiation exposure, and procedure and fluoroscopy times in endovascular treatment of intracranial aneurysms: a methodological comparison.

    PubMed

    Cheung, Nicholas K; Boutchard, Michelle; Carr, Michael W; Froelich, Jens J

    2018-01-09

    Limited data are available for radiation exposure, and procedure and fluoroscopy times in neuroendovascular treatment (NET) strategies. This study establishes and compares related parameters between coil embolization (COIL), balloon assisted coil embolization (BAC), stent assisted coil embolization (SAC), and flow diverting technology (FDT) in NET of intracranial aneurysms. Between 2010 and 2017, 249 consecutive intracranial aneurysms underwent NET at a single center, all performed by the same operator. Dose area products (DAP), and procedure and fluoroscopy times were recorded and compared between COIL, BAC, SAC, and FDT techniques. Differences in parameters between cohorts were analyzed for significance using the Mann-Whitney U test, unpaired t test and χ 2 test. Additional subgroup analysis was performed for emergency and elective cases. 83 aneurysms were treated with COIL (33%), 72 with BAC (29%), 61 with SAC (25%), and 33 with FDT (13%). Baseline characteristics were largely similar within these groups (P>0.05). Among COIL, BAC, and FDT cohorts, no significant difference was found for mean DAP, or procedure and fluoroscopy times (P>0.05). However, compared with all other cohorts, SAC was associated with a significantly higher DAP and longer procedure and fluoroscopy times (P<0.005). No significant difference was recorded for emergency and elective case subgroups. Compared with other NET strategies, SAC was associated with a significantly higher DAP, and longer procedure and fluoroscopy times. This study provides an initial dataset regarding radiation exposure, and procedure and fluoroscopy times for common NET, and may assist ALARA (As Low As Reasonably Achievable) principles to reduce radiation risks. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.

    PubMed

    Pooley, R A; McKinney, J M; Miller, D A

    2001-01-01

    A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.

  20. Insertion of tunneled hemodialysis catheters without fluoroscopy.

    PubMed

    Motta Elias, Rosilene; da Silva Makida, Sonia Cristina; Abensur, Hugo; Martins Castro, Manuel Carlos; Affonso Moysés, Rosa Maria; Pereira, Benedito Jorge; Bueno de Oliveira, Rodrigo; Luders, Cláudio; Romão, João Egidio

    2010-01-01

    The tunneled cuffed catheter (TCC) is used as a bridge access for hemodialysis. Few prospective studies have been designed to evaluate conversion from non-tunneled to TCC without the use of fluoroscopy when performed by nephrologists. We performed an observational prospective cohort in incident patients receiving hemodialysis through a non-tunneled right jugular vein catheter. 130 procedures were performed in 122 patients (51+/-18 years). The success rate was 100%. There was a total of 26,546 catheter days. Ninety-one of the 130 catheters were removed during the study period. Life table analysis revealed primary patency rates of 92%, 82%, and 68% at 30, 60, and 120 days, respectively. Infection requiring catheter removal occurred at a frequency of 0.09 per 100 catheter days. Catheter malfunction requiring intervention occurred at a rate of 0.03 per 100 catheter days. Hypertension and duration of existing non-tunneled catheter of less than 2 weeks were independently associated with better TCC survival. The conversion from non-tunneled to TCC performed by nephrologists and without fluoroscopy may be safe by using the internal right jugular vein. The ideal time to do this procedure is within less than 2 weeks of existing non-tunneled catheter.

  1. [Relevance of MRI After Closed Reduction of Traumatic Hip Dislocation in Children].

    PubMed

    Strüwind, Christoph Mauritz; von Rüden, Christian; Thannheimer, Andreas; Bühren, Volker; Schneidmueller, Dorien

    2018-05-14

    Traumatic hip dislocation in children and adolescents is a rare entity that typically results from high-energy trauma. After closed joint reduction, further treatment depends on the specific pattern of the lesion as identified using cross sectional imaging. The aim of this retrospective analysis was to evaluate relevant side effects after traumatic hip dislocation in children and adolescents in order to examine the need for focused diagnostics. This retrospective analysis covered 8 adolescents under 18 years suffering isolated traumatic hip joint dislocation between 2001 and 2017. In all patients, closed joint reduction was performed immediately after admission to the emergency room. In order to evaluate the complete extent of the injury, 5 patients received an MRI and 3 patients a CT scan following closed joint reduction. Two female and 6 male patients with a median age of 11 (range 5 - 16) years were included. In 2 cases, a free joint body was detected in the posterior joint gap in the posttraumatic CT scan after closed joint reduction. Interposition of the labrum into the joint gap was detected intraoperatively in both cases. In one patient who received posttraumatic MRI, labral interposition into the joint gap was observed after closed reduction. These findings were confirmed intraoperatively. In 4 other patients, no posttraumatic labral lesion was detected in the MRI after closed reduction. The reported side effects included ruptured anterior inferior iliac spine and ruptured femoral head ligament. MRI is gaining increasing importance following traumatic hip dislocation in children and adolescents. A missing chondral or osteochondral fragment in the CT scan does not exclude a labral lesion or interposition. Therefore, MRI following closed reduction is mandatory in any case. Georg Thieme Verlag KG Stuttgart · New York.

  2. Simultaneous detection of landmarks and key-frame in cardiac perfusion MRI using a joint spatial-temporal context model

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens

    2011-03-01

    Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.

  3. T₁ρ MRI of human musculoskeletal system.

    PubMed

    Wang, Ligong; Regatte, Ravinder R

    2015-03-01

    Magnetic resonance imaging (MRI) offers the direct visualization of the human musculoskeletal (MSK) system, especially all diarthrodial tissues including cartilage, bone, menisci, ligaments, tendon, hip, synovium, etc. Conventional MRI techniques based on T1 - and T2 -weighted, proton density (PD) contrast are inconclusive in quantifying early biochemically degenerative changes in MSK system in general and articular cartilage in particular. In recent years, quantitative MR parameter mapping techniques have been used to quantify the biochemical changes in articular cartilage, with a special emphasis on evaluating joint injury, cartilage degeneration, and soft tissue repair. In this article we focus on cartilage biochemical composition, basic principles of T1ρ MRI, implementation of T1ρ pulse sequences, biochemical validation, and summarize the potential applications of the T1ρ MRI technique in MSK diseases including osteoarthritis (OA), anterior cruciate ligament (ACL) injury, and knee joint repair. Finally, we also review the potential advantages, challenges, and future prospects of T1ρ MRI for widespread clinical translation. © 2014 Wiley Periodicals, Inc.

  4. Sensitivity and specificity of a new MRI method evaluating temporo-mandibular joint disc-condyle relationships: an in vivo study.

    PubMed

    Benbelaïd, R; Fleiter, B

    2006-03-01

    The aim of this study was to evaluate sensitivity and specificity of a new method to locate temporo-mandibular joint (TMJ) disc using magnetic resonance imaging (MRI) and analyze disc-condyle relationships, in asymptomatic subjects and patients with disc displacement. Twenty-nine sagittal MRI of 16 subjects, 8 asymptomatic volunteers and 8 subjects with anterior disc displacement, were carried out during controlled opening from intercuspal position up to a 25 mm opening. Selected sections were analyzed with a graphic computerized system of coordinates. The total surface area (TS) of disc section was separated into anterior surface area (AS) and posterior surface area. Areas were determined by computer. Two trained examiners drew images at random. The reliability of AS/TS ratio index was evaluated in a previous study. AS/TS ratio sensitivity (Se) and specificity (Sp) were calculated closed mouth, 5 mm open and 25 mm open mouth. Best sensitivity (Se=0.63) and specificity (Sp=0.81) were obtained when MRI was realized with closed mouth and 25 mm open mouth. Lower sensitivity was observed when MRI was performed either with closed mouth (Se=0.54) or 25 mm open mouth (Se=0.18). Lower specificity was observed with 5 mm open mouth (Sp=0.68). In conclusion, it was confirmed as well that MRI of anterior disc displacement should be performed with closed mouth and opened mouth. Thus, further studies are required to assess disc displacement and mechanical alterations and to evaluate the risk of direct damage on TMJ tissues.

  5. Quantitative 3D Ultrashort Time-to-Echo (UTE) MRI and Micro-CT (μCT) Evaluation of the Temporomandibular Joint (TMJ) Condylar Morphology

    PubMed Central

    Geiger, Daniel; Bae, Won C.; Statum, Sheronda; Du, Jiang; Chung, Christine B.

    2014-01-01

    Objective Temporomandibular dysfunction involves osteoarthritis of the TMJ, including degeneration and morphologic changes of the mandibular condyle. Purpose of this study was to determine accuracy of novel 3D-UTE MRI versus micro-CT (μCT) for quantitative evaluation of mandibular condyle morphology. Material & Methods Nine TMJ condyle specimens were harvested from cadavers (2M, 3F; Age 85 ± 10 yrs., mean±SD). 3D-UTE MRI (TR=50ms, TE=0.05 ms, 104 μm isotropic-voxel) was performed using a 3-T MR scanner and μCT (18 μm isotropic-voxel) was performed. MR datasets were spatially-registered with μCT dataset. Two observers segmented bony contours of the condyles. Fibrocartilage was segmented on MR dataset. Using a custom program, bone and fibrocartilage surface coordinates, Gaussian curvature, volume of segmented regions and fibrocartilage thickness were determined for quantitative evaluation of joint morphology. Agreement between techniques (MRI vs. μCT) and observers (MRI vs. MRI) for Gaussian curvature, mean curvature and segmented volume of the bone were determined using intraclass correlation correlation (ICC) analyses. Results Between MRI and μCT, the average deviation of surface coordinates was 0.19±0.15 mm, slightly higher than spatial resolution of MRI. Average deviation of the Gaussian curvature and volume of segmented regions, from MRI to μCT, was 5.7±6.5% and 6.6±6.2%, respectively. ICC coefficients (MRI vs. μCT) for Gaussian curvature, mean curvature and segmented volumes were respectively 0.892, 0.893 and 0.972. Between observers (MRI vs. MRI), the ICC coefficients were 0.998, 0.999 and 0.997 respectively. Fibrocartilage thickness was 0.55±0.11 mm, as previously described in literature for grossly normal TMJ samples. Conclusion 3D-UTE MR quantitative evaluation of TMJ condyle morphology ex-vivo, including surface, curvature and segmented volume, shows high correlation against μCT and between observers. In addition, UTE MRI allows

  6. Endoscopic retrograde JJ-stenting of the ureter without fluoroscopy guidance--an appraisal of outcome.

    PubMed

    Shuaibu, S I; Gidado, S; Oseni-Momodu, E

    2013-01-01

    JJ- ureteral stenting is a means of relieving ureteric obstruction. It is done as a retrograde or antegrade procedure, usually under fluoroscopy guidance. We reviewed our results in 2 independent tertiary health centers in Nigeria which lack fluoroscopy units. A 2 year retrospective review of data of patients who had retrograde JJ- ureteric stenting was done. Data relating to age, indication and outcome of procedure were retrieved and analysed. 22 (71%) patients had successful retrograde JJ- ureteric stenting out of 31 patients who were taken for the procedure. These 22 patients had stenting of 27 ureteric units. Mean age was 48.5 years. Commonest indication was carcinoma of the cervix (31.8%). Commonest complication was irritative lower urinary tract symptoms (43.5%). In spite of inherent complications, JJ-stenting is a simple and safe technique. Therefore, the decision to attempt JJ -stenting in carefully selected patients in the absence of fluoroscopy is acceptable.

  7. How much articular displacement can be detected using fluoroscopy for tibial plateau fractures?

    PubMed

    Haller, Justin M; O'Toole, Robert; Graves, Matthew; Barei, David; Gardner, Michael; Kubiak, Erik; Nascone, Jason; Nork, Sean; Presson, Angela P; Higgins, Thomas F

    2015-11-01

    While there is conflicting evidence regarding the importance of anatomic reduction for tibial plateau fractures, there are currently no studies that analyse our ability to grade reduction based on fluoroscopic imaging. The purpose of this study was to determine the accuracy of fluoroscopy in judging tibial plateau articular reduction. Ten embalmed human cadavers were selected. The lateral plateau was sagitally sectioned, and the joint was reduced under direct visualization. Lateral, anterior-posterior (AP), and joint line fluoroscopic views were obtained. The same fluoroscopic views were obtained with 2mm displacement and 5mm displacement. The images were randomised, and eight orthopaedic traumatologists were asked whether the plateau was reduced. Within each pair of conditions (view and displacement from 0mm to 5mm) sensitivity, specificity, and intraclass correlations (ICC) were evaluated. The AP-lateral view with 5mm displacement yielded the highest accuracy for detecting reduction at 90% (95% CI: 83-94%). For the other conditions, accuracy ranged from (37-83%). Sensitivity was highest for the reduced lateral view (79%, 95% CI: 57-91%). Specificity was highest in the AP-lateral view 98% (95% CI: 93-99%) for 5mm step-off. ICC was perfect for the AP-lateral view with 5mm displacement, but otherwise agreement ranged from poor to moderate at ICC=0.09-0.46. Finally, there was no additional benefit to including the joint-line view with the AP and lateral views. Using both AP and lateral views for 5mm displacement had the highest accuracy, specificity, and ICC. Outside of this scenario, agreement was poor to moderate and accuracy was low. Applying this clinically, direct visualization of the articular surface may be necessary to ensure malreduction less than 5mm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CT Fluoroscopy-Guided Transsacral Intervertebral Drainage for Pyogenic Spondylodiscitis at the Lumbosacral Junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomohiro, E-mail: t-matsu@tokai-u.jp; Mine, Takahiko, E-mail: mine@tsc.u-tokai.ac.jp; Hayashi, Toshihiko, E-mail: t.hayashi@tokai.ac.jp

    PurposeTo retrospectively describe the feasibility and efficacy of CT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction with a combination of two interventional radiological techniques—CT-guided bone biopsy and abscess drainage.Materials and methodsThree patients with pyogenic spondylodiscitis at the lumbosacral junction were enrolled in this study between July 2013 and December 2015. The procedure of CT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction was as follows: the sacrum at S1 pedicle was penetrated with an 11-gauge (G) bone biopsy needle to create a path for an 8-French (F) pigtail drainage catheter. The bone biopsymore » needle was withdrawn, and an 18-G needle was inserted into the intervertebral space of the lumbosacral junction. Then, a 0.038-inch guidewire was inserted into the intervertebral space. Finally, the 8-F pigtail drainage catheter was inserted over the guidewire until its tip reached the intervertebral space. All patients received six-week antibiotics treatment.ResultsSuccessful placement of the drainage catheter was achieved for each patient without procedural complications. The duration of drainage was 17–33 days. For two patients, specific organisms were isolated; thus, definitive medical therapy was possible. All patients responded well to the treatment.ConclusionsCT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction is feasible and can be effective with a combination of two interventional techniques—CT fluoroscopy-guided bone biopsy and abscess drainage.« less

  9. An fMRI study of joint action–varying levels of cooperation correlates with activity in control networks

    PubMed Central

    Chaminade, Thierry; Marchant, Jennifer L.; Kilner, James; Frith, Christopher D.

    2012-01-01

    As social agents, humans continually interact with the people around them. Here, motor cooperation was investigated using a paradigm in which pairs of participants, one being scanned with fMRI, jointly controlled a visually presented object with joystick movements. The object oscillated dynamically along two dimensions, color and width of gratings, corresponding to the two cardinal directions of joystick movements. While the overall control of each participant on the object was kept constant, the amount of cooperation along the two dimensions varied along four levels, from no (each participant controlled one dimension exclusively) to full (each participant controlled half of each dimension) cooperation. Increasing cooperation correlated with BOLD signal in the left parietal operculum and anterior cingulate cortex (ACC), while decreasing cooperation correlated with activity in the right inferior frontal and superior temporal gyri, the intraparietal sulci and inferior temporal gyri bilaterally, and the dorsomedial prefrontal cortex. As joint performance improved with the level of cooperation, we assessed the brain responses correlating with behavior, and found that activity in most of the areas associated with levels of cooperation also correlated with the joint performance. The only brain area found exclusively in the negative correlation with cooperation was in the dorso medial frontal cortex, involved in monitoring action outcome. Given the cluster location and condition-related signal change, we propose that this region monitored actions to extract the level of cooperation in order to optimize the joint response. Our results, therefore, indicate that, in the current experimental paradigm involving joint control of a visually presented object with joystick movements, the level of cooperation affected brain networks involved in action control, but not mentalizing. PMID:22715326

  10. Bone alterations are associated with ankle osteoarthritis joint pain

    PubMed Central

    Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki

    2016-01-01

    The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain. PMID:26776564

  11. Bone alterations are associated with ankle osteoarthritis joint pain.

    PubMed

    Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki

    2016-01-18

    The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain.

  12. Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM).

    PubMed

    Nensa, Felix; Bamberg, Fabian; Rischpler, Christoph; Menezes, Leon; Poeppel, Thorsten D; la Fougère, Christian; Beitzke, Dietrich; Rasul, Sazan; Loewe, Christian; Nikolaou, Konstantin; Bucerius, Jan; Kjaer, Andreas; Gutberlet, Matthias; Prakken, Niek H; Vliegenthart, Rozemarijn; Slart, Riemer H J A; Nekolla, Stephan G; Lassen, Martin L; Pichler, Bernd J; Schlosser, Thomas; Jacquier, Alexis; Quick, Harald H; Schäfers, Michael; Hacker, Marcus

    2018-05-02

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) have both been used for decades in cardiovascular imaging. Since 2010, hybrid PET/MRI using sequential and integrated scanner platforms has been available, with hybrid cardiac PET/MR imaging protocols increasingly incorporated into clinical workflows. Given the range of complementary information provided by each method, the use of hybrid PET/MRI may be justified and beneficial in particular clinical settings for the evaluation of different disease entities. In the present joint position statement, we critically review the role and value of integrated PET/MRI in cardiovascular imaging, provide a technical overview of cardiac PET/MRI and practical advice related to the cardiac PET/MRI workflow, identify cardiovascular applications that can potentially benefit from hybrid PET/MRI, and describe the needs for future development and research. In order to encourage its wide dissemination, this article is freely accessible on the European Radiology and European Journal of Hybrid Imaging web sites. • Studies and case-reports indicate that PET/MRI is a feasible and robust technology. • Promising fields of application include a variety of cardiac conditions. • Larger studies are required to demonstrate its incremental and cost-effective value. • The translation of novel radiopharmaceuticals and MR-sequences will provide exciting new opportunities.

  13. How Does Patient Radiation Exposure Compare With Low-dose O-arm Versus Fluoroscopy for Pedicle Screw Placement in Idiopathic Scoliosis?

    PubMed

    Su, Alvin W; McIntosh, Amy L; Schueler, Beth A; Milbrandt, Todd A; Winkler, Jennifer A; Stans, Anthony A; Larson, A Noelle

    Intraoperative C-arm fluoroscopy and low-dose O-arm are both reasonable means to assist in screw placement for idiopathic scoliosis surgery. Both using pediatric low-dose O-arm settings and minimizing the number of radiographs during C-arm fluoroscopy guidance decrease patient radiation exposure and its deleterious biological effect that may be associated with cancer risk. We hypothesized that the radiation dose for C-arm-guided fluoroscopy is no less than low-dose O-arm scanning for placement of pedicle screws. A multicenter matched-control cohort study of 28 patients in total was conducted. Fourteen patients who underwent O-arm-guided pedicle screw insertion for spinal fusion surgery in 1 institution were matched to another 14 patients who underwent C-arm fluoroscopy guidance in the other institution in terms of the age of surgery, body weight, and number of imaged spine levels. The total effective dose was compared. A low-dose pediatric protocol was used for all O-arm scans with an effective dose of 0.65 mSv per scan. The effective dose of C-arm fluoroscopy was determined using anthropomorphic phantoms that represented the thoracic and lumbar spine in anteroposterior and lateral views, respectively. The clinical outcome and complications of all patients were documented. The mean total effective dose for the O-arm group was approximately 4 times higher than that of the C-arm group (P<0.0001). The effective dose for the C-arm patients had high variability based on fluoroscopy time and did not correlate with the number of imaged spine levels or body weight. The effective dose of 1 low-dose pediatric O-arm scan approximated 85 seconds of the C-arm fluoroscopy time. All patients had satisfactory clinical outcomes without major complications that required returning to the operating room. Radiation exposure required for O-arm scans can be higher than that required for C-arm fluoroscopy, but it depends on fluoroscopy time. Inclusion of more medical centers and surgeons

  14. Arbitrary shape region-of-interest fluoroscopy system

    NASA Astrophysics Data System (ADS)

    Xu, Tong; Le, Huy; Molloi, Sabee Y.

    2002-05-01

    Region-of-interest (ROI) fluoroscopy has previously been investigated as a method to reduce x-ray exposure to the patient and the operator. This ROI fluoroscopy technique allows the operator to arbitrarily determine the shape, size, and location of the ROI. A device was used to generate patient specific x-ray beam filters. The device is comprised of 18 step-motors that control a 16 X 16 matrix of pistons to form the filter from a deformable attenuating material. Patient exposure reductions were measured to be 84 percent for a 65 kVp beam. Operator exposure reduction was measured to be 69 percent. Due to the reduced x-ray scatter, image contrast was improved by 23 percent inside the ROI. The reduced gray level in the periphery was corrected using an experimentally determined compensation ratio. A running average interpolation technique was used to eliminate the artifacts from the ROI edge. As expected, the final corrected images show increased noise in the periphery. However, the anatomical structures in the periphery could still be visualized. This arbitrary shaped region of interest fluoroscopic technique was shown to be effective in terms of its ability to reduce patient and operator exposure without significant reduction in image quality. The ability to define an arbitrary shaped ROI should make the technique more clinically feasible.

  15. Rates of Upper Facet Joint Violation in Minimally Invasive Percutaneous and Open Instrumentation: A Comparative Cohort Study of Different Insertion Techniques.

    PubMed

    Archavlis, Eleftherios; Amr, Nimer; Kantelhardt, Sven Rainer; Giese, Alf

    2018-01-01

     Minimally invasive pedicle screw placement may have a higher incidence of violation of the superior cephalad unfused facet joint.  We investigated the incidence and risk factors of upper facet joint violation in percutaneous robot-assisted instrumentation versus percutaneous fluoroscopy-guided and open transpedicular instrumentation.  A retrospective study including all consecutive patients who underwent lumbar instrumentation, fusion, and decompression for spondylolisthetic stenosis and degenerative disk disease was conducted between January 2012 and January 2016. All operations were performed by the same surgeon; the patients were divided into three groups according to the method of instrumentation. Group 1 involved the robot-assisted instrumentation in 58 patients, group 2 consisted of 64 patients treated with a percutaneous transpedicular instrumentation using fluoroscopic guidance, and 72 patients in group 3 received an open midline approach for pedicle screw insertion.  Superior segment facet joint violation occurred in 2 patients in the robot-assisted group 1 (7%), in 22 of the percutaneous fluoroscopy-guided group 2 (34%), and in 6 cases of the open group (8%). The incidence of facet joint violation was present in 5% (3) of the screws in group 1, 22% (28) of the screws in group 2, and 3% (4) of the screws in group 3.  Meticulous surgical planning of the appropriate entry site (Weinstein's method), trajectory planning, and proper robot-assisted instrumentation of pedicle screws reduced the risk of superior segment facet joint violation. Georg Thieme Verlag KG Stuttgart · New York.

  16. [Concomitant injuries after upper ankle joint dislocations].

    PubMed

    Dann, K; Wahler, G; Neubauer, N; Steiner, R; Titze, W; Wagner, M

    1996-09-01

    Functional treatment with the Air Stirrup Ankle Brace recommended by C. N. Stover in 1979 can reduce pathological inversion of the ankle joint. In our retrospective study of 109 patients treated by this kind of ankle brace we found 96 patients (88%) with excellent results. Only 13 patients (12%) reported moderate to good results. To detect and characterize their painful conditions of ankles we did a clinical, radiological and MRI-Investigation. In only 2 cases we found a moderate instability after clinical investigation, anterior stress roentgenogram and talar tilt. By using the MRI-investigation 1.0 Tesla with a 512 x 360 Matrix we could find 10 cases with osteochondral lesions of the ankle. In 7 cases there was separated ossicle in the fibulotalar joint, in 1 case we detected a fracture of the processus anterior tali, in another case we could see a posttraumatic lesion of the talus and calcaneus with bone bruise and at least one osteochondral fracture of the distal tibia. The capability of the MRI to detect particularly osteo-chondral lesions of the talus and the tibiofibular joint was shown in 10 of 13 cases. Therefore we recommend to do an MRI-investigation on all patients after ankle sprain if there are painful conditions within the ankle after conservative treatment.

  17. Sensitivity of the diagnostic radiological index of protection to procedural factors in fluoroscopy.

    PubMed

    Jones, A Kyle; Pasciak, Alexander S; Wagner, Louis K

    2016-07-01

    To evaluate the sensitivity of the diagnostic radiological index of protection (DRIP), used to quantify the protective value of radioprotective garments, to procedural factors in fluoroscopy in an effort to determine an appropriate set of scatter-mimicking primary beams to be used in measuring the DRIP. Monte Carlo simulations were performed to determine the shape of the scattered x-ray spectra incident on the operator in different clinical fluoroscopy scenarios, including interventional radiology and interventional cardiology (IC). Two clinical simulations studied the sensitivity of the scattered spectrum to gantry angle and patient size, while technical factors were varied according to measured automatic dose rate control (ADRC) data. Factorial simulations studied the sensitivity of the scattered spectrum to gantry angle, field of view, patient size, and beam quality for constant technical factors. Average energy (Eavg) was the figure of merit used to condense fluence in each energy bin to a single numerical index. Beam quality had the strongest influence on the scattered spectrum in fluoroscopy. Many procedural factors affect the scattered spectrum indirectly through their effect on primary beam quality through ADRC, e.g., gantry angle and patient size. Lateral C-arm rotation, common in IC, increased the energy of the scattered spectrum, regardless of the direction of rotation. The effect of patient size on scattered radiation depended on ADRC characteristics, patient size, and procedure type. The scattered spectrum striking the operator in fluoroscopy is most strongly influenced by primary beam quality, particularly kV. Use cases for protective garments should be classified by typical procedural primary beam qualities, which are governed by the ADRC according to the impacts of patient size, anatomical location, and gantry angle.

  18. Joint fMRI analysis and subject clustering using sparse dictionary learning

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Jun; Dontaraju, Krishna K.

    2017-08-01

    Multi-subject fMRI data analysis methods based on sparse dictionary learning are proposed. In addition to identifying the component spatial maps by exploiting the sparsity of the maps, clusters of the subjects are learned by postulating that the fMRI volumes admit a subspace clustering structure. Furthermore, in order to tune the associated hyper-parameters systematically, a cross-validation strategy is developed based on entry-wise sampling of the fMRI dataset. Efficient algorithms for solving the proposed constrained dictionary learning formulations are developed. Numerical tests performed on synthetic fMRI data show promising results and provides insights into the proposed technique.

  19. Efficacy of infliximab on MRI-determined bone oedema in psoriatic arthritis.

    PubMed

    Marzo-Ortega, Helena; McGonagle, Dennis; Rhodes, Laura A; Tan, Ai Lyn; Conaghan, Philip G; O'Connor, Philip; Tanner, Steven F; Fraser, Alexander; Veale, Douglas; Emery, Paul

    2007-06-01

    Psoriatic arthritis (PsA) is commonly associated with bone pathology, including entheseal new bone formation and osteolysis. On MRI, areas of active clinical involvement are represented by bone oedema and synovitis. To assess the impact of infliximab on bone oedema in PsA as shown by MRI. 18 patients with joint swelling, psoriasis and seronegativity for rheumatoid factor received four infusions of infliximab, 3 mg/kg, in combination with methotrexate. MRI of the affected hand (12 patients) or knee joints (6 patients) was performed before and after treatment. The primary outcome was the assessment of bone oedema and synovitis at 20 weeks as shown by MRI. Secondary outcomes included the American College of Rheumatology (ACR) response criteria, psoriasis skin scores (Psoriasis Area and Severity Index (PASI)) and a quality of life measure (Psoriatic Arthritis Quality of Life (PsAQoL)). At baseline, bone oedema was seen in 50% of patients (seven hands and two knees) in 30% of scanned joints, and this improved or resolved in all cases in the hand joints (p = 0.018) and in one knee joint at 20 weeks. Synovitis was found to be reduced in 90% of cases on MRI. Likewise, a significant improvement in all clinical outcomes, including PASI (p = 0.003) and PsAQoL (p = 0.006) was seen at week 20. 65% (n = 11) of the patients achieved an ACR response, of whom 45% had ACR70 or above and 54% had ACR20 or ACR50. Infliximab treatment is associated with dramatic improvements in MRI-determined bone oedema in PsA in the short term. It remains to be determined whether infliiximib treatment is the cause for prevention of new bone formation, bone fusion or osteolysis in PsA as shown by radiography.

  20. Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy.

    PubMed

    Terunuma, Toshiyuki; Tokui, Aoi; Sakae, Takeji

    2018-03-01

    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling "importance recognition": the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated.

  1. CT Fluoroscopy Shielding: Decreases in Scattered Radiation for the Patient and Operator

    PubMed Central

    Neeman, Ziv; Dromi, Sergio A.; Sarin, Shawn; Wood, Bradford J.

    2008-01-01

    PURPOSE High-radiation exposure occurs during computed tomographic (CT) fluoroscopy. Patient and operator doses during thoracic and abdominal interventional procedures were studied in the present experiment, and a novel shielding device to reduce exposure to the patient and operator was evaluated. MATERIALS AND METHODS With a 16-slice CT scanner in CT fluoroscopy mode (120 kVp, 30 mA), surface dosimetry was performed on adult and pediatric phantoms. The shielding was composed of tungsten antimony in the form of a lightweight polymer sheet. Doses to the patient were measured with and without shielding for thoracic and abdominal procedures. Doses to the operator were recorded with and without phantom, gantry, and table shielding in place. Double-layer lead-free gloves were used by the operator during the procedures. RESULTS Tungsten antimony shielding adjacent to the scan plane resulted in a maximum dose reduction of 92.3% to the patient. Maximum 85.6%, 93.3%, and 85.1% dose reductions were observed for the operator’s torso, gonads, and hands, respectively. The use of double-layer lead-free gloves resulted in a maximum radiation dose reduction of 97%. CONCLUSIONS Methods to reduce exposure during CT fluoroscopy are effective and should be searched for. Significant reduction in radiation doses to the patient and operator can be accomplished with tungsten antimony shielding. PMID:17185699

  2. Computed tomography angiography-fluoroscopy image fusion allows visceral vessel cannulation without angiography during fenestrated endovascular aneurysm repair.

    PubMed

    Schwein, Adeline; Chinnadurai, Ponraj; Behler, Greg; Lumsden, Alan B; Bismuth, Jean; Bechara, Carlos F

    2018-07-01

    Fenestrated endovascular aneurysm repair (FEVAR) is an evolving technique to treat juxtarenal abdominal aortic aneurysms (AAAs). Catheterization of visceral and renal vessels after the deployment of the fenestrated main body device is often challenging, usually requiring additional fluoroscopy and multiple digital subtraction angiograms. The aim of this study was to assess the clinical utility and accuracy of a computed tomography angiography (CTA)-fluoroscopy image fusion technique in guiding visceral vessel cannulation during FEVAR. Between August 2014 and September 2016, all consecutive patients who underwent FEVAR at our institution using image fusion guidance were included. Preoperative CTA images were fused with intraoperative fluoroscopy after coregistering with non-contrast-enhanced cone beam computed tomography (syngo 3D3D image fusion; Siemens Healthcare, Forchheim, Germany). The ostia of the visceral vessels were electronically marked on CTA images (syngo iGuide Toolbox) and overlaid on live fluoroscopy to guide vessel cannulation after fenestrated device deployment. Clinical utility of image fusion was evaluated by assessing the number of dedicated angiograms required for each visceral or renal vessel cannulation and the use of optimized C-arm angulation. Accuracy of image fusion was evaluated from video recordings by three raters using a binary qualitative assessment scale. A total of 26 patients (17 men; mean age, 73.8 years) underwent FEVAR during the study period for juxtarenal AAA (17), pararenal AAA (6), and thoracoabdominal aortic aneurysm (3). Video recordings of fluoroscopy from 19 cases were available for review and assessment. A total of 46 vessels were cannulated; 38 of 46 (83%) of these vessels were cannulated without angiography but based only on image fusion guidance: 9 of 11 superior mesenteric artery cannulations and 29 of 35 renal artery cannulations. Binary qualitative assessment showed that 90% (36/40) of the virtual ostia overlaid

  3. Scattered radiation risk to the lens of the eyes for staff involved in using mobile C-arm fluoroscopy unit: Which position is riskiest?

    NASA Astrophysics Data System (ADS)

    Salleh, H.; Samat, S. B.; Matori, M. K.; Isa, M. J. M.

    2015-09-01

    Cataractogenesis is something to be concerned by radiologist and radiographer who work extensively in fluoroscopy. The increasing use of fluoroscopy or interventional fluoroscopy has to come with safety awareness on scattered radiation risk for staff performing the procedure. This study is looking into the radiation risk to the lens of the eyes for staff involved in fluoroscopy using the mobile C-arm fluoroscopy unit. The Toshiba SXT-1000A and Alderson Rando phantom were used in this study. Based on the results, it is found clearly that over couch (OC) procedure is riskier than under couch (UC) procedure. The cathode bound area is clearly riskier than anode bound area especially for UC procedure. More doses (at least +1,568 % of safest position) are received by the lens of the eyes for staff standing at the cathode bound area especially the position opposite to the x-ray tube.

  4. Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA.

    PubMed

    Weber, Markus; Woerner, Michael; Springorum, Robert; Sendtner, Ernst; Hapfelmeier, Alexander; Grifka, Joachim; Renkawitz, Tobias

    2014-10-01

    Restoration of biomechanics is a major goal in THA. Imageless navigation enables intraoperative control of leg length equalization and offset reconstruction. However, the effect of navigation compared with intraoperative fluoroscopy is unclear. We asked whether intraoperative use of imageless navigation (1) improves the relative accuracy of leg length and global and femoral offset restoration; (2) increases the absolute precision of leg length and global and femoral offset equalization; and (3) reduces outliers in a reconstruction zone of ± 5 mm for leg length and global and femoral offset restoration compared with intraoperative fluoroscopy during minimally invasive (MIS) THA with the patient in a lateral decubitus position. In this prospective study a consecutive series of 125 patients were randomized to either navigation-guided or fluoroscopy-controlled THA using sealed, opaque envelopes. All patients received the same cementless prosthetic components through an anterolateral MIS approach while they were in a lateral decubitus position. Leg length, global or total offset (representing the combination of femoral and acetabular offset), and femoral offset differences were restored using either navigation or fluoroscopy. Postoperatively, residual leg length and global and femoral offset discrepancies were analyzed on magnification-corrected radiographs of the pelvis by an independent and blinded examiner using digital planning software. Accuracy was defined as the relative postoperative difference between the surgically treated and the unaffected contralateral side for leg length and offset, respectively; precision was defined as the absolute postoperative deviation of leg length and global and femoral offset regardless of lengthening or shortening of leg length and offset throughout the THA. All analyses were performed per intention-to-treat. Analyzing the relative accuracy of leg length restoration we found a mean difference of 0.2 mm (95% CI, -1.0 to +1.4 mm; p

  5. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study.

    PubMed

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Gratta, Cosimo Del

    2016-12-01

    Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  6. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  7. Emergency endotracheal intubation under fluoroscopy guidance for patients with acute dyspnea or asphyxia.

    PubMed

    Jiao, Dechao; Xie, Na; Han, Xinwei; Wu, Gang

    2016-11-01

    To evaluate the feasibility and effectiveness of emergency endotracheal intubation (EEI) under fluoroscopy guidance for patients with acute dyspnea or asphyxia. From October 2011 to October 2014, of 1521 patients with acute dyspnea or asphyxia who required EEI in 6 departments, 43 patients who experienced intubation difficulty or failure were entered into this study. Data on technical success, procedure time, complications, and clinical outcome were collected. The pulse oxygen saturation and Hugh-Jones classification changes were analyzed. Fluoroscopy-guided EEI was technically successful in all patients. Acute dyspnea had resolved in all patients with clinical success rate 100% after the procedure. There were no serious complications during or after the procedure. The pulse oxygen saturation and Hugh-Jones classification showed significant increase after EEI (P < .05). Further treatments, including tracheal stents (n = 21), surgical resection (n = 16), palliative tracheotomy (n = 4), and bronchoscopic treatment (n = 2), were performed 1 to 72 hours after EEI. During a mean follow-up period of 13.2 months, 13 patients had died and 30 patients remained alive without dyspnea. Fluoroscopy-guided EEI is a safe and feasible procedure, and may serve as an alternative treatment option for patients when traditional EEI is unsuccessful. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Performance of mobile digital X-ray fluoroscopy using a novel flat panel detector for intraoperative use.

    PubMed

    Jeong, Chang-Won; Ryu, Jong-Hyun; Joo, Su-Chong; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha

    2015-01-01

    Technologies employing digital X-ray devices are developed for mobile settings. To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 μ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 μ Gy and 0.1 μ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 μ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). The proposed MDF is suitable for imaging in operating rooms.

  9. MRI of lesser metatarsophalangeal joint plantar plate tears and associated adjacent interspace lesions.

    PubMed

    Umans, Hilary; Srinivasan, Ramya; Elsinger, Elisabeth; Wilde, Gregory E

    2014-10-01

    To identify the variety of second and third intermetatarsal space (IS) lesions that may coexist with and without adjacent metatarsophalangeal joint (MTP) plantar plate (PP) tears. One hundred forefoot MRIs in 96 patients with metatarsalgia obtained between 30 September 2011 and 21 July 2012 using 1.5- or 3-T MRI were retrospectively reviewed in consensus by two MSK radiologists and one podiatrist (DPM). MRI was evaluated for second and third MTP PP tear and the presence/nature of second and third IS lesions. Second and third IS neuromas were measured in transverse (trans) dimension. A total of 40 PP tears were identified: 36 at the second and 4 at the third MTP. Second MTP PP tear was identified in 33% of females and 40.5% of males. In the 63 female feet there were 21 second MTP PP tears, all of which also had second IS lesions: pericapsular fibrosis (16), bursitis (4), and ganglion (1). In the 37 male feet there were 15 second MTP PP tears, 14 of which had second IS lesions: pericapsular fibrosis (8), bursitis (5), and ganglion (1). There was no definite second IS neuroma adjacent to any second MTP PP tear. In females without PP tear, there were 24 second (3 mm trans average) and 43 third IS neuromas (4.1 mm trans average). In males without PP tear, there were 9 second (3.4 mm trans average) and 16 third IS neuromas (4.1 mm trans average). MTP PP tears occurred in 40% of our cases, 90% of which occurred at the second MTP. Almost all coexisted with non-neuromatous second IS lesions.

  10. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.

    PubMed

    Pujol, Esteban; Van Bree, Henri; Cauzinille, Laurent; Poncet, Cyrill; Gielen, Ingrid; Bouvy, Bernard

    2011-06-01

    To investigate the use of low-field magnetic resonance imaging (MRI) and MR arthrography in normal canine stifles and to compare MRI images to gross dissection. Descriptive study. Adult canine pelvic limbs (n=17). Stifle joints from 12 dogs were examined by orthopedic and radiographic examination, synovial fluid analysis, and MRI performed using a 0.2 T system. Limbs 1 to 7 were used to develop the MR and MR arthrography imaging protocol. Limbs 8-17 were studied with the developed MR and MR arthrography protocol and by gross dissection. Three sequences were obtained: T1-weighted spin echo (SE) in sagittal, dorsal, and transverse plane; T2-weighted SE in sagittal plane and T1-gradient echo in sagittal plane. Specific bony and soft tissue structures were easily identifiable with the exception of articular cartilage. The cranial and caudal cruciate ligaments were identified. Medial and lateral menisci were seen as wedge-shaped hypointense areas. MR arthrography permitted further delineation of specific structures. MR images corresponded with gross dissection morphology. With the exception of poor delineation of articular cartilage, a low-field MRI and MR arthrography protocol provides images of adequate quality to assess the normal canine stifle joint. © Copyright 2011 by The American College of Veterinary Surgeons.

  11. Effectiveness of using low rate fluoroscopy to reduce an examiner's radiation dose during lumbar nerve root block.

    PubMed

    Yamane, Kentaro; Kai, Nobuo; Mazaki, Tetsuro; Miyamoto, Tadashi; Matsushita, Tomohiro

    2018-06-13

    Long-term exposure to radiation can lead to gene mutations and increase the risk of cancer. Low rate fluoroscopy has the potential to reduce the radiation exposure for both the examiner and the patient during various fluoroscopic procedures. The purpose of this study was to evaluate the impact of low rate fluoroscopy on reducing an examiner's radiation dose during nerve root block. A total of 101 lumbar nerve root block examinations were performed at our institute during a 6-month period. During the first 3 months, low rate fluoroscopy was performed at 7.5 frames/s (FPS) in 54 examinations, while 47 were performed at 15 FPS during the last 3 months. The examiner wore a torso protector, a neck protector, radiation protection gloves, and radiation protection glasses. Optically stimulated luminescence (OSL) dosimeter badges were placed on both the inside and the outside of each protector. The dosimeters were exchanged every month. Radiation doses (mSv) were measured as the integrated radiation quantity every month from the OSL dosimeters. The effective and equivalent doses for the hands, skin, and eyes were investigated. The mean monthly equivalent doses were significantly lower both inside and outside the hand protector for the 7.5 FPS versus 15 FPS (inside; P = 0.021, outside; P = 0.024). There were no significant differences between the two groups for the mean monthly calculated effective dose for each protector's condition. Radiation exposure was significantly reduced for the skin on the examiner's hand when using low rate fluoroscopy at 7.5 FPS, with no noticeable decrease in image quality or prolonged fluoroscopy time. Copyright © 2018. Published by Elsevier B.V.

  12. Scattered radiation risk to the lens of the eyes for staff involved in using mobile C-arm fluoroscopy unit: Which position is riskiest?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salleh, H.; Matori, M. K.; Isa, M. J. M.

    Cataractogenesis is something to be concerned by radiologist and radiographer who work extensively in fluoroscopy. The increasing use of fluoroscopy or interventional fluoroscopy has to come with safety awareness on scattered radiation risk for staff performing the procedure. This study is looking into the radiation risk to the lens of the eyes for staff involved in fluoroscopy using the mobile C-arm fluoroscopy unit. The Toshiba SXT-1000A and Alderson Rando phantom were used in this study. Based on the results, it is found clearly that over couch (OC) procedure is riskier than under couch (UC) procedure. The cathode bound area ismore » clearly riskier than anode bound area especially for UC procedure. More doses (at least +1,568 % of safest position) are received by the lens of the eyes for staff standing at the cathode bound area especially the position opposite to the x-ray tube.« less

  13. The Use of Laser Guidance Reduces Fluoroscopy Time for C-Arm Cone-Beam Computed Tomography-Guided Biopsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Maarten W., E-mail: Maarten.Kroes@radboudumc.nl; Strijen, Marco J. L. van, E-mail: m.van.strijen@antoniusziekenhuis.nl; Braak, Sicco J., E-mail: sjbraak@gmail.com

    2016-09-15

    PurposeWhen using laser guidance for cone-beam computed tomography (CBCT)-guided needle interventions, planned needle paths are visualized to the operator without the need to switch between entry- and progress-view during needle placement. The current study assesses the effect of laser guidance during CBCT-guided biopsies on fluoroscopy and procedure times.Materials and MethodsProspective data from 15 CBCT-guided biopsies of 8–65 mm thoracic and abdominal lesions assisted by a ceiling-mounted laser guidance technique were compared to retrospective data of 36 performed CBCT-guided biopsies of lesions >20 mm using the freehand technique. Fluoroscopy time, procedure time, and number of CBCT-scans were recorded. All data are presented asmore » median (ranges).ResultsFor biopsies using the freehand technique, more fluoroscopy time was necessary to guide the needle onto the target, 165 s (83–333 s) compared to 87 s (44–190 s) for laser guidance (p < 0.001). Procedure times were shorter for freehand-guided biopsies, 24 min versus 30 min for laser guidance (p < 0.001).ConclusionThe use of laser guidance during CBCT-guided biopsies significantly reduces fluoroscopy time.« less

  14. Endoscopic bronchial occlusion for postoperative persistent bronchopleural fistula with computed tomography fluoroscopy guidance and virtual bronchoscopic navigation

    PubMed Central

    Yanagiya, Masahiro; Matsumoto, Jun; Nagano, Masaaki; Kusakabe, Masashi; Matsumoto, Yoko; Furukawa, Ryutaro; Ohara, Sayaka; Usui, Kazuhiro

    2018-01-01

    Abstract Rationale: The development of postoperative bronchopleural fistula (BPF) remains a challenge in thoracic surgery. We herein report a case of BPF successfully treated with endoscopic bronchial occlusion under computed tomography (CT) fluoroscopy and virtual bronchoscopic navigation (VBN). Patient concerns: A 63-year-old man underwent right upper lobectomy with concomitant S6a subsegmentectomy for lung adenocarcinoma. On postoperative day 24, he complained of shaking chills with high fever. Diagnoses: BPF with subsequent pneumonia and empyema. Interventions: Despite aggressive surgical interventions for the BPF, air leakage persisted postoperatively. On days 26 and 34 after the final operation, endobronchial occlusions were performed under CT fluoroscopy and VBN. Outcomes: The air leaks greatly decreased and the patient was discharged. Lessons: CT fluoroscopy and VBN can be useful techniques for endobronchial occlusion in the treatment of BPF. PMID:29443771

  15. Quantification of tumor mobility during the breathing cycle using 3D dynamic MRI

    NASA Astrophysics Data System (ADS)

    Schoebinger, Max; Plathow, Christian; Wolf, Ivo; Kauczor, Hans-Ulrich; Meinzer, Hans-Peter

    2006-03-01

    Respiration causes movement and shape changes in thoracic tumors, which has a direct influence on the radio-therapy planning process. Current methods for the estimation of tumor mobility are either two-dimensional (fluoroscopy, 2D dynamic MRI) or based on radiation (3D (+t) CT, implanted gold markers). With current advances in dynamic MRI acquisition, 3D+t image sequences of the thorax can be acquired covering the thorax over the whole breathing cycle. In this work, methods are presented for the interactive segmentation of tumors in dynamic images, the calculation of tumor trajectories, dynamic tumor volumetry and dynamic tumor rotation/deformation based on 3D dynamic MRI. For volumetry calculation, a set of 21 related partial volume correcting volumetry algorithms has been evaluated based on tumor surrogates. Conventional volumetry based on voxel counting yielded a root mean square error of 29% compared to a root mean square error of 11% achieved by the algorithm performing best among the different volumetry methods. The new workflow has been applied to a set of 26 patients. Preliminary results indicate, that 3D dynamic MRI reveals important aspects of tumor behavior during the breathing cycle. This might imply the possibility to further improve high-precision radiotherapy techniques.

  16. Haemophilia Joint Health Score in healthy adults playing sports.

    PubMed

    Sluiter, D; Foppen, W; de Kleijn, P; Fischer, K

    2014-03-01

    To evaluate outcome of prophylactic clotting factor replacement in children with haemophilia, the Haemophilia Joint Health Score (HJHS) was developed aiming at scoring early joint changes in children aged 4-18. The HJHS has been used for adults on long-term prophylaxis but interpretation of small changes remains difficult. Some changes in these patients may be due to sports-related injuries. Evaluation of HJHS score in healthy adults playing sports could improve the interpretation of this score in haemophilic patients. The aim of this study was to evaluate the HJHS scores in a cohort of young, healthy men participating in sports. Concomitant with a project collecting MRI images of ankles and knees in normal young adults, HJHS scores were assessed in 30 healthy men aged 18-26, participating in sports one to three times per week. One physiotherapist assessed their clinical function using the HJHS 2.1. History of joint injuries was documented. MRI images were scored by a single radiologist, using the International Prophylaxis Study Group additive MRI score. Median age of the study group was 24.3 years (range 19.0-26.4) and median frequency of sports activities was three times per week (range 1-4). Six joints (five knees, one ankle) had a history of sports-related injury. The median overall HJHS score was 0 out of 124 (range 0-3), with 60% of subjects showing no abnormalities on HJHS. All joints were normal on MRI. These results suggest that frequent sports participation and related injuries are not related with abnormalities in HJHS scores. © 2013 John Wiley & Sons Ltd.

  17. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy.

    PubMed

    Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A

    2011-08-01

    Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.

  18. Fluoroscopically guided transforaminal epidural steroid injections at a quaternary-care teaching institution: effect of trainee involvement and patient body mass index on fluoroscopy time and patient dose.

    PubMed

    Tiegs-Heiden, C A; Murthy, N S; Geske, J R; Diehn, F E; Schueler, B A; Wald, J T; Kaufmann, T J; Lehman, V T; Carr, C M; Amrami, K K; Morris, J M; Thielen, K R; Maus, T P

    2016-01-01

    To investigate whether there are differences in fluoroscopy time and patient dose for fluoroscopically guided lumbar transforaminal epidural steroid injections (TFESIs) performed by staff radiologists versus with trainees and to evaluate the effect of patient body mass index (BMI) on fluoroscopy time and patient dose, including their interactions with other variables. Single-level lumbar TFESIs (n=1844) between 1 January 2011 and 31 December 2013 were reviewed. Fluoroscopy time, reference point air kerma (Ka,r), and kerma area product (KAP) were recorded. BMI and trainee involvement were examined as predictors of fluoroscopy time, Ka,r, and KAP in models adjusted for age and gender in multivariable linear models. Stratified models of BMI groups by trainee presence were performed. Increased age was the only significant predictor of increased fluoroscopy time (p<0.0001). Ka,r and KAP were significantly higher in patients with a higher BMI (p<0.0001 and p=0.0009). When stratified by BMI, longer fluoroscopy time predicted increased Ka,r and KAP in all groups (p<0.0001). Trainee involvement was not a statistically significant predictor of fluoroscopy time or Ka,r in any BMI category. KAP was lower with trainees in the overweight group (p=0.0009) and higher in male patients for all BMI categories (p<0.02). Trainee involvement did not result in increased fluoroscopy time or patient dose. BMI did not affect fluoroscopy time; however, overweight and obese patients received significantly higher Ka,r and KAP. Male patients received a higher KAP in all BMI categories. Limiting fluoroscopy time and good collimation practices should be reinforced in these patients. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Significance of clinical evaluation of the metacarpophalangeal joint in relation to synovial/bone pathology in rheumatoid and psoriatic arthritis detected by magnetic resonance imaging.

    PubMed

    Stone, Millicent A; White, Lawrence M; Gladman, Dafna D; Inman, Robert D; Chaya, Sam; Lax, Matthew; Salonen, David; Weber, Deborah A; Guthrie, Judy A; Pomeroy, Emma; Podbielski, Dominik; Keystone, Edward C

    2009-12-01

    Rheumatologists base many clinical decisions regarding the management of inflammatory joint diseases on joint counts performed at clinic. We investigated the reliability and accuracy of physically examining the metacarpophalangeal (MCP) joints to detect inflammatory synovitis using magnetic resonance imaging (MRI) as the gold standard. MCP joints 2 to 5 in both hands of 5 patients with rheumatoid arthritis (RA) and 5 with psoriatic arthritis (PsA) were assessed by 5 independent examiners for joint-line swelling (visually and by palpation); joint-line tenderness by palpation (tender joint count, TJC) and stress pain; and by MRI (1.5 Tesla superconducting magnet). Interrater reliability was assessed using kappa statistics, and agreement between examination and corresponding MRI assessment was assessed by Fisher's exact tests (p < 0.05 considered statistically significant). Interrater agreement was highest for visual assessment of swelling (kappa = 0.55-0.63), slight-fair for assessment of swelling by palpation (kappa = 0.19-0.41), and moderate (kappa = 0.41-0.58) for assessment of joint tenderness. In patients with RA, TJC, stress pain, and visual swelling assessment were strongly associated with MRI evaluation of synovitis. Visual swelling assessment demonstrated high specificity (> 0.8) and positive predictive value (= 0.8). For PsA, significant associations exist between TJC and MRI synovitis scores (p < 0.01) and stress pain and MRI edema scores (p < 0.04). Assessment of swelling by palpation was not significantly associated with synovitis or edema as determined by MRI in RA or PsA (p = 0.54-1.0). In inflammatory arthritis, disease activity in MCP joints can be reliably assessed at the bedside by examining for joint-line tenderness (TJC) and visual inspection for swelling. Clinical assessment may have to be complemented by other methods for evaluating disease activity in the joint, such as MRI, particularly in patients with PsA.

  20. Percutaneous radiofrequency ablation for osteoid osteoma under guidance of threedimensional fluoroscopy.

    PubMed

    Arıkan, Yavuz; Yavuz, Umut; Lapcin, Osman; Sökücü, Sami; Özkan, Bilge; Kabukçuoğlu, Yavuz

    2016-12-01

    To evaluate the outcome of percutaneous radiofrequency ablation under guidance of 3-dimensional fluoroscopy in 17 patients with osteoid osteoma. Records of 11 male and 6 female consecutive patients aged 4 to 28 (mean, 13.8) years who underwent radiofrequency ablation under guidance of 3-dimensional fluoroscopy for osteoid osteoma and were followed up for a mean of 15.8 (range, 12-28) months were reviewed. All patients had been treated with analgesics but failed to achieve lasting pain relief. Visual analogue score (VAS) for pain was assessed pre- and post-operatively. Absence of pain was considered recovery. The mean operating time was 55 (range, 20-95) minutes, and the mean length of hospital stay was 2.8 (range, 2-7) days. The mean amount of radiation was 390.2 (range, 330.5-423.6) mGy/cm. Relief of pain occurred within the first 24 hours in 11 patients and by the end of the first week in 3 patients. Pain persisted in 3 patients at one month; they underwent revision surgery and achieved complete recovery. The mean VAS for pain was 7.2 (range, 6-9) in 17 patients preoperatively and decreased to 0.64 (range, 0-2) in the 14 patients with pain relief and 0.66 (range, 0-1) in the 3 patients after revision surgery. Two patients had severe discharge from the wound secondary to fat necrosis, which resolved within a week with antibiotics and local dressings. No patient had cellulitis, vasomotor instability, neurovascular injury, fracture, or deep infection. Percutaneous radiofrequency ablation under guidance of 3-dimensional fluoroscopy is a viable treatment option for osteoid osteoma.

  1. Optimal angle of needle insertion for fluoroscopy-guided transforaminal epidural injection of L5.

    PubMed

    Ra, In-Hoo; Min, Woo-Kie

    2015-06-01

    Unlike other sites, there is difficulty in performing TFESI at the L5-S1 level because the iliac crest is an obstacle to needle placement. The objective of this study was to identify the optimal angle of fluoroscopy for insertion and advancement of a needle during L5 TEFSI. We conducted an observational study of patients undergoing fluoroscopy-guided L5 TFESI in the prone position. A total of 80 patients (40 men and 40 women) with radiating pain of lower limbs were enrolled. During TFESI, we measured the angle at which the L5 vertebral body forms a rectangular shape and compared men and women. Then, we measured area of safe triangle in tilting angle of fluoroscopy from 15° to 35° and compared men and women. The mean cephalocaudal angle, where the vertebral body takes the shape of a rectangle, was 11.0° in men and 13.9° in women (P = 0.007). In men, the triangular area was maximal at 18.3 mm² with an oblique view angle of 25°. In women, the area was maximal at 23.6 mm² with an oblique view angle of 30°. At an oblique view angle of 30° and 35°, the area was significantly greater in women (P < 0.05). When TFESI is performed at the L5 region in the prone position, placement of fluoroscopy at a cephalocaudal angle of 11.0° and an oblique angle of 25° in men and cephalocaudal angle of 13.9° and an oblique angle of 30° in women would be most reasonable. © 2014 World Institute of Pain.

  2. MRI reconstruction with joint global regularization and transform learning.

    PubMed

    Tanc, A Korhan; Eksioglu, Ender M

    2016-10-01

    Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Migrating lumbar facet joint cysts.

    PubMed

    Palmieri, Francesco; Cassar-Pullicino, Victor N; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W

    2006-04-01

    The majority of lumbar facet joint cysts (LFJCs) are located in the spinal canal, on the medial aspect of the facet joint with characteristic diagnostic features. When they migrate away from the joint of origin, they cause diagnostic problems. In a 7-year period we examined by computed tomography (CT) and magnetic resonance (MR) imaging five unusual cases of facet joint cysts which migrated from the facet joint of origin. Three LFJCs were identified in the right S1 foramen, one in the right L5-S1 neural foramen and one in the left erector spinae and multifidus muscles between the levels of L2-L4 spinous process. Awareness that spinal lesions identified at MRI and CT could be due to migrating facet joint cyst requires a high level of suspicion. The identification of the appositional contact of the cyst and the facet joint needs to be actively sought in the presence of degenerative facet joints.

