Science.gov

Sample records for joint geophysical imaging

  1. Joint Geophysical Imaging of the Utah Area Using Seismic Body Waves, Surface Waves and Gravity Data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Maceira, M.; Toksoz, M. N.; Burlacu, R.; Yang, Y.

    2009-12-01

    We present a joint geophysical imaging method that makes use of seismic body wave arrival times, surface wave dispersion measurements, and gravity data to determine three-dimensional (3D) Vp and Vs models. An empirical relationship mapping densities to Vp and Vs for earth materials is used to link them together. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the velocity models from shallower to greater depths. Combining three different data sets to jointly invert for the velocity structure is equivalent to a multiple-objective optimization problem. Because it is unlikely that the different “objectives” (data types) would be optimized by the same parameter choices, some trade-off between the objectives is needed. The optimum weighting scheme for different data types is based on relative uncertainties of individual observations and their sensitivities to model parameters. We will apply this joint inversion method to determine 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network for the past 7 years. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The preliminary study using the seismic body wave arrival times indicates strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  2. Geophysical monitoring using 3D joint inversion of multi-modal geophysical data with Gramian constraints

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Gribenko, A.; Wilson, G. A.

    2012-12-01

    Geophysical monitoring of reservoir fluids and rock properties is relevant to oil and gas production, carbon sequestration, and enhanced geothermal systems. Different geophysical fields provide information about different physical properties of the earth. Multiple geophysical surveys spanning gravity, magnetic, electromagnetic, seismic, and thermal methods are often interpreted to infer geology from models of different physical properties. In many cases, the various geophysical data are complimentary, making it natural to consider a formal mathematical framework for their joint inversion to a shared earth model. We introduce a new approach to the 3D joint inversion of multiple geophysical datasets using Gramian spaces of model parameters and Gramian constraints, computed as determinants of the corresponding Gram matrices of the multimodal model parameters and/or their attributes. The basic underlying idea of this approach is that the Gramian provides a measure of correlation between the model parameters. By imposing an additional requirement of the minimum of the Gramian, we arrive at the solution of the joint multimodal inverse problem with the enhanced correlation between the different model parameters and/or their attributes. We demonstrate that this new approach is a generalized technique that can be applied to the simultaneous joint inversion of any number and combination of geophysical datasets. Our approach includes as special cases those extant methods based on correlations and/or structural constraints of different physical properties. We illustrate this approach by a model study of reservoir monitoring using different geophysical data.

  3. Three-Dimensional Joint Geophysical Imaging Using an Advanced Multivariate Inversion Technique: the Method and its Application to the Utah area, United States

    NASA Astrophysics Data System (ADS)

    Zhang, Haijiang; Maceira, Monica; Benson, Thomas; Nafi Toksoz, M.

    2010-05-01

    We present an advanced multivariate inversion technique to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle. The model satisfies several independent geophysical datasets including seismic surface wave dispersion measurements, gravity, and seismic arrival time. The joint inversion method takes advantage of strengths of individual data sets and is able to better constrain the seismic velocity models from shallower to greater depths. To combine different geophysical datasets into a common system, we design an optimal weighting scheme that is based on relative uncertainties of individual observations, their sensitivities to model parameters, and the trade-off of different data fitting. We apply this joint inversion method to determine the 3D Vp and Vs models of the Utah area. The seismic body wave arrival times are assembled from waveform data recorded by the University of Utah Seismograph Stations (UUSS) regional network and the EarthScope/USArray network. The surface wave dispersion measurements are obtained from the ambient noise tomography study by the University of Colorado group using EarthScope/USArray stations. The gravity data for the Utah area is extracted from the North American Gravity Database managed by the University of Texas at El Paso. The joint inversions using two individual data sets such as seismic arrival time and gravity data, as well as seismic surface wave and gravity data indicate strong low velocity anomalies in middle crust beneath some known geothermal sites in Utah. The joint inversion of all three data sets will be presented and is expected to produce a reasonably well-constrained velocity structure of the Utah area, which is helpful for characterizing and exploring existing and potential geothermal reservoirs.

  4. Joint Inversion Modelling of Geophysical Data From Lough Neagh Basin

    NASA Astrophysics Data System (ADS)

    Vozar, J.; Moorkamp, M.; Jones, A. G.; Rath, V.; Muller, M. R.

    2015-12-01

    Multi-dimensional modelling of geophysical data collected in the Lough Neagh Basin is presented in the frame of the IRETHERM project. The Permo-Triassic Lough Neagh Basin, situated in the southeastern part of Northern Ireland, exhibits elevated geothermal gradient (~30 °C/km) in the exploratory drilled boreholes. This is taken to indicate good geothermal exploitation potential in the Sherwood Sandstone aquifer for heating, and possibly even electricity production, purposes. We have used a 3-D joint inversion framework for modelling the magnetotelluric (MT) and gravity data collected to the north of the Lough Neagh to derive robust subsurface geological models. Comprehensive supporting geophysical and geological data (e.g. borehole logs and reflection seismic images) have been used in order to analyze and model the MT and gravity data. The geophysical data sets were provided by the Geological Survey of Northern Ireland (GSNI). Considering correct objective function weighting in favor of noise-free MT response functions is particularly important in joint inversion. There is no simple way how to correct distortion effects the 3-D responses as can be done in 1-D or 2-D case. We have used the Tellus Project airborne EM data to constrain magnetotelluric data and correct them for near surface effects. The shallow models from airborne data are used to constrain the uppermost part of 3-D inversion model. Preliminary 3-D joint inversion modeling reveals that the Sherwood Sandstone Group and the Permian Sandstone Formation are imaged as a conductive zone at the depth range of 500 m to 2000 m with laterally varying thickness, depth, and conductance. The conductive target sediments become shallower and thinner to the north and they are laterally continuous. To obtain better characterization of thermal transport properties of investigated area we used porosity and resistivity data from the Annaghmore and Ballymacilroy boreholes to estimate the relations between porosity

  5. Joint inversion of geophysical data for site characterization and restoration monitoring

    SciTech Connect

    Berge, P. A.

    1998-05-28

    The purpose of this project is to develop a computer code for joint inversion of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of underground imaging, since interpretation of data collected at a contaminated site would become much less subjective. Potential users include DOE scientists and engineers responsible for characterizing contaminated sites and monitoring remediation of contaminated sites. In this three-year project, we use a multi-phase approach consisting of theoretical and numerical code development, laboratory investigations, testing on available laboratory and borehole geophysics data sets, and a controlled field experiment, to develop practical tools for joint electrical and seismic data interpretation.

  6. Joint inversion of geophysical and hydrological data for improvedsubsurface characterization

    SciTech Connect

    Kowalsky, Michael B.; Chen, Jinsong; Hubbard, Susan S.

    2006-04-03

    Understanding fluid distribution and movement in the subsurface is critical for a variety of subsurface applications, such as remediation of environmental contaminants, sequestration of nuclear waste and CO2, intrusion of saline water into fresh water aquifers, and the production of oil and gas. It is well recognized that characterizing the properties that control fluids in the subsurface with the accuracy and spatial coverage needed to parameterize flow and transport models is challenging using conventional borehole data alone. Integration of conventional borehole data with more spatially extensive geophysical data (obtained from the surface, between boreholes, and from surface to boreholes) shows promise for providing quantitative information about subsurface properties and processes. Typically, estimation of subsurface properties involves a two-step procedure in which geophysical data are first inverted and then integrated with direct measurements and petrophysical relationship information to estimate hydrological parameters. However, errors inherent to geophysical data acquisition and inversion approaches and errors associated with petrophysical relationships can decrease the value of geophysical data in the estimation procedure. In this paper, we illustrate using two examples how joint inversion approaches, or simultaneous inversion of geophysical and hydrological data, offer great potential for overcoming some of these limitations.

  7. Time-lapse joint inversion of geophysical data with automatic joint constraints and dynamic attributes

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Mooney, M. A.; Karaoulis, M.; Wodajo, L.; Hickey, C. J.

    2016-09-01

    Joint inversion and time-lapse inversion techniques of geophysical data are often implemented in an attempt to improve imaging of complex subsurface structures and dynamic processes by minimizing negative effects of random and uncorrelated spatial and temporal noise in the data. We focus on the structural cross-gradient (SCG) approach (enforcing recovered models to exhibit similar spatial structures) in combination with time-lapse inversion constraints applied to surface-based electrical resistivity and seismic travel-time refraction data. The combination of both techniques is justified by the underlying petrophysical models. We investigate the benefits and trade-offs of SCG and time-lapse constraints. Using a synthetic case study, we show that a combined joint time-lapse inversion approach provides an overall improvement in final recovered models. Additionally, we introduce a new approach to re-weighting SCG constraints based on an iteratively updated normalized ratio of model sensitivity distributions at each time-step. We refer to the new technique as the Automatic Joint Constraints (AJC) approach. The relevance of the new joint time-lapse inversion process is demonstrated on the synthetic example. Then, these approaches are applied to real time-lapse monitoring field data collected during a quarter-scale earthen embankment induced-piping failure test. The use of time-lapse joint inversion is justified by the fact that a change of porosity drives concomitant changes in seismic velocities (through its effect on the bulk and shear moduli) and resistivities (through its influence upon the formation factor). Combined with the definition of attributes (i.e., specific characteristics) of the evolving target associated with piping, our approach allows localizing the position of the preferential flow path associated with internal erosion. This is not the case using other approaches.

  8. Joint inversion of geophysical data for site characterization and restoration monitoring. 1998 annual progress report

    SciTech Connect

    Berge, P.A.; Roberts, J.J.; Berryman, J.G.; Wildenschild, D.

    1998-06-01

    'The purpose of this project is to develop a computer code for joint inversion of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of underground imaging, since interpretation of data collected at a contaminated site would become much less subjective. Potential users include DOE scientists and engineers responsible for characterizing contaminated sites and monitoring remediation of contaminated sites. In this three-year project, the authors use a multi-phase approach consisting of theoretical and numerical code development, laboratory investigations, testing on available laboratory and borehole geophysics data sets, and a controlled field experiment, to develop practical tools for joint electrical and seismic data interpretation. This report summarizes work after about 1.7 years of a 3-year project. Progress on laboratory measurements is described first, followed by progress on developing algorithms for the inversion code to relate geophysical data to porosity and saturation.'

  9. Geophysical Technologies to Image Old Mine Works

    SciTech Connect

    Kanaan Hanna; Jim Pfeiffer

    2007-01-15

    ZapataEngineering, Blackhawk Division performed geophysical void detection demonstrations for the US Department of Labor Mine Safety and Health Administration (MSHA). The objective was to advance current state-of-practices of geophysical technologies for detecting underground mine voids. The presence of old mine works above, adjacent, or below an active mine presents major health and safety hazards to miners who have inadvertently cut into locations with such features. In addition, the presence of abandoned mines or voids beneath roadways and highway structures may greatly impact the performance of the transportation infrastructure in terms of cost and public safety. Roads constructed over abandoned mines are subject to potential differential settlement, subsidence, sinkholes, and/or catastrophic collapse. Thus, there is a need to utilize geophysical imaging technologies to accurately locate old mine works. Several surface and borehole geophysical imaging methods and mapping techniques were employed at a known abandoned coal mine in eastern Illinois to investigate which method best map the location and extent of old works. These methods included: 1) high-resolution seismic (HRS) using compressional P-wave (HRPW) and S-wave (HRSW) reflection collected with 3-D techniques; 2) crosshole seismic tomography (XHT); 3) guided waves; 4) reverse vertical seismic profiling (RVSP); and 5) borehole sonar mapping. In addition, several exploration borings were drilled to confirm the presence of the imaged mine voids. The results indicated that the RVSP is the most viable method to accurately detect the subsurface voids with horizontal accuracy of two to five feet. This method was then applied at several other locations in Colorado with various topographic, geologic, and cultural settings for the same purpose. This paper presents the significant results obtained from the geophysical investigations in Illinois.

  10. Characterization of Sao Francisco basin, Brazil: joint inversion of multiple geophysical data

    NASA Astrophysics Data System (ADS)

    Solon, F. F.; Fontes, S. L.

    2013-05-01

    The need to improve the characterization of the near surface and to generate consistent images of multiple geophysical data has led us to adopt a cross-gradient joint inversion methodology. We applied this method to characterize the basement fracture-zones and heterogeneous reservoir rocks underneath thick overburden at São Francisco basin in Brazil. The basin is mainly filled by Neoproterozoic clastic and carbonates rocks of the Bambui group formed in the Upper Proterozoic (Vendian) which makes the São Francisco basin interesting for hydrocarbon prospecting. Exploring the combined use of different geophysical methods will enhance the structural resemblance in the images that each one provides. The strategy explored in this work is to use a two-dimensional structured-coupled joint inversion from Gallardo and Meju (2003) applying to four data sets: land seismic reflection, magnetotelluric (MT), gravity and magnetic data sets along a 100 km profile across a region called Remanso do Fogo. For the joint inversion approach, we need to determine appropriate processing parameters to better estimate the individual contribution from each geophysical data type. A first experiment using three data sets (gravity, magnetic and MT) is shown in fig. 1. The evolution of the joint inversion showed that the solution is controlled by the development of common features in all models. The results of joint inversion using three and four models clearly mapped the compartmentation of the basement in this sector of São Francisco Basin. Also it is possible to identify the units of Bambui group, resulting in a constrained geological interpretation.; Fig. 1: Sections obtained in interaction 6 after joint inversion of gravity, magnetic and MT data.

  11. 1994 Geophysical images contest entries sought

    NASA Astrophysics Data System (ADS)

    As part of AGU's 75th Anniversary year, entries are sought for the 1994 Geophysical Images Contest. Over ninety photographs, computer graphics, posters, maps, slides, and videos were submitted in 1993. The winning images were displayed at the AGU Spring Meeting in Baltimore, and again at the Fall Meeting in San Francisco, along with the other images submitted.First place winner in the computer graphics section was “Western Mediterranean Sea Salinity Field,” submitted by Jacques Haus. Honorable Mentions went to Wei-jia Su for “A View of Whole Mantle Heterogeneity” and Toshiro Tanimoto, Paul Morin, David Yuen, and Yu-Shen Zhang for “Visualization of the Earth's Upper Mantle.”

  12. Geophysical imaging using trans-dimensional trees

    NASA Astrophysics Data System (ADS)

    Hawkins, Rhys; Sambridge, Malcolm

    2015-11-01

    In geophysical inversion, inferences of Earth's properties from sparse data involve a trade-off between model complexity and the spatial resolving power. A recent Markov chain Monte Carlo (McMC) technique formalized by Green, the so-called trans-dimensional samplers, allows us to sample between these trade-offs and to parsimoniously arbitrate between the varying complexity of candidate models. Here we present a novel framework using trans-dimensional sampling over tree structures. This new class of McMC sampler can be applied to 1-D, 2-D and 3-D Cartesian and spherical geometries. In addition, the basis functions used by the algorithm are flexible and can include more advanced parametrizations such as wavelets, both in Cartesian and Spherical geometries, to permit Bayesian multiscale analysis. This new framework offers greater flexibility, performance and efficiency for geophysical imaging problems than previous sampling algorithms. Thereby increasing the range of applications and in particular allowing extension to trans-dimensional imaging in 3-D. Examples are presented of its application to 2-D seismic and 3-D teleseismic tomography including estimation of uncertainty.

  13. Pitfalls and Limitations in the Interpretation of Geophysical Images for Hydrologic Properties and Processes

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.

    2014-12-01

    Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.

  14. Joint geophysical data analysis for geothermal energy exploration

    NASA Astrophysics Data System (ADS)

    Wamalwa, Antony Munika

    Geophysical data modelling often yields non-unique results and hence the interpretation of the resulting models in terms of underlying geological units and structures is not a straightforward problem. However, if multiple datasets are available for a region of study, an integrated interpretation of models for each of the geophysical data may results to a more realistic geological description. This study not only demonstrates the strength of resistivity analysis for geothermal fields but also the gains from interpreting resistivity data together with other geophysical data such as gravity and seismic data. Various geothermal fields have been examined in this study which includes Silali and Menengai geothermal fields in Kenya and Coso geothermal field in California, USA.

  15. Geophysical imaging of karst features in Missouri

    NASA Astrophysics Data System (ADS)

    Obi, Jeremiah Chukwunonso

    Automated electrical resistivity tomography (ERT) supported with multichannel analysis of surface waves (MASW) and boring data were used to map karst related features in Missouri in order to understand karst processes better in Missouri. Previous works on karst in Missouri were mostly surficial mapping of bedrock outcrops and joints, which are not enough to define the internal structure of karst system, since most critical processes in karst occur underground. To understand these processes better, the density, placement and pattern of karst related features like solution-widened joints and voids, as well as top of bedrock were mapped. In the course of the study, six study sites were visited in Missouri. The sites were in Nixa, Gasconade River Bridge in Lebanon, Battlefield, Aurora, Protem and Richland. The case studies reflect to a large extent some of the problems inherent in karst terrain, ranging from environmental problems to structural problems especially sinkhole collapses. The result of the study showed that karst in Missouri is mostly formed as a result of piping of sediments through solution-widened joints, with a pattern showing that the joints/fractures are mostly filled with moist clay-sized materials of low resistivity values. The highest density of mapped solution-widened joints was one in every one hundred and fifty feet, and these areas are where intense dissolution is taking place, and bedrock pervasively fractured. The study also showed that interpreted solution-widened joints trend in different directions, and often times conform with known structural lineaments in the area. About 40% of sinkhole collapses in the study areas are anthropogenic. Karst in Missouri varies, and can be classified as a combination of kI (juvenile), kIII (mature) and kIV (complex) karsts.

  16. Geophysical subsurface imaging and interface identification.

    SciTech Connect

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in physical space. While

  17. Fusion of Geophysical Images in the Study of Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image

  18. Geophysics

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Cassen, P.

    1976-01-01

    Four areas of investigation, each dealing with the measurement of a particular geophysical property, are discussed. These properties are the gravity field, seismicity, magnetism, and heat flow. All are strongly affected by conditions, past or present, in the planetary interior; their measurement is the primary source of information about planetary interiors.

  19. Structure-constrained image-guided inversion of geophysical data

    NASA Astrophysics Data System (ADS)

    Zhou, Jieyi

    The regularization term in the objective function of an inverse problem is equivalent to the "model covariance" in Tarantola's wording. It is not entirely reasonable to consider the model covariance to be isotropic and homogenous, as done in classical Tikhonov regularization, because the correlation relationships among model cells are likely to change with different directions and locations. The structure-constrained image-guided inversion method, presented in this thesis, aims to solve this problem, and can be used to integrate different types of geophysical data and geological information. The method is first theoretically developed and successfully tested with electrical resistivity data. Then it is applied to hydraulic tomography, and promising hydraulic conductivity models are obtained as well. With a correct guiding image, the image-guided inversion results not only follow the correct structure patterns, but also are closer to the true model in terms of parameter values, when compared with the conventional inversion results. To further account for the uncertainty in the guiding image, a Bayesian inversion scheme is added to the image-guided inversion algorithm. Each geophysical model parameter and geological (structure) model parameter is described by a probability density. Using the data misfit of image-guided inversion of the geophysical data as criterion, a stochastic (image-guided) inversion algorithm allows one to optimize both the geophysical model and the geological model at the same time. The last problem discussed in this thesis is, image-guided inversion and interpolation can help reduce non-uniqueness and improve resolution when utilizing spectral induced polarization data and petrophysical relationships to estimate permeability.

  20. Facilitating Joint Analysis of Data from Several Systems Using Geophysical Models

    NASA Astrophysics Data System (ADS)

    Plag, H.; Hammond, W. C.; Blewitt, G.

    2011-12-01

    The changes in Earth's geometry, gravity field, and rotation are observed with a portfolio of techniques spanning from point-geodetic methods to in situ and space-borne gravity sensors, and surface imaging methods for land, ice and ocean surfaces. Although the time-variability of Earth's geometry, gravity field, and rotation are caused by the same Earth system processes, this fundamental link between the different observations is not yet widely explored in geodesy for the analysis and interpretation of the geodetic observations. We will discuss how the use of a simple Earth system model can aid the joint analysis of GPS, InSAR and GRACE observations. Thus, we will consider the case of three observing systems sampling two geophysical parameters with different spatial and temporal resolution. Making best use of these observations requires a model that can assimilate the geodetic observations and propagate the state of the system model in a way consistent with the geodetic observations. Key issues to address include differences in the reference frames and modeling used for the different observation types.

  1. Joint inversion of geophysical data for site characterization and restoration monitoring. FY97 annual progress report for EMSP

    SciTech Connect

    Berge, P.A.; Berryman, J.G.; Bonner, B.P.; Roberts, J.J.; Wildenschild, D.

    1997-01-01

    'The purpose of this project is to develop a computer code for joint in-version of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of under-ground imaging, since interpretation of data collected at a contaminated site would become much less subjective. The schedule of this project is as follows: In the first year, investigators perform laboratory measurements of elastic and electrical properties of sand-clay mixtures containing various fluids. Investigators also develop methods of relating measurable geophysical properties to porosity and saturation by using rock physics theories, geostatistical, and empirical techniques together with available laboratory measurements. In the second year, investigators finish any necessary laboratory measurements and apply the methods de-veloped in the first year to invert available borehole log data to predict measured properties of cores and sediments from a borehole. Investigators refine the inversion code in the third year and carry out a field experiment to collect seismic and electrical data. Investigators then use the inversion code to invert the field data to produce estimates of porosity and saturation in the field area where the data were collected. This report describes progress made in the first year of this three-year project.'

  2. Structure-coupled multiphysics imaging in geophysical sciences

    NASA Astrophysics Data System (ADS)

    Gallardo, Luis A.; Meju, Max A.

    2011-03-01

    Multiphysics imaging or data inversion is of growing importance in many branches of science and engineering. In geophysical sciences, there is a need for combining information from multiple images acquired using different imaging devices and/or modalities because of the potential for accurate predictions. The major challenges are how to combine disparate data from unrelated physical phenomena, taking into account the different spatial scales of the measurement devices, model complexities, and how to quantify the associated uncertainties. This review paper summarizes the role played by the structural gradients-based approach for coupling fundamentally different physical fields in (mainly) geophysical inversion, develops further understanding of this approach to guide newcomers to the field, and defines the main challenges and directions for future research that may be useful in other fields of science and engineering.

  3. Joint Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelievre, P. G.; Bijani, R.; Farquharson, C. G.

    2015-12-01

    Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.

  4. Sinkhole Imaging With Multiple Geophysical Methods in Covered Karst Terrain

    NASA Astrophysics Data System (ADS)

    Weiss, M.

    2005-05-01

    A suite of geophysical surveys was run at the Geopark at the University of South Florida campus in Tampa in attempt to determine the degree to which methods could image a collapsed sinkhole with a diameter of ~4m and maximum depth of ~2.5m. Geologically, the Geopark is part of a covered karst terrane, with collapsed sinkholes filled in by overlying unconsolidated sand separated from the weathered limestone beneath by a clayey sand layer. The sinkholes are hydrologically significant as they may serve as sites of concentrated recharge. The methods used during the study include: refraction seismics, resistivity, electromagnetics (TEM and EM), and ground penetrating radar (GPR). Geophysical data are compared against cores. The resistivity, GPR, and seismic refraction profiles yield remarkably consistent images of the clayey sand layer. EM-31 data revealed regional trends in subsurface geology, but could not delineate specific sinkhole features with the desired resolution.

  5. Geophysical data fusion for subsurface imaging. Phase 1

    SciTech Connect

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ``data fusion,`` was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site.

  6. Scanning for dollars. Joint ventures in imaging.

    PubMed

    Miller, Jeremy N

    2003-04-01

    What are the latest models for joint ventures in medical imaging? What compliance obstacles do medical groups face? This article covers the opportunities and possible hazards of adding imaging services to your practice. Unless an imaging joint venture is both financially and legally feasible, it's not worth doing.

  7. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    NASA Astrophysics Data System (ADS)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  8. Geophysical imaging of root-zone, trunk, and moisture heterogeneity.

    PubMed

    Attia Al Hagrey, Said

    2007-01-01

    The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.

  9. Efficiency of Pareto joint inversion of 2D geophysical data using global optimization methods

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2016-04-01

    Pareto joint inversion of two or more sets of data is a promising new tool of modern geophysical exploration. In the first stage of our investigation we created software enabling execution of forward solvers of two geophysical methods (2D magnetotelluric and gravity) as well as inversion with possibility of constraining solution with seismic data. In the algorithm solving MT forward solver Helmholtz's equations, finite element method and Dirichlet's boundary conditions were applied. Gravity forward solver was based on Talwani's algorithm. To limit dimensionality of solution space we decided to describe model as sets of polygons, using Sharp Boundary Interface (SBI) approach. The main inversion engine was created using Particle Swarm Optimization (PSO) algorithm adapted to handle two or more target functions and to prevent acceptance of solutions which are non - realistic or incompatible with Pareto scheme. Each inversion run generates single Pareto solution, which can be added to Pareto Front. The PSO inversion engine was parallelized using OpenMP standard, what enabled execution code for practically unlimited amount of threads at once. Thereby computing time of inversion process was significantly decreased. Furthermore, computing efficiency increases with number of PSO iterations. In this contribution we analyze the efficiency of created software solution taking under consideration details of chosen global optimization engine used as a main joint minimization engine. Additionally we study the scale of possible decrease of computational time caused by different methods of parallelization applied for both forward solvers and inversion algorithm. All tests were done for 2D magnetotelluric and gravity data based on real geological media. Obtained results show that even for relatively simple mid end computational infrastructure proposed solution of inversion problem can be applied in practice and used for real life problems of geophysical inversion and interpretation.

  10. Imaging of the temporomandibular joint: An update

    PubMed Central

    Bag, Asim K; Gaddikeri, Santhosh; Singhal, Aparna; Hardin, Simms; Tran, Benson D; Medina, Josue A; Curé, Joel K

    2014-01-01

    Imaging of the temporomandibular joint (TMJ) is continuously evolving with advancement of imaging technologies. Many different imaging modalities are currently used to evaluate the TMJ. Magnetic resonance imaging is commonly used for evaluation of the TMJ due to its superior contrast resolution and its ability to acquire dynamic imaging for demonstration of the functionality of the joint. Computed tomography and ultrasound imaging have specific indication in imaging of the TMJ. This article focuses on state of the art imaging of the temporomandibular joint. Relevant normal anatomy and biomechanics of movement of the TMJ are discussed for better understanding of many TMJ pathologies. Imaging of internal derangements is discussed in detail. Different arthropathies and common tumors are also discussed in this article. PMID:25170394

  11. The impact of approximations and arbitrary choices on geophysical images

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew P.; Trampert, Jeannot

    2016-01-01

    Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the

  12. Joint inversion : Exploring the different ways of coupling geophysical and groundwater data

    NASA Astrophysics Data System (ADS)

    Steklova, Klara; Haber, Eldad

    2015-04-01

    given by, (bsig,bom,{y}) =&& frac 12 |de - Qe ŭ(bsig)|2Sigmae-1+ hf |df - Qf bom|2Sigmaf-1 +βeR(bsig) + βfR(bom) && + {y}top(bsig- p(bom)) + {{ρ}2}/|bsig - p(bom)) |2, where {y} is the Lagrange multiplier and ρ is a parameter that can be chosen somewhat arbitrarily. At each iteration L(bsig,bom,{y}) is minimized with respect to bsig or bom and {y} is updated. This method provides a huge computational advantage since at each iteration we solve only a subproblem with one data misfit term, regularization term, and coupling terms where one of the variables is fixed. However, all the involved terms need to be differentiable in order to proceed with a Gauss - Newton type minimization method. The second approach can be followed if the empirical relationship between bom and bsig is unknown. In this case, the unknown relationship is replaced by some structure similarity mapping, e.g. joint total variation (JTV), JTV(bsig,bom) = int √{|nabla bsig)|2 + |nabla bom)|2} ds. JTV is differential w.r.t both bsig and bom and has also advantage of being convex. The objective function (Eq.1) then contains additional JTV term instead of the constraint and can be minimized by block coordinate descent method. Both geophysical and groundwater models were developed in Matlab, including sensitivities of data w.r.t bsig and bom based on a discretized system of equations. The joint inversion outlined above was tested on the synthetic case of seawater intrusion and a solute tracer test with promising results.

  13. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for

  14. Imaging algorithms for geophysical applications of impedance tomography

    SciTech Connect

    Witten, A.J. ); Molyneux, J.E. )

    1992-06-02

    The methods of impedance tomography may be employed to obtain images of subsurface electrical and conductivity variations. For practical reasons, voltages and currents are usually applied at locations on the ground surface or down a limited number of boreholes, but almost never over the entire surface of the region being investigated. The geophysical inversion process can be facilitated by constructing algorithms adopted to these particular geometries and to the lack of complete surface data. In this paper we assume that the fluctuations in conductivity are small compared to the background value. The imaging of these fluctuations is carried out exactly within the constraints imposed by the problem geometry. Several possible arrangements of injection and monitoring electrodes are considered. In two dimensions include: Cross-line geometry, current input along one line (borehole) and measurements along a separate parallel line. Single-line geometry, injection and monitoring using the same borehole. Surface reflection geometry, all input and measurement along the ground surface. Theoretical and practical limitations on the image quality produced by the algorithms are discussed. They are applied to several sets of simulated data, and the images produced are displayed and analyzed.

  15. Fusion between Satellite and Geophysical images in the study of Archaeological Sites

    NASA Astrophysics Data System (ADS)

    Karamitrou, A. A.; Tsokas, G. N.; Petrou, M.; Maggidis, C.

    2012-12-01

    In this work various image fusion techniques are used between one satellite (Quickbird) and one geophysical (electric resistivity) image to create various combinations with higher information content than the two original images independently. The resultant images provide more information about possible buried archaeological relics. The examined archaeological area is located in mainland Greece near the city of Boetia at the acropolis of Gla. The acropolis was built on a flat-topped bedrock outcrop at the north-eastern edge of the Kopais basin. When Kopais was filled with water, Glas was emerging as an island. At the end of 14th century the two palaces of Thebes and Orchomenos jointly utilized a large scale engineering project in order to transform the Kopais basin into a fertile plain. They used the acropolis to monitor the project, and as a warehouse to storage the harvest. To examine the Acropolis for potential archaeological remnants we use one Quickbird satellite image that covers the surrounding area of Gla. The satellite image includes one panchromatic (8532x8528 pixels) and one multispectral (2133x2132 pixels) image, collected on 30th of August 2011, covering an area of 20 square kilometers. On the other hand, geophysical measurements were performed using the electric resistivity method to the south west part of the Acropolis. To combine these images we investigate mean-value fusion, wavelets fusion, and curvelet fusion. In the cases of wavelet and curvelet fusion we apply as the fusion criterion the maximum frequency rule. Furthermore, the two original images, and excavations near the area suggest that the dominant orientations of the buried features are north-south and east-west. Therefore, in curvelet fusion method, in curvelet domain we enhance the image details along these specific orientations, additionally to the fusion. The resultant fused images succeed to map linear and rectangular features that were not easily visible in the original images

  16. Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708

    SciTech Connect

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

    2006-12-15

    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the

  17. Joint Geophysical Characterization of Geothermal System in Menengai, Kenya Using Magnetotelluric and Gravity

    NASA Astrophysics Data System (ADS)

    Wamalwa, A. M.; Serpa, L. F.

    2010-12-01

    Geothermal exploration typically focuses on the identification of the heat source and defining the plumbing system that allows fluid flow at depths of 1-5 km where production of geothermal energy is feasible. The faults and fracture systems that make up the plumbing systems for hydrothermal fluids are often offset from their source and may be entirely hidden beneath basin fill or volcanic flows. Thus, a variety of different geophysical methods are used to detect the fracture zones and heat sources, including electrical, electromagnetic, seismic, and potential field techniques, each not giving a unique interpretation. Therefore a careful qualitative and quantitative joint analysis of these data based on common/shared geology may improve the overall understanding of the study area. To determine the extent of geothermal system as the target for development around Menengai volcano in the southern region of the Kenya rift valley, Magnetotelluric (MT) and gravity data were analysed. Subsurface conductivity and density distribution were used to infer the possible geological structures that relate to permeability and the heat source. Density gradient in the NW and NE north of the Menengai caldera defines the rift faults. A low resistivity layer at about 500 m and 1 km is interpreted as alteration clay minerals and overlays a relatively resistive zone. A low resistivity region at a depth of about 5-6 km is inferred to be a cooling magmatic body.

  18. Final Report U.S. Department of Energy Joint Inversion of Geophysical Data for Site Characterization and Restoration Monitoring

    SciTech Connect

    Berge, P.A.; Berryman, J.G.; Bertete-Aguirre, H.; Bonner, B.P.; Roberts, J.J.; Wildenschild, D.

    2000-07-31

    The purpose of this project was to conduct basic research leading to significant improvements in the state-of-the-art of geophysical imaging of the shallow subsurface. Geophysical techniques are commonly used for underground imaging for site characterization and restoration monitoring. in order to improve subsurface imaging, the objective was to develop improved methods for interpreting geophysical data collected in the field, by developing better methods for relating measured geophysical properties, such as seismic velocity and electrical conductivity, to hydrogeology parameters of interest such as porosity, saturation, and soil composition. They met the objectives using an approach that combined laboratory experiments, comparison to available field data, rock physics theories, and modeling, to find relationships between geophysical measurements, hydrogeological parameters and soil composition. The primary accomplishments of this project in the last year (FY99) were that they completed the laboratory measurements of ultrasonic velocities in soils at low pressures and the measurements of complex electrical conductivity in those same soils; they used x-ray computed microtomography to image the microstructure of several soil samples; they used rock physics theories and modeling to relate the geophysical measurements to the microstructure and hydrological properties; they developed a theoretical technique for relating compressional and shear wave velocities to fluid distribution in porous media; they showed how electrical conductivity is related to clay content and microstructure; they developed an inversion algorithm for inferring soil composition given compressional and shear wave velocities and tested the algorithm on synthetic field seismic data; they completed two patent applications; they wrote three journal papers; and they made 15 presentations of their results at eight scientific meetings.

  19. Geophysical data fusion for subsurface imaging. Final report

    SciTech Connect

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  20. Joint reversible data hiding and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Bian; Busch, Christoph; Niu, Xiamu

    2010-01-01

    Image encryption process is jointed with reversible data hiding in this paper, where the data to be hided are modulated by different secret keys selected for encryption. To extract the hided data from the cipher-text, the different tentative decrypted results are tested against typical random distribution in both spatial and frequency domain and the goodnessof- fit degrees are compared to extract one hided bit. The encryption based data hiding process is inherently reversible. Experiments demonstrate the proposed scheme's effectiveness on natural and textural images, both in gray-level and binary forms.

  1. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  2. Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site

    NASA Astrophysics Data System (ADS)

    Yaramanci, Ugur; Lange, Gerhard; Hertrich, Marian

    2002-05-01

    The quite new technique of Surface Nuclear Magnetic Resonance (SNMR) has been extensively tested on the test site Nauen near Berlin to yield the geometry, water content and hydraulic conductivity of the aquifer. The test site is composed of an unconfined aquifer consisting of Quaternary sands with glacial till beneath. It is a very favourable site for assessing the suitability and performance of joint geophysical methods for groundwater exploration. Complementary measurements to SNMR were conducted with Ground Penetrating Radar (GPR), 1D-complex resistivity soundings, i.e. Spectral Induced Polarisation (SIP), 2D-geoelectrics and refraction seismics. Laboratory measurements of porosities, grain size distributions and Nuclear Magnetic Resonance (NMR) decay times were carried out on core samples, and hydraulic conductivities were also derived in order to control and interpret the results of field measurements. The SNMR method allowed the detection of the aquifer beyond any doubt and the determination of the approximate aquifer geometry. The aquifer water content found by SNMR fits very well with the independent measurements on core samples. Hydraulic conductivities derived from decay times are well in range with those from laboratory measurements. GPR allowed a very reliable determination of the aquifer geometry. This information, incorporated into inversion of geoelectric data, led to an improved determination of aquifer electrical resistivity. The estimation of water content by GPR and geoelectrics, even under the favourable conditions in Nauen, is by far not as reliable as that by SNMR. Obtaining information about hydraulic conductivity is possible only with SNMR. Thus, in combination with other geophysical methods, SNMR allows a much more detailed and reliable assessment of aquifers than what was possible with other surface geophysical methods before. In fact, it is, by far, the only method that allows direct detection of water and reliable estimations about water

  3. Joint geophysical investigation of a small scale magnetic anomaly near Gotha, Germany

    NASA Astrophysics Data System (ADS)

    Queitsch, Matthias; Schiffler, Markus; Goepel, Andreas; Stolz, Ronny; Guenther, Thomas; Malz, Alexander; Meyer, Matthias; Meyer, Hans-Georg; Kukowski, Nina

    2014-05-01

    In the framework of the multidisciplinary project INFLUINS (INtegrated FLUid Dynamics IN Sedimentary Basins) several airborne surveys using a full tensor magnetic gradiometer (FTMG) system were conducted in and around the Thuringian basin (central Germany). These sensors are based on highly sensitive superconducting quantum interference devices (SQUIDs) with a planar-type gradiometer setup. One of the main goals was to map magnetic anomalies along major fault zones in this sedimentary basin. In most survey areas low signal amplitudes were observed caused by very low magnetization of subsurface rocks. Due to the high lateral resolution of a magnetic gradiometer system and a flight line spacing of only 50m, however, we were able to detect even small magnetic lineaments. Especially close to Gotha a NW-SE striking strong magnetic anomaly with a length of 1.5 km was detected, which cannot be explained by the structure of the Eichenberg-Gotha-Saalfeld (EGS) fault zone and the rock-physical properties (low susceptibilities). Therefore, we hypothesize that the source of the anomaly must be related to an anomalous magnetization in the fault plane. To test this hypothesis, here we focus on the results of the 3D inversion of the airborne magnetic data set and compare them with existing structural geological models. In addition, we conducted several ground based measurements such as electrical resistivity tomography (ERT) and frequency domain electromagnetics (FDEM) to locate the fault. Especially, the geoelectrical measurements were able to image the fault zone. The result of the 2D electrical resistivity tomography shows a lower resistivity in the fault zone. Joint interpretation of airborne magnetics, geoelectrical and geological information let us propose that the source of the magnetization may be a fluid-flow induced impregnation with iron-oxide bearing minerals in the vicinity of the EGS fault plane.