  4. [Generalised Form of Synovial Chondromatosis of the Knee Joint].

    PubMed

    Vališ, P; Vyskočil, R

    2016-01-01

    This study describes a diagnostic and therapeutic algorithm in a 53-year-old male patient who was diagnosed with a synovial chondromatosis of the knee joint extending to the popliteal fossa and soft tissues around the knee. Because of the presence of massive nodules, the patient was indicated for total synovectomy, with removal of pathologically changed cartilaginous tissue, performed by combined anterior and posterior approaches to the knee joint. Despite complete removal of the synovium and loose cartilage bodies and the patient's pain relief in the post-operative time, three years after the operation new problems appeared. Magnetic resonance imaging (MRI) confirmed a relapse of synovial chondromatosis and the patient was indicated for revision surgery of the knee joint. The results of physical examination and MRI scans, and intra-operative findings in the patient are reported. synovial chondromatosis, total synovectomy, direct anterior and posterior approaches to the knee joint.

  5. [Fluoroscopy dose reduction of computed tomography guided chest interventional radiology using real-time iterative reconstruction].

    PubMed

    Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro

    2014-11-01

    The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.

  6. Contrast enhanced Gd-DTPA magnetic resonance imaging in the evaluation of rheumatoid arthritis during a clinical trial with DMARDs. A prospective two-year follow-up study on hand joints in 31 patients.

    PubMed

    Jevtic, V; Watt, I; Rozman, B; Kos-Golja, M; Praprotnik, S; Logar, D; Presetnik, M; Demsar, F; Jarh, O; Campion, G; Musikic, P

    1997-01-01

    The aim of this prospective 24-month follow-up study was to compare clinical features with radiological and magnetic resonance imaging (MRI) findings in evaluating synovial proliferation in the hand joints of 31 patients with rheumatoid arthritis (RA). A single joint was used for the follow-up of each patient. Thirty-one small hand joints were examined by conventional radiography and MRI before and after 24 months of treatment. MRI assessment of disease progression (volume and/or signal intensity of the synovial proliferation on T1 weighted precontrast, T1 weighted postcontrast and T2 weighted images) was compared with a clinical assessment of the chosen joints, and with a plain x-ray film evaluation (Larsen's score). Of 26 joints which clinically improved (14 markedly and 14 slightly) during the study, on MRI 16 showed improvement, 8 showed no change, and 2 showed deterioration. Four clinically unchanged joints appeared improved on MRI. One joint deteriorated clinically and on MRI. Overall, there was a 58% congruence between clinical and MRI findings. On x-ray 23 joints showed no change; nine of these were also unchanged on MRI, while 13 showed improvement and one deterioration. Only in 2 out of 8 joints showing deterioration on x-ray were the MRI findings in accordance. In the remaining six joints MRI showed improvement. The congruence between x-ray and MRI was therefore 36%. The long-term follow-up of rheumatoid synovial proliferation of the small joints in the hand using contrast enhanced MRI is feasible and may provide additional information regarding disease activity. Important advantages over conventional radiography methods are its ability to demonstrate qualitative differences of synovial proliferation within bone erosions, and demonstrate not only deterioration, but also the improvement of inflammatory disease.

  7. Percutaneous Biopsy of Retrobulbar Masses: Anatomical Considerations and MRI Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edalat, Faramarz, E-mail: faramarz.edalat@gmail.com; Cazzato, Roberto Luigi; Garnon, Julien

    2017-04-15

    PurposeObtaining adequate tissue from retrobulbar masses remains a challenge. To this end, a new method of retrobulbar mass biopsy using MRI guidance is presented.Materials and MethodsTwo patients (7- and 71-year-old male) with indeterminate retrobulbar masses underwent bioptic and cytological samplings using MR-compatible 18G and 20–22G needles, and multi-planar MR fluoroscopy. An inferior approach was taken to avoid injury to the optic nerve and ophthalmic arteries.ResultsThe two biopsies were completed without complication. The core biopsy resulted in a final diagnosis, whereas the cytological sampling was non-diagnostic.ConclusionPercutaneous MR-guided retrobulbar mass biopsy proved to be feasible and safe in the two cases describedmore » in this report.« less

  8. Lower Learning Difficulty and Fluoroscopy Reduction of Transforaminal Percutaneous Endoscopic Lumbar Discectomy with an Accurate Preoperative Location Method.

    PubMed

    Fan, Guoxin; Gu, Xin; Liu, Yifan; Wu, Xinbo; Zhang, Hailong; Gu, Guangfei; Guan, Xiaofei; He, Shisheng

    2016-01-01

    Transforaminal percutaneous endoscopic lumbar discectomy (tPELD) poses great challenges for junior surgeons. Beginners often require repeated attempts using fluoroscopy causing more punctures, which may significantly undermine their confidence and increase the radiation exposure to medical staff and patients. Moreover, the impact of an accurate location on the learning curve of tPELD has not been defined. The study aimed to investigate the impact of an accurate preoperative location method on learning difficulty and fluoroscopy time of tPELD. Retrospective evaluation. Patients receiving tPELD by one surgeon with a novel accurate preoperative location method were regarded as Group A, and those receiving tPELD by another surgeon with a conventional fluoroscopy method were regarded as Group B. From January 2012 to August 2014, we retrospectively reviewed the first 80 tPELD cases conducted by 2 junior surgeons. The operation time, fluoroscopy times, preoperative location time, and puncture-channel time were thoroughly analyzed. The operation time of the first 20 patients were 99.75 ± 10.38 minutes in Group A and 115.7 ± 16.46 minutes in Group B, while the operation time of all 80 patients was 88.36 ± 11.56 minutes in Group A and 98.26 ± 14.90 minutes in Group B. Significant differences were detected in operation time between the 2 groups, both for the first 20 patients and total 80 patients (P < 0.05). The fluoroscopy times were 26.78 ± 4.17 in Group A and 33.98 ± 2.69 in Group B (P < 0.001). The preoperative location time was 3.43 ± 0.61 minutes in Group A and 5.59 ± 1.46 minutes in Group B (P < 0.001). The puncture-channel time was 27.20 ± 4.49 minutes in Group A and 34.64 ± 8.35 minutes in Group B (P < 0.001). There was a moderate correlation between preoperative location time and puncture-channel time (r = 0.408, P < 0.001), and a moderate correlation between preoperative location time and fluoroscopy times (r = 0.441, P < 0.001). Mild correlations were

  9. Technique for CT Fluoroscopy-Guided Lumbar Medial Branch Blocks and Radiofrequency Ablation.

    PubMed

    Amrhein, Timothy J; Joshi, Anand B; Kranz, Peter G

    2016-09-01

    The purpose of this study is to describe the procedure for CT fluoroscopy-guided lumbar medial branch blocks and facet radiofrequency ablation. CT fluoroscopic guidance allows more-precise needle tip positioning and is an alternative method for performing medial branch blocks and facet radiofrequency ablation.

  10. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  11. Positive correlation between inflammation on sacroiliac joint MRI and serum C-terminal telopeptide of type-I collagen in ankylosing spondylitis but not in non-radiographic axial spondyloarthritis.

    PubMed

    Kang, Kwi Young; Jung, Joon-Yong; Hong, Yeon Sik; Ju, Ji Hyeon; Park, Sung-Hwan

    2017-01-01

    To identify the clinical disease activity scores and laboratory markers that best reflect magnetic resonance imaging (MRI)-determined sacroiliac joint (SIJ) inflammation in ankylosing spondylitis (AS) and non-radiographic axial spondyloarthritis (nr-axSpA). This cross-sectional study included all consecutive patients who presented with axial spondyloarthritis in 2013-2015. All underwent SIJ MRI. The bone marrow oedema in the inflammatory lesions on MRI was scored using the SPondyloArthritis Research Consortium of Canada (SPARCC) method. Bone-specific alkaline phosphatase (BALP), serum C-terminal telopeptide of type-I collagen (sCTX-I), and inflammatory markers were measured. Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Ankylosing Spondylitis Disease Activity Score (ASDAS) were assessed. The correlations between the MRI-determined SIJ inflammation scores and disease activity scores and laboratory variables were evaluated. Of the 81 patients with axSpA, 45 had AS and 36 had nr-axSpA. The AS and nr-axSpA groups did not differ in terms of disease activity scores, physical functional index, or MRI-determined SIJ inflammation. Erythrocyte sedimentation rate, C-reactive protein, and ASDAS correlated with MRI inflammatory scores in nr-axSpA but not in AS. sCTX-I correlated with MRI-determined SIJ inflammatory scores in AS only. BASDAI and BALP levels did not associate with MRI inflammatory scores in either group. Multivariate analysis showed that sCTX-I associated independently with MRI inflammatory score in AS (β=17.047, p=0.038). Inflammatory markers and ASDAS correlated with active sacroiliitis on MRI in nr-axSpA only. In AS, only sCTX-I correlated with active inflammation on SIJ MRI. sCTX-I may be useful as a marker of objective inflammation in AS.

  12. Fluoroscopy-guided retrograde core drilling and cancellous bone grafting in osteochondral defects of the talus.

    PubMed

    Anders, Sven; Lechler, Philipp; Rackl, Walter; Grifka, Joachim; Schaumburger, Jens

    2012-08-01

    In undetached osteochondral lesions (OCL) of the talus both revitalisation of the subchondral necrosis and cartilage preservation are essential. For these cases, we assess the results of minimally invasive retrograde core drilling and cancellous bone grafting. Forty-one osteochondral lesions of the talus (12x grade I, 22x grade II and 7x grade III according to the Pritsch classification, defect sizes 7-14 mm) in 38 patients (mean age 33.2 years) treated by fluoroscopy-guided retrograde core drilling and autologous cancellous bone grafting were evaluated by clinical scores and MRI. The mean follow-up was 29.0 (±13) months. The AOFAS score increased significantly from 47.3 (±15.3) to 80.8 (±18.6) points. Lesions with intact cartilage (grades I and II) had a tendency to superior results than grade III lesions (83.1 ± 17.3 vs. 69.4 ± 22.2 points, p = 0.07). First-line treatments and open distal tibial growth plates led to significantly better outcomes (each p < 0.05). Age, gender, BMI, time to follow-up, defect localisation or a traumatic origin did not influence the score results. On a visual analogue scale pain intensity reduced from 7.5 (±1.5) to 3.7 (±2.6) while subjective function increased from 4.6 (±2.0) to 8.2 (±2.3) (each p < 0.001). In MRI follow-ups, five of the 41 patients showed a complete bone remodelling. In two cases demarcation was detectable. The technique reported is a highly effective therapeutic option in OCL of the talus with intact cartilage grades I and II. However, second-line treatments and grade III lesions with cracked cartilage surface can not be generally recommended for this procedure.

  13. [Possibilities of magnetic resonance tomography in diagnostic imaging of the shoulder joint].

    PubMed

    Reiser, M; Erlemann, R; Bongartz, G; Pauly, T; Kunze, V; Mathiass, H H; Peters, P E

    1988-02-01

    By virtue of its multiplanar representation, magnetic resonance imaging (MRI) allows clear visualization of the complex anatomical relationships of the shoulder joint. In addition to axial planes, slices perpendicular and parallel to the glenoid cavity are used to good advantage. In tears of the rotator cuff an increase in signal intensity within the cuff is recognized in T2- and proton-density-weighted images. Lesions of the glenoid labrum following luxations of the glenohumeral joint can be detected and classified using MRI. The diagnostic value of MRI as compared with other imaging modalities will have to be evaluated in larger series with operative verification.

  14. CT Fluoroscopy-Guided Lung Biopsy with Novel Steerable Biopsy Canula: Ex-Vivo Evaluation in Ventilated Porcine Lung Explants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Philipp J., E-mail: jp.schaefer@rad.uni-kiel.de; Fabel, Michael; Bolte, Hendrik

    2010-08-15

    The purpose was to evaluate ex-vivo a prototype of a novel biopsy canula under CT fluoroscopy-guidance in ventilated porcine lung explants in respiratory motion simulations. Using an established chest phantom for porcine lung explants, n = 24 artificial lesions consisting of a fat-wax-Lipiodol mixture (approx. 70HU) were placed adjacent to sensible structures such as aorta, pericardium, diaphragm, bronchus and pulmonary artery. A piston pump connected to a reservoir beneath a flexible silicone reconstruction of a diaphragm simulated respiratory motion by rhythmic inflation and deflation of 1.5 L water. As biopsy device an 18-gauge prototype biopsy canula with a lancet-like, helicallymore » bended cutting edge was used. The artificial lesions were punctured under CT fluoroscopy-guidance (SOMATOM Sensation 64, Siemens, Erlangen, Germany; 30mAs/120 kV/5 mm slice thickness) implementing a dedicated protocol for CT fluoroscopy-guided lung biopsy. The mean-diameter of the artificial lesions was 8.3 {+-} 2.6 mm, and the mean-distance of the phantom wall to the lesions was 54.1 {+-} 13.5 mm. The mean-displacement of the lesions by respiratory motion was 14.1 {+-} 4.0 mm. The mean-duration of CT fluoroscopy was 9.6 {+-} 5.1 s. On a 4-point scale (1 = central; 2 = peripheral; 3 = marginal; 4 = off target), the mean-targeted precision was 1.9 {+-} 0.9. No misplacement of the biopsy canula affecting adjacent structures could be detected. The novel steerable biopsy canula proved to be efficient in the ex-vivo set-up. The chest phantom enabling respiratory motion and the steerable biopsy canula offer a feasible ex-vivo system for evaluating and training CT fluoroscopy-guided lung biopsy adapted to respiratory motion.« less

  15. Technical advances of interventional fluoroscopy and flat panel image receptor.

    PubMed

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most

  16. Detection of early osteoarthritis in the centrodistal joints of Icelandic horses: Evaluation of radiography and low-field magnetic resonance imaging.

    PubMed

    Ley, C J; Björnsdóttir, S; Ekman, S; Boyde, A; Hansson, K

    2016-01-01

    Validated noninvasive detection methods for early osteoarthritis (OA) are required for OA prevention and early intervention treatment strategies. To evaluate radiography and low-field magnetic resonance imaging (MRI) for the detection of early stage OA osteochondral lesions in equine centrodistal joints using microscopy as the reference standard. Prospective imaging of live horses and imaging and microscopy of cadaver tarsal joints. Centrodistal (distal intertarsal) joints of 38 Icelandic research horses aged 27-29 months were radiographed. Horses were subjected to euthanasia approximately 2 months later and cadaver joints examined with low-field MRI. Osteochondral joint specimens were classified as negative or positive for OA using light microscopy histology or scanning electron microscopy. Radiographs and MRIs were evaluated for osteochondral lesions and results compared with microscopy. Forty-two joints were classified OA positive with microscopy. Associations were detected between microscopic OA and the radiography lesion categories; mineralisation front defect (P<0.0001), joint margin lesion (P<0.0001), central osteophyte (P = 0.03) and the low-field MRI lesion categories; mineralisation front defect (P = 0.01), joint margin lesion (P = 0.02) and articular cartilage lesion (P = 0.0003). The most frequent lesion category detected in microscopic OA positive joints was the mineralisation front defect in radiographs (28/42 OA positive joints, specificity 97%, sensitivity 67%). No significant differences were detected between the sensitivity and specificity of radiography and low-field MRI pooled lesion categories, but radiography was often superior when individual lesion categories were compared. Early stage centrodistal joint OA changes may be detected with radiography and low-field MRI. Detection of mineralisation front defects in radiographs may be a useful screening method for detection of early OA in centrodistal joints of young Icelandic horses. © 2015 EVJ

  17. The Advantage of a Ureteroscopic Navigation System with Magnetic Tracking in Comparison with Simulated Fluoroscopy in a Phantom Study.

    PubMed

    Yoshida, Kenji; Yokomizo, Akira; Matsuda, Tadashi; Hamasaki, Tsutomu; Kondo, Yukihiro; Yamaguchi, Kunihisa; Kanayama, Hiro-Omi; Wakumoto, Yoshiaki; Horie, Shigeo; Naito, Seiji

    2015-09-01

    To assess whether our ureteroscopic real-time navigation system has the possibility to reduce radiation exposure and improve performance of ureteroscopic maneuvers in surgeons of various ages and experience levels. Our novel ureteroscopic navigation system used a magnetic tracking device to detect the position of the ureteroscope and display it on a three-dimensional image. We recruited 31 urologists from five institutions to perform two tasks. Task 1 consisted of finding three internal markings on the phantom calices. Task 2 consisted of identifying all calices by ureteroscopy. In both tasks, participants performed with simulated fluoroscopy first, followed by our navigation system. Accuracy rates (AR) for identification, required time (T) for completing the task, migration length (ML), and time exposed to simulated fluoroscopy were recorded. The AR, T, and ML for both tasks were significantly better with the navigation system than without it (Task 1 with simulated fluoroscopy vs with navigation: AR 87.1 % vs 98.9%, P=0.003; T 355 s vs 191 s, P<0.0001; ML 4627 mm vs 2701 mm, P<0.0001. Task 2: AR 88.2% vs 96.7%, P=0.011; T 394 s vs 333 s, P=0.027; ML 5966 mm vs 5299 mm, P=0.0006). In both tasks, the participants used the simulated fluoroscopy about 20% of the total task time. Our navigation system, while still under development, could help surgeons of all levels to achieve better performances for ureteroscopic maneuvers compared with using fluoroscopic guidance. It also has the potential to reduce radiation exposure during fluoroscopy.

  18. ASAS definition for sacroiliitis on MRI in SpA: applicable to children?

    PubMed

    Herregods, Nele; Dehoorne, Joke; Van den Bosch, Filip; Jaremko, Jacob Lester; Van Vlaenderen, Joke; Joos, Rik; Baraliakos, Xenofon; Varkas, Gaëlle; Verstraete, Koenraad; Elewaut, Dirk; Jans, Lennart

    2017-04-11

    The Assessment of Spondyloarthritis International Society (ASAS) definition for a 'positive' Magnetic Resonance Imaging (MRI) for sacroiliitis is well studied and validated in adults, but studies about the value of this definition in children are lacking. The aim of this study is to evaluate whether the adult ASAS definition of a positive MRI of the sacroiliac joints can be applied to children with a clinical suspicion of Juvenile Spondyloarthritis (JSpA). Two pediatric musculoskeletal radiologists blinded to clinical data independently retrospectively reviewed sacroiliac (SI) joint MRI in 109 children suspected of sacroiliitis. They recorded global impression (sacroiliitis yes/no) and whether the adult ASAS definition for sacroiliitis was met at each joint. This was compared to gold-standard clinical diagnosis of JSpA. Additionally, MRI were scored according to'adapted' ASAS definitions including other features of sacroiliitis on MRI. JSpA was diagnosed clinically in 47/109 (43%) patients. On MRI, sacroiliitis was diagnosed by global assessment in 30/109 patients, of whom 14 also fulfilled ASAS criteria. No patients with negative global assessment for sacroiliitis fulfilled ASAS criteria. Sensitivity (SN) for JSpA was higher for global assessment (SN = 49%) than for ASAS definition (SN = 26%), but the ASAS definition was more specific (SP = 97% vs. 89%). Modifying adult ASAS criteria to allow bone marrow edema (BME) lesions seen on only one slice, synovitis or capsulitis, increased SN to 36%, 32% and 32% respectively, only slightly lowering SP. Including structural lesions increased SN to 28%, but lowered specificity to 95%. The adult ASAS definition for sacroiliitis has low sensitivity in children. A pediatric-specific definition of MRI-positive sacroiliitis including BME lesions visible on one slice only, synovitis and/or capsulitis may improve diagnostic utility, and increase relevance of MRI in pediatric rheumatology practice.

  19. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging.

    PubMed

    Li, Wei; Abram, François; Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Dorais, Marc; d'Anjou, Marc-André; Martel-Pelletier, Johanne

    2010-01-01

    Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application.

  20. Towards understanding knee joint laxity: errors in non-invasive assessment of joint rotation can be corrected.

    PubMed

    Moewis, P; Boeth, H; Heller, M O; Yntema, C; Jung, T; Doyscher, R; Ehrig, R M; Zhong, Y; Taylor, W R

    2014-07-01

    The in vivo quantification of rotational laxity of the knee joint is of importance for monitoring changes in joint stability or the outcome of therapies. While invasive assessments have been used to study rotational laxity, non-invasive methods are attractive particularly for assessing young cohorts. This study aimed to determine the conditions under which tibio-femoral rotational laxity can be assessed reliably and accurately in a non-invasive manner. The reliability and error of non-invasive examinations of rotational joint laxity were determined by comparing the artefact associated with surface mounted markers against simultaneous measurements using fluoroscopy in five knees including healthy and ACL deficient joints. The knees were examined at 0°, 30°, 60° and 90° flexion using a device that allows manual axial rotation of the joint. With a mean RMS error of 9.6°, the largest inaccuracy using non-invasive assessment was present at 0° knee flexion, whereas at 90° knee flexion, a smaller RMS error of 5.7° was found. A Bland and Altman assessment indicated that a proportional bias exists between the non-invasive and fluoroscopic approaches, with limits of agreement that exceeded 20°. Correction using average linear regression functions resulted in a reduction of the RMS error to below 1° and limits of agreement to less than ±1° across all knees and flexion angles. Given the excellent reliability and the fact that a correction of the surface mounted marker based rotation values can be achieved, non-invasive evaluation of tibio-femoral rotation could offer opportunities for simplified devices for use in clinical settings in cases where invasive assessments are not justified. Although surface mounted marker based measurements tend to overestimate joint rotation, and therefore joint laxity, our results indicate that it is possible to correct for this error. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Effect of traction on wrist joint space and cartilage visibility with and without MR arthrography

    PubMed Central

    Griffith, James F; Tang, W K; Ng, Alex W H; Yeung, David K W

    2017-01-01

    Objective: To compare the effect of traction during non-arthrographic and arthrographic MR examination of the wrist with regard to joint space width, joint fluid dispersion and cartilage surface visibility. Methods: Prospective 3-T MRI study of 100 wrists in 96 patients. The first 50 wrists underwent MR arthrography first without traction and then with traction. The following 50 wrists underwent standard MR first without traction and then with traction. On these examinations, two radiologists independently measured (i) joint space width, semi-quantitatively graded (ii) joint fluid dispersion between opposing cartilage surfaces and (iii) articular cartilage surface visibility. The three parameters were compared between the two groups. Results: Traction led to an increase in joint space width at nearly all joints in all patients (p < 0.05), although more so in the arthrography (∆ = 0.08–0.79 mm, all p < 0.05) than in the non-arthrography (∆ = 0.001–0.61 mm, all p < 0.05) group. Joint fluid dispersion and cartilage surface visibility improved after traction in nearly all joints (p < 0.05) in all patients and more so in the arthographic than in the non-arthrography group. Conclusion: Traction did significantly improve cartilage surface visibility for standard MRI of the wrist although the effect was not as great as that seen with MR arthography or MR arthrography with traction. Advances in knowledge: This is the first study to show the beneficial effect of traction during standard non-arthrography MRI of the wrist and compare the effect of traction between non-arthrographic and arthrographic MRI of the wrist. PMID:28181830

  2. High-resolution ultrasonography in assessing temporomandibular joint disc position.

    PubMed

    Talmaceanu, Daniel; Lenghel, Lavinia Manuela; Bolog, Nicolae; Popa Stanila, Roxana; Buduru, Smaranda; Leucuta, Daniel Corneliu; Rotar, Horatiu; Baciut, Mihaela; Baciut, Grigore

    2018-02-04

    The purpose of this study was to determine the diagnostic value of high-resolution ultrasonography (US) in temporomandibular joint (TMJ) disc displacements. A number of 74 patients (148 TMJs) with signs and symptoms of TMJ disorders, according to the Research Diagnostic Criteria for Temporomandibular Disorders, were included in this study. All patients received US and magnetic resonance imaging (MRI) of both TMJs 1 to 5 days after the clinical examination. MRI examinations were performed using 1.5 T MRI equipment (Siemens Avanto, Siemens, Erlangen). Ultrasonographic examination was performed on a Hitachi EUB 8500 (Hitachi Medical Corp., Tokyo, Japan) scanner with L 54 M6.5-13 MHz linear transducer. MRI depicted 68 (45.95%) normal joints, 47 (31.76%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 34 (22.97%) with degenerative changes. US detected 78 (52.7%) normal joints, 37 (25%) with disc displacement with reduction, 33 (22.3%) with disc displacement without reduction and 21 (14.19%) with degenerative changes. Compared to MRI, US showed a sensitivity of 93.1%, specificity of 87.88%, accuracy of 90.32%, a positive predictive value of 87.1% and a negative predictive value of 93.55% for overall diagnosis of disc displacement. The Youden index was 0.81. Based on our results, high-resolution ultrasonography showed high sensitivity, specificity and accuracy in the diagnosis of TMJ disc displacement. It could be a valuable imaging technique in assessing TMJ disc position. The diagnostic value of high-resolution ultrasonography depends strictly on the examiner's skills and on the equipment used.

  3. Fluoroscopic Sacroiliac Joint Injection: Is Oblique Angulation Really Necessary?

    PubMed

    Khuba, Sandeep; Agarwal, Anil; Gautam, Sujeet; Kumar, Sanjay

    2016-01-01

    The conventional technique for sacroiliac (SI) joint injection involves aligning the anterior and posterior aspects of the SI joint under fluoroscopic guidance and then entering the SI joint in the most caudal aspect. We wish to highlight that there is no added advantage to aligning both the anterior and posterior joint lines of the SI joint as it is time consuming, associated with additional radiation exposure, and may make the entry into the posterior SI joint technically more difficult. Observational study. Pain Clinic, Department of Anesthesiology. With the patient lying prone on fluoroscopy table, SI joint injection is performed with a 22 G, 10 cm spinal needle in a true anteroposterior (AP) view, where anterior and posterior SI joint spaces are seen as separate entities, where the medial joint space represents the posterior SI joint and the lateral joint space represents the anterior SI joint. The distal 1 cm of the medial joint space is entered under AP view. If the SI joint is seen as a straight line rather than 2 joint spaces in the AP view then the image intensifier of the fluoroscope was tilted cranially to elongate the image of the lower part of the posterior SI joint, thus facilitating entry into this part of the joint which was confirmed by administering 0.3 to 0.5 mL of radiopaque contrast medium. Sixty SI joints of 58 patients were injected under an AP fluoroscopic view. Forty-two (70%) SI joints were seen as 2 separate medial and lateral joint spaces and were entered in distal 1 cm of the medial joint space. In 18 (30%) joints seen as a straight line rather than 2 separate spaces, the image intensifier of the fluoroscope was tilted cranially to elongate the image of the lower part of the posterior SI joint and then the SI joint was entered in its distal 1 cm. Confirmation of entry into the SI joint was confirmed by with 0.3 to 0.5 mL of radiopaque contrast medium. In 4 cases the joints did not show the correct radiopaque contrast spread (3/42 and 1

  4. Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis

    DTIC Science & Technology

    2015-10-01

    Post-traumatic arthritis, post-traumatic osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model...will be collected prior to or at surgical intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage...and the development of PTA. We have successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are

  5. Assessment of Biomarkers Associated with Joint Injury and Subsequent Post Traumatic Arthritis

    DTIC Science & Technology

    2015-10-01

    arthritis, post-traumatic osteoarthritis, articular fracture, joint injury, trauma, biomarker, inflammation, MRI , knee, mouse model, translational...prior to or at surgical intervention. MRI imaging of the injured knee will be obtained to assess the articular cartilage. Degenerative changes in...development of PTA. We have successfully enrolled patients, collected and stored biosamples, obtained all post-operative MRI scans and are continuing to

  6. Bimanual, intra-operative, fluoroscopy-guided removal of nasopharyngeal migratory fish bone from carotid space.

    PubMed

    Al-Abduwani, J A; Bhargava, D; Sawhney, S; Al-Abri, R

    2010-07-01

    We report a rare and unusual case of a patient with an ingested fishbone which migrated from the oropharynx to the anterior compartment of the retropharyngeal space and then to the deep neck space in the nasopharynx (i.e. the carotid space). This report aims to describe a successful, minimally invasive method of foreign body removal which avoided both major skull base surgery and any potential life-threatening complications. A secondary aim is to highlight the role of intra-operative fluoroscopy, an under-used tool. We present a 67-year-old man with a history of fish bone impaction but no fish bone visible on plain X-ray or flexible endoscopy. The diagnosis of fish bone lodged in the retropharyngeal space was confirmed by computed tomography. Surgical exploration of the anterior retropharyngeal space failed to locate the fish bone, as it had migrated to a new, unknown location. Intra-operative fluoroscopy was vital for the removal of the fish bone, as it was impossible to see with the naked eye and had migrated from its previously imaged position. The fish bone was finally retrieved bimanually using external pressure on the submandibular region, which displaced the fish bone, and fluoroscopic guidance, which assisted its removal from the nasopharyngeal lumen. To the best of our knowledge, this is the first reported case of bimanual, intra-operative, fluoroscopy-guided, intra-luminal removal of a migratory fish bone from the deep neck space in this region of the nasopharynx.

  7. Personalized Feedback on Staff Dose in Fluoroscopy-Guided Interventions: A New Era in Radiation Dose Monitoring.

    PubMed

    Sailer, Anna M; Vergoossen, Laura; Paulis, Leonie; van Zwam, Willem H; Das, Marco; Wildberger, Joachim E; Jeukens, Cécile R L P N

    2017-11-01

    Radiation safety and protection are a key component of fluoroscopy-guided interventions. We hypothesize that providing weekly personal dose feedback will increase radiation awareness and ultimately will lead to optimized behavior. Therefore, we designed and implemented a personalized feedback of procedure and personal doses for medical staff involved in fluoroscopy-guided interventions. Medical staff (physicians and technicians, n = 27) involved in fluoroscopy-guided interventions were equipped with electronic personal dose meters (PDMs). Procedure dose data including the dose area product and effective doses from PDMs were prospectively monitored for each consecutive procedure over an 8-month period (n = 1082). A personalized feedback form was designed displaying for each staff individually the personal dose per procedure, as well as relative and cumulative doses. This study consisted of two phases: (1) 1-5th months: Staff did not receive feedback (n = 701) and (2) 6-8th months: Staff received weekly individual dose feedback (n = 381). An anonymous evaluation was performed on the feedback and occupational dose. Personalized feedback was scored valuable by 76% of the staff and increased radiation dose awareness for 71%. 57 and 52% reported an increased feeling of occupational safety and changing their behavior because of personalized feedback, respectively. For technicians, the normalized dose was significantly lower in the feedback phase compared to the prefeedback phase: [median (IQR) normalized dose (phase 1) 0.12 (0.04-0.50) µSv/Gy cm 2 versus (phase 2) 0.08 (0.02-0.24) µSv/Gy cm 2 , p = 0.002]. Personalized dose feedback increases radiation awareness and safety and can be provided to staff involved in fluoroscopy-guided interventions.

  8. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging

    PubMed Central

    2010-01-01

    Introduction Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. Methods MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. Results The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). Conclusions The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application. PMID:20846392

  9. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  10. Oral versus intravenous premedication for small bowel biopsy in children: effect on procedure and fluoroscopy times.

    PubMed

    Stenhammar, L; Wärngård, O; Lewander, P; Nordvall, M

    1993-01-01

    Oral alimemazine and cisapride, or diazepam and cisapride, or iv midazolam and metoclopramide were given as premedication for small bowel biopsy to three groups of children from a total population of 185 individuals. The biopsy procedures were performed under intermittent fluoroscopy and times for both were recorded. The median biopsy procedure time was significantly shorter in children given iv midazolam and metoclopramide (6 min) compared to those given oral premedication (10 min) (p < 0.001). The median fluoroscopy time was very short in all groups, ranging between 3 and 6 s. It is concluded that iv premedication is superior to oral premedication for small bowel biopsy in children because more effective sedation is obtained.

  11. Feasibility of three-dimensional magnetic resonance angiography-fluoroscopy image fusion technique in guiding complex endovascular aortic procedures in patients with renal insufficiency.

    PubMed

    Schwein, Adeline; Chinnadurai, Ponraj; Shah, Dipan J; Lumsden, Alan B; Bechara, Carlos F; Bismuth, Jean

    2017-05-01

    Three-dimensional image fusion of preoperative computed tomography (CT) angiography with fluoroscopy using intraoperative noncontrast cone-beam CT (CBCT) has been shown to improve endovascular procedures by reducing procedure length, radiation dose, and contrast media volume. However, patients with a contraindication to CT angiography (renal insufficiency, iodinated contrast allergy) may not benefit from this image fusion technique. The primary objective of this study was to evaluate the feasibility of magnetic resonance angiography (MRA) and fluoroscopy image fusion using noncontrast CBCT as a guidance tool during complex endovascular aortic procedures, especially in patients with renal insufficiency. All endovascular aortic procedures done under MRA image fusion guidance at a single-center were retrospectively reviewed. The patients had moderate to severe renal insufficiency and underwent diagnostic contrast-enhanced magnetic resonance imaging after gadolinium or ferumoxytol injection. Relevant vascular landmarks electronically marked in MRA images were overlaid on real-time two-dimensional fluoroscopy for image guidance, after image fusion with noncontrast intraoperative CBCT. Technical success, time for image registration, procedure time, fluoroscopy time, number of digital subtraction angiography (DSA) acquisitions before stent deployment or vessel catheterization, and renal function before and after the procedure were recorded. The image fusion accuracy was qualitatively evaluated on a binary scale by three physicians after review of image data showing virtual landmarks from MRA on fluoroscopy. Between November 2012 and March 2016, 10 patients underwent endovascular procedures for aortoiliac aneurysmal disease or aortic dissection using MRA image fusion guidance. All procedures were technically successful. A paired t-test analysis showed no difference between preimaging and postoperative renal function (P = .6). The mean time required for MRA-CBCT image

  12. Development of a morphology-based modeling technique for tracking solid-body displacements: examining the reliability of a potential MRI-only approach for joint kinematics assessment.

    PubMed

    Mahato, Niladri K; Montuelle, Stephane; Cotton, John; Williams, Susan; Thomas, James; Clark, Brian

    2016-05-18

    Single or biplanar video radiography and Roentgen stereophotogrammetry (RSA) techniques used for the assessment of in-vivo joint kinematics involves application of ionizing radiation, which is a limitation for clinical research involving human subjects. To overcome this limitation, our long-term goal is to develop a magnetic resonance imaging (MRI)-only, three dimensional (3-D) modeling technique that permits dynamic imaging of joint motion in humans. Here, we present our initial findings, as well as reliability data, for an MRI-only protocol and modeling technique. We developed a morphology-based motion-analysis technique that uses MRI of custom-built solid-body objects to animate and quantify experimental displacements between them. The technique involved four major steps. First, the imaging volume was calibrated using a custom-built grid. Second, 3-D models were segmented from axial scans of two custom-built solid-body cubes. Third, these cubes were positioned at pre-determined relative displacements (translation and rotation) in the magnetic resonance coil and scanned with a T1 and a fast contrast-enhanced pulse sequences. The digital imaging and communications in medicine (DICOM) images were then processed for animation. The fourth step involved importing these processed images into an animation software, where they were displayed as background scenes. In the same step, 3-D models of the cubes were imported into the animation software, where the user manipulated the models to match their outlines in the scene (rotoscoping) and registered the models into an anatomical joint system. Measurements of displacements obtained from two different rotoscoping sessions were tested for reliability using coefficient of variations (CV), intraclass correlation coefficients (ICC), Bland-Altman plots, and Limits of Agreement analyses. Between-session reliability was high for both the T1 and the contrast-enhanced sequences. Specifically, the average CVs for translation were 4

  13. Accuracy of magnetic resonance imaging to detect cartilage loss in severe osteoarthritis of the first carpometacarpal joint: comparison with histological evaluation.

    PubMed

    Saltzherr, Michael S; Coert, J Henk; Selles, Ruud W; van Neck, Johan W; Jaquet, Jean-Bart; van Osch, Gerjo J V M; Oei, Edwin H G; Luime, Jolanda J; Muradin, Galied S R

    2017-03-14

    Magnetic resonance imaging (MRI) is increasingly used for research in hand osteoarthritis, but imaging the thin cartilage layers in the hand joints remains challenging. We therefore assessed the accuracy of MRI in detecting cartilage loss in patients with symptomatic osteoarthritis of the first carpometacarpal (CMC1) joint. Twelve patients scheduled for trapeziectomy to treat severe symptomatic osteoarthritis of the CMC1 joint underwent a preoperative high resolution 3D spoiled gradient (SPGR) MRI scan. Subsequently, the resected trapezium was evaluated histologically. The sections were scored for cartilage damage severity (Osteoarthritis Research Society International (OARSI) score), and extent of damage (percentage surface area). Each MRI scan was scored for the area of normal cartilage, partial cartilage loss and full cartilage loss. The percentages of the total surface area with any cartilage loss and full-thickness cartilage loss were calculated using MRI and histological evaluation. MRI and histological evaluation both identified large areas of overall cartilage loss. The median (IQR) surface area of any cartilage loss on MRI was 98% (82-100%), and on histological assessment 96% (87-98%). However, MRI underestimated the extent of full-thickness cartilage loss. The median (IQR) surface area of full-thickness cartilage loss on MRI was 43% (22-70%), and on histological evaluation 79% (67-85%). The difference was caused by a thin layer of high signal on the articulating surface, which was interpreted as damaged cartilage on MRI but which was not identified on histological evaluation. Three-dimensional SPGR MRI of the CMC1 joint demonstrates overall cartilage damage, but underestimates full-thickness cartilage loss in patients with advanced osteoarthritis.

  14. Dynamic MRI to quantify musculoskeletal motion: A systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders.

    PubMed

    Borotikar, Bhushan; Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain

    2017-01-01

    To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions.

  15. Sagittal distal limb kinematics inside the hoof capsule captured using high-speed fluoroscopy in walking and trotting horses.

    PubMed

    Roach, J M; Pfau, T; Bryars, J; Unt, V; Channon, S B; Weller, R

    2014-10-01

    Kinematic evaluation of the distal limb of the horse using standard methods is challenging, mainly due to the hoof capsule restricting visualisation, but the recent development of a high-speed fluoroscopy (HSF) system has allowed in vivo cineradiographic assessment of moving skeletal structures at high speeds. The application of this non-invasive method to the equine distal limb is used to describe 'internal' distal limb kinematics including intra-horse and inter-horse variability, and variability between walk and trot. Distal limb kinematic data were collected at walk and trot from six non-lame horses using HSF set over a force plate. The dorsal proximal interphalangeal joint (PIPJ) angle and the dorsal distal interphalangeal joint (DIPJ) angle were measured at toe-on and at 25%, 50% and 75% of stance. The PIPJ and DIPJ showed overall extension through stance. The mean ± SD range of motion (ROM) during stance of the PIPJ was 9.7 ± 2.7° (walk) and 8.7 ± 3.0° (trot) and of the DIPJ was 28.6 ± 4.6° (walk) and 26.5 ± 6.3° (trot) showing significant differences between gaits and changes through stance (P < 0.001). Inter- and intra- horse variations were also significant for both joint angles (P < 0.001). HSF allowed for kinematic assessment of the distal limb within the hoof capsule. The ROM of the PIPJ observed was similar to results published in the literature whilst the ROM for the DIPJ was less than values previously reported. Future studies will use HSF to estimate strain in the tendons and ligaments within the hoof capsule, which are a common site of lameness in the horse. Copyright © 2014. Published by Elsevier Ltd.

  16. Laser Guidance in C-Arm Cone-Beam CT-Guided Radiofrequency Ablation of Osteoid Osteoma Reduces Fluoroscopy Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroes, Maarten W., E-mail: Maarten.Kroes@radboudumc.nl; Busser, Wendy M. H.; Hoogeveen, Yvonne L.

    PurposeTo assess whether laser guidance can reduce fluoroscopy and procedure time of cone-beam computed tomography (CBCT)-guided radiofrequency (RF) ablations of osteoid osteoma compared to freehand CBCT guidance.Materials and Methods32 RF ablations were retrospectively analyzed, 17 laser-guided and 15 procedures using the freehand technique. Subgroup selection of 18 ablations in the hip–pelvic region with a similar degree of difficulty was used for a direct comparison. Data are presented as median (ranges).ResultsComparison of all 32 ablations resulted in fluoroscopy times of 365 s (193–878 s) for freehand and 186 s (75–587 s) for laser-guided procedures (p = 0.004). Corresponding procedure times were 56 min (35–97 min) and 52 min (30–85 min) (p = 0.355).more » The subgroup showed comparable target sizes, needle path lengths, and number of scans between groups. Fluoroscopy times were lower for laser-guided procedures, 215 s (75–413 s), compared to 384 s (193–878 s) for freehand (p = 0.012). Procedure times were comparable between groups, 51 min (30–72 min) for laser guidance and 58 min (35–79 min) for freehand (p = 0.172).ConclusionAdding laser guidance to CBCT-guided osteoid osteoma RF ablations significantly reduced fluoroscopy time without increasing procedure time.Level of EvidenceLevel 4, case series.« less

  17. Optimizing MRI for imaging peripheral arthritis.

    PubMed

    Hodgson, Richard J; O'Connor, Philip J; Ridgway, John P

    2012-11-01

    MRI is increasingly used for the assessment of both inflammatory arthritis and osteoarthritis. The wide variety of MRI systems in use ranges from low-field, low-cost extremity units to whole-body high-field 7-T systems, each with different strengths for specific applications. The availability of dedicated radiofrequency phased-array coils allows the rapid acquisition of high-resolution images of one or more peripheral joints. MRI is uniquely flexible in its ability to manipulate image contrast, and individual MR sequences may be combined into protocols to sensitively visualize multiple features of arthritis including synovitis, bone marrow lesions, erosions, cartilage changes, and tendinopathy. Careful choice of the imaging parameters allows images to be generated with optimal quality while minimizing unwanted artifacts. Finally, there are many novel MRI techniques that can quantify disease levels in arthritis in tissues including synovitis and cartilage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study.

    PubMed

    Koo, Seungbum; Lee, Kyoung Min; Cha, Young Joo

    2015-10-01

    Gross motion of the ankle joint complex (AJC) is a summation of the ankle and subtalar joints. Although AJC kinematics have been widely used to evaluate the function of the AJC, the coordinated movements of the ankle and subtalar joints are not well understood. The purpose of this study was to accurately quantify the individual kinematics of the ankle and subtalar joints in the intact foot during ground walking by using a bi-planar fluoroscopic system. Bi-planar fluoroscopic images of the foot and ankle during walking and standing were acquired from 10 healthy subjects. The three-dimensional movements of the tibia, talus, and calcaneus were calculated with a three-dimensional/two-dimensional registration method. The skeletal kinematics were quantified from 9% to 86% of the full stance phase because of the limited camera speed of the X-ray system. At the beginning of terminal stance, plantar-flexion of the AJC was initiated in the subtalar joint on average at 75% ranging from 62% to 76% of the stance phase, and plantar-flexion of the ankle joint did not start until 86% of the stance phase. The earlier change to plantar-flexion in the AJC than the ankle joint due to the early plantar-flexion in the subtalar joint was observed in 8 of the 10 subjects. This phenomenon could be explained by the absence of direct muscle insertion on the talus. Preceding subtalar plantar-flexion could contribute to efficient and stable ankle plantar-flexion by locking the midtarsal joint, but this explanation needs further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparison of Fluoroscopy and Computed Tomography for Tracheal Lumen Diameter Measurement and Determination of Intraluminal Stent Size in Healthy Dogs

    PubMed Central

    Williams, Jackie M.; Krebs, Ingar A.; Riedesel, Elizabeth A.; Zhao, Qianqian

    2015-01-01

    Tracheal collapse is a progressive airway disease that can ultimately result in complete airway obstruction. Intraluminal tracheal stents are a minimally invasive and viable treatment for tracheal collapse once the disease becomes refractory to medical management. Intraluminal stent size is chosen based on the maximum measured tracheal diameter during maximum inflation. The purpose of this prospective, cross-sectional study was to compare tracheal lumen diameter measurements and subsequent selected stent size using both fluoroscopy and CT and to evaluate inter- and intraobserver variability of the measurements. Seventeen healthy Beagles were anesthetized and imaged with fluoroscopy and CT with positive pressure ventilation to 20 cm H2O. Fluoroscopic and CT maximum tracheal diameters were measured by 3 readers. Three individual measurements were made at 8 pre-determined tracheal sites for dorsoventral (height) and laterolateral (width) dimensions. Tracheal diameters and stent sizes (based on the maximum tracheal diameter + 10%) were analyzed using a linear mixed model. CT tracheal lumen diameters were larger compared to fluoroscopy at all locations. When comparing modalities, fluoroscopic and CT stent sizes were statistically different. Greater overall variation in tracheal diameter measurement (height or width) existed for fluoroscopy compared to CT, both within and among observers. The greater tracheal diameter and lower measurement variability supported the use of CT for appropriate stent selection to minimize complications in veterinary patients. PMID:26784924

  20. Facet joint hypertrophy is a misnomer: A retrospective study.

    PubMed

    An, Sang Joon; Seo, Mi Sook; Choi, Soo Il; Lim, Tae-Ha; Shin, So Jin; Kang, Keum Nae; Kim, Young Uk

    2018-06-01

    One of the major causes of lumbar spinal canal stenosis (LSCS) has been considered facet joint hypertrophy (FJH). However, a previous study asserted that "FJH" is a misnomer because common facet joints are no smaller than degenerative facet joints; however, this hypothesis has not been effectively demonstrated. Therefore, in order to verify that FJH is a misnomer in patients with LSCS, we devised new morphological parameters that we called facet joint thickness (FJT) and facet joint cross-sectional area (FJA).We collected FJT and FJA data from 114 patients with LSCS. A total of 86 control subjects underwent lumbar magnetic resonance imaging (MRI) as part of routine medical examinations, and axial T2-weighted MRI images were obtained from all participants. We measured FJT by drawing a line along the facet area and then measuring the narrowest point at L4-L5. We measured FJA as the whole cross-sectional area of the facet joint at the stenotic L4-L5 level.The average FJT was 1.60 ± 0.36 mm in the control group and 1.11 ± 0.32 mm in the LSCS group. The average FJA was 14.46 ± 5.17 mm in the control group and 9.31 ± 3.47 mm in the LSCS group. Patients with LSCS had significantly lower FJTs (P < .001) and FJAs (P < .001).FJH, a misnomer, should be renamed facet joint area narrowing. Using this terminology would eliminate confusion in descriptions of the facet joint.

  1. Percutaneous CT-guided sacroiliac joint sampling for infection: aspiration, biopsy, and technique.

    PubMed

    Knipp, David; Simeone, F Joseph; Nelson, Sandra B; Huang, Ambrose J; Chang, Connie Y

    2018-04-01

    To evaluate methods of CT-guided sacroiliac joint sampling in patients with suspected infection. All CT-guided sacroiliac joint sampling procedures for suspected infection were reviewed for sampling type (aspiration, lavage aspiration, biopsy), microbiology results, and clinical and imaging follow-up. The primary gold standard was anatomic pathology. If pathology was not available, then positive blood culture with the same organism as SIJ sampling, imaging and clinical follow-up, or clinical follow-up only were used. Anterior and posterior joint distention was evaluated by MRI within 7 days of the procedure. A total of 34 patients (age 39 ± 20 (range, 6-75) years; 21 F, 13 M) were included. Aspiration samples only were obtained in 13/34 (38%) cases, biopsy samples only in 9/34 (26%) cases, and both samples in 12/34 (35%) cases. There was an overall 54% sensitivity and 86% specificity. For the aspiration samples, sensitivity and specificity were 60 and 81%, respectively, compared to 45 and 90% for the biopsy samples. In cases with both samples, biopsy did not add additional microbial information. Seventeen (17/34, 50%) patients had an MRI. The anterior joint was more distended than the posterior joint in 15/17 (88%) of patients, and this difference was significant (P = 0.0003). All of these 17 patients had an attempted aspiration by a posterior approach; 6/17 (35%) resulted in a successful aspiration. Aspiration of the sacroiliac joint has a higher sensitivity than biopsy and should always be attempted first. MRI may be helpful for procedure planning.

  2. Dynamic MRI to quantify musculoskeletal motion: A systematic review of concurrent validity and reliability, and perspectives for evaluation of musculoskeletal disorders

    PubMed Central

    Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain

    2017-01-01

    Purpose To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. Materials and methods The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Results Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Conclusion Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions. PMID:29232401

  3. Ganglion cyst of the temporomandibular joint.

    PubMed

    Heng-Kun, W; Yan-Ling, G; Wen-Feng, Z; Zhe, S; Ren-Xin, W; Xiao-Tao, Z

    2014-02-01

    Ganglion cyst of the temporomandibular joint is a rare disease, which may arise from myxoid degeneration of the collagenous tissue of the temporomandibular joint capsule, without epithelial or endothelial lining. We report a case of cystic lesion in a 40-year-old female patient. The patient had a left pre-auricular oval-shaped swelling without any articular symptoms. The pathological analysis after surgical removal allowed diagnosing the lesion as a ganglion cyst of the left temporomandibular joint. We made a literature review and noted that this condition was predominant in female patients. We recommend using MRI for diagnostic purposes and surgery as the best therapeutic alternative. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Rapid fusion of 2D X-ray fluoroscopy with 3D multislice CT for image-guided electrophysiology procedures

    NASA Astrophysics Data System (ADS)

    Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.

    2007-03-01

    Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.

  5. Thickness Distribution of Glenohumeral Joint Cartilage.

    PubMed

    Schleich, Christoph; Bittersohl, Bernd; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph; Kircher, Jörn

    2017-04-01

    High-resolution 3-dimensional cartilage-specific magnetic resonance imaging (MRI) was performed at 3 T to test the following hypotheses: (1) there is a nonuniform cartilage thickness distribution both on the proximal humerus and on the glenoid surface and (2) the glenohumeral joint as a combined system is congruent with the level of the joint cartilage surface without substantial radial mismatch. Inclusion of 38 volunteers (19 females, mean age 24.34 ± 2.22 years; range 21-29 years) in a prospective study. Measurements of: cartilage thickness in 3 regions and 3 zones; radius of both circles (glenoid and humeral cartilage) for congruency calculation using 3-T MRI with 3-dimensional dual-echo steady-state sequence with water excitation. A homogenous mean cartilage thickness (1.2-1.5 mm) and slightly higher values for the glenoidal articulating surface radii both in the mid-paracoronar section (2.4 vs. 2.1 cm, P < 0.001) and in the mid-paraaxial section (2.4 vs. 2.1 cm, P < 0.001) compared with the humeral side were observed. The concept of a radial mismatch between the humeral head and the glenoid in healthy human subjects can be confirmed. This study provides normative data for the comparison of joint cartilage changes at the shoulder for future studies.

  6. Reduction of Radiation Exposure Using Dynamic Trace Digital Angiography and Spot Fluoroscopy During Adrenal Venous Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Satoru, E-mail: i@imodey.com; Endo, Kenji; Suzaki, Shingo

    PurposeTo compare radiation exposure of adrenal venous sampling (AVS) using dynamic trace digital angiography (DTDA) and spot fluoroscopy with that using conventional methods.Materials and MethodsAVS was performed in 11 patients using DTDA and spot fluoroscopy (Group A) and 11 patients using conventional digital subtraction angiography (DSA) with collimation (Group B). Radiation exposure and image quality of adrenal venography using a five-point scale were compared between the groups.ResultsThe acquisition dose–area product (DAP) using DTDA and fluoro-DAP using spot fluoroscopy in Group A were lower than those using conventional DSA (5.3 ± 3.7 vs. 29.1 ± 20.1 Gy cm{sup 2}, p < 0.001) and collimation (33.3 ± 22.9 vs. 59.1 ± 35.7 Gy cm{sup 2}, p = 0.088)more » in Group B. The total DAP in Group A was significantly lower than that in Group B (38.6 ± 25.9 vs. 88.2 ± 53.6 Gy cm{sup 2}, p = 0.006). The peak skin dose for patients and operator radiation exposure in Group A were significantly lower than those in Group B (403 ± 340 vs. 771 ± 416 mGy, p = 0.030, and 17.1 ± 14.8 vs. 36.6 ± 21.7 μSv, p = 0.013). The image quality of DTDA (4.4 ± 0.6) was significantly higher than that of digital angiography (3.8 ± 0.9, p = 0.011) and equivalent to that of DSA (4.3 ± 0.8, p = 0.651).ConclusionsRadiation exposure during AVS can be reduced by approximately half for both patients and operators by using DTDA and spot fluoroscopy without sacrificing image quality.« less

  7. Total-Body Irradiation Produces Late Degenerative Joint Damage in Rats

    PubMed Central

    Hutchinson, Ian D.; Olson, John; Lindburg, Carl A.; Payne, Valerie; Collins, Boyce; Smith, Thomas L.; Munley, Michael T.; Wheeler, Kenneth T.; Willey, Jeffrey S.

    2014-01-01

    Purpose Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. Materials and Methods 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV x-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. Results T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. Conclusions Late degenerative changes in articular cartilage and bone were observed after total body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage. PMID:24885745

  8. SU-F-I-77: Radiation Dose in Cardiac Catheterization Procedures: Impact of a Systematic Reduction in Pulsed Fluoroscopy Frame Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, C; Dixon, S

    Purpose: To evaluate whether one small systematic reduction in fluoroscopy frame rate has a significant effect on the total air kerma and/or dose area product for diagnostic and interventional cardiac catheterization procedures. Methods: The default fluoroscopy frame rate (FFR) was lowered from 15 to 10 fps in 5 Siemens™ Axiom Artis cardiac catheterization labs (CCL) on July 1, 2013. A total of 7212 consecutive diagnostic and interventional CCL procedures were divided into two study groups: 3602 procedures from 10/1/12 –6/30/13 with FFR of 15 fps; and 3610 procedures 7/1/13 – 3/31/14 at 10 fps. For each procedure, total air kermamore » (TAK), fluoroscopy skin dose (FSD), total/fluoroscopy dose area products (TAD, FAD), and total fluoroscopy time (FT) were recorded. Patient specific data collected for each procedure included: BSA, sex, height, weight, interventional versus diagnostic; and elective versus emergent. Results: For pre to post change in FFR, each categorical variable was compared using Pearson’s Chi-square test, Odds ratios and 95% confidence intervals. No statistically significant difference in BSA, height, weight, number of interventional versus diagnostic, elective versus emergent procedures was found between the two study groups. Decreasing the default FFR from 15 fps to 10 fps in the two study groups significantly reduced TAK from 1305 to 1061 mGy (p<0.0001), FSD from 627 to 454 mGy (p<0.0001), TAD from 8681 to 6991 uGy × m{sup 2}(p<0.0001), and FAD from 4493 to 3297 uGy × m{sup 2}(p<0.0001). No statistically significant difference in FT was noted. Clinical image quality was not analyzed, and reports of noticeable effects were minimal. From July 1, 2013 to date, the default FFR has remained 10 fps. Conclusion: Reducing the FFR from 15 to 10 fps significantly reduced total air kerma and dose area product which may decrease risk for potential radiation-induced skin injuries and improve patient outcomes.« less

  9. [Carpus and distal radioulnar joint : Clinical and radiological examination].

    PubMed

    Spies, C K; Langer, M F; Unglaub, F; Mühldorfer-Fodor, M; Müller, L P; Ahrens, C; Schlindwein, S F

    2016-08-01

    A precise medical history and specific symptom-oriented clinical tests of the wrist joint should always precede any radiological, computed tomography (CT) or magnetic resonance imaging (MRI) diagnostics. In many cases, specific clinical tests of the wrist joint allow at least a preliminary diagnosis, which can be supported by standard radiography using correct projections. A systematic approach is recommended covering the radiocarpal, midcarpal, ulnocarpal and distal radioulnar joints. Exact identification of the palpable anatomic landmarks is mandatory for correct application and interpretation of the various clinical tests. The results of the clinical tests in combination with radiological imaging can often detect precisely ruptures of distinct wrist joint ligaments and localized arthritis.

  10. Magnetic Resonance Imaging (MRI) of the Knee as an Outcome Measure in Juvenile Idiopathic Arthritis: An OMERACT Reliability Study on MRI Scales.