  4. Least-squares joint imaging of multiples and primaries

    NASA Astrophysics Data System (ADS)

    Brown, Morgan Parker

    Current exploration geophysics practice still regards multiple reflections as noise, although multiples often contain considerable information about the earth's angle-dependent reflectivity that primary reflections do not. To exploit this information, multiples and primaries must be combined in a domain in which they are comparable, such as in the prestack image domain. However, unless the multiples and primaries have been pre-separated from the data, crosstalk leakage between multiple and primary images will significantly degrade any gains in the signal fidelity, geologic interpretability, and signal-to-noise ratio of the combined image. I present a global linear least-squares algorithm, denoted LSJIMP (Least-squares Joint Imaging of Multiples and Primaries), which separates multiples from primaries while simultaneously combining their information. The novelty of the method lies in the three model regularization operators which discriminate between crosstalk and signal and extend information between multiple and primary images. The LSJIMP method exploits the hitherto ignored redundancy between primaries and multiples in the data. While many different types of multiple imaging operators are well-suited for use with the LSJIMP method, in this thesis I utilize an efficient prestack time imaging strategy for multiples which sacrifices accuracy in a complex earth for computational speed and convenience. I derive a variant of the normal moveout (NMO) equation for multiples, called HEMNO, which can image "split" pegleg multiples which arise from a moderately heterogeneous earth. I also derive a series of prestack amplitude compensation operators which when combined with HEMNO, transform pegleg multiples into events are directly comparable---kinematically and in terms of amplitudes---to the primary reflection. I test my implementation of LSJIMP on two datasets from the deepwater Gulf of Mexico. The first, a 2-D line in the Mississippi Canyon region, exhibits a variety of

  5. Constraining 3D Process Sedimentological Models to Geophysical Data Using Image Quilting

    NASA Astrophysics Data System (ADS)

    Tahmasebi, P.; Da Pra, A.; Pontiggia, M.; Caers, J.

    2014-12-01

    3D process geological models, whether for carbonate or sedimentological systems, have been proposed for modeling realistic subsurface heterogeneity. The problem with such forward process models is that they are not constrained to any subsurface data whether to wells or geophysical surveys. We propose a new method for realistic geological modeling of complex heterogeneity by hybridizing 3D process modeling of geological deposition with conditioning by means of a novel multiple-point geostatistics (MPS) technique termed image quilting (IQ). Image quilting is a pattern-based techniques that stiches together patterns extracted from training images to generate stochastic realizations that look like the training image. In this paper, we illustrate how 3D process model realizations can be used as training images in image quilting. To constrain the realization to seismic data we first interpret each facies in the geophysical data. These interpretation, while overly smooth and not reflecting finer scale variation are used as auxiliary variables in the generation of the image quilting realizations. To condition to well data, we first perform a kriging of the well data to generate a kriging map and kriging variance. The kriging map is used as additional auxiliary variable while the kriging variance is used as a weight given to the kriging derived auxiliary variable. We present an application to a giant offshore reservoir. Starting from seismic advanced attribute analysis and sedimentological interpretation, we build the 3D sedimentological process based model and use it as non-stationary training image for conditional image quilting.

  6. Geophysical tomography for imaging water movement in welded tuff

    SciTech Connect

    Daily, W.D.; Ramirez, A.L.

    1986-09-01

    Alterant tomography has been evaluated for its ability to delineate in-situ water flow paths in a fractured welded-tuff rock mass. The evaluation involved a field experiment in which tomographs of electromagnetic attenuation factor (or attenuation rate) at 300 MHz were made before, during, and after the introduction to the rock of two different water-based tracers: a plain water and dye solution, and salt water and dye. Alterant tomographs were constructed by subtracting, cell by cell, the attenuation factors derived from measurements before each tracer was added to the rock mass from the attenuation factors derived after each tracer was added. The alterant tomographs were compared with other evidence of water movement in the rock: borescope logs of fractures, and post experiment cores used to locate the dye tracer on the fractured surfaces. These comparisons indicate that alterant tomography is suitable for mapping water flow through fractures and that it may be useful in inferring which of the fractures are hydrologically connected in the image plane. The technique appears to be sensitive enough to delineate flow through a single fracture and to define fractures with a spatial resolution of about 10 cm on an imaging scale of a few meters. 9 refs., 3 figs.

  7. The use and abuse of image analysis in geophysical potential field interpretation

    NASA Astrophysics Data System (ADS)

    McDonald, Andrew J. W.

    1991-11-01

    Images of geophysical potential field data are becoming more common as a result of the increased availability of image analysis systems. These data are processed using techniques originally developed for remotely sensed satellite imagery. In general, geophysicists are not familiar with such techniques and may apply them without due consideration. This can lead to abuses of the geophysical data and reduce the validity of the interpretation. This paper describes some critical processes which can introduce errors to the data. The production of a regular grid from scattered data is fundamental to image processing. The choice of cell size is paramount and must balance the spatial distribution of the data. The necessary scaling of data from real values into a byte format for display purposes can result in small anomalies being masked. Contrast stretching of grey level images is often applied but can alter the shape of anomalies by varying degrees and should be avoided. Filters are often used to produce shaded relief images but without due regard to their frequency response and the effect on images expanded to fill the display space. The generation of spurious numerical artefacts can be reduced by ensuring that the filter is applied at real precision to the original data grid. The resultant images can then be processed for display. The use of image analysis systems for data integration requires careful consideration of the sampling strategy and information content of each dataset. It is proposed that such procedures are more appropriately conducted on a geographic information system.

  8. Case studies of geophysical imaging for road foundation design on soft soils and embankment risk assessment

    NASA Astrophysics Data System (ADS)

    Whiteley, Robert J.; Kelly, Richard B.; Stewart, Simon B.

    2015-12-01

    Population growth along the coast of eastern Australia has increased demand for new and upgraded transport infrastructure within intervening coastal floodplains and steeper hinterland areas. This has created additional challenges for road foundation design. The floodplain areas in this region are underlain by considerable thicknesses of recently deposited alluvial and clayey marine sediments. If characterisation of these deposits is inadequate they can increase road construction costs and affect long-term road stability and serviceability. Case studies from a major coastal highway upgrade demonstrate how combining surface wave seismic and electrical geophysical imaging with conventional geotechnical testing enhances characterisation of these very soft and soft soils. The geophysical results also provide initial foundation design parameters such as void ratio and pre-consolidation pressure. A further significant risk issue for roads is potential embankment instability. This can occur during new road construction or when upgrades of existing embankments are required. Assessing the causes of instability of existing steeper embankments with drilling and probing is often difficult and costly due to access and safety problems. In these situations combinations of electrical, ground penetrating radar and P-wave seismic imaging technologies can rapidly provide information on the likely conditions below both the roadway and embankment. Case studies show the application of these technologies on two unstable road embankments. It is concluded that the application of both geophysical imaging and geotechnical testing is a cost-effective enhancement for site characterisation of soft soils and for risk assessment of potentially unstable embankments. This approach overcomes many of the current limitations of conventional methods of site investigation that provide point location data only. The incorporation of geophysics into a well crafted site investigation allows concentration on

  9. Inner structure of the Puy de Dôme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)

    NASA Astrophysics Data System (ADS)

    Portal, A.; Labazuy, P.; Lénat, J.-F.; Béné, S.; Boivin, P.; Busato, E.; Cârloganu, C.; Combaret, C.; Dupieux, P.; Fehr, F.; Gay, P.; Laktineh, I.; Miallier, D.; Mirabito, L.; Niess, V.; Vulpescu, B.

    2013-01-01

    Muon imaging of volcanoes and of geological structures in general is actively being developed by several groups in the world. It has the potential to provide 3-D density distributions with an accuracy of a few percent. At this stage of development, comparisons with established geophysical methods are useful to validate the method. An experiment has been carried out in 2011 and 2012 on a large trachytic dome, the Puy de Dôme volcano, to perform such a comparison of muon imaging with gravimetric tomography and 2-D electrical resistivity tomography. Here, we present the preliminary results for the last two methods. North-south and east-west resistivity profiles allow us to model the resistivity distribution down to the base of the dome. The modelling of the Bouguer anomaly provides models for the density distribution within the dome that are directly comparable with the results from the muon imaging. Our ultimate goal is to derive a model of the dome using the joint interpretation of all sets of data.

  10. On the joint inversion of geophysical data for models of the coupled core-mantle system

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1991-01-01

    Joint inversion of magnetic, earth rotation, geoid, and seismic data for a unified model of the coupled core-mantle system is proposed and shown to be possible. A sample objective function is offered and simplified by targeting results from independent inversions and summary travel time residuals instead of original observations. These data are parameterized in terms of a very simple, closed model of the topographically coupled core-mantle system. Minimization of the simplified objective function leads to a nonlinear inverse problem; an iterative method for solution is presented. Parameterization and method are emphasized; numerical results are not presented.

  11. Evaluation of geophysical logs, Phase II, at Willow Grove Naval Air Station Joint Reserve Base, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1999-01-01

    Between March and April 1998, the U.S. Navy contracted Tetra Tech NUS Inc., to drill two monitor wells in the Stockton Formation at the Willow Grove Naval Air Station Joint Reserve Base, Horsham Township, Montgomery County, Pa. The wells MG-1634 and MG-1635 were installed to monitor water levels and sample contaminants in the shallow, intermediate, and deep water-producing zones of the fractured bedrock. Chemical analyses of the samples will help determine the horizontal and vertical distribution of any contaminated ground water migrating from known contaminant sources. Wells were drilled near the Fire Training Area (Site 5). Depths of all boreholes range from 69 to 149 feet below land surface. The U.S. Geological Survey conducted borehole geophysical logging and video surveys to identify water-producing zones in newly drilled monitor wells MG-1634 and MG-1635 and in wells MG-1675 and MG-1676. The logging was conducted from March 5, 1998, to April 16, 1998. This work is a continuation of the Phase I work. Caliper logs and video surveys were used to locate fractures; inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-producing fractures. Heatpulse-flowmeter measurements were used to verify the locations of water-producing or water-receiving zones and to measure rates of flow between water-bearing fractures. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's notes, wells MG-1634 and MG-1635 were screened such that water-levels fluctuations could be monitored and discrete water samples collected from one or more water-producing zones in each borehole.

  12. Sentinel-1 TOPS interferometry for geophysical applications: Dyke intrusion imaged during 2014 Pico do Fogo eruption

    NASA Astrophysics Data System (ADS)

    Gonzalez, Pablo J.; Marinkovic, Petar; Samsonov, Sergey; Hooper, Andrew; Larsen, Yngvar; Wright, Tim

    2015-04-01

    Since the inception of the European Space Agency ERS Synthetic Aperture Radar (SAR) mission in the 1990s, radar interferometry has become an indispensable geophysical tool for measuring surface ground deformation over wide areas with high precision. Ground deformation is a key observation to study and monitoring multiple applications in geophysics such as earthquake and tectonics, volcano, land subsidence and landslides study and monitoring. Therefore, the frequent acquisition of SAR data to compute differential interferograms is a long standing goal in observational geodesy. A new mission designed by ESA, the Sentinel-1 mission would provide routinely frequent acquisitions (every 12 days) over larger areas (250-350 km). In April 2014, the first of expected four successive and overlapping similar spacecrafts was launched to start a total 20-year continuous operational mission. Terrain observation by progressive scans (TOPS) is a new radar acquisition mode, which provides with high quality radiometric radar amplitude images. TOPS mode allows us to acquire radar data over much wider areas than previous classical stripmap mode, and it is the default mode of acquisition of ESA Sentinel-1 satellite. However, due to a variable steering (ground scanning) of the antenna pattern, the corregistration of TOPSAR images result in a much higher demanding processing step. The higher precision azimuth SAR image corregistration and variable line-of-sight along azimuth direction intersect with the fact that image disparities on the order to a thousand of a pixel size also characterizes multiple geophysical phenomena (such as landslide dynamics, coseismic earthquake, fault creep or volcanic intrusions). In this paper, we present the first results using Sentinel-1 TOPS interferometry to measure an important deformation event. We successfully compute Sentinel-1 TOPS-InSAR and tested the effect of variable line-of-sight in azimuth, during the estimation of geophysical parameters. We

  13. A new partnership: joint ventures and high-tech imaging.

    PubMed

    Rutherford, R M

    1987-01-01

    Today joint ventures are a viable option for acquiring high-tech, high-priced imaging equipment. In this article based on his RSNA Associated Sciences presentation, Mr. Rutherford discusses a variety of issues concerning joint ventures: planning, tax considerations, structure and the ethics question.

  14. Joint Geophysical Assessments of Geothermal Potential from a Deep Borehole in the Canadian Shield Rocks of NE Alberta

    NASA Astrophysics Data System (ADS)

    Chan, J.; Schmitt, D. R.; Kueck, J.; Moeck, I. S.

    2012-12-01

    Part of the feasibility study for geothermal development in Northern Alberta consists of investigating the presence of subsurface fluid pathways in the crystalline basement rocks. The deepest borehole drilled in Northeastern Alberta has a depth of 2350 m and offers substantial depth coverage to study the basement rocks. Due to the limited cores available for this deep borehole, a comprehensive suite of geophysical logs and borehole seismic methods are used to provide subsurface characterization of the basement in addition to the existing surface seismic reflection data. Interpretation of the geophysical logs indicate potential fracture zones at different depths that could serve as zones with enhanced fluid potential - a necessary component for any geothermal systems to be viable. Fractures within the subsurface tend to be aligned by the deviatoric stress in the subsurface and their orientations can be imaged using the Formation MicroImager (FMI) log. Two sets of vertical seismic profiles (VSP) were acquired in the deep borehole in July 2011. First, a high resolution zero-offset VSP was acquired to measure the seismic responses at the borehole. Upgoing tube waves can be identified and attributed to fracture zones interpreted from the geophysical logs. Since VSP data contains higher frequency content, the final corridor stack from the zero-offset VSP offers greater resolution in correlating seismic reflections with the primary reflectors and multiples interpreted from the surface seismic reflection data. The second set of VSP data is a multi-azimuth, multi-depth walk-away VSP acquired using three-component receivers placed at depths of 800 and 1780 m. The degree of seismic anisotropy in the crystalline basement can be revealed by analyzing the first arrivals at different geophone depths. Using an assumption that the presence of fractures causes P-wave reflection anisotropy, interpretation from the walk-away VSP can be used as a method for gross fracture detection

  15. Joint model of motion and anatomy for PET image reconstruction

    SciTech Connect

    Qiao Feng; Pan Tinsu; Clark, John W. Jr.; Mawlawi, Osama

    2007-12-15

    Anatomy-based positron emission tomography (PET) image enhancement techniques have been shown to have the potential for improving PET image quality. However, these techniques assume an accurate alignment between the anatomical and the functional images, which is not always valid when imaging the chest due to respiratory motion. In this article, we present a joint model of both motion and anatomical information by integrating a motion-incorporated PET imaging system model with an anatomy-based maximum a posteriori image reconstruction algorithm. The mismatched anatomical information due to motion can thus be effectively utilized through this joint model. A computer simulation and a phantom study were conducted to assess the efficacy of the joint model, whereby motion and anatomical information were either modeled separately or combined. The reconstructed images in each case were compared to corresponding reference images obtained using a quadratic image prior based maximum a posteriori reconstruction algorithm for quantitative accuracy. Results of these studies indicated that while modeling anatomical information or motion alone improved the PET image quantitation accuracy, a larger improvement in accuracy was achieved when using the joint model. In the computer simulation study and using similar image noise levels, the improvement in quantitation accuracy compared to the reference images was 5.3% and 19.8% when using anatomical or motion information alone, respectively, and 35.5% when using the joint model. In the phantom study, these results were 5.6%, 5.8%, and 19.8%, respectively. These results suggest that motion compensation is important in order to effectively utilize anatomical information in chest imaging using PET. The joint motion-anatomy model presented in this paper provides a promising solution to this problem.

  16. k-Means clustering as tool for multivariate geophysical data analysis. An application to shallow fault zone imaging

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Maria Giulia; Troiano, Antonio; Troise, Claudia; De Natale, Giuseppe

    2014-02-01

    We present the results of an integrated imaging approach for two-dimensional high-resolution magnetotelluric and seismic profiles. These were carried out in the seismically active intermontane basin of Pantano di San Gregorio Magno (southern Italy), along a line across the surface rupture of the 1980, M 6.9, earthquake. We focus on the application of the post-inversion k-means clustering technique to the univariate resistivity and P-wave velocity models, which were obtained previously through independent inversions. Five cluster classes are recognized, allowing a joint two-dimensional section to be imaged in terms of homogeneous zones from a geo-structural point of view. Two distinct local relationships between electrical resistivity and seismic velocities are inferred. In this way, the hanging and footwall zones have been retrieved, and are characterized according to the different fracturing degrees. The case dealt with here can be viewed as a successful example of how cluster analysis can be a promising auxiliary tool that provides bridging towards the integration of distinct geophysical methods.

  17. Quasi-3D Resistivity Imaging - Results from Geophysical Mapping and Forward Modeling

    NASA Astrophysics Data System (ADS)

    Schwindt, D.; Kneisel, C.

    2009-04-01

    2D resistivity tomography has proven to be a reliable tool in detecting, characterizing and mapping of permafrost, especially in joint application with other geophysical methods, e.g. seismic refraction. For many permafrost related problems a 3D image of the subsurface is of interest. Possibilities of quasi-3D imaging by collating several 2D ERT files into one quasi-3D file were tested. Data acquisition took place on a vegetated scree slope with isolated permafrost lenses in the Bever Valley, Swiss Alps. 21 2D-electrical arrays were applied with an electrode spacing of 5 m and a parallel spacing of 20 and 30 m using the Wenner electrode configuration. Refraction seismic was applied parallel to every second ERT array, with a geophone spacing of 5 m for validation. Results of quasi-3D imaging indicate that the most important factors influencing data quality are parallel spacing and number of right-angled crossing profiles. While the quasi-3D images generated of 2D-files with a parallel spacing of 20 m provide an interpretable image, 30 m spacing results in a blurred illustration of resistivity structures. To test the influence of crossing profiles quasi-3D images were inverted using only parallel measured data files as well as images containing right-angled crossing transects. Application of crossing profiles is of great importance, because the number of model blocks with interpolated resistivity values between parallel profiles is minimized. In case of two adjacent high resistivity anomalies a quasi-3D image consisting of parallel measured transects only illustrates one anomaly. A crossing profile provides information to differentiate the anomalies. Forward modeling was used to prove these assumptions and to improve the application of 2D ERT with regard to quasi-3D imaging. Main focus was on electrode and parallel spacing, the influence of crossing transects and the applicability of different array types. A number of 2D ERT profiles were generated, using the forward

  18. Looking into the Near Surface with More Data and Multiple Joint Imaging Technologies

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2015-12-01

    While exploration geophysicists are making tremendous efforts to image the deep subsurface for hydrocarbon resources, the complex near surface structures often impose significant challenges. Unlike the subsurface, the near surface structures vary from region to region. Thus, it is difficult to develop any benchmark model that represents common issues worldwide. During past 20 years, near surface imaging technologies have been advanced from refraction traveltime analysis and inversion to waveform inversion. Immediate benefit is to resolve any complex velocity structure associated with low velocity hidden layers if such waveform inversion is properly handled. However, inverting seismic waveform often suffers from cycle-skipping due to poor starting model or missing of low frequency data. Jointly inverting traveltime, waveform envelope and waveform data seems stabilizing the solutions. With more data utilized for the near surface imaging, we are also able to infer anisotropic parameters, attenuation factors, density, and both Vp and Vs. Since the cross-gradient approach was introduced in 2005, the simultaneous inversion of multiple types of geophysical data has also been applied in the near surface imaging. That includes joint seismic, gravity and EM inversion for mapping seismic velocity, density, and resistivity into a near surface structure with consistent geology. I demonstrate the changes of the near surface structural images due to the progress of the imaging technology development and the transition to much more data included with five real data examples.

  19. A joint TEM-HLEM geophysical approach to borehole sitting in deeply weathered granitic terrains.

    PubMed

    Meju, M A; Fontes, S L; Ulugergerli, E U; La Terra, E F; Germano, C R; Carvalho, R M

    2001-01-01

    The accurate location of aquiferous fracture zones in granite beneath a > 50 m thick weathered mantle in semi-arid regions is a major hydrogeological problem. It is expected that the zone of intensive fracturing will be more susceptible to weathering and thus be characterized by the thickest development of saprolite, a good electrically conductive target for deep-probing electromagnetic systems. The single-loop transient electromagnetic (TEM) technique is well known to have the capability for detecting concealed steep mineralized targets in mining environments and can be adapted to this hydrogeological problem. We propose that combining the conventional frequency-domain horizontal-loop electromagnetic (HLEM) and single-loop TEM is an effective practical approach to locating concealed aquiferous fracture zones. In the supporting case studies presented here, we deployed multifrequency HLEM profiling (with 50 m transmitter-receiver separation) and TEM soundings with contiguous 10 or 20 m sided loops along the survey lines in a granitic terrain affected by deep (> 50 m) weathering in northeast Brazil. A somewhat layered structure consisting of resistive hardpan/leached zone, conductive saprolite, and resistive basement is identifiable in the typical TEM depth sounding data. We obtained coincident HLEM and TEM anomalies at all the sites, enabling a relatively straightforward selection of potential drilling positions. Simple resistivity-depth transformation of the TEM data was done for each site, yielding an approximate section from which drilling depths were estimated. All of the boreholes located were successful. Although our results appear to indicate that the single-loop TEM method could be used independently for borehole sitting in deeply weathered granitic terrains and that the weathering profile over granite can be mapped using TEM depth soundings of appropriate observational bandwidth, we recommend a joint electromagnetic approach for optimal well sitting.

  20. Early magnetic resonance imaging control after temporomandibular joint arthrocentesis

    PubMed Central

    Ângelo, David Faustino; Sousa, Rita; Pinto, Isabel; Sanz, David; Gil, F. Monje; Salvado, Francisco

    2015-01-01

    Temporomandibular joint (TMJ) lysis and lavage arthrocentesis with viscosupplementation are an effective treatment for acute disc displacement (DD) without reduction. Clinical success seems to be related to multiple factors despite the lack of understanding of its mechanisms. The authors present a case report of 17-year-old women with acute open mouth limitation (12 mm), right TMJ pain-8/10 visual analog scale, right deviation when opening her mouth. The clinical and magnetic resonance imaging (MRI) diagnosis was acute DD without reduction of right TMJ. Right TMJ arthrocentesis was purposed to the patient with lysis, lavage, and viscosupplementation of the upper joint space. After 5 days, a new MRI was performed to confirm upper joint space distension and disc position. Clinical improvement was obtained 5 days and 1 month after arthrocentesis. Upper joint space increased 6 mm and the disc remained displaced. We report the first early TMJ MRI image postoperative, with measurable upper joint space. PMID:26981483

  1. Early magnetic resonance imaging control after temporomandibular joint arthrocentesis.

    PubMed

    Ângelo, David Faustino; Sousa, Rita; Pinto, Isabel; Sanz, David; Gil, F Monje; Salvado, Francisco

    2015-01-01

    Temporomandibular joint (TMJ) lysis and lavage arthrocentesis with viscosupplementation are an effective treatment for acute disc displacement (DD) without reduction. Clinical success seems to be related to multiple factors despite the lack of understanding of its mechanisms. The authors present a case report of 17-year-old women with acute open mouth limitation (12 mm), right TMJ pain-8/10 visual analog scale, right deviation when opening her mouth. The clinical and magnetic resonance imaging (MRI) diagnosis was acute DD without reduction of right TMJ. Right TMJ arthrocentesis was purposed to the patient with lysis, lavage, and viscosupplementation of the upper joint space. After 5 days, a new MRI was performed to confirm upper joint space distension and disc position. Clinical improvement was obtained 5 days and 1 month after arthrocentesis. Upper joint space increased 6 mm and the disc remained displaced. We report the first early TMJ MRI image postoperative, with measurable upper joint space. PMID:26981483

  2. An overview of joint inversion in earthquake source imaging

    NASA Astrophysics Data System (ADS)

    Koketsu, Kazuki

    2016-06-01

    We reviewed joint inversion studies of the rupture processes of significant earthquakes, using the definition of a joint inversion in earthquake source imaging as a source inversion of multiple kinds of datasets (waveform, geodetic, or tsunami). Yoshida and Koketsu (Geophys J Int 103:355-362, 1990), and Wald and Heaton (Bull Seismol Soc Am 84:668-691, 1994) independently initiated joint inversion methods, finding that joint inversion provides more reliable rupture process models than single-dataset inversion, leading to an increase of joint inversion studies. A list of these studies was made using the finite-source rupture model database (Mai and Thingbaijam in Seismol Res Lett 85:1348-1357, 2014). Outstanding issues regarding joint inversion were also discussed.

  3. Digital image processing applied to analysis of geophysical and geochemical data for southern Missouri

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Arvidson, R. E.; Leff, C. E.; Edwards, M. H.; Bindschadler, D. L.

    1983-01-01

    Digital image-processing techniques have been used to analyze a variety of geophysical and geochemical map data covering southern Missouri, a region with important basement and strata-bound mineral deposits. Gravity and magnetic anomaly patterns, which have been reformatted to image displays, indicate a deep crustal structure cutting northwest-southeast through southern Missouri. In addition, geologic map data, topography, and Landsat multispectral scanner images have been used as base maps for the digital overlay of aerial gamma-ray and stream sediment chemical data for the 1 x 2-deg Rolla quadrangle. Results indicate enrichment of a variety of elements within the clay-rich alluvium covering many of the interfluvial plains, as well as a complicated pattern of enrichment for the sedimentary units close to the Precambrian rhyolites and granites of the St. Francois Mountains.

  4. Imaging the hip joint in osteoarthritis: A place for ultrasound?

    PubMed

    Sudula, S N

    2016-05-01

    Osteoarthritis has traditionally been imaged with conventional radiographs; this has been regarded as the reference technique in osteoarthritis for a long time. However, in recent years, innovative imaging techniques such as ultrasonography have been used to obtain a better understanding of this disease. This is mainly due to tremendous technical advances and progressive developments of ultrasound equipment occurring over the past decade. Ultrasonography has been demonstrated to be a valuable imaging technique in the diagnosis and management of osteoarthritis of the hip joint. Application of this imaging methodology for osteoarthritis has improved the understanding of the disease process and may aid in the assessment of the efficacy of future therapies. The execution of ultrasound-guided procedures with safety and reliability has a relevant significance in patient management of osteoarthritis of the hip joint. This paper reviews the use of ultrasound as an imaging technique for the evaluation and treatment of osteoarthritis hip joint.

  5. Imaging the hip joint in osteoarthritis: A place for ultrasound?

    PubMed

    Sudula, S N

    2016-05-01

    Osteoarthritis has traditionally been imaged with conventional radiographs; this has been regarded as the reference technique in osteoarthritis for a long time. However, in recent years, innovative imaging techniques such as ultrasonography have been used to obtain a better understanding of this disease. This is mainly due to tremendous technical advances and progressive developments of ultrasound equipment occurring over the past decade. Ultrasonography has been demonstrated to be a valuable imaging technique in the diagnosis and management of osteoarthritis of the hip joint. Application of this imaging methodology for osteoarthritis has improved the understanding of the disease process and may aid in the assessment of the efficacy of future therapies. The execution of ultrasound-guided procedures with safety and reliability has a relevant significance in patient management of osteoarthritis of the hip joint. This paper reviews the use of ultrasound as an imaging technique for the evaluation and treatment of osteoarthritis hip joint. PMID:27482280

  6. Identification of inflammation sites in arthritic joints using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Paluchowski, Lukasz A.; Milanic, Matija; Bjorgan, Asgeir; Grandaunet, Berit; Dhainaut, Alvilde; Hoff, Mari; Randeberg, Lise L.

    2014-03-01

    Inflammatory arthritic diseases have prevalence between 2 and 3% and may lead to joint destruction and deformation resulting in a loss of function. Patient's quality of life is often severely affected as the disease attacks hands and finger joints. Pathology involved in arthritis includes angiogenesis, hyper-vascularization, hyper-metabolism and relative hypoxia. We have employed hyperspectral imaging to study the hemodynamics of affected- and non-affected joints and tissue. Two hyperspectral, push-broom cameras were used (VNIR-1600, SWIR-320i, Norsk Elektro Optikk AS, Norway). Optical spectra (400nm - 1700nm) of high spectral resolution were collected from 15 patients with visible symptoms of arthritic rheumatic diseases in at least one joint. The control group consisted of 10 healthy individuals. Concentrations of dominant chromophores were calculated based on analytical calculations of light transport in tissue. Image processing was used to analyze hyperspectral data and retrieve information, e.g. blood concentration and tissue oxygenation maps. The obtained results indicate that hyperspectral imaging can be used to quantify changes within affected joints and surrounding tissue. Further improvement of this method will have positive impact on diagnosis of arthritic joints at an early stage. Moreover it will enable development of fast, noninvasive and noncontact diagnostic tool of arthritic joints

  7. Developing Training Image-Based Priors for Inversion of Subsurface Geophysical and Flow Data

    NASA Astrophysics Data System (ADS)

    Caers, J.

    2014-12-01

    Forecasting in subsurface formations, whether for groundwater, storage or oil & gas production, can rely on a wealth of geological information. Currently, most of this information remains underused in both the theory and practice of forecasting based on inverse models which heavily relies on spatial covariances and multi-Gaussian theory. By means of real field studies, I will provide an outline of how such geological information can be accounted through the construction and validation of a large set of training images and the generation of model realizations with MPS (multiple-point geostatistics). Often most critical in solving such inverse problems is the development of prior models that are later used for posterior sampling or stochastic search. I propose therefore a two-stage approach where the first stage consists of a validation of the training image-based prior with the geophysical and flow data. This stage will require only the generation of a few (100s) geological models and the forward modeling of the data response on these models. For geophysical data, the validation consists of comparing histograms of multi-scale wavelet transforms between the forward models and the field data. For flow data, the validation is based on a reduction of dimensionality of the forward response and the data using multi-dimensional scaling. The outcome of this validation is an estimate of the prior probability assigned to each training image, with several training images getting assigned zero probability (incompatible with field data). These prior probabilities are used in the second stage to actually invert for the data using stochastic search. In such stochastic search, I avoid parameterizing the model space and present methods that efficiently perform a direct search in the space of the validated training image-based prior model realizations.

  8. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  9. [Magnetic resonance imaging in the diagnosis of knee joint sarcomas].

    PubMed

    Shubkin, V N; Gunicheva, N V; Akhadov, T A; Puzhitskiĭ, L B; Keshishian, R A

    2007-01-01

    The purpose of the investigation was to study the potentialities of magnetic resonance imaging (MRI) in the diagnosis of knee joint sarcomas. The paper presents the results of examining 13 patients of different age, shows the potentialities of the technique in the identification of knee joint sarcomas, and describes the MRI semiotics of sarcomas in both the routine study and that using contrast enhancement in lesions of bone and soft tissue elements in the presence of regional metastases.

  10. Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: evaluation of a two-step physical algorithm.

    PubMed

    Ma, X L; Wan, Z; Moeller, C C; Menzel, W P; Gumley, L E; Zhang, Y

    2000-07-10

    A two-step physical algorithm that simultaneously retrieves geophysical parameters from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements was developed. The retrieved geophysical parameters include atmospheric temperature-humidity profile, surface skin temperature, and two surface emissivities within the shortwave (3-5-microm) and the longwave (8-14.5-microm) regions. The physical retrieval is accomplished in two steps: (i) The Tikhonov regularization method is employed to generate a regularization solution along with an optimum regularization parameter; (ii) the nonlinear Newtonian iteration algorithm is carried out with the regularization solution as a first-guess profile to obtain a final maximum probability solution for geophysical parameters. The algorithm was tested with both simulated and real MODIS Airborne Simulator (MAS) data. Sensitivity studies on simulated MAS data demonstrate that simultaneous retrievals of land and atmospheric parameters improve the accuracy of the retrieved geophysical parameters. Finally, analysis and accuracy of retrievals from real MAS data are discussed. PMID:18349925

  11. Joint Modeling of Imaging and Genetics

    PubMed Central

    Batmanghelich, Nematollah K.; Dalca, Adrian V.; Sabuncu, Mert R.; Golland, Polina

    2014-01-01

    We propose a unified Bayesian framework for detecting genetic variants associated with a disease while exploiting image-based features as an intermediate phenotype. Traditionally, imaging genetics methods comprise two separate steps. First, image features are selected based on their relevance to the disease phenotype. Second, a set of genetic variants are identified to explain the selected features. In contrast, our method performs these tasks simultaneously to ultimately assign probabilistic measures of relevance to both genetic and imaging markers. We derive an efficient approximate inference algorithm that handles high dimensionality of imaging genetic data. We evaluate the algorithm on synthetic data and show that it outperforms traditional models. We also illustrate the application of the method on ADNI data. PMID:24684016

  12. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  13. Photoacoustic imaging of inflammatory arthritis in human joints

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Xu, Guan; Marquardt, April; Francis, Sheeja; Yuan, Jie; Girish, Dhanuj; Girish, Gandikota; Wang, Xueding

    2016-02-01

    The ducal imaging with photoacoustic imaging (PAI) that is an emerging technology and clinical ultrasound imaging that is an established modality is developed for the imaging of early inflammatory arthritis. PAI is sensitive to blood volume, not limited by flow like ultrasound, holding great promise for the earliest detection of increase in blood volume and angiogenesis - a key early finding inflammation PAI has the capability of assessing inflammation in superficial human soft tissues, offering potential benefits in diagnosis, treatment and monitoring of inflammatory arthritis. PAI combined with ultrasonography (US), is a real time dual-modality system developed and tested to identify active synovitis in metacarpophalangeal (MCP) joints of 10 arthritis patients and 10 normal volunteers. Photoacoustic images of the joints were acquired at 580-nm laser wavelength, which provided the desired balance between the optical contrast of hemoglobin over bone cortex and the imaging depth. Confirmed by US Doppler imaging, the results from ten patients and ten normal volunteers demonstrated satisfactory sensitivity of PAI in assessing enhanced blood flow due to active synovitis. This preliminary study suggests that photoacoustic imaging, by identifying early increase in blood volume, related to increased vascularity, a hallmark of joint inflammation, could be a valuable supplement to musculoskeletal US.

  14. Automatic Evaluation of Welded Joints Using Image Processing on Radiographs

    NASA Astrophysics Data System (ADS)

    Schwartz, Ch.

    2003-03-01

    Radiography is frequently used to detect discontinuities in welded joints (porosity, cracks, lack of penetration). Perfect knowledge of the geometry of these defects is an important step which is essential to appreciate the quality of the weld. Because of this, an action improving the interpretation of radiographs by image processing has been undertaken. The principle consists in making a radiograph of the welded joint and of a depth step wedge penetrameter in the material. The radiograph is then finely digitized and an automatic processing of the radiograph of the penetrameter image allows the establishment of a correspondence between grey levels and material thickness. An algorithm based on image processing is used to localize defects in the welded joints and to isolate them from the original image. First, defects detected by this method are characterized in terms of dimension and equivalent thickness. Then, from the image of the healthy welded joint (that is to say without the detected defects), characteristic values of the weld are evaluated (thickness reduction, width).

  15. Imaging of Temporomandibular Joint: Approach by Direct Volume Rendering

    PubMed Central

    Caradonna, Carola; Bruschetta, Daniele; Vaccarino, Gianluigi; Milardi, Demetrio

    2014-01-01

    Background: The purpose of this study was to conduct a morphological analysis of the temporomandibular joint, a highly specialized synovial joint that permits movement and function of the mandible. Materials and Methods: We have studied the temporom-andibular joint anatomy, directly on the living, from 3D images obtained by medical imaging Computed Tomography and Nuclear Magnetic Resonance acquisition, and subsequent re-engineering techniques 3D Surface Rendering and Volume Rendering. Data were analysed with the goal of being able to isolate, identify and distinguish the anatomical structures of the joint, and get the largest possible number of information utilizing software for post-processing work. Results: It was possible to reproduce anatomy of the skeletal structures, as well as through acquisitions of Magnetic Resonance Imaging; it was also possible to visualize the vascular, muscular, ligamentous and tendinous components of the articular complex, and also the capsule and the fibrous cartilaginous disc. We managed the Surface Rendering and Volume Rendering, not only to obtain three-dimensional images for colour and for resolution comparable to the usual anatomical preparations, but also a considerable number of anatomical, minuter details, zooming, rotating and cutting the same images with linking, graduating the colour, transparency and opacity from time to time. Conclusion: These results are encouraging to stimulate further studies in other anatomical districts. PMID:25664280

  16. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach

    PubMed Central

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  17. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach.

    PubMed

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali; Zhang, Yan

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  18. Automatic finger joint synovitis localization in ultrasound images

    NASA Astrophysics Data System (ADS)

    Nurzynska, Karolina; Smolka, Bogdan

    2016-04-01

    A long-lasting inflammation of joints results between others in many arthritis diseases. When not cured, it may influence other organs and general patients' health. Therefore, early detection and running proper medical treatment are of big value. The patients' organs are scanned with high frequency acoustic waves, which enable visualization of interior body structures through an ultrasound sonography (USG) image. However, the procedure is standardized, different projections result in a variety of possible data, which should be analyzed in short period of time by a physician, who is using medical atlases as a guidance. This work introduces an efficient framework based on statistical approach to the finger joint USG image, which enables automatic localization of skin and bone regions, which are then used for localization of the finger joint synovitis area. The processing pipeline realizes the task in real-time and proves high accuracy when compared to annotation prepared by the expert.

  19. Compressed hyperspectral image sensing with joint sparsity reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Li, Yunsong; Zhang, Jing; Song, Juan; Lv, Pei

    2011-10-01

    Recent compressed sensing (CS) results show that it is possible to accurately reconstruct images from a small number of linear measurements via convex optimization techniques. In this paper, according to the correlation analysis of linear measurements for hyperspectral images, a joint sparsity reconstruction algorithm based on interband prediction and joint optimization is proposed. In the method, linear prediction is first applied to remove the correlations among successive spectral band measurement vectors. The obtained residual measurement vectors are then recovered using the proposed joint optimization based POCS (projections onto convex sets) algorithm with the steepest descent method. In addition, a pixel-guided stopping criterion is introduced to stop the iteration. Experimental results show that the proposed algorithm exhibits its superiority over other known CS reconstruction algorithms in the literature at the same measurement rates, while with a faster convergence speed.