    PubMed

    Hemke, Robert; Tzaribachev, Nikolay; Nusman, Charlotte M; van Rossum, Marion A J; Maas, Mario; Doria, Andrea S

    2017-08-01

    There is increasing evidence that early therapeutic intervention improves longterm joint outcome in juvenile idiopathic arthritis (JIA). Given the existence of highly effective treatments, there is an urgent need for reliable and accurate measures of disease activity and joint damage in JIA. Our objective was to assess the reliability of 2 magnetic resonance imaging (MRI) scoring methods: the Juvenile Arthritis MRI Scoring (JAMRIS) system and the International Prophylaxis Study Group (IPSG) consensus score, for evaluating disease status of the knee in patients with JIA. Four international readers independently scored an MRI dataset of 25 JIA patients with clinical knee involvement. Synovial thickening, joint effusion, bone marrow changes, cartilage lesions, bone erosions, and subchondral cysts were scored using the JAMRIS and IPSG systems. Further, synovial enhancement, infrapatellar fat pad heterogeneity, tendinopathy, and enthesopathy were scored. Interreader reliability was analyzed by using the generalized κ, ICC, and the smallest detectable difference (SDD). ICC regarding interreader reliability ranged from 0.33 (95% CI 0.12-0.52, SDD = 0.29) for enthesopathy up to 0.95 (95% CI 0.92-0.97, SDD = 3.19) for synovial thickening. Good interreader reliability was found concerning joint effusion (ICC 0.93, 95% CI 0.89-0.95, SDD = 0.51), synovial enhancement (ICC 0.90, 95% CI 0.85-0.94, SDD = 9.85), and bone marrow changes (ICC 0.87, 95% CI 0.80-0.92, SDD = 10.94). Moderate to substantial reliability was found concerning cartilage lesions and bone erosions (ICC 0.55-0.72, SDD 1.41-13.65). The preliminary results are promising for most of the scored JAMRIS and IPSG items. However, further refinement of the scoring system is warranted for unsatisfactorily reliable items such as bone erosions, cartilage lesions, and enthesopathy.

  11. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    NASA Astrophysics Data System (ADS)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  12. Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Rasch, Julian; Brinkmann, Eva-Maria; Burger, Martin

    2018-01-01

    Joint reconstruction has recently attracted a lot of attention, especially in the field of medical multi-modality imaging such as PET-MRI. Most of the developed methods rely on the comparison of image gradients, or more precisely their location, direction and magnitude, to make use of structural similarities between the images. A challenge and still an open issue for most of the methods is to handle images in entirely different scales, i.e. different magnitudes of gradients that cannot be dealt with by a global scaling of the data. We propose the use of generalized Bregman distances and infimal convolutions thereof with regard to the well-known total variation functional. The use of a total variation subgradient respectively the involved vector field rather than an image gradient naturally excludes the magnitudes of gradients, which in particular solves the scaling behavior. Additionally, the presented method features a weighting that allows to control the amount of interaction between channels. We give insights into the general behavior of the method, before we further tailor it to a particular application, namely PET-MRI joint reconstruction. To do so, we compute joint reconstruction results from blurry Poisson data for PET and undersampled Fourier data from MRI and show that we can gain a mutual benefit for both modalities. In particular, the results are superior to the respective separate reconstructions and other joint reconstruction methods.

  13. Rheumatoid arthritis: what do MRI and ultrasound show

    PubMed Central

    Jans, Lennart; Teh, James

    2017-01-01

    Rheumatoid arthritis is the most common inflammatory arthritis, affecting approximately 1% of the world’s population. Its pathogenesis has not been completely understood. However, there is evidence that the disease may involve synovial joints, subchondral bone marrow as well as intra- and extraarticular fat tissue, and may lead to progressive joint destruction and disability. Over the last two decades, significant improvement in its prognosis has been achieved owing to new strategies for disease management, the emergence of new biologic therapies and better utilization of conventional disease-modifying antirheumatic drugs. Prompt diagnosis and appropriate therapy have been recognized as essential for improving clinical outcomes in patients with early rheumatoid arthritis. Despite the potential of ultrasonography and magnetic resonance imaging to visualize all tissues typically involved in the pathogenesis of rheumatoid arthritis, the diagnosis of early disease remains difficult due to limited specificity of findings. This paper summarizes the pathogenesis phenomena of rheumatoid arthritis and describes rheumatoid arthritis-related features of the disease within the synovium, subchondral bone marrow and articular fat tissue on MRI and ultrasound. Moreover, the paper aims to illustrate the significance of MRI and ultrasound findings in rheumatoid arthritis in the diagnosis of subclinical and early inflammation, and the importance of MRI and US in the follow-up and establishing remission. Finally, we also discuss MRI of the spine in rheumatoid arthritis, which may help assess the presence of active inflammation and complications. PMID:28439423

  14. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy.

    PubMed

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (-50 to -6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies.

  15. Evaluation of an X-Ray Dose Profile Derived from an Optically Stimulated Luminescent Dosimeter during Computed Tomographic Fluoroscopy

    PubMed Central

    Hasegawa, Hiroaki; Sato, Masanori; Tanaka, Hiroshi

    2015-01-01

    The purpose of this study was to evaluate scatter radiation dose to the subject surface during X-ray computed tomography (CT) fluoroscopy using the integrated dose ratio (IDR) of an X-ray dose profile derived from an optically stimulated luminescent (OSL) dosimeter. We aimed to obtain quantitative evidence supporting the radiation protection methods used during previous CT fluoroscopy. A multislice CT scanner was used to perform this study. OSL dosimeters were placed on the top and the lateral side of the chest phantom so that the longitudinal direction of dosimeters was parallel to the orthogonal axis-to-slice plane for measurement of dose profiles in CT fluoroscopy. Measurement of fluoroscopic conditions was performed at 120 kVp and 80 kVp. Scatter radiation dose was evaluated by calculating the integrated dose determined by OSL dosimetry. The overall percent difference of the integrated doses between OSL dosimeters and ionization chamber was 5.92%. The ratio of the integrated dose of a 100-mm length area to its tails (−50 to −6 mm, 50 to 6 mm) was the lowest on the lateral side at 80 kVp and the highest on the top at 120 kVp. The IDRs for different measurement positions were larger at 120 kVp than at 80 kVp. Similarly, the IDRs for the tube voltage between the primary X-ray beam and scatter radiation was larger on the lateral side than on the top of the phantom. IDR evaluation suggested that the scatter radiation dose has a high dependence on the position and a low dependence on tube voltage relative to the primary X-ray beam for constant dose rate fluoroscopic conditions. These results provided quantitative evidence supporting the radiation protection methods used during CT fluoroscopy in previous studies. PMID:26151914

  16. Imaging and histological features of central subchondral osteophytes in racehorses with metacarpophalangeal joint osteoarthritis.

    PubMed

    Olive, J; D'Anjou, M A; Girard, C; Laverty, S; Theoret, C L

    2009-12-01

    Marginal osteophytes represent a well known component of osteoarthritis in man and animals. Conversely, central subchondral osteophytes (COs), which are commonly present in human knees with osteoarthritis, have not been reported in horses. To describe and compare computed radiography (CR), single-slice computed tomography (CT), 1.5 Tesla magnetic resonance imaging (MRI), and histological features of COs in equine metacarpophalangeal joints with macroscopic evidence of naturally-occurring osteoarthritis. MRI sequences (sagittal spoiled gradient recalled echo [SPGR] with fat saturation, sagittal T2-weighted fast spin echo with fat saturation [T2-FS], dorsal and transverse T1-weighted gradient-recalled echo [GRE], and sagittal T2*-weighted gradient echo with fast imaging employing steady state acquisition [FIESTA]), as well as transverse and reformatted sagittal CTI and 4 computed radiographic (CR) views of 20 paired metacarpophalangeal joints were acquired ex vivo. Following macroscopic evaluation, samples were harvested in predetermined sites of the metacarpal condyle for subsequent histology. The prevalence and detection level of COs was determined for each imaging modality. Abnormalities consistent with COs were clearly depicted on MRI, using the SPGR sequence, in 7/20 (35%) joints. They were identified as a focal hypointense protuberance from the subchondral plate into the cartilage, at the palmarodistal aspect (n=7) and/or at the very dorsal aspect (n=2) of the metacarpal condyle. COs were visible but less obvious in 5 of the 7 joints using FIESTA and reformatted sagittal CT, and were not identifiable on T2-FS, T1-GRE or CR. Microscopically, they consisted of dense bone protruding into the calcified cartilage and disrupting the tidemarks, and they were consistently associated with overlying cartilage defects. Subchondral osteophytes are a feature of osteoarthritis of equine metacarpophalangeal joints and they may be diagnosed using 1.5 Tesla MRI and CT. Central

  17. T2 relaxation times of the glenohumeral joint at 3.0 T MRI in patients with and without primary and secondary osteoarthritis.

    PubMed

    Lee, So-Yeon; Park, Hee-Jin; Kwon, Heon-Ju; Kim, Mi Sung; Choi, Seon Hyeong; Choi, Yoon Jung; Kim, Eugene

    2015-11-01

    Quantitative magnetic resonance imaging (MRI) of cartilage has recently been applied to patients with osteoarthritis (OA). T2 mapping is a sensitive method of detecting changes in the chemical composition and structure of cartilage. To establish baseline T2 values of glenohumeral joint cartilage at 3.0 T and compare T2 values among subjects with and without OA. The study involved 30 patients (18 women, 12 men; median age, 67 years; age range, 51-78 years) with primary (n = 7) and secondary OA (n = 23) in the glenohumeral joint and 34 subjects without OA (19 women, 15 men; median age, 49 years; age range, 23-63 years). All subjects were evaluated by radiography and 3.0 T MRI including a multi-echo T2-weighted spin echo pulse sequence. The T2 value of the cartilage was measured by manually drawing the region of interest on the T2 map. Per-zone comparison of T2 values was performed using Mann-Whitney U test. Median T2 values differed significantly between subjects without OA (36.00 ms [interquartile range, 33.89-37.31 ms]) and those with primary (37.52 ms [36.84-39.11], P = 0.028), but not secondary (36.87 ms [34.70-41.10], P = 0.160) OA. Glenohumeral cartilage T2 values were higher in different zones between patients with primary and secondary OA than in subjects without OA. These T2 values can be used for comparison to assess cartilage degeneration in patients with shoulder OA. Significant differences in T2 were observed among subjects without OA and those with primary and secondary OA. © The Foundation Acta Radiologica 2014.

  18. Real-time fusion of coronary CT angiography with x-ray fluoroscopy during chronic total occlusion PCI.

    PubMed

    Ghoshhajra, Brian B; Takx, Richard A P; Stone, Luke L; Girard, Erin E; Brilakis, Emmanouil S; Lombardi, William L; Yeh, Robert W; Jaffer, Farouc A

    2017-06-01

    The purpose of this study was to demonstrate the feasibility of real-time fusion of coronary computed tomography angiography (CTA) centreline and arterial wall calcification with x-ray fluoroscopy during chronic total occlusion (CTO) percutaneous coronary intervention (PCI). Patients undergoing CTO PCI were prospectively enrolled. Pre-procedural CT scans were integrated with conventional coronary fluoroscopy using prototype software. We enrolled 24 patients who underwent CTO PCI using the prototype CT fusion software, and 24 consecutive CTO PCI patients without CT guidance served as a control group. Mean age was 66 ± 11 years, and 43/48 patients were men. Real-time CTA fusion during CTO PCI provided additional information regarding coronary arterial calcification and tortuosity that generated new insights into antegrade wiring, antegrade dissection/reentry, and retrograde wiring during CTO PCI. Overall CTO success rates and procedural outcomes remained similar between the two groups, despite a trend toward higher complexity in the fusion CTA group. This study demonstrates that real-time automated co-registration of coronary CTA centreline and calcification onto live fluoroscopic images is feasible and provides new insights into CTO PCI, and in particular, antegrade dissection reentry-based CTO PCI. • Real-time semi-automated fusion of CTA/fluoroscopy is feasible during CTO PCI. • CTA fusion data can be toggled on/off as desired during CTO PCI • Real-time CT calcium and centreline overlay could benefit antegrade dissection/reentry-based CTO PCI.

  19. CT fluoroscopy-guided renal tumour cutting needle biopsy: retrospective evaluation of diagnostic yield, safety, and risk factors for diagnostic failure.

    PubMed

    Iguchi, Toshihiro; Hiraki, Takao; Matsui, Yusuke; Fujiwara, Hiroyasu; Sakurai, Jun; Masaoka, Yoshihisa; Gobara, Hideo; Kanazawa, Susumu

    2018-01-01

    To evaluate retrospectively the diagnostic yield, safety, and risk factors for diagnostic failure of computed tomography (CT) fluoroscopy-guided renal tumour biopsy. Biopsies were performed for 208 tumours (mean diameter 2.3 cm; median diameter 2.1 cm; range 0.9-8.5 cm) in 199 patients. One hundred and ninety-nine tumours were ≤4 cm. All 208 initial procedures were divided into diagnostic success and failure groups. Multiple variables related to the patients, lesions, and procedures were assessed to determine the risk factors for diagnostic failure. After performing 208 initial and nine repeat biopsies, 180 malignancies and 15 benign tumours were pathologically diagnosed, whereas 13 were not diagnosed. In 117 procedures, 118 Grade I and one Grade IIIa adverse events (AEs) occurred. Neither Grade ≥IIIb AEs nor tumour seeding were observed within a median follow-up period of 13.7 months. Logistic regression analysis revealed only small tumour size (≤1.5 cm; odds ratio 3.750; 95% confidence interval 1.362-10.326; P = 0.011) to be a significant risk factor for diagnostic failure. CT fluoroscopy-guided renal tumour biopsy is a safe procedure with a high diagnostic yield. A small tumour size (≤1.5 cm) is a significant risk factor for diagnostic failure. • CT fluoroscopy-guided renal tumour biopsy has a high diagnostic yield. • CT fluoroscopy-guided renal tumour biopsy is safe. • Small tumour size (≤1.5 cm) is a risk factor for diagnostic failure.

  20. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

    PubMed

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G

    2013-11-15

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. © 2013 Published by Elsevier Ltd.

  1. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    PubMed Central

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  2. Validity of temporomandibular disorder examination procedures for assessment of temporomandibular joint status.

    PubMed

    Schmitter, Marc; Kress, Bodo; Leckel, Michael; Henschel, Volkmar; Ohlmann, Brigitte; Rammelsberg, Peter

    2008-06-01

    This hypothesis-generating study was performed to determine which items in the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) and additional diagnostic tests have the best predictive accuracy for joint-related diagnoses. One hundred forty-nine TMD patients and 43 symptom-free subjects were examined in clinical examinations and with magnetic resonance imaging (MRI). The importance of each variable of the clinical examination for correct joint-related diagnosis was assessed by using MRI diagnoses. For this purpose, "random forest" statistical software (based on classification trees) was used. Maximum unassisted jaw opening, maximum assisted jaw opening, history of locked jaw, joint sound with and without compression, joint pain, facial pain, pain on palpation of the lateral pterygoid area, and overjet proved suitable for distinguishing between subtypes of joint-related TMD. Measurement of excursion, protrusion, and midline deviation were less important. The validity of clinical TMD examination procedures can be enhanced by using the 16 variables of greatest importance identified in this study. In addition to other variables, maximum unassisted and assisted opening and a history of locked jaw were important when assessing the status of the TMJ.

  3. Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group.

    PubMed

    Lambert, Robert G W; Bakker, Pauline A C; van der Heijde, Désirée; Weber, Ulrich; Rudwaleit, Martin; Hermann, K G; Sieper, Joachim; Baraliakos, Xenofon; Bennett, Alex; Braun, Jürgen; Burgos-Vargas, Rubén; Dougados, Maxime; Pedersen, Susanne Juhl; Jurik, Anne Grethe; Maksymowych, Walter P; Marzo-Ortega, Helena; Østergaard, Mikkel; Poddubnyy, Denis; Reijnierse, Monique; van den Bosch, Filip; van der Horst-Bruinsma, Irene; Landewé, Robert

    2016-11-01

    To review and update the existing definition of a positive MRI for classification of axial spondyloarthritis (SpA). The Assessment in SpondyloArthritis International Society (ASAS) MRI working group conducted a consensus exercise to review the definition of a positive MRI for inclusion in the ASAS classification criteria of axial SpA. Existing definitions and new data relevant to the MRI diagnosis and classification of sacroiliitis and spondylitis in axial SpA, published since the ASAS definition first appeared in print in 2009, were reviewed and discussed. The precise wording of the existing definition was examined in detail and the data and a draft proposal were presented to and voted on by the ASAS membership. The clear presence of bone marrow oedema on MRI in subchondral bone is still considered to be the defining observation that determines the presence of active sacroiliitis. Structural damage lesions seen on MRI may contribute to a decision by the observer that inflammatory lesions are genuinely due to SpA but are not required to meet the definition. The existing definition was clarified adding guidelines and images to assist in the application of the definition. The definition of a positive MRI for classification of axial SpA should continue to primarily depend on the imaging features of 'active sacroiliitis' until more data are available regarding MRI features of structural damage in the sacroiliac joint and MRI features in the spine and their utility when used for classification purposes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. A novel technique for ventriculoperitoneal shunting by flat panel detector CT-guided real-time fluoroscopy

    PubMed Central

    Kobayashi, Shinya; Ishikawa, Tatsuya; Mutoh, Tatsushi; Hikichi, Kentaro; Suzuki, Akifumi

    2012-01-01

    Background: Surgical placement of a ventriculoperitoneal shunt (VPS) is the main strategy to manage hydrocephalus. However, the failure rate associated with placement of ventricular catheters remains high. Methods: A hybrid operating room, equipped with a flat-panel detector digital subtraction angiography system containing C-arm cone-beam computed tomography (CB-CT) imaging, has recently been developed and utilized to assist neurosurgical procedures. We have developed a novel technique using intraoperative fluoroscopy and a C-arm CB-CT system to facilitate accurate placement of a VPS. Results: Using this novel technique, 39 consecutive ventricular catheters were placed accurately, and no ventricular catheter failures were experienced during the follow-up period. Only two patients experienced obstruction of the VPS, both of which occurred in the extracranial portion of the shunt system. Conclusion: Surgical placement of a VPS assisted by flat panel detector CT-guided real-time fluoroscopy enabled accurate placement of ventricular catheters and was associated with a decreased need for shunt revision. PMID:23226605

  5. The OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging (MRI) Scoring System: Updated Recommendations by the OMERACT MRI in Arthritis Working Group.

    PubMed

    Østergaard, Mikkel; Peterfy, Charles G; Bird, Paul; Gandjbakhch, Frédérique; Glinatsi, Daniel; Eshed, Iris; Haavardsholm, Espen A; Lillegraven, Siri; Bøyesen, Pernille; Ejbjerg, Bo; Foltz, Violaine; Emery, Paul; Genant, Harry K; Conaghan, Philip G

    2017-11-01

    The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables to have face, construct, and criterion validity; high reliability and sensitivity to change; and the ability to discriminate between therapies. This has enabled RAMRIS to demonstrate inhibition of structural damage progression with fewer patients and shorter followup times than has been possible with conventional radiography. Technical improvements, including higher field strengths and improved pulse sequences, allow higher image resolution and contrast-to-noise ratio. These have facilitated development and validation of scoring methods of new pathologies: joint space narrowing and tenosynovitis. These have high reproducibility and moderate sensitivity to change, and can be added to RAMRIS. Combined scores of inflammation or joint damage may increase sensitivity to change and discriminative power. However, this requires further research. Updated 2016 RAMRIS recommendations and a research agenda were developed.

  6. Thickness Distribution of Glenohumeral Joint Cartilage

    PubMed Central

    Schleich, Christoph; Bittersohl, Bernd; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph; Kircher, Jörn

    2016-01-01

    High-resolution 3-dimensional cartilage-specific magnetic resonance imaging (MRI) was performed at 3 T to test the following hypotheses: (1) there is a nonuniform cartilage thickness distribution both on the proximal humerus and on the glenoid surface and (2) the glenohumeral joint as a combined system is congruent with the level of the joint cartilage surface without substantial radial mismatch. Inclusion of 38 volunteers (19 females, mean age 24.34 ± 2.22 years; range 21-29 years) in a prospective study. Measurements of: cartilage thickness in 3 regions and 3 zones; radius of both circles (glenoid and humeral cartilage) for congruency calculation using 3-T MRI with 3-dimensional dual-echo steady-state sequence with water excitation. A homogenous mean cartilage thickness (1.2-1.5 mm) and slightly higher values for the glenoidal articulating surface radii both in the mid-paracoronar section (2.4 vs. 2.1 cm, P < 0.001) and in the mid-paraaxial section (2.4 vs. 2.1 cm, P < 0.001) compared with the humeral side were observed. The concept of a radial mismatch between the humeral head and the glenoid in healthy human subjects can be confirmed. This study provides normative data for the comparison of joint cartilage changes at the shoulder for future studies. PMID:28345405

  7. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach.

    PubMed

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-06-01

    Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL.Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI.Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA + MVG] and 9

  8. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach

    PubMed Central

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-01-01

    Abstract Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL. Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI. Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA

  9. Real-time three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis.

    PubMed

    Suntharos, Patcharapong; Setser, Randolph M; Bradley-Skelton, Sharon; Prieto, Lourdes R

    2017-10-01

    To validate the feasibility and spatial accuracy of pre-procedural 3D images to 3D rotational fluoroscopy registration to guide interventional procedures in patients with congenital heart disease and acquired pulmonary vein stenosis. Cardiac interventions in patients with congenital and structural heart disease require complex catheter manipulation. Current technology allows registration of the anatomy obtained from 3D CT and/or MRI to be overlaid onto fluoroscopy. Thirty patients scheduled for interventional procedures from 12/2012 to 8/2015 were prospectively recruited. A C-arm CT using a biplane C-arm system (Artis zee, VC14H, Siemens Healthcare) was acquired to enable 3D3D registration with pre-procedural images. Following successful image fusion, the anatomic landmarks marked in pre-procedural images were overlaid on live fluoroscopy. The accuracy of image registration was determined by measuring the distance between overlay markers and a reference point in the image. The clinical utility of the registration was evaluated as either "High", "Medium" or "None". Seventeen patients with congenital heart disease and 13 with acquired pulmonary vein stenosis were enrolled. Accuracy and benefit of registration were not evaluated in two patients due to suboptimal images. The distance between the marker and the actual anatomical location was 0-2 mm in 18 (64%), 2-4 mm in 3 (11%) and >4 mm in 7 (25%) patients. 3D3D registration was highly beneficial in 18 (64%), intermediate in 3 (11%), and not beneficial in 7 (25%) patients. 3D3D registration can facilitate complex congenital and structural interventions. It may reduce procedure time, radiation and contrast dose.

  10. Detecting condylar contact loss using single-plane fluoroscopy: a comparison with in vivo force data and in vitro bi-plane data.

    PubMed

    Prins, A H; Kaptein, B L; Banks, S A; Stoel, B C; Nelissen, R G H H; Valstar, E R

    2014-05-07

    Knee contact mechanics play an important role in knee implant failure and wear mechanics. Femoral condylar contact loss in total knee arthroplasty has been reported in some studies and it is considered to potentially induce excessive wear of the polyethylene insert.Measuring in vivo forces applied to the tibial plateau with an instrumented prosthesis is a possible approach to assess contact loss in vivo, but this approach is not very practical. Alternatively, single-plane fluoroscopy and pose estimation can be used to derive the relative pose of the femoral component with respect to the tibial plateau and estimate the distance from the medial and lateral parts of the femoral component towards the insert. Two measures are reported in the literature: lift-off is commonly defined as the difference in distance between the medial and lateral condyles of the femoral component with respect to the tibial plateau; separation is determined by the closest distance of each condyle towards the polyethylene insert instead of the tibia plateau.In this validation study, lift-off and separation as measured with single-plane fluoroscopy are compared to in vivo contact forces measured with an instrumented knee implant. In a phantom study, lift-off and separation were compared to measurements with a high quality bi-plane measurement.The results of the in vivo contact-force experiment demonstrate a large discrepancy between single-plane fluoroscopy and the in vivo force data: single-plane fluoroscopy measured up to 5.1mm of lift-off or separation, whereas the force data never showed actual loss of contact. The phantom study demonstrated that the single-plane setup could introduce an overestimation of 0.22mm±±0.36mm. Correcting the out-of-plane position resulted in an underestimation of medial separation by -0.20mm±±0.29mm.In conclusion, there is a discrepancy between the in vivo force data and single-plane fluoroscopic measurements. Therefore contact loss may not always be

  11. Right heart catheterization using metallic guidewires and low SAR cardiovascular magnetic resonance fluoroscopy at 1.5 Tesla: first in human experience.

    PubMed

    Campbell-Washburn, Adrienne E; Rogers, Toby; Stine, Annette M; Khan, Jaffar M; Ramasawmy, Rajiv; Schenke, William H; McGuirt, Delaney R; Mazal, Jonathan R; Grant, Laurie P; Grant, Elena K; Herzka, Daniel A; Lederman, Robert J

    2018-06-21

    Cardiovascular magnetic resonance (CMR) fluoroscopy allows for simultaneous measurement of cardiac function, flow and chamber pressure during diagnostic heart catheterization. To date, commercial metallic guidewires were considered contraindicated during CMR fluoroscopy due to concerns over radiofrequency (RF)-induced heating. The inability to use metallic guidewires hampers catheter navigation in patients with challenging anatomy. Here we use low specific absorption rate (SAR) imaging from gradient echo spiral acquisitions and a commercial nitinol guidewire for CMR fluoroscopy right heart catheterization in patients. The low-SAR imaging protocol used a reduced flip angle gradient echo acquisition (10° vs 45°) and a longer repetition time (TR) spiral readout (10 ms vs 2.98 ms). Temperature was measured in vitro in the ASTM 2182 gel phantom and post-mortem animal experiments to ensure freedom from heating with the selected guidewire (150 cm × 0.035″ angled-tip nitinol Terumo Glidewire). Seven patients underwent CMR fluoroscopy catheterization. Time to enter each chamber (superior vena cava, main pulmonary artery, and each branch pulmonary artery) was recorded and device visibility and confidence in catheter and guidewire position were scored on a Likert-type scale. Negligible heating (< 0.07°C) was observed under all in vitro conditions using this guidewire and imaging approach. In patients, chamber entry was successful in 100% of attempts with a guidewire compared to 94% without a guidewire, with failures to reach the branch pulmonary arteries. Time-to-enter each chamber was similar (p=NS) for  the two approaches. The guidewire imparted useful catheter shaft conspicuity and enabled interactive modification of catheter shaft stiffness, however, the guidewire tip visibility was poor. Under specific conditions, trained operators can apply low-SAR imaging and using a specific fully-insulated metallic nitinol guidewire (150 cm × 0.035" Terumo

  12. An update on risk factors for cartilage loss in knee osteoarthritis assessed using MRI-based semiquantitative grading methods.

    PubMed

    Alizai, Hamza; Roemer, Frank W; Hayashi, Daichi; Crema, Michel D; Felson, David T; Guermazi, Ali

    2015-03-01

    Arthroscopy-based semiquantitative scoring systems such as Outerbridge and Noyes' scores were the first to be developed for the purpose of grading cartilage defects. As magnetic resonance imaging (MRI) became available for evaluation of the osteoarthritic knee joint, these systems were adapted for use with MRI. Later on, grading methods such as the Whole Organ Magnetic Resonance Score, the Boston-Leeds Osteoarthritis Knee Score and the MRI Osteoarthritis Knee Score were designed specifically for performing whole-organ assessment of the knee joint structures, including cartilage. Cartilage grades on MRI obtained with these scoring systems represent optimal outcome measures for longitudinal studies, and are designed to enhance understanding of the knee osteoarthritis disease process. The purpose of this narrative review is to describe cartilage assessment in knee osteoarthritis using currently available MRI-based semiquantitative whole-organ scoring systems, and to provide an update on the risk factors for cartilage loss in knee osteoarthritis as assessed with these scoring systems.

  13. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies.

    PubMed

    Zanca, F; Jacobs, A; Crijns, W; De Wever, W

    2014-07-01

    To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. The median measured MSD was 141 mGy (range 38-410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24-262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12-4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  14. Comparative Prospective Study Reporting Intraoperative Parameters, Pedicle Screw Perforation, and Radiation Exposure in Navigation-Guided versus Non-navigated Fluoroscopy-Assisted Minimal Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Kundnani, Vishal; Dutta, Shumayou; Patel, Ankit; Mehta, Gaurav; Singh, Mahendra

    2018-01-01

    Study Design Prospective cohort study. Purpose To compare intraoperative parameters, radiation exposure, and pedicle screw perforation rate in navigation-guided versus non-navigated fluoroscopy-assisted minimal invasive transforaminal lumbar interbody fusion (MIS TLIF). Overview of Literature The poor reliability of fluoroscopy-guided instrumentation and growing concerns about radiation exposure have led to the development of navigation-guided instrumentation techniques in MIS TLIF. The literature evaluating the efficacy of navigation-guided MIS TLIF is scant. Methods Eighty-seven patients underwent navigation- or fluoroscopy-guided MIS TLIF for symptomatic lumbar/lumbosacral spondylolisthesis. Demographics, intraoperative parameters (surgical time, blood loss), and radiation exposure (sec/mGy/Gy.cm2 noted from C-arm for comparison only) were recorded. Computed tomography was performed in patients in the navigation and non-navigation groups at postoperative 12 months and reviewed by an independent observer to assess the accuracy of screw placement, perforation incidence, location, grade (Mirza), and critical versus non-critical neurological implications. Results Twenty-seven patients (male/female, 11/16; L4–L5/L5–S1, 9/18) were operated with navigation-guided MIS TLIF, whereas 60 (male/female, 25/35; L4–L5/L5–S1, 26/34) with conventional fluoroscopy-guided MIS TILF. The use of navigation resulted in reduced fluoroscopy usage (dose area product, 0.47 Gy.cm2 versus 2.93 Gy.cm2), radiation exposure (1.68 mGy versus 10.97 mGy), and fluoroscopy time (46.5 seconds versus 119.08 seconds), with p-values of <0.001. Furthermore, 96.29% (104/108) of pedicle screws in the navigation group were accurately placed (grade 0) (4 breaches, all grade I) compared with 91.67% (220/240) in the non-navigation group (20 breaches, 16 grade I+4 grade II; p=0.114). None of the breaches resulted in a corresponding neurological deficit or required revision. Conclusions Navigation

  15. Fluoroscopy-free Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) for controlling life threatening postpartum hemorrhage

    PubMed Central

    Stensaeth, Knut Haakon; Sovik, Edmund; Haig, Ingrid Natasha Ylva; Skomedal, Erna; Jorgensen, Arve

    2017-01-01

    Background Severe postpartum hemorrhage occurs in 1/1000 women giving birth. This condition is often dramatic and may be life threatening. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) has in recent years been introduced as a novel treatment for hemorrhagic shock. We present a series of fluoroscopy-free REBOA for controlling life threatening postpartum hemorrhage. Methods In 2008 an ‘aortic occlusion kit’ was assembled and used in three Norwegian university hospitals. The on-call interventional radiologist (IR) was to be contacted with a response time < 30 minutes in case of life threatening PPH. Demographics and characteristics were noted from the medical records. Results This retrospective study includes 36 patients treated with fluoroscopy-free REBOA for controlling severe postpartum hemorrhage in the years 2008–2015. The REBOA success rate was 100% and no patients died from REBOA related complications. Uterine artery embolization was performed in 17 (47%) patients and a hysterectomy in 16 (44%) patients. A short (11cm) introducer length was strongly associated with iliac artery thrombus formation (ρ = 0.50, P = 0.002). In addition, there was a strong negative correlation between uterine artery embolization and hysterectomy (ρ = -0.50, P = 0.002). Conclusions Our Norwegian experience indicates the clinical safety and feasibility of REBOA in life threatening PPH. Also, REBOA can be used in an emergency situation without the use of fluoroscopy with a high degree of technical success. It is important that safety implementation of REBOA is established, especially through limited aortic balloon occlusion time and a thorough balloon deflation regime. PMID:28355242

  16. CT fluoroscopy guided transpleural cutting needle biopsy of small (≤2.5 cm) subpleural pulmonary nodules.

    PubMed

    Prosch, Helmut; Oschatz, Elisabeth; Eisenhuber, Edith; Wohlschlager, Helmut; Mostbeck, Gerhard H

    2011-01-01

    Small subpleural pulmonary lesions are difficult to biopsy. While the direct, short needle path has been reported to have a lower rate of pneumothorax, the indirect path provides a higher diagnostic yield. Therefore, we tried to optimize the needle pathway and minimize the iatrogenic pneumothorax risk by evaluating a CT fluoroscopy guided direct approach to biopsy subpleural lesions. Between 01/2005 and 01/2007, CT fluoroscopy guided core biopsies were performed in 24 patients. Using our technique, the tip of the guide needle remains outside the visceral pleura (17 G coaxial guide needle, 18 G Biopsy-gun, 15 or 22 mm needle path). The position of the lesion relative to the needle tip can be optimized using CT fluoroscopy by adjusting the breathing position of the patient. The Biopty gun is fired with the needle tip still outside the pleural space. Cytological smears are analyzed by a cytopathologist on-site, and biopsies are repeated as indicated with the coaxial needle still outside the pleura. Median nodule size was 1.6 cm (0.7-2.3 cm). A definitive diagnosis was obtained in 22 patients by histology and/or cytology. In one patient, only necrotic material could be obtained. In another patient, the intervention had to be aborted as the dyspnoic patient could not follow breathing instructions. An asymptomatic pneumothorax was present in seven patients; chest tube placement was not required. The presented biopsy approach has a high diagnostic yield and is especially advantageous for biopsies of small subpleural lesions in the lower lobes. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.

    PubMed

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

  18. Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy

    PubMed Central

    Hosoda, Koh; Shimizu, Masahiro; Ikemoto, Shuhei; Nagura, Takeo; Seki, Hiroyuki; Kitashiro, Masateru; Imanishi, Nobuaki; Aiso, Sadakazu; Jinzaki, Masahiro; Ogihara, Naomichi

    2017-01-01

    The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure. Five cadaver feet were axially loaded up to 588 N (60 kgf), and radiographic images were captured using a biplane X-ray fluoroscopy system. The present study demonstrated that the talus is medioinferiorly translated and internally rotated as the calcaneus is everted owing to axial loading, causing internal rotation of the tibia and flattening of the medial longitudinal arch in the foot. Furthermore, as the talus is internally rotated, the talar head moves medially with respect to the navicular, inducing external rotation of the navicular and metatarsals. Under axial loading, the cuboid is everted simultaneously with the calcaneus owing to the osseous locking mechanism in the calcaneocuboid joint. Such detailed descriptions about the innate mobility of the human foot will contribute to clarifying functional adaptation and pathogenic mechanisms of the human foot. PMID:29134100

  19. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  20. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  1. MRI-based stereolithographic models of the temporomandibular joint: technical innovation.

    PubMed

    Undt, G; Wild, K; Reuther, G; Ewers, R

    2000-10-01

    A new technique of manufacturing dual-colour stereolithographic models of hard and soft tissues of the temporomandibular joint (TMJ) is presented. Sagittal T1/PD weighted magnetic resonance (MR) images of joints with and without disc displacement were obtained in the closed and open mouth positions. Individual interactive contour identification of bony structures and the articular disc followed by binary interpolation provided the data for the generation of acrylic TMJ models. Three dimensional in vivo visualization of the articular disc in relation to bony structures in the closed and open mouth positions allows a new perception of normal and pathological TMJ anatomy.

  2. Magnetic resonance imaging changes of sacroiliac joints in patients with recent-onset inflammatory back pain: inter-reader reliability and prevalence of abnormalities.

    PubMed

    Heuft-Dorenbosch, Liesbeth; Weijers, René; Landewé, Robert; van der Linden, Sjef; van der Heijde, Désirée

    2006-01-01

    To study the inter-reader reliability of detecting abnormalities of sacroiliac (SI) joints in patients with recent-onset inflammatory back pain by magnetic resonance imaging (MRI), and to study the prevalence of inflammation and structural changes at various sites of the SI joints. Sixty-eight patients with inflammatory back pain (at least four of the five following criteria: symptom onset before age 40, insidious onset, morning stiffness, duration >3 months, improvement with exercise--or three out of five of these plus night pain) were included (38% male; mean age, 34.9 years [standard deviation 10.3]; 46% HLA-B27-positive; mean symptom duration, 18 months), with symptom duration <2 years. A MRI scan of the SI joints was made in the coronal plane with the following sequences: T1-weighted spin echo, short-tau inversion recovery, T2-weighted fast-spin echo with fat saturation, and T1-spin echo with fat saturation after the administration of gadolinium. Both SI joints were scored for inflammation (separately for subchondral bone and bone marrow, joint space, joint capsule, ligaments) as well as for structural changes (erosions, sclerosis, ankylosis), by two observers independently. Agreement between the two readers was analysed by concordance and discordance rates and by kappa statistics. Inflammation was present in 32 SI joints of 22 patients, most frequently located in bone marrow and/or subchondral bone (29 joints in 21 patients). Readers agreed on the presence of inflammation in 85% of the cases in the right SI joint and in 78% of the cases in the left SI joint. Structural changes on MRI were present in 11 patients. Ten of these 11 patients also showed signs of inflammation. Agreement on the presence or absence of inflammation and structural changes of SI joints by MRI was acceptable, and was sufficiently high to be useful in ascertaining inflammatory and structural changes due to sacroiliitis. About one-third of patients with recent-onset inflammatory back pain

  3. Percutaneous pedicle screw placement under single dimensional fluoroscopy with a designed pedicle finder-a technical note and case series.

    PubMed

    Tsuang, Fon-Yih; Chen, Chia-Hsien; Kuo, Yi-Jie; Tseng, Wei-Lung; Chen, Yuan-Shen; Lin, Chin-Jung; Liao, Chun-Jen; Lin, Feng-Huei; Chiang, Chang-Jung

    2017-09-01

    Minimally invasive spine surgery has become increasingly popular in clinical practice, and it offers patients the potential benefits of reduced blood loss, wound pain, and infection risk, and it also diminishes the loss of working time and length of hospital stay. However, surgeons require more intraoperative fluoroscopy and ionizing radiation exposure during minimally invasive spine surgery for localization, especially for guidance in instrumentation placement. In addition, computer navigation is not accessible in some facility-limited institutions. This study aimed to demonstrate a method for percutaneous screws placement using only the anterior-posterior (AP) trajectory of intraoperative fluoroscopy. A technical report (a retrospective and prospective case series) was carried out. Patients who received posterior fixation with percutaneous pedicle screws for thoracolumbar degenerative disease or trauma comprised the patient sample. We retrospectively reviewed the charts of consecutive 670 patients who received 4,072 pedicle screws between December 2010 and August 2015. Another case series study was conducted prospectively in three additional hospitals, and 88 consecutive patients with 413 pedicle screws were enrolled from February 2014 to July 2016. The fluoroscopy shot number and radiation dose were recorded. In the prospective study, 78 patients with 371 screws received computed tomography at 3 months postoperatively to evaluate the fusion condition and screw positions. In the retrospective series, the placement of a percutaneous screw required 5.1 shots (2-14, standard deviation [SD]=2.366) of AP fluoroscopy. One screw was revised because of a medialwall breach of the pedicle. In the prospective series, 5.8 shots (2-16, SD=2.669) were required forone percutaneous pedicle screw placement. There were two screws with a Grade 1 breach (8.6%), both at the lateral wall of the pedicle, out of 23 screws placed at the thoracic spine at T9-T12. Forthe lumbar and sacral

  4. CT fluoroscopy-guided core needle biopsy of anterior mediastinal masses.

    PubMed

    Iguchi, T; Hiraki, T; Matsui, Y; Fujiwara, H; Sakurai, J; Masaoka, Y; Uka, M; Tanaka, T; Gobara, H; Kanazawa, S

    2018-02-01

    To retrospectively evaluate the safety, diagnostic yield, and risk factors of diagnostic failure of computed tomography (CT) fluoroscopy-guided biopsies of anterior mediastinal masses. Biopsy procedures and results of anterior mediastinal masses in 71 patients (32 women/39 men; mean [±standard deviation] age, 53.8±20.0years; range, 14-88years) were analyzed. Final diagnoses were based on surgical outcomes, imaging findings, or clinical follow-up findings. The biopsy results were compared with the final diagnosis, and the biopsy procedures grouped by pathologic findings into diagnostic success and failure groups. Multiple putative risk factors for diagnostic failure were then assessed. Seventy-one biopsies (71 masses; mean size, 67.5±27.3mm; range 8.6-128.2mm) were analyzed. We identified 17 grade 1 and one grade 2 adverse events (25.4% overall) according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. Sixty-nine biopsies (97.2%) provided samples fit for pathologic analysis. Diagnostic failure was found for eight (11.3%) masses; the 63 masses diagnosed successfully included thymic carcinoma (n=17), lung cancer (n=14), thymoma (n=12), malignant lymphoma (n=11), germ cell tumor (n=3), and others (n=6). Using a thinner needle (i.e., a 20-gauge needle) was the sole significant risk factor for diagnostic failure (P=0.039). CT fluoroscopy-guided biopsy of anterior mediastinal masses was safe and had a high diagnostic yield; however, using a thinner biopsy needle significantly increased the risk of a failed diagnosis. Copyright © 2017 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  5. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific

  6. Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, D.R. Jr.; Wondrow, M.A.; Gray, J.E.

    1990-01-01

    The increased application of therapeutic interventional cardiology procedures is associated with increased radiation exposure to physicians, patients and technical personnel. New advances in imaging techniques have the potential for reducing radiation exposure. A progressive scanning video system with a standard vascular phantom has been shown to decrease entrance radiation exposure. The effect of this system on reducing actual radiation exposure to physicians and technicians was assessed from 1984 through 1987. During this time, progressive fluoroscopy was added sequentially to all four adult catheterization laboratories; no changes in shielding procedures were made. During this time, the case load per physician increasedmore » by 63% and the number of percutaneous transluminal coronary angioplasty procedures (a high radiation procedure) increased by 244%. Despite these increases in both case load and higher radiation procedures, the average radiation exposure per physician declined by 37%. During the same time, the radiation exposure for technicians decreased by 35%. Pulsed progressive fluoroscopy is effective for reducing radiation exposure to catheterization laboratory physicians and technical staff.« less

  7. A comparison of 3-T magnetic resonance imaging and computed tomography arthrography to identify structural cartilage defects of the fetlock joint in the horse.

    PubMed

    Hontoir, Fanny; Nisolle, Jean-François; Meurisse, Hubert; Simon, Vincent; Tallier, Max; Vanderstricht, Renaud; Antoine, Nadine; Piret, Joëlle; Clegg, Peter; Vandeweerd, Jean-Michel

    2014-01-01

    Articular cartilage defects are prevalent in metacarpo/metatarsophalangeal (MCP/MTP) joints of horses. The aim of this study was to determine and compare the sensitivity and specificity of 3-Tesla magnetic resonance imaging (3-T MRI) and computed tomography arthrography (CTA) to identify structural cartilage defects in the equine MCP/MTP joint. Forty distal cadaver limbs were imaged by CTA (after injection of contrast medium) and by 3-T MRI using specific sequences, namely, dual-echo in the steady-state (DESS), and sampling perfection with application-optimised contrast using different flip-angle evolutions (SPACE). Gross anatomy was used as the gold standard to evaluate sensitivity and specificity of both imaging techniques. CTA sensitivity and specificity were 0.82 and 0.96, respectively, and were significantly higher than those of MRI (0.41 and 0.93, respectively) in detecting overall cartilage defects (no defect vs. defect). The intra and inter-rater agreements were 0.96 and 0.92, respectively, and 0.82 and 0.88, respectively, for CT and MRI. The positive predictive value for MRI was low (0.57). CTA was considered a valuable tool for assessing cartilage defects in the MCP/MTP joint due to its short acquisition time, its specificity and sensitivity, and it was also more accurate than MRI. However, MRI permits assessment of soft tissues and subchondral bone and is a useful technique for joint evaluation, although clinicians should be aware of the limitations of this diagnostic technique, including reduced accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging.

    PubMed

    Morgenroth, David C; Medverd, Jonathan R; Seyedali, Mahyo; Czerniecki, Joseph M

    2014-06-01

    While animal study and cadaveric study have demonstrated an association between knee joint loading rate and joint degeneration, the relationship between knee joint loading rate during walking and osteoarthritis has not yet been sufficiently studied in humans. Twenty-eight participants (14 transfemoral amputees and 14 age and body mass matched controls) underwent knee MRI with subsequent assessment using the semiquantitative Whole-Organ Magnetic Resonance Image Score. Each subject also underwent gait analysis in order to determine knee adduction moment loading rate, peak, and impulse and an exploratory measure, knee adduction moment rate∗magnitude. Significant correlations were found between medial tibiofemoral joint degeneration and knee adduction moment peak (slope=0.42 [SE 0.20]; P=.037), loading rate (slope=12.3 [SE 3.2]; P=.0004), and rate∗magnitude (slope=437 [SE 100]; P<.0001). These relationships continued to be significant after adjusting for body mass or subject type. The relationship between medial knee semiquantitative MRI score and knee adduction moment loading rate and rate∗magnitude continued to be significant even after adjusting for peak moment (P<.0001), however, the relationship between medial knee semiquantitative MRI score and peak moment was no longer significant after adjusting for either loading rate or rate∗magnitude (P>.2 in both cases). This study suggests an independent relationship between knee adduction moment loading rate and medial tibiofemoral joint degeneration. Our results support the hypothesis that rate of loading, represented by the knee adduction moment loading rate, is strongly associated with medial tibiofemoral joint degeneration independent of knee adduction moment peak and impulse. Published by Elsevier Ltd.

  9. A comparative MRI study of cartilage damage in gout versus rheumatoid arthritis.

    PubMed

    Popovich, Ivor; Lee, Arier C L; Doyle, Anthony; McHaffie, Alexandra; Clarke, Andrew; Reeves, Quentin; Dalbeth, Nicola; McQueen, Fiona M

    2015-08-01

    Magnetic resonance imaging (MRI) is useful for detecting joint inflammation and damage in the inflammatory arthropathies. This study aimed to investigate MRI cartilage damage and its associations with joint inflammation in patients with gout compared with a group with rheumatoid arthritis (RA). Forty patients with gout and 38 with seropositive RA underwent 3T-MRI of the wrist with assessment of cartilage damage at six carpal sites, using established scoring systems. Synovitis and bone oedema (BME) were graded according to Rheumatoid Arthritis MRI Scoring System criteria. Cartilage damage was compared between the groups adjusting for synovitis and disease duration using logistic regression analysis. Compared with RA, there were fewer sites of cartilage damage and lower total damage scores in the gout group (P = 0.02 and 0.003), adjusting for their longer disease duration and lesser degree of synovitis. Cartilage damage was strongly associated with synovitis in both conditions (R = 0.59, P < 0.0001 and R = 0.52, P = 0.0045 respectively) and highly correlated with BME in RA (R = 0.69, P < 0.0001) but not in gout (R = 0.095, P = 0.56). Cartilage damage is less severe in gout than in RA, with fewer sites affected and lower overall scores. It is associated with synovitis in both diseases, likely indicating an effect of pro-inflammatory cytokine production on cartilage integrity. However, the strong association between cartilage damage and BME observed in RA was not identified in gout. This emphasizes differences in the underlying pathophysiology of joint damage in these two conditions. © 2015 The Royal Australian and New Zealand College of Radiologists.

  10. Ultrasound of the coracoclavicular ligaments in the acute phase of an acromioclavicular disjonction: Comparison of radiographic, ultrasound and MRI findings.

    PubMed

    Faruch Bilfeld, Marie; Lapègue, Franck; Chiavassa Gandois, Hélène; Bayol, Marie Aurélie; Bonnevialle, Nicolas; Sans, Nicolas

    2017-02-01

    Acromioclavicular joint injuries are typically diagnosed by clinical and radiographic assessment with the Rockwood classification, which is crucial for treatment planning. The purpose of this study was to describe how the ultrasound findings of acromioclavicular joint injury compare with radiography and MRI findings. Forty-seven patients with suspected unilateral acromioclavicular joint injury after acute trauma were enrolled in this prospective study. All patients underwent digital radiography, ultrasound and 3T MRI. A modified Rockwood classification was used to evaluate the coracoclavicular ligaments. The classifications of acromioclavicular joint injuries diagnosed with radiography, ultrasound and MRI were compared. MRI was used as the gold standard. The agreement between the ultrasound and MRI findings was very good, with a correlation coefficient of 0.83 (95 % CI: 0.72-0.90; p < 0.0001). Ultrasound detected coracoclavicular ligament injuries with a sensitivity of 88.9 %, specificity of 90.0 %, positive predictive value of 92.3 % and negative predictive value of 85.7 %. The agreement between the ultrasound and radiography findings was poor, with a correlation coefficient of 0.69 (95 % CI: 0.51-0.82; p < 0.0001). Ultrasound is an effective examination for the diagnostic work-up of lesions of the coracoclavicular ligaments in the acute phase of an acromioclavicular injury. • Ultrasound is appropriate for acute acromioclavicular trauma due to its accessibility. • Ultrasound contributes to the diagnostic work-up of acute lesions of the coracoclavicular ligaments. • Ultrasound is appropriate in patients likely to benefit from surgical treatment. • Ultrasound could be a supplement to standard radiography in acute acromioclavicular trauma.

  11. Fluoroscopy-assisted vs fluoroless endoscopic ultrasound-guided transmural drainage of pancreatic fluid collections: A comparative study.

    PubMed

    Consiglieri, Claudia F; Gornals, Joan B; Busquets, Juli; Peláez, Nuria; Secanella, Lluis; De-La-Hera, Meritxell; Sanzol, Resurrección; Fabregat, Joan; Castellote, José

    2018-01-01

    The need for fluoroscopy guidance in patients undergoing endoscopic ultrasound-guided transmural drainage (EUS-TMD) of peripancreatic fluid collections (PFCs) remains unclear. The aim of this study was to compare general outcomes of EUS-TMD of PFCs under fluoroscopy (F) vs fluoroless (FL). This is a comparative study with a retrospective analysis of a prospective and consecutive inclusion database at a tertiary centre, from 2009 to 2015. All patients were symptomatic pseudocyst (PSC) and walled-off pancreatic necrosis (WON). Two groups were assigned depending on availability of fluoroscopy. The groups were heterogeneous in terms of their demographic characteristics, PFCs and procedure. The main outcome measures included technical and clinical success, incidences, adverse events (AEs), and follow-up. Fifty EUS-TMD of PFCs from 86 EUS-guided drainages were included during the study period. Group F included 26 procedures, PSC 69.2%, WON 30.8%, metal stents 61.5% (46.1% lumen-apposing stent) and plastic stents 38.5%. Group FL included 24 procedures, PSC 37.5%, WON 62.5%, and metal stents 95.8% (lumen-apposing stents). Technical success was 100% in both groups, and clinical success was similar (F 88.5%, FL 87.5%). Technical incidences and intra-procedure AEs were only described in group F (7.6% and 11.5%, respectively) and none in group FL. Procedure time was less in group FL (8min, p=0.0341). Fluoroless in the EUS-TMD of PFCs does not involve more technical incidences or intra-procedure AEs. Technical and clinical success was similar in the two groups. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  12. Digital tumor fluoroscopy (DTF)--a new direct imaging system in the therapy planning for brain tumors.

    PubMed

    Herbst, M; Fröder, M

    1990-01-01

    Digital Tumor Fluoroscopy is an expanded x-ray video chain optimized to iodine contrast with an extended Gy scale up to 64000 Gy values. Series of pictures are taken before and after injection of contrast medium. With the most recent unit, up to ten images can be taken and stored. The microprogrammable processor allows the subtraction of images recorded at any moment of the examination. Dynamic views of the distribution of contrast medium in the intravasal and extravasal spaces of brain and tumor tissue are gained by the subtraction of stored images. Tumors can be differentiated by studying the storage and drainage behavior of the contrast medium during the period of examination. Meningiomas store contrast medium very intensively during the whole time of investigation, whereas astrocytomas grade 2-3 pick it up less strongly at the beginning and release it within 2 min. Glioblastomas show a massive but delayed accumulation of contrast medium and a decreased flow-off-rate. In comparison with radiography and MR-imaging the most important advantage of Digital Tumor Fluoroscopy is that direct information on tumor localization is gained in relation to the skull-cap. This enables the radiotherapist to mark the treatment field directly on the skull. Therefore it is no longer necessary to calculate the tumor volume from several CT scans for localization. In radiotherapy Digital Tumor Fluoroscopy a unit combined with a simulator can replace CT planning. This would help overcome the disadvantages arising from the lack of a collimating system, and the inaccuracies which result from completely different geometric relationships between a CT unit and a therapy machine.

  13. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus?

    PubMed

    Hunter, D J; Zhang, Y Q; Tu, X; Lavalley, M; Niu, J B; Amin, S; Guermazi, A; Genant, H; Gale, D; Felson, D T

    2006-08-01

    To explore the relative contribution of hyaline cartilage morphologic features and the meniscus to the radiographic joint space. The Boston Osteoarthritis of the Knee Study is a natural history study of symptomatic knee osteoarthritis (OA). Baseline and 30-month followup assessments included knee magnetic resonance imaging (MRI) and fluoroscopically positioned weight-bearing knee radiographs. Cartilage and meniscal degeneration were scored on MRI in the medial and lateral tibiofemoral joints using a semiquantitative grading system. Meniscal position was measured to the nearest millimeter. The dependent variable was joint space narrowing (JSN) on the plain radiograph (possible range 0-3). The predictor variables were MRI cartilage score, meniscal degeneration, and meniscal position measures. We first conducted a cross-sectional analysis using multivariate regression to determine the relative contribution of meniscal factors and cartilage morphologic features to JSN, adjusting for body mass index (BMI), age, and sex. The same approach was used for change in JSN and change in predictor variables. We evaluated 264 study participants with knee OA (mean age 66.7 years, 59% men, mean BMI 31.4 kg/m(2)). The results from the models demonstrated that meniscal position and meniscal degeneration each contributed to prediction of JSN, in addition to the contribution by cartilage morphologic features. For change in medial joint space, both change in meniscal position and change in articular cartilage score contributed substantially to narrowing of the joint space. The meniscus (both its position and degeneration) accounts for a substantial proportion of the variance explained in JSN, and the change in meniscal position accounts for a substantial proportion of change in JSN.

  14. MRI-based hip cartilage measures in osteoarthritic and non-osteoarthritic individuals: a systematic review

    PubMed Central

    Aguilar, Hector N; Battié, Michele C

    2017-01-01

    Osteoarthritis is a common hip joint disease, involving loss of articular cartilage. The prevalence and prognosis of hip osteoarthritis have been difficult to determine, with various clinical and radiological methods used to derive epidemiological estimates exhibiting significant heterogeneity. MRI-based methods directly visualise hip joint cartilage, and offer potential to more reliably define presence and severity of osteoarthritis, but have been underused. We performed a systematic review of MRI-based estimates of hip articular cartilage in the general population and in patients with established osteoarthritis, using MEDLINE, EMBASE and SCOPUS current to June 2016, with search terms such as ‘hip’, ‘femoral head’, ‘cartilage’, ‘volume’, ‘thickness’, ‘MRI’, etc. Ultimately, 11 studies were found appropriate for inclusion, but they were heterogeneous in osteoarthritis assessment methodology and composition. Overall, the studies consistently demonstrate the reliability and potential clinical utility of MRI-based estimates. However, no longitudinal data or reference values for hip cartilage thickness or volume have been published, limiting the ability of MRI to define or risk-stratify hip osteoarthritis. MRI-based techniques are available to quantify articular cartilage signal, volume, thickness and defects, which could establish the sequence and rate of articular cartilage changes at the hip that yield symptomatic osteoarthritis. However, prevalence and rates of progression of hip osteoarthritis have not been established in any MRI studies in the general population. Future investigations could fill this important knowledge gap using robust MRI methods in population-based cross-sectional and longitudinal studies. PMID:28405471

  15. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  16. Interposition of the Posterior Cruciate Ligament into the Medial Compartment of the Knee Joint on Coronal Magnetic Resonance Imaging.

    PubMed

    Kim, Hyun Su; Yoon, Young Cheol; Park, Ki Jeong; Wang, Joon Ho; Choe, Bong-Keun

    2016-01-01

    The purpose of our study was to evaluate the overall prevalence and clinical significance of interposition of the posterior cruciate ligament (PCL) into the medial compartment of the knee joint in coronal magnetic resonance imaging (MRI). We retrospectively reviewed 317 consecutive patients referred for knee MRI at our institution between October 2009 and December 2009. Interposition of the PCL into the medial compartment of the knee joint on proton coronal MRI was evaluated dichotomously (i.e., present or absent). We analyzed the interposition according to its prevalence as well as its relationship with right-left sidedness, gender, age, and disease categories (osteoarthritis, anterior cruciate ligament tear, and medial meniscus tear). Prevalence of interposition of PCL into the medial compartment of the knee joint was 47.0% (149/317). There was no right (50.0%, 83/166) to left (43.7%, 66/151) or male (50.3%, 87/173) to female (43.1%, 62/144) differences in the prevalence. There was no significant association between the prevalence and age, or the disease categories. Interposition of the PCL into the medial compartment of the knee joint is observed in almost half of patients on proton coronal MRI of the knee. Its presence is not associated with any particular factors including knee pathology and may be regarded as a normal MR finding.

  17. MRI of the temporo-mandibular joint: which sequence is best suited to assess the cortical bone of the mandibular condyle? A cadaveric study using micro-CT as the standard of reference.

    PubMed

    Karlo, Christoph A; Patcas, Raphael; Kau, Thomas; Watzal, Helmut; Signorelli, Luca; Müller, Lukas; Ullrich, Oliver; Luder, Hans-Ulrich; Kellenberger, Christian J

    2012-07-01

    To determine the best suited sagittal MRI sequence out of a standard temporo-mandibular joint (TMJ) imaging protocol for the assessment of the cortical bone of the mandibular condyles of cadaveric specimens using micro-CT as the standard of reference. Sixteen TMJs in 8 human cadaveric heads (mean age, 81 years) were examined by MRI. Upon all sagittal sequences, two observers measured the cortical bone thickness (CBT) of the anterior, superior and posterior portions of the mandibular condyles (i.e. objective analysis), and assessed for the presence of cortical bone thinning, erosions or surface irregularities as well as subcortical bone cysts and anterior osteophytes (i.e. subjective analysis). Micro-CT of the condyles was performed to serve as the standard of reference for statistical analysis. Inter-observer agreements for objective (r = 0.83-0.99, P < 0.01) and subjective (κ = 0.67-0.88) analyses were very good. Mean CBT measurements were most accurate, and cortical bone thinning, erosions, surface irregularities and subcortical bone cysts were best depicted on the 3D fast spoiled gradient echo recalled sequence (3D FSPGR). The most reliable MRI sequence to assess the cortical bone of the mandibular condyles on sagittal imaging planes is the 3D FSPGR sequence. MRI may be used to assess the cortical bone of the TMJ. • Depiction of cortical bone is best on 3D FSPGR sequences. • MRI can assess treatment response in patients with TMJ abnormalities.

  18. Atypical location of an osteoid osteoma with atypical anterior knee pain

    PubMed Central

    Harun, Mutlu; Hayrettin, Yaldız; Serhat, Mutlu; Engin, Cetinkaya; Kamil, Cepni; Armagan, Arslan; Sancar, Parmaksızoglu Atilla

    2014-01-01

    INTRODUCTION An osteoid osteoma is a painful tumor that most commonly affects the extra-articular parts of the long bones. An intra-articular location of an osteoid osteoma is rare. Various differential diagnoses may arise in connection with such an unusual location because it causes atypical clinical signs. PRESENTATION OF CASE A 24-year-old male developed pain in the central region of the right knee. Magnetic resonance imaging (MRI) showed no clear pathology in the knee joint. A technetium bone scan and computed tomography (CT) were then ordered and confirmed the presence of an osteoid osteoma in the knee joint. The patient was treated through an anteromedial approach to the knee, and the lesion was removed by excisional biopsy under fluoroscopy. DISCUSSION The diagnosis of intra-articular osteoid osteoma is challenging because the clinical presentation can be misleading. MRI is often requested as the first imaging method when dealing with knee symptoms, and radiologists are often unaware of the clinical presentation. Edema seen on MRI can be misleading with respect to the location of the nidus. CT is considered to be the best imaging method because it usually allows for clear visualization of the nidus. Different treatments have been proposed, ranging from open excision to arthroscopic resection. CONCLUSION Osteoid osteoma should be considered in young adult patients with chronic knee pain and no history of trauma. PMID:25462055

  19. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.

    PubMed

    Kainz, H; Modenese, L; Lloyd, D G; Maine, S; Walsh, H P J; Carty, C P

    2016-06-14

    Most clinical gait laboratories use the conventional gait analysis model. This model uses a computational method called Direct Kinematics (DK) to calculate joint kinematics. In contrast, musculoskeletal modelling approaches use Inverse Kinematics (IK) to obtain joint angles. IK allows additional analysis (e.g. muscle-tendon length estimates), which may provide valuable information for clinical decision-making in people with movement disorders. The twofold aims of the current study were: (1) to compare joint kinematics obtained by a clinical DK model (Vicon Plug-in-Gait) with those produced by a widely used IK model (available with the OpenSim distribution), and (2) to evaluate the difference in joint kinematics that can be solely attributed to the different computational methods (DK versus IK), anatomical models and marker sets by using MRI based models. Eight children with cerebral palsy were recruited and presented for gait and MRI data collection sessions. Differences in joint kinematics up to 13° were found between the Plug-in-Gait and the gait 2392 OpenSim model. The majority of these differences (94.4%) were attributed to differences in the anatomical models, which included different anatomical segment frames and joint constraints. Different computational methods (DK versus IK) were responsible for only 2.7% of the differences. We recommend using the same anatomical model for kinematic and musculoskeletal analysis to ensure consistency between the obtained joint angles and musculoskeletal estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. MO-FG-CAMPUS-IeP3-01: Evaluation of Specific Absorption Rate and Temperature Increase Induced by Artificial Medical Implants During MRI Scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Y

    Purpose: Heating of patients or burning of biological tissues around medical implants by RF power during MRI scan is a significant patient safety concern. The purpose of this study is to not only measure SAR values, but also RF-induced temperature elevation due to artificial hip joints during MRI scans. Methods: SAR measurement experiment was performed on three discrete manufacturers at 1.5 and 3T. Three MRI RF sequences (T1w TSE, T2w inversion recovery, and T2w TSE) with imaging parameters were selected. A gelled saline phantom mimicking human body tissue was made (Fig.1). FDTD method was utilized to calculate the SAR distributionmore » using Sim4Life software. Based on the results of the simulation, 4 electrical field (E-field) sensors were located around two artificial hip joints inside the phantom. 56 Fiber Bragg Grating (FBG) temperature sensors (28 sensors on each artificial hip joint) were located on both left and right artificial hip joints to measure temperature change during MRI scan (Fig.1). Both E-field and FBG temperature sensors were calibrated with traceability at Korea Research Institute of Standards and Science (KRISS). Results: Simulation shows that high SAR values occur in the head and tail of the implanted artificial hip joints (Fig.1 lower right). 3T MRI scanner shows that the local averaged-SAR values measured by probe 1, 2, and 3 are 2.30, 2.77, and 1.68 W/kg, compared to MRI scanner-reported whole body SAR value (≤1.5 W/kg) for T1w TSE and T2w-IR (Table 1). The maximum temperature elevation measured by FBG sensors is 1.49°C at 1.5 T, 2.0°C at 3 T, and 2.56°C at 3 T for T1w TSE, respectively (Table 2). Conclusion: It is essential to assess the safety of MRI system for patient with medical implant by measuring not only accurate SAR deposited in the body, but also temperature elevation due to the deposited SAR during clinical MRI.« less

  1. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    NASA Astrophysics Data System (ADS)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  2. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas.

    PubMed

    Hojjati, Mojgan; Badve, Chaitra; Garg, Vasant; Tatsuoka, Curtis; Rogers, Lisa; Sloan, Andrew; Faulhaber, Peter; Ros, Pablo R; Wolansky, Leo J

    2018-01-01

    To compare the utility of quantitative PET/MRI, dynamic susceptibility contrast (DSC) perfusion MRI (pMRI), and PET/CT in differentiating radiation necrosis (RN) from tumor recurrence (TR) in patients with treated glioblastoma multiforme (GBM). The study included 24 patients with GBM treated with surgery, radiotherapy, and temozolomide who presented with progression on imaging follow-up. All patients underwent PET/MRI and pMRI during a single examination. Additionally, 19 of 24 patients underwent PET/CT on the same day. Diagnosis was established by pathology in 17 of 24 and by clinical/radiologic consensus in 7 of 24. For the quantitative PET/MRI and PET/CT analysis, a region of interest (ROI) was drawn around each lesion and within the contralateral white matter. Lesion to contralateral white matter ratios for relative maximum, mean, and median were calculated. For pMRI, lesion ROI was drawn on the cerebral blood volume (CBV) maps and histogram metrics were calculated. Diagnostic performance for each metric was assessed using receiver operating characteristic curve analysis and area under curve (AUC) was calculated. In 24 patients, 28 lesions were identified. For PET/MRI, relative mean ≥ 1.31 resulted in AUC of .94 with both sensitivity and negative predictive values (NPVs) of 100%. For pMRI, CBV max ≥3.32 yielded an AUC of .94 with both sensitivity and NPV measuring 100%. The joint model utilizing r-mean (PET/MRI) and CBV mode (pMRI) resulted in AUC of 1.0. Our study demonstrates that quantitative PET/MRI parameters in combination with DSC pMRI provide the best diagnostic utility in distinguishing RN from TR in treated GBMs. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  3. Effect of Cervical Interlaminar Epidural Steroid Injection: Analysis According to the Neck Pain Patterns and MRI Findings

    PubMed Central

    Choi, Ji Won; Lim, Hyung Woo; Lee, Jin Young; Lee, Won Il; Lee, Eun Kyung; Chang, Choo Hoon; Yang, Jae Young

    2016-01-01

    Background It is widely accepted that cervical interlaminar steroid injection (CIESI) is more effective in treating radicular pain than axial neck pain, but without direct comparison. And the differences of effect after CIESI according to MRI findings are inconsistent. In this retrospective study, we evaluated the therapeutic response of CIESI according to pain sites, durations, MRI findings, and other predictive factors altogether, unlike previous studies, which evaluated them separately. Methods The medical records of 128 patients who received fluoroscopy guided CIESI were analyzed. We evaluated the therapeutic response (more than a 50% reduction on the visual analog scale [VAS] by their second visit) after CIESI by (1) pain site; neck pain without radicular pain/radicular pain with or without neck pain, (2) pain duration; acute/chronic (more than 6 month), and (3) findings of MRI; herniated intervertebral disc (HIVD)/spinal stenosis, respectively and altogether. Results Eighty-eight patients (68%) responded to CIESI, and there were no significant differences in demographic data, initial VAS score, or laboratory findings. And there were no significant differences in the response rate relating to pain site, pain duration, or MRI findings, respectively. In additional analysis, acute radicular pain with HIVD patients showed significantly better response than chronic neck pain with spinal stenosis (P = 0.04). Conclusions We cannot find any sole predictive factor of therapeutic response to the CIESI. But the patients having acute radicular pain with HIVD showed the best response, and those having other chronic neck pain showed the worst response to CIESI. PMID:27103964

  4. Initial Investigation of Factors Influencing Radiation Dose to Patients Undergoing Barium-Based Fluoroscopy Procedures in Tanzania.

    PubMed

    Ngaile, J E; Msaki, P K; Kazema, R R; Schreiner, L J

    2017-04-25

    The aim of this study was to investigate the nature and causes of radiation dose imparted to patients undergoing barium-based X-ray fluoroscopy procedures in Tanzania and to compare these doses to those reported in the literature from other regions worldwide. The air kerma area product (KAP) to patient undergoing barium investigations of gastrointestinal tract system was obtained from four consultant hospitals. The KAP was determined using a flat transparent transmission ionization chamber. Mean values of KAP for barium swallow (BS), barium meal (BM) and barium enema (BE) were 2.79, 2.62 and 15.04 Gy cm2, respectively. The mean values of KAP per hospital for the BS, BM and BE procedures varied by factors of up to 7.3, 1.6 and 2.0, respectively. The overall difference between individual patient doses across the four consultant hospitals investigated differed by factors of up to 53, 29.5 and 12 for the BS, BM and BE procedures, respectively. The majority of the mean values of KAP was lower than the reported values for Ghana, Greece, Spain and the UK, while slightly higher than those reported for India. The observed wide variation of KAP values for the same fluoroscopy procedure within and among the hospitals was largely attributed to the dynamic nature of the procedures, the patient characteristics, the skills and experience of personnel, and the different examination protocols employed among hospitals. The observed great variations of procedural protocols and patient doses within and across the hospitals call for the need to standardize examination protocols and optimize barium-based fluoroscopy procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A comparison of the diagnostic accuracy of MARS MRI and ultrasound of the painful metal-on-metal hip arthroplasty.

    PubMed

    Siddiqui, Imran A; Sabah, Shiraz A; Satchithananda, Keshthra; Lim, Adrian K; Cro, Suzie; Henckel, Johann; Skinner, John A; Hart, Alister J

    2014-08-01

    Metal artifact reduction sequence (MARS) MRI and ultrasound scanning (USS) can both be used to detect pseudotumors, abductor muscle atrophy, and tendinous pathology in patients with painful metal-on-metal (MOM) hip arthroplasty. We wanted to determine the diagnostic test characteristics of USS using MARS MRI as a reference for detection of pseudotumors and muscle atrophy. PatienTS AND METHODS: We performed a prospective cohort study to compare MARS MRI and USS findings in 19 consecutive patients with unilateral MOM hips. Protocolized USS was performed by consultant musculoskeletal radiologists who were blinded regarding clinical details. Reports were independently compared with MARS MRI, the imaging gold standard, to calculate predictive values. The prevalence of pseudotumors on MARS MRI was 68% (95% CI: 43-87) and on USS it was 53% (CI: 29-76). The sensitivity of USS in detecting pseudotumors was 69% (CI 39-91) and the specificity was 83% (CI: 36-97). The sensitivity of detection of abductor muscle atrophy was 47% (CI: 24-71). In addition, joint effusion was detected in 10 cases by USS and none were seen by MARS MRI. We found a poor agreement between USS and MARS MRI. USS was inferior to MARS MRI for detection of pseudotumors and muscle atrophy, but it was superior for detection of joint effusion and tendinous pathologies. MARS MRI is more advantageous than USS for practical reasons, including preoperative planning and longitudinal comparison.

  6. [MRI monitoring of autologous hyaline cartilage grafts in the knee joint: a follow-up study over 12 months].

    PubMed

    Müller-Horvat, C; Schick, F; Claussen, C D; Grönewäller, E

    2004-12-01

    To evaluate the suitability of different MR sequences for monitoring the stage of maturation of hyaline cartilage grafts in the knee joint and the early detection of complications like hypertrophy. In addition, it was analyzed whether indirect MR arthrography can indicate debonding of the graft. MRI examinations were performed in 19 patients, aged 17 - 48 years, with autologous transplantation of a hyaline cartilage tissue graft after knee trauma. Examination dates were prior to transplantation to localize the defect, and 6 weeks, 3, 6 and 12 months after transplantation to control morphology and maturation of the autologous graft. Standard T2- and proton-density-weighted turbo spin echo (TSE) sequences and T1-weighted spin echo (SE) sequences were used, as well as gradient echo (GRE) sequences with and without magnetization transfer (MT) prepulses. In some cases, indirect MR arthrography was performed. Cartilage defect and the hyaline cartilage graft could be detected in all 19 patients. Hypertrophy of the graft could be found early in 3 patients and debonding in 1 patient. For depicting the graft a short time after surgery, T2-weighted TSE-sequences showed the best results. Six and 12 months after transplantation, spoiled 3D-GRE-sequences like FLASH3D (fast low angle shot) showed reduced artifacts due to magnetic residues from the surgery. Difference images from GRE-sequences with and without MT pulse provided high contrast between cartilage and surrounding tissue. The quantification of the MT effect showed an assimilation of the graft to the original cartilage within 12 months. Indirect MR arthrography showed subchondral contrast medium even 12 months after transplantation in 3 patients. MRI allows a reliable depiction of the hyaline graft and provides very early detection of complications like hypertrophy. The MT effect seems to be correlated with maturation of the graft and allows selective depiction of normal cartilage and engrafted cartilage.

  7. Joint 6D k-q Space Compressed Sensing for Accelerated High Angular Resolution Diffusion MRI.

    PubMed

    Cheng, Jian; Shen, Dinggang; Basser, Peter J; Yap, Pew-Thian

    2015-01-01

    High Angular Resolution Diffusion Imaging (HARDI) avoids the Gaussian. diffusion assumption that is inherent in Diffusion Tensor Imaging (DTI), and is capable of characterizing complex white matter micro-structure with greater precision. However, HARDI methods such as Diffusion Spectrum Imaging (DSI) typically require significantly more signal measurements than DTI, resulting in prohibitively long scanning times. One of the goals in HARDI research is therefore to improve estimation of quantities such as the Ensemble Average Propagator (EAP) and the Orientation Distribution Function (ODF) with a limited number of diffusion-weighted measurements. A popular approach to this problem, Compressed Sensing (CS), affords highly accurate signal reconstruction using significantly fewer (sub-Nyquist) data points than required traditionally. Existing approaches to CS diffusion MRI (CS-dMRI) mainly focus on applying CS in the q-space of diffusion signal measurements and fail to take into consideration information redundancy in the k-space. In this paper, we propose a framework, called 6-Dimensional Compressed Sensing diffusion MRI (6D-CS-dMRI), for reconstruction of the diffusion signal and the EAP from data sub-sampled in both 3D k-space and 3D q-space. To our knowledge, 6D-CS-dMRI is the first work that applies compressed sensing in the full 6D k-q space and reconstructs the diffusion signal in the full continuous q-space and the EAP in continuous displacement space. Experimental results on synthetic and real data demonstrate that, compared with full DSI sampling in k-q space, 6D-CS-dMRI yields excellent diffusion signal and EAP reconstruction with low root-mean-square error (RMSE) using 11 times less samples (3-fold reduction in k-space and 3.7-fold reduction in q-space).

  8. Intra-articular post-traumatic ankle joint mass imitating localized pigmented villonodular synovitis (LPVS), the aid of ankle arthroscopy for diagnosis and treatment-a case report.

    PubMed

    Zampeli, Franceska; Giotis, Dimitrios; Mantellos, Georgios; Kosta, Paraskevi; Georgoulis, Anastasios D

    2015-03-01

    Intra-articular post-traumatic ankle joint mass is a rare entity that may mimic other pathologies, mainly localized form of pigmented villonodular synovitis (LPVS) regarding the clinical and imaging characteristics. We report the case of a 16-year-old female patient that presented an intra-articular ankle joint mass 8 months after an ankle joint sprain for which magnetic resonance imaging (MRI) suggested LPVS as possible diagnosis due to the presence of hemosiderin deposits. Diagnosis of a post-traumatic hematoma of her ankle joint was made via fine needle aspiration (FNA) biopsy and anterior ankle arthroscopy. At one-year-follow-up after the arthroscopic excision of the hematoma, the patient remained asymptomatic and pain free while MRI revealed no pathologic findings. This case demonstrates that LPVS is not always the diagnosis when hemosiderin deposits are depicted on the MRI of a solitary intra-articular mass. The FNA biopsy under direct arthroscopic view assists the diagnosis and guides the treatment plan in cases that no definite diagnosis has been reached preoperatively by MRI. Level of evidence IV, case report. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Magnetic Resonance Imaging Zygapophyseal Joint Space Changes (Gapping) in Low Back Pain Patients following Spinal Manipulation and Side Posture Positioning: A Randomized Controlled Mechanisms Trial with Blinding

    PubMed Central

    Cramer, Gregory D.; Cambron, Jerrilyn; Cantu, Joe A; Dexheimer, Jennifer M.; Pocius, Judith D; Gregerson, Douglas; Fergus, Michael; McKinnis, Ray; Grieve, Thomas J

    2013-01-01

    Objective The purpose of this study was to quantify lumbar zygapophyseal (Z) joint space separation (gapping) in low back pain (LBP) subjects after spinal manipulative therapy (SMT) or side-posture positioning (SPP). Methods This was a controlled mechanisms trial with randomization and blinding. Acute LBP subjects (N=112, four n=28 MRI protocol groups) had 2 magnetic resonance imaging (MRI) appointments (initial enrollment [M1] and following 2 weeks of chiropractic treatment [M2]; receiving 2 MRI scans of the L4/L5 and L5/S1 Z joints at each MRI appointment. After the first MRI scan of each appointment, subjects were randomized (M1 appointment) or assigned (M2 appointment) into SPP (non-manipulation), SMT (manipulation), or control MRI protocol groups. After SPP or SMT, a second MRI was taken. The central anterior-posterior (A-P) joint space was measured. Difference between most painful side A-P measurements taken post- and pre-intervention was the Z joint “gapping difference.” Gapping differences were compared (ANOVA) among protocol groups. Secondary measures of pain visual analog scale (VAS), verbal numeric pain rating scale (VNPRS), and function Bournemouth questionnaire (BQ) were assessed. Results Gapping differences were significant at the first (adjusted, p=0.01; SPP=0.66 +0.48mm; SMT=0.23 +0.86; control=0.18 +0.71) and second (adjusted, p=0.0005; SPP=0.65 +0.92mm, SMT=0.89 +0.71; control=0.35 +0.32) MRI appointments. VNPRS differences were significant at first MRI appointment (p=0.04) with SMT showing the greatest improvement. VAS and BQ improved after two weeks of care in all groups (both p<0.0001). Conclusions SPP showed greatest gapping at baseline. After two weeks, SMT resulted in greatest gapping. SPP appeared to have additive therapeutic benefit to SMT. PMID:23648055

  10. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study

    PubMed Central

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586

  11. [The temporomandibular joint in juvenile idiopathic arthritis: what radiologists need to look for on magnetic resonance imaging].

    PubMed

    De La Hoz Polo, M; Navallas, M

    2014-01-01

    The term "juvenile idiopathic arthritis" (JIA) encompasses a group of arthritis of unknown cause with onset before the age of 16 years that last for at least 6 weeks. The prevalence of temporomandibular joint involvement in published series ranges from 17% to 87%. Temporomandibular joint involvement is difficult to detect clinically, so imaging plays a key role in diagnosis and monitoring treatment. MRI is the technique of choice for the study of arthritis of the temporomandibular joint because it is the most sensitive technique for detecting acute synovitis and bone edema. Power Doppler ultrasonography can also detect active synovitis by showing the hypervascularization of the inflamed synovial membrane, but it cannot identify bone edema. This article describes the MRI technique for evaluating the temporomandibular joint in patients with juvenile idiopathic arthritis, defines the parameters to look for, and illustrates the main findings. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.

  12. Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study.

    PubMed

    Sairyo, Koichi; Sakai, Toshinori; Mase, Yasuyoshi; Kon, Tamiyo; Shibuya, Isao; Kanamori, Yasuo; Kosugi, Tatsuo; Dezawa, Akira

    2011-11-01

    For children and adolescents who are very active athletes, fresh lumbar spondylolysis is the main pathologic cause of lower back pain (LBP). However, regarding the terminal-stage spondylolysis (pars defect), there have been few studies to clarify the pathomechanism of LBP. The purpose of this study is to clarify the cause of LBP associated with pars defects in athletes. This is the first report showing a possible pathomechanism of LBP in active athletes with painful pars defect. Six pediatric athletes (5 boys and 1 girl) below 18 years old with painful bilateral lumbar spondylolysis were evaluated. In all cases, spondylolysis was identified as terminal stage (pseudoarthrosis) on CT scan. To evaluate the inflammation around the pars defects, short time inversion recovery (STIR) MRI was performed along with the sagittal section. Fluid collection, which is an indicator of inflammatory events, was evaluated in 12 pars defects as well as in 12 cranial and caudal adjoining facet joints. Inflammation (i.e., fluid collection) was observed in all 12 pars defects in six subjects at the pseudoarthrotic pars defects. In terms of facet joints, 7 of 12 (58%) pars defects showed fluid collection at the cranial and/or caudal adjoining joints on STIR MRI. The present study showed that inflammation was always present at the pars defects and in some cases at the adjoining facet joints. Thus, it is not difficult to understand how, during sports activity, inflammation may first occur at the pseudoarthrotic site and then spread to the adjoining facet joints. This mechanism could cause LBP associated with terminal-stage (pseudoarthrotics) spondylolysis in athletes.

  13. Organ dose assessment in pediatric fluoroscopy and CT via a tomographic computational phantom of the newborn patient

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.

    Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients

  14. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration

    PubMed Central

    Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L.; Major, Paul W.

    2017-01-01

    Purpose To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. Methods MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. Results The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. Conclusion The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ’s soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time. PMID:28095486

  15. Three-Dimensional Assessment of Temporomandibular Joint Using MRI-CBCT Image Registration.

    PubMed

    Al-Saleh, Mohammed A Q; Punithakumar, Kumaradevan; Lagravere, Manuel; Boulanger, Pierre; Jaremko, Jacob L; Major, Paul W

    2017-01-01

    To introduce a new approach to reconstruct a 3D model of the TMJ using magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) registered images, and to evaluate the intra-examiner reproducibility values of reconstructing the 3D models of the TMJ. MRI and CBCT images of five patients (10 TMJs) were obtained. Multiple MRIs and CBCT images were registered using a mutual information based algorithm. The articular disc, condylar head and glenoid fossa were segmented at two different occasions, at least one-week apart, by one investigator, and 3D models were reconstructed. Differences between the segmentation at two occasions were automatically measured using the surface contours (Average Perpendicular Distance) and the volume overlap (Dice Similarity Index) of the 3D models. Descriptive analysis of the changes at 2 occasions, including means and standard deviation (SD) were reported to describe the intra-examiner reproducibility. The automatic segmentation of the condyle revealed maximum distance change of 1.9±0.93 mm, similarity index of 98% and root mean squared distance of 0.1±0.08 mm, and the glenoid fossa revealed maximum distance change of 2±0.52 mm, similarity index of 96% and root mean squared distance of 0.2±0.04 mm. The manual segmentation of the articular disc revealed maximum distance change of 3.6±0.32 mm, similarity index of 80% and root mean squared distance of 0.3±0.1 mm. The MRI-CBCT registration provides a reliable tool to reconstruct 3D models of the TMJ's soft and hard tissues, allows quantification of the articular disc morphology and position changes with associated differences of the condylar head and glenoid fossa, and facilitates measuring tissue changes over time.

  16. Pitfalls in MR morphology of the sterno-costo-clavicular region using whole-body MRI.

    PubMed

    Jurik, A G; Zejden, A; Lambert, R G W; Rufibach, K; Hodler, J; Maksymowych, W P; Duewell, S; Kissling, R O; Weber, U

    2013-08-01

    To analyse the imaging findings at the sterno-costo-clavicular (SCC) joint region using whole-body (WB) magnetic resonance imaging (MRI) in healthy individuals to minimize misinterpretation as changes due to spondyloarthritis (SpA). As part of a cross-sectional study of 122 SpA patients, 75 healthy individuals (42/33 males/females; median age 30.3 years; range 17.7-63.8 years) were scanned using sagittal and coronal WB short tau inversion recovery (STIR) and T1-weighted MRI sequences. The SCC region was analysed independently by seven readers for bone marrow oedema (BMO), erosions, subchondral fat signal intensity (FSI), and joint fluid accumulation. SCC changes simulating inflammation were reported by four or more of the seven readers in 15 (20%) healthy individuals (12 male/three female; median age 32.1 years; range 20.2-48 years). Thirteen individuals (17%) had changes at the manubriosternal joint (MSJ); five had BMO, one BMO + erosion, four erosion, two erosion + FSI, and one FSI only. Changes at the sternoclavicular joint occurred in three individuals (4%) encompassing erosion, erosion + FSI + BMO, and joint fluid accumulation, respectively. One patient had both MSJ and sternoclavicular joint changes. Findings mimicking inflammatory changes occurred in healthy individuals, particularly in the MSJ. Awareness of this is important in recognition of SCC inflammation in SpA. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Prevalence of degenerative and spondyloarthritis-related magnetic resonance imaging findings in the spine and sacroiliac joints in patients with persistent low back pain.

    PubMed

    Arnbak, Bodil; Jensen, Tue S; Egund, Niels; Zejden, Anna; Hørslev-Petersen, Kim; Manniche, Claus; Jurik, Anne G

    2016-04-01

    To estimate the prevalence of degenerative and spondyloarthritis (SpA)-related magnetic resonance imaging (MRI) findings in the spine and sacroiliac joints (SIJs) and analyse their association with gender and age in persistent low back pain (LBP) patients. Degenerative and SpA-related MRI findings in the whole spine and SIJs were evaluated in Spine Centre patients aged 18-40 years with LBP. Among the 1,037 patients, the prevalence of disc degeneration, disc contour changes and vertebral endplate signal (Modic) changes were 87 % (±SEM 1.1), 82 % (±1.2) and 48 % (±1.6). All degenerative spinal findings were most frequent in men and patients aged 30-40 years. Spinal SpA-related MRI findings were rare. In the SIJs, 28 % (±1.4) had at least one MRI finding, with bone marrow oedema being the most common (21 % (±1.3)). SIJ erosions were most prevalent in patients aged 18-29 years and bone marrow oedema in patients aged 30-40 years. SIJ sclerosis and fatty marrow deposition were most common in women. SIJ bone marrow oedema, sclerosis and erosions were most frequent in women indicating pregnancy-related LBP. The high prevalence of SIJ MRI findings associated with age, gender, and pregnancy-related LBP need further investigation of their clinical importance in LBP patients. • The location of vertebral endplate signal changes supports a mechanical aetiology. • Several sacroiliac joint findings were associated with female gender and pregnancy-related back pain. • Sacroiliac joint bone marrow oedema was frequent and age-associated, indicating a possible degenerative aetiology. • More knowledge of the clinical importance of sacroiliac joint MRI findings is needed.

  18. Incidence of elbow injuries in adolescent baseball players: screening by a low field magnetic resonance imaging system specialized for small joints.

    PubMed

    Okamoto, Yoshikazu; Maehara, Kiyoshi; Kanahori, Tetsuya; Hiyama, Takashi; Kawamura, Takashi; Minami, Manabu

    2016-04-01

    The aim of this preliminary study was to examine the capability of screening for elbow injuries induced by baseball using a low field small joint MRI system. Sixty-two players in the 4th-6th elementary school grades, with ages ranging from 9 to 12 years, participated in this study. Screening for elbow injuries was performed using a low-magnetic-field (0.2-T) magnetic resonance imaging (MRI) system designed for examinations of small joints of the extremities. Gradient-echo coronal, sagittal, and short-tau inversion recovery (STIR) coronal images of the dominant arm used for pitching were obtained to identify medial collateral ligament (MCL) injuries with or without avulsion fracture and osteochondritis dissecans. All 62 examinations were performed successfully, with 26 players (41.9 %) showing positive findings, all being confined to the MCL. No child showed bone damage. All criteria in the MRI evaluation of injuries showed high agreement rates and kappa values between two radiologists. Screening for early detection of elbow injuries in junior Japanese baseball players can be successfully performed using a low-field MRI system specialized for small joints. The percentage of MCL injury without avulsion fracture was unexpectedly high (41.9 %).

  19. An Outcome and Cost Analysis Comparing Single-Level Minimally Invasive Transforaminal Lumbar Interbody Fusion Using Intraoperative Fluoroscopy versus Computed Tomography-Guided Navigation.

    PubMed

    Khanna, Ryan; McDevitt, Joseph L; Abecassis, Zachary A; Smith, Zachary A; Koski, Tyler R; Fessler, Richard G; Dahdaleh, Nader S

    2016-10-01

    Minimally invasive transforaminal lumbar interbody fusion (TLIF) has undergone significant evolution since its conception as a fusion technique to treat lumbar spondylosis. Minimally invasive TLIF is commonly performed using intraoperative two-dimensional fluoroscopic x-rays. However, intraoperative computed tomography (CT)-based navigation during minimally invasive TLIF is gaining popularity for improvements in visualizing anatomy and reducing intraoperative radiation to surgeons and operating room staff. This is the first study to compare clinical outcomes and cost between these 2 imaging techniques during minimally invasive TILF. For comparison, 28 patients who underwent single-level minimally invasive TLIF using fluoroscopy were matched to 28 patients undergoing single-level minimally invasive TLIF using CT navigation based on race, sex, age, smoking status, payer type, and medical comorbidities (Charlson Comorbidity Index). The minimum follow-up time was 6 months. The 2 groups were compared in regard to clinical outcomes and hospital reimbursement from the payer perspective. Average surgery time, anesthesia time, and hospital length of stay were similar for both groups, but average estimated blood loss was lower in the fluoroscopy group compared with the CT navigation group (154 mL vs. 262 mL; P = 0.016). Oswestry Disability Index, back visual analog scale, and leg visual analog scale scores similarly improved in both groups (P > 0.05) at 6-month follow-up. Cost analysis showed that average hospital payments were similar in the fluoroscopy versus the CT navigation groups ($32,347 vs. $32,656; P = 0.925) as well as payments for the operating room (P = 0.868). Single minimally invasive TLIF performed with fluoroscopy versus CT navigation showed similar clinical outcomes and cost at 6 months. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Update on the recommended viewing protocol for FAXIL threshold contrast detail detectability test objects used in television fluoroscopy.

    PubMed

    Launders, J H; McArdle, S; Workman, A; Cowen, A R

    1995-01-01

    The significance of varying the viewing conditions that may affect the perceived threshold contrast of X-ray television fluoroscopy systems has been investigated. Factors investigated include the ambient room lighting and the viewing distance. The purpose of this study is to find the optimum viewing protocol with which to measure the threshold detection index. This is a particular problem when trying to compare the image quality of television fluoroscopy systems in different input field sizes. The results show that the viewing distance makes a significant difference to the perceived threshold contrast, whereas the ambient light conditions make no significant difference. Experienced observers were found to be capable of finding the optimum viewing distance for detecting details of each size, in effect using a flexible viewing distance. This allows the results from different field sizes to be normalized to account for both the magnification and the entrance air kerma rate differences, which in turn allow for a direct comparison of performance in different field sizes.

  1. Learning Computational Models of Video Memorability from fMRI Brain Imaging.

    PubMed

    Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming

    2015-08-01

    Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.

  2. Determination of Gastrointestinal Transit Times in Barred Owls ( Strix varia ) by Contrast Fluoroscopy.

    PubMed

    Doss, Grayson A; Williams, Jackie M; Mans, Christoph

    2017-06-01

    Contrast imaging studies are routinely performed in avian patients when an underlying abnormality of the gastrointestinal (GI) tract is suspected. Fluoroscopy offers several advantages over traditional radiography and can be performed in conscious animals with minimal stress and restraint. Although birds of prey are commonly encountered as patients, little is known about GI transit times and contrast imaging studies in these species, especially owls. Owls are commonly encountered in zoological, educational, and wildlife settings. In this study, 12 adult barred owls ( Strix varia ) were gavage fed a 30% weight-by-volume barium suspension (25 mL/kg body weight). Fluoroscopic exposures were recorded at 5, 15, 30, 60, 120, 180, 240, and 300 minutes after administration. Overall GI transit time and transit times of various GI organs were recorded. Median (interquartile range [IQR]) overall GI transit time was 60 minutes (IQR: 19-60 minutes) and ranged from 5-120 minutes. Ventricular and small intestinal contrast filling was rapid. Ventricular emptying was complete by a median of 60 minutes (IQR: 30-120 minutes; range: 30-240 minutes), whereas small intestinal emptying was not complete in 9/12 birds by 300 minutes. Median small intestinal contraction rate was 15 per minute (IQR: 13-16 minutes; range: 10-19 minutes). Median overall GI transit time in barred owls is more rapid than mean transit times reported for psittacine birds and red-tailed hawks ( Buteo jamaicensis ). Fluoroscopy is a safe, suitable method for investigating GI motility and transit in this species.

  3. Musculoskeletal MRI findings of juvenile localized scleroderma.

    PubMed

    Eutsler, Eric P; Horton, Daniel B; Epelman, Monica; Finkel, Terri; Averill, Lauren W

    2017-04-01

    Juvenile localized scleroderma comprises a group of autoimmune conditions often characterized clinically by an area of skin hardening. In addition to superficial changes in the skin and subcutaneous tissues, juvenile localized scleroderma may involve the deep soft tissues, bones and joints, possibly resulting in functional impairment and pain in addition to cosmetic changes. There is literature documenting the spectrum of findings for deep involvement of localized scleroderma (fascia, muscles, tendons, bones and joints) in adults, but there is limited literature for the condition in children. We aimed to document the spectrum of musculoskeletal magnetic resonance imaging (MRI) findings of both superficial and deep juvenile localized scleroderma involvement in children and to evaluate the utility of various MRI sequences for detecting those findings. Two radiologists retrospectively evaluated 20 MRI studies of the extremities in 14 children with juvenile localized scleroderma. Each imaging sequence was also given a subjective score of 0 (not useful), 1 (somewhat useful) or 2 (most useful for detecting the findings). Deep tissue involvement was detected in 65% of the imaged extremities. Fascial thickening and enhancement were seen in 50% of imaged extremities. Axial T1, axial T1 fat-suppressed (FS) contrast-enhanced and axial fluid-sensitive sequences were rated most useful. Fascial thickening and enhancement were the most commonly encountered deep tissue findings in extremity MRIs of children with juvenile localized scleroderma. Because abnormalities of the skin, subcutaneous tissues and fascia tend to run longitudinally in an affected limb, axial T1, axial fluid-sensitive and axial T1-FS contrast-enhanced sequences should be included in the imaging protocol.

  4. Evaluation of the marsh deer stifle joint by imaging studies and gross anatomy.

    PubMed

    Shigue, D A; Rahal, S C; Schimming, B C; Santos, R R; Vulcano, L C; Linardi, J L; Teixeira, C R

    2015-12-01

    This study aimed to evaluate the stifle joint of marsh deer using imaging studies and in comparison with gross anatomy. Ten hindlimbs from 5 marsh deer (Blastocerus dichotomus) were used. Radiography, computed tomography (CT) and magnetic resonance imaging (MRI) were performed in each stifle joint. Two hindlimbs were dissected to describe stifle gross anatomy. The other limbs were sectioned in sagittal, dorsal or transverse planes. In the craniocaudal radiographic view, the lateral femoral condyle was broader than the medial femoral condyle. The femoral trochlea was asymmetrical. Subsequent multiplanar reconstruction revealed in the cranial view that the external surface of the patella was roughened, the medial trochlea ridge was larger than the lateral one, and the extensor fossa at the lateral condyle was next to the lateral ridge. The popliteal fossa was better visualized via the lateral view. Sagittal MRI images identified lateral and medial menisci, caudolateral and craniomedial bundles of cranial cruciate ligament, caudal cruciate ligament, patellar ligament and common extensor tendon. In conclusion, the marsh deer stifle presents some anatomical characteristics of the ovine stifle joint. © 2014 Blackwell Verlag GmbH.

  5. Radiologic Analysis and Clinical Study of the Upper One-third Joint Technique for Fluoroscopically Guided Sacroiliac Joint Injection.

    PubMed

    Park, Junghyun; Park, Hue Jung; Moon, Dong Eon; Sa, Gye Jeol; Kim, Young Hoon

    2015-01-01

    Sacroiliac intraarticular injection by the traditional technique can be challenging to perform when the joint is covered with osteophytes or is extremely narrow. To examine whether there is enough space for the needle to be advanced from the L5-S1 interspinous space to the upper one-third sacroiliac joint (SIJ) by magnetic resonance image (MRI) analysis as an alternative to fluoroscopically guided SIJ injection with the lower one-third joint technique, and to determine the feasibility of this novel technique in clinical practice. MRI analysis and observational study. An interventional pain management practice at a university hospital. We analyzed 200 axial T2-weighted MRIs between the L5 and S1 vertebrae of 100 consecutive patients. The following measurements were obtained on both sides: 1) the thickness of fat in the midline; 2) the distance between the midline (Point C) and the junction (Point A) of the skin and the imaginary line that connects the SIJ and the most medial cortex of the ilium; 3) the distance between the midline (Point C) and the junction (Point B) of the skin and the imaginary line that connects the SIJ and the L5 spinous process; 4) the distance between the SIJ and midline (Point C) on the skin, or between the SIJ and the midpoint (Point C') of the line from Point A to Point B; and 5) the angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin. The upper one-third joint technique was performed to establish the feasibility of the alternative technique in 20 patients who had unsuccessful sacroiliac intraarticular injections using the lower one-third joint technique. The mean distances from the midline to Point A and to Point B were 21.9 ± 13.7 mm and 27.8 ± 13.6 mm, respectively. The mean distance between the SIJ and Point C (or Point C') was 81.0 ± 13.3 mm. The angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin was 42.8 ± 5.1°. The success

  6. Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI

    PubMed Central

    Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.

    2018-01-01

    Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611

  7. Use of fluoroscopy-guided wire manipulation and/or laparoscopic surgery in the repair of malfunctioning peritoneal dialysis catheters.

    PubMed

    Kim, Hee Jin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Myung Jae

    2002-01-01

    Peritoneal catheter is the lifeline for the continuous ambulatory peritoneal dialysis (CAPD) patients. Over the years, obstruction or displacement of the CAPD catheter has been one of the common complications of CAPD. Fluoroscopy-guided wire manipulation or laparoscopic surgery has been developed to manage outflow obstruction. We analyzed the catheter outcome of fluoroscopy-guided wire manipulation or laparoscopic surgery to determine the ultimate benefit of these procedures. From June 1996 to August 2000, catheter complications were manipulated in 24 patients. Eleven (46%) of these patients were initially managed by guide wire under fluoroscopic control. The remaining 13 (54%) patients were manipulated by laparoscopic surgery. A successful outcome was defined as maintained normal peritoneal catheter function at 30 days after the manipulations. Among the catheters manipulated, 18 (75%) were inserted by nephrologist and 6 (25%) by surgeons at the initiation of CAPD. Tenckhoff double-cuff peritoneal catheters were inserted to all patients. The time elapsed between catheter insertion and manipulation varied from 1 to 60 days with a mean of 11 days. The primary causes of catheter malfunction were kinking in 1 case, omental wrapping with adhesions in 9 cases, and catheter displacements in the remaining 14 cases. Thirty-day catheter function was achieved in 50% (12/24) of initial catheter manipulations, with guide wire under fluoroscopic control (46%, 5/11) and laparoscopic surgery (54%, 7/13). Overall success rate of repeated manipulation was 71% (17 of 24). The successful outcome in repairing of the malfunctioning CAPD catheters could be increased by the combination of fluoroscopy-guided wire manipulation and laparoscopic surgery. Copyright 2002 S. Karger AG, Basel

  8. [Assessment of the surgeon radiation exposure during a minimally invasive TLIF: Comparison between fluoroscopy and O-arm system].

    PubMed

    Grelat, M; Zairi, F; Quidet, M; Marinho, P; Allaoui, M; Assaker, R

    2015-08-01

    Transforaminal lumbar interbody fusion with a minimally invasive approach (MIS TLIF) has become a very popular technique in the treatment of degenerative diseases of the lumbar spine, as it allows a decrease in muscle iatrogenic. However, iterative radiological controls inherent to this technique are responsible for a significant increase in exposure to ionizing radiation for the surgeon. New techniques for radiological guidance (O-arm navigation-assisted) would overcome this drawback, but this remains unproven. To analyze the exposure of the surgeon to intraoperative X-ray during a MIS TLIF under fluoroscopy and under O-arm navigation-assisted. This prospective study was conducted at the University Hospital of Lille from February to May 2013. Twelve patients underwent a MIS TLIF for the treatment of low-grade spondylolisthesis; six under standard fluoroscopy (group 1) and six under O-arm system (group 2). Passive dosimeters (rings and glasses) and active dosimeters for thorax were used to measure the radiation exposure of the surgeon. For group 1, the average time of fluoroscopy was 3.718 minutes (3.13-4.56) while no radioscopy was perform on group 2. For the first group, the average exposure dose was 12 μSv (5-20 μSv) on the thorax, 1168 μSv (510-2790 μSv) on the main hand and 179 μSv (103-486 μSv) on the lens. The exposure dose was measured zero on the second group. The maximum recommended doses can be reached, mainly for the lens. In addition to the radioprotection measures, O-arm navigation systems are safe alternatives to significantly reduce surgeon exposure. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. An MR-based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy

    PubMed Central

    Fischer, Peter; Faranesh, Anthony; Pohl, Thomas; Maier, Andreas; Rogers, Toby; Ratnayaka, Kanishka; Lederman, Robert; Hornegger, Joachim

    2017-01-01

    In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos. PMID:28692969

  10. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  11. Monte Carlo based estimation of organ and effective doses to patients undergoing hysterosalpingography and retrograde urethrography fluoroscopy procedures

    NASA Astrophysics Data System (ADS)

    Ngaile, J. E.; Msaki, P. K.; Kazema, R. R.

    2018-04-01

    Contrast investigations of hysterosalpingography (HSG) and retrograde urethrography (RUG) fluoroscopy procedures remain the dominant diagnostic tools for the investigation of infertility in females and urethral strictures in males, respectively, owing to the scarcity and high cost of services of alternative diagnostic technologies. In light of the radiological risks associated with contrast based investigations of the genitourinary tract systems, there is a need to assess the magnitude of radiation burden imparted to patients undergoing HSG and RUG fluoroscopy procedures in Tanzania. The air kerma area product (KAP), fluoroscopy time, number of images, organ dose and effective dose to patients undergoing HSG and RUG procedures were obtained from four hospitals. The KAP was measured using a flat transmission ionization chamber, while the organ and effective doses were estimated using the knowledge of the patient characteristics, patient related exposure parameters, geometry of examination, KAP and Monte Carlo calculations (PCXMC). The median values of KAP for the HSG and RUG were 2.2 Gy cm2 and 3.3 Gy cm2, respectively. The median organ doses in the present study for the ovaries, urinary bladder and uterus for the HSG procedures, were 1.0 mGy, 4.0 mGy and 1.6 mGy, respectively, while for urinary bladder and testes of the RUG were 3.4 mGy and 5.9 mGy, respectively. The median values of effective doses for the HSG and RUG procedures were 0.65 mSv and 0.59 mSv, respectively. The median values of effective dose per hospital for the HSG and RUG procedures had a range of 1.6-2.8 mSv and 1.9-5.6 mSv, respectively, while the overall differences between individual effective doses across the four hospitals varied by factors of up to 22.0 and 46.7, respectively for the HSG and RUG procedures. The proposed diagnostic reference levels (DRLs) for the HSG and RUG were for KAP 2.8 Gy cm2 and 3.9 Gy cm2, for fluoroscopy time 0.8 min and 0.9 min, and for number of images 5 and 4

  12. High resolution three-dimensional photoacoustic imaging of human finger joints in vivo

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Jiang, Huabei

    2015-08-01

    We present a method for noninvasively imaging the hand joints using a three-dimensional (3D) photoacoustic imaging (PAI) system. This 3D PAI system utilizes cylindrical scanning in data collection and virtual-detector concept in image reconstruction. The maximum lateral and axial resolutions of the PAI system are 70 μm and 240 μm. The cross-sectional photoacoustic images of a healthy joint clearly exhibited major internal structures including phalanx and tendons, which are not available from the current photoacoustic imaging methods. The in vivo PAI results obtained are comparable with the corresponding 3.0 T MRI images of the finger joint. This study suggests that the proposed method has the potential to be used in early detection of joint diseases such as osteoarthritis.

  13. Digital radiology using active matrix readout: amplified pixel detector array for fluoroscopy.

    PubMed

    Matsuura, N; Zhao, W; Huang, Z; Rowlands, J A

    1999-05-01

    Active matrix array technology has made possible the concept of flat panel imaging systems for radiography. In the conventional approach a thin-film circuit built on glass contains the necessary switching components (thin-film transistors or TFTs) to readout an image formed in either a phosphor or photoconductor layer. Extension of this concept to real time imaging--fluoroscopy--has had problems due to the very low noise required. A new design strategy for fluoroscopic active matrix flat panel detectors has therefore been investigated theoretically. In this approach, the active matrix has integrated thin-film amplifiers and readout electronics at each pixel and is called the amplified pixel detector array (APDA). Each amplified pixel consists of three thin-film transistors: an amplifier, a readout, and a reset TFT. The performance of the APDA approach compared to the conventional active matrix was investigated for two semiconductors commonly used to construct active matrix arrays--hydrogenated amorphous silicon and polycrystalline silicon. The results showed that with amplification close to the pixel, the noise from the external charge preamplifiers becomes insignificant. The thermal and flicker noise of the readout and the amplifying TFTs at the pixel become the dominant sources of noise. The magnitude of these noise sources is strongly dependent on the TFT geometry and its fabrication process. Both of these could be optimized to make the APDA active matrix operate at lower noise levels than is possible with the conventional approach. However, the APDA cannot be made to operate ideally (i.e., have noise limited only by the amount of radiation used) at the lowest exposure rate required in medical fluoroscopy.

  14. Zero-fluoroscopy cryothermal ablation of atrioventricular nodal re-entry tachycardia guided by endovascular and endocardial catheter visualization using intracardiac echocardiography (Ice&ICE Trial).

    PubMed

    Luani, Blerim; Zrenner, Bernhard; Basho, Maksim; Genz, Conrad; Rauwolf, Thomas; Tanev, Ivan; Schmeisser, Alexander; Braun-Dullaeus, Rüdiger C

    2018-01-01

    Stochastic damage of the ionizing radiation to both patients and medical staff is a drawback of fluoroscopic guidance during catheter ablation of cardiac arrhythmias. Therefore, emerging zero-fluoroscopy catheter-guidance techniques are of great interest. We investigated, in a prospective pilot study, the feasibility and safety of the cryothermal (CA) slow-pathway ablation in patients with symptomatic atrioventricular-nodal-re-entry-tachycardia (AVNRT) using solely intracardiac echocardiography (ICE) for endovascular and endocardial catheter visualization. Twenty-five consecutive patients (mean age 55.6 ± 12.0 years, 17 female) with ECG-documentation or symptoms suggesting AVNRT underwent an electrophysiology study (EPS) in our laboratory utilizing ICE for catheter navigation. Supraventricular tachycardia was inducible in 23 (92%) patients; AVNRT was confirmed by appropriate stimulation maneuvers in 20 (80%) patients. All EPS in the AVNRT subgroup could be accomplished without need for fluoroscopy, relying solely on ICE-guidance. CA guided by anatomical location and slow-pathway potentials was successful in all patients, median cryo-mappings = 6 (IQR:3-10), median cryo-ablations = 2 (IQR:1-3). Fluoroscopy was used to facilitate the trans-septal puncture and localization of the ablation substrate in the remaining 3 patients (one focal atrial tachycardia and two atrioventricular-re-entry-tachycardias). Mean EPS duration in the AVNRT subgroup was 99.8 ± 39.6 minutes, ICE guided catheter placement 11.9 ± 5.8 minutes, time needed for diagnostic evaluation 27.1 ± 10.8 minutes, and cryo-application duration 26.3 ± 30.8 minutes. ICE-guided zero-fluoroscopy CA in AVNRT patients is feasible and safe. Real-time visualization of the true endovascular borders and cardiac structures allow for safe catheter navigation during the ICE-guided EPS and might be an alternative to visualization technologies using geometry reconstructions. © 2017 Wiley Periodicals, Inc.

  15. A narrative overview of the current status of MRI of the hip and its relevance for osteoarthritis research - what we know, what has changed and where are we going?

    PubMed

    Crema, M D; Watts, G J; Guermazi, A; Kim, Y-J; Kijowski, R; Roemer, F W

    2017-01-01

    To review and discuss the role of magnetic resonance imaging (MRI) in the context of hip osteoarthritis (OA) research. The content of this narrative review, based on an extensive PubMed database research including English literature only, describes the advances in MRI of the hip joint and its potential usefulness in hip OA research, reviews the relevance of different MRI features in regard to symptomatic and structural progression in hip OA, and gives an outlook regarding future use of MRI in hip OA research endeavors. Recent technical advances have helped to overcome many of the past difficulties related to MRI assessment of hip OA. MRI-based morphologic scoring systems allow for detailed assessment of several hip joint tissues and, in combination with the recent advances in MRI, may increase reproducibility and sensitivity to change. Compositional MRI techniques may add to our understanding of disease onset and progression. Knowledge about imaging pitfalls and anatomical variants is crucial to avoid misinterpretation. In comparison to research on knee OA, the associations between MRI features and the incidence and progression of disease as well as with clinical symptoms have been little explored. Anatomic alterations of the hip joint as seen in femoro-acetabular impingement (FAI) seem to play a role in the onset and progression of structural damage. With the technical advances occurring in recent years, MRI may play a major role in investigating the natural history of hip OA and provide an improved method for assessment of the efficacy of new therapeutic approaches. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. A novel multi-planar radiography method for three dimensional pose reconstruction of the patellofemoral and tibiofemoral joints after arthroplasty.

    PubMed

    Amiri, Shahram; Wilson, David R; Masri, Bassam A; Sharma, Gulshan; Anglin, Carolyn

    2011-06-03

    Determining the 3D pose of the patella after total knee arthroplasty is challenging. The commonly used single-plane fluoroscopy is prone to large errors in the clinically relevant mediolateral direction. A conventional fixed bi-planar setup is limited in the minimum angular distance between the imaging planes necessary for visualizing the patellar component, and requires a highly flexible setup to adjust for the subject-specific geometries. As an alternative solution, this study investigated the use of a novel multi-planar imaging setup that consists of a C-arm tracked by an external optoelectric tracking system, to acquire calibrated radiographs from multiple orientations. To determine the accuracies, a knee prosthesis was implanted on artificial bones and imaged in simulated 'Supine' and 'Weightbearing' configurations. The results were compared with measures from a coordinate measuring machine as the ground-truth reference. The weightbearing configuration was the preferred imaging direction with RMS errors of 0.48 mm and 1.32 ° for mediolateral shift and tilt of the patella, respectively, the two most clinically relevant measures. The 'imaging accuracies' of the system, defined as the accuracies in 3D reconstruction of a cylindrical ball bearing phantom (so as to avoid the influence of the shape and orientation of the imaging object), showed an order of magnitude (11.5 times) reduction in the out-of-plane RMS errors in comparison to single-plane fluoroscopy. With this new method, complete 3D pose of the patellofemoral and tibiofemoral joints during quasi-static activities can be determined with a many-fold (up to 8 times) (3.4mm) improvement in the out-of-plane accuracies compared to a conventional single-plane fluoroscopy setup. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Update on the MRI Core of the Alzheimer's Disease Neuroimaging Initiative

    PubMed Central

    Jack, Clifford R; Bernstein, Matt A; Borowski, Bret J; Gunter, Jeffrey L; Fox, Nick C; Thompson, Paul M; Schuff, Norbert; Krueger, Gunnar; Killiany, Ronald J; DeCarli, Charles S; Dale, Anders M; Weiner, Michael W

    2010-01-01

    Functions of the ADNI MRI core fall into three categories: (1) those of the central MRI core lab at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data, and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present (“ADNI-GO”) and future (“ADNI-2”, if funded) MRI protocol will be to maintain MRI methodological consistency in previously enrolled “ADNI-1” subjects who are followed longitudinally in ADNI-GO and ADNI-2. We will modernize and expand the MRI protocol for all newly enrolled ADNI-GO and ADNI-2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1-weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI-GO and ADNI-2 protocol, we will perform vendor specific pilot sub-studies of arterial spin labeling perfusion, resting state functional connectivity and diffusion tensor imaging. One each of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub-studies are designed to demonstrate the feasibility of acquiring useful data in a multi-center (but single vendor) setting for these three emerging MRI applications. PMID:20451869

  18. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults.

    PubMed

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Davis, Simon W; Shafto, Meredith A; Taylor, Jason R; Williams, Nitin; Cam-Can; Rowe, James B

    2015-06-01

    In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task

  19. The effect of ageing on fMRI: Correction for the confounding effects of vascular reactivity evaluated by joint fMRI and MEG in 335 adults

    PubMed Central

    Henson, Richard N. A.; Tyler, Lorraine K.; Davis, Simon W.; Shafto, Meredith A.; Taylor, Jason R.; Williams, Nitin; Cam‐CAN; Rowe, James B.

    2015-01-01

    Abstract In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood‐oxygenation level‐dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting‐state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath‐hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age‐related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population‐based Cambridge Centre for Ageing and Neuroscience cohort (Cam‐CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task‐based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects

  20. Performance of blind source separation algorithms for fMRI analysis using a group ICA method.

    PubMed

    Correa, Nicolle; Adali, Tülay; Calhoun, Vince D

    2007-06-01

    Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.

  1. [Benign tumors and pseudotumors of temporo-mandibular joint: radiologic aspects].

    PubMed

    Izzo, L; Caputo, M; Buffone, A; Casullo, A; Perrone, A; Sassi, S; Impara, L; Luppi, G; Mazza, D; Marini, Marina

    2005-01-01

    Benign tumors and tumor-like lesions that involve temporo mandibular joint are very rare. Those more frequent are osteochondroma, chondroma, osteoma, pigmented villonodular synovitis and synovial chondromatosis. The Authors report six cases of patients affected by these pathologies in which imaging, such as TC, MRI and/or ortopantomography have been useful to have a diagnosis.

  2. Chondral lesions in the patellofemoral joint in MRI: Intra-individual comparison of short-tau inversion recovery sequence (STIR) with 2D multiple-echo data image combination sequence (MEDIC).