  20. Compressive SAR imaging with joint sparsity and local similarity exploitation.

    PubMed

    Shen, Fangfang; Zhao, Guanghui; Shi, Guangming; Dong, Weisheng; Wang, Chenglong; Niu, Yi

    2015-02-12

    Compressive sensing-based synthetic aperture radar (SAR) imaging has shown its superior capability in high-resolution image formation. However, most of those works focus on the scenes that can be sparsely represented in fixed spaces. When dealing with complicated scenes, these fixed spaces lack adaptivity in characterizing varied image contents. To solve this problem, a new compressive sensing-based radar imaging approach with adaptive sparse representation is proposed. Specifically, an autoregressive model is introduced to adaptively exploit the structural sparsity of an image. In addition, similarity among pixels is integrated into the autoregressive model to further promote the capability and thus an adaptive sparse representation facilitated by a weighted autoregressive model is derived. Since the weighted autoregressive model is inherently determined by the unknown image, we propose a joint optimization scheme by iterative SAR imaging and updating of the weighted autoregressive model to solve this problem. Eventually, experimental results demonstrated the validity and generality of the proposed approach.

  1. Joint registration and super-resolution with omnidirectional images.

    PubMed

    Arican, Zafer; Frossard, Pascal

    2011-11-01

    This paper addresses the reconstruction of high-resolution omnidirectional images from multiple low-resolution images with inexact registration. When omnidirectional images from low-resolution vision sensors can be uniquely mapped on the 2-sphere, such a reconstruction can be described as a transform-domain super-resolution problem in a spherical imaging framework. We describe how several spherical images with arbitrary rotations in the SO(3) rotation group contribute to the reconstruction of a high-resolution image with help of the spherical Fourier transform (SFT). As low-resolution images might not be perfectly registered in practice, the impact of inaccurate alignment on the transform coefficients is analyzed. We then cast the joint registration and super-resolution problem as a total least-squares norm minimization problem in the SFT domain. A l(1)-regularized total least-squares problem is considered and solved efficiently by interior point methods. Experiments with synthetic and natural images show that the proposed methods lead to effective reconstruction of high-resolution images even when large registration errors exist in the low-resolution images. The quality of the reconstructed images also increases rapidly with the number of low-resolution images, which demonstrates the benefits of the proposed solution in super-resolution schemes. Finally, we highlight the benefit of the additional regularization constraint that clearly leads to reduced noise and improved reconstruction quality.

  2. Improved Diffusion Imaging through SNR-Enhancing Joint Reconstruction

    PubMed Central

    Haldar, Justin P.; Wedeen, Van J.; Nezamzadeh, Marzieh; Dai, Guangping; Weiner, Michael W.; Schuff, Norbert; Liang, Zhi-Pei

    2012-01-01

    Quantitative diffusion imaging is a powerful technique for the characterization of complex tissue microarchitecture. However, long acquisition times and limited signal-to-noise ratio (SNR) represent significant hurdles for many in vivo applications. This paper presents a new approach to reduce noise while largely maintaining resolution in diffusion weighted images, using a statistical reconstruction method that takes advantage of the high level of structural correlation observed in typical datasets. Compared to existing denoising methods, the proposed method performs reconstruction directly from the measured complex k-space data, allowing for Gaussian noise modeling and theoretical characterizations of the resolution and SNR of the reconstructed images. In addition, the proposed method is compatible with many different models of the diffusion signal (e.g., diffusion tensor modeling, q-space modeling, etc.). The joint reconstruction method can provide significant improvements in SNR relative to conventional reconstruction techniques, with a relatively minor corresponding loss in image resolution. Results are shown in the context of diffusion spectrum imaging tractography and diffusion tensor imaging, illustrating the potential of this SNR-enhancing joint reconstruction approach for a range of different diffusion imaging experiments. PMID:22392528

  3. Bayesian Joint Modelling for Object Localisation in Weakly Labelled Images.

    PubMed

    Shi, Zhiyuan; Hospedales, Timothy M; Xiang, Tao

    2015-10-01

    We address the problem of localisation of objects as bounding boxes in images and videos with weak labels. This weakly supervised object localisation problem has been tackled in the past using discriminative models where each object class is localised independently from other classes. In this paper, a novel framework based on Bayesian joint topic modelling is proposed, which differs significantly from the existing ones in that: (1) All foreground object classes are modelled jointly in a single generative model that encodes multiple object co-existence so that "explaining away" inference can resolve ambiguity and lead to better learning and localisation. (2) Image backgrounds are shared across classes to better learn varying surroundings and "push out" objects of interest. (3) Our model can be learned with a mixture of weakly labelled and unlabelled data, allowing the large volume of unlabelled images on the Internet to be exploited for learning. Moreover, the Bayesian formulation enables the exploitation of various types of prior knowledge to compensate for the limited supervision offered by weakly labelled data, as well as Bayesian domain adaptation for transfer learning. Extensive experiments on the PASCAL VOC, ImageNet and YouTube-Object videos datasets demonstrate the effectiveness of our Bayesian joint model for weakly supervised object localisation. PMID:26340253

  4. Geophysical Imaging of the Stillwater and Bushveld Complexes and Relation to Platinum-group Element Exploration

    NASA Astrophysics Data System (ADS)

    Finn, C.; Bedrosian, P.; Zientek, M. L.; Cole, J.; Webb, S. J.; Bloss, B. R.

    2015-12-01

    Exploring for platinum-group elements (PGEs) relies on understanding the geophysical signature of the entire magmatic system in which they form, from bottom to top. New potential field and electromagnetic data and methods effectively map internal structures of layered intrusions that host PGE-bearing magmatic ore deposits, the volume of the intrusion and its extent under cover, and locations of sulfide mineralization. High resolution aeromagnetic data can image fine scale linear anomalies related to layering in the Stillwater and Bushveld Complexes. At Stillwater, the aeromagnetic anomalies relate to boundaries between major stratigraphic units and olivine-bearing rock layers altered to a mixture of serpentine and magnetite. The PGE-enriched sulfide mineralization hosted by olivine-bearing rocks in the Stillwater Complex produces a distinct linear magnetic high. In the Upper Zone of the Bushveld Complex, primary magnetite layers generate linear magnetic highs. Electromagnetic (EM) data over the Stillwater Complex highlight contact-type mineralization which contain low resistivity sulfide minerals. Stochastic inversions reveal a low resistivity zone along the southern edge of the Stillwater Complex corresponding to mineralization in banded iron formation or contact-type sulfide mineralization in the Basal zone. Gravity highs characterize the exposed and interpreted buried extent of the Stillwater and Bushveld complexes. A 3D inversion of gravity data of the Sillwater Complex indicates that the complex extends 30 km north and 40 km east of its outcrop beneath Phanerozoic cover. Geophysical models image the 3D geometry of the Bushveld Complex north of the Thabazimbi-Murchison Lineament (TML), critical for understanding the origin of the world's largest layered mafic intrusion and associated platinum- group element deposits, as a ~4 km thick, 160 km x ~125 km body underlying ~1-2 km of cover. Locally thick regions in the TML portion of the model may represent feeders

  5. Motion analysis of knee joint using dynamic volume images

    NASA Astrophysics Data System (ADS)

    Haneishi, Hideaki; Kohno, Takahiro; Suzuki, Masahiko; Moriya, Hideshige; Mori, Sin-ichiro; Endo, Masahiro

    2006-03-01

    Acquisition and analysis of three-dimensional movement of knee joint is desired in orthopedic surgery. We have developed two methods to obtain dynamic volume images of knee joint. One is a 2D/3D registration method combining a bi-plane dynamic X-ray fluoroscopy and a static three-dimensional CT, the other is a method using so-called 4D-CT that uses a cone-beam and a wide 2D detector. In this paper, we present two analyses of knee joint movement obtained by these methods: (1) transition of the nearest points between femur and tibia (2) principal component analysis (PCA) of six parameters representing the three dimensional movement of knee. As a preprocessing for the analysis, at first the femur and tibia regions are extracted from volume data at each time frame and then the registration of the tibia between different frames by an affine transformation consisting of rotation and translation are performed. The same transformation is applied femur as well. Using those image data, the movement of femur relative to tibia can be analyzed. Six movement parameters of femur consisting of three translation parameters and three rotation parameters are obtained from those images. In the analysis (1), axis of each bone is first found and then the flexion angle of the knee joint is calculated. For each flexion angle, the minimum distance between femur and tibia and the location giving the minimum distance are found in both lateral condyle and medial condyle. As a result, it was observed that the movement of lateral condyle is larger than medial condyle. In the analysis (2), it was found that the movement of the knee can be represented by the first three principal components with precision of 99.58% and those three components seem to strongly relate to three major movements of femur in the knee bend known in orthopedic surgery.

  6. Joint optimization toward effective and efficient image search.

    PubMed

    Wei, Shikui; Xu, Dong; Li, Xuelong; Zhao, Yao

    2013-12-01

    The bag-of-words (BoW) model has been known as an effective method for large-scale image search and indexing. Recent work shows that the performance of the model can be further improved by using the embedding method. While different variants of the BoW model and embedding method have been developed, less effort has been made to discover their underlying working mechanism. In this paper, we systematically investigate the image search performance variation with respect to a few factors of the BoW model, and study how to employ the embedding method to further improve the image search performance. Subsequently, we summarize several observations based on the experiments on descriptor matching. To validate these observations in a real image search, we propose an effective and efficient image search scheme, in which the BoW model and embedding method are jointly optimized in terms of effectiveness and efficiency by following these observations. Our comprehensive experiments demonstrate that it is beneficial to employ these observations to develop an image search algorithm, and the proposed image search scheme outperforms state-of-the art methods in both effectiveness and efficiency.

  7. On Earth's Mantle Constitution and Structure from Joint Analysis of Geophysical and Laboratory-Based Data: An Example

    NASA Astrophysics Data System (ADS)

    Khan, Amir

    2016-01-01

    Determining Earth's structure is a fundamental goal of Earth science, and geophysical methods play a prominent role in investigating Earth's interior. Geochemical, cosmochemical, and petrological analyses of terrestrial samples and meteoritic material provide equally important insights. Complementary information comes from high-pressure mineral physics and chemistry, i.e., use of sophisticated experimental techniques and numerical methods that are capable of attaining or simulating physical properties at very high pressures and temperatures, thereby allowing recovered samples from Earth's crust and mantle to be analyzed in the laboratory or simulated computationally at the conditions that prevail in Earth's mantle and core. This is particularly important given that the vast bulk of Earth's interior is geochemically unsampled. This paper describes a quantitative approach that combines data and results from mineral physics, petrological analyses of mantle minerals, and geophysical inverse calculations, in order to map geophysical data directly for mantle composition (major element chemistry and water content) and thermal state. We illustrate the methodology by inverting a set of long-period electromagnetic response functions beneath six geomagnetic stations that cover a range of geological settings for major element chemistry, water content, and thermal state of the mantle. The results indicate that interior structure and constitution of the mantle can be well-retrieved given a specific set of measurements describing (1) the conductivity of mantle minerals, (2) the partitioning behavior of water between major upper mantle and transition-zone minerals, and (3) the ability of nominally anhydrous minerals to store water in their crystal structures. Specifically, upper mantle water contents determined here bracket the ranges obtained from analyses of natural samples, whereas transition-zone water concentration is an order-of-magnitude greater than that of the upper

  8. Signals and Images Foreground/Background Joint Estimation and Separation

    NASA Astrophysics Data System (ADS)

    Ait-El-Fquih, Boujemaa; Mohammad-Djafari, Ali

    2011-03-01

    This paper is devoted to a foreground/background joint estimation and separation problem. We first observe that this problem is modeled by a conditionally linear and Gaussian hidden Markov chain (CLGHMC). We next propose a filtering algorithm in the general non-linear and non Gaussian conditionally hidden Markov chain (CHMC), allowing the propagation of the filtering densities associated to the foreground and the background. We then focus on the particular case of our CLGHMC in which these filtering densities are weighted sums of Gaussian distributions; the parameters of each Gaussian are computed by using the Kalman filter algorithm, while the weights are computed by using the particle filter algorithm. We finally perform some simulations to highlight the interest of our method in both signals and images foreground/backgound joint estimation and separation.

  9. Bias correction for magnetic resonance images via joint entropy regularization.

    PubMed

    Wang, Shanshan; Xia, Yong; Dong, Pei; Luo, Jianhua; Huang, Qiu; Feng, Dagan; Li, Yuanxiang

    2014-01-01

    Due to the imperfections of the radio frequency (RF) coil or object-dependent electrodynamic interactions, magnetic resonance (MR) images often suffer from a smooth and biologically meaningless bias field, which causes severe troubles for subsequent processing and quantitative analysis. To effectively restore the original signal, this paper simultaneously exploits the spatial and gradient features of the corrupted MR images for bias correction via the joint entropy regularization. With both isotropic and anisotropic total variation (TV) considered, two nonparametric bias correction algorithms have been proposed, namely IsoTVBiasC and AniTVBiasC. These two methods have been applied to simulated images under various noise levels and bias field corruption and also tested on real MR data. The test results show that the proposed two methods can effectively remove the bias field and also present comparable performance compared to the state-of-the-art methods.

  10. Hillslope characterization in terms of geophysical units based on the joint interpretation of electrical resistivity and seismic velocity data

    NASA Astrophysics Data System (ADS)

    Feskova, Tatiana; Dietrich, Peter

    2015-04-01

    Hydrological conditions in a catchment depend on many factors such as climatic, geological, geomorphological, biological and human, which interact with each other and influence water balance in a catchment. This interaction leads to the subordination in the landscape structure, namely the weak elements subordinate to the powerful elements. Thereby, geological and geomorphological factors play an essential role in catchment development and organization. A hillslope consequently can be allocated to one class of the representative units because the important flow processes run at the hillslope. Moreover, a hillslope can be subdivided into stratigraphic subsurface units and significant hillslope areas based on the lithological change of contrasting interfaces. The knowledge of subsurface structures is necessary to understand and predicate complex hydrological processes in a catchment. Geophysical techniques provide a good opportunity to explore the subsurface. A complete geophysical investigation of subsurface in a catchment with difficult environmental conditions never will be achieved because of large time effort in the field, equipment logistic, and ambiguity in the data interpretation. The case study demonstrates how a catchment can be investigated using geophysical methods in an effective manner in terms of characterization of representative units with respect to a functional role in the catchment. This case study aims to develop combined resistivity and seismic velocity hillslope subsurface models for the distinction of representative functional units. In order to identify the contrasting interfaces of the hillslope, to localize significant hillslope areas, and to address the ambiguity in the geophysical data interpretation, the case study combined resistivity surveys (vertical electrical soundings and electrical resistivity tomography) with refraction seismic method, and conducted these measurements at one single profile along the hillslope transect and

  11. Geophysical Imaging of Near Surface Hydrostratigraphy in Arid Ephemeral Stream Systems Near Yuma, AZ

    NASA Astrophysics Data System (ADS)

    Harry, D. L.; Sutfin, N. A.; Shaw, J. R.; Faulconer, J.; Genco, A. J.; Wohl, E.; Kampf, S. K.; Cooper, D. J.

    2014-12-01

    Ground penetrating radar and DC electrical resistivity profiles image the upper 4 m of the subsurface beneath ephemeral streams in Yuma and Mohave Washes in the Sonoran Desert, 30 km northeast of Yuma, Arizona. The geophysical data are tied to trenches to establish a lithostratigraphic interpretation. Archie's Law, calibrated to resistivity measurements on soil samples from each site, is used to estimate in-situ soil pore saturation. Three different stream types are surveyed. Increasing in stream order, these are incised bedrock with alluvium fill, incised alluvium, and braided streams. Three radar facies are identified on the basis of reflection amplitude, continuity, and dip. Near the surface, RF1 (0.5-1.5 m thick) contains laterally continuous sheetlike deposits interpreted to be active channel gravel, sand, and cobble deposits reworked during floods. Below, RF2 contains moderately continuous downlapping and onlapping reflections interpreted to be partially lithified Pleistocene gravel and cobble valley fill deposits. The underlying facies RF3 is nearly reflection free, but at the larger washes contains weak reflection similar in character to RF2. In the smaller washes, RF3 contains abundant diffractions. Two electrofacies are identified. The shallowest, EF1, extends from the surface to ~2.5 m deep. EF1 encompasses radar facies RF1 and RF2, with resistivity ranging from 250-1500 ohm-m. Estimated soil moisture in this facies ranges from 2-40%, and varies up to 20% laterally over 2-5 m distances in the smallest washes. Facies EF2 coincides with radar facies RF3, with resistivity ranging from 10-300 ohm-m and estimated pore saturation is estimated to exceed 70%. Electrofacies EF1 is inferred to represent a relatively dry surficial layer that includes the modern channel deposits and the upper ~1 m of the Pleistocene strata. At the larger washes, EF2 is interpreted to be Pleistocene valley fill, distinguishable from the overlying lithologically equivalent Pleistocene

  12. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    NASA Astrophysics Data System (ADS)

    Zha, Yang

    This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident

  13. Basin characterisation by means of joint inversion of electromagnetic geophysical data: A case study from the Loop Head Peninsula, western Ireland, and the implications for onshore carbon sequestration

    NASA Astrophysics Data System (ADS)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; McConnell, Brian; Haughton, Peter D. W.; Ledo, Juanjo

    2016-04-01

    The Science Foundation Ireland funded IRECCSEM project (www.ireccsem.ie) aims to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. The main goal of this investigation is to characterise the subsurface beneath the Loop Head Peninsula (part of the Clare Basin, Co. Clare, Ireland) and in particular to identify the main geoelectrical structures that can guide an interpretation of the carbon sequestration potential of this area. During the summer of 2014, a magnetotelluric (MT) survey was carried out on the Loop Head Peninsula. Data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. The dataset was used to generate four shallow three-dimensional (3-D) electrical resistivity models to constrain the subsurface to depths of up to 3 km, and an additional deep study to constrain the electrical resistivity values to depths of up to 30 km. Three-dimensional (3-D) joint inversion process was performed using three different types of electromagnetic data to improve the resolution of the electrical resistivity models: MT impedance tensor (Z), geomagnetic transfer functions (T) and inter-station horizontal magnetic transfer-functions (H). The interpretations of the resulting models were based on the geoelectrical results and compared with independent geological and geophysical data for a high-quality interpretation (i.e., deep borehole data from the peninsula, 2-D seismic reflection profiles, gravity data and geological structural information). Second-derivative models of the resulting MT models were used to define the main interfaces between the geoelectrical structures, facilitating superior comparison with geological and seismic results, and also reducing the influence of the colour scale on the interpretation of the results. Specific analysis was

  14. Measurement of micro weld joint position based on magneto-optical imaging

    NASA Astrophysics Data System (ADS)

    Gao, Xiang-Dong; Chen, Zi-Qin

    2015-01-01

    In a laser butt joint welding process, it is required that the laser beam focus should be controlled to follow the weld joint path accurately. Small focus wandering off the weld joint may result in insufficient penetration or unacceptable welds. Recognition of joint position offset, which describes the deviation between the laser beam focus and the weld joint, is important for adjusting the laser beam focus and obtaining high quality welds. A new method based on the magneto-optical (MO) imaging is applied to measure the micro weld joint whose gap is less than 0.2 mm. The weldments are excited by an external magnetic field, and an MO sensor based on principle of Faraday magneto effect is used to capture the weld joint images. A sequence of MO images which are tested under different magnetic field intensities and different weld joint widths are acquired. By analyzing the MO image characteristics and extracting the weld joint features, the influence of magnetic field intensity and weld joint width on the MO images and detection of weld joint position is observed and summarized. Project supported by the National Natural Science Foundation of China (Grant No. 51175095), the Natural Science Foundation of Guangdong Province, China (Grant No. 10251009001000001), the Guangdong Provincial Project of Science and Technology Innovation of Discipline Construction, China (Grant No. 2013KJCX0063), and the Science and Technology Plan Project of Guangzhou City, China (Grant No. 1563000554).

  15. Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile

    NASA Astrophysics Data System (ADS)

    Poisson, Jérôme; Chouteau, Michel; Aubertin, Michel; Campos, Daniel

    2009-02-01

    Several field surveys of a waste rock pile were carried out during the summers of 2002 and 2003 using ground-penetrating radar, electromagnetic conductivity and DC resistivity imaging. The waste rock deposit is prone to generate acid mine drainage (AMD) due to the oxidation of sulphidic minerals. One of the most critical factors that lead to the production of AMD is unsaturated water flow and the ensuing moisture distribution in the waste rock. This geophysical characterization study, performed over a 30 m × 30 m test zone, was designed to image the internal structure controlling the water flux at shallow depth. The subsurface was found to consist of three zones for the first 6 m of the pile, mainly based on electrical resistivities: a thin superficial conductive material, an intermediate 2 to 3 m thick highly resistive zone, and a lower, more conductive medium. With the help of hydrogeological tests, chemical analyses and two 2.5 m-deep trenches, it is shown that the two conductive zones are correlated with fine-grained waste rock and the resistive zone correlates with a coarser material. In the two deeper zones, the contact between the two types of waste rock is typically highlighted by a sharp resistive/conductive boundary. An increase of conductance in the relatively thin upper layer towards the edge of the pile appears to be caused by an increase in thickness of the fine-grained material. Additional geophysical surveys carried out on a profile along the flank of the upper bench of the pile show that the main features of the internal structure are sub-parallel to the slope, at least for the first 3 m in depth. The data also show an increase in resistivity from the top to bottom of the slope, in accordance with expected particle segregation, from fine-grained material at the top to coarser material at the bottom. Wide-angle reflection GPR monitoring during large scale infiltration tests seems to indicate preferential flow paths towards the direction of coarser

  16. Near real-time imaging of molasses injections using time-lapse electrical geophysics at the Brandywine DRMO, Brandywine, Maryland

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Johnson, T.; Major, B.; Day-Lewis, F. D.; Lane, J. W.

    2010-12-01

    Enhanced bioremediation, which involves introduction of amendments to promote biodegradation, increasingly is used to accelerate cleanup of recalcitrant compounds and has been identified as the preferred remedial treatment at many contaminated sites. Although blind introduction of amendments can lead to sub-optimal or ineffective remediation, the distribution of amendment throughout the treatment zone is difficult to measure using conventional sampling. Because amendments and their degradation products commonly have electrical properties that differ from those of ambient soil, time-lapse electrical geophysical monitoring has the potential to verify amendment emplacement and distribution. In order for geophysical monitoring to be useful, however, results of the injection ideally should be accessible in near real time. In August 2010, we demonstrated the feasibility of near real-time, autonomous electrical geophysical monitoring of amendment injections at the former Defense Reutilization and Marketing Office (DRMO) in Brandywine, Maryland. Two injections of about 1000 gallons each of molasses, a widely used amendment for enhanced bioremediation, were monitored using measurements taken with borehole and surface electrodes. During the injections, multi-channel resistance data were recorded; data were transmitted to a server and processed using a parallel resistivity inversion code; and results in the form of time-lapse imagery subsequently were posted to a website. This process occurred automatically without human intervention. The resulting time-lapse imagery clearly showed the evolution of the molasses plume. The delay between measurements and online delivery of images was between 45 and 60 minutes, thus providing actionable information that could support decisions about field procedures and a check on whether amendment reached target zones. This experiment demonstrates the feasibility of using electrical imaging as a monitoring tool both during amendment emplacement

  17. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  18. Imaging of the hip joint. Computed tomography versus magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Lang, P.; Genant, H. K.; Jergesen, H. E.; Murray, W. R.

    1992-01-01

    The authors reviewed the applications and limitations of computed tomography (CT) and magnetic resonance (MR) imaging in the assessment of the most common hip disorders. Magnetic resonance imaging is the most sensitive technique in detecting osteonecrosis of the femoral head. Magnetic resonance reflects the histologic changes associated with osteonecrosis very well, which may ultimately help to improve staging. Computed tomography can more accurately identify subchondral fractures than MR imaging and thus remains important for staging. In congenital dysplasia of the hip, the position of the nonossified femoral head in children less than six months of age can only be inferred by indirect signs on CT. Magnetic resonance imaging demonstrates the cartilaginous femoral head directly without ionizing radiation. Computed tomography remains the imaging modality of choice for evaluating fractures of the hip joint. In some patients, MR imaging demonstrates the fracture even when it is not apparent on radiography. In neoplasm, CT provides better assessment of calcification, ossification, and periosteal reaction than MR imaging. Magnetic resonance imaging, however, represents the most accurate imaging modality for evaluating intramedullary and soft-tissue extent of the tumor and identifying involvement of neurovascular bundles. Magnetic resonance imaging can also be used to monitor response to chemotherapy. In osteoarthrosis and rheumatoid arthritis of the hip, both CT and MR provide more detailed assessment of the severity of disease than conventional radiography because of their tomographic nature. Magnetic resonance imaging is unique in evaluating cartilage degeneration and loss, and in demonstrating soft-tissue alterations such as inflammatory synovial proliferation.

  19. Environmental and Engineering Geophysics

    NASA Astrophysics Data System (ADS)

    Sharma, Prem V.

    1997-12-01

    Geophysical imaging methods provide solutions to a wide variety of environmental and engineering problems: protection of soil and groundwater from contamination; disposal of chemical and nuclear waste; geotechnical site testing; landslide and ground subsidence hazard detection; location of archaeological artifacts. This book comprehensively describes the theory, data acquisition and interpretation of all of the principal techniques of geophysical surveying: gravity, magnetic, seismic, self-potential, resistivity, induced polarization, electromagnetic, ground-probing radar, radioactivity, geothermal, and geophysical borehole logging. Each chapter is supported by a large number of richly illustrated case histories. This book will prove to be a valuable textbook for senior undergraduates and postgraduates in environmental and applied geophysics, a supplementary course book for students of geology, engineering geophysics, civil and mining engineering, and a reference work for professional earth scientists, engineers and town planners.

  20. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  1. Geophysical imaging of the inner structure of a lava dome and its environment through gravimetry and magnetism

    NASA Astrophysics Data System (ADS)

    Portal, A.; Gailler, L.-S.; Labazuy, P.; Lénat, J.-F.

    2016-06-01

    Volcanic lava domes are compound edifices resulting from complex growth processes including intrusion and extrusion phases, explosions and collapses. Here, we present the study of a complex volcanic system, located in the Chaîne des Puys volcanic field (French Massif Central, France) and centred on the Puy de Dôme volcano, an 11,000 years old volcano. Our approach is based on a morpho-structural analysis of a high resolution DTM (0.5 m) and geophysical imaging methods. Both gravity and magnetic high resolution surveys have been carried out on the lava dome and the nearby volcanic structures. We computed 3D inverse and 2D forwards models. Based on our current knowledges about volcanic dome structure, the geophysical models allow us to propose a synthetic geological model of the inner structure of the Puy de Dôme and surrounding areas. This model suggests a scenario for the formation of the lava dome and the inferred intrusions located on both sides. The Puy de Dôme could possibly be the southern tip of the northern intrusion.

  2. High resolution three-dimensional photoacoustic imaging of human finger joints in vivo

    NASA Astrophysics Data System (ADS)

    Xi, Lei; Jiang, Huabei

    2015-08-01

    We present a method for noninvasively imaging the hand joints using a three-dimensional (3D) photoacoustic imaging (PAI) system. This 3D PAI system utilizes cylindrical scanning in data collection and virtual-detector concept in image reconstruction. The maximum lateral and axial resolutions of the PAI system are 70 μm and 240 μm. The cross-sectional photoacoustic images of a healthy joint clearly exhibited major internal structures including phalanx and tendons, which are not available from the current photoacoustic imaging methods. The in vivo PAI results obtained are comparable with the corresponding 3.0 T MRI images of the finger joint. This study suggests that the proposed method has the potential to be used in early detection of joint diseases such as osteoarthritis.

  3. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Kaplan, Mariana J.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding

    2013-01-01

    A photoacoustic (PA) and ultrasound (US) dual modality system, for imaging human peripheral joints, is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system, on normal volunteers, revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Confirmed by the control US images, the system, on the PA mode, can differentiate tendon from surrounding soft tissue based on the endogenous optical contrast. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.

  4. Optical tomographic imaging of vascular and metabolic reactivity in rheumatoid joints

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.; Dwyer, Edward; Hielscher, Andreas H.

    2005-04-01

    Our group has recently established that joints affected by Rheumatoid Arthritis (RA) can be distinguished from healthy joints through measurements of the scattering coefficient. We showed that a high scattering coefficient in the center of the joint is indicative of a joint with RA. While these results were encouraging, data to date still suffers from low sensitivity and specificity. Possibly higher specificities and sensitivities can be achieved if dynamic measurements of hemodynamic and metabolic processes in the synovium are considered. Using our dual-wavelength imaging system together with previously implemented model-based iterative image reconstruction schemes, we have performed initial dynamic imaging studies involving healthy human volunteers and patients affected by RA. These case studies seem to confirm our hypothesis that differences in the vascular reactivity exist between affected and unaffected joints.

  5. International Symposium on Airborne Geophysics

    NASA Astrophysics Data System (ADS)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  6. Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Calvin, Wendy M.; Seznec, Olivier

    1988-01-01

    Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis.

  7. Analysis of in-situ rock joint strength using digital borehole scanner images

    SciTech Connect

    Thapa, B.B.

    1994-09-01

    The availability of high resolution digital images of borehole walls using the Borehole Scanner System has made it possible to develop new methods of in-situ rock characterization. This thesis addresses particularly new approaches to the characterization of in-situ joint strength arising from surface roughness. An image processing technique is used to extract the roughness profile from joints in the unrolled image of the borehole wall. A method for estimating in-situ Rengers envelopes using this data is presented along with results from using the method on joints in a borehole in porphyritic granite. Next, an analysis of the joint dilation angle anisotropy is described and applied to the porphyritic granite joints. The results indicate that the dilation angle of the joints studied are anisotropic at small scales and tend to reflect joint waviness as scale increases. A procedure to unroll the opposing roughness profiles to obtain a two dimensional sample is presented. The measurement of apertures during this process is shown to produce an error which increases with the dip of the joint. The two dimensional sample of opposing profiles is used in a new kinematic analysis of the joint shear stress-shear deformation behavior. Examples of applying these methods on the porphyritic granite joints are presented. The unrolled opposing profiles were used in a numerical simulation of a direct shear test using Discontinuous Deformation Analysis. Results were compared to laboratory test results using core samples containing the same joints. The simulated dilatancy and shear stress-shear deformation curves were close to the laboratory curves in the case of a joint in porphyritic granite.

  8. Creating a system for the geological exploitation of satellite images: Automatic mapping and geophysical data comparison. [in the Pyrenees and Alps

    NASA Technical Reports Server (NTRS)

    Braconne, S.; Cavalier, M.; Dubesset, M.; Guillemot, J.; Guy, M.

    1975-01-01

    A method is presented for integrating satellite images into a geophysical data interpretation system. Aspects of the method include: an attempt to automatically interpret images by structural, mainly topological, methods for the mapping of geological contours; an analysis of the position relation of the contours gives a skeleton stratigraphy (order of succession); and a system combining some of the extracted elements with geographic data to make an objective search for an interpretation hypothesis. Some examples are presented.

  9. A photoacoustic tomography and ultrasound combined system for proximal interphalangeal joint imaging

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Wang, Xueding

    2013-03-01

    A photoacoustic (PA) and ultrasound (US) dual modality system for imaging human peripheral joints is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system on normal volunteers revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.

  10. 4D rotational x-ray imaging of wrist joint dynamic motion

    SciTech Connect

    Carelsen, Bart; Bakker, Niels H.; Strackee, Simon D.; Boon, Sjirk N.; Maas, Mario; Sabczynski, Joerg; Grimbergen, Cornelis A.; Streekstra, Geert J.

    2005-09-15

    Current methods for imaging joint motion are limited to either two-dimensional (2D) video fluoroscopy, or to animated motions from a series of static three-dimensional (3D) images. 3D movement patterns can be detected from biplane fluoroscopy images matched with computed tomography images. This involves several x-ray modalities and sophisticated 2D to 3D matching for the complex wrist joint. We present a method for the acquisition of dynamic 3D images of a moving joint. In our method a 3D-rotational x-ray (3D-RX) system is used to image a cyclically moving joint. The cyclic motion is synchronized to the x-ray acquisition to yield multiple sets of projection images, which are reconstructed to a series of time resolved 3D images, i.e., four-dimensional rotational x ray (4D-RX). To investigate the obtained image quality parameters the full width at half maximum (FWHM) of the point spread function (PSF) via the edge spread function and the contrast to noise ratio between air and phantom were determined on reconstructions of a bullet and rod phantom, using 4D-RX as well as stationary 3D-RX images. The CNR in volume reconstructions based on 251 projection images in the static situation and on 41 and 34 projection images of a moving phantom were 6.9, 3.0, and 2.9, respectively. The average FWHM of the PSF of these same images was, respectively, 1.1, 1.7, and 2.2 mm orthogonal to the motion and parallel to direction of motion 0.6, 0.7, and 1.0 mm. The main deterioration of 4D-RX images compared to 3D-RX images is due to the low number of projection images used and not to the motion of the object. Using 41 projection images seems the best setting for the current system. Experiments on a postmortem wrist show the feasibility of the method for imaging 3D dynamic joint motion. We expect that 4D-RX will pave the way to improved assessment of joint disorders by detection of 3D dynamic motion patterns in joints.

  11. Joint Probability Models of Radiology Images and Clinical Annotations

    ERIC Educational Resources Information Center

    Arnold, Corey Wells

    2009-01-01

    Radiology data, in the form of images and reports, is growing at a high rate due to the introduction of new imaging modalities, new uses of existing modalities, and the growing importance of objective image information in the diagnosis and treatment of patients. This increase has resulted in an enormous set of image data that is richly annotated…

  12. Exploration Geophysics

    ERIC Educational Resources Information Center

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  13. Exploration Geophysics

    ERIC Educational Resources Information Center

    Espey, H. R.

    1977-01-01

    Describes geophysical techniques such as seismic, gravity, and magnetic surveys of offshare acreage, and land-data gathering from a three-dimensional representation made from closely spaced seismic lines. (MLH)

  14. Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The four geophysical methods predominantly used for agricultural purposes are resistivity, electromagnetic induction, ground penetrating radar (GPR), and time domain reflectometry (TDR). Resistivity and electromagnetic induction methods are typically employed to map lateral variations of apparent so...

  15. Geostatistical noise filtering of geophysical images : application to unexploded ordnance (UXO) sites.

    SciTech Connect

    Saito, Hirotaka; McKenna, Sean Andrew; Coburn, Timothy C.

    2004-07-01

    Geostatistical and non-geostatistical noise filtering methodologies, factorial kriging and a low-pass filter, and a region growing method are applied to analytic signal magnetometer images at two UXO contaminated sites to delineate UXO target areas. Overall delineation performance is improved by removing background noise. Factorial kriging slightly outperforms the low-pass filter but there is no distinct difference between them in terms of finding anomalies of interest.

  16. ERS-1 Investigations of Southern Ocean Sea Ice Geophysics Using Combined Scatterometer and SAR Images

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Early, D.; Long, D.

    1994-01-01

    Coregistered ERS-1 SAR and Scatterometer data are presented for the Weddell Sea, Antarctica. Calibrated image backscatter statistics are extracted from data acquired in regions where surface measurements were made during two extensive international Weddell Sea experiments in 1992. Changes in summer ice-surface conditions, due to temperature and wind, are shown to have a large impact on observed microwave backscatter values. Winter calibrated backscatter distributions are also investigated as a way of describing ice thickness conditions in different location during winter. Coregistered SAR and EScat data over a manned drifting ice station are used to illustrate the seasonal signature changes occurring during the fall freeze-up transition.

  17. Preserving the Illustrated Text. Report of the Joint Task Force on Text and Image.

    ERIC Educational Resources Information Center

    Commission on Preservation and Access, Washington, DC.

    The mission of the Joint Task Force on Text and Image was to inquire into the problems, needs, and methods for preserving images in text that are important for scholarship in a wide range of disciplines and to draw from that exploration a set of principles, guidelines, and recommendations for a comprehensive national strategy for image…

  18. 3D kinematics of the tarsal joints from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Hirsch, Bruce E.; Udupa, Jayaram K.; Okereke, Enyi; Hillstrom, Howard J.; Siegler, Sorin; Ringleb, Stacie I.; Imhauser, Carl W.

    2001-09-01

    We have developed a method for analyzing motion at skeletal joints based on the 3D reconstruction of magnetic resonance (MR) image data. Since the information about each voxel in MR images includes its location in the scanner, it follows that information is available for each organ whose 3D surface is computed from a series of MR slices. In addition, there is information on the shape and orientation of each organ, and the contact areas of adjacent bones. By collecting image data in different positions we can calculate the motion of the individual bones. We have used this method to study human foot bones, in order to understand normal and abnormal foot function. It has been used to evaluate patients with tarsal coalitions, various forms of pes planus, ankle sprains, and several other conditions. A newly described feature of this system is the ability to visualize the contact area at a joint, as determined by the region of minimum distance. The display of contact area helps understand abnormal joint function. Also, the use of 3D imaging reveals motions in joints which cannot otherwise be visualized, such as the subtalar joint, for more accurate diagnosis of joint injury.

  19. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  20. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  1. Integrating multidisciplinary, multiscale geological and geophysical data to image the Castrovillari fault (Northern Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Cinti, F. R.; Pauselli, C.; Livio, F.; Ercoli, M.; Brunori, C. A.; Ferrario, M. F.; Volpe, R.; Civico, R.; Pantosti, D.; Pinzi, S.; De Martini, P. M.; Ventura, G.; Alfonsi, L.; Gambillara, R.; Michetti, A. M.

    2015-12-01

    The Castrovillari scarps (Cfs) are located in northern Calabria (Italy) and consist of three main WSW-dipping fault scarps resulting from multiple rupture events. At the surface, these scarps are defined by multiple breaks in slope. Despite its near-surface complexity, the faults likely merge to form a single normal fault at about 200 m depth, which we refer to as the Castrovillari fault. We present the results of a multidisciplinary and multiscale study at a selected site of the Cfs with the aim to (i) characterize the geometry at the surface and at depth and (ii) obtain constraints on the fault slip history. We investigate the site by merging data from quantitative geomorphological analyses, electrical resistivity and ground penetrating radar surveys, and palaeoseismological trenching along a ˜40 m high scarp. The closely spaced investigations allow us to reconstruct the shallow stratigraphy, define the fault locations, and measure the faulted stratigraphic offsets down to 20 m depth. Despite the varying resolutions, each of the adopted approaches suggests the presence of sub-parallel fault planes below the scarps at approximately the same location. The merged datasets permit the evaluation of the fault array (along strike for 220 m within a 370-m-wide zone). The main fault zone consists of two closely spaced NW-SE striking fault planes in the upper portion of the scarp slope and another fault at the scarp foot. The 3-D image of the fault surfaces shows west to southwest dipping planes with values between 70° and 80°; the two closely spaced planes join at about 200 m below the surface. The 8-to-12-m-high upper fault, which shows the higher vertical displacements, accommodated most of the deformation during the Holocene. Results from the trenching analysis indicate a minimum slip per event of 0.6 m and a maximum short-term slip rate of 0.6 mm yr-1 for the Cf. The shallow subsurface imaging techniques are particularly helpful in evaluating the possible field

  2. Imaging the ascent path of fluids and partial melts at convergent plate boundaries by geophysical characteristics

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.