    PubMed

    Bodelle, Boris; Luboldt, Wolfgang; Wichmann, Julian L; Fischer, Sebastian; Vogl, Thomas J; Beeres, Martin

    2016-01-01

    To determine the value of the 2D multiple-echo data image combination (MEDIC) sequence relative to the short-tau inversion recovery (STIR) sequence regarding the depiction of chondral lesions in the patellofemoral joint. During a period of 6 month patients with acute pain at the anterior aspect of the knee, joint effusion and suspected chondral lesion defect in the patellofemoral joint underwent MRI including axial MEDIC and STIR imaging. Patients with chondral lesions in the patellofemoral joint on at least one sequence were included. The MEDIC and STIR sequence were quantitatively compared regarding the patella cartilage-to-effusion contrast-to-noise ratio (CNR) and qualitatively regarding the depiction of chondral lesions independently scored by two radiologists on a 3-point scale (1 = not depicted; 2 = blurred depicted; 3 = clearly depicted) using the Wilcoxon-Mann-Whitney-Test. For the analysis of inter-observer agreement the Cohen's Weighted Kappa test was used. 30 of 58 patients (male: female, 21:9; age: 44 ± 12 yrs) revealed cartilage lesions (fissures, n = 5 including fibrillation; gaps, n = 15; delamination, n = 7; osteoarthritis, n = 3) and were included in this study. The STIR-sequence was significantly (p < 0.001) superior to the MEDIC-sequence regarding both, the patella cartilage-to-effusion CNR (mean CNR: 232 ± 61 vs. 40 ± 16) as well as the depiction of chondral lesion (mean score: 2.83 ± 0.4 vs. 1.75 ± 0.7) with substantial inter-observer agreement in the rating of both sequences (κ = 0.76-0.89). For the depiction of chondral lesions in the patellofemoral joint, the axial STIR-sequence should be chosen in preference to the axial MEDIC-sequence.

  3. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    PubMed

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (p<0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Fluorescence optical imaging and 3T-MRI for detection of synovitis in patients with rheumatoid arthritis in comparison to a composite standard of reference.

    PubMed

    Thuermel, Klaus; Neumann, Jan; Jungmann, Pia M; Schäffeler, Christoph; Waldt, Simone; Heinze, Alexander; Beckmann, Alexander; Hauser, Christine; Hasenau, Anna-Lena; Wildgruber, Moritz; Clotten, Sigrun; Sievert, Matti; Haller, Bernhard; Woertler, Klaus; Harasser, Norbert; Rummeny, Ernst J; Meier, Reinhard

    2017-05-01

    To address whether Indocyanine Green (ICG) enhanced fluorescence optical imaging (FOI) is more sensitive than magnetic resonance imaging (MRI) in the detection of synovitis of the wrist and finger joints in rheumatoid arthritis and to analyze the performance of FOI depending on the grade of synovitis. Twenty patients with highly active rheumatoid arthritis (mean DAS28-ESR 5.25±1.0) and thirteen healthy volunteers underwent clinical examination, FOI and contrast-enhanced 3T-MRI. Joints were rated by three independent readers semiquantitatively (grade 0-3: no, low, moderate and high grade synovitis) and compared to a semiquantitative composite standard of reference (cSOR, grade 0-3) that incorporated clinical parameters, FOI and MRI results. 2.868 evaluations in 956 joints were performed. FOI had an overall sensitivity of 57.3% and a specificity of 92.1%, whereas MRI had a sensitivity of 89.2% and a specificity of 92.6%. The sensitivity of FOI increased with the degree of synovitis to 65.0% for moderate and severe synovitis (specificity 88.1%) and 76,3% for severe synovitis (specificity 80.5%). The performance of FOI decreased with the degree of synovitis with false negative results predominantly for mild (156/343, 45.5%) and moderate (160/343, 46.6%) synovitis and false positive FOI evaluations predominantly based on weak (grade 1) signals (133/163, 81,6%). FOI has a lower sensitivity than 3T-MRI in the detection of synovitis of the hand and finger joints. The diagnostic performance of FOI decreases with the degree of synovitis and with the strength of FOI signals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Inserting pedicle screws in the upper thoracic spine without the use of fluoroscopy or image guidance. Is it safe?

    PubMed

    Schizas, Constantin; Theumann, Nicolas; Kosmopoulos, Victor

    2007-05-01

    Several studies have looked at accuracy of thoracic pedicle screw placement using fluoroscopy, image guidance, and anatomical landmarks. To our knowledge the upper thoracic spine (T1-T6) has not been specifically studied in the context of screw insertion and placement accuracy without the use of either image guidance or fluoroscopy. Our objective was to study the accuracy of upper thoracic screw placement without the use of fluoroscopy or image guidance, and report on implant related complications. A single surgeon inserted 60 screws in 13 consecutive non-scoliotic spine patients. These were the first 60 screws placed in the high thoracic spine in our institution. The most common diagnosis in our patient population was trauma. All screws were inserted using a modified Roy-Camille technique. Post-operative axial computed tomography (CT) images were obtained for each patient and analyzed by an independent senior radiologist for placement accuracy. Implant related complications were prospectively noted. No pedicle screw misplacement was found in 61.5% of the patients. In the remaining 38.5% of patients some misplacements were noted. Fifty-three screws out of the total 60 implanted were placed correctly within all the pedicle margins. The overall pedicle screw placement accuracy was 88.3% using our modified Roy-Camille technique. Five medial and two lateral violations were noted in the seven misplaced screws. One of the seven misplaced screws was considered to be questionable in terms of pedicle perforation. No implant related complications were noted. We found that inserting pedicle screws in the upper thoracic spine based solely on anatomical landmarks was safe with an accuracy comparable to that of published studies using image-guided navigation at the thoracic level.

  6. CT fluoroscopy-guided percutaneous drainage: comparison of the one step and the Seldinger techniques.

    PubMed

    Kajiwara, Kenji; Yamagami, Takuji; Ishikawa, Masaki; Yoshimatsu, Rika; Baba, Yasutaka; Nakamura, Yuko; Fukumoto, Wataru; Awai, Kazuo

    2017-06-01

    To evaluate the one step technique compared with the Seldinger technique in computed tomography (CT) fluoroscopy-guided percutaneous drainage of abdominal and pelvic abscess. Seventy-six consecutive patients (49 men, 27 women; mean age 63.5 years, range 19-87 years) with abdominal and pelvic abscess were included in this study. Drainages were performed with the one step (n = 46) and with the Seldinger (n = 48) technique between September 2012 and June 2014. The technical success and clinical success rates were 95.8% and 93.5%, respectively, for the one step group, and 97.8% and 95.7%, respectively, for the Seldinger group. The mean procedure time was significantly shorter with the one step than with the Seldinger method (15.0 ± 4.3 min, range 10-29 min vs. 21.0 ± 9.5 min, range 13-54 min, p < .01). The mean abscess size and depth were 73.4 ± 44.0 mm and 42.5 ± 19.3 mm, respectively, in the one step group, and 61.0 ± 22.8 mm and 35.0 ± 20.7 mm in the Seldinger group. The one step technique was easier and faster than the Seldinger technique. The effectiveness of both techniques was similar for the CT fluoroscopy-guided percutaneous drainage of abdominal and pelvic abscess.

  7. Using biplanar fluoroscopy to guide radiopaque vascular injections: a new method for vascular imaging.

    PubMed

    O'Brien, Haley D; Williams, Susan H

    2014-01-01

    Studying vascular anatomy, especially in the context of relationships with hard tissues, is of great interest to biologists. Vascular studies have provided significant insight into physiology, function, phylogenetic relationships, and evolutionary patterns. Injection of resin or latex into the vascular system has been a standard technique for decades. There has been a recent surge in popularity of more modern methods, especially radiopaque latex vascular injection followed by CT scanning and digital "dissection." This technique best displays both blood vessels and bone, and allows injections to be performed on cadaveric specimens. Vascular injection is risky, however, because it is not a standardizable technique, as each specimen is variable with regard to injection pressure and timing. Moreover, it is not possible to view the perfusion of injection medium throughout the vascular system of interest. Both data and rare specimens can therefore be lost due to poor or excessive perfusion. Here, we use biplanar video fluoroscopy as a technique to guide craniovascular radiopaque latex injection. Cadaveric domestic pigs (Sus scrofa domestica) and white-tailed deer (Odocoileus virginianus) were injected with radiopaque latex under guidance of fluoroscopy. This method was found to enable adjustments, in real-time, to the rate, location, and pressure at which latex is injected in order to avoid data and specimen loss. In addition to visualizing the injection process, this technique can be used to determine flow patterns, and has facilitated the development of consistent markers for complete perfusion.

  8. Meta-Analysis of Zero or Near-Zero Fluoroscopy Use During Ablation of Cardiac Arrhythmias.

    PubMed

    Yang, Li; Sun, Ge; Chen, Xiaomei; Chen, Guangzhi; Yang, Shanshan; Guo, Ping; Wang, Yan; Wang, Dao Wen

    2016-11-15

    Data regarding the efficacy and safety of zero or near-zero fluoroscopic ablation of cardiac arrhythmias are limited. A literature search was conducted using PubMed and Embase for relevant studies through January 2016. Ten studies involving 2,261 patients were identified. Compared with conventional radiofrequency ablation method, zero or near-zero fluoroscopy ablation significantly showed reduced fluoroscopic time (standard mean difference [SMD] -1.62, 95% CI -2.20 to -1.05; p <0.00001), ablation time (SMD -0.16, 95% CI -0.29 to -0.04; p = 0.01), and radiation dose (SMD -1.94, 95% CI -3.37 to -0.51; p = 0.008). In contrast, procedure duration was not significantly different from that of conventional radiofrequency ablation (SMD -0.03, 95% CI -0.16 to 0.09; p = 0.58). There were no significant differences between both groups in immediate success rate (odds ratio [OR] 0.99, 95% CI 0.49 to 2.01; p = 0.99), long-term success rate (OR 1.13, 95% CI 0.42 to 3.02; p = 0.81), complication rates (OR 0.98, 95% CI 0.49 to 1.96; p = 0.95), and recurrence rates (OR 1.29, 95% CI 0.74 to 2.24; p = 0.37). In conclusion, radiation was significantly reduced in the zero or near-zero fluoroscopy ablation groups without compromising efficacy and safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Lightweight bilayer barium sulfate-bismuth oxide composite thyroid collars for superior radiation protection in fluoroscopy-guided interventions: a prospective randomized controlled trial.

    PubMed

    Uthoff, Heiko; Benenati, Matthew J; Katzen, Barry T; Peña, Constantino; Gandhi, Ripal; Staub, Daniel; Schernthaner, Melanie

    2014-02-01

    To test whether newer bilayer barium sulfate-bismuth oxide composite (XPF) thyroid collars (TCs) provide superior radiation protection and comfort during fluoroscopy-guided interventions compared with standard 0.5-mm lead-equivalent TCs. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant study, and 144 fluoroscopy-guided vascular interventions were included at one center between October 2011 and July 2012, with up to two operators randomly assigned to wear XPF (n = 135) or standard 0.5-mm lead-equivalent (n = 121) TCs. Radiation doses were measured by using dosimeters placed outside and underneath the TCs. Wearing comfort was assessed at the end of each procedure on a visual analog scale (0-100, with 100 indicating optimal comfort). Adjusted differences in comfort and radiation dose reductions were calculated by using a mixed logistic regression model and the common method of inverse variance weighting, respectively. Patient (height, weight, and body mass index) and procedure (type and duration of intervention, operator, fluoroscopy time, dose-area product, and air kerma) data did not differ between the XPF and standard groups. Comfort was assessed in all 256 measurements. On average, the XPF TCs were 47.6% lighter than the standard TCs (mean weight ± standard deviation, 133 g ± 14 vs 254 g ± 44; P < .001) and had a significantly higher likelihood of a high level of comfort (visual analog scale >90; odds ratio, 7.6; 95% confidence interval: 3.0, 19.2; P < .001). Radiation dose reduction provided by the TCs was analyzed in 117 data sets (60 in the XPF group, 57 in the standard group). The mean radiation dose reductions (ie, radiation protection) provided by XPF and standard TCs were 90.7% and 72.4%, with an adjusted mean difference of 17.9% (95% confidence interval: 7.7%, 28.1%; P < .001) favoring XPF. XPF TCs are a lightweight alternative to standard 0.5-mm lead-equivalent TCs and provide superior radiation

  10. Temporal response improvement for computed tomography fluoroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang

    1997-10-01

    Computed tomography fluoroscopy (CTF) has attracted significant attention recently. This is mainly due to the growing clinical application of CTF in interventional procedures, such as guided biopsy. Although many studies have been conducted for its clinical efficacy, little attention has been paid to the temporal response and the inherent limitations of the CTF system. For example, during a biopsy operation, when needle is inserted at a relatively high speed, the true needle position will not be correctly depicted in the CTF image due to the time delay. This could result in an overshoot or misplacement of the biopsy needle by the operator. In this paper, we first perform a detailed analysis of the temporal response of the CTF by deriving a set of equations to describe the average location of a moving object observed by the CTF system. The accuracy of the equations is verified by computer simulations and experiments. We show that the CT reconstruction process acts as a low pass filter to the motion function. As a result, there is an inherent time delay in the CTF process to the true biopsy needle motion and locations. Based on this study, we propose a generalized underscan weighting scheme which significantly improve the performance of CTF in terms of time lag and delay.

  11. Joint distraction results in clinical and structural improvement of haemophilic ankle arthropathy: a series of three cases.

    PubMed

    Van Meegeren, M E R; Van Veghel, K; De Kleijn, P; Van Roermund, P M; Biesma, D H; Lafeber, F P J G; Roosendaal, G

    2012-09-01

    The incidence of haemophilic arthropathy in multiple joints decreased due to treatment with clotting factor. Nowadays patients are enabled to live a rather normal life, resulting in more (sports) trauma-induced arthropathy in isolated joints like the ankle. As surgical treatment options, fusion of the tibiotalar joint and total ankle replacement are available. Both standard treatments have complications and therefore an alternative treatment is desired. In this study, treatment of haemophilic ankle arthropathy with joint distraction was explored. Three patients with haemophilic ankle arthropathy were treated with joint distraction using an Ilizarov external fixator. Clinical outcomes like function, participation and pain were evaluated in retrospect with three different questionnaires: haemophilia activities list, impact on participation and autonomy and the Van Valburg questionnaire. Structural changes were assessed blinded on X-ray by the Pettersson score and ankle images digital analysis (AIDA) and by an MRI score. All three patients were very satisfied with the clinical outcome of the procedure. They reported a clear improvement for self-perceived functional health, participation in society and autonomy and pain. Partial ankle joint mobility was preserved in the three patients. The Pettersson score remained the same in one patient and slightly improved in the two other patients, while joint space width measured by AIDA and the MRI score demonstrated improvement for all three patients after ankle distraction. This study suggests that joint distraction is a promising treatment for individual cases of haemophilic ankle arthropathy, without additional risk of bleedings during treatment. © 2012 Blackwell Publishing Ltd.

  12. An automatic 2D–3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images

    PubMed Central

    Zhu, Zhonglin; Li, Guoan

    2013-01-01

    Fluoroscopic image technique, using either a single image or dual images, has been widely applied to measure in vivo human knee joint kinematics. However, few studies have compared the advantages of using single and dual fluoroscopic images. Furthermore, due to the size limitation of the image intensifiers, it is possible that only a portion of the knee joint could be captured by the fluoroscopy during dynamic knee joint motion. In this paper, we presented a systematic evaluation of an automatic 2D–3D image matching method in reproducing spatial knee joint positions using either single or dual fluoroscopic image techniques. The data indicated that for the femur and tibia, their spatial positions could be determined with an accuracy and precision less than 0.2 mm in translation and less than 0.4° in orientation when dual fluoroscopic images were used. Using single fluoroscopic images, the method could produce satisfactory accuracy in joint positions in the imaging plane (average up to 0.5 mm in translation and 1.3° in rotation), but large variations along the out-plane direction (in average up to 4.0 mm in translation and 2.28 in rotation). The precision of using single fluoroscopic images to determine the actual knee positions was worse than its accuracy obtained. The data also indicated that when using dual fluoroscopic image technique, if the knee joint outlines in one image were incomplete by 80%, the algorithm could still reproduce the joint positions with high precisions. PMID:21806411

  13. Predictive MRI correlates of lesser metatarsophalangeal joint plantar plate tear.

    PubMed

    Umans, Rachel L; Umans, Benjamin D; Umans, Hilary; Elsinger, Elisabeth

    2016-07-01

    To identify correlated signs on non-enhanced MRI that might improve diagnostic detection of plantar plate (PP) tear. We performed an IRB-approved, HIPAA-compliant retrospective analysis of 100 non-contrast MRI (50 PP tear, 50 controls). All were anonymized, randomized, and reviewed; 20 were duplicated to assess consistency. One musculoskeletal radiologist evaluated qualitative variables. A trained non-physician performed measurements. Consistency and concordance were assessed. Pearson's Chi-square test was used to test the correlation between qualitative findings and PP tear status. Correlation between measurements and PP status was assessed using t tests and Wilcoxon's rank-sum test (p values < 0.05 considered significant). Classification and regression trees were utilized to identify attributes that, taken together, would consistently distinguish PP tear from controls. Quantitative measurements were highly reproducible (concordance 0.88-0.99). Elevated 2nd MT protrusion, lesser MT supination and rotational divergence of >45° between the 1st-2nd MT axis correlated with PP tear. Pericapsular soft tissue thickening correlated most strongly with PP tear, correctly classifying 95 % of cases and controls. Excluding pericapsular soft tissue thickening, sequential assessment of 2nd toe enthesitis, 2nd flexor tendon subluxation, and splaying of the second and third toes accurately classified PP status in 92 %. Pericapsular soft tissue thickening most strongly correlated with PP tear. For cases in which it might be difficult to distinguish pericapsular fibrosis from neuroma, sequential assessment of 2nd toe enthesitis, flexor tendon subluxation and splaying of the 2nd and 3rd toe is most helpful for optimizing accurate diagnosis of PP tear.

  14. Alterations of the Temporomandibular Joint on Magnetic Resonance Imaging according to Growth and Development in Schoolchildren

    PubMed Central

    Tanaka, Tatsurou; Konoo, Tetsuro; Habu, Manabu; Oda, Masafumi; Kito, Shinji; Kodama, Masaaki; Kokuryo, Shinya; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishida, Ikuko; Morikawa, Kazumasa; Saeki, Katsura; Maki, Kenshi; Tominaga, Kazuhiro; Masumi, Shin-ichi; Terashita, Masamichi; Morimoto, Yasuhiro

    2012-01-01

    The paper explains the alterations of the temporomandibular joint (TMJ) visualized by magnetic resonance imaging (MRI) according to the growth and development of schoolchildren. Appearance and disappearance of a “double contour-like structure” (DCLS) of the mandibular condyle on MRI according to the growth and development of schoolchildren were demonstrated. In addition, possible constituents of DCLS and the significance of detection of DCLS on MRI were also speculated. The relationship between red marrow and yellow marrow in the articular eminence of temporal bone, the disappearance of DCLS, and alterations of the mandibular condyle have been elucidated. PMID:23316233

  15. Joint Blind Source Separation by Multi-set Canonical Correlation Analysis

    PubMed Central

    Li, Yi-Ou; Adalı, Tülay; Wang, Wei; Calhoun, Vince D

    2009-01-01

    In this work, we introduce a simple and effective scheme to achieve joint blind source separation (BSS) of multiple datasets using multi-set canonical correlation analysis (M-CCA) [1]. We first propose a generative model of joint BSS based on the correlation of latent sources within and between datasets. We specify source separability conditions, and show that, when the conditions are satisfied, the group of corresponding sources from each dataset can be jointly extracted by M-CCA through maximization of correlation among the extracted sources. We compare source separation performance of the M-CCA scheme with other joint BSS methods and demonstrate the superior performance of the M-CCA scheme in achieving joint BSS for a large number of datasets, group of corresponding sources with heterogeneous correlation values, and complex-valued sources with circular and non-circular distributions. We apply M-CCA to analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects and show its utility in estimating meaningful brain activations from a visuomotor task. PMID:20221319

  16. [Trigeminal motor paralysis and dislocation of the temporo-mandibular joints].

    PubMed

    Ohkawa, S; Yoshida, T; Ohsumi, Y; Tabuchi, M

    1996-07-01

    A 64-year-old woman with diabetes mellitus was admitted to our hospital with left hemiparesis of sudden onset. A brain MRI demonstrated a cerebral infarction in the ventral part of the right lower pons. When left hemiparesis worsened, she had dislocation of the temporo-mandibular joints repeatedly. Then, her lower jaw deviated to the right when she opened her mouth. Also, there was decreased contraction of the right masseter when she clenched her teeth. These findings suggest that there was trigeminal motor paralysis on the right side resulting from involvement of the intrapontine trigeminal motor nerve. She has no history of dislocation of the temporo-mandibular joints. An X-ray film showed that the temporo-mandibular joints were intact. Thus, it is possible that deviation of the lower jaw was the cause of this dislocation. We suspect that dislocation of the temporo-mandibular joints may occur as a complication of unilateral trigeminal motor paralysis. This has not been reported to our knowledge.

  17. Combined hysteroscopy-laparoscopy approach for excision of pelvic nitinol fragment from Essure contraceptive device: Role of intraoperative fluoroscopy for uterine conservation

    PubMed Central

    Palermo, Gianpiero D.

    2016-01-01

    We describe the successful removal of a pelvic contraceptive coil in a symptomatic 46-year-old patient who had Essure devices for four years, using a combined hysteroscopy-laparoscopy-fluoroscopy approach. Following normal hysteroscopy, at laparoscopy the right Essure implant was disrupted and its outer nitinol coil had perforated the fallopian tube. However, the inner rod (containing polyethylene terephthalate) had migrated to an extrapelvic location, near the proximal colon. In contrast, the left implant was situated within the corresponding tube. Intraoperative fluoroscopy was used to confirm complete removal of the device, which was further verified by postoperative computed tomography. The patient's condition improved after surgery and she continues to do well. This is the first report to describe this technique in managing Essure complications remote from time of insertion. Our case highlights the value and limitations of preoperative and intraoperative imaging to map Essure fragment location before surgery. PMID:27462605

  18. Real-Time 3D Fluoroscopy-Guided Large Core Needle Biopsy of Renal Masses: A Critical Early Evaluation According to the IDEAL Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.

    2012-06-15

    Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluatedmore » according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.« less

  19. CT fluoroscopy-guided preoperative short hook wire placement for small pulmonary lesions: evaluation of safety and identification of risk factors for pneumothorax.

    PubMed

    Iguchi, Toshihiro; Hiraki, Takao; Gobara, Hideo; Fujiwara, Hiroyasu; Matsui, Yusuke; Miyoshi, Shinichiro; Kanazawa, Susumu

    2016-01-01

    To retrospectively evaluate the safety of computed tomography (CT) fluoroscopy-guided short hook wire placement for video-assisted thoracoscopic surgery and the risk factors for pneumothorax associated with this procedure. We analyzed 267 short hook wire placements for 267 pulmonary lesions (mean diameter, 9.9 mm). Multiple variables related to the patients, lesions, and procedures were assessed to determine the risk factors for pneumothorax. Complications (219 grade 1 and 4 grade 2 adverse events) occurred in 196 procedures. No grade 3 or above adverse events were observed. Univariate analysis revealed increased vital capacity (odds ratio [OR], 1.518; P = 0.021), lower lobe lesion (OR, 2.343; P =0.001), solid lesion (OR, 1.845; P = 0.014), prone positioning (OR, 1.793; P = 0.021), transfissural approach (OR, 11.941; P = 0.017), and longer procedure time (OR, 1.036; P = 0.038) were significant predictors of pneumothorax. Multivariate analysis revealed only the transfissural approach (OR, 12.171; P = 0.018) and a longer procedure time (OR, 1.048; P = 0.012) as significant independent predictors. Complications related to CT fluoroscopy-guided preoperative short hook wire placement often occurred, but all complications were minor. A transfissural approach and longer procedure time were significant independent predictors of pneumothorax. Complications related to CT fluoroscopy-guided preoperative short hook wire placement often occur. Complications are usually minor and asymptomatic. A transfissural approach and longer procedure time are significant independent predictors of pneumothorax.

  20. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA

    PubMed Central

    Hunter, D.J.; Zhang, W.; Conaghan, Philip G.; Hirko, K.; Menashe, L.; Li, L.; Reichmann, W.M.; Losina, E.

    2012-01-01

    SUMMARY Objective To summarize literature on the concurrent and predictive validity of MRI-based measures of osteoarthritis (OA) structural change. Methods An online literature search was conducted of the OVID, EMBASE, CINAHL, PsychInfo and Cochrane databases of articles published up to the time of the search, April 2009. 1338 abstracts obtained with this search were preliminarily screened for relevance by two reviewers. Of these, 243 were selected for data extraction for this analysis on validity as well as separate reviews on discriminate validity and diagnostic performance. Of these 142 manuscripts included data pertinent to concurrent validity and 61 manuscripts for the predictive validity review. For this analysis we extracted data on criterion (concurrent and predictive) validity from both longitudinal and cross-sectional studies for all synovial joint tissues as it relates to MRI measurement in OA. Results Concurrent validity of MRI in OA has been examined compared to symptoms, radiography, histology/pathology, arthroscopy, CT, and alignment. The relation of bone marrow lesions, synovitis and effusion to pain was moderate to strong. There was a weak or no relation of cartilage morphology or meniscal tears to pain. The relation of cartilage morphology to radiographic OA and radiographic joint space was inconsistent. There was a higher frequency of meniscal tears, synovitis and other features in persons with radiographic OA. The relation of cartilage to other constructs including histology and arthroscopy was stronger. Predictive validity of MRI in OA has been examined for ability to predict total knee replacement (TKR), change in symptoms, radiographic progression as well as MRI progression. Quantitative cartilage volume change and presence of cartilage defects or bone marrow lesions are potential predictors of TKR. Conclusion MRI has inherent strengths and unique advantages in its ability to visualize multiple individual tissue pathologies relating to pain

  1. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  2. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    NASA Astrophysics Data System (ADS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  3. Total Navigation in Spine Surgery; A Concise Guide to Eliminate Fluoroscopy Using a Portable Intraoperative Computed Tomography 3-Dimensional Navigation System.

    PubMed

    Navarro-Ramirez, Rodrigo; Lang, Gernot; Lian, Xiaofeng; Berlin, Connor; Janssen, Insa; Jada, Ajit; Alimi, Marjan; Härtl, Roger

    2017-04-01

    Portable intraoperative computed tomography (iCT) with integrated 3-dimensional navigation (NAV) offers new opportunities for more precise navigation in spinal surgery, eliminates radiation exposure for the surgical team, and accelerates surgical workflows. We present the concept of "total navigation" using iCT NAV in spinal surgery. Therefore, we propose a step-by-step guideline demonstrating how total navigation can eliminate fluoroscopy with time-efficient workflows integrating iCT NAV into daily practice. A prospective study was conducted on collected data from patients undergoing iCT NAV-guided spine surgery. Number of scans, radiation exposure, and workflow of iCT NAV (e.g., instrumentation, cage placement, localization) were documented. Finally, the accuracy of pedicle screws and time for instrumentation were determined. iCT NAV was successfully performed in 117 cases for various indications and in all regions of the spine. More than half (61%) of cases were performed in a minimally invasive manner. Navigation was used for skin incision, localization of index level, and verification of implant position. iCT NAV was used to evaluate neural decompression achieved in spinal fusion surgeries. Total navigation eliminates fluoroscopy in 75%, thus reducing staff radiation exposure entirely. The average times for iCT NAV setup and pedicle screw insertion were 12.1 and 3.1 minutes, respectively, achieving a pedicle screw accuracy of 99%. Total navigation makes spine surgery safer and more accurate, and it enhances efficient and reproducible workflows. Fluoroscopy and radiation exposure for the surgical staff can be eliminated in the majority of cases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Pigmented villonodular synovitis (PVNS) of the knee joint: magnetic resonance imaging (MRI) using standard and dynamic paramagnetic contrast media. Report of 52 cases surgically and histologically controlled.

    PubMed

    Barile, Antonio; Sabatini, Mylene; Iannessi, Francesca; Di Cesare, Ernesto; Splendiani, Alessandra; Calvisi, Vittorio; Masciocchi, Carlo

    2004-04-01

    Pigmented villonodular synovitis (PVNS) is a rare proliferative disorder of the synovial membrane, exhibiting benign behaviour from a biological point of view. This kind of synovial hyperplasia leads to the formation of villi and nodules characterized by deposit of intracellular haemosiderin. It primarily involves young adults, the peak age being between the second and fourth decade of life. It may appear either in a diffuse or a localized (nodular) form. The joint most affected is the knee and diffuse PVNS is the most common form. Diagnostic imaging techniques, particularly MRI, allow lesion identification, suggesting a diagnosis. However, such diagnosis can be confirmed only on histology as the final diagnosis of PVNS, and therefore the possibility of differential diagnosis with other haemorrhagic and chronic hyperplastic synovites, is based on the detection of intracellular haemosiderin components. The aim of this study is to evaluate the usefulness of MRI, which might be completed with the intravenous injection of contrast medium, in the characterization of such pathological picture. From January 1999 to December 2002, we evaluated 52 patients presenting knee swelling, pain and functional impairment. Only 19 patients had a history of trauma. All patients underwent MRI using a dedicated 0.2 T unit or a whole-body' 1.5 T unit. In 30 cases the baseline examination was completed with intravenous injection of contrast medium, followed by dynamic 3D-SPGR sequences at 45, 90, 135 and 225 seconds from the initial injection. These dynamic sequences were then processed by means of early and late subtractions, evaluating the regions of interest (ROI) positioned in the areas with higher post-contrast enhancement. Thirty-eight patients had been previously submitted to Ultrasonography (US), whereas twenty-five patients to Computed Tomography (TC). Later, all patients underwent surgery. Only two patients required an arthrotomy. We then retrospectively evaluated the imaging

  5. [The clinical value of cartilaginous surface and corresponding osseous contour of patellofemoral joint].

    PubMed

    Zhang, Jian-Bing; Chen, Bai-Cheng; Zhang, Jing; Wang, Zhi-Qiang; Yan, Chang-Bao

    2010-11-15

    to investigate if the cartilaginous surface and corresponding osseous contour of the patellofemoral joint match in the axial plane for providing theoretical basis with evaluating alignment of patellofemoral joint and designing the part of patellofemoral joint in knee prosthesis. from January 2009 to March 2010, 9 human cadaver knees were prepared, which chandra of patellofemoral joint didn't degenerate. Each specimen was sectioned in the axial plane at 20° to 30° knee flax. The cross-sections revealed characteristics in the bony anatomy and corresponding articular surface geometry of the patellofemoral joint in the axial plane. Evaluating parameters included osseous patella congruence angle (OPCA), chondral patella congruence angle (CPCA), patella chondral convex point parameter (PCCPP), patella subchondral osseous convex point parameter (PSOCPP), the parameters of the deepest (chondral or osseous) point of the intercondylar sulcus. After that, the osseous and cartilaginous contours and subchondral osseous contours of the patella in the axial plane were analyzed through MRI data of 11 patients who didn't degenerate in patellofemoral joint cartilage. Parameters as same as cadaver knees were compared. data from specimens of OPCA was (-4.5 ± 1.1)°, CPCA was (0.5 ± 0.8)°, PCCPP was 1.13 ± 0.11, PSOCPP was 1.67 ± 0.14, PCDPIS was 1.35 ± 0.28, PODPIS was 1.38 ± 0.33. Date from MRI of OPCA was (-3.8 ± 1.4)°, CPCA was (0.7 ± 1.0)°, PCCPP was 1.05 ± 0.21, PSOCPP was 1.73 ± 0.18, PCDPIS was 1.41 ± 0.21, PODPIS was 1.37 ± 0.27. The patella exhibited significant differences in the bony vs. chondral anatomy (P < 0.05), but the intercondylar sulcus nearly match in the bony vs. chondral anatomy. the cartilaginous surface and corresponding osseous contour of the patella don't match in the patellofemoral joint axial plane, but that of the trochlea nearly matches. This is very important for accurately evaluating alignment of patellofemoral joint because the normal

  6. Early diagnostics of temporomandibular joint structural elements injures caused by traumatic mandibular bone fractures.

    PubMed

    Pohranychna, Kh R; Stasyshyn, A R; Matolych, U D

    2017-06-30

    A rapidly increasing number of mandibular condylar fractures and some complications related to injuries of temporomandibular elements make this study important. Intra-articular disorders lead to secondary pathological findings such as osteoarthritis, deforming osteoarthrosis, and temporomandibular joint ankylosis that limits mouth opening, mastication, swallowing, breathing, and decreased/lost working capacity or disability. Early diagnosis of intra-articular disorders can prevent from long-lasting functional complications caused by temporomandibular joint injuries. This study was performed for the purpose of early detection and investigation of organic pathological changes in the cartilaginous and osseous tissues of the temporomandibular joint caused by traumatic fractures of the mandibular condyle. Twenty patients underwent a general clinical examination, magnetic resonance imaging (MRI), and immune-enzyme testing for biochemical markers of connective tissue injury (pyridinoline and deoxypyridinoline) in urine. Disk dislocation, deformation, adhesion, perforation or squeeze, tension or disruption of ligaments, and injury of articular surfaces are among complications of mandibular fractures that can be revealed on MRI. As regards biochemical findings, we revealed a sharp rise in the levels of pyridinoline and deoxypyridinoline before treatment and a lack of stabilization within 21 days of treatment.

  7. [Ultrasound in complex of radiological studies in diagnosis of ankle joint medial aspect pathologies].

    PubMed

    Gurgenidze, T; Mizandari, M

    2011-10-01

    The aim of the research is to study sonosemiotics of ankle joint pathology by means of ultrasound in order to optimize the diagnostic process and improve the treatment. 130 patients (age ranges from 5 to 70 years) underwent the radiological study of ankle joint medial aspect. Pathology types: degenerative-dystrophic diseases - 39 (30%), inflammatory pathology - 21 (16.2%), traumatic injuries - 20 (15.2%), vascular pathologies - 26 (20%), neurogenic problems -7 (5.4%), soft tissue neoplasms - 5 (3.8%), congenital anomalies - 7 (5.4%) and vertebral pathology - 5 (4.0%). The diagnostic studies include: a) Ultrasound, performed on digital ultrasound system using high frequency (7.5-12.0 MHz) linear probe with Doppler capability (all patients); b) X-Ray filming in antero-posterior and lateral projections (6 patients- 4.5%); c) MRI - T1 and T2 weighted images in saggital and transverse planes 10 patients (10.0%) and d) CT - 2 patients (1.5%); To 2 (1.5%) patient biopsy has been performed. This study showed that ultrasound was successful in ankle joint medial aspect pathology diagnosis in 108 cases (84.0%); It was ineffective in osseous pathology definition. In final diagnosis of impingment syndrom MRI was required in 4 (3.6%) cases. It is concluded that ultrasound should be used as a Gold Standard in diagnosis of localized pain and swelling in the ankle joint.

  8. A new technical contribution for ultrasound-guided injections of sacro-iliac joints.

    PubMed

    Migliore, A; Bizzi, E; Massafra, U; Vacca, F; Martin-Martin, L S; Granata, M; Tormenta, S

    2010-05-01

    Sacroiliac joint (SIJ) represents a difficult location for local therapies, as intra-articular injections may be hard to execute, especially in particular conditions such as chronic inflammatory diseases. However, in selected patients, local therapies may be considered. Some recent studies demonstrated the feasibility of ultrasound (US)-guided injection of SIJ, but still a complete explanation and definition of the technique is needed. Seven patients, four males and 3 females, affected by mono or bilateral sacroiliitis entered the study. Each patient received 40 mg of acetonide triamcinolone for each SIJ, intra articular (IA) US-guided injection. The technical originality proposed in this study consists in the spinal needle insertion in the middle of the cranial long side of the linear transducer with an orientation of about 10 degrees, determining shorter needle insertion for reaching joint space and consequently probably granting lesser pain and traumatism for patients. A total of 22 injections was performed. The longer follow-up time obtained was 18 months in 3 patients. All patients reached at least a 6 month follow-up. All patients reported an amelioration in pain that lasted for at least 6 months. No systemic adverse events were reported or observed. Complete visualization of SIJ and of needle placement was performed by US imaging, while compound proper injection was also visualized by Color-Doppler US imaging. Actually, sacroiliac joint intraarticular injections are often performed under fluoroscopy or Computerized Tomography guidance. Such techniques present several limitations, especially for repeated injections, such as the use of ionizing radiations, the need of a contrast agent and the direct and indirect costs connected. US guidance in IA SIJ injections may represent an easily repeatable imaging technique for needle placement and a precious tool for detecting inflammatory activity of the joint.

  9. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study

    PubMed Central

    Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A; Cotofana, Sebastian; Eckstein, Felix; Castelein, Rene M; Bijlsma, Johannes W J; Mastbergen, Simon C; Lafeber, Floris P J G

    2011-01-01

    Background Modification of joint tissue damage is challenging in late-stage osteoarthritis (OA). Few options are available for treating end-stage knee OA other than joint replacement. Objectives To examine whether joint distraction can effectively modify knee joint tissue damage and has the potential to delay prosthesis surgery. Methods 20 patients (<60 years) with tibiofemoral OA were treated surgically using joint distraction. Distraction (∼5 mm) was applied for 2 months using an external fixation frame. Tissue structure modification at 1 year of follow-up was evaluated radiographically (joint space width (JSW)), by MRI (segmentation of cartilage morphology) and by biochemical markers of collagen type II turnover, with operators blinded to time points. Clinical improvement was evaluated by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Visual Analogue Scale (VAS) pain score. Results Radiography demonstrated an increase in mean and minimum JSW (2.7 to 3.6 mm and 1.0 to 1.9 mm; p<0.05 and <0.01). MRI revealed an increase in cartilage thickness (2.4 to 3.0 mm; p<0.001) and a decrease of denuded bone areas (22% to 5%; p<0.001). Collagen type II levels showed a trend towards increased synthesis (+103%; p<0.06) and decreased breakdown (−11%; p<0.08). The WOMAC index increased from 45 to 77 points, and VAS pain decreased from 73 to 31 mm (both p<0.001). Conclusions Joint distraction can induce tissue structure modification in knee OA and could result in clinical benefit. No current treatment is able to induce such changes. Larger, longer and randomised studies on joint distraction are warranted. PMID:21565898

  10. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    PubMed Central

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p < 0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. Conclusions T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  11. Diagnostic imaging of sacroiliac joints and the spine in the course of spondyloarthropathies

    PubMed Central

    Sudoł-Szopinska, Iwona; Urbanik, Andrzej

    2013-01-01

    Summary Spondyloarthropathies belong to a group of rheumatic diseases, in which inflammatory changes affect mainly the sacroiliac joints, spine, peripheral joints, tendon, ligaments and capsule attachments (entheses). This group includes 6 entities: ankylosing spondylitis, arthritis associated with inflammatory bowel disease, reactive arthritis, undifferentiated spondyloarthropathy, psoriatic arthritis and juvenile spondyloarthropathy. In 2009, ASAS (Assessment in SpondyloArthritis international Society) association, published classification criteria for spondyloarthropathies, which propose standardization of clinical-diagnostic approach in the case of sacroiliitis, spondylitis and arthritis. Radiological diagnosis of inflammatory changes of sacroiliac joints is based on a 4 step radiographic grading method from 1966. According to modified New York criteria, the diagnosis of ankylosing spondylitis is made based on the presence of advanced lesions, sacroiliitis of at least 2 grade bilaterally or 3–4 unilaterally. In case of other types of spondyloarthropathies diagnosis is made based on presence of at least grade 1 changes. In MRI, active inflammation of sacroiliac joints is indicated by the presence of subchondral bone marrow edema, synovitis, bursitis, or enthesitis. ASAS discusses only the classic form of axial spondyloarthropathies, which is ankylosing spondylitis. To quantify radiological inflammatory changes in the course of the disease, Stoke Ankylosing spondylitis classification Spinal Score (SASSS) is recommended. The signs of inflammation and scarrying of the spinal cord in the course of ankylosing spondylitis, present in MRI include: bone marrow edema, sclerosis, fat metaplasia, formation of syndesmophytes, and ankylosis. PMID:23807884

  12. Subspace aware recovery of low rank and jointly sparse signals

    PubMed Central

    Biswas, Sampurna; Dasgupta, Soura; Mudumbai, Raghuraman; Jacob, Mathews

    2017-01-01

    We consider the recovery of a matrix X, which is simultaneously low rank and joint sparse, from few measurements of its columns using a two-step algorithm. Each column of X is measured using a combination of two measurement matrices; one which is the same for every column, while the the second measurement matrix varies from column to column. The recovery proceeds by first estimating the row subspace vectors from the measurements corresponding to the common matrix. The estimated row subspace vectors are then used to recover X from all the measurements using a convex program of joint sparsity minimization. Our main contribution is to provide sufficient conditions on the measurement matrices that guarantee the recovery of such a matrix using the above two-step algorithm. The results demonstrate quite significant savings in number of measurements when compared to the standard multiple measurement vector (MMV) scheme, which assumes same time invariant measurement pattern for all the time frames. We illustrate the impact of the sampling pattern on reconstruction quality using breath held cardiac cine MRI and cardiac perfusion MRI data, while the utility of the algorithm to accelerate the acquisition is demonstrated on MR parameter mapping. PMID:28630889

  13. Rigorous accuracy assessment for 3D reconstruction using time-series Dual Fluoroscopy (DF) image pairs

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek D.; Kuntze, Gregor; Ronsky, Janet

    2017-06-01

    High-speed biplanar videoradiography, or clinically referred to as dual fluoroscopy (DF), imaging systems are being used increasingly for skeletal kinematics analysis. Typically, a DF system comprises two X-ray sources, two image intensifiers and two high-speed video cameras. The combination of these elements provides time-series image pairs of articulating bones of a joint, which permits the measurement of bony rotation and translation in 3D at high temporal resolution (e.g., 120-250 Hz). Assessment of the accuracy of 3D measurements derived from DF imaging has been the subject of recent research efforts by several groups, however with methodological limitations. This paper presents a novel and simple accuracy assessment procedure based on using precise photogrammetric tools. We address the fundamental photogrammetry principles for the accuracy evaluation of an imaging system. Bundle adjustment with selfcalibration is used for the estimation of the system parameters. The bundle adjustment calibration uses an appropriate sensor model and applies free-network constraints and relative orientation stability constraints for a precise estimation of the system parameters. A photogrammetric intersection of time-series image pairs is used for the 3D reconstruction of a rotating planar object. A point-based registration method is used to combine the 3D coordinates from the intersection and independently surveyed coordinates. The final DF accuracy measure is reported as the distance between 3D coordinates from image intersection and the independently surveyed coordinates. The accuracy assessment procedure is designed to evaluate the accuracy over the full DF image format and a wide range of object rotation. Experiment of reconstruction of a rotating planar object reported an average positional error of 0.44 +/- 0.2 mm in the derived 3D coordinates (minimum 0.05 and maximum 1.2 mm).

  14. Whole Body Magnetic Resonance Imaging Features in Diffuse Idiopathic Skeletal Hyperostosis in Conjunction with Clinical Variables to Whole Body MRI and Clinical Variables in Ankylosing Spondylitis.

    PubMed

    Weiss, Bettina G; Bachmann, Lucas M; Pfirrmann, Christian W A; Kissling, Rudolf O; Zubler, Veronika

    2016-02-01

    Discrimination of diffuse idiopathic skeletal hyperostosis (DISH) and ankylosing spondylitis (AS) can be challenging. Usefulness of whole-body magnetic resonance imaging (WB-MRI) in diagnosing spondyloarthritis has been recently proved. We assessed the value of clinical variables alone and in combination with WB-MRI to distinguish between DISH and AS. Diagnostic case-control study: 33 patients with AS and 15 patients with DISH were included. All patients underwent 1.5 Tesla WB-MRI scanning. MR scans were read by a blinded radiologist using the Canadian-Danish Working Group's recommendation. Imaging and clinical variables were identified using the bootstrap. The most important variables from MR and clinical history were assessed in a multivariate fashion resulting in 3 diagnostic models (MRI, clinical, and combined). The discriminative capacity was quantified using the area under the receiver-operating characteristic (ROC) curve. The strength of diagnostic variables was quantified with OR. Forty-eight patients provided 1545 positive findings (193 DISH/1352 AS). The final MR model contained upper anterior corner fat infiltration (32 DISH/181 AS), ankylosis on the vertebral endplate (4 DISH/60 AS), facet joint ankylosis (4 DISH/49 AS), sacroiliac joint edema (11 DISH/91 AS), sacroiliac joint fat infiltration (2 DISH/114 AS), sacroiliac joint ankylosis (2 DISH/119 AS); area under the ROC curve was 0.71, 95% CI 0.64-0.78. The final clinical model contained patient's age and body mass index (area under the ROC curve 0.90, 95% CI 0.89-0.91). The full diagnostic model containing clinical and MR information had an area under the ROC curve of 0.93 (95% CI 0.92-0.95). WB-MRI features can contribute to the correct diagnosis after a thorough conventional workup of patients with DISH and AS.

  15. 3D kinematics of mobile-bearing total knee arthroplasty using X-ray fluoroscopy.

    PubMed

    Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi

    2015-04-01

    Total knee arthroplasty (TKA) 3D kinematic analysis requires 2D/3D image registration of X-ray fluoroscopic images and a computer-aided design (CAD) model of the knee implant. However, these techniques cannot provide information on the radiolucent polyethylene insert, since the insert silhouette does not appear clearly in X-ray images. Therefore, it is difficult to obtain the 3D kinematics of the polyethylene insert, particularly the mobile-bearing insert. A technique for 3D kinematic analysis of a mobile-bearing insert used in TKA was developed using X-ray fluoroscopy. The method was tested and a clinical application was evaluated. Tantalum beads and a CAD model of the mobile-bearing TKA insert are used for 3D pose estimation of the mobile-bearing insert used in TKA using X-ray fluoroscopy. The insert model was created using four identical tantalum beads precisely located at known positions in a polyethylene insert using a specially designed insertion device. Finally, the 3D pose of the insert model was estimated using a feature-based 2D/3D registration technique, using the silhouette of beads in fluoroscopic images and the corresponding CAD insert model. In vitro testing for the repeatability of the positioning of the tantalum beads and computer simulations for 3D pose estimation of the mobile-bearing insert were performed. The pose estimation accuracy achieved was sufficient for analyzing mobile-bearing TKA kinematics (RMS error: within 1.0 mm and 1.0°, except for medial-lateral translation). In a clinical application, nine patients with mobile-bearing TKA were investigated and analyzed with respect to a deep knee bending motion. A 3D kinematic analysis technique was developed that enables accurate quantitative evaluation of mobile-bearing TKA kinematics. This method may be useful for improving implant design and optimizing TKA surgical techniques.

  16. 3-Tesla MRI: Beneficial visualization of the meniscofemoral ligaments?

    PubMed

    Ebrecht, Johanna; Krasny, Andrej; Hartmann, Dinah Maria; Rückbeil, Marcia Viviane; Ritz, Thomas; Prescher, Andreas

    2017-10-01

    Recent investigations have confirmed an important stabilizing and protective function of the meniscofemoral ligaments (MFLs) to the knee joint and suggest a clinical relevance. Concerning their incidences, however, there have been discrepancies between data acquired from cadaveric studies and MRI data using 0.3- to 1.5-Tesla field strengths probably due to lower resolution. This study aims to investigate whether imaging with 3-Tesla magnetic resonance imaging (3-T MRI) is beneficial in gaining information regarding the ligaments' incidence, length, width and anatomic variation. 3-T MRI images of 448 patients (224 males, 224 females, with, respectively, 32 patients of each sex in the age groups: 0-20, 21-30, 31-40, 41-50, 51-60, 61-70, >70years) were retrospectively reviewed. The influence of the parameters 'sex' and 'age' was determined. Whereas 71% of the patients had at least one MFL, 22% had an anterior MFL (aMFL), 53% had a posterior MFL (pMFL) and five percent had coexisting ligaments. The pMFLs were more likely to be present in female patients (P<0.05) but if so, they were longer in the males (P<0.05). The pMFL was categorized according to its insertion on the medial femoral condyle. 3-T MRI enables an excellent illustration of the anatomic variations of pMFLs. By modifying an anatomic classification for radiological use we measured lengths and widths of the MFLs without any difficulties. Despite its increased resolution, 3-T MRI lends no diagnostic benefit in visualizing the course of the aMFL or filigree coexisting ligaments as compared to MRI at lower field strengths. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  18. Predictors of thrombotic complications and mass effect exacerbation after pipeline embolization: The significance of adenosine diphosphate inhibition, fluoroscopy time, and aneurysm size.

    PubMed

    Raychev, Radoslav; Tateshima, Satoshi; Vinuela, Fernando; Sayre, Jim; Jahan, Reza; Gonzalez, Nestor; Szeder, Viktor; Duckwiler, Gary

    2016-02-01

    The mechanisms leading to delayed rupture, distal emboli and intraparenchymal hemorrhage in relation to pipeline embolization device (PED) placement remain debatable and poorly understood. The aim of this study was to identify clinical and procedural predictors of these perioperative complications. We conducted a retrospective review of consecutive patients who underwent PED placement. We utilized a non-commercial platelet aggregation method measuring adenosine diphosphate (ADP)% inhibition for evaluation of clopidogrel response. To our knowledge, this is the first study to test ADP in neurovascular procedures. Multivariable regression analysis was used to identify the strongest predictor of three separate outcomes: (1) thrombotic complications, (2) hemorrhagic complications, and (3) aneurysm mass effect exacerbation Permanent complication-related morbidity and mortality at 3 months was 6% (3/48). No specific predictors of hemorrhagic complications were identified. In the univariate analysis, the strongest predictors of thrombotic complications were: ADP% inhibition<49 (p=0.01), aneurysm size (p=0.04) and fluoroscopy time (p=0.002). In the final multivariate analysis, among all baseline variables, fluoroscopy time exceeding 52 min was the only factor associated with thrombotic complications (p=0.007). Aneurysm size≥18 mm was the single predictor of mass effect exacerbation (p=0.039). Procedural complexity, reflected by fluoroscopy time, is the strongest predictor of thrombotic complications in this study. ADP% inhibition is a reliable method of testing clopidogrel response in neurovascular procedures and values of <50% may predict thrombotic complications. Interval mass effect exacerbation after PED placement may be anticipated in large aneurysms exceeding 18 mm. © The Author(s) 2015.

  19. Head MRI

    MedlinePlus

    ... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...

  20. Characterization of human brown adipose tissue by chemical-shift water-fat MRI.

    PubMed

    Hu, Houchun H; Perkins, Thomas G; Chia, Jonathan M; Gilsanz, Vicente

    2013-01-01

    The purpose of this study was to characterize human brown adipose tissue (BAT) with chemical-shift water-fat MRI and to determine whether trends and differences in fat-signal fractions and T2(*) relaxation times between BAT and white adipose tissue (WAT) are consistently observed postmortem and in vivo in infants, adolescents, and adults. A postmortem body and eight patients were studied. A six-echo spoiled gradient-echo chemical-shift water-fat MRI sequence was performed at 3 T to jointly quantify fat-signal fraction and T2(*) in interscapular-supraclavicular BAT and subcutaneous WAT. To confirm BAT identity, biopsy and histology served as the reference in the postmortem study and PET/CT was used in five of the eight patients who required examination for medical care. Fat-signal fractions and T2(*) times were lower in BAT than in WAT in the postmortem example and in seven of eight patients. With the exception of one case, nominal comparisons between brown and white adipose tissues were statistically significant (p < 0.05). Between subjects, a large range of fat-signal fraction values was observed in BAT but not in WAT. We have shown that fat-signal fractions and T2(*) values jointly derived from chemical-shift water-fat MRI are lower in BAT than in WAT likely because of differences in cellular structures, triglyceride content, and vascularization. The two metrics can serve as complementary biomarkers in the detection of BAT.

  1. [Normal anatomy and related pathological changes of shoulder on MRI].

    PubMed

    Zhu, Q; Katsuya, N

    2000-04-01

    To describe the normal anatomy and common abnormal changes of rotator cuff impingement and tears and recurrent anterior instability of shoulder joint in MRI pictures. MRI was compared in 285 patients with shoulder diseases and 20 patients with symptomatic shoulder diseases. On oblique coronal image, the supraspinatus presented moderate signal intensity and low signal intensity in its tendon-muscle conjunction ranging from the humeral head to the greater tuberosity. The MRI manifestations of impingement lesion of the rotator cuff were as follows: high signal intensity of tendons, changes of their shapes, retraction of tendon-muscle conjunction, and muscle atrophy with high signal intensity. On T1-weighted axial image, the anterior and posterior glenohumeral labrum, the long head biceps tendon were displayed in low signal intensity. The anterior labrum manifested a sharp triangle contour and the posterior labrum a round one. The whole four muscles of the rotator cuff manifested on oblique sagital image. However, it was of less value in detecting the abnormalities of the rotator cuff and the glenohumeral labrum on sagittal imaging. The sensitivity in demonstrating rotator cuff complete tear was 95% for MRI and 91% for arthrography; the specificity was 88% for MRI and 100% for arthrography. The sensitivity and specificity of MRI were 96% and 75% for detecting glenoid labrum abnormalities, and 78% and 88% for detecting labrum tear in anterior recurrent dislocation of the shoulder. Magnetic resonance imaging with its excellent contrast resolution in multiple anatomic planes allows noninvasive visualization of bone and soft tissues in the rotator cuff and labrum.

  2. Virtual Simulation in Enhancing Procedural Training for Fluoroscopy-guided Lumbar Puncture: A Pilot Study.

    PubMed

    Ali, Saad; Qandeel, Monther; Ramakrishna, Rishi; Yang, Carina W

    2018-02-01

    Fluoroscopy-guided lumbar puncture (FGLP) is a basic procedural component of radiology residency and neuroradiology fellowship training. Performance of the procedure with limited experience is associated with increased patient discomfort as well as increased radiation dose, puncture attempts, and complication rate. Simulation in health care is a developing field that has potential for enhancing procedural training. We demonstrate the design and utility of a virtual reality simulator for performing FGLP. An FGLP module was developed on an ImmersiveTouch platform, which digitally reproduces the procedural environment with a hologram-like projection. From computed tomography datasets of healthy adult spines, we constructed a 3-D model of the lumbar spine and overlying soft tissues. We assigned different physical characteristics to each tissue type, which the user can experience through haptic feedback while advancing a virtual spinal needle. Virtual fluoroscopy as well as 3-D images can be obtained for procedural planning and guidance. The number of puncture attempts, the distance to the target, the number of fluoroscopic shots, and the approximate radiation dose can be calculated. Preliminary data from users who participated in the simulation were obtained in a postsimulation survey. All users found the simulation to be a realistic replication of the anatomy and procedure and would recommend to a colleague. On a scale of 1-5 (lowest to highest) rating the virtual simulator training overall, the mean score was 4.3 (range 3-5). We describe the design of a virtual reality simulator for performing FGLP and present the initial experience with this new technique. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. MRI features of cervical articular process degenerative joint disease in Great Dane dogs with cervical spondylomyelopathy.

    PubMed

    Gutierrez-Quintana, Rodrigo; Penderis, Jacques

    2012-01-01

    Cervical spondylomyelopathy or Wobbler syndrome commonly affects the cervical vertebral column of Great Dane dogs. Degenerative changes affecting the articular process joints are a frequent finding in these patients; however, the correlation between these changes and other features of cervical spondylomyelopathy are uncertain. We described and graded the degenerative changes evident in the cervical articular process joints from 13 Great Danes dogs with cervical spondylomyelopathy using MR imaging, and evaluated the relationship between individual features of cervical articular process joint degeneration and the presence of spinal cord compression, vertebral foraminal stenosis, intramedullary spinal cord changes, and intervertebral disc degenerative changes. Degenerative changes affecting the articular process joints were common, with only 13 of 94 (14%) having no degenerative changes. The most severe changes were evident between C4-C5 and C7-T1 intervertebral spaces. Reduction or loss of the hyperintense synovial fluid signal on T2-weighted MR images was the most frequent feature associated with articular process joint degenerative changes. Degenerative changes of the articular process joints affecting the synovial fluid or articular surface, or causing lateral hypertrophic tissue, were positively correlated with lateral spinal cord compression and vertebral foraminal stenosis. Dorsal hypertrophic tissue was positively correlated with dorsal spinal cord compression. Disc-associated spinal cord compression was recognized less frequently. © 2011 Veterinary Radiology & Ultrasound.