    2011-12-01

    During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic

  3. High-resolution in vivo imaging of bone and joints: a window to microarchitecture.

    PubMed

    Geusens, Piet; Chapurlat, Roland; Schett, Georg; Ghasem-Zadeh, Ali; Seeman, Ego; de Jong, Joost; van den Bergh, Joop

    2014-05-01

    Imaging is essential to the evaluation of bone and joint diseases, and the digital era has contributed to an exponential increase in the number of publications on noninvasive analytical techniques for the quantification of changes to bone and joints that occur in health and in disease. One such technique is high-resolution peripheral quantitative CT (HR-pQCT), which has introduced a new dimension in the imaging of bone and joints by providing images that are both 3D and at high resolution (82 μm isotropic voxel size), with a low level of radiation exposure (3-5 μSv). HR-pQCT enables the analysis of cortical and trabecular properties separately and to apply micro-finite element analysis for calculating bone biomechanical competence in vivo at the distal sites of the skeleton (distal radius and distal tibia). Moreover, HR-pQCT makes possible the in vivo assessment of the spatial distribution, dimensions and delineation of cortical bone erosions, osteophytes, periarticular cortical and trabecular microarchitecture, and 3D joint-space volume of the finger joints and wrists. HR-pQCT is, therefore, a technique with a high potential for improving our understanding of bone and joint diseases at the microarchitectural level.

  4. Generating High resolution surfaces from images: when photogrammetry and applied geophysics meets

    NASA Astrophysics Data System (ADS)

    Bretar, F.; Pierrot-Deseilligny, M.; Schelstraete, D.; Martin, O.; Quernet, P.

    2012-04-01

    Airborne digital photogrammetry has been used for some years to create digital models of the Earth's topography from calibrated cameras. But, in the recent years, the use of non-professionnal digital cameras has become valuable to reconstruct topographic surfaces. Today, the multi megapixel resolution of non-professionnal digital cameras, either used in a close range configuration or from low altitude flights, provide a ground pixel size of respectively a fraction of millimeters to couple of centimeters. Such advances turned into reality because the data processing chain made a tremendous break through during the last five years. This study investigates the potential of the open source software MICMAC developed by the French National Survey IGN (http://www.micmac.ign.fr) to calibrate unoriented digital images and calculate surface models of extremely high resolution for Earth Science purpose. We would like to report two experiences performed in 2011. The first has been performed in the context of risk assessment of rock falls and landslides along the cliffs of Normandy seashore. The acquisition protocol for the first site of "Criel-sur-Mer" has been very simple: a walk along the chalk vertical cliffs taking photos with a focal of 18mm every approx. 50m with an overlap of 80% allowed to generate 2.5km of digital surface at centimeter resolution. The site of "Les Vaches Noires" has been more complicated to acquire because of both the geology (dark clays) and the geometry (the landslide direction is parallel to the seashore and has a high field depth from the shore). We therefore developed an innovative device mounted on board of an autogyre (in-between ultralight power driven aircraft and helicopter). The entire area has been surveyed with a focal of 70mm at 400m asl with a ground pixel of 3cm. MICMAC gives the possibility to directly georeference digital Model. Here, it has been performed by a net of wireless GPS called Geocubes, also developed at IGN. The second

  5. A joint encryption/watermarking algorithm for verifying the reliability of medical images: application to echographic images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Roux, Christian

    2012-04-01

    In this paper we propose a joint encryption/watermarking algorithm for the purpose of protecting medical images. The proposed solution gives access to the outcomes of the image integrity and of its origins as its attachment to one patient even if the image is stored encrypted. In this study, the given solution combines the RC4 stream cipher and two substitutive watermarking modulations: the Least Significant Bit Method and the Quantization Index Modulation. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. Experimental results achieved on 8 bits encoded echographic images illustrate the overall performances of the proposed scheme. At least, a capacity rate of 1 and 0.5 bits of message per pixel of image can be embedded in the spatial and the encrypted domains respectively, with a peak signal to noise ratio greater than 49 dB.

  6. Joint sparse coding based spatial pyramid matching for classification of color medical image.

    PubMed

    Shi, Jun; Li, Yi; Zhu, Jie; Sun, Haojie; Cai, Yin

    2015-04-01

    Although color medical images are important in clinical practice, they are usually converted to grayscale for further processing in pattern recognition, resulting in loss of rich color information. The sparse coding based linear spatial pyramid matching (ScSPM) and its variants are popular for grayscale image classification, but cannot extract color information. In this paper, we propose a joint sparse coding based SPM (JScSPM) method for the classification of color medical images. A joint dictionary can represent both the color information in each color channel and the correlation between channels. Consequently, the joint sparse codes calculated from a joint dictionary can carry color information, and therefore this method can easily transform a feature descriptor originally designed for grayscale images to a color descriptor. A color hepatocellular carcinoma histological image dataset was used to evaluate the performance of the proposed JScSPM algorithm. Experimental results show that JScSPM provides significant improvements as compared with the majority voting based ScSPM and the original ScSPM for color medical image classification.

  7. Bayesian Gibbs Markov chain: MRF-based Stochastic Joint Inversion of Hydrological and Geophysical Datasets for Improved Characterization of Aquifer Heterogeneities.

    NASA Astrophysics Data System (ADS)

    Oware, E. K.

    2015-12-01

    Modeling aquifer heterogeneities (AH) is a complex, multidimensional problem that mostly requires stochastic imaging strategies for tractability. While the traditional Bayesian Markov chain Monte Carlo (McMC) provides a powerful framework to model AH, the generic McMC is computationally prohibitive and, thus, unappealing for large-scale problems. An innovative variant of the McMC scheme that imposes priori spatial statistical constraints on model parameter updates, for improved characterization in a computationally efficient manner is proposed. The proposed algorithm (PA) is based on Markov random field (MRF) modeling, which is an image processing technique that infers the global behavior of a random field from its local properties, making the MRF approach well suited for imaging AH. MRF-based modeling leverages the equivalence of Gibbs (or Boltzmann) distribution (GD) and MRF to identify the local properties of an MRF in terms of the easily quantifiable Gibbs energy. The PA employs the two-step approach to model the lithological structure of the aquifer and the hydraulic properties within the identified lithologies simultaneously. It performs local Gibbs energy minimizations along a random path, which requires parameters of the GD (spatial statistics) to be specified. A PA that implicitly infers site-specific GD parameters within a Bayesian framework is also presented. The PA is illustrated with a synthetic binary facies aquifer with a lognormal heterogeneity simulated within each facies. GD parameters of 2.6, 1.2, -0.4, and -0.2 were estimated for the horizontal, vertical, NESW, and NWSE directions, respectively. Most of the high hydraulic conductivity zones (facies 2) were fairly resolved (see results below) with facies identification accuracy rate of 81%, 89%, and 90% for the inversions conditioned on concentration (R1), resistivity (R2), and joint (R3), respectively. The incorporation of the conditioning datasets improved on the root mean square error (RMSE

  8. Magnetic resonance imaging and ultrasound evaluation of "healthy" joints in young subjects with severe haemophilia A.

    PubMed

    Di Minno, M N D; Iervolino, S; Soscia, E; Tosetto, A; Coppola, A; Schiavulli, M; Marrone, E; Ruosi, C; Salvatore, M; Di Minno, G

    2013-05-01

    Magnetic resonance imaging (MRI) and ultrasonography (US) are increasingly used in haemophilia A (HA) to detect early joint changes. A total of 40 clinically asymptomatic joints, never involved by bleeding events ["healthy joints" (HJ)], were evaluated by MRI and, in parallel, by US in 20 young subjects with severe HA (22.45 ± 2.72 years old; no history of arthritides, of viral infections or of inhibitors against factor VIII). The same joints were evaluated in 20 matched non-haemophilic (no-HA) subjects (mean age 23.90 ± 2.31 years, P = 0.078 vs. HA subjects). US images were obtained with specific probe positions according to validated procedures. A validated US score and progressive (P-MRI) and additive (A-MRI) MRI scores were employed for data collection and analysis. The US score was higher in HA than in no-HA subjects (3.40 ± 1.72 vs. 0.80 ± 1.10, P < 0.001). Taking into account only moderate/severe alterations, joint effusion was found in 55% of HA and in 5% of no-HA joints (P < 0.001); synovial hypertrophy was found in 20% of HA and in none of the no-HA joints; cartilage erosion was found in 30% of HA and in none of no-HA joints. MRI examinations confirmed these findings and the US score correlated with the A-MRI (r = 0.732, P < 0.001) and with the P-MRI (r = 0.598, P < 0.001) scores. MRI and US data significantly correlated as to effusion (r = 0.819, P = 0.002), synovial hypertrophy (r = 0.633, P = 0.036) and cartilage erosion (r = 0.734, P = 0.010). Despite inherent limitations, joint US examination identified subclinical abnormalities of HJ in young subjects with severe HA.

  9. Time-lapse integrated geophysical imaging of magmatic injections and fluid-induced fracturing causing Campi Flegrei 1983-84 Unrest

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Crescentini, Luca; Amoruso, Antonella; Del Pezzo, Edoardo; Castellano, Mario

    2016-04-01

    Geophysical precursors measured during Unrest episodes are a primary source of geophysical information to forecast eruptions at the largest and most potentially destructive volcanic calderas. Despite their importance and uniqueness, these precursors are also considered difficult to interpret and unrepresentative of larger eruptive events. Here, we show how novel geophysical imaging and monitoring techniques are instead able to represent the dynamic evolution of magmatic- and fluid-induced fracturing during the largest period of Unrest at Campi Flegrei caldera, Italy (1983-1984). The time-dependent patterns drawn by microseismic locations and deformation, once integrated by 3D attenuation tomography and absorption/scattering mapping, model injections of magma- and fluid-related materials in the form of spatially punctual microseismic bursts at a depth of 3.5 km, west and offshore the city of Pozzuoli. The shallowest four kilometres of the crust work as a deformation-based dipolar system before and after each microseismic shock. Seismicity and deformation contemporaneously focus on the point of injection; patterns then progressively crack the medium directed towards the second focus, a region at depths 1-1.5 km south of Solfatara. A single high-absorption and high-scattering aseismic anomaly marks zones of fluid storage overlying the first dipolar centre. These results provide the first direct geophysical signature of the processes of aseismic fluid release at the top of the basaltic basement, producing pozzolanic activity and recently observed via rock-physics and well-rock experiments. The microseismicity caused by fluids and gasses rises to surface via high-absorption north-east rising paths connecting the two dipolar centres, finally beingq being generally expelled from the maar diatreme Solfatara structure. Geophysical precursors during Unrest depict how volcanic stress was released at the Campi Flegrei caldera during its period of highest recorded seismicity

  10. Talbot phase-contrast x-ray imaging for the small joints of the hand

    NASA Astrophysics Data System (ADS)

    Stutman, Dan; Beck, Thomas J.; Carrino, John A.; Bingham, Clifton O.

    2011-09-01

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 µm resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 µm period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at ~25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a ~2 m long 'symmetric' interferometer operated in a high Talbot order.

  11. Joint graph cut and relative fuzzy connectedness image segmentation algorithm.

    PubMed

    Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K

    2013-12-01

    We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC.

  12. Applied geophysics

    SciTech Connect

    Dohr, G.

    1981-01-01

    This book discusses techniques which play a predominant role in petroleum and natural gas exploration. Particular emphasis has been placed on modern seismics which today claims over 90% of man-power and financial resources in exploration. The processing of geophysical data is the most important factor in applied physics and emphasis is placed on it in the discussion of exploration problems. Chapter titles include: refraction seismics; reflection seismics; seismic field techniques; digital seismics-electronic data processing; digital seismics-practical application; recent developments, special seismic procedures; gravitational methods; magnetic methods; geoelectric methods; well-logging; and miscellaneous methods in applied geophysics (thermal methods, radioactive dating, natural radioactivity surveys, and surface detection of gas. (DMC)

  13. Imaging of hemodynamic effects in arthritic joints with dynamic optical tomography

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Lasker, Joseph M.; Fong, Christopher J.; Dwyer, Edward

    2007-07-01

    Optical probing of hemodynamics is often employed in areas such as brain, muscular, and breast-cancer imaging. In these studies an external stimulus is applied and changes in relevant physiological parameters, e.g. oxy or deoxyhemoglobin concentrations, are determined. In this work we present the first application of this method for characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal-interphalangeal (PIP) finger joints. Using a dual-wavelength tomographic imaging system together with previously implemented model-based iterative image reconstruction schemes, we have performed dynamic imaging case studies on a limited number of healthy volunteers and patients diagnosed with RA. Inflating a sphygmomanometer cuff placed around the forearm we elicited a controlled vascular response. We observed pronounced differences between the hemodynamic effect occurring in healthy volunteers and patients affected by RA.

  14. Figures of merit for optimizing imaging systems on joint estimation/detection tasks

    NASA Astrophysics Data System (ADS)

    Clarkson, Eric

    2016-05-01

    Previously published work on joint estimation/detection tasks has focused on the area under the Estimation Receiver Operating Characteristic (EROC) curve as a figure of merit for these tasks in imaging. A brief discussion of this concept and the corresponding ideal observer is included here, but the main focus is on three new approaches for system optimization on these joint tasks. One of these approaches is a generalization of Shannon Task Specific Information (TSI) to this setting. The form of this TSI is used to show that a system optimized for the joint task will not in general be optimized for the detection task alone. Another figure of merit for these joint tasks is the Bayesian Risk, where a cost is assigned to all detection outcomes and to the estimation errors, and then averaged over all sources of randomness in the object ensemble and the imaging system. The ideal observer in this setting, which minimizes the risk, is shown to be the same as the ideal EROC observer, which maximizes the area under the EROC curve. It is also shown that scaling the estimation cost function upwards, i.e making the estimation task more important, degrades the performance of this ideal observer on the detection component of the joint task. Finally we generalize these concepts to the idea of Estimation/Detection Information Tradeoff (EDIT) curves which can be used to quantify the tradeof between estimation performance and detection performance in system design.

  15. Visualization of a newborn's hip joint using 3D ultrasound and automatic image processing

    NASA Astrophysics Data System (ADS)

    Overhoff, Heinrich M.; Lazovic, Djordje; von Jan, Ute

    1999-05-01

    Graf's method is a successful procedure for the diagnostic screening of developmental dysplasia of the hip. In a defined 2-D ultrasound (US) scan, which virtually cuts the hip joint, landmarks are interactively identified to derive congruence indicators. As the indicators do not reflect the spatial joint structure, and the femoral head is not clearly visible in the US scan, here 3-D US is used to gain insight to the hip joint in its spatial form. Hip joints of newborns were free-hand scanned using a conventional ultrasound transducer and a localizer system fixed on the scanhead. To overcome examiner- dependent findings the landmarks were detected by automatic segmentation of the image volume. The landmark image volumes and an automatically determined virtual sphere approximating the femoral head were visualized color-coded on a computer screen. The visualization was found to be intuitive and to simplify the diagnostic substantially. By the visualization of the 3-D relations between acetabulum and femoral head the reliability of diagnostics is improved by finding the entire joint geometry.

  16. Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alemohammad, Milad; Yuan, Wu; Mavadia-Shukla, Jessica; Liang, Wenxuan; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    Endoscopic OCT is a promising technology enabling noninvasive in vivo imaging of internal organs, such as the gastrointestinal tract and airways. The past few years have witnessed continued efforts to achieve ultrahigh resolution and speed. It is well-known that the axial resolution in OCT imaging has a quadratic dependence on the central wavelength. While conventional OCT endoscopes operate in 1300 nm wavelength, the second-generation endoscopes are designed for operation around 800 nm where turn-key, broadband sources are becoming readily available. Traditionally 1300 nm OCT endoscopes are scanned at the proximal end, and a broadband fiber-optic rotary joint as a key component in scanning endoscopic OCT is commercially available. Bandwidths in commercial 800 nm rotary joints are unfortunately compromised due to severe chromatic aberration, which limits the resolution afforded by the broadband light source. In the past we remedied this limitation by using a home-made capillary-tube-based rotary joint where the maximum reliable speed is ~10 revolutions/second. In this submission we report our second-generation, home-built high-speed and broadband rotary joint for 800 nm wavelength, which uses achromatic doublets in order achieve broadband achromatic operation. The measured one-way throughput of the rotary joint is >67 % while the fluctuation of the double-pass coupling efficiency during 360° rotation is less than +/-5 % at a speed of 70 revolutions/second. We demonstrate the operation of this rotary joint in conjunction with our ultrahigh-resolution (2.4 µm in air) diffractive catheter by three-dimensional full-circumferential endoscopic imaging of guinea pig esophagus at 70 frames per second in vivo.

  17. Magnetic resonance imaging features of the temporomandibular joint in normal dogs.

    PubMed

    Macready, Dawn M; Hecht, Silke; Craig, Linden E; Conklin, Gordon A

    2010-01-01

    Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1-weighted (T1-W) transverse closed-mouth, T1-W sagittal closed-mouth, T1-W sagittal open-mouth, and T2-W sagittal open-mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1-W images, mildly hyperintense to muscle on T2-W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1-W images and 13/20 (65%) TMJs on T2-W images. The articular disc was isointense to hyperintense to muscle on T1-W images and varied from hypointense to hyperintense to muscle on T2-W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs. PMID:20806876

  18. Time-Lapse Joint Inversion of Cross-Well DC Resistivity and Seismic Data: A Numerical Investigation

    EPA Science Inventory

    Time-lapse joint inversion of geophysical data is required to image the evolution of oil reservoirs during production and enhanced oil recovery, CO2 sequestration, geothermal fields during production, and to monitor the evolution of contaminant plumes. Joint inversion schemes red...

  19. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  20. Optical joint correlator for real-time image tracking and retinal surgery

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor)

    1991-01-01

    A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.

  1. Joint-modeling of the Viscosity and the Electrical Conductivity of Silicate and Carbonatitic Melts and Implications for Geophysical Data Interpretation

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Evans, R. L.; Key, K. W.

    2011-12-01

    We present an investigation of the relation between electrical conductivity (σ) and viscosity (η) of natural melts and its consequences for geophysical data interpretation. Both physicochemical properties are melt structure dependent and are very sensitive to even small changes in temperature and melt composition, including water content. Although many models have been developed for viscosity and for conductivity, attempts to combine both properties are scarce, particularly for complex natural systems. The interpretation of geophysical data can only be as good as our understanding of how physical properties such as conductivity and viscosity vary in the Earth's crust and mantle. Our conductivity-viscosity model is based on the optical basicity of silicate and carbonatitic compositions that count up to 10 oxides. From a structural point of view, the difference between viscosity and conductivity of melts lies in the fact that viscosity is mostly controlled by big network former anions (e.g. SiO44-) and conductivity by the mobility of smaller network modifier cations (e.g. Na+). By classifying each oxide as acidic, basic or amphoteric, optical basicity calculations of melt take into account the influence of forming and modifying species in the melt structure. This modeling approach is supported by recent findings showing that the optical basicity (Λ) of simple synthetic melts (CAS, CMAS systems) can be used to relate conductivity and viscosity [1]. Our model successfully reproduces experimental viscosity and electrical data from the literature over the temperature (T) range [800, 1400°C] by two simple semi-empirical equations in the form σ = f(log η, Λ, 1/T), with R2>0.84 for silicate melts and R2=0.98 for carbonatitic melts. At the scale of the field, the viscosity-conductivity model allows interpretation of conductive anomalies detected through electromagnetic soundings in terms of viscosity. Applications of this model will be presented for specific locations

  2. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  3. Optical clearing of human skin for the enhancement of optical imaging of proximal interphalangeal joints

    NASA Astrophysics Data System (ADS)

    Kolesnikova, Ekaterina A.; Kolesnikov, Aleksandr S.; Zabarylo, Urszula; Minet, Olaf; Genina, Elina A.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2014-01-01

    We are proposing a new method for enhancement of optical imaging of proximal interphalangeal (PIP) joints in humans at skin using optical clearing technique. A set of illuminating laser diodes with the wavelengths 670, 820, and 904 nm were used as a light source. The laser diodes, monochromatic digital CCD camera and specific software allowed for detection of the finger joint image in a transillumination mode. The experiments were carried out in vivo with human fingers. Dehydrated glycerol and hand cream with urea (5%) were used as optical clearing agents (OCAs). The contrast of the obtained images was analyzed to determine the effect of the OCA. It was found that glycerol application to the human skin during 60 min caused the decrease of contrast in 1.4 folds for 670 nm and the increase of contrast in 1.5 and 1.7 folds for 820 nm and 904 nm, respectively. At the same time, the hand cream application to the human skin during 60 min caused the decrease of contrast in 1.1 folds for 670 nm and the increase of contrast in 1.3 and 1.1 folds for 820 nm and 904 nm, respectively. The results have shown that glycerol and the hand cream with 5% urea allow for obtaining of more distinct image of finger joint in the NIR. Obtained data can be used for development of optical diagnostic methods of rheumatoid arthritis.

  4. High-Resolution Dynamic Speech Imaging with Joint Low-Rank and Sparsity Constraints

    PubMed Central

    Fu, Maojing; Zhao, Bo; Carignan, Christopher; Shosted, Ryan K.; Perry, Jamie L.; Kuehn, David P.; Liang, Zhi-Pei; Sutton, Bradley P.

    2014-01-01

    Purpose To enable dynamic speech imaging with high spatiotemporal resolution and full-vocal-tract spatial coverage, leveraging recent advances in sparse sampling. Methods An imaging method is developed to enable high-speed dynamic speech imaging exploiting low-rank and sparsity of the dynamic images of articulatory motion during speech. The proposed method includes: a) a novel data acquisition strategy that collects navigators with high temporal frame rate, and b) an image reconstruction method that derives temporal subspaces from navigators and reconstructs high-resolution images from sparsely sampled data with joint low-rank and sparsity constraints. Results The proposed method has been systematically evaluated and validated through several dynamic speech experiments. A nominal imaging speed of 102 frames per second (fps) was achieved for a single-slice imaging protocol with a spatial resolution of 2.2 × 2.2 × 6.5 mm3. An eight-slice imaging protocol covering the entire vocal tract achieved a nominal imaging speed of 12.8 fps with the identical spatial resolution. The effectiveness of the proposed method and its practical utility was also demonstrated in a phonetic investigation. Conclusion High spatiotemporal resolution with full-vocal-tract spatial coverage can be achieved for dynamic speech imaging experiments with low-rank and sparsity constraints. PMID:24912452

  5. Joint image registration and fusion method with a gradient strength regularization

    NASA Astrophysics Data System (ADS)

    Lidong, Huang; Wei, Zhao; Jun, Wang

    2015-05-01

    Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.

  6. Imaging 4-D hydrogeologic processes with geophysics: an example using crosswell electrical measurements to characterize a tracer plume

    NASA Astrophysics Data System (ADS)

    Singha, K.; Gorelick, S. M.

    2005-05-01

    Geophysical methods provide an inexpensive way to collect spatially exhaustive data about hydrogeologic, mechanical or geochemical parameters. In the presence of heterogeneity over multiple scales of these parameters at most field sites, geophysical data can contribute greatly to our understanding about the subsurface by providing important data we would otherwise lack without extensive, and often expensive, direct sampling. Recent work has highlighted the use of time-lapse geophysical data to help characterize hydrogeologic processes. We investigate the potential for making quantitative assessments of sodium-chloride tracer transport using 4-D crosswell electrical resistivity tomography (ERT) in a sand and gravel aquifer at the Massachusetts Military Reservation on Cape Cod. Given information about the relation between electrical conductivity and tracer concentration, we can estimate spatial moments from the 3-D ERT inversions, which give us information about tracer mass, center of mass, and dispersivity through time. The accuracy of these integrated measurements of tracer plume behavior is dependent on spatially variable resolution. The ERT inversions display greater apparent dispersion than tracer plumes estimated by 3D advective-dispersive simulation. This behavior is attributed to reduced measurement sensitivity to electrical conductivity values with distance from the electrodes and differential smoothing from tomographic inversion. The latter is a problem common to overparameterized inverse problems, which often occur when real-world budget limitations preclude extensive well-drilling or additional data collection. These results prompt future work on intelligent methods for reparameterizing the inverse problem and coupling additional disparate data sets.

  7. Measurement of body joint angles for physical therapy based on mean shift tracking using two low cost Kinect images.

    PubMed

    Chen, Y C; Lee, H J; Lin, K H

    2015-08-01

    Range of motion (ROM) is commonly used to assess a patient's joint function in physical therapy. Because motion capture systems are generally very expensive, physical therapists mostly use simple rulers to measure patients' joint angles in clinical diagnosis, which will suffer from low accuracy, low reliability, and subjective. In this study we used color and depth image feature from two sets of low-cost Microsoft Kinect to reconstruct 3D joint positions, and then calculate moveable joint angles to assess the ROM. A Gaussian background model is first used to segment the human body from the depth images. The 3D coordinates of the joints are reconstructed from both color and depth images. To track the location of joints throughout the sequence more precisely, we adopt the mean shift algorithm to find out the center of voxels upon the joints. The two sets of Kinect are placed three meters away from each other and facing to the subject. The joint moveable angles and the motion data are calculated from the position of joints frame by frame. To verify the results of our system, we take the results from a motion capture system called VICON as golden standard. Our 150 test results showed that the deviation of joint moveable angles between those obtained by VICON and our system is about 4 to 8 degree in six different upper limb exercises, which are acceptable in clinical environment.

  8. Joints and their relations as critical features in action discrimination: evidence from a classification image method.

    PubMed

    van Boxtel, Jeroen J A; Lu, Hongjing

    2015-01-20

    Classifying an action as a runner or a walker is a seemingly effortless process. However, it is difficult to determine which features are used with hypothesis-driven research, because biological motion stimuli generally consist of about a dozen joints, yielding an enormous number of potential relationships among them. Here, we develop a hypothesis-free approach based on a classification image method, using experimental data from relatively few trials (∼1,000 trials per subject). Employing ambiguous actions morphed between a walker and a runner, we identified three types of features that play important roles in discriminating bipedal locomotion presented in a side view: (a) critical joint feature, supported by the finding that the similarity of the movements of feet and wrists to prototypical movements of these joints were most reliably used across all participants; (b) structural features, indicated by contributions from almost all other joints, potentially through a form-based analysis; and (c) relational features, revealed by statistical correlations between joint contributions, specifically relations between the two feet, and relations between the wrists/elbow and the hips. When the actions were inverted, only critical joint features remained to significantly influence discrimination responses. When actions were presented with continuous depth rotation, critical joint features and relational features associated strongly with responses. Using a double-pass paradigm, we estimated that the internal noise is about twice as large as the external noise, consistent with previous findings. Overall, our novel design revealed a rich set of critical features that are used in action discrimination. The visual system flexibly selects a subset of features depending on viewing conditions.

  9. Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution

    PubMed Central

    Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin

    2016-01-01

    The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. PMID:26927114

  10. A joint encryption/watermarking system for verifying the reliability of medical images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard.

  11. Joint Prior Learning for Visual Sensor Network Noisy Image Super-Resolution.

    PubMed

    Yue, Bo; Wang, Shuang; Liang, Xuefeng; Jiao, Licheng; Xu, Caijin

    2016-01-01

    The visual sensor network (VSN), a new type of wireless sensor network composed of low-cost wireless camera nodes, is being applied for numerous complex visual analyses in wild environments, such as visual surveillance, object recognition, etc. However, the captured images/videos are often low resolution with noise. Such visual data cannot be directly delivered to the advanced visual analysis. In this paper, we propose a joint-prior image super-resolution (JPISR) method using expectation maximization (EM) algorithm to improve VSN image quality. Unlike conventional methods that only focus on upscaling images, JPISR alternatively solves upscaling mapping and denoising in the E-step and M-step. To meet the requirement of the M-step, we introduce a novel non-local group-sparsity image filtering method to learn the explicit prior and induce the geometric duality between images to learn the implicit prior. The EM algorithm inherently combines the explicit prior and implicit prior by joint learning. Moreover, JPISR does not rely on large external datasets for training, which is much more practical in a VSN. Extensive experiments show that JPISR outperforms five state-of-the-art methods in terms of both PSNR, SSIM and visual perception. PMID:26927114

  12. A joint encryption/watermarking system for verifying the reliability of medical images.

    PubMed

    Bouslimi, Dalel; Coatrieux, Gouenou; Cozic, Michel; Roux, Christian

    2012-09-01

    In this paper, we propose a joint encryption/water-marking system for the purpose of protecting medical images. This system is based on an approach which combines a substitutive watermarking algorithm, the quantization index modulation, with an encryption algorithm: a stream cipher algorithm (e.g., the RC4) or a block cipher algorithm (e.g., the AES in cipher block chaining (CBC) mode of operation). Our objective is to give access to the outcomes of the image integrity and of its origin even though the image is stored encrypted. If watermarking and encryption are conducted jointly at the protection stage, watermark extraction and decryption can be applied independently. The security analysis of our scheme and experimental results achieved on 8-bit depth ultrasound images as well as on 16-bit encoded positron emission tomography images demonstrate the capability of our system to securely make available security attributes in both spatial and encrypted domains while minimizing image distortion. Furthermore, by making use of the AES block cipher in CBC mode, the proposed system is compliant with or transparent to the DICOM standard. PMID:22801525

  13. Joint Audio-Magnetotelluric and Passive Seismic Imaging of the Cerdanya Basin

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Queralt, P.; Ledo, J.; Figueras, S.; Marcuello, A.

    2016-09-01

    The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods ( H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (<40 Ohm m) that corresponds to shallow part of the model up to 500 m depth in the centre of the profile. These values have been associated with Quaternary and Neogene sediments formed by silts, clays, conglomerates, sandstones and gravels, and (2) a deeper resistive zone (1000-3000 Ohm m) interpreted as Palaeozoic basement (sandstones, limestones and slates at NW and conglomerates and microconglomerates at SE). The resistive zone is truncated by a discontinuity at the south-east of the profile which is interpreted as the Alp-La Tet Fault. This discontinuity is represented by a more conductive zone (600 Ohm m approx.) and is explained

  14. Evaluation of the marsh deer stifle joint by imaging studies and gross anatomy.

    PubMed

    Shigue, D A; Rahal, S C; Schimming, B C; Santos, R R; Vulcano, L C; Linardi, J L; Teixeira, C R

    2015-12-01

    This study aimed to evaluate the stifle joint of marsh deer using imaging studies and in comparison with gross anatomy. Ten hindlimbs from 5 marsh deer (Blastocerus dichotomus) were used. Radiography, computed tomography (CT) and magnetic resonance imaging (MRI) were performed in each stifle joint. Two hindlimbs were dissected to describe stifle gross anatomy. The other limbs were sectioned in sagittal, dorsal or transverse planes. In the craniocaudal radiographic view, the lateral femoral condyle was broader than the medial femoral condyle. The femoral trochlea was asymmetrical. Subsequent multiplanar reconstruction revealed in the cranial view that the external surface of the patella was roughened, the medial trochlea ridge was larger than the lateral one, and the extensor fossa at the lateral condyle was next to the lateral ridge. The popliteal fossa was better visualized via the lateral view. Sagittal MRI images identified lateral and medial menisci, caudolateral and craniomedial bundles of cranial cruciate ligament, caudal cruciate ligament, patellar ligament and common extensor tendon. In conclusion, the marsh deer stifle presents some anatomical characteristics of the ovine stifle joint. PMID:25376635

  15. Fast prostate segmentation for brachytherapy based on joint fusion of images and labels

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2014-03-01

    Brachytherapy as one of the treatment methods for prostate cancer takes place by implantation of radioactive seeds inside the gland. The standard of care for this treatment procedure is to acquire transrectal ultrasound images of the prostate which are segmented in order to plan the appropriate seed placement. The segmentation process is usually performed either manually or semi-automatically and is associated with subjective errors because the prostate visibility is limited in ultrasound images. The current segmentation process also limits the possibility of intra-operative delineation of the prostate to perform real-time dosimetry. In this paper, we propose a computationally inexpensive and fully automatic segmentation approach that takes advantage of previously segmented images to form a joint space of images and their segmentations. We utilize joint Independent Component Analysis method to generate a model which is further employed to produce a probability map of the target segmentation. We evaluate this approach on the transrectal ultrasound volume images of 60 patients using a leave-one-out cross-validation approach. The results are compared with the manually segmented prostate contours that were used by clinicians to plan brachytherapy procedures. We show that the proposed approach is fast with comparable accuracy and precision to those found in previous studies on TRUS segmentation.

  16. Anatomy-guided brain PET imaging incorporating a joint prior model

    NASA Astrophysics Data System (ADS)

    Lu, Lijun; Ma, Jianhua; Feng, Qianjin; Chen, Wufan; Rahmim, Arman

    2015-03-01

    We proposed a maximum a posterior (MAP) framework for incorporating information from co-registered anatomical images into PET image reconstruction through a novel anato-functional joint prior. The characteristic of the utilized hyperbolic potential function is determinate by the voxel intensity differences within the anatomical image, while the penalization is computed based on voxel intensity differences in reconstructed PET images. Using realistic simulated 18FDG PET scan data, we optimized the performance of the proposed MAP reconstruction with the joint prior (JP-MAP) and compared its performance with conventional 3D MLEM and 3D MAP reconstructions. The proposed JP-MAP reconstruction algorithm resulted in quantitatively enhanced reconstructed images, as demonstrated in extensive FDG PET simulation study. The proposed method was also tested on a 20 min Florbetapir patient study performed on the high-resolution research tomograph. It was shown to outperform conventional methods in visual as well as quantitative accuracy assessment (in terms of regional noise versus activity value performance). The JP-MAP method was also compared with another MR-guided MAP reconstruction method, utilizing the Bowsher prior and was seen to result in some quantitative enhancements, especially in the case of MR-PET mis-registrations, and a definitive improvement in computational performance.

  17. Infrared image detail enhancement approach based on improved joint bilateral filter

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Chen, Xiaohong

    2016-07-01

    In this paper, we proposed a new infrared image detail enhancement approach. This approach could not only achieve the goal of enhancing the digital detail, but also make the processed image much closer to the real situation. Inspired by the joint-bilateral filter, two adjacent images were utilized to calculate the kernel functions in order to distinguish the detail information from the raw image. We also designed a new kernel function to modify the joint-bilateral filter and to eliminate the gradient reversal artifacts caused by the non-linear filtering. The new kernel is based on an adaptive emerge coefficient to realize the detail layer determination. The detail information was modified by the adaptive emerge coefficient along with two key parameters to realize the detail enhancement. Finally, we combined the processed detail layer with the base layer and rearrange the high dynamic image into monitor-suited low dynamic range to achieve better visual effect. Numerical calculation showed that this new technology has the best value compare to the previous research in detail enhancement. Figures and data flowcharts were demonstrated in the paper.

  18. Acromioclavicular joint injuries and reconstructions: a review of expected imaging findings and potential complications.

    PubMed

    Kim, Andrew C; Matcuk, George; Patel, Dakshesh; Itamura, John; Forrester, Deborah; White, Eric; Gottsegen, Christopher J

    2012-10-01

    Shoulder injuries, including acromioclavicular (AC) joint separations, remain a common reason for presentation to the emergency room. Although the diagnosis can be made apparent through proper history and physical examination by the emergency medicine physician, ascertaining the degree of injury can be difficult on the basis of clinical evaluation alone. While there is consensus in the literature that low-grade AC joint injuries can be treated with conservative management, high-grade injuries will generally require surgical intervention. Furthermore, the treatment of grade 3 injuries remains controversial, making it incumbent upon the radiologist to become comfortable with distinguishing this diagnosis from lower or higher grade injuries. Imaging of AC joint injuries after clinical evaluation is generally initiated in the emergency room setting with plain film radiography; however, on occasion, an alternative modality may be presented to the emergency room radiologist for interpretation. As such, it remains important to be familiar with the appearance of AC joint separations on a variety of modalities. Another possible patient presentation in both the emergent and nonemergent setting includes new onset of pain or instability in the postsurgical shoulder. In this scenario, the onus is often placed on the radiologist to determine whether the pain or instability represents the sequelae of reinjury versus a complication of surgery. The purpose of this review is to present an anatomically based discussion of imaging findings associated with AC joint separations as seen on multiple modalities, as well as to describe and elucidate a variety of potential complications which may present to the emergency room radiologist.

  19. Time-reversal in geophysics: the key for imaging a seismic source, generating a virtual source or imaging with no source (Invited)

    NASA Astrophysics Data System (ADS)

    Tourin, A.; Fink, M.

    2010-12-01

    The concept of time-reversal (TR) focusing was introduced in acoustics by Mathias Fink in the early nineties: a pulsed wave is sent from a source, propagates in an unknown media and is captured at a transducer array termed a “Time Reversal Mirror (TRM)”. Then the waveforms received at each transducer are flipped in time and sent back resulting in a wave converging at the original source regardless of the complexity of the propagation medium. TRMs have now been implemented in a variety of physical scenarios from GHz microwaves to MHz ultrasonics and to hundreds of Hz in ocean acoustics. Common to this broad range of scales is a remarkable robustness exemplified by observations that the more complex the medium (random or chaotic), the sharper the focus. A TRM acts as an antenna that uses complex environments to appear wider than it is, resulting for a broadband pulse, in a refocusing quality that does not depend on the TRM aperture. We show that the time-reversal concept is also at the heart of very active research fields in seismology and applied geophysics: imaging of seismic sources, passive imaging based on noise correlations, seismic interferometry, monitoring of CO2 storage using the virtual source method. All these methods can indeed be viewed in a unified framework as an application of the so-called time-reversal cavity approach. That approach uses the fact that a wave field can be predicted at any location inside a volume (without source) from the knowledge of both the field and its normal derivative on the surrounding surface S, which for acoustic scalar waves is mathematically expressed in the Helmholtz Kirchhoff (HK) integral. Thus in the first step of an ideal TR process, the field coming from a point-like source as well as its normal derivative should be measured on S. In a second step, the initial source is removed and monopole and dipole sources reemit the time reversal of the components measured in the first step. Instead of directly computing

  20. Identification and long-term observation of early joint damage by magnetic resonance imaging in clinically asymptomatic joints in patients with haemophilia A or B despite prophylaxis.

    PubMed

    Olivieri, M; Kurnik, K; Pfluger, T; Bidlingmaier, C

    2012-05-01

    Severe haemophilia is associated with recurrent joint bleeds, which can lead to haemophilic arthropathy. Subclinical joint bleeds have also been associated with joint damage detected using magnetic resonance imaging (MRI). We investigated the development of early changes in clinically asymptomatic joints using MRI in haemophilia A or B patients receiving prophylactic therapy. In this single-centre retrospective cohort study, patients with clinical evidence of joint damage in one ankle and one clinically asymptomatic ankle, in which we performed an MRI scan of both ankles in one session, were enrolled. MRI findings were graded using a 4-point scoring system (0 = normal findings and III = severe joint damage). Since 2000, 38 MRIs in 26 patients have been performed. Starting at a median age of 4 years, 23 patients received prophylaxis 2-3 times weekly. On-demand treatment was performed in three patients. Eight patients (31%) presented with an MRI score of 0, 12 (46%) had a score of I, four (15%) had a score of II, and two (8%) had a score of III in the clinically unaffected ankle. The six patients with MRI scores of II and III had started regular prophylaxis between the ages of 2 years and 15 years; none had developed an inhibitor or experienced a clinically evident bleed in the asymptomatic ankle. During our study, five of 26 patients had a worsening of MRI findings without experiencing a joint bleed. Early morphological changes in clinically asymptomatic ankles can be detected using MRI, despite adequate prophylaxis.

  1. A geological and geophysical assessment of the Royal Center Gas Storage Field in north-central Indiana, a joint NIPSCO, DOE and GRI case study

    SciTech Connect

    Mroz, T.H.; Crismon, J.; Fasnacht, T.; Schaffer, S.; Majer, E.

    1997-11-01

    An effort to evaluate the Royal Center Storage Field was initiated to determine the feasibility of using horizontal well technology to improve the ratio of working gas to base gas and improve deliverability. The geophysical survey and interpretation was initiated by GRI and the geological modeling and reservoir analysis is being accomplished through a Cooperative Research and Development Agreement between Northern Indiana Power Supply Company and US DOE Federal Energy Technology Center. An integrated analysis of well logs, core data, and seismic survey data was applied to the Royal Center Storage Field in the Trenton Limestone aquifer. Core permeability data was compared to Epilog calculated porosity and gas saturations. The data show very complex relationships exist when compared in three dimensions. A correlation of seismic amplitude anomalies with the porosity and gas saturation on cross section was also used to evaluate potential well sites. A downhole seismic survey was then run to determine if the amplitude anomalies from the surface seismic survey could be detected and their orientations calculated to assist in designing the horizontal well. The integrated results from all of the studies were used to site a horizontal well in the northern portion of the field.

  2. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.

    joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.

  3. MR Imaging with Metal-suppression Sequences for Evaluation of Total Joint Arthroplasty.

    PubMed

    Talbot, Brett S; Weinberg, Eric P

    2016-01-01

    Metallic artifact at orthopedic magnetic resonance (MR) imaging continues to be an important problem, particularly in the realm of total joint arthroplasty. Complications often follow total joint arthroplasty and can be expected for a small percentage of all implanted devices. Postoperative complications involve not only osseous structures but also adjacent soft tissues-a highly problematic area at MR imaging because of artifacts from metallic prostheses. Without special considerations, susceptibility artifacts from ferromagnetic implants can unacceptably degrade image quality. Common artifacts include in-plane distortions (signal loss and signal pileup), poor or absent fat suppression, geometric distortion, and through-section distortion. Basic methods to reduce metallic artifacts include use of spin-echo or fast spin-echo sequences with long echo train lengths, short inversion time inversion-recovery (STIR) sequences for fat suppression, a high bandwidth, thin section selection, and an increased matrix. With care and attention to the alloy type (eg, titanium, cobalt-chromium, stainless steel), orientation of the implant, and magnetic field strength, as well as use of proprietary and nonproprietary metal-suppression techniques, previously nondiagnostic studies can yield key diagnostic information. Specifically, sequences such as the metal artifact reduction sequence (MARS), WARP (Siemens Healthcare, Munich, Germany), slice encoding for metal artifact correction (SEMAC), and multiacquisition with variable-resonance image combination (MAVRIC) can be optimized to reveal pathologic conditions previously hidden by periprosthetic artifacts. Complications of total joint arthroplasty that can be evaluated by using MR imaging with metal-suppression sequences include pseudotumoral conditions such as metallosis and particle disease, infection, aseptic prosthesis loosening, tendon injury, and muscle injury.

  4. Geophysical wave tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoguang

    2000-11-01

    This study is concerned with geophysical wave tomography techniques that include advanced diffraction tomography, traveltime calculation techniques and simultaneous attenuation and velocity tomography approaches. We propose the source independent approximation, the Modified Quasi-Linear approximation and develop a fast and accurate diffraction tomography algorithm that uses this approximation. Since the Modified Quasi-Linear approximation accounts for the scattering fields within scatterers, this tomography algorithm produces better image quality than conventional Born approximation tomography algorithm does with or without the presence of multiple scatterers and can be used to reconstruct images of high contrast objects. Since iteration is not required, this algorithm is efficient. We improve the finite difference traveltime calculation algorithm proposed by Vidale (1990). The bucket theory is utilized in order to enhance the sorting efficiency, which accounts for about ten percent computing time improvement for large velocity models. Snell's law is employed to solve the causality problem analytically, which enables the modified algorithm to compute traveltimes accurately and rapidly for high velocity contrast media. We also develop two simultaneous attenuation and velocity tomography approaches, which use traveltimes and amplitude spectra of the observed data, and discuss some of their applications. One approach is processing geophysical data that come from one single survey and the other deals with the repeated survey cases. These approaches are nonlinear and therefore more accurate than linear tomography. A linear system for wave propagation and constant-Q media are assumed in order to develop the tomography algorithms. These approaches not only produce attenuation and velocity images at the same time but also can be used to infer the physical rock properties, such as the dielectric permittivity, the electric conductivity, and the porosity. A crosshole radar

  5. Multipixel system for gigahertz frequency-domain optical imaging of finger joints

    NASA Astrophysics Data System (ADS)

    Netz, Uwe J.; Beuthan, Jürgen; Hielscher, Andreas H.

    2008-03-01

    Frequency-domain optical imaging systems have shown great promise for characterizing blood oxygenation, hemodynamics, and other physiological parameters in human and animal tissues. However, most of the frequency domain systems presented so far operate with source modulation frequencies below 150MHz. At these low frequencies, their ability to provide accurate data for small tissue geometries such as encountered in imaging of finger joints or rodents is limited. Here, we present a new system that can provide data up to 1GHz using an intensity modulated charged coupled device camera. After data processing, the images show the two-dimensional distribution of amplitude and phase of the light modulation on the finger surface. The system performance was investigated and test measurements on optical tissue phantoms were taken to investigate whether higher frequencies yield better signal-to-noise ratios (SNRs). It could be shown that local changes in optical tissue properties, as they appear in the initial stages of rheumatoid arthritis in a finger joint, are detectable by simple image evaluation, with the range of modulation frequency around 500MHz proving to yield the highest SNR.

  6. Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential diagnostic tool

    NASA Astrophysics Data System (ADS)

    Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.

    2010-09-01

    An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.

  7. Objectively measuring signal detectability, contrast, blur and noise in medical images using channelized joint observers

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Luong, Hiêp; Platiša, Ljiljana; Philips, Wilfried

    2013-03-01

    To improve imaging systems and image processing techniques, objective image quality assessment is essential. Model observers adopting a task-based quality assessment strategy by estimating signal detectability measures, have shown to be quite successful to this end. At the same time, costly and time-consuming human observer experiments can be avoided. However, optimizing images in terms of signal detectability alone, still allows a lot of freedom in terms of the imaging parameters. More specifically, fixing the signal detectability defines a manifold in the imaging parameter space on which different "possible" solutions reside. In this article, we present measures that can be used to distinguish these possible solutions from each other, in terms of image quality factors such as signal blur, noise and signal contrast. Our approach is based on an extended channelized joint observer (CJO) that simultaneously estimates the signal amplitude, scale and detectability. As an application, we use this technique to design k-space trajectories for MRI acquisition. Our technique allows to compare the different spiral trajectories in terms of blur, noise and contrast, even when the signal detectability is estimated to be equal.

  8. A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis

    PubMed Central

    Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge

    2015-01-01

    Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability. PMID:26585247

  9. A Description for Rock Joint Roughness Based on Terrestrial Laser Scanner and Image Analysis

    NASA Astrophysics Data System (ADS)

    Ge, Yunfeng; Tang, Huiming; Eldin, M. A. M. Ez; Chen, Pengyu; Wang, Liangqing; Wang, Jinge

    2015-11-01

    Shear behavior of rock mass greatly depends upon the rock joint roughness which is generally characterized by anisotropy, scale effect and interval effect. A new index enabling to capture all the three features, namely brightness area percentage (BAP), is presented to express the roughness based on synthetic illumination of a digital terrain model derived from terrestrial laser scanner (TLS). Since only tiny planes facing opposite to shear direction make contribution to resistance during shear failure, therefore these planes are recognized through the image processing technique by taking advantage of the fact that they appear brighter than other ones under the same light source. Comparison with existing roughness indexes and two case studies were illustrated to test the performance of BAP description. The results reveal that the rock joint roughness estimated by the presented description has a good match with existing roughness methods and displays a wider applicability.

  10. Combination of watermarking and joint watermarking-decryption for reliability control and traceability of medical images.

    PubMed

    Bouslimi, D; Coatrieux, G; Cozic, M; Roux, Ch

    2014-01-01

    In this paper, we propose a novel crypto-watermarking system for the purpose of verifying the reliability of images and tracing them, i.e. identifying the person at the origin of an illegal distribution. This system couples a common watermarking method, based on Quantization Index Modulation (QIM), and a joint watermarking-decryption (JWD) approach. At the emitter side, it allows the insertion of a watermark as a proof of reliability of the image before sending it encrypted; at the reception, another watermark, a proof of traceability, is embedded during the decryption process. The scheme we propose makes interoperate such a combination of watermarking approaches taking into account risks of interferences between embedded watermarks, allowing the access to both reliability and traceability proofs. Experimental results confirm the efficiency of our system, and demonstrate it can be used to identify the physician at the origin of a disclosure even if the image has been modified.

  11. High-Resolution Geophysical 3D Imaging for Archaeology by Magnetic and EM data: The Case of the Iron Age Settlement of Torre Galli, Southern Italy

    NASA Astrophysics Data System (ADS)

    Cella, Federico; Fedi, Maurizio

    2015-11-01

    Magnetic and electromagnetic surveying are effective techniques frequently used in archaeology because the susceptibility and the electric resistivity contrast between the cover soil and several buried finds often lead to detectable anomalies. Significant advances were recently achieved by 3D imaging methods of potential field data that provide an estimate of the magnetization distribution within the subsurface. They provide a high-resolution image of the source distribution, thanks to the differentiation of the field and to the stability of the process. These techniques are fast and quite effective in the case of a compact, isolated, and depth-limited source, i.e., just the kind of source generally occurring in archaeological investigations. We illustrate the high-resolution imaging process for a geophysical study carried out at Torre Galli ( Vibo Valentia, Calabria, Italy), one of the most significant sites of the early Iron Age in Italy. Multi-scale derivative analysis of magnetic data revealed the trends of anomalies shaped and aligned with a regular geometry. This allowed us to make an outline of the buried structures, and then to characterize them in terms of size, shape, and depth by means of the imaging technique. Targeted excavations were therefore addressed to the locations selected by our analysis, revealing structures showing exactly the predicted features and confirming the archaeological hypothesis concerning the settlement organization partitioned in terms of functional differentiation: an intermediate area occupied mostly by defensive structures placed between the village, westward, and the necropolis, eastward.

  12. Comparison of Landsat Thematic Mapper and Geophysical and Environmental Research Imaging Spectrometer data for the Cuprite mining district, Esmeralda, and Nye counties, Nevada

    NASA Astrophysics Data System (ADS)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    Landsat TM images and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data were analyzed for the Cuprite mining district and compared to available geologic and alteration maps of the area. The TM data, with 30 m resolution and 6 broadbands, allowed discrimination of general mineral groups. Clay minerals, playa deposits, and unaltered rocks were mapped as discrete spectral units using the TM data, but specific minerals were not determined, and definition of the individual alteration zones was not possible. The GERIS, with 15 m spatial resolution and 63 spectral bands, permitted construction of complete spectra and identification of specific minerals. Detailed spectra extracted from the images provided the ability to identify the minerals alunite, kaolinite, hematite, and buddingtonite by their spectral characteristics. The GERIS data show a roughly concentrically zoned hydrothermal system. The mineralogy mapped with the aircraft system conforms to previous field and multispectral image mapping. However, identification of individual minerals and spatial display of the dominant mineralogy add information that can be used to help determine the morphology and genetic origin of the hydrothermal system.

  13. Comparison of Landsat Thematic Mapper and Geophysical and Environmental Research Imaging Spectrometer data for the Cuprite mining district, Esmeralda, and Nye counties, Nevada

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.; Kruse, Fred A.

    1989-01-01

    Landsat TM images and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data were analyzed for the Cuprite mining district and compared to available geologic and alteration maps of the area. The TM data, with 30 m resolution and 6 broadbands, allowed discrimination of general mineral groups. Clay minerals, playa deposits, and unaltered rocks were mapped as discrete spectral units using the TM data, but specific minerals were not determined, and definition of the individual alteration zones was not possible. The GERIS, with 15 m spatial resolution and 63 spectral bands, permitted construction of complete spectra and identification of specific minerals. Detailed spectra extracted from the images provided the ability to identify the minerals alunite, kaolinite, hematite, and buddingtonite by their spectral characteristics. The GERIS data show a roughly concentrically zoned hydrothermal system. The mineralogy mapped with the aircraft system conforms to previous field and multispectral image mapping. However, identification of individual minerals and spatial display of the dominant mineralogy add information that can be used to help determine the morphology and genetic origin of the hydrothermal system.

  14. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.

  15. A Robust Image Watermarking in the Joint Time-Frequency Domain

    NASA Astrophysics Data System (ADS)

    Öztürk, Mahmut; Akan, Aydın; Çekiç, Yalçın

    2010-12-01

    With the rapid development of computers and internet applications, copyright protection of multimedia data has become an important problem. Watermarking techniques are proposed as a solution to copyright protection of digital media files. In this paper, a new, robust, and high-capacity watermarking method that is based on spatiofrequency (SF) representation is presented. We use the discrete evolutionary transform (DET) calculated by the Gabor expansion to represent an image in the joint SF domain. The watermark is embedded onto selected coefficients in the joint SF domain. Hence, by combining the advantages of spatial and spectral domain watermarking methods, a robust, invisible, secure, and high-capacity watermarking method is presented. A correlation-based detector is also proposed to detect and extract any possible watermarks on an image. The proposed watermarking method was tested on some commonly used test images under different signal processing attacks like additive noise, Wiener and Median filtering, JPEG compression, rotation, and cropping. Simulation results show that our method is robust against all of the attacks.

  16. Geophysical Sounding

    NASA Astrophysics Data System (ADS)

    Blake, E.

    1998-01-01

    Of the many geophysical remote-sensing techniques available today, a few are suitable for the water ice-rich, layered material expected at the north martian ice cap. Radio echo sounding has been used for several decades to determine ice thickness and internal structure. Selection of operating frequency is a tradeoff between signal attenuation (which typically increases with frequency and ice temperature) and resolution (which is proportional to wavelength). Antenna configuration and size will be additional considerations for a mission to Mars. Several configurations for ice-penetrating radar systems are discussed: these include orbiter-borne sounders, sounding antennas trailed by balloons and penetrators, and lander-borne systems. Lander-borne systems could include short-wave systems capable of resolving fine structure and layering in the upper meters beneath the lander. Spread-spectrum and deconvolution techniques can be used to increase the depth capability of a radar system. If soundings over several locations are available (e.g., with balloons, rovers, or panning short-wave systems), then it will be easier to resolve internal layering, variations in basal reflection coefficient (from which material properties may be inferred), and the geometry of nonhorizontal features. Sonic sounding has a long history in oil and gas exploration. It is, however, unlikely that large explosive charges, or even swept-frequency techniques such as Vibroseis, would be suitable for a Polar lander -- these systems are capable of penetrating several kilometers of material at frequencies of 10-200 Hz, but the energy required to generate the sound waves is large and potentially destructive. The use of audio-frequency and ultrasonic sound generated by piezoelectric crystals is discussed as a possible method to explore layering and fine features in the upper meters of the ice cap. Appropriate choice of transducer(s) will permit operation over a range of fixed or modulated frequencies

  17. Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation.

    PubMed

    Huang, Jianping; Wang, Lihui; Chu, Chunyu; Zhang, Yanli; Liu, Wanyu; Zhu, Yuemin

    2016-04-29

    Diffusion tensor magnetic resonance (DTMR) imaging and diffusion tensor imaging (DTI) have been widely used to probe noninvasively biological tissue structures. However, DTI suffers from long acquisition times, which limit its practical and clinical applications. This paper proposes a new Compressed Sensing (CS) reconstruction method that employs joint sparsity and rank deficiency to reconstruct cardiac DTMR images from undersampled k-space data. Diffusion-weighted images acquired in different diffusion directions were firstly stacked as columns to form the matrix. The matrix was row sparse in the transform domain and had a low rank. These two properties were then incorporated into the CS reconstruction framework. The underlying constrained optimization problem was finally solved by the first-order fast method. Experiments were carried out on both simulation and real human cardiac DTMR images. The results demonstrated that the proposed approach had lower reconstruction errors for DTI indices, including fractional anisotropy (FA) and mean diffusivities (MD), compared to the existing CS-DTMR image reconstruction techniques. PMID:27163322

  18. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Cai, Hong-Kun; Zheng, Hong-Ying

    2015-06-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. Project supported by the Open Research Fund of Chongqing Key Laboratory of Emergency Communications, China (Grant No. CQKLEC, 20140504), the National Natural Science Foundation of China (Grant Nos. 61173178, 61302161, and 61472464), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112013CDJZR180005 and 106112014CDJZR185501).

  19. Alterations of the Temporomandibular Joint on Magnetic Resonance Imaging according to Growth and Development in Schoolchildren

    PubMed Central

    Tanaka, Tatsurou; Konoo, Tetsuro; Habu, Manabu; Oda, Masafumi; Kito, Shinji; Kodama, Masaaki; Kokuryo, Shinya; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishida, Ikuko; Morikawa, Kazumasa; Saeki, Katsura; Maki, Kenshi; Tominaga, Kazuhiro; Masumi, Shin-ichi; Terashita, Masamichi; Morimoto, Yasuhiro

    2012-01-01

    The paper explains the alterations of the temporomandibular joint (TMJ) visualized by magnetic resonance imaging (MRI) according to the growth and development of schoolchildren. Appearance and disappearance of a “double contour-like structure” (DCLS) of the mandibular condyle on MRI according to the growth and development of schoolchildren were demonstrated. In addition, possible constituents of DCLS and the significance of detection of DCLS on MRI were also speculated. The relationship between red marrow and yellow marrow in the articular eminence of temporal bone, the disappearance of DCLS, and alterations of the mandibular condyle have been elucidated. PMID:23316233

  20. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak

    SciTech Connect

    Yan, W.; Chen, Z. Y. Jin, W.; Huang, D. W.; Ding, Y. H.; Li, J. C.; Zhang, X. Q.; Zhuang, G.; Lee, S. G.; Shi, Y. J.

    2014-11-15

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  1. Magnetic resonance imaging of the temporo-mandibular joint and meniscus dislocation.

    PubMed

    Avrahami, E; Schreiber, R; Benmair, J; Paltiel, Z; Machtey, J; Horowitz, I

    1986-12-01

    A preliminary study of the temporo-mandibular joint (TMJ) by magnetic resonance imaging (MRI) was performed. Ten asymptomatic volunteers with no clinical history of TMJ disorder and five patients with a recent history of trauma to the TMJ were examined using a special surface coil. The meniscus, which is only slightly brighter than the surrounding tissue, gave a high signal and was demonstrated very clearly in its normal position in the controls and shown to be dislocated in the post-trauma cases. Four criteria for identification of the temporo-mandibular meniscus were established in the normal cases and compared with the findings in the pathological cases.

  2. Wavelength calibration of x-ray imaging crystal spectrometer on Joint Texas Experimental Tokamak.

    PubMed

    Yan, W; Chen, Z Y; Jin, W; Huang, D W; Ding, Y H; Li, J C; Zhang, X Q; Lee, S G; Shi, Y J; Zhuang, G

    2014-11-01

    The wavelength calibration of x-ray imaging crystal spectrometer is a key issue for the measurements of plasma rotation. For the lack of available standard radiation source near 3.95 Å and there is no other diagnostics to measure the core rotation for inter-calibration, an indirect method by using tokamak plasma itself has been applied on joint Texas experimental tokamak. It is found that the core toroidal rotation velocity is not zero during locked mode phase. This is consistent with the observation of small oscillations on soft x-ray signals and electron cyclotron emission during locked-mode phase.

  3. Image reconstruction by regularized nonlinear inversion--joint estimation of coil sensitivities and image content.

    PubMed

    Uecker, Martin; Hohage, Thorsten; Block, Kai Tobias; Frahm, Jens

    2008-09-01

    The use of parallel imaging for scan time reduction in MRI faces problems with image degradation when using GRAPPA or SENSE for high acceleration factors. Although an inherent loss of SNR in parallel MRI is inevitable due to the reduced measurement time, the sensitivity to image artifacts that result from severe undersampling can be ameliorated by alternative reconstruction methods. While the introduction of GRAPPA and SENSE extended MRI reconstructions from a simple unitary transformation (Fourier transform) to the inversion of an ill-conditioned linear system, the next logical step is the use of a nonlinear inversion. Here, a respective algorithm based on a Newton-type method with appropriate regularization terms is demonstrated to improve the performance of autocalibrating parallel MRI--mainly due to a better estimation of the coil sensitivity profiles. The approach yields images with considerably reduced artifacts for high acceleration factors and/or a low number of reference lines.

  4. [Proposal for a dynamic study of the temporo-mandibular joint, using a computerized image analyzer].

    PubMed

    Tedde, G; Mazzanti, V; Devilla, L; Chessa, G

    1990-04-01

    With the aim to go deep into the knowledge of the morpho-functional anatomical characteristics of the temporo-mandibular joint in humans, a dynamic method of study by means of a computerized analyzer of images is suggested. The acquired advantages are the following: a) the accuracy of evaluation of the chosen morphometric parameters; b) the working speed, from which results: c) the possibility to increase adequately the number of cases and d) the possibility to easily investigate many parameters with a very high accuracy of the quantitative results. Both right and left temporo-mandibular joints of adult individuals aged from 18 to 53 have been studied utilizing lateral tomographies focused at 3.3 mm to the lateral surface of the condylar head. The evaluations were done both in the position of completely closed mouth and in extreme opening. From the barycentre of the condyle several straight lines were drawn according to the figure 2. The length of the segment a-b (distance of profiles of the condyle and mandibular fossa) were evaluated in all the lines counter-clockwise and the results submitted to a statistical analysis. The results furnish very good information on the normal or pathological anatomical characteristics, of the joint.

  5. Clinics in diagnostic imaging (151). Acromioclavicular joint geyser sign with chronic full-thickness supraspinatus tendon (SST) tear.

    PubMed

    Khor, Andrew Yu Keat; Wong, Steven Bak Siew

    2014-02-01

    An 82-year-old man presented with neck pain, right upper limb radiculopathy and right shoulder pain. Physical examination revealed a soft lump over the right shoulder joint, as well as reduced range of shoulder movements. On magnetic resonance imaging, the soft lump was shown to be a cystic mass over the acromioclavicular joint and was related to a full-thickness supraspinatus tendon tear. This is the classic geyser sign. The pathophysiology and clinical features of the geyser sign, and its imaging features with various imaging modalities, are discussed.

  6. Clinics in diagnostic imaging (151). Acromioclavicular joint geyser sign with chronic full-thickness supraspinatus tendon (SST) tear.

    PubMed

    Khor, Andrew Yu Keat; Wong, Steven Bak Siew

    2014-02-01

    An 82-year-old man presented with neck pain, right upper limb radiculopathy and right shoulder pain. Physical examination revealed a soft lump over the right shoulder joint, as well as reduced range of shoulder movements. On magnetic resonance imaging, the soft lump was shown to be a cystic mass over the acromioclavicular joint and was related to a full-thickness supraspinatus tendon tear. This is the classic geyser sign. The pathophysiology and clinical features of the geyser sign, and its imaging features with various imaging modalities, are discussed. PMID:24570312

  7. Clinics in diagnostic imaging (151). Acromioclavicular joint geyser sign with chronic full-thickness supraspinatus tendon (SST) tear.

    PubMed Central

    Khor, Andrew Yu Keat; Wong, Steven Bak Siew

    2014-01-01

    An 82-year-old man presented with neck pain, right upper limb radiculopathy and right shoulder pain. Physical examination revealed a soft lump over the right shoulder joint, as well as reduced range of shoulder movements. On magnetic resonance imaging, the soft lump was shown to be a cystic mass over the acromioclavicular joint and was related to a full-thickness supraspinatus tendon tear. This is the classic geyser sign. The pathophysiology and clinical features of the geyser sign, and its imaging features with various imaging modalities, are discussed. PMID:24570312

  8. Joint detection and segmentation of vertebral bodies in CT images by sparse representation error minimization

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2016-03-01

    Automated detection and segmentation of vertebral bodies from spinal computed tomography (CT) images is usually a prerequisite step for numerous spine-related medical applications, such as diagnosis, surgical planning and follow-up assessment of spinal pathologies. However, automated detection and segmentation are challenging tasks due to a relatively high degree of anatomical complexity, presence of unclear boundaries and articulation of vertebrae with each other. In this paper, we describe a sparse representation error minimization (SEM) framework for joint detection and segmentation of vertebral bodies in CT images. By minimizing the sparse representation error of sampled intensity values, we are able to recover the oriented bounding box (OBB) and segmentation binary mask for each vertebral body in the CT image. The performance of the proposed SEM framework was evaluated on five CT images of the thoracolumbar spine. The resulting Euclidean distance of 1:75+/-1:02 mm, computed between the center points of recovered and corresponding reference OBBs, and Dice coefficient of 92:3+/-2:7%, computed between the resulting and corresponding reference segmentation binary masks, indicate that the proposed framework can successfully detect and segment vertebral bodies in CT images of the thoracolumbar spine.

  9. Computer-aided three dimensional assessment of knee-joint cartilage with magnetic resonance imaging.

    PubMed

    Muensterer, O J; Eckstein, F; Hahn, D; Putz, R

    1996-07-01

    OBJECTIVE: An MRI-based technique for non-invasive assessment of the quantitative distribution of articular cartilage in the knee-joint was to be developed, and its accuracy and reproducibility tested. DESIGN: Three cadaveric specimens and one patient were studied and MRI measurements compared with anatomical sections or arthroscopy. BACKGROUND: Data on articular cartilage thickness is needed for the design of computer models, determination of cartilage material properties from arthroscopy and staging of osteoarthrosis. METHODS: The knees were imaged using strongly T2-weighted spin-echo and FISP-3D sequences. After digital subtraction and automatic segmentation, three-dimensional reconstruction of the cartilages was performed. Surface areas, volumes and the mean cartilage thickness were calculated, and the regional distribution displayed after trigonometric correction. RESULTS: The difference between MRI volumes and those obtained from the sections ranged from 4 to 21% with a reproducibility of +/-4 to +/-12% after repositioning. The thickness maps obtained with MRI were very similar to those from the sections. In the patient, a full-thickness defect demonstrated with MRI was verified by arthroscopy. CONCLUSIONS: Using the technique presented, the quantitative distribution of knee-joint cartilage may be analysed non-invasively, accurately, and in a very time-effective manner, in cadavers and in living subjects. RELEVANCE: To date there exists no accepted method for the accurate, fast and non-invasive assessment of articular cartilage thickness. Such a technique is, however, very helpful for generating computer models of diarthrodial joints, determination of cartilage material properties during arthroscopy, staging of joint disease, and objective control of chondroprotective treatment.

  10. Body Parts Dependent Joint Regressors for Human Pose Estimation in Still Images.

    PubMed

    Dantone, Matthias; Gall, Juergen; Leistner, Christian; Van Gool, Luc

    2014-11-01

    In this work, we address the problem of estimating 2d human pose from still images. Articulated body pose estimation is challenging due to the large variation in body poses and appearances of the different body parts. Recent methods that rely on the pictorial structure framework have shown to be very successful in solving this task. They model the body part appearances using discriminatively trained, independent part templates and the spatial relations of the body parts using a tree model. Within such a framework, we address the problem of obtaining better part templates which are able to handle a very high variation in appearance. To this end, we introduce parts dependent body joint regressors which are random forests that operate over two layers. While the first layer acts as an independent body part classifier, the second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This helps to overcome typical ambiguities of tree structures, such as self-similarities of legs and arms. In addition, we introduce a novel data set termed FashionPose that contains over 7,000 images with a challenging variation of body part appearances due to a large variation of dressing styles. In the experiments, we demonstrate that the proposed parts dependent joint regressors outperform independent classifiers or regressors. The method also performs better or similar to the state-of-the-art in terms of accuracy, while running with a couple of frames per second.

  11. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    PubMed Central

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H. N.; Haudenschild, Dominik R.

    2015-01-01

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed invivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. PMID:25817731

  12. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (<10 km depth). The tomographic model reveals a low-velocity feature between 3 and 5 km depth that lies beneath the caldera, consistent with a magma body. In contrast to earlier tomographic studies, where elevated temperatures were sufficient to explain the recovered low velocities, the larger amplitude low-velocity anomalies in our joint tomography model require low degrees of partial melt (˜10%), and a minimum melt volume of ˜2.5 km3. Furthermore, synthetic tests suggest that even greater magnitude low-velocity anomalies, and by inference larger volumes of magma (up to 8 km3), are needed to explain the observed waveform variability. The lateral extent and shape of the inferred magma body indicates that the extensional tectonic regime at Newberry influences the emplacement of magmatic intrusions. Our study shows that jointly inverting active source and passive source seismic data improves tomographic imaging of the shallow crustal seismic structure of volcanic systems and that active source experiments would benefit from longer deployment times to also record teleseismic sources.

  13. Articular Cartilage Deformation Determined in an Intact Tibiofemoral Joint by Displacement-Encoded Imaging

    PubMed Central

    Chan, Deva D.; Neu, Corey P.; Hull, Maury L.

    2009-01-01

    This study demonstrates the in vitro displacement and strain of articular cartilage in a cyclically-compressed and intact joint using displacement-encoded imaging with stimulated echoes (DENSE) and fast spin echo (FSE). Deformation and strain fields exhibited complex and heterogeneous patterns. The displacements in the loading direction ranged from −1688 to −1481 μm in the tibial cartilage and from −1601 to −764 μm in the femoral cartilage. Corresponding strains ranged from −9.8% to 0.7% and from −4.3% to 0.0%. The displacement and strain precision were determined to be 65 μm and less than 0.2%, respectively. Displacement-encoded magnetic resonance imaging is capable of determining the nonuniform displacements and strains in the articular cartilage of an intact joint to a high precision. Knowledge of these nonuniform strains is critical for the in situ characterization of normal and diseased tissue, as well as the comprehensive evaluation of repair constructs designed using regenerative medicine. PMID:19189290

  14. Interpretation of Borehole Geophysical Logs, Aquifer-Isolation Tests, and Water-Quality Data for Sites 1, 3, and 5 at the Willow Grove Naval Air Station/Joint Reserve Base, Horsham Township, Montgomery County, Pennsylvania: 2005

    USGS Publications Warehouse

    Sloto, Ronald A.

    2007-01-01

    Borehole geophysical logging, heatpulse-flowmeter measurements, borehole television surveys, and aquifer-isolation tests were conducted in 2005 at the Willow Grove Naval Air Station/Joint Reserve Base (NAS/JRB) in Horsham Township, Montgomery County, Pa. This study was done by the U.S. Geological Survey (USGS) in cooperation with the U.S. Navy in support of hydrogeological investigations to address ground-water contamination. Data collected for this study are valuable for understanding ground-water flow in the Stockton Formation at the local and regional scale. The Willow Grove NAS/JRB is underlain by the Stockton Formation, which consists of sedimentary rocks of Triassic age. The rocks of the Stockton Formation form a complex, heterogeneous aquifer with partially connected zones of high permeability. Borehole geophysical logs, heatpulse-flowmeter measurements, and borehole television surveys made in seven boreholes ranging from 70 to 350 ft deep were used to identify potential water-producing fractures and fracture zones and to select intervals for aquifer-isolation tests. An upward vertical hydraulic gradient was measured in one borehole, a downward vertical hydraulic gradient was measured in four boreholes, both an upward and a downward vertical hydraulic gradient were measured in one borehole, and no flow was measurable in one borehole. The aquifer-isolation tests isolated 30 discrete fractures in the seven boreholes for collection of depth-discrete hydraulic and water-quality data. Of the 30 fractures identified as potentially water producing, 26 fractures (87 percent) produced more than 1 gallon per minute of water. The specific capacity of the isolated intervals producing more than 1 gallon per minute ranged from 0.02 to 5.2 gallons per minute per foot. There was no relation between specific capacity and depth of the fracture. Samples for analysis for volatile organic compounds were collected from each isolated zone. Tetrachloroethylene (PCE) was the most

  15. Imaging and Analysis of Void-defects in Solder Joints Formed in Reduced Gravity using High-Resolution Computed Tomography

    NASA Technical Reports Server (NTRS)

    Easton, John W.; Struk, Peter M.; Rotella, Anthony

    2008-01-01

    As a part of efforts to develop an electronics repair capability for long duration space missions, techniques and materials for soldering components on a circuit board in reduced gravity must be developed. This paper presents results from testing solder joint formation in low gravity on a NASA Reduced Gravity Research Aircraft. The results presented include joints formed using eutectic tin-lead solder and one of the following fluxes: (1) a no-clean flux core, (2) a rosin flux core, and (3) a solid solder wire with external liquid no-clean flux. The solder joints are analyzed with a computed tomography (CT) technique which imaged the interior of the entire solder joint. This replaced an earlier technique that required the solder joint to be destructively ground down revealing a single plane which was subsequently analyzed. The CT analysis technique is described and results presented with implications for future testing as well as implications for the overall electronics repair effort discussed.

  16. Application of near surface geophysical methods to image water table response in an Alpine Meadow, Northern California.

    NASA Astrophysics Data System (ADS)

    Ayers, M.; Blacic, T. M.; Craig, M. S.; Yarnell, S. M.

    2015-12-01

    Meadows are recognized for their value to the ecological, hydrologic, and aesthetic functions of a watershed. As natural water retention sinks, meadows attenuate floods, improve water quality and support herbaceous vegetation that stabilize streambanks and promote high biodiversity. Alpine meadows are especially vital, serving as freshwater sources and distributing to lower lying provinces through ground and surface water interaction. These complexes are highly vulnerable to drought conditions, altered seasonal precipitation patterns, and mismanaged land use. One such location, Van Norden meadow located in the Donner Summit area west of Lake Tahoe, is one of the largest sub-alpine meadows in the Sierra Nevada mountain range of Northern California. Van Norden meadow offers a natural hydrologic laboratory. Ownership transfer of the area from a local land trust to the Forestry Service requires restoration toward natural meadow conditions, and involves notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre-and post-base level alteration is required. Comprehensive understanding of groundwater flux that supports meadow reaches relies on knowledge of their often complex stratigraphic and structural subsurface framework. In recent years hydrogeophysics has emphasized the combination of near surface geophysical techniques, collaborated with well and borehole measures, to qualitatively define these parameters. Building on a preliminary GPR investigation conducted in 2014, in which 44 270 MHz transect lines were collected, we returned to Van Norden meadow in late summer 2015 to collect lower frequency GPR (50 and 100 MHz) and electrical resistivity profiles to better define the groundwater table, sedimentary, and structural features of the meadow.

  17. Magnetic resonance imaging findings of osteoarthrosis and effusion in patients with unilateral temporomandibular joint pain.

    PubMed

    Emshoff, R; Brandimaier, I; Bertram, S; Rudisch, A

    2002-12-01

    The purpose of this study was to investigate the relationship between the presence of temporomandibular joint (TMJ) pain and the magnetic resonance (MR) imaging findings of osteoarthrosis (OA), and effusion. The study comprised 112 consecutive TMJ pain patients. Criteria for including a patient were report of unilateral pain near the TMJ, with the presence of unilateral TMJ pain during palpation, function, and/or unassisted or assisted mandibular opening. Bilateral sagittal and coronal MR images were obtained to establish the presence or absence of TMJ OA, and/or effusion. Comparison of the TMJ side-related data showed a significant relationship between the clinical finding of TMJ pain and the MR imaging diagnoses of TMJ OA (P=0.000), and TMJ effusion (P=0.000). Further, there was a significant relationship between the MR imaging diagnosis of TMJ OA and TMJ effusion (P=0.000). Use of the Kappa statistical test indicated poor diagnostic agreement between the presence of TMJ pain and the MR imaging diagnosis of TMJ OA (K=0.22), TMJ effusion (K=0.29), and TMJ 'OA and effusion' (K=0.30). The study's findings suggest that while clinical pain is correlated to TMJ-related MR imaging findings, clinical pain in and of itself, is not reliable for predicting the presence of TMJ OA and/or effusion. Validation of MR imaging diagnoses would involve the investigation of cross-sectional and longitudinal evidence to assess decisive differences in terms of prognosis and/or treatment outcome. PMID:12521314

  18. Magnetic resonance imaging findings of osteoarthrosis and effusion in patients with unilateral temporomandibular joint pain.