  4. PET/MRI of metabolic activity in osteoarthritis: A feasibility study.

    PubMed

    Kogan, Feliks; Fan, Audrey P; McWalter, Emily J; Oei, Edwin H G; Quon, Andrew; Gold, Garry E

    2017-06-01

    To evaluate positron emission tomography / magnetic resonance imaging (PET/MRI) knee imaging to detect and characterize osseous metabolic abnormalities and correlate PET radiotracer uptake with osseous abnormalities and cartilage degeneration observed on MRI. Both knees of 22 subjects with knee pain or injury were scanned at one timepoint, without gadolinium, on a hybrid 3.0T PET-MRI system following injection of 18 F-fluoride or 18 F-fluorodeoxyglucose (FDG). A musculoskeletal radiologist identified volumes of interest (VOIs) around bone abnormalities on MR images and scored bone marrow lesions (BMLs) and osteophytes using a MOAKS scoring system. Cartilage appearance adjacent to bone abnormalities was graded with MRI-modified Outerbridge classifications. On PET standardized uptake values (SUV) maps, VOIs with SUV greater than 5 times the SUV in normal-appearing bone were identified as high-uptake VOI (VOI High ). Differences in 18 F-fluoride uptake between bone abnormalities, BML, and osteophyte grades and adjacent cartilage grades on MRI were identified using Mann-Whitney U-tests. SUV max in all subchondral bone lesions (BML, osteophytes, sclerosis) was significantly higher than that of normal-appearing bone on MRI (P < 0.001 for all). Of the 172 high-uptake regions on 18 F-fluoride PET, 63 (37%) corresponded to normal-appearing subchondral bone on MRI. Furthermore, many small grade 1 osteophytes (40 of 82 [49%]), often described as the earliest signs of osteoarthritis (OA), did not show high uptake. Lastly, PET SUV max in subchondral bone adjacent to grade 0 cartilage was significantly lower compared to that of grades 1-2 (P < 0.05) and grades 3-4 cartilage (P < 0.001). PET/MRI can simultaneously assess multiple early metabolic and morphologic markers of knee OA across multiple tissues in the joint. Our findings suggest that PET/MR may detect metabolic abnormalities in subchondral bone, which appear normal on MRI. 2 Technical Efficacy: Stage 1 J. MAGN. RESON

  5. Three-dimensional motion of the uncovertebral joint during head rotation.

    PubMed

    Nagamoto, Yukitaka; Ishii, Takahiro; Iwasaki, Motoki; Sakaura, Hironobu; Moritomo, Hisao; Fujimori, Takahito; Kashii, Masafumi; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2012-10-01

    The uncovertebral joints are peculiar but clinically important anatomical structures of the cervical vertebrae. In the aged or degenerative cervical spine, osteophytes arising from an uncovertebral joint can cause cervical radiculopathy, often necessitating decompression surgery. Although these joints are believed to bear some relationship to head rotation, how the uncovertebral joints work during head rotation remains unclear. The purpose of this study is to elucidate 3D motion of the uncovertebral joints during head rotation. Study participants were 10 healthy volunteers who underwent 3D MRI of the cervical spine in 11 positions during head rotation: neutral (0°) and 15° increments to maximal head rotation on each side (left and right). Relative motions of the cervical spine were calculated by automatically superimposing a segmented 3D MR image of the vertebra in the neutral position over images of each position using the volume registration method. The 3D intervertebral motions of all 10 volunteers were standardized, and the 3D motion of uncovertebral joints was visualized on animations using data for the standardized motion. Inferred contact areas of uncovertebral joints were also calculated using a proximity mapping technique. The 3D animation of uncovertebral joints during head rotation showed that the joints alternate between contact and separation. Inferred contact areas of uncovertebral joints were situated directly lateral at the middle cervical spine and dorsolateral at the lower cervical spine. With increasing angle of rotation, inferred contact areas increased in the middle cervical spine, whereas areas in the lower cervical spine slightly decreased. In this study, the 3D motions of uncovertebral joints during head rotation were depicted precisely for the first time.

  6. Analysis of the Flexion Gap on In Vivo Knee Kinematics Using Fluoroscopy.

    PubMed

    Nakamura, Shinichiro; Ito, Hiromu; Yoshitomi, Hiroyuki; Kuriyama, Shinichi; Komistek, Richard D; Matsuda, Shuichi

    2015-07-01

    There is a paucity of information on the relationships between postoperative knee laxity and in vivo knee kinematics. The correlations were analyzed in 22 knees with axial radiographs and fluoroscopy based 3D model fitting approach after a tri-condylar total knee arthroplasty. During deep knee bend activities, the medial flexion gap had significant correlations with the medial contact point (r=0.529, P=0.011) and axial rotation at full extension. During kneeling activities, a greater medial flexion gap caused larger anterior translation at complete contact (r=0.568, P=0.011). Meanwhile, the lateral flexion gap had less effect. In conclusion, laxity of the medial collateral ligament should be avoided because the magnitude of medial flexion stability was crucial for postoperative knee kinematics. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data.

    PubMed

    Heimann, Tobias; Mountney, Peter; John, Matthias; Ionasec, Razvan

    2014-12-01

    The fusion of image data from trans-esophageal echography (TEE) and X-ray fluoroscopy is attracting increasing interest in minimally-invasive treatment of structural heart disease. In order to calculate the needed transformation between both imaging systems, we employ a discriminative learning (DL) based approach to localize the TEE transducer in X-ray images. The successful application of DL methods is strongly dependent on the available training data, which entails three challenges: (1) the transducer can move with six degrees of freedom meaning it requires a large number of images to represent its appearance, (2) manual labeling is time consuming, and (3) manual labeling has inherent errors. This paper proposes to generate the required training data automatically from a single volumetric image of the transducer. In order to adapt this system to real X-ray data, we use unlabeled fluoroscopy images to estimate differences in feature space density and correct covariate shift by instance weighting. Two approaches for instance weighting, probabilistic classification and Kullback-Leibler importance estimation (KLIEP), are evaluated for different stages of the proposed DL pipeline. An analysis on more than 1900 images reveals that our approach reduces detection failures from 7.3% in cross validation on the test set to zero and improves the localization error from 1.5 to 0.8mm. Due to the automatic generation of training data, the proposed system is highly flexible and can be adapted to any medical device with minimal efforts. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. [Magnetic resonance imaging for the wrist joint of the coal miners in vibration department].

    PubMed

    Zhao, Xuan-zhi; Liu, Rui-lian; Hu, Shu-dong; Zhang, Wei; Xu, Wen-xiu; Ge, Ling-xia

    2006-04-01

    To study the magnetic resonance imaging (MRI) in the wrist joint of coal miners who work in excavation and vibration department. Forty-three coal miners with the hand-arm vibration disease served as the observation group while 20 workers who were not working in the vibration department acted as the control group. The patients in the observation group were divided into five subgroups according to the time when they received vibration. The regularity of the development of signs and symptoms of MRI was observed and analyzed. The hydroarthrosis was most found in MRI. There were significant difference in hydroarthrosis (chi(2) = 8.80, P < 0.01), osteoporosis and osteomyelitis (chi(2) = 3.91, chi(2) = 5.01, P < 0.05 respectively) between the observation group and the control group. The edema of bone marrow and the avascular necrosis of ossa carpi were found only in the observation group and not found in the control group. The hydroarthrosis and the edema of bone marrow occurred most in the early stage of vibration. The signal in the edema of the bone marrow of the distal end of the radius was decreased in the GE sequence T(2)WI with the specificity. (1) Changes in the wrist joint occur in the early stage of the vibration work, and can be found in the MRI. (2) The edema of the bone marrow of the distal end of the radius is of great value in the diagnosis of the hand-arm vibration disease.

  9. Optimizing MRI Logistics: Prospective Analysis of Performance, Efficiency, and Patient Throughput.

    PubMed

    Beker, Kevin; Garces-Descovich, Alejandro; Mangosing, Jason; Cabral-Goncalves, Ines; Hallett, Donna; Mortele, Koenraad J

    2017-10-01

    The objective of this study is to optimize MRI logistics through evaluation of MRI workflow and analysis of performance, efficiency, and patient throughput in a tertiary care academic center. For 2 weeks, workflow data from two outpatient MRI scanners were prospectively collected and stratified by value added to the process (i.e., value-added time, business value-added time, or non-value-added time). Two separate time cycles were measured: the actual MRI process cycle as well as the complete length of patient stay in the department. In addition, the impact and frequency of delays across all observations were measured. A total of 305 MRI examinations were evaluated, including body (34.1%), neurologic (28.9%), musculoskeletal (21.0%), and breast examinations (16.1%). The MRI process cycle lasted a mean of 50.97 ± 24.4 (SD) minutes per examination; the mean non-value-added time was 13.21 ± 18.77 minutes (25.87% of the total process cycle time). The mean length-of-stay cycle was 83.51 ± 33.63 minutes; the mean non-value-added time was 24.33 ± 24.84 minutes (29.14% of the total patient stay). The delay with the highest frequency (5.57%) was IV or port placement, which had a mean delay of 22.82 minutes. The delay with the greatest impact on time was MRI arthrography for which joint injection of contrast medium was necessary but was not accounted for in the schedule (mean delay, 42.2 minutes; frequency, 1.64%). Of 305 patients, 34 (11.15%) did not arrive at or before their scheduled time. Non-value-added time represents approximately one-third of the total MRI process cycle and patient length of stay. Identifying specific delays may expedite the application of targeted improvement strategies, potentially increasing revenue, efficiency, and overall patient satisfaction.

  10. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI.

    PubMed

    Baumeister, Sarah; Hohmann, Sarah; Wolf, Isabella; Plichta, Michael M; Rechtsteiner, Stefanie; Zangl, Maria; Ruf, Matthias; Holz, Nathalie; Boecker, Regina; Meyer-Lindenberg, Andreas; Holtmann, Martin; Laucht, Manfred; Banaschewski, Tobias; Brandeis, Daniel

    2014-07-01

    Inhibitory response control has been extensively investigated in both electrophysiological (ERP) and hemodynamic (fMRI) studies. However, very few multimodal results address the coupling of these inhibition markers. In fMRI, response inhibition has been most consistently linked to activation of the anterior insula and inferior frontal cortex (IFC), often also the anterior cingulate cortex (ACC). ERP work has established increased N2 and P3 amplitudes during NoGo compared to Go conditions in most studies. Previous simultaneous EEG-fMRI imaging reported association of the N2/P3 complex with activation of areas like the anterior midcingulate cortex (aMCC) and anterior insula. In this study we investigated inhibitory control in 23 healthy young adults (mean age=24.7, n=17 for EEG during fMRI) using a combined Flanker/NoGo task during simultaneous EEG and fMRI recording. Separate fMRI and ERP analysis yielded higher activation in the anterior insula, IFG and ACC as well as increased N2 and P3 amplitudes during NoGo trials in accordance with the literature. Combined analysis modelling sequential N2 and P3 effects through joint parametric modulation revealed correlation of higher N2 amplitude with deactivation in parts of the default mode network (DMN) and the cingulate motor area (CMA) as well as correlation of higher central P3 amplitude with activation of the left anterior insula, IFG and posterior cingulate. The EEG-fMRI results resolve the localizations of these sequential activations. They suggest a general role for allocation of attentional resources and motor inhibition for N2 and link memory recollection and internal reflection to P3 amplitude, in addition to previously described response inhibition as reflected by the anterior insula. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    PubMed Central

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  12. The effect of bench model fidelity on fluoroscopy-guided transforaminal epidural injection training: a randomized control study.

    PubMed

    Gonzalez-Cota, Alan; Chiravuri, Srinivas; Stansfield, R Brent; Brummett, Chad M; Hamstra, Stanley J

    2013-01-01

    The purpose of this study was to determine whether high-fidelity simulators provide greater benefit than low-fidelity models in training fluoroscopy-guided transforaminal epidural injection. This educational study was a single-center, prospective, randomized 3-arm pretest-posttest design with a control arm. Eighteen anesthesia and physical medicine and rehabilitation residents were instructed how to perform a fluoroscopy-guided transforaminal epidural injection and assessed by experts on a reusable injectable phantom cadaver. The high- and low-fidelity groups received 30 minutes of supervised hands-on practice according to group assignment, and the control group received 30 minutes of didactic instruction from an expert. We found no differences at posttest between the high- and low-fidelity groups on global ratings of performance (P = 0.17) or checklist scores (P = 0.81). Participants who received either form of hands-on training significantly outperformed the control group on both the global rating of performance (control vs low-fidelity, P = 0.0048; control vs high-fidelity, P = 0.0047) and the checklist (control vs low-fidelity, P = 0.0047; control vs high-fidelity, P = 0.0047). Training an epidural procedure using a low-fidelity model may be equally effective as training on a high-fidelity model. These results are consistent with previous research on a variety of interventional procedures and further demonstrate the potential impact of simple, low-fidelity training models.

  13. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  14. Screw Placement and Osteoplasty Under Computed Tomographic-Fluoroscopic Guidance in a Case of Advanced Metastatic Destruction of the Iliosacral Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumm, Christoph Gregor, E-mail: christoph.trumm@med.lmu.de; Rubenbauer, Bianca; Piltz, Stefan

    We present a case of combined surgical screw placement and osteoplasty guided by computed tomography-fluoroscopy (CTF) in a 68-year-old man with unilateral osteolytic destruction and a pathological fracture of the iliosacral joint due to a metastasis from renal cell carcinoma. The patient experienced intractable lower back pain that was refractory to analgesia. After transarterial particle and coil embolization of the tumor-feeding vessels in the angiography unit, the procedure was performed under general anesthesia by an interdisciplinary team of interventional radiologists and trauma surgeons. Under intermittent single-shot CTF, two K wires were inserted into the left iliosacral joint from a lateralmore » transiliac approach at the S1 level followed by two self-tapping surgical screws. Continuous CTF was used for monitoring of the subsequent polymethylmethacrylate injection through two vertebroplasty cannulas for further stabilization of the screw threads within the osteolytic sacral ala. Both the screw placement and cement injection were successful, with no complications occurring during or after the procedure. With additional nonsteroidal anti-inflammatory and opioid medication, the patient reported a marked decrease in his lower back pain and was able to move independently again at the 3-month follow-up assessment. In our patient with intolerable back pain due to tumor destruction and consequent pathological fracture of the iliosacral joint, CTF-guided iliosacral screw placement combined with osteoplasty was successful with respect to joint stabilization and a reduction in the need for analgesic therapy.« less

  15. Comparison Perioperative Factors During Minimally Invasive Pre-Psoas Lateral Interbody Fusion of the Lumbar Spine Using Either Navigation or Conventional Fluoroscopy

    PubMed Central

    Zhang, Yue-Hui; White, Ian; Potts, Eric; Mobasser, Jean-Pierre

    2017-01-01

    Study Design: Retrospective clinical study. Objectives: The aim of this study was to compare intraoperative conditions and clinical results of patients undergoing pre-psoas oblique lateral interbody fusion (OLIF) using navigation or conventional fluoroscopy (C-ARM) techniques. Methods: Forty-two patients (22 patients by navigation and 20 by fluoroscopy) underwent the OLIF procedure at 2 medical centers, and records were reviewed. Clinical data was collected and compared between the 2 groups. Patients were followed-up with a range of 6 to 24 months. Results: There were no significant differences on demographic data between groups. The navigation group had zero radiation exposure (RE) to the surgeon and radiation time compared to the C-ARM group, with total RE of 44.59 ± 26.65 mGy and radiation time of 88.30 ± 58.28 seconds (P < .05). The RE to the patient was significantly lower in the O-ARM group (9.38 mGy) compared to the C-ARM group (44.59 ± 26.65 mGy). Operating room time was slightly longer in the navigation group (2.49 ± 1.35 hours) compared to the C-ARM group (2.30 ± 1.17 hours; P > .05), although not statistically significant. No differences were found in estimated blood loss, length of hospitalization, surgery-related complications, and outcome scores with an average of 8-month follow-up. Conclusions: Compared with C-ARM techniques, using navigation can eliminate RE to surgeon and decrease RE to the patient, and it had no significant effect on operating time, estimated blood loss, length of hospitalization, or perioperative complications in the patients with OLIF procedure. This study shows that navigation is a safe alternative to fluoroscopy during the OLIF procedure in the treatment of degenerative lumbar conditions. PMID:28989845

  16. Ultra-low field MRI: bringing MRI to new arenas

    DOE PAGES

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett; ...

    2016-11-01

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  17. Ultra-low field MRI: bringing MRI to new arenas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelind, Per Erik; Matlashov, Andrei Nikolaevich; Newman, Shaun Garrett

    Conventional magnetic resonance imaging (MRI) is moving toward the use of stronger and stronger magnetic fields with 3T, and even 7 T systems being increasingly used in routine clinical applications. However there is another branch of MRI, namely Ultra Low Field MRI (ULF-MRI) where the magnetic fields during readout are several orders of magnitude smaller, namely 1–100 μT. While conventional high-field MRI remains the gold standard there are several situations such as in military emergencies or in developing countries where for cost and logistical reasons, conventional MRI is not practical. In such scenarios, ULF-MRI could provide a solution. Lastly, thismore » article describes the basic principles and the potential of ULF-MRI.« less

  18. Uncovertebral joint injury in cervical facet dislocation: the headphones sign.

    PubMed

    Palmieri, Francesco; Cassar-Pullicino, Victor N; Dell'Atti, Claudia; Lalam, Radhesh K; Tins, Bernhard J; Tyrrell, Prudencia N M; McCall, Iain W

    2006-06-01

    The purpose of our study is to demonstrate the uncovertebral mal-alignment as a reliable indirect sign of cervical facet joint dislocation. We examined the uncovertebral axial plane alignment of 12 patients with unilateral and bilateral cervical facet joint dislocation (UCFJD and BCFJD, respectively), comparing its frequency to the reverse hamburger bun sign on CT and MR axial images. Of the seven cases with BCFJD, five clearly demonstrated the diagnostic reverse facet joint hamburger bun sign on CT and MR images, but in two cases this sign was not detectable. In the five cases with UCFJD, four demonstrated the reverse hamburger bun sign on both CT and MRI. In one case the reverse hamburger bun sign was not seen adequately with either image modality, but the facet dislocation was identified on sagittal imaging. The uncovertebral mal-alignment was detected in all 12 cases. Normally, the two components of the uncovertebral joint enjoy a concentric relationship that in the axial plane is reminiscent of the relationship of headphones with the wearer's head. We name this appearance the 'headphones' sign. Radiologists should be aware of the headphones sign as a reliable indicator of facet joint dislocation on axial imaging used in the assessment of cervical spine injuries.

  19. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003

  20. Accuracy of low-field magnetic resonance imaging versus radiography for guiding injection of equine distal interphalangeal joint collateral ligaments.

    PubMed

    Lamb, Megan M; Barrett, Jennifer G; White, Nathaniel A; Werre, Stephen R

    2014-01-01

    Desmopathy of the distal interphalangeal joint collateral ligament is a common cause of lameness in the horse and carries a variable prognosis for soundness. Intralesional treatment has been proposed for improving outcome; however, limited reports describe methods for injecting this ligament. The purpose of this study was to compare accuracy of low-field magnetic resonance imaging (MRI) vs. radiography for injecting the collateral ligament of the distal interphalangeal joint. Equine cadaver digit pairs (n = 10) were divided by random assignment to injection of the ligament by either technique. An observer unaware of injection technique determined injection success based on postinjection MRI and/or gross sections acquired from the proximal, middle, and distal portions of the ligament. McNemar's test was performed to determine statistical difference between injection techniques, the number of injection attempts, and injection of the medial or lateral collateral ligament. Magnetic resonance imaging guided injection was successful more frequently than radiographic-guided injection based on postinjection MRI (24 of 30 vs. 9 of 30; P = 0.0006) and gross sections (26 of 30 vs. 13 of 30; P = 0.0008). At each level of the ligament (proximal, middle, and distal), MRI-guided injection resulted in more successful injections than radiographic guidance. Statistical significance occurred at the proximal aspect of the collateral ligament based on postinjection MRI (P = 0.0143) and the middle portion of the ligament based on gross sections (P = 0.0253). Findings supported future testing of standing, low-field MRI as a technique for delivering intralesional regenerative therapy in live horses with desmopathy of these collateral ligaments. © 2013 American College of Veterinary Radiology.

  1. Melorheostosis of the tenth and eleventh thoracic vertebrae crossing the facet joint: a rare cause of back pain.

    PubMed

    McCarthy, M; Mehdian, H; Fairbairn, K J; Stevens, A

    2004-05-01

    Melorheostosis affecting the axial skeleton is a rare condition. We present a case affecting a single thoracic zygoapophyseal (facet) joint that proved to be a diagnostic challenge. CT, MRI and radionuclide imaging with surgical and histopathology findings are discussed.

  2. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  3. [A primary application and evaluation of temporomandibular joint replacement with stock prosthesis].

    PubMed

    Zhang, Xiao-hu; Chen, Min-jie; Qiu, Ya-ting; Yang, Chi

    2012-06-01

    To evaluate the effect of total joint replacement in treatment of temporomandibular joint(TMJ) osteoarthropathy with stock prostheses. Six female patients involving 10 joints (2 unilateral and 4 bilateral), with an average age of 59 years old, were involved in this study. Three patients (5 joints) were diagnosed as internal derangement in V stage depending on MRI, 3D-CT findings and clinical characteristics. The other 3 patients (5 joints) had histories of failed temporomandibular joint operation using costochondral graft or temporalis fascial flap. The maximal mouth opening was 1.9 cm on average (range, 1.0 to 2.9cm). All the joints were replaced with Biomet standard prosthesis under general anesthesia. The follow-up period was from 7 to 49 months (average, 17.5 months). All the operations were successfully performed. Heterotopic ossification happened in a bilateral case 1 year postoperatively. One patient with bilateral joint disease complained of severe uncomfortable feeling in the region of the ears and the temples, although there was no significant positive signs according to an ENT examination. Pain relief of the joint and mouth opening improvement were significant in 4 patients. No failure was noted secondary to infection or loosening of the prostheses. The occlusal relationship kept stable postoperatively in all cases. Total TMJ joint replacement with standard prosthesis is a good choice for TMJ reconstruction. It can significantly reduce joint pain and the mouth opening limitation resulted from osteoarthritis. Long-term result remains to be evaluated based on a long-term follow-up.

  4. Pyomyositis of the iliacus muscle and pyogenic sacroiliitis after sacroiliac joint block -A case report-.

    PubMed

    Lee, Mi Hyeon; Byon, Hyo-Jin; Jung, Hyun Jun; Cha, Young-Deog; Lee, Doo Ik

    2013-05-01

    Sacroiliac joint block can be performed for the diagnosis and treatment of sacroiliac joint dysfunction. Although sacroiliac joint block is a common procedure, complications have not been reported in detail. We report a case of iliacus pyomyositis and sacroiliac joint infection following a sacroiliac joint block. A 70-year-old female patient received sacroiliac joint blocks to relieve pelvic pain. The patient was admitted to the emergency room two days after the final sacroiliac joint block (SIJB) with the chief complaints of left pelvic pain corresponding to a visual analogue scale (VAS) score of 9 and fever. A pelvic MRI indicated a diagnosis of myositis. After 1 month of continuous antibiotic therapy, the patient's erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) level remained elevated. A (67)Ga SPECT/CT was done. Abnormal uptake was seen at the left sacroiliac joint (SIJ), and septic sacroiliitis was suspected. The CRP normalized to 0.29 mg/dl and the ESR decreased to 60 mm/hr, and the patient had no fever after 57 days of antibiotic therapy. She was directed for follow up at an outpatient clinic.

  5. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities

    NASA Astrophysics Data System (ADS)

    Vallières, M.; Freeman, C. R.; Skamene, S. R.; El Naqa, I.

    2015-07-01

    This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping

  6. Radiation hazards to vascular surgeon and scrub nurse in mobile fluoroscopy equipped hybrid vascular room

    PubMed Central

    Kim, Jong Bin; Lee, Jaehoon

    2017-01-01

    Purpose The aim of the present study was to identify the radiation hazards to vascular surgeons and scrub nurses working in mobile fluoroscopy equipped hybrid vascular operation rooms; additionally, to estimate cumulative cancer risk due to certain exposure dosages. Methods The study was conducted prospectively in 71 patients (53 men and 18 women) who had undergone vascular intervention at our hybrid vascular theater for 6 months. OEC 9900 fluoroscopy was used as mobile C-arm. Exposure dose (ED) was measured by attaching optically stimulated luminescence at in and outside of the radiation protectors. To measure X-ray scatter with the anthropomorphic phantom model, the dose was measured at 3 distances (20, 50, 100 cm) and 3 angles (horizontal, upward 45°, downward 45°) using a personal gamma radiation dosimeter, Ecotest CARD DKG-21, for 1, 3, 5, 10 minutes. Results Lifetime attributable risk of cancer was estimated using the approach of the Biological Effects of Ionizing Radiation report VII. The 6-month ED of vascular surgeons and scrub nurses were 3.85, 1.31 mSv, respectively. The attenuation rate of lead apron, neck protector and goggle were 74.6%, 60.6%, and 70.1%, respectively. All cancer incidences among surgeons and scrub nurses correspond to 2,355 and 795 per 100,000 persons. The 10-minute dose at 100-cm distance was 0.004 mSv at horizontal, 0.009 mSv at downward 45°, 0.003 mSv at upward 45°. Conclusion Although yearly radiation hazards for vascular surgeons and scrub nurses are still within safety guidelines, protection principles can never be too stringent when aiming to minimize the cumulative harmful effects. PMID:28289670

  7. In vivo kinematic study of the tarsal joints complex based on fluoroscopic 3D-2D registration technique.

    PubMed

    Chen Wang, M D; Geng, Xiang; Wang, Shaobai; Xin Ma, M D; Xu Wang, M D; Jiazhang Huang, M D; Chao Zhang, M D; Li Chen, M S; Yang, Junsheng; Wang, Kan

    2016-09-01

    The tarsal bones articulate with each other and demonstrate complicated kinematic characteristics. The in vivo motions of these tarsal joints during normal gait are still unclear. Seven healthy subjects were recruited and fourteen feet in total were tested in the current study. Three dimensional models of the tarsal bones were first created using CT scanning. Corresponding local 3D coordinate systems of each tarsal bone was subsequently established for 6DOF motion decompositions. The fluoroscopy system captured the lateral fluoroscopic images of the targeted tarsal region whilst the subject was walking. Seven key pose images during the stance phase were selected and 3D to 2D bone model registrations were performed on each image to determine joint positions. The 6DOF motions of each tarsal joint during gait were then obtained by connecting these positions together. The TNJ (talo-navicular joint) exhibited the largest ROMs (range of motion) on all rotational directions with 7.39±2.75°of dorsi/plantarflexion, 21.12±4.68°of inversion/eversion, and 16.11±4.44°of internal/external rotation. From heel strike to midstance, the TNJ, STJ (subtalar joint), and CCJ (calcaneao-cuboid joint) were associated with 5.97°, 5.04°, and 3.93°of dorsiflexion; 15.46°, 8.21°, and 5.82°of eversion; and 9.75°, 7.6°, and 4.99°of external rotation, respectively. Likewise, from midstance to heel off, the TNJ, STJ, and CCJ were associated with 6.39, 6.19°, and 4.47°of plantarflexion; 18.57°, 11.86°, and 6.32°of inversion and 13.95°, 9.66°, and 7.58°of internal rotation, respectively. In conclusion, among the tarsal joints, the TNJ exhibited the greatest rotational mobility. Synchronous and homodromous rotational motions were detected for TNJ, STJ, and CCJ during the stance phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions.

    PubMed

    Parr, W C H; Chatterjee, H J; Soligo, C

    2012-04-05

    Orientation of the subtalar joint axis dictates inversion and eversion movements of the foot and has been the focus of evolutionary and clinical studies for a number of years. Previous studies have measured the subtalar joint axis against the axis of the whole foot, the talocrural joint axis and, recently, the principal axes of the talus. The present study introduces a new method for estimating average joint axes from 3D reconstructions of bones and applies the method to the talus to calculate the subtalar and talocrural joint axes. The study also assesses the validity of the principal axes as a reference coordinate system against which to measure the subtalar joint axis. In order to define the angle of the subtalar joint axis relative to that of another axis in the talus, we suggest measuring the subtalar joint axis against the talocrural joint axis. We present corresponding 3D vector angles calculated from a modern human skeletal sample. This method is applicable to virtual 3D models acquired through surface-scanning of disarticulated 'dry' osteological samples, as well as to 3D models created from CT or MRI scans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Body mass index and extent of MRI-detected inflammation: opposite effects in rheumatoid arthritis versus other arthritides and asymptomatic persons.

    PubMed

    Mangnus, Lukas; Nieuwenhuis, Wouter P; van Steenbergen, Hanna W; Huizinga, Tom W J; Reijnierse, Monique; van der Helm-van Mil, Annette H M

    2016-10-22

    In the population a high body mass index (BMI) has been associated with slightly increased inflammatory markers. Within rheumatoid arthritis (RA), however, a high BMI has been associated with less radiographic progression; this phenomenon is unexplained. We hypothesized that the phenomenon is caused by an inverse relationship between BMI and inflammation in hand and foot joints with RA. To explore this hypothesis, local inflammation was measured using magnetic resonance imaging (MRI) in early arthritis patients presenting with RA or other arthritides and in asymptomatic volunteers. A total of 195 RA patients, 159 patients with other inflammatory arthritides included in the Leiden Early Arthritis Clinic, and 193 asymptomatic volunteers underwent a unilateral contrast-enhanced 1.5 T MRI scan of metacarpophalangeal, wrist, and metatarsophalangeal joints. Each MRI scan was scored by two readers on synovitis, bone marrow edema (BME), and tenosynovitis; the sum yielded the total MRI inflammation score. Linear regression on log-transformed MRI data was used. A higher BMI was associated with higher MRI inflammation scores in arthritides other than RA (β = 1.082, p < 0.001) and in asymptomatic volunteers (β = 1.029, p = 0.040), whereas it was associated with lower MRI inflammation scores in RA (β = 0.97, p = 0.005). Evaluating the different types of inflammation, a higher BMI was associated with higher synovitis, BME, and tenosynovitis scores in arthritides other than RA (respectively β = 1.084, p < 0.001, β = 1.021, p = 0.24, and β = 1.054, p = 0.003), but with lower synovitis and BME scores in RA (respectively β = 0.98, p = 0.047 and β = 0.95, p = 0.002). Increased BMI is correlated with less severe MRI-detected synovitis and BME in RA. This might explain the paradox in RA where obesity correlates with less severe radiographic progression.

  10. Hand and body radiation exposure with the use of mini C-arm fluoroscopy.

    PubMed

    Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H

    2011-04-01

    To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. PRIM: An Efficient Preconditioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction.

    PubMed

    Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou

    2018-02-08

    The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.

  12. Towards active image-guidance: tracking of a fiducial in the thorax during respiration under X-ray fluoroscopy

    NASA Astrophysics Data System (ADS)

    Siddique, Sami; Jaffray, David

    2007-03-01

    A central purpose of image-guidance is to assist the interventionalist with feedback of geometric performance in the direction of therapy delivery. Tradeoffs exist between accuracy, precision and the constraints imposed by parameters used in the generation of images. A framework that uses geometric performance as feedback to control these parameters can balance such tradeoffs in order to maintain the requisite localization precision for a given clinical procedure. We refer to this principle as Active Image-Guidance (AIG). This framework requires estimates of the uncertainty in the estimated location of the object of interest. In this study, a simple fiducial marker detected under X-ray fluoroscopy is considered and it is shown that a relation exists between the applied imaging dose and the uncertainty in localization for a given observer. A robust estimator of the location of a fiducial in the thorax during respiration under X-ray fluoroscopy is demonstrated using a particle filter based approach that outputs estimates of the location and the associated spatial uncertainty. This approach gives an rmse of 1.3mm and the uncertainty estimates are found to be correlated with the error in the estimates. Furthermore, the particle filtering approach is employed to output location estimates and the associated uncertainty not only at instances of pulsed exposure but also between exposures. Such a system has applications in image-guided interventions (surgery, radiotherapy, interventional radiology) where there are latencies between the moment of imaging and the act of intervention.

  13. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany.

    PubMed

    Bailey, D L; Pichler, B J; Gückel, B; Antoch, G; Barthel, H; Bhujwalla, Z M; Biskup, S; Biswal, S; Bitzer, M; Boellaard, R; Braren, R F; Brendle, C; Brindle, K; Chiti, A; la Fougère, C; Gillies, R; Goh, V; Goyen, M; Hacker, M; Heukamp, L; Knudsen, G M; Krackhardt, A M; Law, I; Morris, J C; Nikolaou, K; Nuyts, J; Ordonez, A A; Pantel, K; Quick, H H; Riklund, K; Sabri, O; Sattler, B; Troost, E G C; Zaiss, M; Zender, L; Beyer, Thomas

    2018-02-01

    The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we

  14. SU-E-J-42: Motion Adaptive Image Filter for Low Dose X-Ray Fluoroscopy in the Real-Time Tumor-Tracking Radiotherapy System.

    PubMed

    Miyamoto, N; Ishikawa, M; Sutherland, K; Suzuki, R; Matsuura, T; Takao, S; Toramatsu, C; Nihongi, H; Shimizu, S; Onimaru, R; Umegaki, K; Shirato, H

    2012-06-01

    In the real-time tumor-tracking radiotherapy system, fiducial markers are detected by X-ray fluoroscopy. The fluoroscopic parameters should be optimized as low as possible in order to reduce unnecessary imaging dose. However, the fiducial markers could not be recognized due to effect of statistical noise in low dose imaging. Image processing is envisioned to be a solution to improve image quality and to maintain tracking accuracy. In this study, a recursive image filter adapted to target motion is proposed. A fluoroscopy system was used for the experiment. A spherical gold marker was used as a fiducial marker. About 450 fluoroscopic images of the marker were recorded. In order to mimic respiratory motion of the marker, the images were shifted sequentially. The tube voltage, current and exposure duration were fixed at 65 kV, 50 mA and 2.5 msec as low dose imaging condition, respectively. The tube current was 100 mA as high dose imaging. A pattern recognition score (PRS) ranging from 0 to 100 and image registration error were investigated by performing template pattern matching to each sequential image. The results with and without image processing were compared. In low dose imaging, theimage registration error and the PRS without the image processing were 2.15±1.21 pixel and 46.67±6.40, respectively. Those with the image processing were 1.48±0.82 pixel and 67.80±4.51, respectively. There was nosignificant difference in the image registration error and the PRS between the results of low dose imaging with the image processing and that of high dose imaging without the image processing. The results showed that the recursive filter was effective in order to maintain marker tracking stability and accuracy in low dose fluoroscopy. © 2012 American Association of Physicists in Medicine.

  15. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis.

    PubMed

    Maksymowych, Walter P; Wichuk, Stephanie; Chiowchanwisawakit, Praveena; Lambert, Robert G; Pedersen, Susanne J

    2014-11-01

    Fat metaplasia in bone marrow on T1-weighted magnetic resonance imaging (MRI) scans may develop after resolution of inflammation in patients with ankylosing spondylitis (AS) and may predict new bone formation in the spine. Similar tissue, termed backfill, may also fill areas of excavated bone in the sacroiliac (SI) joints and may reflect resolution of inflammation and tissue repair at sites of erosions. The purpose of this study was to test our hypothesis that SI joint ankylosis develops following repair of erosions and that tissue characterized by fat metaplasia is a key intermediary step in this pathway. We used the Spondyloarthritis Research Consortium of Canada (SPARCC) SI structural lesion score (SSS) method to assess fat metaplasia, erosions, backfill, and ankylosis on MRIs of the SI joints in 147 patients with AS monitored for 2 years. Univariate and multivariate regression analyses focused first on identifying significant MRI predictors of new backfill and fat metaplasia. We then assessed the role of backfill and fat metaplasia in the development of new ankylosis. All analyses were adjusted for demographic features, treatment, and baseline and 2-year change in SSS values for parameters of inflammation and MRI structural lesions. Resolution of inflammation and reduction of erosions were each independently associated with the development of new backfill and fat metaplasia at 2 years on multivariate analyses. Multivariate regression analysis that included demographic features, baseline and 2-year change in parameters of inflammation and MRI structural lesion showed that reduction in erosions (P = 0.0005) and increase in fat metaplasia (P = 0.002) at 2 years was each independently associated with the development of new ankylosis. Our data support a disease model whereby ankylosis develops following repair of erosions, and fat metaplasia and backfill are key intermediary steps in this pathway. Copyright © 2014 by the American College of Rheumatology.

  16. Elbow MRI Findings Do Not Correlate With Future Placement on the Disabled List in Asymptomatic Professional Baseball Pitchers.

    PubMed

    Gutierrez, Nicholas M; Granville, Christopher; Kaplan, Lee; Baraga, Michael; Jose, Jean

    Injury rates among professional baseball players may reach as high as 5.8 per 1000 encounters, with pitchers being most vulnerable on account of the excessive biomechanical load on the upper extremity during the throwing motion. Anatomically, the shoulder is the most common site of pitching-related injury, accounting for 30.7% of injuries, closely followed by the elbow at 26.3%. Characteristic valgus loading imparts a predictable constellation of stresses on the joint, including medial tension, lateral compression, and posterior medial shearing. The degenerative cohort of tissue changes that result are readily detected on magnetic resonance imaging (MRI). It is not yet known whether such findings predict future placement on the disabled list (DL) in asymptomatic Major League pitchers. Abnormal soft tissue and osseous changes detected on MRI of the throwing elbow in asymptomatic professional pitchers will impart an increased risk of subsequent transfer to the DL in the season after MRI. Retrospective cohort study. Level 3. The study aimed to examine a potential association between the total number of innings pitched (approximate lifetime valgus load) and the typical MRI degenerative changes, hypothesizing a rejection of the null hypothesis. A total of 26 asymptomatic professional pitchers from a single Major League Baseball (MLB) organization and its various minor league affiliates underwent MRI of their dominant elbow from 2003 to 2013 as a condition of their contract signing or trade. Twenty-one of those pitchers played at the Major League level while 5 played with the team's minor league affiliates including both the AA and AAA levels. Asymptomatic was defined as no related stints on the DL due to elbow injury in the 2 seasons prior to MRI. A fellowship-trained musculoskeletal radiologist reevaluated the studies after being blinded to patient name, injury history, and baseball history. A second investigator collected demographic data; this included total career

  17. Referred pain location depends on the affected section of the sacroiliac joint.

    PubMed

    Kurosawa, Daisuke; Murakami, Eiichi; Aizawa, Toshimi

    2015-03-01

    Pain referred from the sacroiliac joint (SIJ) may originate in the joint's posterior ligamentous region. The site of referred pain may depend on which SIJ section is affected. This study aimed to determine the exact origin of pain referred from four SIJ sections. The study included 50 patients with SIJ dysfunction, confirmed by more than 70 % pain relief after periarticular injection of local anesthetic into the SIJ. The posterior SIJ was divided into four sections-upper, middle, lower, and other (cranial portion of the ilium outside the SIJ)-designated sections 1, 2, 3, and 0, respectively. We then inserted a needle into the periarticular SIJ under fluoroscopy. After the patient identified the area(s) in which the needle insertion produced referred pain, we injected a mixture of 2 % lidocaine and contrast medium into the corresponding SIJ section. Referred pain from SIJ section 0 was mainly located in the upper buttock along the iliac crest; pain from section 1, around the posterosuperior iliac spine; pain from section 2, in the middle buttock area; pain from section 3, in the lower buttock. In all, 22 (44.0 %) patients complained of groin pain, which was slightly relieved by lidocaine injection into SIJ sections 1 and 0. Dysfunctional upper sections of the SIJ are associated with pain in the upper buttock and lower sections with pain in the lower buttock. Groin pain might be referred from the upper SIJ sections.

  18. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteersmore » using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial

  19. MRI of the wrist in juvenile idiopathic arthritis: proposal of a paediatric synovitis score by a consensus of an international working group. Results of a multicentre reliability study.

    PubMed

    Damasio, Maria Beatrice; Malattia, Clara; Tanturri de Horatio, Laura; Mattiuz, Chiara; Pistorio, Angela; Bracaglia, Claudia; Barbuti, Domenico; Boavida, Peter; Juhan, Karen Lambot; Ording, Lil Sophie Mueller; Rosendahl, Karen; Martini, Alberto; Magnano, GianMichele; Tomà, Paolo

    2012-09-01

    MRI is a sensitive tool for the evaluation of synovitis in juvenile idiopathic arthritis (JIA). The purpose of this study was to introduce a novel MRI-based score for synovitis in children and to examine its inter- and intraobserver variability in a multi-centre study. Wrist MRI was performed in 76 children with JIA. On postcontrast 3-D spoiled gradient-echo and fat-suppressed T2-weighted spin-echo images, joint recesses were scored for the degree of synovial enhancement, effusion and overall inflammation independently by two paediatric radiologists. Total-enhancement and inflammation-synovitis scores were calculated. Interobserver agreement was poor to moderate for enhancement and inflammation in all recesses, except in the radioulnar and radiocarpal joints. Intraobserver agreement was good to excellent. For enhancement and inflammation scores, mean differences (95 % CI) between observers were -1.18 (-4.79 to 2.42) and -2.11 (-6.06 to 1.83). Intraobserver variability (reader 1) was 0 (-1.65 to 1.65) and 0.02 (-1.39 to 1.44). Intraobserver agreement was good. Except for the radioulnar and radiocarpal joints, interobserver agreement was not acceptable. Therefore, the proposed scoring system requires further refinement.

  20. Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.

    PubMed

    Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg

    2015-01-01

    Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.

  1. Comprehensive evaluation of broad-beam transmission of patient supports from three fluoroscopy-guided interventional systems.

    PubMed

    DeLorenzo, Matthew C; Yang, Kai; Li, Xinhua; Liu, Bob

    2018-04-01

    The purpose of the study was to measure, evaluate, and model the broad-beam x-ray transmission of the patient supports from representative modern fluoroscopy-guided interventional systems, for patient skin dose calculation. Broad-beam transmission was evaluated by varying incident angle, kVp, added copper (Cu) filter, and x-ray field size for three fluoroscopy systems: General Electric (GE) Innova 4100 with Omega V table and pad, Siemens Axiom Artis with Siemens tabletop "narrow" (CARD) table and pad, and Siemens Zeego with Trumpf TruSystem 7500 table and pad. Field size was measured on the table using a lead ruler for all setups in this study. Exposure rates were measured in service mode using a calibrated Radcal 10 × 6-60 ion chamber above the patient support at the assumed skin location. Broad-beam transmission factors were calculated by the ratio of air kerma rates measured with and without a patient support in the beam path. First, angle dependency was investigated on the GE system, with the chamber at isocenter, for angles of 0°, 15°, 30°, and 40°, for a variety of kVp, added Cu filters, and for two field sizes (small and large). Second, the broad-beam transmission factor at normal incidence was evaluated for all three fluoroscopes by varying kVp, added Cu filter, and field size (small, medium, and large). An analytical equation was created to fit the data as to maximize R 2 and minimize maximum percentage difference across all measurements for each system. For all patient supports, broad-beam transmission factor increased with field size, kVp, and added Cu filtration and decreased with incident angle. Oblique incidence measurements show that the transmission decreased by about 1%, 3%, and 6% for incident angles of 15°, 30°, and 40°, respectively. The broad-beam transmission factors at 0° for the table and table plus pad ranged from 0.73 to 0.96 and from 0.59 to 0.89, respectively. The GE and Siemens transmission factors were comparable, while the

  2. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    PubMed

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  3. Percutaneous sacroiliac screw versus anterior plating for sacroiliac joint disruption: A retrospective cohort study.

    PubMed

    Zhang, Ruipeng; Yin, Yingchao; Li, Shilun; Hou, Zhiyong; Jin, Lin; Zhang, Yingze

    2018-02-01

    Sacroiliac joint disruption (SJD) is a common cause of pelvic ring instability. Clinically, percutaneous unilateral S1 sacroiliac screw and anterior plating are always applied to manage SJD. The objective of this study is to elaborate their respective therapeutic traits. Patients with SJD fixed with unilateral S1 sacroiliac screw or anterior plating from June 2011 to June 2015 were recruited into this study and were divided into two groups: group A (unilateral sacroiliac screw) and group B (anterior plating). Surgical time, blood loss, frequency of intraoperative fluoroscopy and complications were reviewed. Postoperative radiograph and CT were conducted to assess the reduction quality. Fracture healing was evaluated by radiograph performed at each follow-up. Majeed score was recorded at the final follow-up to assess the functional outcome. Thirty-eight patients were included in group A and thirty-two patients in group B in this study. There was no significant difference in the demographic data of the two groups. A significant difference existed in the results for average operation time (P = .022) and blood loss (P = .000) between group A and group B. The mean frequency of intraoperative fluoroscopy was 15.82 in group A and 3.94 in group B (P = .000). All the fractures healed in this study. The rates of satisfactory reduction quality and functional outcome showed no significant difference between the two groups (P > .05). The complication rate was 15.79% (6/38) in group A and 9.38% (3/32) in group B (P = .660). Compared with anterior plating, percutaneous unilateral S1 sacroiliac screw usage is less invasive; however, more intraoperative X-ray exposure and permanent neurologic damage may accompany this procedure. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads.

    PubMed

    Jaisson, Maxime; Lestriez, Philippe; Taiar, Redha; Debray, Karl

    2011-01-01

    The proposed biodynamic model of the articular disc joint has the ability to affect directly the complete chewing mechanism process and its related muscles defining its kinematics. When subjected to stresses from the mastication muscles, the disc absorbs one part and redistributes the other to become completely distorted. To develop a realistic model of this intricate joint a CT scan and MRI images from a patient were obtained to create sections (layers) and MRI images to create an anatomical joint CAD model, and its corresponding mesh element using a finite element method. The boundary conditions are described by the external forces applied to the joint model through a decomposition of the maximum muscular force developed by the same individual. In this study, the maximum force was operating at frequencies close to the actual chewing frequency measured through a cyclic loading condition. The reaction force at the glenoid fossa was found to be around 1035 N and is directly related to the frequency of indentation. It is also shown that over the years the areas of maximum stresses are located at the lateral portion of the disc and on its posterior rim. These forces can reach 13.2 MPa after a period of 32 seconds (s) at a frequency of 0.5 Hz. An important part of this study is to highlight resilience and the areas where stresses are at their maximum. This study provides a novel approach to improve the understanding of this complex joint, as well as to assess the different pathologies associated with the disc disease that would be difficult to study otherwise.

  5. Diagnostic Accuracy of an MRI Protocol of the Knee Accelerated Through Parallel Imaging in Correlation to Arthroscopy.

    PubMed

    Schnaiter, Johannes Walter; Roemer, Frank; McKenna-Kuettner, Axel; Patzak, Hans-Joachim; May, Matthias Stefan; Janka, Rolf; Uder, Michael; Wuest, Wolfgang

    2018-03-01

     Parallel imaging allows for a considerable shortening of examination times. Limited data is available about the diagnostic accuracy of an accelerated knee MRI protocol based on parallel imaging evaluating all knee joint compartments in a large patient population compared to arthroscopy.  162 consecutive patients with a knee MRI (1.5 T, Siemens Aera) and arthroscopy were included. The total MRI scan time was less than 9 minutes. Meniscus and cartilage injuries, cruciate ligament lesions, loose joint bodies and medial patellar plicae were evaluated. Sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV), as well as diagnostic accuracy were determined.  For the medial meniscus, the values were: SE 97 %, SP 88 %, PPV 94 %, and NPV 94 %. For the lateral meniscus the values were: SE 77 %, SP 99 %, PPV 98 %, and NPV 89 %. For cartilage injuries the values were: SE 72 %, SP 80 %, PPV 86 %, and NPV 61 %. For the anterior cruciate ligament the values were: SE 90 %, SP 94 %, PPV 77 %, and NPV 98 %, while all values were 100 % for the posterior cruciate ligament. For loose bodies the values were: SE 48 %, SP 96 %, PPV 62 %, and NPV 93 %, and for the medial patellar plicae the values were: SE 57 %, SP 88 %, PPV 18 %, and NPV 98 %.  A knee MRI examination with parallel imaging and a scan time of less than 9 minutes delivers reliable results with high diagnostic accuracy.   · An accelerated knee MRI protocol with parallel imaging allows for high diagnostic accuracy.. · Especially meniscal and cruciate ligament injuries are well depicted.. · Cartilage injuries seem to be overestimated.. · Schnaiter JW, Roemer F, McKenna-Kuettner A et al. Diagnostic Accuracy of an MRI Protocol of the Knee Accelerated Through Parallel Imaging in Correlation to Arthroscopy. Fortschr Röntgenstr 2018; 190: 265 - 272. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism.

    PubMed

    Wang, Li; Li, Gang; Adeli, Ehsan; Liu, Mingxia; Wu, Zhengwang; Meng, Yu; Lin, Weili; Shen, Dinggang

    2018-06-01

    Tissue segmentation of infant brain MRIs with risk of autism is critically important for characterizing early brain development and identifying biomarkers. However, it is challenging due to low tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6 months of age, the voxel intensities in both gray matter and white matter are within similar ranges, thus leading to the lowest image contrast in the first postnatal year. Previous studies typically employed intensity images and tentatively estimated tissue probabilities to train a sequence of classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited and topological errors frequently exist, which will significantly degrade the performance of subsequent analyses. Although topological errors could be partially handled by retrospective topological correction methods, their results may still be anatomically incorrect. To address these challenges, in this article, we propose an anatomy-guided joint tissue segmentation and topological correction framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to the outer cortical surface as anatomical prior knowledge, and incorporate such prior information into the proposed framework to guide segmentation in ambiguous regions. Experimental results on the subjects acquired from National Database for Autism Research demonstrate the effectiveness to topological errors and also some levels of robustness to motion. Comparisons with the state-of-the-art methods further demonstrate the advantages of the proposed method in terms of both segmentation accuracy and topological correctness. © 2018 Wiley Periodicals, Inc.

  7. Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion.

    PubMed

    Goto, Akira; Moritomo, Hisao; Itohara, Tomonobu; Watanabe, Tetsu; Sugamoto, Kazuomi

    2009-05-01

    It is difficult to determine the kinematics of the subtalar joint because of its anatomical and functional complexity. The purpose of the study was to clarify the 3D kinematics of the subtalar joint in vivo. Subjects were four healthy female volunteers. Magnetic resonance imaging (MRI) sequences were acquired in seven positions during dorsi-plantarflexion (DPF) and in 10 positions during inversion-eversion (IE) at intervals of 10 degrees. MRI data of the talus and calcaneus in the neutral position were superimposed on images of the other positions using voxel-based registration, and relative motions and axes of rotation were visualized and quantitatively calculated. The calcaneus always rotated from dorsolateral to medioplantar during DPF and IE, and the motion plane was very similar to that of the entire foot in IE. The axes of rotation of the calcaneus relative to the talus during DPF and IE had a very close spatial relationship, running obliquely from antero-dorso-medial to postero-planto-lateral and penetrating the talar neck. The rotation angle around each of these calcaneal axes tended to be greater in IE (20 degrees +/- 2 degrees) than in DPF (16 degrees +/- 3 degrees). In DPF, motion of the calcaneus relative to the talus occurred predominantly around maximum dorsiflexion and plantarflexion, with little movement observed at intermediate positions. During IE, the calcaneus exhibited uninterrupted motion related to foot movement. The subtalar joint is essentially a uniaxial joint with a motion plane almost identical to that of IE of the entire foot. Knowledge of normal subtalar kinematics may be helpful when evaluating pathologic conditions.

  8. Magnetic resonance imaging of the sacroiliac joints in the early detection of spondyloarthritis: no added value of gadolinium compared with short tau inversion recovery sequence.

    PubMed

    de Hooge, Manouk; van den Berg, Rosaline; Navarro-Compán, Victoria; van Gaalen, Floris; van der Heijde, Désirée; Huizinga, Tom; Reijnierse, Monique

    2013-07-01

    To investigate the additional value of T1 fat-saturated after gadolinium (T1/Gd) compared with T1 and short tau inversion recovery (STIR) sequence in detecting active lesions of the SI joints typical of axial SpA (axSpA) in a prospective cohort study, the SpondyloArthritis Caught Early (SPACE) cohort, and to assess its influence on final MRI diagnosis of the SI joint (MRI-SIJ) based on the Assessment of Spondyloarthritis International Society (ASAS) definition of active sacroiliitis. Patients in the SPACE cohort received baseline and 3-month follow-up MRI-SIJ with coronal oblique T1, STIR and T1/Gd sequences. Bone marrow oedema (BME), capsulitis/enthesitis and synovitis and active sacroiliitis according to the ASAS definition were evaluated by three blinded readers. A total of 127 patients received an MRI-SIJ at baseline and 67 patients also received an MRI-SIJ at 3 months follow-up since the Gd protocol was added some months after the start of the SPACE project. Twenty-five of the 127 patients (19.7%) with a baseline MRI-SIJ and 14 of 67 patients (20.6%) with a follow-up MRI-SIJ presented BME on the STIR sequence sufficient to fulfill the ASAS definition for a positive MRI-SIJ. In eight patients, additional synovitis and/or capsulitis/enthesitis was observed; however, no additional BME was visualized on T1/Gd. One patient, without clinical diagnosis of axSpA, showed synovitis as an isolated finding. Synovitis and capsulitis/enthesitis are detectable with the administration of Gd. However, they are always observed in the presence of BME. Therefore T1 and STIR sequence alone are sufficient in the MRI assessment that, among others, is used for diagnosing patients with early axSpA.

  9. Chronic arthritis of the hip joint: an unusual complication of an inadequately treated fistula-in-ano

    PubMed Central

    Raghunath, Rajat; Varghese, Gigi; Simon, Betty

    2014-01-01

    We report a case of chronic arthritis of the right hip joint in an otherwise healthy young male athlete as a complication of inadequately treated anal fistula. A young male athlete presented with symptoms of right hip pain and difficulty in walking and intermittent fever for 2 months. He had a history of perianal abscess drainage. On examination he was found to have a tender right hip joint with severe restriction of movements. He was also found to have a partially drained right ischiorectal abscess. X-ray and MRI of the hip joint revealed chronic arthritis of the right hip joint, which was communicating with a complex fistula-in-ano. He underwent a diversion sigmoid colostomy and right ischiorectal abscess drainage along with appropriate antibiotics with a plan for definitive hip joint procedure later. He was lost to follow-up and succumbed to severe perianal sepsis within a few months. PMID:25414226

  10. Magnetic resonance imaging of the equine temporomandibular joint anatomy.

    PubMed

    Rodríguez, M J; Agut, A; Soler, M; López-Albors, O; Arredondo, J; Querol, M; Latorre, R

    2010-04-01

    In human medicine, magnetic resonance imaging (MRI) is considered the 'gold standard' imaging procedure to assess the temporomandibular joint (TMJ). However, there is no information regarding MRI evaluation of equine TMJ. To describe the normal sectional MRI anatomy of equine TMJ by using frozen and plastinated anatomical sections as reference; and determine the best imaging planes and sequences to visualise TMJ components. TMJs from 6 Spanish Purebred horse cadavers (4 immature and 2 mature) underwent MRI examination. Spin-echo T1-weighting (SE T1W), T2*W, fat-suppressed (FS) proton density-weighting (PDW) and fast spin-echo T2-weighting (FSE T2W) sequences were obtained in oblique sagittal, transverse and dorsal planes. Anatomical sections were procured on the same planes for a thorough interpretation. The oblique sagittal and transverse planes were the most informative anatomical planes. SE T1W images showed excellent spatial resolution and resulted in superior anatomic detail when comparing to other sequences. FSE T2W sequence provided an acceptable anatomical depiction but T2*W and fat-suppressed PDW demonstrated higher contrast in visualisation of the disc, synovial fluid, synovial pouches and articular cartilage. The SE T1W sequence in oblique sagittal and transverse plane should be the baseline to identify anatomy. The T2*W and fat-suppressed PDW sequences enhance the study of the articular cartilage and synovial pouches better than FSE T2W. The information provided in this paper should aid clinicians in the interpretation of MRI images of equine TMJ and assist in the early diagnosis of those problems that could not be diagnosed by other means.

  11. Joint source based morphometry identifies linked gray and white matter group differences.

    PubMed

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D

    2009-02-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray-white matter regions identified in each of the joint sources included: 1) temporal--corpus callosum, 2) occipital/frontal--inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal--superior longitudinal fasciculus and 4) parietal/frontal--thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences.

  12. Joint source based morphometry identifies linked gray and white matter group differences

    PubMed Central

    Xu, Lai; Pearlson, Godfrey; Calhoun, Vince D.