    PubMed

    Emshoff, R; Brandimaier, I; Bertram, S; Rudisch, A

    2002-12-01

    The purpose of this study was to investigate the relationship between the presence of temporomandibular joint (TMJ) pain and the magnetic resonance (MR) imaging findings of osteoarthrosis (OA), and effusion. The study comprised 112 consecutive TMJ pain patients. Criteria for including a patient were report of unilateral pain near the TMJ, with the presence of unilateral TMJ pain during palpation, function, and/or unassisted or assisted mandibular opening. Bilateral sagittal and coronal MR images were obtained to establish the presence or absence of TMJ OA, and/or effusion. Comparison of the TMJ side-related data showed a significant relationship between the clinical finding of TMJ pain and the MR imaging diagnoses of TMJ OA (P=0.000), and TMJ effusion (P=0.000). Further, there was a significant relationship between the MR imaging diagnosis of TMJ OA and TMJ effusion (P=0.000). Use of the Kappa statistical test indicated poor diagnostic agreement between the presence of TMJ pain and the MR imaging diagnosis of TMJ OA (K=0.22), TMJ effusion (K=0.29), and TMJ 'OA and effusion' (K=0.30). The study's findings suggest that while clinical pain is correlated to TMJ-related MR imaging findings, clinical pain in and of itself, is not reliable for predicting the presence of TMJ OA and/or effusion. Validation of MR imaging diagnoses would involve the investigation of cross-sectional and longitudinal evidence to assess decisive differences in terms of prognosis and/or treatment outcome.

  19. Interpretation of borehole geophysical logs, aquifer-isolation tests, and water quality, supply wells 1 and 2, Willow Grove Naval Air Station/Joint Reserve Base, Horsham Township, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Goode, Daniel J.; Frasch, Steven M.

    2002-01-01

    Ground water pumped from supply wells 1 and 2 on the Willow Grove Naval Air Station/Joint Reserve Base (NAS/JRB) provides water for use at the base, including potable water for drinking. The supply wells have been contaminated by volatile organic compounds (VOC?s), particularly trichloroethylene (TCE) and tetrachloroethylene (PCE), and the water is treated to remove the VOC?s. The Willow Grove NAS/JRB and surrounding area are underlain by sedimentary rocks of the Triassic-age Stockton Formation, which form a complex, heterogeneous aquifer. The ground-water-flow system for the supply wells was characterized by use of borehole geophysical logs and heatpulse-flowmeter measurements. The heatpulse-flowmeter measurements showed upward and downward borehole flow under nonpumping conditions in both wells. The hydraulic and chemical properties of discrete water-bearing fractures in the supply wells were characterized by isolating each water-bearing fracture with straddle packers. Eight fractures in supply well 1 and five fractures in supply well 2 were selected for testing on the basis of the borehole geophysical logs and borehole television surveys. Water samples were collected from each isolated fracture and analyzed for VOC?s and inorganic constituents. Fractures at 50?59, 79?80, 196, 124?152, 182, 241, 256, and 350?354 ft btoc (feet below top of casing) were isolated in supply well 1. Specific capacities ranged from 0.26 to 5.7 (gal/min)/ft (gallons per minute per foot) of drawdown. The highest specific capacity was for the fracture isolated at 179.8?188 ft btoc. Specific capacity and depth of fracture were not related in either supply well. The highest concentrations of PCE were in water samples collected from fractures isolated at 236.8?245 and 249.8?258 ft btoc, which are hydraulically connected. The concentration of PCE generally increased with depth to a maximum of 39 mg/L (micrograms per liter) at a depth of 249.8? 258 ft btoc and then decreased to 21 mg/L at a

  20. Characterization of Anisotropy of Joint Surface Roughness and Aperture by Variogram Approach Based on Digital Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Chen, S. J.; Zhu, W. C.; Yu, Q. L.; Liu, X. G.

    2016-03-01

    The mechanical and hydraulic anisotropy of rock joints are strongly dependent on the surface roughness and aperture. To date, accurate quantification of the anisotropic characteristics of joint surfaces remains a key issue. For this purpose, the digital image processing (DIP) technique was used to retrieve the joint surface topography, and a variogram function was used to characterize the anisotropy of the joint surface roughness and estimate the joint aperture. A new index, SR V , related to both the sill and the range of the variogram is proposed to describe the anisotropy of the joint surface roughness, and a new aperture index, b, is derived to quantify the joint aperture. These newly proposed indexes, SR V and b, were validated by characterizing three artificial triangular joint surfaces, then the values of both SR V and b were calculated along 42 directions on an artificial joint surface. The range of SR V was between 0.058622 and 0.331283, while that of b was from 0.270433 to 0.397715 mm. The results show that the newly proposed indexes SR V and b are effective for quantifying the anisotropic roughness and aperture of joint surfaces, respectively. In addition, based on the hypothesis that there exists a smooth upper wall for the artificial joint, a relationship between the indexes SR V and b was obtained based on the data analysis. It indicates that the trends of the indexes SR V and b tend to coincide, although some of their individual values differ. In this respect, the hydraulic aperture of rock joints is related to not only surface roughness but also the distribution of asperities on the surface. In addition, this method can also be used to characterize the roughness of real rock joints when the joint surface is treated by dying with ink before taking digital photos. This study provides a new method for properly quantifying the directional variability of joint surface roughness and estimating the mechanical and hydraulic properties of rock joints based

  1. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  2. Relationship between temporomandibular joint pain and magnetic resonance imaging findings of internal derangement.

    PubMed

    Emshoff, R; Innerhofer, K; Rudisch, A; Bertram, S

    2001-04-01

    In terms of clinical decision-making in instances of temporomandibular disorders (TMD) and orofacial pain, there is controversy in the literature over the diagnostic significance of the temporomandibular joint (TMJ)-related variable disk-condyle relationship (DCR). The purpose of this study was to investigate whether in patients with TMJ-related pain, the variable of TMJ pain may be linked to magnetic resonance (MR) imaging findings of internal derangement (ID). The study comprised 163 consecutive TMJ pain patients. Criteria for including a patient were report of orofacial pain referred to the TMJ, and the presence of uni- or bilateral TMJ pain during palpation, during function, and/or during unassisted or assisted mandibular opening. Bilateral sagittal and coronal MR images were obtained to establish the prevalence of TMJ ID types. Analysis of the data revealed the presence of TMJ pain to be associated with significantly more MR imaging diagnoses of ID than an absence of ID (P<0.001), and disk displacement without reduction than disk displacement with reduction (P<0.001). Using chi-square analysis, the results showed a significant relationship between the presence of TMJ-related pain and the MR imaging diagnosis of TMJ ID (P=0.001), and TMJ ID type (P=0.000). Use of the Kappa statistical test indicated poor diagnostic agreement between the presence of TMJ pain and the MR imaging diagnosis of ID (K=0.16). The results suggest that the clinical variable of TMJ pain may have a significant effect on the prevalences of MR imaging diagnoses of TMJ ID. The data confirm the biological concept of DCR as a diagnostic approach in patients with signs and symptoms of TMJ-related pain.

  3. Kastens Receives 2009 Excellence in Geophysical Education Award

    NASA Astrophysics Data System (ADS)

    Manduca, Cathryn A.; Kastens, Kim Anne

    2009-07-01

    Kim Anne Kastens received the Excellence in Geophysical Education Award at the Joint Assembly, held 26 May 2009 in Toronto, Ontario, Canada. The award honors “a sustained commitment to excellence in geophysical education by a team, individual, or group.”

  4. Handbook of Agricultural Geophysics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  5. Imaging Science Panel. Multispectral Imaging Science Working Group joint meeting with Information Science Panel: Introduction

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The state-of-the-art of multispectral sensing is reviewed and recommendations for future research and development are proposed. specifically, two generic sensor concepts were discussed. One is the multispectral pushbroom sensor utilizing linear array technology which operates in six spectral bands including two in the SWIR region and incorporates capabilities for stereo and crosstrack pointing. The second concept is the imaging spectrometer (IS) which incorporates a dispersive element and area arrays to provide both spectral and spatial information simultaneously. Other key technology areas included very large scale integration and the computer aided design of these devices.

  6. Geophysics, Oceanography

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Wentz, F.

    1993-01-01

    Development of decade-long time series of global surface wind measurements for studies ofseasonal-to-interannual climate variability presents unique challenges for space- borne instrumentationbecause of the necessity to combine data sets of 3- to 5-year lifetimes. Before the first Special SensorMicrowave Imager (SSMI), which was launched on the Defence Meteorological Satellite Program(DMSP) F8 spacecraft in July 1987, stopped recording wind speed in December 1991, another SSMIwas launched on DMSP F10 in December 1991. Interpretation of the 1987 - 1993 composite timeseries is dependent upon the space and time characteristics of the differences between concurrent F8and F10 SSMI measurements. This paper emphasizes large geographical regions and 1-month timescale. The F8-F10 area-weighted difference between 60 degrees S and 60 degrees S during 305 daysof 1991 (-0.12 m s^(-1)) was comparable to the year-to-year wind speed variations during 1988-1991. The 10 degree-zonal averaged monthly mean F8-F10 difference was negative (positive) forwind speeds less (greater) than 7.9 m s^(-1), reaching - 0.43(0.32) m s^(-1) at 5(10) m s^(-1). The10 degree-zonal averaged monthly mean F8-F10 bias had considerable variations throughout the yearand between 60 degrees S - 60 degrees N, with the largest temporal variation (1.4 m s^(-1)) in the 50degrees - 60 degrees N region from February to April. The 1991 average value of the monthly meanroot-mean-square (rms) difference between F8 and F10 daily wind speeds in 10 degree-longitudinalbands was 2.0 m s^(-1) over 60 degrees S - 60 degrees N, the amplitude of the annual cycle of therms difference was largest in the northern hemisphere middle latitudes, and the rms difference wasrelated to the wind speed (e.g., at 6 and 10 m s^(-1), the rms difference was 1.7 and 2.7 m s^(-1),respectively). The relationship between monthly mean 1/3 degrees x 1/3 degrees F8-F10 SSMI windspeed differences and integrated water vapor and liquid water content in

  7. Fully automated system for the quantification of human osteoarthritic knee joint effusion volume using magnetic resonance imaging

    PubMed Central

    2010-01-01

    Introduction Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. Methods MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. Results The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). Conclusions The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application. PMID:20846392

  8. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  9. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  10. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    PubMed

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  11. Geophysical imaging of the lacustrine sediments deposited in the La Calderilla Volcanic Caldera (Gran Canaria Island, Spain) for paleoclimate research

    NASA Astrophysics Data System (ADS)

    Himi, Mahjoub; Rodríguez-González, Alejandro; Criado, Constantino; Tapias, Josefina C.; Ravazzi, Cesare; Pérez-Torrado, Francisco; Casas, Albert

    2016-04-01

    The discovery of well-preserved maar structures is important not only for studying the eruptive activity and formation of volcanoes, but also for paleoclimate research, since laminated maar lake sediments may contain very detailed archives of climate and environmental history. Maars are a singular type of volcanic structure generated by explosive phreatomagmatic eruptions as a result of interaction between rising magma and groundwater. This kind of structures are characterised by circular craters, often filled with water and/or lacustrine sediments and surrounded by a ring of pyroclastic deposits.Recently a borehole was drilled at the bottom of La Calderilla volcanic complex which penetrated about 8.7 m in its sedimentary sequence and paleobotanical study has supplied the first evidence of paleoenvironmental evolution during the Holocene on the Gran Canaria Island. This survey, however, did not penetrate into the substrate because the total thickness of the sedimentary fill was unknown. Since the age of formation of La Calderilla volcanic complex based on K/Ar dating is about 85,000 years (Upper Pleistocene), the possibility of its sedimentary fill extends beyond of the Holocene is extremely attractive, since, for example, there are few paleoenvironmental data regarding how much the last glaciation that affected the Canary Islands. In these circumstances, the knowledge of the total thickness of the lacustrine sediments is crucial to design a deeper borehole in the next future. Therefore, the subsurface characterisation provided by geophysics is essential for determining thickness and geometry of the sedimentary filling. Multielectrode ERT method was used to obtain five 2-D resistivity cross-sections into La Calderilla volcanic caldera. An Iris Syscal Pro resistivity system with 48 electrodes connected to a 94 m long cable (2m electrode spacing) in Wenner-Schlumberger configuration for an investigation depth of about 20 m. Data quality (q <2 %).was assessed by

  12. Joint Use of ALOS PALSAR and Landsat TM Images for Urban Change Detection

    NASA Astrophysics Data System (ADS)

    Xu, Jinyan; Zhang, Lu; Liao, Mingsheng; Wang, He

    2013-01-01

    It is an important issue for urban planning to monitor the growth and change information of urban areas using remote sensed images. The joint use of Landsat TM data and ALOS PALSAR quad-polarization data for extracting change information of urban areas is investigated. The potential application and the performance of the two data sets are evaluated. The processes including the extraction of features, the dual-threshold EM change detection based on canonical correlation analysis (CCA) and the detection based on random forest (RF) classification were the major steps. The six bands of Landsat TM data without the thermal band were obtained. The four quad-polarimetric features as R-L circular polarization correlation coefficient, the linear polarization correlation coefficient, the total power (TP) and the cross-polarization isolation (XPI) were extracted from ALOS PALSAR data. And the corresponding differential images were got. The dual-threshold EM change detection and the RF classification were carried out based on these images. Accuracy assessment was done and the results were analyzed and verified.

  13. Joint pattern recognition/data compression concept for ERTS multispectral imaging

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.

    1975-01-01

    This paper describes a new technique which jointly applies clustering and source encoding concepts to obtain data compression. The cluster compression technique basically uses clustering to extract features from the measurement data set which are used to describe characteristics of the entire data set. In addition, the features may be used to approximate each individual measurement vector by forming a sequence of scalar numbers which define each measurement vector in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. A description of a practical cluster compression algorithm is given and experimental results are presented to show trade-offs and characteristics of various implementations. Examples are provided which demonstrate the application of cluster compression to multispectral image data of the Earth Resources Technology Satellite.

  14. A computer-based image analysis method for assessing the severity of hip joint osteoarthritis

    NASA Astrophysics Data System (ADS)

    Boniatis, Ioannis; Costaridou, Lena; Cavouras, Dionisis; Panagiotopoulos, Elias; Panayiotakis, George

    2006-12-01

    A computer-based image analysis method was developed for assessing the severity of hip osteoarthritis (OA). Eighteen pelvic radiographs of patients with verified unilateral hip OA, were digitized and enhanced employing custom developed software. Two ROIs corresponding to osteoarthritic and contralateral-physiological radiographic Hip Joint Spaces (HJSs) were determined on each radiograph. Textural features were extracted from the HJS-ROIs utilizing the run-length matrices and Laws textural measures. A k-Nearest Neighbour based hierarchical tree structure was designed for classifying hips into three OA severity categories labeled as "Normal", "Mild/Moderate", and "Severe". Employing the run-length features, the overall classification accuracy of the hierarchical tree structure was 86.1%. The utilization of Laws' textural measures improved the system classification performance, providing an overall classification accuracy of 94.4%. The proposed method maybe of value to physicians in assessing the severity of hip OA.

  15. Adaptive sparse reconstruction with joint parametric estimation for high-speed uniformly moving targets in coincidence imaging radar

    NASA Astrophysics Data System (ADS)

    Zha, Guofeng; Wang, Hongqiang; Yang, Zhaocheng; Cheng, Yongqiang; Qin, Yuliang

    2016-04-01

    As a complementary imaging technology, coincidence imaging radar (CIR) achieves high resolution for stationary or low-speed targets under the assumption of ignoring the influence of the original position mismatching. As to high-speed moving targets moving from the original imaging cell to other imaging cells during imaging, it is inaccurate to reconstruct the target using the previous imaging plane. We focus on the recovery problem for high-speed moving targets in the CIR system based on the intrapulse frequency random modulation signal in a single pulse. The effects induced by the motion on the imaging performance are analyzed. Because the basis matrix in the CIR imaging equation is determined by the unknown velocity parameter of the moving target, both the target images and basis matrix should be estimated jointly. We propose an adaptive joint parametric estimation recovery algorithm based on the Tikhonov regularization method to update the target velocity and basis matrix adaptively and recover the target images synchronously. Finally, the target velocity and target images are obtained in an iterative manner. Simulation results are presented to demonstrate the efficiency of the proposed algorithm.

  16. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim

    2016-05-01

    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  17. Crustal structure of the northern Menderes Massif, western Turkey, imaged by joint gravity and magnetic inversion

    NASA Astrophysics Data System (ADS)

    Gessner, Klaus; Gallardo, Luis A.; Wedin, Francis; Sener, Kerim

    2016-10-01

    In western Anatolia, the Anatolide domain of the Tethyan orogen is exposed in one of the Earth's largest metamorphic core complexes, the Menderes Massif. The Menderes Massif experienced a two-stage exhumation: tectonic denudation in the footwall of a north-directed Miocene extensional detachment, followed by fragmentation by E-W and NW-SE-trending graben systems. Along the northern boundary of the core complex, the tectonic units of the Vardar-Izmir-Ankara suture zone overly the stage one footwall of the core complex, the northern Menderes Massif. In this study, we explore the structure of the upper crust in the northern Menderes Massif with cross-gradient joint inversion of gravity and aeromagnetic data along a series of 10-km-deep profiles. Our inversions, which are based on gravity and aeromagnetic measurements and require no geological and petrophysical constraints, reveal the salient features of the Earth's upper crust. We image the northern Menderes Massif as a relatively homogenous domain of low magnetization and medium to high density, with local anomalies related to the effect of interspersed igneous bodies and shallow basins. In contrast, both the northern and western boundaries of the northern Menderes Massif stand out as domains where dense mafic, metasedimentary and ultramafic domains with a weak magnetic signature alternate with low-density igneous complexes with high magnetization. With our technique, we are able to delineate Miocene basins and igneous complexes, and map the boundary between intermediate to mafic-dominated subduction-accretion units of the suture zone and the underlying felsic crust of the Menderes Massif. We demonstrate that joint gravity and magnetic inversion are not only capable of imaging local and regional changes in crustal composition, but can also be used to map discontinuities of geodynamic significance such as the Vardar-Izmir-Ankara suture and the West Anatolia Transfer Zone.

  18. In-vitro and in-vivo imaging of MMP activity in cartilage and joint injury

    SciTech Connect

    Fukui, Tomoaki; Tenborg, Elizabeth; Yik, Jasper H.N.; Haudenschild, Dominik R.

    2015-05-08

    Non-destructive detection of cartilage-degrading activities represents an advance in osteoarthritis (OA) research, with implications in studies of OA pathogenesis, progression, and intervention strategies. Matrix metalloproteinases (MMPs) are principal cartilage degrading enzymes that contribute to OA pathogenesis. MMPSense750 is an in-vivo fluorimetric imaging probe with the potential to continuously and non-invasively trace real-time MMP activities, but its use in OA-related research has not been reported. Our objective is to detect and characterize the early degradation activities shortly after cartilage or joint injury with MMPSense750. We determined the appropriate concentration, assay time, and linear range using various concentrations of recombinant MMPs as standards. We then quantified MMP activity from cartilage explants subjected to either mechanical injury or inflammatory cytokine treatment in-vitro. Finally, we performed in-vivo MMP imaging of a mouse model of post-traumatic OA. Our in-vitro results showed that the optimal assay time was highly dependent on the MMP enzyme. In cartilage explant culture media, mechanical impact or cytokine treatment increased MMP activity. Injured knees of mice showed significantly higher fluorescent signal than uninjured knees. We conclude that MMPSense750 detects human MMP activities and can be used for in-vitro study with cartilage, as well as in-vivo studies of knee injury, and can offering real-time insight into the degradative processes that occurring within the joint before structural changes become evident radiographically. - Highlights: • MMPSense750 is near-infrared fluorescent probe which can detect MMP activity. • MMPSense750 can detect human MMP-3, -9, and -13. • The reaction kinetics with MMPSense750 were different for the three MMPs. • MMPSense750 can visualized real time MMP activity in mouse injured knees. • MMPSense750 is convenient tool to evaluate real-time MMP activity non-invasively.

  19. [The temporomandibular joint in juvenile idiopathic arthritis: what radiologists need to look for on magnetic resonance imaging].

    PubMed

    De La Hoz Polo, M; Navallas, M

    2014-01-01

    The term "juvenile idiopathic arthritis" (JIA) encompasses a group of arthritis of unknown cause with onset before the age of 16 years that last for at least 6 weeks. The prevalence of temporomandibular joint involvement in published series ranges from 17% to 87%. Temporomandibular joint involvement is difficult to detect clinically, so imaging plays a key role in diagnosis and monitoring treatment. MRI is the technique of choice for the study of arthritis of the temporomandibular joint because it is the most sensitive technique for detecting acute synovitis and bone edema. Power Doppler ultrasonography can also detect active synovitis by showing the hypervascularization of the inflamed synovial membrane, but it cannot identify bone edema. This article describes the MRI technique for evaluating the temporomandibular joint in patients with juvenile idiopathic arthritis, defines the parameters to look for, and illustrates the main findings.

  20. [The temporomandibular joint in juvenile idiopathic arthritis: what radiologists need to look for on magnetic resonance imaging].

    PubMed

    De La Hoz Polo, M; Navallas, M

    2014-01-01

    The term "juvenile idiopathic arthritis" (JIA) encompasses a group of arthritis of unknown cause with onset before the age of 16 years that last for at least 6 weeks. The prevalence of temporomandibular joint involvement in published series ranges from 17% to 87%. Temporomandibular joint involvement is difficult to detect clinically, so imaging plays a key role in diagnosis and monitoring treatment. MRI is the technique of choice for the study of arthritis of the temporomandibular joint because it is the most sensitive technique for detecting acute synovitis and bone edema. Power Doppler ultrasonography can also detect active synovitis by showing the hypervascularization of the inflamed synovial membrane, but it cannot identify bone edema. This article describes the MRI technique for evaluating the temporomandibular joint in patients with juvenile idiopathic arthritis, defines the parameters to look for, and illustrates the main findings. PMID:24792314

  1. Joint analysis of non-concurrent magnetic resonance imaging and diffuse optical tomography of breast cancer

    NASA Astrophysics Data System (ADS)

    Azar, Fred S.; Lee, Kijoon; Choe, Regine; Corlu, Alper; Konecky, Soren D.; Yodh, Arjun G.

    2007-02-01

    We have developed a novel method for combining non-concurrent MR and DOT data, which integrates advanced multimodal registration and segmentation algorithms within a well-defined workflow. The method requires little user interaction, is computationally efficient for practical applications, and enables joint MR/DOT analysis. The method presents additional advantages: More flexibility than integrated MR/DOT imaging systems, The ability to independently develop a standalone DOT system without the stringent limitations imposed by the MRI device environment, Enhancement of sensitivity and specificity for breast tumor detection, Combined analysis of structural and functional data, Enhancement of DOT data reconstruction through the use of MR-derived a priori structural information. We have conducted an initial patient study which asks an important question: how can functional information on a tumor obtained from DOT data be combined with the anatomy of that tumor derived from MRI data? The study confirms that tumor areas in the patient breasts exhibit significantly higher total hemoglobin concentration (THC) than their surroundings. The results show significance in intra-patient THC variations, and justify the use of our normalized difference measure defined as the distance from the average THC inside the breast, to the average THC inside the tumor volume in terms of the THC standard deviation inside the breast. This method contributes to the long-term goal of enabling standardized direct comparison of MRI and DOT and facilitating validation of DOT imaging methods in clinical studies.

  2. Magnetic resonance imaging of stem cell apoptosis in arthritic joints with a caspase activatable contrast agent.

    PubMed

    Nejadnik, Hossein; Ye, Deju; Lenkov, Olga D; Donig, Jessica S; Martin, John E; Castillo, Rostislav; Derugin, Nikita; Sennino, Barbara; Rao, Jianghong; Daldrup-Link, Heike

    2015-02-24

    About 43 million individuals in the U.S. encounter cartilage injuries due to trauma or osteoarthritis, leading to joint pain and functional disability. Matrix-associated stem cell implants (MASI) represent a promising approach for repair of cartilage defects. However, limited survival of MASI creates a significant bottleneck for successful cartilage regeneration outcomes and functional reconstitution. We report an approach for noninvasive detection of stem cell apoptosis with magnetic resonance imaging (MRI), based on a caspase-3-sensitive nanoaggregation MRI probe (C-SNAM). C-SNAM self-assembles into nanoparticles after hydrolysis by caspase-3, leading to 90% amplification of (1)H MR signal and prolonged in vivo retention. Following intra-articular injection, C-SNAM causes significant MR signal enhancement in apoptotic MASI compared to viable MASI. Our results indicate that C-SNAM functions as an imaging probe for stem cell apoptosis in MASI. This concept could be applied to a broad range of cell transplants and target sites.

  3. Atomic modeling of cryo-electron microscopy reconstructions--joint refinement of model and imaging parameters.

    PubMed

    Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K

    2013-04-01

    When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å.

  4. Images from a jointly-arousing collective ritual reveal affective polarization

    PubMed Central

    Bulbulia, Joseph A.; Xygalatas, Dimitris; Schjoedt, Uffe; Fondevila, Sabela; Sibley, Chris G.; Konvalinka, Ivana

    2013-01-01

    Collective rituals are biologically ancient and culturally pervasive, yet few studies have quantified their effects on participants. We assessed two plausible models from qualitative anthropology: ritual empathy predicts affective convergence among all ritual participants irrespective of ritual role; rite-of-passage predicts emotional differences, specifically that ritual initiates will express relatively negative valence when compared with non-initiates. To evaluate model predictions, images of participants in a Spanish fire-walking ritual were extracted from video footage and assessed by nine Spanish raters for arousal and valence. Consistent with rite-of-passage predictions, we found that arousal jointly increased for all participants but that valence differed by ritual role: fire-walkers exhibited increasingly positive arousal and increasingly negative valence when compared with passengers. This result offers the first quantified evidence for rite of passage dynamics within a highly arousing collective ritual. Methodologically, we show that surprisingly simple and non-invasive data structures (rated video images) may be combined with methods from evolutionary ecology (Bayesian Generalized Linear Mixed Effects models) to clarify poorly understood dimensions of the human condition. PMID:24399979

  5. 0.2-Tesla magnetic resonance imaging of internal lesions of the knee joint: a prospective arthroscopically controlled clinical study.

    PubMed

    Riel, K A; Reinisch, M; Kersting-Sommerhoff, B; Hof, N; Merl, T

    1999-01-01

    The results of magnetic resonance imaging (MRI) were compared with those of arthroscopy in a prospective series of 244 patients. A dedicated system for MRI of limbs and peripheral joints--the 0.2-T Artoscan (Esaote, Italy)--was used for imaging knee joint lesions. T1-weighted spin-echo sagittal images, T2-weighted gradient-echo coronal images, and axial views for lesions of the femoropatellar joint were acquired. Paraxial sagittal and oblique coronal views were obtained for imaging of the cruciate ligaments. This protocol allowed excellent visualization of the cruciate ligaments and medial and lateral meniscus in almost all patients. Compared with arthroscopy performed within 48 h after imaging, the sensitivity, specificity, and accuracy were respectively 93%, 97%, and 95% for tears of the medial meniscus; 82%, 96%, and 93% for tears of the lateral meniscus; 100%, 100%, and 100% for tears of the posterior cruciate ligament; 98%, 98%, and 97% for tears of the anterior cruciate ligament; and 72%, 100%, and 92% for full-thickness articular cartilage lesions. The examination can be performed within 30-45 min at lower cost than diagnostic arthroscopy. MRI with a 0.2-T magnet is a safe and valuable adjunct to the clinical examination of the knee and an aid to efficient preoperative planning.

  6. Double images hiding by using joint transform correlator architecture adopting two-step phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyan; Zhao, Daomu; Huang, Yinbo

    2013-06-01

    Based on the joint Fresnel transform correlator, a new system for double images hiding is presented. By this security system, the dual secret images are encrypted and recorded as intensity patterns employing phase-shifting interference technology. To improve the system security, a dual images hiding method is used. By digital means, the deduced encryption complex distribution is divided into two subparts. For each image, only one subpart is reserved and modulated by a phase factor. Then these modified results are combined together and embedded into the host image. With all correct keys, by inverse Fresnel transform, the secret images can be extracted. By the phase modulation, the cross talk caused by images superposition can be reduced for their spatial parallel separation. Theoretical analyses have shown the system's feasibility. Computer simulations are performed to show the encryption capacity of the proposed system. Numerical results are presented to verify the validity and the efficiency of the proposed method.

  7. Small field of view cone beam CT temporomandibular joint imaging dosimetry

    PubMed Central

    Lukat, T D; Wong, J C M; Lam, E W N

    2013-01-01

    Objectives: Cone beam CT (CBCT) is generally accepted as the imaging modality of choice for visualisation of the osseous structures of the temporomandibular joint (TMJ). The purpose of this study was to compare the radiation dose of a protocol for CBCT TMJ imaging using a large field of view Hitachi CB MercuRay™ unit (Hitachi Medical Systems, Tokyo, Japan) with an alternative approach that utilizes two CBCT acquisitions of the right and left TMJs using the Kodak 9000® 3D system (Carestream, Rochester, NY). Methods: 25 optically stimulated luminescence dosemeters were placed in various locations of an anthropomorphic RANDO® Man phantom (Alderson Research Laboratories, Stanford, CT). Dosimetric measurements were performed for each technique, and effective doses were calculated using the 2007 International Commission on Radiological Protection tissue weighting factor recommendations for all protocols. Results: The radiation effective dose for the CB MercuRay technique was 223.6 ± 1.1 μSv compared with 9.7 ± 0.1 μSv (child), 13.5 ± 0.9 μSv (adolescent/small adult) and 20.5 ± 1.3 μSv (adult) for the bilateral Kodak acquisitions. Conclusions: Acquisitions of individual right and left TMJ volumes using the Kodak 9000 3D CBCT imaging system resulted in a more than ten-fold reduction in the effective dose compared with the larger single field acquisition with the Hitachi CB MercuRay. This decrease is made even more significant when lower tube potential and tube current settings are used. PMID:24048693

  8. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  9. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  10. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE

  11. MicroPure Imaging for the Evaluation of Microcalcifications in Gouty Arthritis Involving the First Metatarsophalangeal Joint: A Preliminary Study

    PubMed Central

    Yin, Lu; Zhu, Jiaan; Xue, Qin; Wang, Niansong; Hu, Zhenlong; Huang, Yunxia; Liu, Fang; Hu, Bing

    2014-01-01

    Objective To assess the value of MicroPure, a new ultrasound image processing technique, in identifying microcalcifications (formed by monosodium urate crystals) in the first metatarsophalangeal joints attacked by gout compared to gray-scale ultrasound images. Materials and Methods Thirty-six patients who fulfilled the study inclusion criteria underwent gray-scale ultrasound and MicroPure examinations of the first metatarsophalangeal joints attacked by gout. Static images of the target areas were acquired using gray-scale ultrasound and MicroPure. Two independent and blinded investigators analyzed the images to determine the number of microcalcifications and to score for image quality and artifacts. Results The two investigators observed significantly more microcalcifications with MicroPure compared to gray-scale ultrasound (ρ<0.001). The level of agreement between the investigators consistently increased from gray-scale ultrasound to MicroPure imaging (gray-scale interclass correlation coefficient of 0.69 vs. MicroPure interclass correlation coefficient of 0.81). One investigator preferred the MicroPure image quality over gray-scale ultrasound (ρ<0.001), but the other investigator disagreed (ρ<0.001). Both investigators observed fewer artifacts with MicroPure than with gray-scale ultrasound (ρ<0.009). Conclusion MicroPure imaging identified significantly more microcalcifications than gray-scale ultrasound. PMID:24788200

  12. Tomographic x-ray guided three-dimensional diffuse optical imaging of osteoarthritis in the finger joints: a clinical study

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huizhu; Zhang, Qizhi; Sobel, Eric S.; Jiang, Huabei

    2009-02-01

    To investigate the typical optical findings that can be used to characterize osteoarthritis, the distal interphalangeal finger joints from 40 subjects including 22 patients and 18 healthy controllers were examined clinically and scanned by a novel hybrid imaging system. The hybrid imaging platform integrated a C-arm based x-ray tomosynthetic system with a multi-channel optic-fiber based diffuse optical imaging system. Optical images were recovered qualitatively and quantitatively based on a regularization-based reconstruction algorithm that can incorporate the fine structural maps obtained from x-ray as a priori spatial information into diffuse optical tomography reconstruction procedures. Our findings suggest statistically significant differences between healthy and osteoarthritis finger joints. X-ray guided diffuse optical imaging may not only detect radiologic features supporting the development of an inflammatory disorder but may also help discriminate specific optical features that differ between osteoarthritic and healthy joints. These quantitative optical features are also potentially important for a better understanding of inflammatory arthritis in humans.

  13. Geophysical imaging of near subsurface layers to detect fault and fractured zones in the Tournemire Experimental Platform, France.

    NASA Astrophysics Data System (ADS)

    Nhu Ba, Elise, Vi; Noble, Mark; Gélis, Céline; Gesret, Alexandrine; Cabrera, Justo

    2013-04-01

    could either be detected in the upper limestone formation because of the acquisition geometry. In order to better image the clay-rock and upper limestone layers, IRSN, Mines ParisTech and UPPA conducted large-scale 2D and 3D very high-resolution seismic surveys in 2010 and 2011 from the surface in the framework of the GNR TRASSE. We analyze this new dataset with the first arrival traveltime tomography method in order to assess its potential to detect fault and fracture zones in near subsurface layers. For this purpose, we develop a new fast inversion algorithm that allows introducing a priori information and choosing a specific model parameterization. We validate our approach based on the Simultaneous Iterative Reconstruction Technique with synthetic data and present the first results of the new real dataset processing. We finally compare these results to a 2D high-resolution electrical resistivity profile acquired at the same location. These electrical resistivity data could also be considered as some a priori information in our inversion scheme.

  14. Sensitivity analysis and application in exploration geophysics

    NASA Astrophysics Data System (ADS)

    Tang, R.

    2013-12-01

    In exploration geophysics, the usual way of dealing with geophysical data is to form an Earth model describing underground structure in the area of investigation. The resolved model, however, is based on the inversion of survey data which is unavoidable contaminated by various noises and is sampled in a limited number of observation sites. Furthermore, due to the inherent non-unique weakness of inverse geophysical problem, the result is ambiguous. And it is not clear that which part of model features is well-resolved by the data. Therefore the interpretation of the result is intractable. We applied a sensitivity analysis to address this problem in magnetotelluric(MT). The sensitivity, also named Jacobian matrix or the sensitivity matrix, is comprised of the partial derivatives of the data with respect to the model parameters. In practical inversion, the matrix can be calculated by direct modeling of the theoretical response for the given model perturbation, or by the application of perturbation approach and reciprocity theory. We now acquired visualized sensitivity plot by calculating the sensitivity matrix and the solution is therefore under investigation that the less-resolved part is indicated and should not be considered in interpretation, while the well-resolved parameters can relatively be convincing. The sensitivity analysis is hereby a necessary and helpful tool for increasing the reliability of inverse models. Another main problem of exploration geophysics is about the design strategies of joint geophysical survey, i.e. gravity, magnetic & electromagnetic method. Since geophysical methods are based on the linear or nonlinear relationship between observed data and subsurface parameters, an appropriate design scheme which provides maximum information content within a restricted budget is quite difficult. Here we firstly studied sensitivity of different geophysical methods by mapping the spatial distribution of different survey sensitivity with respect to the

  15. Gradient-based correction of chromatic aberration in the joint acquisition of color and near-infrared images

    NASA Astrophysics Data System (ADS)

    Sadeghipoor, Zahra; Lu, Yue M.; Süsstrunk, Sabine

    2015-02-01

    Chromatic aberration distortions such as wavelength-dependent blur are caused by imperfections in photographic lenses. These distortions are much more severe in the case of color and near-infrared joint acquisition, as a wider band of wavelengths is captured. In this paper, we consider a scenario where the color image is in focus, and the NIR image captured with the same lens and same focus settings is out-of-focus and blurred. To reduce chromatic aberration distortions, we propose an algorithm that estimates the blur kernel and deblurs the NIR image using the sharp color image as a guide in both steps. In the deblurring step, we retrieve the lost details of the NIR image by exploiting the sharp edges of the color image, as the gradients of color and NIR images are often correlated. However, differences of scene reflections and light in visible and NIR bands cause the gradients of color and NIR images to be different in some regions of the image. To handle this issue, our algorithm measures the similarities and differences between the gradients of the NIR and color channels. The similarity measures guide the deblurring algorithm to efficiently exploit the gradients of the color image in reconstructing high-frequency details of NIR, without discarding the inherent differences between these images. Simulation results verify the effectiveness of our algorithm, both in estimating the blur kernel and deblurring the NIR image, without producing ringing artifacts inherent to the results of most deblurring methods.

  16. Robust image transmission using a new joint source channel coding algorithm and dual adaptive OFDM

    NASA Astrophysics Data System (ADS)

    Farshchian, Masoud; Cho, Sungdae; Pearlman, William A.

    2004-01-01

    In this paper we consider the problem of robust image coding and packetization for the purpose of communications over slow fading frequency selective channels and channels with a shaped spectrum like those of digital subscribe lines (DSL). Towards this end, a novel and analytically based joint source channel coding (JSCC) algorithm to assign unequal error protection is presented. Under a block budget constraint, the image bitstream is de-multiplexed into two classes with different error responses. The algorithm assigns unequal error protection (UEP) in a way to minimize the expected mean square error (MSE) at the receiver while minimizing the probability of catastrophic failure. In order to minimize the expected mean square error at the receiver, the algorithm assigns unequal protection to the value bit class (VBC) stream. In order to minimizes the probability of catastrophic error which is a characteristic of progressive image coders, the algorithm assigns more protection to the location bit class (LBC) stream than the VBC stream. Besides having the advantage of being analytical and also numerically solvable, the algorithm is based on a new formula developed to estimate the distortion rate (D-R) curve for the VBC portion of SPIHT. The major advantage of our technique is that the worst case instantaneous minimum peak signal to noise ratio (PSNR) does not differ greatly from the averge MSE while this is not the case for the optimal single stream (UEP) system. Although both average PSNR of our method and the optimal single stream UEP are about the same, our scheme does not suffer erratic behavior because we have made the probability of catastrophic error arbitarily small. The coded image is sent via orthogonal frequency division multiplexing (OFDM) which is a known and increasing popular modulation scheme to combat ISI (Inter Symbol Interference) and impulsive noise. Using dual adaptive energy OFDM, we use the minimum energy necessary to send each bit stream at a

  17. Human soleus muscle architecture at different ankle joint angles from magnetic resonance diffusion tensor imaging

    PubMed Central

    Sinha, Usha; Hodgson, John A.; Edgerton, Reggie V.