    2009-01-01

    We present a multivariate approach called joint source based morphometry (jSBM), to identify linked gray and white matter regions which differ between groups. In jSBM, joint independent component analysis (jICA) is used to decompose preprocessed gray and white matter images into joint sources and statistical analysis is used to determine the significant joint sources showing group differences and their relationship to other variables of interest (e.g. age or sex). The identified joint sources are groupings of linked gray and white matter regions with common covariation among subjects. In this study, we first provide a simulation to validate the jSBM approach. To illustrate our method on real data, jSBM is then applied to structural magnetic resonance imaging (sMRI) data obtained from 120 chronic schizophrenia patients and 120 healthy controls to identify group differences. JSBM identified four joint sources as significantly associated with schizophrenia. Linked gray–white matter regions identified in each of the joint sources included: 1) temporal — corpus callosum, 2) occipital/frontal — inferior fronto-occipital fasciculus, 3) frontal/parietal/occipital/temporal —superior longitudinal fasciculus and 4) parietal/frontal — thalamus. Age effects on all four joint sources were significant, but sex effects were significant only for the third joint source. Our findings demonstrate that jSBM can exploit the natural linkage between gray and white matter by incorporating them into a unified framework. This approach is applicable to a wide variety of problems to study linked gray and white matter group differences. PMID:18992825

  13. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less

  14. Acromegalic arthropathy in various stages of the disease: an MRI study.

    PubMed

    Claessen, K M J A; Canete, A Navas; de Bruin, P W; Pereira, A M; Kloppenburg, M; Kroon, H M; Biermasz, N R

    2017-06-01

    Arthropathy is a prevalent and invalidating complication of acromegaly with a characteristic radiographic phenotype. We aimed to further characterize cartilage and bone abnormalities associated with acromegalic arthropathy using magnetic resonance imaging (MRI). Twenty-six patients (23% women, mean age 56.8 ± 13.4 years), with active ( n  = 10) and controlled acromegaly ( n  = 16) underwent a 3.0 T MRI of the right knee. Osteophytes, cartilage defects, bone marrow lesions and subchondral cysts were assessed by the Knee Osteoarthritis Scoring System (KOSS) method. Cartilage thickness and cartilage T2 relaxation times, in which higher values reflect increased water content and/or structural changes, were measured. Twenty-five controls (52% women, mean age: 59.6 ± 8.0 years) with primary knee OA were included for comparison. Both in active and controlled acromegaly, structural OA defects were highly prevalent, with thickest cartilage and highest cartilage T2 relaxation times in the active patients. When compared to primary OA subjects, patients with acromegaly seem to have less cysts (12% vs 48%, P  = 0.001) and bone marrow lesions (15% vs 80%, P  = 0.006), but comparable prevalence of osteophytosis and cartilage defects. Patients with acromegaly had 31% thicker total joint cartilage ( P  < 0.001) with higher cartilage T2 relaxation times at all measured sites than primary OA subjects ( P  < 0.01). Patients with active acromegaly have a high prevalence of structural OA abnormalities in combination with thick joint cartilage. In addition, T2 relaxation times of cartilage are high in active patients, indicating unhealthy cartilage with increased water content, which is (partially) reversible by adequate treatment. Patients with acromegaly have a different distribution of structural OA abnormalities visualized by MRI than primary OA subjects, especially of cartilage defects. © 2017 European Society of Endocrinology.

  15. Fluoroscopy of spontaneous breathing is more sensitive than phrenic nerve stimulation for detection of right phrenic nerve injury during cryoballoon ablation of atrial fibrillation.

    PubMed

    Linhart, Markus; Nielson, Annika; Andrié, René P; Mittmann-Braun, Erica L; Stöckigt, Florian; Kreuz, Jens; Nickenig, Georg; Schrickel, Jan W; Lickfett, Lars M

    2014-08-01

    Right phrenic nerve palsy (PNP) is a typical complication of cryoballoon ablation of the right-sided pulmonary veins (PVs). Phrenic nerve function can be monitored by palpating the abdomen during phrenic nerve pacing from the superior vena cava (SVC pacing) or by fluoroscopy of spontaneous breathing. We sought to compare the sensitivity of these 2 techniques during cryoballoon ablation for detection of PNP. A total of 133 patients undergoing cryoballoon ablation were monitored with both SVC pacing and fluoroscopy of spontaneous breathing during ablation of the right superior PV. PNP occurred in 27/133 patients (20.0%). Most patients (89%) had spontaneous recovery of phrenic nerve function at the end of the procedure or on the following day. Three patients were discharged with persistent PNP. All PNP were detected first by fluoroscopic observation of diaphragm movement during spontaneous breathing, while diaphragm could still be stimulated by SVC pacing. In patients with no recovery until discharge, PNP occurred at a significantly earlier time (86 ± 34 seconds vs. 296 ± 159 seconds, P < 0.001). No recovery occurred in 2/4 patients who were ablated with a 23 mm cryoballoon as opposed to 1/23 patients with a 28 mm cryoballoon (P = 0.049). Fluoroscopic assessment of diaphragm movement during spontaneous breathing is more sensitive for detection PNP as compared to SVC pacing. PNP as assessed by fluoroscopy is frequent (20.0%) and carries a high rate of recovery (89%) until discharge. Early onset of PNP and use of 23 mm cryoballoon are associated with PNP persisting beyond hospital discharge. © 2014 Wiley Periodicals, Inc.

  16. [The specificity and limitations of sacroiliac joint magnetic resonance imaging in the diagnosis of axial spondyloarthritis in patients with chronic low back pain].

    PubMed

    Wang, Y Y; Zhao, Z; Luo, G; Li, Y; Zhang, J L; Huang, F

    2016-11-01

    Objective: To evaluate the specificity and limitations of sacroiliac joint magnetic resonance imaging (MRI) in the diagnosis of axial spondyloarthritis (SpA)in patients with chronic low back pain. Methods: We retrospectively analyzed clinical data of 390 patients with chronic low back pain in Department of Rheumatology, the PLA General Hospital from January 2013 to December 2015, including clinical manifestations, laboratory examinations and MRI data of sacroiliac joints. Results: There were 238 men and 152 women recruited. A total of 326 cases were diagnosed as axial SpA, including 216 men and 110 women with mean age (27.10±8.64) years and mean duration (7.64±3.50) months. Among these 326 patients, 243 (74.5%) were HLA-B 27 positive. The other 64 patients were considered as diagnoses rather than SpA (non-SpA), consisting of 22 men and 42 women with mean age (31.29±7.76) years and mean duration (5.75±2.90)months. Non-SpA group had 10 (15.6%) patients with HLA-B 27 positive. There were 68.1% and 65.0% SpA patients showing bone marrow edema and bone erosion of sacroiliac joint in MRI imaging respectively. Although there were 25.0% non-SpA patients with bone marrow edema and 7.8% with bone erosion in MRI of sacroiliac joint, the scores of bone marrow edema 0.00(0.00, 0.75) and bone erosion [0.00(0.00, 0.00)] were significantly lower compared with those in axial SpA group [bone marrow edema scores 2.00(0.00, 4.00), bone erosion scores 1.00(0.00, 3.00); P <0.05]. The scores of fat infiltration [1.00(0.00, 4.25), 1.00(0.00, 4.00)] and bone sclerosis [0.00(0.00, 1.00), 0.00(0.00, 1.75)] were not statistically different between two groups. Diagnostic sensitivity of bone marrow edema and bone erosion for axial SpA were 56.4% and 64.1% respectively, specificity were 93.8% and 92.2% respectively. The positive predictive value of bone marrow edema and bone erosion for axial SpA were 9.09 and 8.21, negative predictive value were 0.46 and 0.38.Diagnositic sensitivity of

  17. Knee joint pain potentially due to bone alterations in a knee osteoarthritis patient.

    PubMed

    Komatsu, Masatoshi; Nakamura, Yukio; Kamimura, Mikio; Uchiyama, Shigeharu; Mukaiyama, Keijiro; Ikegami, Shota; Kato, Hiroyuki

    2014-12-01

    Osteoarthritis (OA) is the leading cause of musculoskeletal pain and functional disability worldwide. However, the etiology of this condition is still largely unknown. We report the clinical course of an elderly man with knee OA. Plain radiographs and MRI examinations performed during follow-up suggested that the pathophysiology of the patient's knee OA and joint pain may have been primarily due to bone alterations.

  18. Potential of fluid-attenuated inversion recovery (FLAIR) in identification of temporomandibular joint effusion compared with T2-weighted images.

    PubMed

    Imoto, Kenichi; Otonari-Yamamoto, Mika; Nishikawa, Keiichi; Sano, Tsukasa; Yamamoto, Aya

    2011-08-01

    The purpose of this study was to determine the potential of fluid-attenuated inversion recovery (FLAIR) sequence images in the identification of joint effusion (JE) compared with T2-weighted images. A total of 31 joints (28 patients) with JE were investigated by magnetic resonance imaging (MRI). Regions of interest were placed over JE, cerebrospinal fluid (CSF), and gray matter (GM) on T2-weighted and FLAIR images and their signal intensities compared. The signal intensity ratios (SIRs) of JE and CSF were calculated with GM as the reference point. The Pearson product-moment correlation coefficient was used for the statistical analysis. The SIR of JE showed a strong correlation between T2-weighted and FLAIR images. However, no correlation was observed for CSF. The average suppression ratio for JE was lower than that for CSF. MRI using FLAIR sequences revealed that JE was not just water content, but a fluid accumulation containing elements such as protein. Further studies are needed, and FLAIR sequences could be useful for the diagnosis of pain and symptoms of the temporomandibular joint (TMJ). Copyright © 2011 Mosby, Inc. All rights reserved.

  19. New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy

    PubMed Central

    Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ciprian Ionita, N.; Hoffmann, Kenneth R.; Bednarek, Daniel R.

    2011-01-01

    New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 × 20 cm can be obtained where the images have pixel-resolution of 100 µm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 µR detector exposure per frame. Because of the flexible voltage controlled gain of the LA’s and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels. PMID:21297904

  20. New light-amplifier-based detector designs for high spatial resolution and high sensitivity CBCT mammography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Rudin, Stephen; Kuhls, Andrew T.; Yadava, Girijesh K.; Josan, Gaurav C.; Wu, Ye; Chityala, Ravishankar N.; Rangwala, Hussain S.; Ionita, N. Ciprian; Hoffmann, Kenneth R.; Bednarek, Daniel R.

    2006-03-01

    New cone-beam computed tomographic (CBCT) mammography system designs are presented where the detectors provide high spatial resolution, high sensitivity, low noise, wide dynamic range, negligible lag and high frame rates similar to features required for high performance fluoroscopy detectors. The x-ray detectors consist of a phosphor coupled by a fiber-optic taper to either a high gain image light amplifier (LA) then CCD camera or to an electron multiplying CCD. When a square-array of such detectors is used, a field-of-view (FOV) to 20 x 20 cm can be obtained where the images have pixel-resolution of 100 μm or better. To achieve practical CBCT mammography scan-times, 30 fps may be acquired with quantum limited (noise free) performance below 0.2 μR detector exposure per frame. Because of the flexible voltage controlled gain of the LA's and EMCCDs, large detector dynamic range is also achievable. Features of such detector systems with arrays of either generation 2 (Gen 2) or 3 (Gen 3) LAs optically coupled to CCD cameras or arrays of EMCCDs coupled directly are compared. Quantum accounting analysis is done for a variety of such designs where either the lowest number of information carriers off the LA photo-cathode or electrons released in the EMCCDs per x-ray absorbed in the phosphor are large enough to imply no quantum sink for the design. These new LA- or EMCCD-based systems could lead to vastly improved CBCT mammography, ROI-CT, or fluoroscopy performance compared to systems using flat panels.

  1. Standardized methodology for transfemoral transcatheter aortic valve replacement with the Edwards Sapien XT valve under fluoroscopy guidance.

    PubMed

    Kasel, Albert M; Shivaraju, Anupama; Schneider, Stephan; Krapf, Stephan; Oertel, Frank; Burgdorf, Christof; Ott, Ilka; Sumer, Christian; Kastrati, Adnan; von Scheidt, Wolfgang; Thilo, Christian

    2014-09-01

    To provide a simplified, standardized methodology for a successful transfemoral transcatheter aortic valve replacement (TAVR) procedure with the Sapien XT valve in patients with severe aortic stenosis (AS). TAVR is currently reserved for patients with severe, symptomatic AS who are inoperable or at high operative risk. In many institutions, TAVR is performed under general anesthesia with intubation or with conscious sedation. In addition, many institutions still use transesophageal echo (TEE) during the procedure for aortic root angulations and positioning of the valve prior to implantation. Methods. We enrolled 100 consecutive patients (mean age, 80 ± 7 years; range, 50-94 years; female n=59) with severe symptomatic AS. Annulus measurements were based on computed tomography angiograms. All patients underwent fluoroscopy-guided transfemoral TAVR with little to no sedation and without simultaneous TEE. TAVR was predominantly performed with the use of local and central analgesics; only 36% of our cohort received conscious sedation. Procedural success of TAVR was 99%. Transthoracic echocardiography before discharge excluded aortic regurgitation (AR) >2 in all patients (AR >1; n=6). In-hospital stroke rate was 6%. The vessel closure system was successfully employed in 96%. Major vascular complication rate was 1%. The 30-day mortality was 2%. Fluoroscopy-guided TAVR with the use of just analgesics with or without conscious sedation is safe and effective, and this potentially enables a more time-effective and cost-effective procedure. This paper provides simplified, stepwise guidance on how to perform transfemoral TAVR with the Sapien XT valve.

  2. Arm MRI scan

    MedlinePlus

    ... MRI and often available in the emergency room. Alternative Names MRI - arm; Wrist MRI; MRI - wrist; Elbow ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  3. Ten-year follow-up of SpA-related oligoarthritis involving the knee: the presence of psoriasis but not HLA-B27 or baseline MRI bone oedema predicts outcome.

    PubMed

    Bennett, Alexander N; Marzo-Ortega, Helena; Tan, Ai Lyn; Hensor, Elizabeth M A; Green, Mike; Emery, Paul; McGonagle, Dennis

    2012-06-01

    Bone marrow oedema (BMO) and HLA-B27 are poor prognostic factors in axial SpA, and psoriasis is a poor prognostic factor in small-joint polyarthropathy. The aim of this study was to investigate the influence of HLA-B27, MRI BMO and psoriasis on long-term outcomes in early SpA-related knee joint oligoarthritis. Patients with SpA-related oligoarthritis with knee involvement were recruited. Baseline assessment included ESSG criteria, RF, HLA-B27 and MRI. The degree of MRI BMO was determined on fat-suppression sequences and scored using the whole-organ magnetic resonance imaging score (WORMS) (range 0-45). Patients were treated at the discretion of their rheumatologist and followed up for 10 years. Outcome assessments included joint counts, functional and symptomatic questionnaire, CRP and radiographic assessment for OA. Forty-four patients were recruited [mean age 32 years (range 15-59 years), 70% male] with a mean disease duration at baseline of 9.75 months (1-48 months). Twenty-six (59%) patients (mean age 43 years, 65% male) returned for follow-up after a mean of 10 years (range 8.4-12.6 years). Ten (38%) patients had persistent clinical synovitis and 31% of knees had secondary radiographic OA. Global outcome was poor/very poor in 69% of cases. The only factor predicting outcome at 10 years was psoriasis, but neither HLA-B27 nor BMO. PsA patients had significantly worse global outcome compared with ReA (P = 0.036), and significantly worse symptomatic (P = 0.001) and functional (P = 0.001) outcome compared with other subtypes. SpA-related knee joint oligoarthritis has significant long-term clinical and radiological morbidity despite standard treatments. HLA-B27 and MRI BMO were not predictors of poor outcome as they are in axial SpA; however, the presence of psoriasis predicted significantly worse outcome.

  4. Cohesion and Joint Speech: Right Hemisphere Contributions to Synchronized Vocal Production

    PubMed Central

    Jasmin, Kyle M.; McGettigan, Carolyn; Agnew, Zarinah K.; Lavan, Nadine; Josephs, Oliver; Cummins, Fred

    2016-01-01

    Synchronized behavior (chanting, singing, praying, dancing) is found in all human cultures and is central to religious, military, and political activities, which require people to act collaboratively and cohesively; however, we know little about the neural underpinnings of many kinds of synchronous behavior (e.g., vocal behavior) or its role in establishing and maintaining group cohesion. In the present study, we measured neural activity using fMRI while participants spoke simultaneously with another person. We manipulated whether the couple spoke the same sentence (allowing synchrony) or different sentences (preventing synchrony), and also whether the voice the participant heard was “live” (allowing rich reciprocal interaction) or prerecorded (with no such mutual influence). Synchronous speech was associated with increased activity in posterior and anterior auditory fields. When, and only when, participants spoke with a partner who was both synchronous and “live,” we observed a lack of the suppression of auditory cortex, which is commonly seen as a neural correlate of speech production. Instead, auditory cortex responded as though it were processing another talker's speech. Our results suggest that detecting synchrony leads to a change in the perceptual consequences of one's own actions: they are processed as though they were other-, rather than self-produced. This may contribute to our understanding of synchronized behavior as a group-bonding tool. SIGNIFICANCE STATEMENT Synchronized human behavior, such as chanting, dancing, and singing, are cultural universals with functional significance: these activities increase group cohesion and cause participants to like each other and behave more prosocially toward each other. Here we use fMRI brain imaging to investigate the neural basis of one common form of cohesive synchronized behavior: joint speaking (e.g., the synchronous speech seen in chants, prayers, pledges). Results showed that joint speech recruits

  5. Cohesion and Joint Speech: Right Hemisphere Contributions to Synchronized Vocal Production.

    PubMed

    Jasmin, Kyle M; McGettigan, Carolyn; Agnew, Zarinah K; Lavan, Nadine; Josephs, Oliver; Cummins, Fred; Scott, Sophie K

    2016-04-27

    Synchronized behavior (chanting, singing, praying, dancing) is found in all human cultures and is central to religious, military, and political activities, which require people to act collaboratively and cohesively; however, we know little about the neural underpinnings of many kinds of synchronous behavior (e.g., vocal behavior) or its role in establishing and maintaining group cohesion. In the present study, we measured neural activity using fMRI while participants spoke simultaneously with another person. We manipulated whether the couple spoke the same sentence (allowing synchrony) or different sentences (preventing synchrony), and also whether the voice the participant heard was "live" (allowing rich reciprocal interaction) or prerecorded (with no such mutual influence). Synchronous speech was associated with increased activity in posterior and anterior auditory fields. When, and only when, participants spoke with a partner who was both synchronous and "live," we observed a lack of the suppression of auditory cortex, which is commonly seen as a neural correlate of speech production. Instead, auditory cortex responded as though it were processing another talker's speech. Our results suggest that detecting synchrony leads to a change in the perceptual consequences of one's own actions: they are processed as though they were other-, rather than self-produced. This may contribute to our understanding of synchronized behavior as a group-bonding tool. Synchronized human behavior, such as chanting, dancing, and singing, are cultural universals with functional significance: these activities increase group cohesion and cause participants to like each other and behave more prosocially toward each other. Here we use fMRI brain imaging to investigate the neural basis of one common form of cohesive synchronized behavior: joint speaking (e.g., the synchronous speech seen in chants, prayers, pledges). Results showed that joint speech recruits additional right hemisphere

  6. The role of pre-treatment MRI in established cases of slipped capital femoral epiphysis.

    PubMed

    Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain

    2009-06-01

    Slipped capital femoral epiphysis (SCFE) often results in functional impairment and premature osteoarthritis despite surgical treatment. Treatment decisions are commonly based on the clinical history and radiographic appearance. This study assesses the pre-treatment features of SCFE and correlates them to the clinical history to: (1) define the underlying pathological mechanisms; (2) correlate the morphological hip abnormalities with the clinical classifications; (3) identify specific magnetic resonance imaging (MRI) features that could carry prognostic implications for treatment approach and outcome. Clinical history and pre- and posttreatment radiographs and pre-treatment MRIs of 14 patients with 15 affected hips were reviewed. Alignment, impingement, fulcrum formation, remodelling, osteopenia, synovitis, joint effusion, bone marrow and soft tissue oedema and status of the physis and the periosteal sleeve were assessed and related to the clinical history, in particular history of trauma, duration of clinical symptoms and ability to bear weight. Bone marrow oedema around the growth plate and joint effusion occurred in all patients. Synovitis occurred in 13/15 patients. 6 patients had a fall before presenting with SCFE. 5/6 had periarticular soft tissue oedema, complete disruption of the physis and partial periosteal sleeve disruption. 9 patients had no fall prior to presentation, physis and periost were intact in 7/9; periarticular oedema was not seen. 14/15 showed evidence of chronic remodelling. Despite an acute clinical history remodelling was present. A fulcrum-like alignment, impingement of the epiphysis on the metaphysis with a small area of physical contact, was seen in 8 patients, 6/8 had a prior fall. There was no case of avascular necrosis. Spontaneous reduction of SCFE occurred in 1 case, the only case without chronic remodelling. With MRI as gold standard radiographs underestimate the severity of SCFE. Synovitis, periphyseal oedema and joint effusion

  7. Patients Older Than 40 Years With Unilateral Occupational Claims for New Shoulder and Knee Symptoms Have Bilateral MRI Changes.

    PubMed

    Liu, Tiffany C; Leung, Nina; Edwards, Leonard; Ring, David; Bernacki, Edward; Tonn, Melissa D

    2017-10-01

    Minor events that occur in the workplace sometimes are evaluated with MRI, which may reveal age-related changes in the symptomatic body part. These age-related changes are often ascribed to the event. However, evidence of similar or worse pathophysiology in the contralateral joint would suggest that the symptoms might be new, but the pathophysiology is not. Using a convenience sample of occupational injury claimants with bilateral MRI to evaluate unilateral knee or shoulder symptoms ascribed to a single event at work, we sought to determine whether MRI findings of the shoulder and knee are more often congruent or incongruent with new unilateral symptoms. Two hundred ninety-four occupational injury claimants employed at companies throughout Texas that do not subscribe to workers' compensation insurance, who were older than 40 years, and with unilateral shoulder or knee symptoms, were studied. Starting in 2012, all patients seen by OccMD Group PA who present with unilateral symptoms ascribed to work undergo bilateral MRI, based on several previous occasions where bilateral MRI proved to be a compelling demonstration that perceived injuries are more likely age-related, previously well-adapted pathophysiology. MRI findings (anything described as abnormal by the radiologist; eg, defect size or signal change) was considered congruent if the abnormality of one or more structures on the symptomatic side was greater than that of the corresponding structures in the asymptomatic joint. Bivariate analysis was used to compare the frequency of MRI findings congruent and incongruent with symptoms. Logistic regression was used to evaluate factors associated with MRI findings of the shoulder or knee. Less than half of the patients with shoulder (90 of 189; 48%; p = 0.36) or knee (45 of 105; 43%; p = 0.038) symptoms had worse pathologic features on the symptomatic side. Older age was associated with disorders in the infraspinatus tendon (59 ± 8 versus 56 ± 8 years; p = 0

  8. Six weeks of continuous joint distraction appears sufficient for clinical benefit and cartilaginous tissue repair in the treatment of knee osteoarthritis.

    PubMed

    van der Woude, J A D; van Heerwaarden, R J; Spruijt, S; Eckstein, F; Maschek, S; van Roermund, P M; Custers, R J H; van Spil, W E; Mastbergen, S C; Lafeber, F P J G

    2016-10-01

    Knee joint distraction (KJD) is a surgical joint-preserving treatment in which the knee joint is temporarily distracted by an external frame. It is associated with joint tissue repair and clinical improvement. Initially, patients were submitted to an eight-week distraction period, and currently patients are submitted to a six-week distraction period. This study evaluates whether a shorter distraction period influences the outcome. Both groups consisted of 20 patients. Clinical outcome was assessed by WOMAC questionnaires and VAS-pain. Cartilaginous tissue repair was assessed by radiographic joint space width (JSW) and MRI-observed cartilage thickness. Baseline data between both groups were comparable. Both groups showed an increase in total WOMAC score; 24±4 in the six-week group and 32±5 in the eight-week group (both p<0.001). Mean JSW increased 0.9±0.3mm in the six-week group and 1.1±0.3mm in the eight-week group (p=0.729 between groups). The increase in mean cartilage thickness on MRI was 0.6±0.2mm in the eight-week group and 0.4±0.1mm in the six-week group (p=0.277). A shorter distraction period does not influence short-term clinical and structural outcomes statistically significantly, although effect sizes tend to be smaller in six week KJD as compared to eight week KJD. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Adaptation of a haptic robot in a 3T fMRI.

    PubMed

    Snider, Joseph; Plank, Markus; May, Larry; Liu, Thomas T; Poizner, Howard

    2011-10-04

    .6 lbs) but extremely stiff 3/4" graphite and well balanced on the 3DoF joint in the middle. The end result is an fMRI compatible, haptic system with about 1 cubic foot of working space, and, when combined with virtual reality, it allows for a new set of experiments to be performed in the fMRI environment including naturalistic reaching, passive displacement of the limb and haptic perception, adaptation learning in varying force fields, or texture identification.

  10. Quantitative and qualitative analyses of subacromial impingement by kinematic open MRI.

    PubMed

    Tasaki, Atsushi; Nimura, Akimoto; Nozaki, Taiki; Yamakawa, Akira; Niitsu, Mamoru; Morita, Wataru; Hoshikawa, Yoshimitsu; Akita, Keiichi

    2015-05-01

    Quantitative and qualitative kinematic analyses of subacromial impingement by 1.2T open MRI were performed to determine the location of impingement and the involvement of the acromioclavicular joint. In 20 healthy shoulders, 10 sequential images in the scapular plane were taken in a 10-s pause at equal intervals from 30° to maximum abduction in neutral and internal rotation. The distances between the rotator cuff (RC) and the acromion and the acromioclavicular joint were measured. To comprehend the positional relationships, cadaveric specimens were also observed. Although asymptomatic, the RC came into contact with the acromion and the acromioclavicular joint in six and five cases, respectively. The superior RC acted as a depressor for the humeral head against the acromion as the shoulder elevated. The mean elevation angle and distance at the closest position between the RC and the acromion in neutral rotation were 93.5° and 1.6 mm, respectively, while those between the RC and the acromioclavicular joint were 86.7° and 2.0 mm. When comparing this distance and angle, there was no significant difference between the RC to the acromion and to the acromioclavicular joint. The minimum distance between the RC and the acromion was significantly shorter than that between the greater tuberosity and the acromion. The location of RC closest to the acromion and the acromioclavicular joint differed significantly. Although asymptomatic, contact was found between the RC and the acromion and the acromioclavicular joint. The important role of the RC to prevent impingement was observed, and hence, dysfunction of the RC could lead to impingement that could result in a RC lesion. The RC lesions may differ when they are caused by impingement from either the acromion or the acromioclavicular joint.

  11. SU-E-J-59: Feasibility of Markerless Tumor Tracking by Sequential Dual-Energy Fluoroscopy On a Clinical Tumor Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhont, J; Poels, K; Verellen, D

    2015-06-15

    Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to matchmore » the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work

  12. [Arthroscopic therapy of ankle joint impingement syndrome after operation of ankle joint fracture dislocation].

    PubMed

    Feng, Zhibin; Mi, Kun; Wei, Renzhi; Liu, Wu; Wang, Bin

    2011-07-01

    To study the operative procedure and the effectiveness of arthroscopic therapy for ankle joint impingement syndrome after operation of ankle joint fracture dislocation. Between March 2008 and April 2010, 38 patients with ankle joint impingement syndrome after operation of ankle joint fracture dislocation were treated. Among them, there were 28 males and 10 females with an average age of 28 years (range, 18 to 42 years). The time from internal fixation to admission was 12-16 months (mean, 13.8 months). There were pressing pain in anterolateral and anterior ankle. The dorsal extension ranged from -20 to -5 degrees (mean, -10.6 degrees), and the palmar flexion was 30-40 degrees (mean, 35.5 degrees). The total score was 48.32 +/- 9.24 and the pain score was 7.26 +/- 1.22 before operation according to American Orthopaedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system. The X-ray films showed osteophyte formation in anterior tibia and talus; MRI showed cartilage injury in 22 cases. Arthroscopic intervention included removing osteophytes, debriding fabric scars and synovial membrane tissues, and removing osteochondral fragments. Arthroscopic microfracture technique was used in 22 patients with cartilage injury. All incisions healed primarily. Thirty-eight cases were followed up 10-26 months (mean, 16 months). At last follow-up, 26 patients had normal range of motion (ROM); the dorsal extension was 15-25 degrees (mean, 19.6 degrees) and the palmar flexion was 35-45 degrees (mean, 40.7 degrees). Eight patients had mild limited ROM; the dorsal extension was 5-15 degrees (mean, 7.2 degrees) and the palmar flexion was 35-45 degrees (mean, 39.5 degrees). Four patients had mild limited ROM and pain in posterior portion of the ankle after a long walking (3-4 hours); the dorsal extension was 0-5 degrees (mean, 2.6 degrees) and the palmar flexion was 35-40 degrees (mean, 37.5 degrees). The total score was 89.45 +/- 9.55 and the pain score was 1.42 +/- 1.26 after

  13. Study of scattered radiation during fluoroscopy in hip surgery*

    PubMed Central

    Lesyuk, Oksana; Sousa, Patrick Emmanuel; Rodrigues, Sónia Isabel do Espirito Santo; Abrantes, António Fernando; de Almeida, Rui Pedro Pereira; Pinheiro, João Pedro; Azevedo, Kevin Barros; Ribeiro, Luís Pedro Vieira

    2016-01-01

    Objective To measure the scattered radiation dose at different positions simulating hip surgery. Materials and Methods We simulated fluoroscopy-assisted hip surgery in order to study the distribution of scattered radiation in the operating room. To simulate the patient, we used a anthropomorphic whole-body phantom, and we used an X-ray-specific detector to quantify the radiation. Radiographs were obtained with a mobile C-arm X-ray system in continuous scan mode, with the tube at 0º (configuration 1) or 90º (configuration 2). The operating parameters employed (voltage, current, and exposure time) were determined by a statistical analysis based on the observation of orthopedic surgical procedures involving the hip. Results For all measurements, higher exposures were observed in configuration 2. In the measurements obtained as a function of height, the maximum dose rates observed were 1.167 (± 0.023) µSv/s and 2.278 (± 0.023) µSv/s in configurations 1 and 2, respectively, corresponding to the chest level of health care professionals within the operating room. Proximal to the patient, the maximum values were recorded in the position occupied by the surgeon. Conclusion We can conclude that, in the scenario under study, health care professionals workers are exposed to low levels of radiation, and that those levels can be reduced through the use of personal protective equipment. PMID:27777477

  14. Osseous associated cervical spondylomyelopathy at the C2-C3 articular facet joint in 11 dogs.

    PubMed

    Cooper, C; Gutierrez-Quintana, R; Penderis, J; Gonçalves, R

    2015-11-21

    In dogs, vertebral canal stenosis at C2-C3 due to articular facet joint degeneration is only sporadically identified. The authors' aims were to review the clinical presentation, MRI characteristics, treatment and outcome of dogs presenting with this condition. Eleven cases were eligible for inclusion. Neurological examination revealed tetraparesis and proprioceptive ataxia in all 4 limbs in 3/11, proprioceptive tetra-ataxia only in 4/11, pelvic limb proprioceptive ataxia in 2/11 and no gait abnormalities in 2/11 dogs. Cervical hyperaesthesia was present in 7/11 dogs. MRI revealed bilateral articular facet joint degeneration in 10/11 cases and unilateral degeneration in one. Surgery was performed in six cases and medical management elected in five. Long-term follow-up information was available for 11 animals. Four of the surgical cases are alive and have no neurological deficits, one was euthanased for an unrelated condition and one lost to follow-up. Of the cases managed medically, three are alive showing no neurological deficits, one is alive still displaying neurological deficits and one euthanased for an unrelated condition whilst still ataxic. This study shows that both medical and surgical management can result in good outcomes in dogs with vertebral canal stenosis resulting from articular facet joint degeneration at the level of C2-C3. British Veterinary Association.

  15. Evaluation of the diagnostic accuracy of hand and foot MRI for early Rheumatoid Arthritis.

    PubMed

    Nieuwenhuis, Wouter P; van Steenbergen, Hanna W; Mangnus, Lukas; Newsum, Elize C; Bloem, Johan L; Huizinga, Tom W J; le Cessie, Saskia; Reijnierse, Monique; van der Helm-van Mil, Annette H M

    2017-08-01

    To assess the diagnostic value of MRI for early RA. In some RA patients, a classifiable diagnosis cannot be made at first presentation; these patients present with unclassified arthritis (UA). The use of MRI for early diagnosis of RA is recommended, yet the evidence for its reliability is limited. MRI of hand and foot was performed in 589 early arthritis patients included in the Leiden Early Arthritis Clinic (229 presented with RA, 159 with other arthritides and 201 with UA). Symptom-free controls provided a reference for defining an abnormal MRI. In preliminary investigations, MRI of patients who presented with RA was compared with MRI of symptom-free controls and of patients with other arthritides. Thereafter, the value of MRI in early RA diagnosis was determined in UA patients using the 1-year follow-up on fulfilling the 1987 RA criteria and start of disease-modifying drugs as outcomes. Preliminary investigations were promising. Of the UA patients, 14% developed RA and 37% started disease-modifying treatment. MRI-detected tenosynovitis was associated with RA development independent of other types of MRI-detected inflammation [odds ratio (OR) = 7.5, 95% CI: 2.4, 23] and also independent of age and other inflammatory measures (swollen joints, CRP) (OR = 4.2, 95% CI: 1.4, 12.9). Within UA patients, the negative predictive value of abnormal tenosynovitis was 95% (95% CI: 89%, 98%) and the positive predictive value 25% (95% CI: 17%, 35%). The performance was best in the subgroup of UA patients presenting with oligoarthritis (18% developed RA): the positive predictive value was 36% (95% CI: 23%, 52%), the negative predictive value was 98% (95% CI: 88%, 100%), the sensitivity was 93% (95% CI: 70%, 99%) and the specificity was 63% (95% CI: 51%, 74%). MRI contributes to the identification of UA patients who will develop RA, mostly in UA patients presenting with oligoarthritis. © The Author 2017. Published by Oxford University Press on behalf of the British Society for

  16. Plasticity in cortical motor upper-limb representation following stroke and rehabilitation: two longitudinal multi-joint FMRI case-studies.

    PubMed

    Stark, A; Meiner, Z; Lefkovitz, R; Levin, N

    2012-04-01

    Motor dysfunction and recovery following stroke and rehabilitation are associated with primary motor cortex plasticity. To better track these effects we studied two patients with sub-acute sub-cortical stroke causing hemiparesis, who underwent an effective behavioral treatment termed Constraint Induced Movement Therapy (CIMT). The therapy involves 2 weeks of intensive motor training of the hemiparetic limb coupled with immobilization of the unaffected limb. The study included a longitudinal series of clinical evaluations and fMRI scans, before and after the treatment. The fMRI task included wrist, elbow, or ankle movements. Activity in the M1 upper-limb region of control subjects was stable, strictly contralateral, and similar in amplitude for elbow and wrist movements. These findings reflect the well-known contralateral motor control and support the idea of overlapping representations of adjacent joints in M1. In both patients, pre-CIMT activation patterns in M1 were tested twice and did not change significantly, were contralateral, and included elbow-wrist differences. Following CIMT, the clinical condition of both patients improved and three fMRI-explored prototypes were found: First, cluster position remained constant; Second, ipsilateral activity appeared in the unaffected hemispheres during hemiparetic movements; Third, patient-specific elbow-wrist inter and intra hemispheric differences were modified. All effects were long-lasting. We suggest that overlapping representations of adjacent joints contributed to the cortical plasticity observed following CIMT. Our findings should be confirmed by studying larger groups of homogeneous patients. Nevertheless, this study introduces multi-joint imaging studies and shows that it is both possible and valuable to carry it out in stroke patients.

  17. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung

    2013-03-15

    Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method

  18. MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes

    PubMed Central

    Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran

    2010-01-01

    The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141

  19. The association between reduced knee joint proprioception and medial meniscal abnormalities using MRI in knee osteoarthritis: results from the Amsterdam osteoarthritis cohort.

    PubMed

    van der Esch, M; Knoop, J; Hunter, D J; Klein, J-P; van der Leeden, M; Knol, D L; Reiding, D; Voorneman, R E; Gerritsen, M; Roorda, L D; Lems, W F; Dekker, J

    2013-05-01

    Osteoarthritis (OA) of the knee is characterized by pain and activity limitations. In knee OA, proprioceptive accuracy is reduced and might be associated with pain and activity limitations. Although causes of reduced proprioceptive accuracy are divergent, medial meniscal abnormalities, which are highly prevalent in knee OA, have been suggested to play an important role. No study has focussed on the association between proprioceptive accuracy and meniscal abnormalities in knee OA. To explore the association between reduced proprioceptive accuracy and medial meniscal abnormalities in a clinical sample of knee OA subjects. Cross-sectional study in 105 subjects with knee OA. Knee proprioceptive accuracy was assessed by determining the joint motion detection threshold in the knee extension direction. The knee was imaged with a 3.0 T magnetic resonance (MR) scanner. Number of regions with medial meniscal abnormalities and the extent of abnormality in the anterior and posterior horn and body were scored according to the Boston-Leeds Osteoarthritis Knee Score (BLOKS) method. Multiple regression analyzes were used to examine whether reduced proprioceptive accuracy was associated with medial meniscal abnormalities in knee OA subjects. Mean proprioceptive accuracy was 2.9° ± 1.9°. Magnetic resonance imaging (MRI)-detected medial meniscal abnormalities were found in the anterior horn (78%), body (80%) and posterior horn (90%). Reduced proprioceptive accuracy was associated with both the number of regions with meniscal abnormalities (P < 0.01) and the extent of abnormality (P = 0.02). These associations were not confounded by muscle strength, joint laxity, pain, age, gender, body mass index (BMI) and duration of knee complaints. This is the first study showing that reduced proprioceptive accuracy is associated with medial meniscal abnormalities in knee OA. The study highlights the importance of meniscal abnormalities in understanding reduced proprioceptive accuracy in

  20. [Nuclear magnetic resonance tomography diagnosis of changes in the glenoid process in patients with unstable shoulder joints].

    PubMed

    Jerosch, J; Castro, W H; Assheuer, J

    1992-09-01

    In 4 fresh specimens and in 14 healthy volunteers we studied normal anatomy of the glenoid labrum by MRI. In a total of 124 patients we examined the shoulder joints by MRI. 69 patients had any kind of subacromial pathology. 55 patients showed a glenohumeral instability. All MRI findings were compared with the surgical findings during arthroscopy and during open surgery. 44 patients showed a recurrent anterior instability, 7 patients showed a multidirectional instability, 2 patients showed a posterior instability, and 2 patients presented acute anterior dislocation. We found significant variability in the labral shape as well as significant variability of anterior capsular attachment. The pathologic changes of the glenoid labrum were classified in four different types. In 78% we found a concomitant Hill-Sachs lesion of various diameter. 5 patients suffered from an additional complete rotator cuff tear. Compared to the intraoperative findings MRI had a sensitivity of 95%, a specificity of 94%, an accuracy of 94%, a positive predictive value of 91%, and a negative predictive value of 96% in detecting labral pathology. Presenting a high diagnostic value for detecting Bankart lesions, MRI may replace other diagnostic modalities like CT-arthrography.

  1. Biological and MRI characterization of biomimetic ECM scaffolds for cartilage tissue regeneration.

    PubMed

    Ravindran, Sriram; Kotecha, Mrignayani; Huang, Chun-Chieh; Ye, Allen; Pothirajan, Padmabharathi; Yin, Ziying; Magin, Richard; George, Anne

    2015-12-01

    Osteoarthritis is the most common joint disorder affecting millions of people. Most scaffolds developed for cartilage regeneration fail due to vascularization and matrix mineralization. In this study we present a chondrogenic extracellular matrix (ECM) incorporated collagen/chitosan scaffold (chondrogenic ECM scaffold) for potential use in cartilage regenerative therapy. Biochemical characterization showed that these scaffolds possess key pro-chondrogenic ECM components and growth factors. MRI characterization showed that the scaffolds possess mechanical properties and diffusion characteristics important for cartilage tissue regeneration. In vivo implantation of the chondrogenic ECM scaffolds with bone marrow derived mesenchymal stem cells (MSCs) triggered chondrogenic differentiation of the MSCs without the need for external stimulus. Finally, results from in vivo MRI experiments indicate that the chondrogenic ECM scaffolds are stable and possess MR properties on par with native cartilage. Based on our results, we envision that such ECM incorporated scaffolds have great potential in cartilage regenerative therapy. Additionally, our validation of MR parameters with histology and biochemical analysis indicates the ability of MRI techniques to track the progress of our ECM scaffolds non-invasively in vivo; highlighting the translatory potential of this technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Predicting MCI outcome with clinically available MRI and CSF biomarkers

    PubMed Central

    Heister, D.; Brewer, J.B.; Magda, S.; Blennow, K.

    2011-01-01

    Objective: To determine the ability of clinically available volumetric MRI (vMRI) and CSF biomarkers, alone or in combination with a quantitative learning measure, to predict conversion to Alzheimer disease (AD) in patients with mild cognitive impairment (MCI). Methods: We stratified 192 MCI participants into positive and negative risk groups on the basis of 1) degree of learning impairment on the Rey Auditory Verbal Learning Test; 2) medial temporal atrophy, quantified from Food and Drug Administration–approved software for automated vMRI analysis; and 3) CSF biomarker levels. We also stratified participants based on combinations of risk factors. We computed Cox proportional hazards models, controlling for age, to assess 3-year risk of converting to AD as a function of risk group and used Kaplan-Meier analyses to determine median survival times. Results: When risk factors were examined separately, individuals testing positive showed significantly higher risk of converting to AD than individuals testing negative (hazard ratios [HR] 1.8–4.1). The joint presence of any 2 risk factors substantially increased risk, with the combination of greater learning impairment and increased atrophy associated with highest risk (HR 29.0): 85% of patients with both risk factors converted to AD within 3 years, vs 5% of those with neither. The presence of medial temporal atrophy was associated with shortest median dementia-free survival (15 months). Conclusions: Incorporating quantitative assessment of learning ability along with vMRI or CSF biomarkers in the clinical workup of MCI can provide critical information on risk of imminent conversion to AD. PMID:21998317

  3. Surface ECG and Fluoroscopy are Not Predictive of Right Ventricular Septal Lead Position Compared to Cardiac CT.

    PubMed

    Rowe, Matthew K; Moore, Peter; Pratap, Jit; Coucher, John; Gould, Paul A; Kaye, Gerald C

    2017-05-01

    Controversy exists regarding the optimal lead position for chronic right ventricular (RV) pacing. Placing a lead at the RV septum relies upon fluoroscopy assisted by a surface 12-lead electrocardiogram (ECG). We compared the postimplant lead position determined by ECG-gated multidetector contrast-enhanced computed tomography (MDCT) with the position derived from the surface 12-lead ECG. Eighteen patients with permanent RV leads were prospectively enrolled. Leads were placed in the RV septum (RVS) in 10 and the RV apex (RVA) in eight using fluoroscopy with anteroposterior and left anterior oblique 30° views. All patients underwent MDCT imaging and paced ECG analysis. ECG criteria were: QRS duration; QRS axis; positive or negative net QRS amplitude in leads I, aVL, V1, and V6; presence of notching in the inferior leads; and transition point in precordial leads at or after V4. Of the 10 leads implanted in the RVS, computed tomography (CT) imaging revealed seven to be at the anterior RV wall, two at the anteroseptal junction, and one in the true septum. For the eight RVA leads, four were anterior, two septal, and two anteroseptal. All leads implanted in the RVS met at least one ECG criteria (median 3, range 1-6). However, no criteria were specific for septal position as judged by MDCT. Mean QRS duration was 160 ± 24 ms in the RVS group compared with 168 ± 14 ms for RVA pacing (P = 0.38). We conclude that the surface ECG is not sufficiently accurate to determine RV septal lead tip position compared to cardiac CT. © 2017 Wiley Periodicals, Inc.

  4. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  5. Problems With Large Joints: Shoulder Conditions.

    PubMed

    Campbell, Michael

    2016-07-01

    The shoulder is the most mobile joint in the body. It requires an extensive support system to create mobility while providing stability. Although there are many etiologies of shoulder pain, weakness, and instability, most injuries in the shoulder are due to overuse. Rotator cuff tears, labral tears, calcific tendinopathy, and impingement often result from chronic overuse injuries. Acute injuries include dislocations that can cause labral tears or other complications. Frozen shoulder refers to a typically benign condition of restricted range of motion that may spontaneously resolve but can cause prolonged pain and discomfort. The history combined with specific shoulder examination techniques can help family physicians successfully diagnose shoulder conditions. X-ray imaging typically is sufficient to rule out more serious etiologies when evaluating patients with shoulder conditions. However, imaging with magnetic resonance imaging (MRI) study or ultrasonography for rotator cuff tears, and MRI study with intra-articular contrast for labral tears, is needed to confirm these diagnoses. Corticosteroid injections and physical therapy are first-line treatments for most shoulder conditions. Surgical options typically are reserved for patients for whom conservative treatments are ineffective, and typically are performed arthroscopically. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  6. Biomechanical characteristics of hemi-hamate reconstruction versus volar plate arthroplasty in the treatment of dorsal fracture dislocations of the proximal interphalangeal joint.

    PubMed

    Tyser, Andrew R; Tsai, Michael A; Parks, Brent G; Means, Kenneth R

    2015-02-01

    To compare stability and range of motion after hemi-hamate reconstruction versus volar plate arthroplasty in a biomechanical proximal interphalangeal (PIP) joint fracture-dislocation model. Eighteen digits from 6 cadaver hands were tested. We created defects of 40%, 60%, and 80% in the palmar base of each digit's middle phalanx, simulating an acute PIP joint fracture-dislocation. Each defect scenario was reconstructed with a hemi-hamate arthroplasty followed by a volar plate arthroplasty. A computer-controlled mechanism was used to bring each digit's PIP joint from full extension to full flexion via the digital tendons in each testing state, and in the intact state. During each testing scenario we collected PIP joint cinedata in a true lateral projection using mini-fluoroscopy. A digital radiography program was used to measure the amount of middle phalanx dorsal translation (subluxation) in full PIP joint extension. We recorded the angle at which subluxation, if present, occurred during each testing scenario. Average dorsal displacement of the middle phalanx in relation to the proximal phalanx was 0.01 mm for the hemi-hamate reconstructed joints and -0.03 mm for the volar plate arthroplasty, compared with the intact state. Flexion contractures were noted in each of the specimens reconstructed with volar plate arthroplasty. Degree of contracture was directly correlated with defect size, averaging 20° for 40% defects, 35° for 60% defects, and 60° for 80% defects. We observed no flexion contractures in the hemi-hamate reconstructions. Surgeons can use both hemi-hamate and volar plate arthroplasty to restore PIP joint stability following a fracture dislocation with a large middle phalanx palmar base defect. Use of volar plate arthroplasty led to an increasing flexion contracture as the middle phalanx palmar base defect increased. Clinicians can use the information from this study to help with surgical decision-making and patient education. Copyright © 2015

  7. The fluoroscopy time, door to balloon time, contrast volume use and prevalence of vascular access site failure with transradial versus transfemoral approach in ST segment elevation myocardial infarction: A systematic review & meta-analysis.

    PubMed

    Singh, Sukhchain; Singh, Mukesh; Grewal, Navsheen; Khosla, Sandeep

    2015-12-01

    The authors aimed to conduct first systematic review and meta-analysis in STEMI patients evaluating vascular access site failure rate, fluoroscopy time, door to balloon time and contrast volume used with transradial vs transfemoral approach (TRA vs TFA) for PCI. The PubMed, CINAHL, clinicaltrials.gov, Embase and CENTRAL databases were searched for randomized trials comparing TRA versus TFA. Random effect models were used to conduct this meta-analysis. Fourteen randomized trials comprising 3758 patients met inclusion criteria. The access site failure rate was significantly higher TRA compared to TFA (RR 3.30, CI 2.16-5.03; P=0.000). Random effect inverse variance weighted prevalence rate meta-analysis showed that access site failure rate was predicted to be 4% (95% CI 3.0-6.0%) with TRA versus 1% (95% CI 0.0-1.0 %) with TFA. Door to balloon time (Standardized mean difference [SMD] 0.30 min, 95% CI 0.23-0.37 min; P=0.000) and fluoroscopy time (Standardized mean difference 0.14 min, 95% CI 0.06-0.23 min; P=0.001) were also significantly higher in TRA. There was no difference in the amount of contrast volume used with TRA versus TFA (SMD -0.05 ml, 95% CI -0.14 to 0.04 ml; P=0.275). Statistical heterogeneity was low in cross-over rate and contrast volume use, moderate in fluoroscopy time but high in the door to balloon time comparison. Operators need to consider higher cross-over rate with TRA compared to TFA in STEMI patients while attempting PCI. Fluoroscopy and door to balloon times are negligibly higher with TRA but there is no difference in terms of contrast volume use. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Automatic diagnosis of lumbar disc herniation with shape and appearance features from MRI

    NASA Astrophysics Data System (ADS)

    Alomari, Raja'S.; Corso, Jason J.; Chaudhary, Vipin; Dhillon, Gurmeet

    2010-03-01

    Intervertebral disc herniation is a major reason for lower back pain (LBP), which is the second most common neurological ailment in the United States. Automation of herniated disc diagnosis reduces the large burden on radiologists who have to diagnose hundreds of cases each day using clinical MRI. We present a method for automatic diagnosis of lumbar disc herniation using appearance and shape features. We jointly use the intensity signal for modeling the appearance of herniated disc and the active shape model for modeling the shape of herniated disc. We utilize a Gibbs distribution for classification of discs using appearance and shape features. We use 33 clinical MRI cases of the lumbar area for training and testing both appearance and shape models. We achieve over 91% accuracy in detection of herniation in a cross-validation experiment with specificity of 91% and sensitivity of 94%.

  9. Calibrationless parallel magnetic resonance imaging: a joint sparsity model.

    PubMed

    Majumdar, Angshul; Chaudhury, Kunal Narayan; Ward, Rabab

    2013-12-05

    State-of-the-art parallel MRI techniques either explicitly or implicitly require certain parameters to be estimated, e.g., the sensitivity map for SENSE, SMASH and interpolation weights for GRAPPA, SPIRiT. Thus all these techniques are sensitive to the calibration (parameter estimation) stage. In this work, we have proposed a parallel MRI technique that does not require any calibration but yields reconstruction results that are at par with (or even better than) state-of-the-art methods in parallel MRI. Our proposed method required solving non-convex analysis and synthesis prior joint-sparsity problems. This work also derives the algorithms for solving them. Experimental validation was carried out on two datasets-eight channel brain and eight channel Shepp-Logan phantom. Two sampling methods were used-Variable Density Random sampling and non-Cartesian Radial sampling. For the brain data, acceleration factor of 4 was used and for the other an acceleration factor of 6 was used. The reconstruction results were quantitatively evaluated based on the Normalised Mean Squared Error between the reconstructed image and the originals. The qualitative evaluation was based on the actual reconstructed images. We compared our work with four state-of-the-art parallel imaging techniques; two calibrated methods-CS SENSE and l1SPIRiT and two calibration free techniques-Distributed CS and SAKE. Our method yields better reconstruction results than all of them.

  10. Selection of optimal multispectral imaging system parameters for small joint arthritis detection

    NASA Astrophysics Data System (ADS)

    Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija

    2018-02-01

    Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.

  11. Pharmacological MRI (phMRI) of the Human Central Nervous System.

    PubMed

    Lanfermann, H; Schindler, C; Jordan, J; Krug, N; Raab, P

    2015-10-01

    Pharmacological magnetic resonance imaging (phMRI) of the central nervous system (CNS) addresses the increasing demands in the biopharma industry for new methods that can accurately predict, as early as possible, whether novel CNS agents will be effective and safe. Imaging of physiological and molecular-level function can provide a more direct measure of a drug mechanism of action, enabling more predictive measures of drug activity. The availability of phMRI of the nervous system within the professional infrastructure of the Clinical Research Center (CRC) Hannover as proof of concept center ensures that advances in basic science progress swiftly into benefits for patients. Advanced standardized MRI techniques including quantitative MRI, kurtosis determination, functional MRI, and spectroscopic imaging of the entire brain are necessary for phMRI. As a result, MR scanners will evolve into high-precision measuring instruments for assessment of desirable and undesirable effects of drugs as the basic precondition for individually tailored therapy. The CRC's Imaging Unit with high-end large-scale equipment will allow the following unique opportunities: for example, identification of MR-based biomarkers to assess the effect of drugs (surrogate parameters), establishment of normal levels and reference ranges for MRI-based biomarkers, evaluation of the most relevant MRI sequences for drug monitoring in outpatient care. Another very important prerequisite for phMRI is the MHH Core Facility as the scientific and operational study unit of the CRC partner Hannover Medical School. This unit is responsible for the study coordination, conduction, complete study logistics, administration, and application of the quality assurance system based on required industry standards.

  12. Radiation Exposure of Interventional Radiologists During Computed Tomography Fluoroscopy-Guided Renal Cryoablation and Lung Radiofrequency Ablation: Direct Measurement in a Clinical Setting.

    PubMed

    Matsui, Yusuke; Hiraki, Takao; Gobara, Hideo; Iguchi, Toshihiro; Fujiwara, Hiroyasu; Kawabata, Takahiro; Yamauchi, Takatsugu; Yamaguchi, Takuya; Kanazawa, Susumu

    2016-06-01

    Computed tomography (CT) fluoroscopy-guided renal cryoablation and lung radiofrequency ablation (RFA) have received increasing attention as promising cancer therapies. Although radiation exposure of interventional radiologists during these procedures is an important concern, data on operator exposure are lacking. Radiation dose to interventional radiologists during CT fluoroscopy-guided renal cryoablation (n = 20) and lung RFA (n = 20) was measured prospectively in a clinical setting. Effective dose to the operator was calculated from the 1-cm dose equivalent measured on the neck outside the lead apron, and on the left chest inside the lead apron, using electronic dosimeters. Equivalent dose to the operator's finger skin was measured using thermoluminescent dosimeter rings. The mean (median) effective dose to the operator per procedure was 6.05 (4.52) μSv during renal cryoablation and 0.74 (0.55) μSv during lung RFA. The mean (median) equivalent dose to the operator's finger skin per procedure was 2.1 (2.1) mSv during renal cryoablation, and 0.3 (0.3) mSv during lung RFA. Radiation dose to interventional radiologists during renal cryoablation and lung RFA were at an acceptable level, and in line with recommended dose limits for occupational radiation exposure.

  13. Pelvis MRI scan

    MedlinePlus

    ... and most often available in the emergency room. Alternative Names MRI - pelvis; MRI - hips; Pelvic MRI with ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  14. Tumor Size on Abdominal MRI Versus Pathologic Specimen in Resected Pancreatic Adenocarcinoma: Implications for Radiation Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, William A., E-mail: whall4@emory.edu; Winship Cancer Institute, Emory University, Atlanta, Georgia; Mikell, John L.

    2013-05-01

    Purpose: We assessed the accuracy of abdominal magnetic resonance imaging (MRI) for determining tumor size by comparing the preoperative contrast-enhanced T1-weighted gradient echo (3-dimensional [3D] volumetric interpolated breath-hold [VIBE]) MRI tumor size with pathologic specimen size. Methods and Materials: The records of 92 patients who had both preoperative contrast-enhanced 3D VIBE MRI images and detailed pathologic specimen measurements were available for review. Primary tumor size from the MRI was independently measured by a single diagnostic radiologist (P.M.) who was blinded to the pathology reports. Pathologic tumor measurements from gross specimens were obtained from the pathology reports. The maximum dimensions ofmore » tumor measured in any plane on the MRI and the gross specimen were compared. The median difference between the pathology sample and the MRI measurements was calculated. A paired t test was conducted to test for differences between the MRI and pathology measurements. The Pearson correlation coefficient was used to measure the association of disparity between the MRI and pathology sizes with the pathology size. Disparities relative to pathology size were also examined and tested for significance using a 1-sample t test. Results: The median patient age was 64.5 years. The primary site was pancreatic head in 81 patients, body in 4, and tail in 7. Three patients were American Joint Commission on Cancer stage IA, 7 stage IB, 21 stage IIA, 58 stage IIB, and 3 stage III. The 3D VIBE MRI underestimated tumor size by a median difference of 4 mm (range, −34-22 mm). The median largest tumor dimensions on MRI and pathology specimen were 2.65 cm (range, 1.5-9.5 cm) and 3.2 cm (range, 1.3-10 cm), respectively. Conclusions: Contrast-enhanced 3D VIBE MRI underestimates tumor size by 4 mm when compared with pathologic specimen. Advanced abdominal MRI sequences warrant further investigation for radiation therapy planning in pancreatic adenocarcinoma

  15. A method to investigate the biomechanical alterations in Perthes' disease by hip joint contact modeling.

    PubMed

    Salmingo, Remel Alingalan; Skytte, Tina Lercke; Traberg, Marie Sand; Mikkelsen, Lars Pilgaard; Henneberg, Kaj-Åge; Wong, Christian

    2017-01-01

    Perthes' disease is a destructive hip joint disorder characterized by malformation of the femoral head in young children. While the morphological changes have been widely studied, the biomechanical effects of these changes still need to be further elucidated. The objective of this study was to develop a method to investigate the biomechanical alterations in Perthes' disease by finite element (FE) contact modeling using MRI. The MRI data of a unilateral Perthes' case was obtained to develop the three-dimensional FE model of the hip joint. The stress and contact pressure patterns in the unaffected hip were well distributed. Elevated concentrations of stress and contact pressure were found in the Perthes' hip. The highest femoral cartilage von Mises stress 3.9 MPa and contact pressure 5.3 MPa were found in the Perthes' hip, whereas 2.4 MPa and 4.9 MPa in the healthy hip, respectively. The healthy bone in the femoral head of the Perthes' hip carries additional loads as indicated by the increase of stress levels around the necrotic-healthy bone interface. Identifying the biomechanical changes, such as the location of stress and contact pressure concentrations, is a prerequisite for the preoperative planning to obtain stress relief for the highly stressed areas in the malformed hip. This single-patient study demonstrated that the biomechanical alterations in Perthes' disease can be evaluated individually by patient-specific finite element contact modeling using MRI. A multi-patient study is required to test the strength of the proposed method as a pre-surgery planning tool.

  16. Open-MRI measures of cam intrusion for hips in an anterior impingement position relate to acetabular contact force.

    PubMed

    Buchan, Lawrence L; Zhang, Honglin; Konan, Sujith; Heaslip, Ingrid; Ratzlaff, Charles R; Wilson, David R

    2016-02-01

    Open MRI in functional positions has potential to directly and non-invasively assess cam femoroacetabular impingement (FAI). Our objective was to investigate whether open MRI can depict intrusion of the cam deformity into the intra-articular joint space, and whether intrusion is associated with elevated acetabular contact force. Cadaver hips (9 cam; 3 controls) were positioned in an anterior impingement posture and imaged using open MRI with multi-planar reformatting. The β-angle (describing clearance between the femoral neck and acetabulum) was measured around the entire circumference of the femoral neck. We defined a binary "MRI cam-intrusion sign" (positive if β < 0°). We then instrumented each hip with a piezoresistive sensor and conducted six repeated positioning trials, measuring acetabular contact force (F). We defined a binary "contact-force sign" (positive if F > 20N). Cam hips were more likely than controls to have both a positive MRI cam-intrusion sign (p = 0.0182, Fisher's exact test) and positive contact-force sign (p = 0.0083), which represents direct experimental evidence for cam intrusion. There was also a relationship between the MRI cam-intrusion sign and contact-force sign (p = 0.033), representing a link between imaging and mechanics. Our findings indicate that open MRI has significant potential for in vivo investigation of the cam FAI mechanism. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Joint representation of consistent structural and functional profiles for identification of common cortical landmarks.

    PubMed

    Zhang, Shu; Zhao, Yu; Jiang, Xi; Shen, Dinggang; Liu, Tianming

    2018-06-01

    In the brain mapping field, there have been significant interests in representation of structural/functional profiles to establish structural/functional landmark correspondences across individuals and populations. For example, from the structural perspective, our previous studies have identified hundreds of consistent DICCCOL (dense individualized and common connectivity-based cortical landmarks) landmarks across individuals and populations, each of which possess consistent DTI-derived fiber connection patterns. From the functional perspective, a large collection of well-characterized HAFNI (holistic atlases of functional networks and interactions) networks based on sparse representation of whole-brain fMRI signals have been identified in our prior studies. However, due to the remarkable variability of structural and functional architectures in the human brain, it is challenging for earlier studies to jointly represent the connectome-scale structural and functional profiles for establishing a common cortical architecture which can comprehensively encode both structural and functional characteristics across individuals. To address this challenge, we propose an effective computational framework to jointly represent the structural and functional profiles for identification of consistent and common cortical landmarks with both structural and functional correspondences across different brains based on DTI and fMRI data. Experimental results demonstrate that 55 structurally and functionally common cortical landmarks can be successfully identified.

  18. Quantifying the Effect of Temporomandibular Joint Intra-Articular Steroid Injection on Synovial Enhancement in Juvenile Idiopathic Arthritis.

    PubMed

    Resnick, Cory M; Vakilian, Pouya M; Kaban, Leonard B; Peacock, Zachary S

    2016-12-01

    To quantify the effect of intra-articular steroid injections (IASIs) on temporomandibular joint (TMJ) synovitis in children with juvenile idiopathic arthritis (JIA) using gadolinium-enhanced magnetic resonance imaging (MRI). The present study was a retrospective study of children with JIA who had undergone TMJ IASIs at Boston Children's Hospital. The patients were included if they had undergone contrast-enhanced MRI both before and after IASI and if the pre-IASI MRI had demonstrated synovitis (enhancement ratio [ER] >1.55). Patients with TMJ pathology or pain unrelated to JIA or a history of facial trauma were excluded. The predictor variables were age, gender, JIA subtype, exposure to medications for arthritis, and a family history of autoimmune disease. The primary outcome variable was the ER. Additional outcome variables included patient-reported pain and the maximal incisal opening (MIO). Twenty-nine subjects (83% female) with a total of 50 injected TMJs were included. The average age at JIA diagnosis and at IASI was 6.8 ± 1.7 years and 12.1 ± 1.9 years, respectively. The mean follow-up period was 22.9 ± 4.3 months (range 5 to 48). The ER decreased in all injected joints, with a mean reduction of 1.05 ± 1.01 (P < .001). The post-IASI ER was less than the normal threshold (1.55) in 18% of the injected TMJs. IASI was associated with an elimination of pain in 89% of the subjects (P < .001) and in augmentation of the MIO by 5.8 ± 2.6 mm (P < .001). In children with JIA and TMJ synovitis, TMJ IASI was associated with a reduction in synovial enhancement, decreased pain, and an increased MIO. Only 18% of injected joints, however, experienced complete resolution of synovitis. These results support the use of IASI in the management of the pain and dysfunction associated with TMJ synovitis. Further study is required to determine the efficacy of IASI in limiting inflammation and future joint destruction. Copyright © 2016 American Association of Oral and

  19. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects

    NASA Astrophysics Data System (ADS)

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E.

    2016-05-01

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  20. Macrophage phagocytosis alters the MRI signal of ferumoxytol-labeled mesenchymal stromal cells in cartilage defects.

    PubMed

    Nejadnik, Hossein; Lenkov, Olga; Gassert, Florian; Fretwell, Deborah; Lam, Isaac; Daldrup-Link, Heike E

    2016-05-13

    Human mesenchymal stem cells (hMSCs) are a promising tool for cartilage regeneration in arthritic joints. hMSC labeling with iron oxide nanoparticles enables non-invasive in vivo monitoring of transplanted cells in cartilage defects with MR imaging. Since graft failure leads to macrophage phagocytosis of apoptotic cells, we evaluated in vitro and in vivo whether nanoparticle-labeled hMSCs show distinct MR signal characteristics before and after phagocytosis by macrophages. We found that apoptotic nanoparticle-labeled hMSCs were phagocytosed by macrophages while viable nanoparticle-labeled hMSCs were not. Serial MRI scans of hMSC transplants in arthritic joints of recipient rats showed that the iron signal of apoptotic, nanoparticle-labeled hMSCs engulfed by macrophages disappeared faster compared to viable hMSCs. This corresponded to poor cartilage repair outcomes of the apoptotic hMSC transplants. Therefore, rapid decline of iron MRI signal at the transplant site can indicate cell death and predict incomplete defect repair weeks later. Currently, hMSC graft failure can be only diagnosed by lack of cartilage defect repair several months after cell transplantation. The described imaging signs can diagnose hMSC transplant failure more readily, which could enable timely re-interventions and avoid unnecessary follow up studies of lost transplants.

  1. Respiratory motion resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK)

    PubMed Central

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-01-01

    Purpose To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. Methods The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel ROtating Cartesian K-space (ROCK) reordering method was designed that incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in 6 healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. Results The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2×1.2×1.6mm3 and 8 respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a −12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2±4.5% for the diaphragm, 8.2±4.9% and 8.9±5.1% for the right and left kidney. Conclusion The proposed 4D-MRI technique could provide high resolution, high quality, respiratory motion resolved 4D images with good soft-tissue contrast and are free of the “stitching” artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment

  2. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).

    PubMed

    Han, Fei; Zhou, Ziwu; Cao, Minsong; Yang, Yingli; Sheng, Ke; Hu, Peng

    2017-04-01

    To propose and validate a respiratory motion resolved, self-gated (SG) 4D-MRI technique to assess patient-specific breathing motion of abdominal organs for radiation treatment planning. The proposed 4D-MRI technique was based on the balanced steady-state free-precession (bSSFP) technique and 3D k-space encoding. A novel rotating cartesian k-space (ROCK) reordering method was designed which incorporates repeatedly sampled k-space centerline as the SG motion surrogate and allows for retrospective k-space data binning into different respiratory positions based on the amplitude of the surrogate. The multiple respiratory-resolved 3D k-space data were subsequently reconstructed using a joint parallel imaging and compressed sensing method with spatial and temporal regularization. The proposed 4D-MRI technique was validated using a custom-made dynamic motion phantom and was tested in six healthy volunteers, in whom quantitative diaphragm and kidney motion measurements based on 4D-MRI images were compared with those based on 2D-CINE images. The 5-minute 4D-MRI scan offers high-quality volumetric images in 1.2 × 1.2 × 1.6 mm 3 and eight respiratory positions, with good soft-tissue contrast. In phantom experiments with triangular motion waveform, the motion amplitude measurements based on 4D-MRI were 11.89% smaller than the ground truth, whereas a -12.5% difference was expected due to data binning effects. In healthy volunteers, the difference between the measurements based on 4D-MRI and the ones based on 2D-CINE were 6.2 ± 4.5% for the diaphragm, 8.2 ± 4.9% and 8.9 ± 5.1% for the right and left kidney. The proposed 4D-MRI technique could provide high-resolution, high-quality, respiratory motion-resolved 4D images with good soft-tissue contrast and are free of the "stitching" artifacts usually seen on 4D-CT and 4D-MRI based on resorting 2D-CINE. It could be used to visualize and quantify abdominal organ motion for MRI-based radiation treatment planning. © 2017 American

  3. The Intensive Diet and Exercise for Arthritis (IDEA) trial: 18-month radiographic and MRI outcomes.

    PubMed

    Hunter, D J; Beavers, D P; Eckstein, F; Guermazi, A; Loeser, R F; Nicklas, B J; Mihalko, S L; Miller, G D; Lyles, M; DeVita, P; Legault, C; Carr, J J; Williamson, J D; Messier, S P

    2015-07-01

    Report the radiographic and magnetic resonance imaging (MRI) structural outcomes of an 18-month study of diet-induced weight loss, with or without exercise, compared to exercise alone in older, overweight and obese adults with symptomatic knee osteoarthritis (OA). Prospective, single-blind, randomized controlled trial that enrolled 454 overweight and obese (body mass index, BMI = 27-41 kg m(-2)) older (age ≥ 55 yrs) adults with knee pain and radiographic evidence of femorotibial OA. Participants were randomized to one of three 18-month interventions: diet-induced weight loss only (D); diet-induced weight loss plus exercise (D + E); or exercise-only control (E). X-rays (N = 325) and MRIs (N = 105) were acquired at baseline and 18 months follow-up. X-ray and MRI (cartilage thickness and semi-quantitative (SQ)) results were analyzed to compare change between groups at 18-month follow-up using analysis of covariance (ANCOVA) adjusted for baseline values, baseline BMI, and gender. Mean baseline descriptive characteristics of the cohort included: age, 65.6 yrs; BMI 33.6 kg m(-2); 72% female; 81% white. There was no significant difference between groups in joint space width (JSW) loss; D -0.07 (SE 0.22) mm, D + E -0.27 (SE 0.22) mm and E -0.16 (SE 0.24) mm (P = 0.79). There was also no significant difference in MRI cartilage loss between groups; D -0.10(0.05) mm, D + E -0.13(0.04) mm and E -0.05(0.04) mm (P = 0.42). Despite the potent effects of weight loss in this study on symptoms as well as mechanistic outcomes (such as joint compressive force and markers of inflammation), there was no statistically significant difference between the three active interventions on the rate of structural progression either on X-ray or MRI over 18-months. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Multimodal Fusion with Reference: Searching for Joint Neuromarkers of Working Memory Deficits in Schizophrenia

    PubMed Central

    Qi, Shile; Calhoun, Vince D.; van Erp, Theo G. M.; Bustillo, Juan; Damaraju, Eswar; Turner, Jessica A.; Du, Yuhui; Chen, Jiayu; Yu, Qingbao; Mathalon, Daniel H.; Ford, Judith M.; Voyvodic, James; Mueller, Bryon A.; Belger, Aysenil; Ewen, Sarah Mc; Potkin, Steven G.; Preda, Adrian; Jiang, Tianzi

    2017-01-01

    Multimodal fusion is an effective approach to take advantage of cross-information among multiple imaging data to better understand brain diseases. However, most current fusion approaches are blind, without adopting any prior information. To date, there is increasing interest to uncover the neurocognitive mapping of specific behavioral measurement on enriched brain imaging data; hence, a supervised, goal-directed model that enables a priori information as a reference to guide multimodal data fusion is in need and a natural option. Here we proposed a fusion with reference model, called “multi-site canonical correlation analysis with reference plus joint independent component analysis” (MCCAR+jICA), which can precisely identify co-varying multimodal imaging patterns closely related to reference information, such as cognitive scores. In a 3-way fusion simulation, the proposed method was compared with its alternatives on estimation accuracy of both target component decomposition and modality linkage detection. MCCAR+jICA outperforms others with higher precision. In human imaging data, working memory performance was utilized as a reference to investigate the covarying functional and structural brain patterns among 3 modalities and how they are impaired in schizophrenia. Two independent cohorts (294 and 83 subjects respectively) were used. Interestingly, similar brain maps were identified between the two cohorts, with substantial overlap in the executive control networks in fMRI, salience network in sMRI, and major white matter tracts in dMRI. These regions have been linked with working memory deficits in schizophrenia in multiple reports, while MCCAR+jICA further verified them in a repeatable, joint manner, demonstrating the potential of such results to identify potential neuromarkers for mental disorders. PMID:28708547

  5. Application of three-dimensional rendering in joint-related ganglion cysts.

    PubMed

    Spinner, Robert J; Edwards, Phillip K; Amrami, Kimberly K

    2006-05-01

    The origin of para-articular cysts is poorly understood and controversial. The relatively common, simple (extraneural) cysts are presumed to be derived from joints, although joint connections are not always established. Rarer complex cysts are thought by many to form de novo within nerves (intraneural ganglion cysts) or within vessels (adventitial cysts) (degenerative theory). We believe that these simple and complex ganglion cysts are joint-related (articular theory). Joint connections are often not readily appreciated with routine imaging or at surgery. Not identifying and/or treating joint connections frequently leads to cyst recurrence. More sophisticated imaging may enhance visualization of these joint connections. We created a 3D rendering technique to assess potential joint connections of simple and complex cysts localized to the knee and superior tibiofibular joints in patients with fibular (peroneal) neuropathy. Two- and three-dimensional data sets from MRI examinations were segmented semiautomatically by signal intensity with further refinement based on interaction with the user to identify specific anatomic structures, such as small nerves and vessels on serial images. The bone, cysts, nerves, and vessels were each assigned different color representations, and 3D renderings were created in ANALYZE using the data sets closest to isotropic (voxel with equal length in all dimensions) resolution as the primary background rendering. We selected four cases to illustrate the spectrum of pathology. In all of these cases, we demonstrated joint connections and correlated imaging and operative findings. Surgery addressing the cyst and the joint connection resulted in excellent outcomes; postoperative MRIs done more than 6 months later confirmed that there was no recurrence. In addition to highlighting the important relationship of these cysts to neighboring anatomic structures, this 3D technique allows visualization of "occult" connections not readily appreciated

  6. Characterization of cartilage defects detected by MRI in Kellgren-Lawrence grade 0 or 1 knees.

    PubMed

    Taguchi, Kenji; Chiba, Ko; Okazaki, Narihiro; Kido, Yasuo; Miyamoto, Takashi; Yonekura, Akihiko; Tomita, Masato; Uetani, Masataka; Osaki, Makoto

    2017-09-01

    Osteoarthritis of the knee is generally evaluated by plain X-rays, which are incapable of detecting small cartilage damage. There are some patients who have small cartilage defects on MRI with no abnormal findings on plain X-rays. In this study, the prevalence and regional characteristics of cartilage defects detected by MRI were studied in cases with normal X-ray findings (Kellgren-Lawrence grade 0 and 1). Relationships between the cartilage defects and OA risk factors such as obesity and leg alignment were also investigated. A total of 51 knees of Kellgren-Lawrence grade 0 or 1 without knee joint pain were included. Fat-suppressed spoiled-gradient recalled (SPGR) sagittal images were scanned by 3 T MRI, and the presence of cartilage damage was confirmed. Cartilage damage was visualized three-dimensionally, and its location and morphology were analyzed. On a full length standing radiograph of the lower extremities, leg alignment and other parameters were measured, and their associations with cartilage damage were analyzed. Cartilage defects were detected in 26% of women aged >50 years. Cartilage damage was located on the medial femoral condyle near the intercondylar notch, and was mostly elliptically shaped in the anteroposterior direction. Subjects with damaged cartilage were not obese and did not have abnormal leg alignment. It should be borne in mind that some elderly women may have damaged cartilage on the intercondylar notch side of the medial joint, even though plain X-rays appear normal, and this cannot be predicted by obesity or leg alignment. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  7. Imaging technologies for preclinical models of bone and joint disorders

    PubMed Central

    2011-01-01

    Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535

  8. [Experimental study of dislocations of the scapulohumeral joint].

    PubMed

    Gagey, O; Gagey, N; Boisrenoult, P; Hue, E; Mazas, F

    1993-01-01

    One may produce easily an experimental dislocation (anterior or erecta) of the scapulohumeral joint. The authors discuss, the experimental model then they describe the anatomical lesion produced through the experimental dislocation of 32 shoulders and the correlation observed after RMI assessment of 24 recurrent dislocations. The tear of the inferior glenohumeral ligament is constant, in 20 per cent of the cases the tear lies on the anterior aspect of the glenoid, in the other cases the tear was found on its humeral side. Whatever the situation of the tear of the inferior glenohumeral ligament, the lesion of the labrum was constant. The erecta dislocation was produced with the same movement but with a particular tear of the glenohumeral ligament: the tear was longitudinal. The experimental dislocation needs, in 7 or 8 cases, a desinsertion of the deep aspect of the rotator cuff. The Hill Sachs lesion occurs when the humerus falls along the chest wall after the dislocation. In 50 per cent of the patients, MRI shows modifications of the cuff which are compatible with our results. Hills Sachs lesions appear to be constant after MRI examination.

  9. A method for multitask fMRI data fusion applied to schizophrenia.

    PubMed

    Calhoun, Vince D; Adali, Tulay; Kiehl, Kent A; Astur, Robert; Pekar, James J; Pearlson, Godfrey D

    2006-07-01

    It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are "coupled" together by a shared loading parameter. We first compute an activation map for each task and each individual as "features," which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate "decreased" connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate "more similarly" for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks using a variety of

  10. A Method for Multitask fMRI Data Fusion Applied to Schizophrenia

    PubMed Central

    Calhoun, Vince D.; Adali, Tulay; Kiehl, Kent A.; Astur, Robert; Pekar, James J.; Pearlson, Godfrey D.

    2009-01-01

    It is becoming common to collect data from multiple functional magnetic resonance imaging (fMRI) paradigms on a single individual. The data from these experiments are typically analyzed separately and sometimes directly subtracted from one another on a voxel-by-voxel basis. These comparative approaches, although useful, do not directly attempt to examine potential commonalities between tasks and between voxels. To remedy this we propose a method to extract maximally spatially independent maps for each task that are “coupled” together by a shared loading parameter. We first compute an activation map for each task and each individual as “features, ” which are then used to perform joint independent component analysis (jICA) on the group data. We demonstrate our approach on a data set derived from healthy controls and schizophrenia patients, each of which carried out an auditory oddball task and a Sternberg working memory task. Our analysis approach revealed two interesting findings in the data that were missed with traditional analyses. First, consistent with our hypotheses, schizophrenia patients demonstrate “decreased” connectivity in a joint network including portions of regions implicated in two prevalent models of schizophrenia. A second finding is that for the voxels identified by the jICA analysis, the correlation between the two tasks was significantly higher in patients than in controls. This finding suggests that schizophrenia patients activate “more similarly” for both tasks than do controls. A possible synthesis of both findings is that patients are activating less, but also activating with a less-unique set of regions for these very different tasks. Both of the findings described support the claim that examination of joint activation across multiple tasks can enable new questions to be posed about fMRI data. Our approach can also be applied to data using more than two tasks. It thus provides a way to integrate and probe brain networks

  11. [Lateral instability of the upper ankle joint].

    PubMed

    Harrasser, N; Eichelberg, K; Pohlig, F; Waizy, H; Toepfer, A; von Eisenhart-Rothe, R

    2016-11-01

    Because of their frequency, ankle sprains are of major clinical and economic importance. The simple sprain with uneventful healing has to be distinguished from the potentially complicated sprain which is at risk of transition to chronic ankle instability. Conservative treatment is indicated for the acute, simple ankle sprain without accompanying injuries and also in cases of chronic instability. If conservative treatment fails, good results can be achieved by anatomic ligament reconstruction of the lateral ankle ligaments. Arthroscopic techniques offer the advantage of joint inspection and addressing intra-articular pathologies in combination with ligament repair. Accompanying pathologies must be adequately addressed during ligament repair to avoid persistent ankle discomfort. If syndesmotic insufficiency and tibiofibular instability are suspected, the objective should be early diagnosis with MRI and surgical repair.

  12. Prediction of In Vivo Knee Joint Kinematics Using a Combined Dual Fluoroscopy Imaging and Statistical Shape Modeling Technique

    PubMed Central

    Li, Jing-Sheng; Tsai, Tsung-Yuan; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Freiberg, Andrew; Rubash, Harry E.; Li, Guoan

    2014-01-01

    Using computed tomography (CT) or magnetic resonance (MR) images to construct 3D knee models has been widely used in biomedical engineering research. Statistical shape modeling (SSM) method is an alternative way to provide a fast, cost-efficient, and subject-specific knee modeling technique. This study was aimed to evaluate the feasibility of using a combined dual-fluoroscopic imaging system (DFIS) and SSM method to investigate in vivo knee kinematics. Three subjects were studied during a treadmill walking. The data were compared with the kinematics obtained using a CT-based modeling technique. Geometric root-mean-square (RMS) errors between the knee models constructed using the SSM and CT-based modeling techniques were 1.16 mm and 1.40 mm for the femur and tibia, respectively. For the kinematics of the knee during the treadmill gait, the SSM model can predict the knee kinematics with RMS errors within 3.3 deg for rotation and within 2.4 mm for translation throughout the stance phase of the gait cycle compared with those obtained using the CT-based knee models. The data indicated that the combined DFIS and SSM technique could be used for quick evaluation of knee joint kinematics. PMID:25320846

  13. X-ray beam equalization for digital fluoroscopy

    NASA Astrophysics Data System (ADS)

    Molloi, Sabee Y.; Tang, Jerry; Marcin, Martin R.; Zhou, Yifang; Anvar, Behzad

    1996-04-01

    The concept of radiographic equalization has previously been investigated. However, a suitable technique for digital fluoroscopic applications has not been developed. The previously reported scanning equalization techniques cannot be applied to fluoroscopic applications due to their exposure time limitations. On the other hand, area beam equalization techniques are more suited for digital fluoroscopic applications. The purpose of this study is to develop an x- ray beam equalization technique for digital fluoroscopic applications that will produce an equalized radiograph with minimal image artifacts and tube loading. Preliminary unequalized images of a humanoid chest phantom were acquired using a digital fluoroscopic system. Using this preliminary image as a guide, an 8 by 8 array of square pistons were used to generate masks in a mold with CeO2. The CeO2 attenuator thicknesses were calculated using the gray level information from the unequalized image. The generated mask was positioned close to the focal spot (magnification of 8.0) in order to minimize edge artifacts from the mask. The masks were generated manually in order to investigate the piston and matrix size requirements. The development of an automated version of mask generation and positioning is in progress. The results of manual mask generation and positioning show that it is possible to generate equalized radiographs with minimal perceptible artifacts. The equalization of x-ray transmission across the field exiting from the object significantly improved the image quality by preserving local contrast throughout the image. Furthermore, the reduction in dynamic range significantly reduced the effect of x-ray scatter and veiling glare from high transmission to low transmission areas. Also, the x-ray tube loading due to the mask assembly itself was negligible. In conclusion it is possible to produce area beam compensation that will be compatible with digital fluoroscopy with minimal compensation artifacts

  14. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  15. [Fusion of MRI, fMRI and intraoperative MRI data. Methods and clinical significance exemplified by neurosurgical interventions].

    PubMed

    Moche, M; Busse, H; Dannenberg, C; Schulz, T; Schmitgen, A; Trantakis, C; Winkler, D; Schmidt, F; Kahn, T

    2001-11-01

    The aim of this work was to realize and clinically evaluate an image fusion platform for the integration of preoperative MRI and fMRI data into the intraoperative images of an interventional MRI system with a focus on neurosurgical procedures. A vertically open 0.5 T MRI scanner was equipped with a dedicated navigation system enabling the registration of additional imaging modalities (MRI, fMRI, CT) with the intraoperatively acquired data sets. These merged image data served as the basis for interventional planning and multimodal navigation. So far, the system has been used in 70 neurosurgical interventions (13 of which involved image data fusion--requiring 15 minutes extra time). The augmented navigation system is characterized by a higher frame rate and a higher image quality as compared to the system-integrated navigation based on continuously acquired (near) real time images. Patient movement and tissue shifts can be immediately detected by monitoring the morphological differences between both navigation scenes. The multimodal image fusion allowed a refined navigation planning especially for the resection of deeply seated brain lesions or pathologies close to eloquent areas. Augmented intraoperative orientation and instrument guidance improve the safety and accuracy of neurosurgical interventions.

  16. Value of MRI in diagnosing injuries after ankle sprains in children.

    PubMed

    Endele, Dominick; Jung, Christian; Bauer, Gerhard; Mauch, Frieder

    2012-12-01

    To our knowledge, there are only a few prospective studies on the use of magnetic resonance imaging (MRI) to diagnose injuries associated with ankle sprains in children. We hypothesized that MRI examinations of acute ankle sprains in growing children would show relevant injuries that may have been overlooked by conventional clinical, radiological, and ultrasound examinations. Thirty children with acute inversion injury of the ankle were subjected to an MRI examination of the ankle joint, in addition to conventional radiographic procedures. All data were recorded prospectively. Depending on the severity of the clinical symptoms, the children were divided into three different groups. Children with little soft-tissue swelling and who were still able to walk were assigned to Group I (n = 10), Group II consisted of children who were only partially able to walk and had moderate soft-tissue swelling (n = 12), while Group III consisted of the children who were not able to walk and had pronounced soft-tissue swelling (n = 8). Regular followup examinations were carried out. At the final followup examination, on average 8 months after injury, the children in Groups II and III were again examined by MRI. The clinical results were compared and correlated with the results of the MRI examinations. Altogether, torn ligaments could be verified in 23 out of 30 of the cases; bony avulsions were found in 10% of these. Three of 30 patients had a Salter I injury. Bone bruising was found in 18 out of 30 (60%). Bone bruising was most commonly found near the medial talus. MRI examination of the patients in Group I showed no more ruptures than the clinical examination; here, only four patients were found to have partial ruptures of the ATL. In Group II, torn ligaments were found in six out of 12 (50%) of the cases; similarly, Salter I injuries were found in three out of 12 cases. The patients in Group III also showed serious injuries on the MRI examination. Bone bruising, torn ligaments, or

  17. MRI Scans

    MedlinePlus

    Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ...

  18. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage.

    PubMed

    Stefanik, J J; Niu, J; Gross, K D; Roemer, F W; Guermazi, A; Felson, D T

    2013-05-01

    To describe the prevalence of magnetic resonance imaging (MRI) detected structural damage in the patellofemoral joint (PFJ) and tibiofemoral joint (TFJ) in a population-based cohort. A secondary aim was to evaluate the patterns of compartmental involvement in knees with pain, between men and women, and in different age and body mass index (BMI) categories. We studied 970 knees, one knee per subject, from the Framingham Osteoarthritis Study, a population-based cohort study of persons 51-92 years old. Cartilage damage and bone marrow lesions (BMLs) were assessed using the Whole Organ Magnetic Resonance Imaging Score (WORMS). The prevalence of isolated PFJ, isolated TFJ, and mixed structural damage was determined using the following definitions: any cartilage damage, full thickness cartilage loss, any BML, and the combination of full thickness cartilage loss with any BML. The mean age and BMI was 63.4 years and 28.6 m/kg(2), respectively; 57% were female. Isolated PFJ damage occurred in 15-20% of knees and isolated TFJ damage occurred in 8-17% of knees depending on the definition used. The prevalence of isolated PFJ damage was greater than isolated TFJ damage using all definitions except the any BML definition. This pattern was similar between genders and among age and BMI categories. In those with knee pain, isolated PFJ was at least as common as TFJ damage depending on the definition used. Using MRI to assess knee joint structural damage, isolated PFJ damage was at least as common as, if not more common than, isolated TFJ damage. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology.

    PubMed

    Axelsen, M B; Stoltenberg, M; Poggenborg, R P; Kubassova, O; Boesen, M; Bliddal, H; Hørslev-Petersen, K; Hanson, L G; Østergaard, M

    2012-03-01

    To determine whether dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) evaluated using semi-automatic image processing software can accurately assess synovial inflammation in rheumatoid arthritis (RA) knee joints. In 17 RA patients undergoing knee surgery, the average grade of histological synovial inflammation was determined from four biopsies obtained during surgery. A preoperative series of T(1)-weighted dynamic fast low-angle shot (FLASH) MR images was obtained. Parameters characterizing contrast uptake dynamics, including the initial rate of enhancement (IRE), were generated by the software in three different areas: (I) the entire slice (Whole slice); (II) a manually outlined region of interest (ROI) drawn quickly around the joint, omitting large artefacts such as blood vessels (Quick ROI); and (III) a manually outlined ROI following the synovial capsule of the knee joint (Precise ROI). Intra- and inter-reader agreement was assessed using the intra-class correlation coefficient (ICC). The IRE from the Quick ROI and the Precise ROI revealed high correlations to the grade of histological inflammation (Spearman's correlation coefficient (rho) = 0.70, p = 0.001 and rho = 0.74, p = 0.001, respectively). Intra- and inter-reader ICCs were very high (0.93-1.00). No Whole slice parameters were correlated to histology. DCE-MRI provides fast and accurate assessment of synovial inflammation in RA patients. Manual outlining of the joint to omit large artefacts is necessary.

  20. MRI versus ultrasonography to assess meniscal abnormalities in acute knees.

    PubMed

    Cook, James L; Cook, Cristi R; Stannard, James P; Vaughn, Gavin; Wilson, Nichole; Roller, Brandon L; Stoker, Aaron M; Jayabalan, Prakash; Hdeib, Moses; Kuroki, Keiichi

    2014-08-01

    While magnetic resonance imaging (MRI) is often considered the "gold standard" diagnostic imaging modality for detection of meniscal abnormalities, it is associated with misdiagnosis in as high as 47% of cases, is costly, and is not readily available to a large number of patients. Ultrasonographic examination of the knee has been reported to be an effective diagnostic tool for this purpose with the potential to overcome many of the shortcomings of MRI. The purpose of this study is to determine the clinical usefulness of ultrasonography for diagnosis of meniscal pathology in patients with acute knee pain and compare its diagnostic accuracy to MRI in a clinical setting. With Institutional Review Board approval, patients (n = 71) with acute knee pain were prospectively enrolled with informed consent. Preoperative MRI (1.5 T) was performed on each affected knee using the hospital's standard equipment and protocols and read by faculty radiologists trained in musculoskeletal MRI. Ultrasonographic assessments of each affected knee were performed by one of two faculty members trained in musculoskeletal ultrasonography using a 10 to 14 MHz linear transducer. Arthroscopic evaluation of affected knees was performed by one of three faculty orthopedic surgeons to assess and record all joint pathology, which served as the reference standard for determining presence, type, and severity of meniscal pathology. All evaluators for each diagnostic modality were blinded to all other data. Data were collected and compared by a separate investigator to determine sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), correct classification rate (CCR), likelihood ratios (LR[+] and LR[-]), and odds ratios. Preoperative ultrasonographic assessment of meniscal pathology was associated with Sn = 91.2%, Sp = 84.2%, PPV = 94.5%, NPV = 76.2%, CCR = 89.5%, LR(+) = 5.78, and LR(-) = 0.10. Preoperative MRI assessment of

  1. Arthroscopic treatment of acute acromioclavicular dislocations using a double button device: Clinical and MRI results.

    PubMed

    Loriaut, P; Casabianca, L; Alkhaili, J; Dallaudière, B; Desportes, E; Rousseau, R; Massin, P; Boyer, P

    2015-12-01

    Arthroscopic treatment of acute grade 3 and 4 acromioclavicular dislocation is controversial, due to the risk of recurrence and of postoperative reduction defect. The purpose of the present study was to investigate whether the healing of the acromioclavicular (AC) and coracoclavicular (CC) ligaments and the accurate 3D positioning parameters of the AC joint using MRI were correlated with satisfactory functional outcome. Thirty-nine patients were enrolled from 2009 to 2011 and managed arthroscopically by CC lacing using a double-button device. Clinical assessment included the Shoulder and Hand (QuickDash) score, Constant-Murley score and visual analog scale (VAS) for residual pain. Time and rate to return to work and return to sport were assessed according to type of sport and work. Postoperative complications were recorded. Radiological examination consisted of anteroposterior clavicle and lateral axillary radiographs. AC ligament healing and 3D joint congruency were assessed on MRI and correlated to the clinical results. Mean patient age was 35.7 years (range, 20-55). Mean follow-up was 42.3±10.6 months (range, 24-60). At final follow-up, mean QuickDash score, Constant score and VAS were respectively 1.7±4 (range, 0-11), 94.7±7.3 (range, 82-100) and 0.5±1.4 (range, 0-2). Thirty-five (90%) patients were able to resume work, including heavy manual labor, and sport. Radiology found accurate 3D joint congruency in 34 patients (87%) and CC and AC ligament healing in 36 (93%). Complications included reduction loss at 6 weeks in 3 patients, requiring surgical stabilization. Satisfactory functional results were associated with accurate AC joint congruency in the coronal and axial planes (P<0.05) and good AC and CC ligament healing (P<0.04). An initial 25% reduction defect in the coronal plane was not associated with poor functional results (P=0.07). Arthroscopic treatment by CC lacing satisfactorily restored ligament and joint anatomy in the present series. These

  2. WE-A-12A-01: Medical Physics 1.0 to 2.0, Session 2: Radiography, Mammography and Fluoroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingold, E; Karellas, A; Strauss, K

    . Fluoroscopy 2.0: Physics support of fluoroscopy should be operationally as opposed to compliance focused. Testing protocols must address new hardware, acquisition methods, and image processing. Future available tools are discussed. Proper configuration of acquisition parameters (focal spot size, voltage and added filter, tube current, pulse width, pulse rate, scatter removal) as a function of patient size from the neonate to bariatric patient is key to providing diagnostic image quality at properly managed radiation doses. Learning Objectives: Appreciate the limitations of the currently available tools and techniques in clinical medical physics in radiography, mammography, and fluoroscopy, and ways to improve upon current deficiencies. Appreciate the changing environment of imaging practice and the need for the medical physicist to be an expert consultant and educator in a capacity that extends beyond the annual survey of equipment. Understand the status of the rapidly changing environment in breast imaging from planar imaging to tomosynthesis and possibly to breast CT. Identify appropriate configuration of acquisition parameters as a function of patient size to manage radiation dose and ensure diagnostic image quality.« less

  3. Fully automated chest wall line segmentation in breast MRI by using context information

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina

    2012-03-01

    Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).

  4. MO-F-16A-04: Case Study: Estimation of Peak Skin Dose Following a Physician Reported “High Dose” Case and Sentinel Event Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M; Chu, J; Wehmeyer, A

    2014-06-15

    Purpose: This work offers as a teaching example a reported high dose fluoroscopy case and the workflow the institution followed to self-report a radiation overdose sentinel event to the Joint Commission. Methods: Following the completion of a clinical case in a hybrid OR room with a reported air kerma of >18 Gy at the Interventional Reference Point (IRP) the physicians involved in the case referred study to the institution's Radiation Safety Committee (RSC) for review. The RSC assigned a Diagnostic Medical Physicist (DMP) to estimate the patient's Peak Skin Dose (PSD) and analyze the case. Following the DMP's analysis andmore » estimate of a PSD of >15 Gy the institution's adverse event committee was convened to discuss the case and to self-report the case as a radiation overdose sentinel event to the Joint Commission. The committee assigned a subgroup to perform the root cause analysis and develop institutional responses to the event. Results: The self-reporting of the sentinel event and the associated root cause analysis resulted in several institutional action items that are designed to improve process and safety. A formal reporting and analysis mechanism was adopted to review fluoroscopy cases with air kerma greater than 6 Gy at the IRP. An improved and formalized radiation safety training program for physicians using fluoroscopy equipment was implemented. Additionally efforts already under way to monitor radiation exposure in the Radiology department were expanded to include all fluoroscopy equipment capable of automated dose reporting. Conclusion: The adverse event review process and the root cause analysis following the self-reporting of the sentinel event resulted in policies and procedures that are expected to improve the quality and safe usage of fluoroscopy throughout the institution.« less

  5. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model

    PubMed Central

    Hall, Sarah; Xia, Xin-Rui; Schwarz, Tobias

    2017-01-01

    Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could

  6. Five-Year Follow-up of Knee Joint Distraction: Clinical Benefit and Cartilaginous Tissue Repair in an Open Uncontrolled Prospective Study.

    PubMed

    van der Woude, Jan-Ton A D; Wiegant, Karen; van Roermund, Peter M; Intema, Femke; Custers, Roel J H; Eckstein, Felix; van Laar, Jaap M; Mastbergen, Simon C; Lafeber, Floris P J G

    2017-07-01

    Objective In end-stage knee osteoarthritis, total knee arthroplasty (TKA) may finally become inevitable. At a relatively young age, this comes with the risk of future revision surgery. Therefore, in these cases, joint preserving surgery such as knee joint distraction (KJD) is preferred. Here we present 5-year follow-up data of KJD. Design Patients ( n = 20; age <60 years) with conservative therapy resistant tibiofemoral osteoarthritis considered for TKA were treated. Clinical evaluation was performed by questionnaires. Change in cartilage thickness was quantified on radiographs and magnetic resonance images (MRI). The 5-year changes after KJD were evaluated and compared with the natural progression of osteoarthritis using Osteoarthritis Initiative data. Results Five-years posttreatment, patients still reported clinical improvement from baseline: ΔWOMAC (Western Ontario and McMaster Universities Arthritis Index) +21.1 points (95% CI +8.9 to +33.3; P = 0.002), ΔVAS (visual analogue scale score) pain -27.6 mm (95%CI -13.3 to -42.0; P < 0.001), and minimum radiographic joint space width (JSW) of the most affected compartment (MAC) remained increased as well: Δ +0.43 mm (95% CI +0.02 to +0.84; P = 0.040). Improvement of mean JSW (x-ray) and mean cartilage thickness (MRI) of the MAC, were not statistically different from baseline anymore (Δ +0.26 mm; P = 0.370, and Δ +0.23 mm; P = 0.177). Multivariable linear regression analysis indicated that KJD treatment was associated with significantly less progression in mean and min JSW (x-ray) and mean cartilage thickness (MRI) compared with natural progression (all Ps <0.001). Conclusions KJD treatment results in prolonged clinical benefit, potentially explained by an initial boost of cartilaginous tissue repair that provides a long-term tissue structure benefit as compared to natural progression. Level of evidence, II.

  7. CT fluoroscopy-assisted puncture of thoracic and abdominal masses: a randomized trial.

    PubMed

    Kirchner, Johannes; Kickuth, Ralph; Laufer, Ulf; Schilling, Esther Maria; Adams, Stephan; Liermann, Dieter

    2002-03-01

    We investigated the benefit of real-time guidance of interventional punctures by means of computed tomography fluoroscopy (CTF) compared with the conventional sequential acquisition guidance. In a prospective randomized trial, 75 patients underwent either CTF-guided (group A, n = 50) or sequential CT-guided (group B, n = 25) punctures of thoracic (n = 29) or abdominal (n = 46) masses. CTF was performed on the CT machine (Somatom Plus 4 Power, Siemens Corp., Forchheim, Germany) equipped with the C.A.R.E. Vision application (tube voltage 120 kV, tube current 50 mA, rotational time 0.75 s, slice thickness 10 mm, 8 frames/s). The average procedure time showed a statistically significant difference between the two study groups (group A: 564 s, group B 795 s, P = 0.0032). The mean total mAs was 7089 mAs for the CTF and 4856 mAs for the sequential image-guided intervention, respectively. The sensitivity was 71% specificity 100% positive predictive value 100% and negative predictive value 60% for the CTF-guided puncture, and 68, 100, 100 and 50% for sequential CT, respectively. CTF guidance realizes a time-saving but increases the radiation exposure dosage.

  8. Fluoroscopically Guided Sacroiliac Joint Injections: Comparison of the Effects of Intraarticular and Periarticular Injections on Immediate and Short-Term Pain Relief.

    PubMed

    Nacey, Nicholas C; Patrie, James T; Fox, Michael G

    2016-11-01

    The purpose of this study was to determine whether intraarticular sacroiliac joint injections provide greater immediate and short-term pain relief than periarticular sacroiliac joint injections do. The records of all fluoroscopically guided sacroiliac joint injections performed over a 4-year period were identified. Patients who received an injection of 0.5 mL of bupivacaine and 0.5 mL (20 mg) of triamcinolone and who had preinjection, immediate, and 1-week postinjection pain scores (0-10 numeric scale) were included. Images from the procedures were retrospectively reviewed by two musculoskeletal radiologists to determine intraarticular or periarticular administration of the injection with discrepancies resolved by consensus. One hundred thirteen injections in 99 patients (65 women, 34 men; mean age, 59.4 years) met the inclusion criteria. There were 55 intraarticular and 58 periarticular injections. The mean preinjection, immediate, and 1-week postinjection pain scores for the intraarticular injections were 6.0, 1.6, and 4.1 and for the periarticular injections were 6.1, 2.0, and 4.2. The mean immediate and 1-week postinjection pain reduction were statistically significant in both groups (p < 0.001). After adjustment for age, sex, preinjection pain score, time of year, and indication for injection, no significant difference in the preinjection to immediately postinjection change in pain between intraarticular and periarticular injections (mean change, 0.37; p = 0.319) or in the preinjection to 1-week postinjection change in pain (mean change, 0.06; p = 0.888) was noted. The mean fluoroscopy times were 42.4 seconds for intraarticular injections and 60.5 seconds for periarticular injections (p = 0.32). Although both intraarticular and periarticular sacroiliac joint injections provide statistically significant immediate and 1-week postinjection pain relief, no significant difference in the degree of pain relief achieved with intraarticular and periarticular injections

  9. MRI-guided brachytherapy

    PubMed Central

    Tanderup, Kari; Viswanathan, Akila; Kirisits, Christian; Frank, Steven J.

    2014-01-01

    The application of MRI-guided brachytherapy has demonstrated significant growth during the last two decades. Clinical improvements in cervix cancer outcomes have been linked to the application of repeated MRI for identification of residual tumor volumes during radiotherapy. This has changed clinical practice in the direction of individualized dose administration, and mounting evidence of improved clinical outcome with regard to local control, overall survival as well as morbidity. MRI-guided prostate HDR and LDR brachytherapy has improved the accuracy of target and organs-at-risk (OAR) delineation, and the potential exists for improved dose prescription and reporting for the prostate gland and organs at risk. Furthermore, MRI-guided prostate brachytherapy has significant potential to identify prostate subvolumes and dominant lesions to allow for dose administration reflecting the differential risk of recurrence. MRI-guided brachytherapy involves advanced imaging, target concepts, and dose planning. The key issue for safe dissemination and implementation of high quality MRI-guided brachytherapy is establishment of qualified multidisciplinary teams and strategies for training and education. PMID:24931089

  10. Characteristic Magnetic Resonance Imaging Findings in Rheumatoid Arthritis of the Temporomandibular Joint: Focus on Abnormal Bone Marrow Signal of the Mandibular Condyle, Pannus, and Lymph Node Swelling in the Parotid Glands.

    PubMed

    Hirahara, Naohisa; Kaneda, Takashi; Muraoka, Hirotaka; Fukuda, Taiga; Ito, Kotaro; Kawashima, Yusuke

    2017-04-01

    The purpose of this study was to determine the characteristic magnetic resonance imaging (MRI) findings indicating bone and soft tissue involvement in patients with rheumatoid arthritis (RA) of the temporomandibular joints (TMJs). Twenty-one patients with RA and TMJ pain who underwent MRI examination of the TMJs at the authors' hospital from August 2006 to December 2014 were included in this study. Twenty-two patients with normal TMJs who underwent MRI examination at the authors' hospital from November to December 2014 were included as controls. MRI findings were compared between the 2 groups. MRI findings of RA in the TMJ included 1) abnormal disc position (95.2%), 2) abnormal disc morphology (83.3%), 3) joint effusion (30.9%), 4) osseous changes in the mandibular condyle (83.3%), 5) synovial proliferation (pannus; 85.7%), 6) erosion of the articular eminence and glenoid fossa (9.52%), 7) deformity of the articular eminence and glenoid fossa (16.6%), 8) abnormal bone marrow signal in the mandibular condyle (83.3%), and 9) swelling of lymph nodes in the parotid glands (78.5%). The abnormal bone marrow signal and pannus in the mandibular condyle and lymph node swelling in the parotid glands were markedly more common in patients with RA than in controls. MRI findings of RA of the TMJs were characterized by bone and soft tissue involvement, including abnormal bone marrow signal of the mandibular condyle, pannus, and swelling of lymph nodes in the parotid glands. These characteristic MRI findings could be useful in detecting RA in the TMJ in a clinical situation. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Change of synovial vascularity in a single finger joint assessed by power doppler sonography correlated with radiographic change in rheumatoid arthritis: comparative study of a novel quantitative score with a semiquantitative score.

    PubMed

    Fukae, Jun; Kon, Yujiro; Henmi, Mihoko; Sakamoto, Fumihiko; Narita, Akihiro; Shimizu, Masato; Tanimura, Kazuhide; Matsuhashi, Megumi; Kamishima, Tamotsu; Atsumi, Tatsuya; Koike, Takao

    2010-05-01

    To investigate the relationship between synovial vascularity assessed by quantitative power Doppler sonography (PDS) and progression of structural bone damage in a single finger joint in patients with rheumatoid arthritis (RA). We studied 190 metacarpophalangeal (MCP) joints and 190 proximal interphalangeal (PIP) joints of 19 patients with active RA who had initial treatment with disease-modifying antirheumatic drugs (DMARDs). Patients were examined by clinical and laboratory assessments throughout the study. Hand and foot radiography was performed at baseline and the twentieth week. Magnetic resonance imaging (MRI) was performed at baseline. PDS was performed at baseline and the eighth week. Synovial vascularity was evaluated according to both quantitative and semiquantitative methods. Quantitative PDS was significantly correlated with the enhancement rate of MRI in each single finger joint. Comparing quantitative synovial vascularity and radiographic change in single MCP or PIP joints, the level of vascularity at baseline showed a significant positive correlation with radiographic progression at the twentieth week. The change of vascularity in response to DMARDs, defined as the percentage change in vascularity by the eighth week from baseline, was inversely correlated with radiographic progression in each MCP joint. The quantitative PDS method was more useful than the semiquantitative method for the evaluation of synovial vascularity in a single finger joint. The change of synovial vascularity in a single finger joint determined by quantitative PDS could numerically predict its radiographic progression. Using vascularity as a guide to consider a therapeutic approach would have benefits for patients with active RA.

  12. Changes in temporomandibular joint spaces after arthroscopic disc repositioning: a self-control study

    PubMed Central

    Kai Hu, Ying; Abdelrehem, Ahmed; Yang, Chi; Cai, Xie Yi; Xie, Qian Yang; Sah, Manoj Kumar

    2017-01-01

    Disc repositioning is a common procedure for patients with anterior disc displacement (ADD). The purpose of this retrospective record-based study was to evaluate changes in the widths of joint spaces and condylar position changes in patients with unilateral ADD following arthroscopic disc repositioning, with the healthy sides as self-control, using magnetic resonance images (MRI).Widths of anterior, superior, and posterior joint spaces (AS, SS, and PS) were measured. The condylar position was described as anterior, centric or posterior, expressed as . Paired-t test and Chi-square test were used to analyze the data. Fifty-four records conformed to the inclusion criteria (mean age of 21.02 years). Widths of SS and PS increased significantly after surgery (P < 0.001) on the operative sides, while joint spaces of healthy sides and AS of operative sides had no significant changes. Dominant location of condyles of operative sides changed from a posterior position to an anterior position, while healthy sides were mostly centric condylar position no matter preoperatively or postoperatively. Therefore, the results of this study indicate that unilateral arthroscopic disc repositioning significantly increases the posterior and superior spaces of the affected joints, without affecting spaces of the healthy sides. PMID:28361905

  13. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P.; Hoerr, Verena

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows themore » measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small

  14. SU-E-I-58: Experiences in Setting Up An Online Fluoroscopy Tracking System in a Large Healthcare System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, R; Wunderle, K; Lingenfelter, M

    Purpose: Transitioning from a paper based to an online system for tracking fluoroscopic case information required by state regulation and to conform to NCRP patient dose tracking suggestions. Methods: State regulations require documentation of operator, equipment, and some metric of tube output for fluoroscopy exams. This information was previously collected in paper logs, which was cumbersome and inefficient for the large number of fluoroscopic units across multiple locations within the system. The “tech notes” feature within Siemens’ Syngo workflow RIS was utilized to create an entry form for technologists to input case information, which was sent to a third partymore » vendor for archiving and display though an online web based portal. Results: Over 55k cases were logged in the first year of implementation, with approximately 6,500 cases per month once fully online. A system was built for area managers to oversee and correct data, which has increased the accuracy of inputted values. A high-dose report was built to automatically send notifications when patients exceed trigger levels. In addition to meeting regulatory requirements, the new system allows for larger scale QC in fluoroscopic cases by allowing comparison of data from specific procedures, locations, equipment, and operators so that instances that fall outside of reference levels can be identified for further evaluation. The system has also drastically improved identification of operators without documented equipment specific training. Conclusion: The transition to online fluoroscopy logs has improved efficiency in meeting state regulatory requirements as well as allowed for identification of particular procedures, equipment, and operators in need of additional attention in order to optimize patient and personnel doses, while high dose alerts improve patient care and follow up. Future efforts are focused on incorporating case information from outside of radiology, as well as on automating

  15. Glenoid labrum ossification and mechanical restriction of joint motion: extraosseous manifestations of melorheostosis.

    PubMed

    Subhas, N; Sundaram, M; Bauer, T W; Seitz, W H; Recht, M P

    2008-02-01

    We report a case of a 47-year-old man who presented with progressive loss of motion and pain in the right shoulder. Radiographs of the shoulder demonstrated dense ossification in the glenoid and humeral head with extension into the periarticular soft tissues. CT and MRI scans confirmed the radiographic findings and also revealed ossification of the glenoid labrum. A radiographic diagnosis of melorheostosis, an uncommon benign sclerosing bone dysplasia, was made. Because of the patient's severe symptomatology, he underwent total shoulder arthroplasty. Histological analysis of the resected masses was consistent with melorheostosis with a few areas covered by a cartilage cap. This case illustrates several uncommon but important features of melorheostosis, including mechanical obstruction of joint motion requiring joint replacement, ossification of the glenoid labrum, and cartilage-covering portions of the intra-articular masses, not to be confused with cartilage-producing tumors.

  16. Current Bypassing Properties by Thermal Switch for PCS Application on NMR/MRI HTS Magnets

    NASA Astrophysics Data System (ADS)

    Kim, S. B.; Takahashi, M.; Saito, R.; Park, Y. J.; Lee, M. W.; Oh, Y. K.; Ann, H. S.

    We develop the compact NMR/MRI device using high temperature superconducting (HTS) wires with the persistent current mode operating. So, the joint techniques between 2G wires are very important issue and many studies have been carried out. Recently, the Kbigdot JOINS, Inc. has developed successfully the high performance superconducting joints between 2G wires by partial melting diffusion and oxygenation annealing process [1]. In this study, the current bypassing properties in a loop-shaped 2G wire are measured experimentally to develop the permanent current switch (PSC). The current bypassing properties of loop-shaped test coil wound with 2G wire (GdBCO) are evaluated by measured the self-magnetic field due to bypassed current by Hall sensors. The strain gauge was used as heater for persistent current switch, and thermal properties against various thermal inputs were investigated experimentally.

  17. A methodology to accurately quantify patellofemoral cartilage contact kinematics by combining 3D image shape registration and cine-PC MRI velocity data.

    PubMed

    Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T

    2012-04-05

    Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. Published by Elsevier Ltd.

  18. MRI Safety during Pregnancy

    MedlinePlus

    ... during the exam? Contrast material MRI during pregnancy Magnetic resonance imaging (MRI) If you are pregnant and your doctor wants to perform a magnetic resonance imaging (MRI) exam, there is a possibility that your ...

  19. An MRI-compatible platform for one-dimensional motion management studies in MRI.

    PubMed

    Nofiele, Joris; Yuan, Qing; Kazem, Mohammad; Tatebe, Ken; Torres, Quinn; Sawant, Amit; Pedrosa, Ivan; Chopra, Rajiv

    2016-08-01

    Abdominal MRI remains challenging because of respiratory motion. Motion compensation strategies are difficult to compare clinically because of the variability across human subjects. The goal of this study was to evaluate a programmable system for one-dimensional motion management MRI research. A system comprised of a programmable motorized linear stage and computer was assembled and tested in the MRI environment. Tests of the mutual interference between the platform and a whole-body MRI were performed. Organ trajectories generated from a high-temporal resolution scan of a healthy volunteer were used in phantom tests to evaluate the effects of motion on image quality and quantitative MRI measurements. No interference between the motion platform and the MRI was observed, and reliable motion could be produced across a wide range of imaging conditions. Motion-related artifacts commensurate with motion amplitude, frequency, and waveform were observed. T2 measurement of a kidney lesion in an abdominal phantom showed that its value decreased by 67% with physiologic motion, but could be partially recovered with navigator-based motion-compensation. The motion platform can produce reliable linear motion within a whole-body MRI. The system can serve as a foundation for a research platform to investigate and develop motion management approaches for MRI. Magn Reson Med 76:702-712, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Acetabular cartilage defects cause altered hip and knee joint coordination variability during gait.

    PubMed

    Samaan, Michael A; Teng, Hsiang-Ling; Kumar, Deepak; Lee, Sonia; Link, Thomas M; Majumdar, Sharmila; Souza, Richard B

    2015-12-01

    Patients with acetabular cartilage defects reported increased pain and disability compared to those without acetabular cartilage defects. The specific effects of acetabular cartilage defects on lower extremity coordination patterns are unclear. The purpose of this study was to determine hip and knee joint coordination variability during gait in those with and without acetabular cartilage defects. A combined approach, consisting of a semi-quantitative MRI-based quantification method and vector coding, was used to assess hip and knee joint coordination variability during gait in those with and without acetabular cartilage lesions. The coordination variability of the hip flexion-extension/knee rotation, hip abduction-adduction/knee rotation, and hip rotation/knee rotation joint couplings were reduced in the acetabular lesion group compared to the control group during loading response of the gait cycle. The lesion group demonstrated increased variability in the hip flexion-extension/knee rotation and hip abduction-adduction/knee rotation joint couplings, compared to the control group, during the terminal stance/pre-swing phase of gait. Reduced variability during loading response in the lesion group may suggest reduced movement strategies and a possible compensation mechanism for lower extremity instability during this phase of the gait cycle. During terminal stance/pre-swing, a larger variability in the lesion group may suggest increased movement strategies and represent a compensation or pain avoidance mechanism caused by the load applied to the hip joint. Copyright © 2015 Elsevier Ltd. All rights reserved.