    2011-01-01

    The orientation of muscle fibers influences the physiological cross-sectional area, the relationship between fiber shortening and aponeurosis shear, and the total force produced by the muscle. Such architectural parameters are challenging to determine particularly in vivo in multicompartment structures such as the human soleus with a complex arrangement of muscle fibers. The objective of this study was to map the fiber architecture of the human soleus in vivo at rest in both neutral and plantarflexed ankle positions using an MRI-based method of diffusion tensor imaging (DTI). Six subjects were imaged at 3 Tesla with the foot at rest in the two ankle positions. Eigenvalues, fractional anisotropy (FA), and eigenvector orientations of fibers in the different soleus subcompartments were evaluated after denoising of the diffusion tensor. The fiber architecture from DTI was similar to earlier studies based on a 3D fiber model from cadavers. The three eigenvalues of the diffusion tensor increased by ∼14% on increasing the joint plantarflexion angle in all of the soleus subcompartments, whereas FA showed a trend to decrease in the posterior and marginal soleus and to increase in the anterior soleus. The angle change in the lead eigenvector between the two foot positions was significant: ∼41° for the posterior soleus and ∼48° for the anterior soleus. Fibers tracked from the subcompartments support these changes seen in the eigenvector orientations. DTI-derived, subject-specific, muscle morphological data could potentially be used to model a more complete description of muscle performance and changes from disease. PMID:21164150

  18. Integration of historical aerial and satellite photos, recent satellite images and geophysical surveys for the knowledge of the ancient Dyrrachium (Durres, Albania)

    NASA Astrophysics Data System (ADS)

    Malfitana, Daniele; Shehi, Eduard; Masini, Nicola; Scardozzi, Giuseppe

    2010-05-01

    The paper presents the preliminary results of an integrated multidiscipliary research project concerning the urban area of the modern Durres (ancient Dyrrachium). Here a joint Italian and Albanian researcher are starting preliminary investigations on the place of an ancient roman villa placed in the urban centre of the modern town. In a initial phase are offering interesting results the use of a rich multitemporal remote sensing data-set, historical aerial photos of 1920s and 1930s, photos of USA spy satellites of 1960s and 1970s (Corona KH-4A and KH-4B), and very high resolution satellite imagery. The historical aerial documentation is very rich and includes aerial photogrammetrich flights of two Italian Institutions: the private company SARA - Società Anonima Rilevamenti Aerofotogrammetrici in Rome (1928) and the IGM - Istituto Geografico Militare (1936, 1937 e 1941), which flew on Durres for purposes of cartographic production and military. These photos offer an image of the city before the urban expansion after the Second World War and in recent decades, progressively documented by satellite images of the 1960s-1970s and recent years. They enable a reconstruction of the ancient topography of the urban area, even with the possibility of detailed analysis, as in the case of the the Roman villa, nowadays buried under a modern garden, but also investigated with a GPR survey, in order to rebuild its plan and contextualize the villa in relation to the urban area of the ancient Dyrrachium.

  19. Joint source-channel coding with allpass filtering source shaping for image transmission over noisy channels

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Chen, Chang W.

    2000-04-01

    In this paper, we proposed a fixed-length robust joint source- channel coding (JSCC) scheme for image transmission over noisy channels. Three channel models are studied: binary symmetric channels (BSC) and additive white Gaussian noise (AWGN) channels for memoryless channels, and Gilbert-Elliott channels (GEC) for bursty channels. We derive, in this research, an explicit operational rate-distortion (R-D) function, which represents an end-to-end error measurement that includes errors due to both quantization and channel noise. In particular, we are able to incorporate the channel transition probability and channel bit error rate into the R-D function in the case of bursty channels. With the operational R-D function, bits are allocated not only among different subsources, but also between source coding and channel coding so that, under a fixed transmission rate, an optimum tradeoff between source coding accuracy and channel error protection can be achieved. This JSCC scheme is also integrated with allpass filtering source shaping to further improve the robustness against channel errors. Experimental results show that the proposed scheme can achieve not only high PSNR performance, but also excellent perceptual quality. Compared with the state-of-the-art JSCC schemes, this proposed scheme outperforms most of them especially when the channel mismatch occurs.

  20. Pseudogout in the temporomandibular joint with imaging, arthroscopic, operative, and pathologic findings. Report of an unusual case.

    PubMed

    Laviv, Amir; Sadow, Peter M; Keith, David A

    2015-06-01

    The authors present a case of a 60-year-old woman with a destructive painful condition in the right temporomandibular joint (TMJ) that proved to be calcium pyrophosphate crystal deposits at subsequent biopsy examination. The patient presented with the chief complaints of pain and limitation that had not resolved with splint therapy, medications, and habit control. Magnetic resonance imaging studies showed internal derangement without reduction. Right TMJ arthroscopy with manipulation of the jaw under anesthesia showed unique findings of fronds of synovial tissue in the posterior joint space and areas of white matter. Because there was no long-term improvement in her clinical symptoms, she subsequently underwent arthroplasty of the right joint, with the white material clearly seen at surgery, and the biopsy examination confirmed the clinical and arthroscopic impression of pseudogout. The presentation, diagnosis, pathology, and treatment of pseudogout of the TMJ are discussed.

  1. Comparison of ultrasound and magnetic resonance imaging for diagnosis and follow-up of joint lesions in patients with haemophilia.

    PubMed

    Sierra Aisa, C; Lucía Cuesta, J F; Rubio Martínez, A; Fernández Mosteirín, N; Iborra Muñoz, A; Abío Calvete, M; Guillén Gómez, M; Moretó Quintana, A; Rubio Félix, D

    2014-01-01

    Haematomas and recurrent haemarthroses are a common problem in haemophilia patients from early age. Early diagnosis is critical in preventing haemophilic arthritis, and recent years have seen excellent advances in musculoskeletal ultrasound as a diagnostic tool in soft tissue lesions. In this study, we compared the results of ultrasound imaging for the diagnosis of musculoskeletal injuries in haemophilia patients with scores obtained using magnetic resonance (MRI) scans. A total of 61 haemophilia patients aged 4-82 years were included in this study. Both knees and ankles of each patient were assessed using the Gilbert (clinical assessment) and Pettersson scores (X-ray assessment). Patients with severe haemophilia (n = 30) were examined using ultrasound and MRI (Denver scoring system). Results obtained with ultrasound and MRI in severe patients were correlated using the Pearson test. In patients with severe haemophilia, normal joints were similarly assessed with MRI and ultrasound (κ = 1.000). By component of joint assessment, haemarthrosis was similarly diagnosed with both techniques in all joints (κ = 1.000). A good positive correlation was found between these techniques in detecting and locating synovial hyperplasia (κ = 0.839-1.000, knees and ankles respectively), and erosion of margins (κ = 0.850-1.000). The presence of bone cysts or cartilage loss was better detected with MRI (κ = 0.643-0.552 for knees and ankles, and κ = 0.643-0.462 respectively). Ultrasound is useful in detecting joint bleeds, synovial hyperplasia and joint erosions, with results comparable to those of MRI. A quick and affordable technique, ultrasound imaging may be useful for monitoring joint bleeds and structure normalization and maintenance in routine practice.

  2. Fundamentals of Geophysics

    NASA Astrophysics Data System (ADS)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  3. EDITORIAL: The interface between geophysics and engineering

    NASA Astrophysics Data System (ADS)

    2004-03-01

    imaging to reduce uncertainty and associated risk. In the economically dominant area of petroleum exploration and production, the focus has moved dramatically from exploration to production. This shift is leading increasingly to integration between petroleum geoscience and petrophysics on the one hand, and petroleum engineering and rock mechanics on the other. This integration means that petroleum engineers need to be aware of developments in geophysics, and geophysicists need to be aware of the problems and requirements of the reservoir engineer. Journal of Geophysics and Engineering has been established firmly in that context, and we expect this trend to strengthen and extend far into the future. The Editors welcome your submissions, and comments on this first issue of JGE.

  4. Technetium-99m-labeled annexin V imaging for detecting prosthetic joint infection in a rabbit model.

    PubMed

    Tang, Cheng; Wang, Feng; Hou, Yanjie; Lu, Shanshan; Tian, Wei; Xu, Yan; Jin, Chengzhe; Wang, Liming

    2015-05-01

    Accurate and timely diagnosis of prosthetic joint infection is essential to initiate early treatment and achieve a favorable outcome. In this study, we used a rabbit model to assess the feasibility of technetium-99m-labeled annexin V for detecting prosthetic joint infection. Right knee arthroplasty was performed on 24 New Zealand rabbits. After surgery, methicillin-susceptible Staphylococcus aureus was intra-articularly injected to create a model of prosthetic joint infection (the infected group, n = 12). Rabbits in the control group were injected with sterile saline (n = 12). Seven and 21 days after surgery, technetium-99m-labeled annexin V imaging was performed in 6 rabbits of each group. Images were acquired 1 and 4 hours after injection of technetium-99m-labeled annexin V (150 MBq). The operated-to-normal-knee activity ratios were calculated for quantitative analysis. Seven days after surgery, increased technetium-99m-labeled annexin V uptake was observed in all cases. However, at 21 days a notable decrease was found in the control group, but not in the infected group. The operated-to-normal-knee activity ratios of the infected group were 1.84 ± 0.29 in the early phase and 2.19 ± 0.34 in the delay phase, both of which were significantly higher than those of the control group (P = 0.03 and P = 0.02). The receiver operator characteristic curve analysis showed that the operated-to-normal-knee activity ratios of the delay phase at 21 days was the best indicator, with an accuracy of 80%. In conclusion, technetium-99m-labeled annexin V imaging could effectively distinguish an infected prosthetic joint from an uninfected prosthetic joint in a rabbit model.

  5. Geophysical Model Research and Results

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Flanagan, M

    2004-07-07

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics: (1) a priori geophysical models, (2) surface wave models, (3) receiver function derived profiles, and (4) stochastic geophysical models. The first, a priori models, can be used to predict a host of geophysical measurements, such as body wave travel times, and can be derived from direct regional studies or even by geophysical analogy. Use of these models is particularly important in aseismic regions or regions without seismic stations, where data of direct measurements might not exist. Lawrence Livermore National Laboratory (LLNL) has developed the Western Eurasia and North Africa (WENA) model which has been evaluated using a number of data sets, including travel times, surface waves, receiver functions, and waveform analysis (Pasyanos et al., 2004). We have joined this model with our Yellow Sea - Korean Peninsula (YSKP) model and the Los Alamos National Laboratory (LANL) East Asia model to construct a model for all of Eurasia and North Africa. Secondly, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. We are also using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In a collaborative project with Ammon, et al., they have been focusing on stations throughout western Eurasia and North Africa, while we have been focusing on LLNL deployments in the Middle East, including Kuwait, Jordan, and the United Arab Emirates. Finally, we have been

  6. Geophysics in INSPIRE

    NASA Astrophysics Data System (ADS)

    Sőrés, László

    2013-04-01

    INSPIRE is a European directive to harmonize spatial data in Europe. Its' aim is to establish a transparent, multidisciplinary network of environmental information by using international standards and OGC web services. Spatial data themes defined in the annex of the directive cover 34 domains that are closely bundled to environment and spatial information. According to the INSPIRE roadmap all data providers must setup discovery, viewing and download services and restructure data stores to provide spatial data as defined by the underlying specifications by 2014 December 1. More than 3000 institutions are going to be involved in the progress. During the data specification process geophysics as an inevitable source of geo information was introduced to Annex II Geology. Within the Geology theme Geophysics is divided into core and extended model. The core model contains specifications for legally binding data provisioning and is going to be part of the Implementation Rules of the INSPIRE directives. To minimize the work load of obligatory data transformations the scope of the core model is very limited and simple. It covers the most essential geophysical feature types that are relevant in economic and environmental context. To fully support the use cases identified by the stake holders the extended model was developed. It contains a wide range of spatial object types for geophysical measurements, processed and interpreted results, and wrapper classes to help data providers in using the Observation and Measurements (O&M) standard for geophysical data exchange. Instead of introducing the traditional concept of "geophysical methods" at a high structural level the data model classifies measurements and geophysical models based on their spatial characteristics. Measurements are classified as geophysical station (point), geophysical profile (curve) and geophysical swath (surface). Generic classes for processing results and interpretation models are curve model (1D), surface

  7. Image reconstruction scheme that combines modified Newton method and efficient initial guess estimation for optical tomography of finger joints.

    PubMed

    Yuan, Zhen; Jiang, Huabei

    2007-05-10

    What we believe to be a novel 3D diffuse optical tomography scheme is developed to reconstruct images of both absorption and scattering coefficients of finger joint systems. Compared with our previous reconstruction method, the improved 3D algorithm employs both modified Newton methods and an enhanced initial value optimization scheme to recover the optical properties of highly heterogeneous media. The developed approach is tested using simulated, phantom, and in vivo measurement data. The recovered results suggest that the improved approach is able to provide quantitatively better images than our previous algorithm for optical tomography reconstruction.

  8. In-situ imaging of articular cartilage of the first carpometacarpal joint using co-registered optical coherence tomography and computed tomography

    NASA Astrophysics Data System (ADS)

    Cernohorsky, Paul; de Bruin, Daniel M.; van Herk, Marcel; Bras, Johannes; Faber, Dirk J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2012-06-01

    Conventional imaging modalities are unable to depict the early degeneration of articular cartilage in osteoarthritis, especially in small joints. Optical coherence tomography has previously been used successfully in high-resolution imaging of cartilage tissue. This pilot cadaver study demonstrates the use of intra-articular optical coherence tomography in imaging of articular cartilage of the first carpometacarpal joint, producing high resolution images of the articular surface in which cartilage thickness and surface characteristics were assessed. Findings on optical coherence tomography were confirmed with histology. Furthermore, co-registration of optical coherence tomography and computed tomography was used to accurately determine the scanned trajectory and reconstruct a true-scale image overlay.

  9. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  10. Fiber optic geophysical sensors

    DOEpatents

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  11. A joint watermarking/encryption algorithm for verifying medical image integrity and authenticity in both encrypted and spatial domains.

    PubMed

    Bouslimi, D; Coatrieux, G; Roux, Ch

    2011-01-01

    In this paper, we propose a new joint watermarking/encryption algorithm for the purpose of verifying the reliability of medical images in both encrypted and spatial domains. It combines a substitutive watermarking algorithm, the quantization index modulation (QIM), with a block cipher algorithm, the Advanced Encryption Standard (AES), in CBC mode of operation. The proposed solution gives access to the outcomes of the image integrity and of its origins even though the image is stored encrypted. Experimental results achieved on 8 bits encoded Ultrasound images illustrate the overall performances of the proposed scheme. By making use of the AES block cipher in CBC mode, the proposed solution is compliant with or transparent to the DICOM standard.

  12. Real-time measurement of joint movement using a digital signal processor-based image processing system

    NASA Astrophysics Data System (ADS)

    Moorehead, John D.; Harvey, David M.; Dangerfield, Peter H.; Montgomery, S. C.

    1994-09-01

    A new low cost imaging system has been devised to detect and measure joint movement to help with the diagnosis of ligament injuries in the human knee. The system uses a domestic video camcorder to record the movement of marks on a patient's knee as it is flexed. The pictures are then fed into the imaging system, where the coordinates of each mark are determined for each angle of flexion. The coordinate data is then processed to show the dynamic operation of the knee, from which an assessment of ligament damage can be made. The imaging system is comprised of a PC host, a commercial frame store, and a custom built TMS320C40 digital signal processor (dsp) board. The dsp is used to perform correlation and other imaging functions, to automatically determine the mark coordinates in real time. This paper describes the application and development of the system, and gives the results of the research to date.

  13. A joint watermarking/encryption algorithm for verifying medical image integrity and authenticity in both encrypted and spatial domains.

    PubMed

    Bouslimi, D; Coatrieux, G; Roux, Ch

    2011-01-01

    In this paper, we propose a new joint watermarking/encryption algorithm for the purpose of verifying the reliability of medical images in both encrypted and spatial domains. It combines a substitutive watermarking algorithm, the quantization index modulation (QIM), with a block cipher algorithm, the Advanced Encryption Standard (AES), in CBC mode of operation. The proposed solution gives access to the outcomes of the image integrity and of its origins even though the image is stored encrypted. Experimental results achieved on 8 bits encoded Ultrasound images illustrate the overall performances of the proposed scheme. By making use of the AES block cipher in CBC mode, the proposed solution is compliant with or transparent to the DICOM standard. PMID:22256213

  14. Interposition of the Posterior Cruciate Ligament into the Medial Compartment of the Knee Joint on Coronal Magnetic Resonance Imaging

    PubMed Central

    Kim, Hyun Su; Park, Ki Jeong; Wang, Joon Ho; Choe, Bong-Keun

    2016-01-01

    Objective The purpose of our study was to evaluate the overall prevalence and clinical significance of interposition of the posterior cruciate ligament (PCL) into the medial compartment of the knee joint in coronal magnetic resonance imaging (MRI). Materials and Methods We retrospectively reviewed 317 consecutive patients referred for knee MRI at our institution between October 2009 and December 2009. Interposition of the PCL into the medial compartment of the knee joint on proton coronal MRI was evaluated dichotomously (i.e., present or absent). We analyzed the interposition according to its prevalence as well as its relationship with right-left sidedness, gender, age, and disease categories (osteoarthritis, anterior cruciate ligament tear, and medial meniscus tear). Results Prevalence of interposition of PCL into the medial compartment of the knee joint was 47.0% (149/317). There was no right (50.0%, 83/166) to left (43.7%, 66/151) or male (50.3%, 87/173) to female (43.1%, 62/144) differences in the prevalence. There was no significant association between the prevalence and age, or the disease categories. Conclusion Interposition of the PCL into the medial compartment of the knee joint is observed in almost half of patients on proton coronal MRI of the knee. Its presence is not associated with any particular factors including knee pathology and may be regarded as a normal MR finding. PMID:26957909

  15. Imaging the M7.9 Denali Fault Earthquake 2002 rupture at the Delta River using LiDAR, RADAR, and SASW Surface Wave Geophysics

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Barnhardt, W.; Carkin, B.; Collins, B. D.; Grossman, E. E.; Minasian, D.; Thompson, E.

    2004-12-01

    The Mw 7.9 Denali fault earthquake of 3 November 2002 resulted in approximately 5.5 meters of right-lateral offset and sub-meter (0.6m average) up-to-the north vertical displacement of alluvial deposits of the Delta River. We characterize the surface rupture and shallow fault structure of the Denali fault zone at the Delta River in order to better understand these most recent displacements and to estimate the total vertical offset of alluvium above glacially scoured bedrock. To analyze deformations along the fault-trace, we performed tripod-mounted ground-based LiDAR surveys, and Spectral analysis of Surface Wave (SASW) and Ground Penetrating RADAR (GPR) geophysical investigations. These studies were performed between the Trans-Alaska Pipeline (TAPS) corridor on the terrace deposits of the eastern flanks of the Delta River valley and the steeply sloping bedrock surface on the western side of the river. To produce digital terrain models (DTM) of the surface break we used a Riegl Z210i Laser-scanner to image eight independent LiDAR scans, and ISite3D modeling software to merge these scans into three DTM surfaces. We find that using a rotating scanning-laser allows us to produce ultra-high resolution quantitative DTMs for geomorphic analysis that can be used to resolve features and detect topographic changes on a fine-scale (0.9-2.5cm). Local geo-referencing control points are established using fixed auto reflectors. The near subsurface alluvium was imaged using reflection-based (GPR). A suite of parallel and orthogonal GPR reflection lines were measured to develop block models of the surface rupture at two locations. Radar imagery clearly delineates a plane of chaotic reflectors across the rupture zone. To characterize the depth of alluvium over bedrock on either side of the fault, we used the spectral analysis of surface waves (SASW) approach to invert the near-surface shear wave velocity profile. An Alyeska Co. Catepillar D9N track-mounted dozer was used as a high

  16. Geophysical Model Applications for Monitoring

    SciTech Connect

    Pasyanos, M; Walter, W; Tkalcic, H; Franz, G; Gok, R; Rodgers, A

    2005-07-11

    Geophysical models constitute an important component of calibration for nuclear explosion monitoring. We will focus on four major topics and their applications: (1) surface wave models, (2) receiver function profiles, (3) regional tomography models, and (4) stochastic geophysical models. First, we continue to improve upon our surface wave model by adding more paths. This has allowed us to expand the region to all of Eurasia and into Africa, increase the resolution of our model, and extend results to even shorter periods (7 sec). High-resolution models exist for the Middle East and the YSKP region. The surface wave results can be inverted either alone, or in conjunction with other data, to derive models of the crust and upper mantle structure. One application of the group velocities is to construct phase-matched filters in combination with regional surface-wave magnitude formulas to improve the mb:Ms discriminant and extend it to smaller magnitude events. Next, we are using receiver functions, in joint inversions with the surface waves, to produce profiles directly under seismic stations throughout the region. In the past year, we have been focusing on deployments throughout the Middle East, including the Arabian Peninsula and Turkey. By assembling the results from many stations, we can see how regional seismic phases are affected by complicated upper mantle structure, including lithospheric thickness and anisotropy. The next geophysical model item, regional tomography models, can be used to predict regional travel times such as Pn and Sn. The times derived by the models can be used as a background model for empirical measurements or, where these don't exist, simply used as is. Finally, we have been exploring methodologies such as Markov Chain Monte Carlo (MCMC) to generate data-driven stochastic models. We have applied this technique to the YSKP region using surface wave dispersion data, body wave travel time data, receiver functions, and gravity data. The models

  17. Noninvasive imaging of hemoglobin concentration and oxygen saturation for detection of osteoarthritis in the finger joints using multispectral three-dimensional quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2013-05-01

    We present quantitative imaging of hemoglobin concentration and oxygen saturation in in vivo finger joints and evaluate the feasibility of detecting osteoarthritis (OA) in the hand using three-dimensional (3D) multispectral quantitative photoacoustic tomography (3D qPAT). The results show that both the anatomical structures and quantitative chromophore concentrations (oxy-hemoglobin and deoxy-hemoglobin) of different joint tissues (hard phalanges and soft cartilage/synovial fluid between phalanges) can be imaged in vivo with the multispectral 3D qPAT. Enhanced hemoglobin concentrations and dropped oxygen saturations in osteoarthritic phalanges and soft joint tissues in joint cavities have been observed. This study indicates that the multispectral 3D qPAT is a promising approach to detect the angiogenesis and hypoxia associated with OA disease and a potential clinical tool for early OA detection in the finger joints.

  18. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  19. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems.

    PubMed

    Xiao, Haosu; Zuo, Baojun; Tian, Yi; Zhang, Wang; Hao, Chenglong; Liu, Chaofeng; Li, Qi; Li, Fan; Zhang, Li; Fan, Zhigang

    2012-12-20

    We investigated the joint influences exerted by the nonuniform aerodynamic flow field surrounding the optical dome and the aerodynamic heating of the dome on imaging quality degradation of an airborne optical system. The Spalart-Allmaras model provided by FLUENT was used for flow computations. The fourth-order Runge-Kutta algorithm based ray tracing program was used to simulate optical transmission through the aerodynamic flow field and the dome. Four kinds of imaging quality evaluation parameters were presented: wave aberration of the exit pupil, point spread function, encircled energy, and modulation transfer function. The results show that the aero-optical disturbance of the aerodynamic flow field and the aerodynamic heating of the dome significantly affect the imaging quality of an airborne optical system.

  20. Geomorphological and geophysical approach for locating favorable groundwater zones in granitic terrain, Andhra Pradesh, India.

    PubMed

    Dhakate, Ratnakar; Singh, V S; Negi, B C; Chandra, Subhash; Rao, V Ananda

    2008-09-01

    The increasing demand for fresh water has necessitated the exploration for new sources of groundwater, particularly in hard rock terrain, where groundwater is a vital source of fresh water. A fast, cost effective and economical way of exploration is to study and analyze remote sensing data. Interpreted remote sensing data was used to select sites for carrying out surface geophysical investigations. Various geomorphologic units were demarcated and the lineaments were identified by interpretation of remote sensing satellite images. The potential for occurrence of groundwater in the watershed areas was classified as very good, good, moderate and poor by interpreting the images. Sub-surface geophysical investigations, namely vertical electrical soundings, were carried out to delineate potential water-bearing zones. Integrated studies of interpretation of geomorphologic and geophysical data were used to prepare a groundwater potential map. The studies reveal that the groundwater potential of shallow aquifers is due to geomorphologic features and the potential of deeper aquifers is determined by lineaments such as faults and joints.

  1. Geophysical characterization of subsurface barriers

    SciTech Connect

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

  2. Sacro-Iliac Joint Sensory Block and Radiofrequency Ablation: Assessment of Bony Landmarks Relevant for Image-Guided Procedures

    PubMed Central

    Roberts, Shannon L.; Burnham, Robert S.; Loh, Eldon; Agur, Anne M.

    2016-01-01

    Image-guided sensory block and radiofrequency ablation of the nerves innervating the sacro-iliac joint require readily identifiable bony landmarks for accurate needle/electrode placement. Understanding the relative locations of the transverse sacral tubercles along the lateral sacral crest is important for ultrasound guidance, as they demarcate the position of the posterior sacral network (S1–S3 ± L5/S4) innervating the posterior sacro-iliac joint. No studies were found that investigated the spatial relationships of these bony landmarks. The purpose of this study was to visualize and quantify the interrelationships of the transverse sacral tubercles and posterior sacral foramina to inform image-guided block and radiofrequency ablation of the sacro-iliac joint. The posterior and lateral surfaces of 30 dry sacra (15 M/15 F) were digitized and modeled in 3D and the distances between bony landmarks quantified. The relationships of bony landmarks (S1–S4) were not uniform. The mean intertubercular and interforaminal distances decreased from S1 to S4, whereas the distance from the lateral margin of the posterior sacral foramina to the transverse sacral tubercles increased from S1 to S3. The mean intertubercular distance from S1 to S3 was significantly (p < 0.05) larger in males. The interrelationships of the sacral bony landmarks should be taken into consideration when estimating the site and length of an image-guided strip lesion targeting the posterior sacral network. PMID:27747222

  3. Joint reconstruction of absorption and refractive properties in propagation-based x-ray phase-contrast tomography via a non-linear image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yujia; Wang, Kun; Gursoy, Doga; Soriano, Carmen; De Carlo, Francesco; Anastasio, Mark A.

    2016-03-01

    Propagation-based X-ray phase-contrast tomography (XPCT) provides the opportunity to image weakly absorbing objects and is being explored actively for a variety of important pre-clinical applications. Quantitative XPCT image reconstruction methods typically involve a phase retrieval step followed by application of an image reconstruction algorithm. Most approaches to phase retrieval require either acquiring multiple images at different object-to-detector distances or introducing simplifying assumptions, such as a single-material assumption, to linearize the imaging model. In order to overcome these limitations, a non-linear image reconstruction method has been proposed previously that jointly estimates the absorption and refractive properties of an object from XPCT projection data acquired at a single propagation distance, without the need to linearize the imaging model. However, the numerical properties of the associated non-convex optimization problem remain largely unexplored. In this study, computer simulations are conducted to investigate the feasibility of the joint reconstruction problem in practice. We demonstrate that the joint reconstruction problem is ill-posed and sensitive to system inconsistencies. Particularly, the method can generate accurate refractive index images only if the object is thin and has no phase-wrapping in the data. However, we also observed that, for weakly absorbing objects, the refractive index images reconstructed by the joint reconstruction method are, in general, more accurate than those reconstructed using methods that simply ignore the object's absorption.

  4. Measurement of the electron and ion temperatures by the x-ray imaging crystal spectrometer on joint Texas experimental tokamak

    NASA Astrophysics Data System (ADS)

    Yan, W.; Chen, Z. Y.; Jin, W.; Lee, S. G.; Shi, Y. J.; Huang, D. W.; Tong, R. H.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Zhuang, G.

    2016-11-01

    An x-ray imaging crystal spectrometer has been developed on joint Texas experimental tokamak for the measurement of electron and ion temperatures from the Kα spectra of helium-like argon and its satellite lines. A two-dimensional multi-wire proportional counter has been applied to detect the spectra. The electron and ion temperatures have been obtained from the Voigt fitting with the spectra of helium-like argon ions. The profiles of electron and ion temperatures show the dependence on electron density in ohmic plasmas.

  5. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak

    SciTech Connect

    Li, Jianchao; Ding, Yonghua Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-15

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  6. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak.

    PubMed

    Li, Jianchao; Ding, Yonghua; Zhang, Xiaoqing; Xiao, Zhengyu; Zhuang, Ge

    2014-11-01

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma core and boundary.

  7. Image Reconstruction from Highly Undersampled (k, t)-Space Data with Joint Partial Separability and Sparsity Constraints

    PubMed Central

    Zhao, Bo; Haldar, Justin P.; Christodoulou, Anthony G.; Liang, Zhi-Pei

    2012-01-01

    Partial separability (PS) and sparsity have been previously used to enable reconstruction of dynamic images from undersampled (k, t)-space data. This paper presents a new method to use PS and sparsity constraints jointly for enhanced performance in this context. The proposed method combines the complementary advantages of PS and sparsity constraints using a unified formulation, achieving significantly better reconstruction performance than using either of these constraints individually. A globally convergent computational algorithm is described to efficiently solve the underlying optimization problem. Reconstruction results from simulated and in vivo cardiac MRI data are also shown to illustrate the performance of the proposed method. PMID:22695345

  8. Geophysical Methods: an Overview

    NASA Technical Reports Server (NTRS)

    Becker, A.; Goldstein, N. E.; Lee, K. H.; Majer, E. L.; Morrison, H. F.; Myer, L.

    1992-01-01

    Geophysics is expected to have a major role in lunar resource assessment when manned systems return to the Moon. Geophysical measurements made from a lunar rover will contribute to a number of key studies: estimating regolith thickness, detection of possible large-diameter lava tubes within maria basalts, detection of possible subsurface ice in polar regions, detection of conductive minerals that formed directly from a melt (orthomagmatic sulfides of Cu, Ni, Co), and mapping lunar geology beneath the regolith. The techniques that can be used are dictated both by objectives and by our abilities to adapt current technology to lunar conditions. Instrument size, weight, power requirements, and freedom from orientation errors are factors we have considered. Among the geophysical methods we believe to be appropriate for a lunar resource assessment are magnetics, including gradiometry, time-domain magnetic induction, ground-penetrating radar, seismic reflection, and gravimetry.

  9. Temporomandibular joint internal derangement type III: relationship to magnetic resonance imaging findings of internal derangement and osteoarthrosis. An intraindividual approach.

    PubMed

    Emshoff, R; Rudisch, A; Innerhofer, K; Bösch, R; Bertram, S

    2001-10-01

    The purpose of this study was to investigate whether in patients with a clinical unilateral temporomandibular joint (TMJ)-related finding of internal derangement type (ID)-III (disk displacement without reduction) in combination with TMJ-related pain, the intraindividual variable of 'unilateral TMJ ID-III pain' may be linked to subject-related magnetic resonance (MR) imaging findings of TMJ ID, and TMJ osteoarthrosis (OA). The study comprised 48 consecutive TMJ pain patients, who were assigned a clinical unilateral TMJ pain side-related diagnosis of ID-III. Bilateral sagittal and coronal MR images were obtained to establish the presence or absence of TMJ ID and/or OA. Comparison of the TMJ side-related data showed a significant relationship between the clinical finding of TMJ ID-III pain and the MR imaging diagnoses of TMJ ID (P=0.000) and TMJ ID type (P=0.000). There was no correlation between the clinical finding of TMJ ID-III pain and the MR imaging diagnosis of TMJ OA (P=0.217), nor between the MR imaging diagnosis of TMJ OA and that of TMJ ID (P=0.350). Regarding the diagnostic subgroups of TMJ ID, a significant relationship was found between the presence of TMJ OA and the MR imaging diagnoses of TMJ ID type(P=0.002). Use of the Kappa statistical test indicated a fair diagnostic agreement between the presence of TMJ ID-III pain and the MR imaging diagnosis of disk displacement without reduction (DDNR) (K=0.42). The results suggest that TMJ ID-III pain is related to TMJ-related MR imaging diagnoses of ID. Further, the data confirm the biological concept of 'DDNR and OA' as an underlying mechanism in the etiology of TMJ-related pain and dysfunction. PMID:11720040

  10. Tomographic imaging of Central Java, Indonesia: Preliminary result of joint inversion of the MERAMEX and MCGA earthquake data

    SciTech Connect

    Rohadi, Supriyanto; Widiyantoro, Sri; Nugraha, Andri Dian; Masturyono

    2013-09-09

    The realization of local earthquake tomography is usually conducted by removing distant events outside the study region, because these events may increase errors. In this study, tomographic inversion has been conducted using the travel time data of local and regional events in order to improve the structural resolution, especially for deep structures. We used the local MERapi Amphibious EXperiments (MERAMEX) data catalog that consists of 292 events from May to October 2004. The additional new data of regional events in the Java region were taken from the Meteorological, Climatological, and Geophysical Agency (MCGA) of Indonesia, which consist of 882 events, having at least 10 recording phases at each seismographic station from April 2009 to February 2011. We have conducted joint inversions of the combined data sets using double-difference tomography to invert for velocity structures and to conduct hypocenter relocation simultaneously. The checkerboard test results of Vp and Vs structures demonstrate a significantly improved spatial resolution from the shallow crust down to a depth of 165 km. Our tomographic inversions reveal a low velocity anomaly beneath the Lawu - Merapi zone, which is consistent with the results from previous studies. A strong velocity anomaly zone with low Vp, low Vs and low Vp/Vs is also identified between Cilacap and Banyumas. We interpret this anomaly as a fluid content material with large aspect ratio or sediment layer. This anomaly zone is in a good agreement with the existence of a large dome containing sediment in this area as proposed by previous geological studies. A low velocity anomaly zone is also detected in Kebumen, where it may be related to the extensional oceanic basin toward the land.

  11. Integrated Approaches On Archaeo-Geophysical Data

    NASA Astrophysics Data System (ADS)

    Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.

    2015-12-01

    Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support

  12. Two cases of synovial haemangioma of the knee joint: Gd-enhanced image features on MRI and arthroscopic excision.

    PubMed

    Sasho, Takahisa; Nakagawa, Koichi; Matsuki, Kei; Hoshi, Hiroko; Saito, Masahiko; Ikegawa, Naoshi; Akagi, Ryuichiro; Yamaguchi, Satoshi; Takahashi, Kazuhisa

    2011-12-01

    Synovial haemangioma of the knee joint is a relatively rare benign condition with around 200 reported cases. We have recently encountered two cases of synovial haemangioma of the knee joint which preoperative MRI had assessed as highly suspect and which arthroscopic resection and subsequent histological examinations confirmed as synovial hemangiomas. Published studies have identified the following as characteristic MRI features of synovial haemangioma: homogenous low intensity to iso-intensity on T1 sequence; and heterogeneous high intensity with low-intensity septa or spots within the lesion on T2 sequence. However, several other intra-knee disorders mimic these characteristics. In our two cases, we found that gadolinium (Gd)-enhanced images, which have been relatively rarely discussed in the literature, were useful for making the diagnosis and for determining the extent of this condition. These images also were very helpful during arthroscopic excision of the lesion. Nonetheless, even after Gd enhancement, differentiating between malignant conditions such as synovial sarcoma and haemangioma solely from MRI findings is still difficult.

  13. Joint Use of ALOS PalSAR and Landsat TM Images for Urban Change Detection

    NASA Astrophysics Data System (ADS)

    Xu, Jinyan; Zhang, Lu; Liao, Mingsheng; Wang, He

    2013-01-01

    The joint use of Landsat TM data and ALOS PALSAR quad-polarization data for extracting change information of urban areas is investigated, the potential application and the performance of the two data sets are evaluated. Feature extraction and classification using dual-threshold EM segmentation and Random Forest (RF) method are the main steps. Three different experiments are done based on the extracted features, and accuracy assessments are carried out.

  14. The geophysical impact of the Aristoteles mission

    NASA Astrophysics Data System (ADS)

    Anderson, Allen Joel; Klingele, E.; Sabadini, R.; Tinti, S.; Zerbini, Suzanna

    1991-12-01

    The importance of a precise, high resolution gradiometric and magnetometric mission in some topics of geophysical interest is stressed. Ways in which the planned Aristoteles mission can allow the geophysical community to improve the knowledge and the physical understanding of several important geodynamical processes involving the coupled system consisting of the lithosphere, asthenosphere and upper mantle are discussed. Particular attention is devoted to the inversion of anomalous density structures in collision and subduction zones by means of the joint use of gradiometric and seismic tomographic data. Some modeling efforts accomplished to study the capability of the mission to invert the rheological parameters of the lithosphere and upper mantle through the gravimetric signals of internal and surface density anomalies are described.

  15. Parts-based geophysical inversion with application to water flooding interface detection and geological facies detection

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei

    I built parts-based and manifold based mathematical learning model for the geophysical inverse problem and I applied this approach to two problems. One is related to the detection of the oil-water encroachment front during the water flooding of an oil reservoir. In this application, I propose a new 4D inversion approach based on the Gauss-Newton approach to invert time-lapse cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be also used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods. A paper has been published in Geophysical Journal International on this topic and I am the first author of this paper. The second application is related to the detection of geological facies boundaries and their deforation to satisfy to geophysica

  16. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    SciTech Connect

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  17. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    PubMed Central

    Liu, Yubin; Wang, Yating

    2016-01-01

    We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT) system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases. PMID:27774453

  18. Application of X-ray Refraction-Contrast to Medical Joint Imaging

    SciTech Connect

    Shimao, Daisuke; Mori, Koichi; Hyodo, Kazuyuki; Sugiyama, Hiroshi; Ando, Masami

    2004-05-12

    The refraction-contrast X-ray imaging technique using synchrotron X-ray has been applied to an 8 mm sliced distal end of a human femur involving ligament and articular cartilage at 15 keV. It was shown that this technique can clearly depict the fine structures of the ligament, its torn surface and substantial articular cartilage at near the just Bragg angular position. The entrance surface dose necessary for each image was approximately 4 mGy by using an imaging plate. This imaging technique may become a powerful tool for depicting abnormalities of the ligament and articular cartilage.

  19. Joint analysis of seismic, gravity, magnetism and seismological data for passive margin structure imaging

    NASA Astrophysics Data System (ADS)

    D'Acremont, E.; Leroy, S.; Tiberi, C.; Pointu, A.; Ebinger, C.

    2004-12-01

    The eastern Gulf of Aden is a key place for investigating seafloor spreading processes and strain localisation, given its thin post-rift sedimentary strata, the good exposure of onshore and nearshore rift structures, the lack of salt deformation structures and its large distance away from the Afar plume. Further, exploratory well data exist for stratigraphic ties, and the two conjugate passive margins can be reconstructed within lateral errors smaller than 10 km. First, the 2000 ENCENS-SHEBA cruise has revealed the structural and geophysical framework using bathymetric swath mapping and underway geophysics (Leroy et al. 2004; d'Acremont et al. submitted). Second, the Dhofar Seismic network in 2004, on the onshore Northern margin (11 BB stations for receiver function and tomography studies) has improved our understanding of the rifting and the oceanic spreading processes in this area, as well as the transitional phase between them. A smaller deformation wavelength prevails on the northern margin, which is also steeper and narrower than the southern one. The southern-rifted domain is about twice as large as the northern one, while the crust is thinner in the northern margin. Besides the influence of rifting obliquity, this asymmetry of the structural pattern could be a consequence of inherited basins and faults associated with the Jurassic rifting episode that affected the southern domain. The transition between the thinned continental crust and the onset of oceanic seafloor spreading is characterized by an ocean-continent transition (OCT). Although its precise nature remains unknown, two possible origins can be proposed with respect to our data; either an exhumed mantle, or an ultra-thinned continental crust intruded by partial melt products from the underlying mantle. Between the Alula-Fartak and Socotra transform faults, the non-volcanic margins and the OCT are segmented by two transfer fault zones trending N027°E. These zones define three N110°E trending

  20. Resources for Computational Geophysics Courses

    NASA Astrophysics Data System (ADS)

    Keers, Henk; Rondenay, Stéphane; Harlap, Yaël.; Nordmo, Ivar

    2014-09-01

    An important skill that students in solid Earth physics need to acquire is the ability to write computer programs that can be used for the processing, analysis, and modeling of geophysical data and phenomena. Therefore, this skill (which we call "computational geophysics") is a core part of any undergraduate geophysics curriculum. In this Forum, we share our personal experience in teaching such a course.

  1. Segmentation of knee joints in x-ray images using decomposition-based sweeping and graph search

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Liu, Xiaomin; Luan, Shuang; Heintz, Philip H.; Mlady, Gary W.; Chen, Danny Z.

    2011-03-01

    Plain radiography (i.e., X-ray imaging) provides an effective and economical imaging modality for diagnosing knee illnesses and injuries. Automatically segmenting and analyzing knee radiographs is a challenging problem. In this paper, we present a new approach for accurately segmenting the knee joint in X-ray images. We first use the Gaussian high-pass filter to remove homogeneous regions which are unlikely to appear on bone contours. We then presegment the bones and develop a novel decomposition-based sweeping algorithm for extracting bone contour topology from the filtered skeletonized images. Our sweeping algorithm decomposes the bone structures into several relatively simple components and deals with each component separately based on its geometric characteristics using a sweeping strategy. Utilizing the presegmentation, we construct a graph to model the bone topology and apply an optimal graph search algorithm to optimize the segmentation results (with respect to our cost function defined on the bone boundaries). Our segmented results match well with the manual tracing results by radiologists. Our segmentation approach can be a valuable tool for assisting radiologists and X-ray technologists in clinical practice and training.

  2. Functional analysis of the rabbit temporomandibular joint using dynamic biplane imaging.

    PubMed

    Henderson, Sarah E; Desai, Riddhi; Tashman, Scott; Almarza, Alejandro J

    2014-04-11

    The dynamic function of the rabbit temporomandibular joint (TMJ) was analyzed through non-invasive, three-dimensional skeletal kinematics, providing essential knowledge for understanding normal joint motion. The objective of this study was to evaluate and determine repeatable measurements of rabbit TMJ kinematics. Maximal distances, as well as paths were traced and analyzed for the incisors and for the condyle-fossa relationship. From one rabbit to another, the rotations and translations of both the incisors and the condyle relative to the fossa contained multiple clear, repeatable patterns. The slope of the superior/inferior incisor distance with respect to the rotation about the transverse axis was repeatable to 0.14 mm/deg and the right/left incisor distance with respect to the rotation about the vertical axis was repeatable to 0.03 mm/deg. The slope of the superior/inferior condylar translation with respect to the rotational movement about the transverse axis showed a consistent relationship to within 0.05 mm/deg. The maximal translations of the incisors and condyles were also consistent within and between rabbits. With an understanding of the normal mechanics of the TMJ, kinematics can be used to compare and understand TMJ injury and degeneration models.

  3. Functional analysis of the rabbit temporomandibular joint using dynamic biplane imaging.

    PubMed

    Henderson, Sarah E; Desai, Riddhi; Tashman, Scott; Almarza, Alejandro J

    2014-04-11

    The dynamic function of the rabbit temporomandibular joint (TMJ) was analyzed through non-invasive, three-dimensional skeletal kinematics, providing essential knowledge for understanding normal joint motion. The objective of this study was to evaluate and determine repeatable measurements of rabbit TMJ kinematics. Maximal distances, as well as paths were traced and analyzed for the incisors and for the condyle-fossa relationship. From one rabbit to another, the rotations and translations of both the incisors and the condyle relative to the fossa contained multiple clear, repeatable patterns. The slope of the superior/inferior incisor distance with respect to the rotation about the transverse axis was repeatable to 0.14 mm/deg and the right/left incisor distance with respect to the rotation about the vertical axis was repeatable to 0.03 mm/deg. The slope of the superior/inferior condylar translation with respect to the rotational movement about the transverse axis showed a consistent relationship to within 0.05 mm/deg. The maximal translations of the incisors and condyles were also consistent within and between rabbits. With an understanding of the normal mechanics of the TMJ, kinematics can be used to compare and understand TMJ injury and degeneration models. PMID:24594064

  4. Functional Analysis of the Rabbit Temporomandibular Joint Using Dynamic Biplane Imaging

    PubMed Central

    Henderson, Sarah E.; Desai, Riddhi; Tashman, Scott; Almarza, Alejandro J.

    2014-01-01

    The dynamic function of the rabbit temporomandibular joint (TMJ) was analyzed through non-invasive three-dimensional skeletal kinematics, providing essential knowledge for understanding normal joint motion. The objective of this study was to evaluate and determine repeatable measurements of rabbit TMJ kinematics. Maximal distances, as well as paths were traced and analyzed for the incisors and for the condyle-fossa relationship. From one rabbit to another, the rotations and translations of both the incisors and the condyle relative to the fossa contained multiple clear, repeatable patterns. The slope of the superior/inferior incisor distance with respect to the rotation about the transverse axis was repeatable to 0.14 mm/degree and the right/left incisor distance with respect to the rotation about the vertical axis was repeatable to 0.03 mm/degree. The slope of the superior/inferior condylar translation with respect to the rotational movement about the transverse axis showed a consistent relationship to within 0.05 mm/degree. The maximal translations of the incisors and condyles were also consistent within and between rabbits. With an understanding of the normal mechanics of the TMJ, kinematics can be used to compare and understand TMJ injury and degeneration models. PMID:24594064

  5. Image-assisted non-invasive and dynamic biomechanical analysis of human joints

    NASA Astrophysics Data System (ADS)

    Muhit, Abdullah A.; Pickering, Mark R.; Scarvell, Jennifer M.; Ward, Tom; Smith, Paul N.

    2013-07-01

    Kinematic analysis provides a strong link between musculoskeletal injuries, chronic joint conditions, treatment planning/monitoring and prosthesis design/outcome. However, fast and accurate 3D kinematic analysis still remains a challenge in order to translate this procedure into clinical scenarios. 3D computed tomography (CT) to 2D single-plane fluoroscopy registration is a promising non-invasive technology for biomechanical examination of human joints. Although this technique has proven to be very precise in terms of in-plane translation and rotation measurements, out-of-plane motion estimations have been a difficulty so far. Therefore, to enable this technology into clinical translation, precise and fast estimation of both in-plane and out-of-plane movements is crucial, which is the aim of this paper. Here, a fast and accurate 3D/2D registration technique is proposed to evaluate biomechanical/kinematic analysis. The proposed algorithm utilizes a new multi-modal similarity measure called ‘sum of conditional variances’, a coarse-to-fine Laplacian of Gaussian filtering approach for robust gradient-descent optimization and a novel technique for the analytic calculation of the required gradients for out-of-plane rotations. Computer simulations and in vitro experiments showed that the new approach was robust in terms of the capture range, required significantly less iterations to converge and achieved good registration and kinematic accuracy when compared to existing techniques and to the ‘gold-standard’ Roentgen stereo analysis.

  6. CT Images of a Severe TMJ Osteoarthritis and Differential Diagnosis with Other Joint Disorders.

    PubMed

    Ferrazzo, K L; Osório, L B; Ferrazzo, V A

    2013-01-01

    Osteoarthritis (OA) is the most common arthritis which affects the human body and can affect the temporomandibular joint (TMJ). The diagnosis of TMJ OA is essentially based on clinical examination. However, laboratory tests and radiographic exams are also useful to exclude other diseases. The diagnosis of OA may be difficult because of other TMJ pathologies that can have similar clinical and radiographic aspects. The purpose of this study was to describe an unusual case of bilateral TMJ OA in an advanced stage and discuss its most common clinical, laboratory, and radiographic findings, focusing on their importance in the differential diagnosis with other TMJ diseases. Erosion, sclerosis, osteophytes, flattening, subchondral cysts, and a reduced joint space were some of the radiographic findings in TMJ OA. We concluded that, for the correct differential diagnosis of TMJ OA, it is necessary to unite medical history, physical examination, laboratory tests, and radiographic findings. Computed tomography is the test of choice for evaluating bone involvement and for diagnosing and establishing the degree of the disease. PMID:24381768

  7. CT Images of a Severe TMJ Osteoarthritis and Differential Diagnosis with Other Joint Disorders

    PubMed Central

    Ferrazzo, K. L.; Osório, L. B.; Ferrazzo, V. A.

    2013-01-01

    Osteoarthritis (OA) is the most common arthritis which affects the human body and can affect the temporomandibular joint (TMJ). The diagnosis of TMJ OA is essentially based on clinical examination. However, laboratory tests and radiographic exams are also useful to exclude other diseases. The diagnosis of OA may be difficult because of other TMJ pathologies that can have similar clinical and radiographic aspects. The purpose of this study was to describe an unusual case of bilateral TMJ OA in an advanced stage and discuss its most common clinical, laboratory, and radiographic findings, focusing on their importance in the differential diagnosis with other TMJ diseases. Erosion, sclerosis, osteophytes, flattening, subchondral cysts, and a reduced joint space were some of the radiographic findings in TMJ OA. We concluded that, for the correct differential diagnosis of TMJ OA, it is necessary to unite medical history, physical examination, laboratory tests, and radiographic findings. Computed tomography is the test of choice for evaluating bone involvement and for diagnosing and establishing the degree of the disease. PMID:24381768

  8. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  9. Heterogeneity of Sedimentary Aquifers: effect on microbial dynamics at successive spatial scales as revealed by geophysical imaging: Final report to the Department of Energy on Award DE-FG02-9ER62478

    SciTech Connect

    Donald J. P. Swift

    2004-02-10

    This report describes the geological component of the interdisciplinary study of the experimental aquifer at Oyster, Virginia, by the NABIR program, Department of Energy (Natural and Accelerated Bioremediation Research), between 1997 and 2003, as conducted by the Sediment dynamics group of Old Dominion University. The Geological component of the Oyster study was designed to (1) predict patterns of physical heterogeneity in sedimentary aquifers that control groundwater flow by application of geological first principles, (2) determine the geophysical imaging signatures of these patterns, and (3) relate patterns of physical heterogeneity thus sampled to observed microbial populations. The geological study began in 1997 at the North Oyster site, but in 2002, moved to the South Oyster site.

  10. A Gauss-Newton approach to joint image registration and intensity correction.

    PubMed

    Ebrahimi, Mehran; Lausch, Anthony; Martel, Anne L

    2013-12-01

    We develop a new efficient numerical methodology for automated simultaneous registration and intensity correction of images. The approach separates the intensity correction term from the images being registered in a regularized expression. Our formulation is consistent with the existing non-parametric image registration techniques, however, an extra additive intensity correction term is carried throughout. An objective functional is formed for which the corresponding Hessian and Jacobian is computed and employed in a multi-level Gauss-Newton minimization approach. In this paper, our experiments are based on elastic regularization on the transformation and total variation on the intensity correction. Validations on dynamic contrast enhanced MR abdominal images for both real and simulated data verified the efficacy of the model. The pursued approach is flexible in which we can exploit various forms of regularization on the transformation and the intensity correction. PMID:24075154

  11. A Gauss-Newton approach to joint image registration and intensity correction.

    PubMed

    Ebrahimi, Mehran; Lausch, Anthony; Martel, Anne L

    2013-12-01

    We develop a new efficient numerical methodology for automated simultaneous registration and intensity correction of images. The approach separates the intensity correction term from the images being registered in a regularized expression. Our formulation is consistent with the existing non-parametric image registration techniques, however, an extra additive intensity correction term is carried throughout. An objective functional is formed for which the corresponding Hessian and Jacobian is computed and employed in a multi-level Gauss-Newton minimization approach. In this paper, our experiments are based on elastic regularization on the transformation and total variation on the intensity correction. Validations on dynamic contrast enhanced MR abdominal images for both real and simulated data verified the efficacy of the model. The pursued approach is flexible in which we can exploit various forms of regularization on the transformation and the intensity correction.

  12. Registration of 2D to 3D joint images using phase-based mutual information

    NASA Astrophysics Data System (ADS)

    Dalvi, Rupin; Abugharbieh, Rafeef; Pickering, Mark; Scarvell, Jennie; Smith, Paul

    2007-03-01

    Registration of two dimensional to three dimensional orthopaedic medical image data has important applications particularly in the area of image guided surgery and sports medicine. Fluoroscopy to computer tomography (CT) registration is an important case, wherein digitally reconstructed radiographs derived from the CT data are registered to the fluoroscopy data. Traditional registration metrics such as intensity-based mutual information (MI) typically work well but often suffer from gross misregistration errors when the image to be registered contains a partial view of the anatomy visible in the target image. Phase-based MI provides a robust alternative similarity measure which, in addition to possessing the general robustness and noise immunity that MI provides, also employs local phase information in the registration process which makes it less susceptible to the aforementioned errors. In this paper, we propose using the complex wavelet transform for computing image phase information and incorporating that into a phase-based MI measure for image registration. Tests on a CT volume and 6 fluoroscopy images of the knee are presented. The femur and the tibia in the CT volume were individually registered to the fluoroscopy images using intensity-based MI, gradient-based MI and phase-based MI. Errors in the coordinates of fiducials present in the bone structures were used to assess the accuracy of the different registration schemes. Quantitative results demonstrate that the performance of intensity-based MI was the worst. Gradient-based MI performed slightly better, while phase-based MI results were the best consistently producing the lowest errors.

  13. Effects of the Index Finger Position and Force Production on the Flexor Digitorum Superficialis Moment Arms at the Metacarpophalangeal Joints- an Magnetic Resonance Imaging Study

    PubMed Central

    Martin, Joel R.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2011-01-01

    Background The purpose of this study was to use magnetic resonance imaging to measure the moment arm of the flexor digitorum superficialis tendon about the metacarpophalangeal joint of the index, middle, ring, and little fingers when the position and force production level of the index finger was altered. A secondary goal was to create regression models using anthropometric data to predict moment arms of the flexor digitorum superficialis about the metacarpophalangeal joint of each finger. Methods The hands of subjects were scanned using a 3.0T magnetic resonance imaging scanner. The metacarpophalangeal joint of the index finger was placed in: flexion, neutral, and extension. For each joint configuration subjects produced no active force (passive condition) and exerted a flexion force to resist a load at the fingertip (active condition). Results The following was found: (1) The moment arm of the flexor digitorum superficialis at the metacarpophalangeal joint of the index finger (a) increased with the joint flexion and stayed unchanged with finger extension; and (b) decreased with the increase of force at the neutral and extended finger postures and did not change at the flexed posture. (2) The moment arms of the flexor digitorum superficialis tendon of the middle, ring, and little fingers (a) did not change when the index metacarpophalangeal joint position changed (p > 0.20); and (b) The moment arms of the middle and little fingers increased when the index finger actively produced force at the flexed metacarpophalangeal joint posture. (4) The moment arms showed a high correlation with anthropometric measurements. Interpretation Moment arms of the flexor digitorum superficialis change due to both changes in joint angle and muscle activation; they scale with various anthropometric measures. PMID:22192658

  14. Asteroid Surface Geophysics

    NASA Astrophysics Data System (ADS)

    Murdoch, N.; Sánchez, P.; Schwartz, S. R.; Miyamoto, H.

    The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique microgravity environment that these bodies possess, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesized through detailed spacecraft observations and have been further studied using theoretical, numerical, and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging toward a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that are currently being used to investigate regolith processes occurring on small-body surfaces and that are contributing to the interpretation of observations and the design of future space missions.

  15. Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Giocoli, A.; Stabile, T. A.; Adurno, I.; Perrone, A.; Gallipoli, M. R.; Gueguen, E.; Norelli, E.; Piscitelli, S.

    2015-02-01

    In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the southeastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results obtained by the joint analysis of in situ geophysical surveys, aerial photos interpretation, morphotectonic investigation, geological field survey and borehole data. The joint analysis of different data allowed us (1) to show the shallow geological and structural setting, (2) to detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) to image a previously unmapped fault beneath suspected scarps/warps and (4) to characterize the geometry of an active landslide affecting the study area.

  16. Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis.

    PubMed

    Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang

    2015-01-01

    Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression. PMID:25992955

  17. Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis.

    PubMed

    Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang

    2015-01-01

    Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.

  18. Indian Hedgehog signaling pathway members are associated with magnetic resonance imaging manifestations and pathological scores in lumbar facet joint osteoarthritis

    NASA Astrophysics Data System (ADS)

    Shuang, Feng; Zhou, Ying; Hou, Shu-Xun; Zhu, Jia-Liang; Liu, Yan; Zhang, Chun-Li; Tang, Jia-Guang

    2015-05-01

    Indian Hedgehog (HH) has been shown to be involved in osteoarthritis (OA) in articular joints, where there is evidence that Indian HH blockade could ameliorate OA. It seems to play a prominent role in development of the intervertebral disc (IVD) and in postnatal maintenance. There is little work on IHH in the IVD. Hence the aim of the current study was to investigate the role of Indian Hedgehog in the pathology of facet joint (FJ) OA. 24 patients diagnosed with lumbar intervertebral disk herniation or degenerative spinal stenosis were included. Preoperative magnetic resonance imaging (MRI) and Osteoarthritis Research Society International (OARSI) histopathology grading system was correlated to the mRNA levels of GLI1, PTCH1, and HHIP in the FJs. The Weishaupt grading and OARSI scores showed high positive correlation (r = 0.894) (P < 0.01). MRI Weishaupt grades showed positive correlation with GLI1 (r = 0.491), PTCH1 (r = 0.444), and HHIP (r = 0.654) mRNA levels (P < 0.05 in each case). OARSI scores were also positively correlated with GLI1 (r = 0. 646), PTCH1 (r = 0. 518), and HHIP (r = 0.762) mRNA levels (P < 0.01 in each case). Cumulatively our findings indicate that Indian HH signaling is increased in OA and is perhaps a key component in OA pathogenesis and progression.

  19. Field studies in geophysical diffraction tomography

    SciTech Connect

    Witten, A.J.; Stevens, S.S.; King, W.C.; Ursic, J.R.

    1992-07-01

    Geophysical diffraction tomography (GDT) is a quantitative, high- resolution technique for subsurface imaging. This method has been used in a number of shallow applications to image buried waste, trenches, soil strata, tunnels, synthetic magma chambers, and the buried skeletal remains of seismosaurus, the longest dinosaur ever discovered. The theory associated with the GDT inversion and implementing software have been developed for acoustic and scalar electromagnetic waves for bistatic and monostatic measurements in cross-borehole, offset vertical seismic profiling and reflection geometries. This paper presents an overview of some signal processing algorithms, a description of the instrumentation used in field studies, and selected imaging results.

  20. Field studies in geophysical diffraction tomography

    SciTech Connect

    Witten, A.J.; Stevens, S.S. ); King, W.C. . Dept. of Geography and Environmental Engineering); Ursic, J.R. . Region V)

    1992-01-01

    Geophysical diffraction tomography (GDT) is a quantitative, high- resolution technique for subsurface imaging. This method has been used in a number of shallow applications to image buried waste, trenches, soil strata, tunnels, synthetic magma chambers, and the buried skeletal remains of seismosaurus, the longest dinosaur ever discovered. The theory associated with the GDT inversion and implementing software have been developed for acoustic and scalar electromagnetic waves for bistatic and monostatic measurements in cross-borehole, offset vertical seismic profiling and reflection geometries. This paper presents an overview of some signal processing algorithms, a description of the instrumentation used in field studies, and selected imaging results.

  1. Radiosynovectomy of the elbow joint synovitis in rheumatoid arthritis treated with Lutetium - 177 labeled hydroxylapatite (Lu-177 HA) particulates; first case report and image of Lu -177 HA in the elbow joint

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Rajamani, Venkataraman; Thirumalaisamy, Subbiah Gounder; Chakraborty, Sudipta; Kalarikal, Radhakrishnan; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-01-01

    Rheumatoid arthritis is a chronic disease that is mainly characterized by asymmetric erosive synovitis, particularly affecting the peripheral joints. Radiation synovectomy or radiosynovectomy, also known as radiosynoviorthesis was first described in 1950's as a adjuvant treatment for rheumatoid arthritis. Radiosynovectomy is based on the irradiation of the joint synovium by the intra-articular administration of various β-emitting radiopharmaceuticals. Lu-177 has presence of gamma photons of imagable energy with low abundance which provides the additional benefit of carrying out simultaneous scintigraphy. We describe the first case report of use of Lu-177 hydroxylapatite particulates in a 35-year-old female patient who was presented with elbow joint synovitis due to rheumatoid arthritis. PMID:25400373

  2. Radiosynovectomy of the elbow joint synovitis in rheumatoid arthritis treated with Lutetium - 177 labeled hydroxylapatite (Lu-177 HA) particulates; first case report and image of Lu -177 HA in the elbow joint.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Rajamani, Venkataraman; Thirumalaisamy, Subbiah Gounder; Chakraborty, Sudipta; Kalarikal, Radhakrishnan; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-10-01

    Rheumatoid arthritis is a chronic disease that is mainly characterized by asymmetric erosive synovitis, particularly affecting the peripheral joints. Radiation synovectomy or radiosynovectomy, also known as radiosynoviorthesis was first described in 1950's as a adjuvant treatment for rheumatoid arthritis. Radiosynovectomy is based on the irradiation of the joint synovium by the intra-articular administration of various β-emitting radiopharmaceuticals. Lu-177 has presence of gamma photons of imagable energy with low abundance which provides the additional benefit of carrying out simultaneous scintigraphy. We describe the first case report of use of Lu-177 hydroxylapatite particulates in a 35-year-old female patient who was presented with elbow joint synovitis due to rheumatoid arthritis.

  3. Frequency of joint involvement in juvenile idiopathic arthritis during a 5-year follow-up of newly diagnosed patients: implications for MR imaging as outcome measure.

    PubMed

    Hemke, Robert; Nusman, Charlotte M; van der Heijde, Désirée M F M; Doria, Andrea S; Kuijpers, Taco W; Maas, Mario; van Rossum, Marion A J

    2015-02-01

    To assess the sequence and type of active joints in a cohort of newly diagnosed juvenile idiopathic arthritis (JIA) patients with full access to current treatment at first visit and during a follow-up period of 5-years, in order to identify an index joint/group of joints for magnetic resonance imaging in JIA. Patient charts of all consecutive newly diagnosed JIA patients with a follow-up duration of at least 5 years were analyzed. Patients were derived from two tertiary pediatric rheumatology centers. Patient characteristics and data concerning the presence of joints with arthritis and the use of medication were recorded. Findings from 95 JIA patients [39 (41 %) oligoarticular and 56 (59 %) polyarticular] were analyzed. At first visit, distribution of active joints among patients was as follows: knee (n = 70, 74 %), ankle (n = 55, 58 %), elbow (n = 23, 24 %), wrist (n = 23, 24 %), metacarpophalangeal (MCP) (n = 20, 21 %), proximal interphalangeal (PIP) (n = 13, 14 %), hip (n = 6, 6 %), shoulder (n = 5, 5 %), and distal interphalangeal (DIP) (n = 4, 4 %) joints. After a follow-up period of 5 years, the cumulative percentage of patients with specific joint involvement changed into: knee (n = 88, 93 %), ankle (n = 79, 83 %), elbow (n = 43, 45 %), wrist (n = 38, 40 %), MCP (n = 36, 38 %), PIP (n = 29, 31 %), shoulder (n = 20, 21 %), hip (n = 17, 19 %), and DIP (n = 9, 10 %) joints. Despite changes in treatment strategies over the years, the knee remains the most commonly involved joint at onset and during follow-up in JIA, followed by the ankle, elbow, and wrist. For the evaluation of outcome with MRI, the knee appears the most appropriate joint in JIA.

  4. Use of a whole-slide imaging system to assess the presence and alteration of lymphatic vessels in joint sections of arthritic mice.

    PubMed

    Shi, J X; Liang, Q Q; Wang, Y J; Mooney, R A; Boyce, B F; Xing, L

    2013-11-01

    We investigated the presence and alteration of lymphatic vessels in joints of arthritic mice using a whole-slide imaging system. Joints and long bone sections were cut from paraffin blocks of two mouse models of arthritis: meniscal-ligamentous injury (MLI)-induced osteoarthritis (OA) and TNF transgene (TNF-Tg)-induced rheumatoid arthritis (RA). MLI-OA mice were fed a high fat diet to accelerate OA development. TNF-Tg mice were treated with lymphatic growth factor VEGF-C virus to stimulate lymphangiogenesis. Sections were double immunofluorescence stained with anti-podoplanin and alpha-smooth muscle actin antibodies. The area and number of lymphatic capillaries and mature lymphatic vessels were determined using a whole-slide imaging system and its associated software. Lymphatic vessels in joints were distributed in soft tissues mainly around the joint capsule, ligaments, fat pads and muscles. In long bones, enriched lymphatic vessels were present in the periosteal areas adjacent to the blood vessels. Occasionally, lymphatic vessels were observed in the cortical bone. Increased lymphatic capillaries, but decreased mature lymphatic vessels, were detected in both OA and RA joints. VEGF-C treatment increased lymphatic capillary and mature vessel formation in RA joints. Our findings suggest that the lymphatic system may play an important role in arthritis pathogenesis and treatment.

  5. Single Image Camera Calibration in Close Range Photogrammetry for Solder Joint Analysis

    NASA Astrophysics Data System (ADS)

    Heinemann, D.; Knabner, S.; Baumgarten, D.

    2016-06-01

    Printed Circuit Boards (PCB) play an important role in the manufacturing of electronic devices. To ensure a correct function of the PCBs a certain amount of solder paste is needed during the placement of components. The aim of the current research is to develop an real-time, closed-loop solution for the analysis of the printing process where solder is printed onto PCBs. Close range photogrammetry allows for determination of the solder volume and a subsequent correction if necessary. Photogrammetry is an image based method for three dimensional reconstruction from two dimensional image data of an object. A precise camera calibration is indispensable for an accurate reconstruction. In our certain application it is not possible to use calibration methods with two dimensional calibration targets. Therefore a special calibration target was developed and manufactured, which allows for single image camera calibration.

  6. Joint swelling

    MedlinePlus

    Swelling of a joint ... Joint swelling may occur along with joint pain . The swelling may cause the joint to appear larger or abnormally shaped. Joint swelling can cause pain or stiffness. After an ...

  7. An Emerging Role for Geophysics in Watershed Hydrologic Investigations

    NASA Astrophysics Data System (ADS)

    Knight, R.; Robinson, D.

    2005-12-01

    hydrologic properties from geophysical data. An assessment of the impact of spatial resolution and heterogeneity on property estimates has led to new ideas about site-specific methods that can be used to better constrain the relationship between geophysical and hydrologic properties. A second area of research involves quantifying spatial heterogeneity with geophysical images. Theoretical and field studies of the scale-dependent nature of both natural systems and geophysical images are allowing us to find ways of extracting information about the correlation structure of the subsurface from geophysical data. This leads to a third active area of research, which is improving the quality of subsurface images. New forms of sensors and new approaches to the processing and inversion of data are providing dramatic improvements in our imaging abilities. The fourth area of research seeks to find new forms of geophysical measurement that are sensitive to the biogeochemical processes that can impact water quality. Recent studies have shown a close link between biogeochemical processes and the electrical properties and nuclear magnetic resonance response of geological materials. Through HMF-Geophysics our goal is to build on these active areas of research to advance the use of geophysical methods in developing new strategies for the improved protection and management of our water resources.

  8. To the development of an automated system of assessment of radiological images of joints

    NASA Astrophysics Data System (ADS)

    Grechikhin, A. I.; Grunina, E. A.; Karetnikova, I. R.

    2008-03-01

    An algorithm developed for the adaptive automated computer processing of radiological images of hands and feet in order to assess the degree of bone and cartilage destruction in rheumatoid arthritis is described. A set of new numeral signs was proposed in order to assess a degree of arthritis radiological progression.

  9. Ultrasound-diagnosed bone and joint destruction as a typical image in advanced Charcots arthropathy – case report

    PubMed Central

    Rzepecka-Wejs, Ludomira; Korzon-Burakowska, Anna

    2012-01-01

    The paper presents a case of Charcot foot in a patient with long standing type 2 diabetes and complicated by peripheral neuropathy. It was initially diagnosed by an ultrasound examination and subsequently confirmed by an X-ray and an magnetic resonance imaging. Diabetic neuropathy is nowadays the most frequent cause of Charcot arthropathy, although it can be also a result of other diseases of the nervous system. In the acute phase the patient usually presents with edema, redness and increased temperature of the foot, which can suggest many other diagnoses including bacterial infection, gout, venous thrombosis or trauma. Because of its non specific clinical presentation and unsufficient awareness of the specificity of the diabetic foot syndrome among health professionals and the patients the diagnosis of this process is in many cases delayed. In the acute phase appropriate treatment needs to be initiated (mainly off loading and immobilization of the foot in a total contact cast), otherwise a rapidly progressing destruction of the bones and joints will usually begin, leading to fractures, dislocations and a severe foot deformity. Increased awareness among doctors taking care of the diabetic patients and appropriate use of the imaging methods can definitely improve efficacy of the diagnostic process and help to optimize the treatment of Charcot arthropathy. The standard approach usually includes use of radiography, magnetic resonance imaging and scintigraphy. In some cases a sonographer may be the first one to notice typical signs of bony destruction in a patient with Charcot arthropathy and suggest immediate further imaging in order to confirm the diagnosis and to minimize the risk of mutilating complications. PMID:26674219

  10. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  11. Rapid geophysical surveyor

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-07-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved.

  12. Imaging of Lesser Metatarsophalangeal Joint Plantar Plate Degeneration, Tear, and Repair.

    PubMed

    Linklater, James M; Bird, Stephen J

    2016-04-01

    Plantar plate degeneration and tear is a common cause of forefoot pain, typically involving the second metatarsophalangeal joint at the proximal phalangeal insertion laterally, frequently confused with the second web space Morton neuroma. The condition has received increased attention with the development of surgical techniques that can result in successful repair of the plantar plate and substantial improvement in patient symptoms. High-resolution MRI or ultrasound can confirm a diagnosis of plantar plate degeneration and tear and exclude other pathologies, particularly Morton neuroma. The normal plantar plate is a mildly hyperechoic structure on ultrasound and is hypointense on all conventional MR sequences. Plantar plate degeneration manifests on ultrasound as hypoechoic echotextural change and on MRI as mild signal hyperintensity on short TE sequences, becoming less conspicuous on long TE sequences. Adjacent entheseal bony irregularity is commonly present. Plantar plate tears on ultrasound may be seen as an anechoic cleft defect or area of heterogeneous echotexture, sometimes more conspicuous with dorsiflexion stress. Plantar plate tears demonstrate greater signal hyperintensity on proton-density sequences, becoming more conspicuous on fat-suppressed proton density and T2-weighted sequences. Edema and fibrotic change in the pericapsular fat plane is commonly seen in the setting of an adjacent plantar plate tear and should not be misinterpreted as reflecting a Morton neuroma.

  13. Simulation-based joint estimation of body deformation and elasticity parameters for medical image analysis.

    PubMed

    Lee, Huai-Ping; Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming

    2012-11-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound orMR images) and known external forces.Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation.

  14. Lumbo-pelvic joint protection against antigravity forces: motor control and segmental stiffness assessed with magnetic resonance imaging.

    PubMed

    Richardson, C A; Hides, J A; Wilson, S; Stanton, W; Snijders, C J

    2004-07-01

    The antigravity muscles of the lumbo-pelvic region, especially transversus abdominis (TrA), are important for the protection and support of the weightbearing joints. Measures of TrA function (the response to the postural cue of drawing in the abdominal wall) have been developed and quantified using magnetic resonance imaging (MRI). Cross-sections through the trunk allowed muscle contraction as well as the large fascial attachments of the TrA to be visualized. The cross sectional area (CSA) of the deep musculo-fascial system was measured at rest and in the contracted state, using static images as well as a cine sequence. In this developmental study, MRI measures were undertaken on a small sample of low back pain (LBP) and non LBP subjects. Results demonstrated that, in non LBP subjects, the draw in action produced a symmetrical deep musculo-fascial "corset" which encircles the abdomen. This study demonstrated a difference in this "corset" measure between subjects with and without LBP. These measures may also prove useful to quantify the effect of unloading in bedrest and microgravity exposure.

  15. Automatic bone segmentation and bone-cartilage interface extraction for the shoulder joint from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Yang, Zhengyi; Fripp, Jurgen; Chandra, Shekhar S.; Neubert, Aleš; Xia, Ying; Strudwick, Mark; Paproki, Anthony; Engstrom, Craig; Crozier, Stuart

    2015-02-01

    We present a statistical shape model approach for automated segmentation of the proximal humerus and scapula with subsequent bone-cartilage interface (BCI) extraction from 3D magnetic resonance (MR) images of the shoulder region. Manual and automated bone segmentations from shoulder MR examinations from 25 healthy subjects acquired using steady-state free precession sequences were compared with the Dice similarity coefficient (DSC). The mean DSC scores between the manual and automated segmentations of the humerus and scapula bone volumes surrounding the BCI region were 0.926  ±  0.050 and 0.837  ±  0.059, respectively. The mean DSC values obtained for BCI extraction were 0.806  ±  0.133 for the humerus and 0.795  ±  0.117 for the scapula. The current model-based approach successfully provided automated bone segmentation and BCI extraction from MR images of the shoulder. In future work, this framework appears to provide a promising avenue for automated segmentation and quantitative analysis of cartilage in the glenohumeral joint.

  16. Detection of occult infection following total joint arthroplasty using sequential technetium-99m HDP bone scintigraphy and indium-111 WBC imaging

    SciTech Connect

    Johnson, J.A.; Christie, M.J.; Sandler, M.P.; Parks, P.F. Jr.; Homra, L.; Kaye, J.J.

    1988-08-01

    Preoperative exclusion or confirmation of periprosthetic infection is essential for correct surgical management of patients with suspected infected joint prostheses. The sensitivity and specificity of (/sup 111/In)WBC imaging in the diagnosis of infected total joint prostheses was examined in 28 patients and compared with sequential (/sup 99m/Tc)HDP/(/sup 111/In)WBC scintigraphy and aspiration arthrography. The sensitivity of preoperative aspiration cultures was 12%, with a specificity of 81% and an accuracy of 58%. The sensitivity of (/sup 111/In)WBC imaging alone was 100%, with a specificity of 50% and an accuracy of 65%. When correlated with the bone scintigraphy and read as sequential (/sup 99m/Tc)HDP/(/sup 111/In)WBC imaging, the sensitivity was 88%, specificity 95%, and accuracy 93%. This study demonstrates that (/sup 111/In)WBC imaging is an extremely sensitive imaging modality for the detection of occult infection of joint prostheses. It also demonstrates the necessity of correlating (/sup 111/In)WBC images with (/sup 99m/Tc)HDP skeletal scintigraphy in the detection of occult periprosthetic infection.

  17. Risk factors for temporomandibular joint pain in patients with disc displacement without reduction - a magnetic resonance imaging study.

    PubMed

    Emshoff, R; Brandlmaier, I; Bertram, S; Rudisch, A

    2003-05-01

    The purpose of this study was to evaluate whether the magnetic resonance (MR) imaging variables of temporomandibular joint (TMJ) internal derangement, osteoarthrosis and/or effusion may predict the presence of pain in patients with a clinical disorder of an internal derangement type (ID)-III. The relationship between TMJ ID-III pain and TMJ internal derangement, osteoarthrosis and effusion was analysed in MR images of 84 TMJs in 42 patients with a clinical unilateral diagnosis of TMJ ID-III pain. Criteria for including a TMJ ID-III pain patient were report of orofacial pain referred to the TMJ, with the presence of unilateral TMJ pain during palpation, function and/or unassisted or assisted mandibular opening. Bilateral sagittal and coronal MR images were obtained to establish the presence or absence of TMJ internal derangement, osteoarthrosis and effusion. Using chi-square analysis for pair-wise comparison, the data showed a significant relationship between the MR imaging findings of TMJ ID-III pain and those of internal derangement (P=0.01) and effusion (P=0.00). Of the MR imaging variables considered simultaneously in the multiple logistic regression analysis, osteoarthrosis (P=0.82) and effusion (P=0.08) dropped out as non-significant in the diagnostic TMJ pain group when compared with the TMJ non-pain group. The odds ratio that a TMJ with an internal derangement type of disk displacement without reduction might belong to the pain group was strong (2.7:1) and highly significant (P=0.00). Significant increases in risk of TMJ pain occurred with 'disk displacement without reduction in combination with osteoarthrosis' (5.2:1) (P=0.00) and/or 'disk displacement without reduction in combination with osteoarthrosis and effusion' (6.6:1) (P=0.00). The results suggest that TMJ pain is related to internal derangement, osteoarthrosis and effusion. However, the data re-emphasize the aspect that these MR imaging variables may not be regarded as the unique and dominant

  18. Integrated geophysical imaging of a concealed mineral deposit: a case study of the world-class Pebble porphyry deposit in southwestern Alaska

    USGS Publications Warehouse

    Shah, Anjana K.; Bedrosian, Paul A.; Anderson, Eric D.; Kelley, Karen D.; Lang, James

    2013-01-01

    We combined aeromagnetic, induced polarization, magnetotelluric, and gravity surveys as well as drillhole geologic, alteration, magnetic susceptibility, and density data for exploration and characterization of the Cu-Au-Mo Pebble porphyry deposit. This undeveloped deposit is almost completely concealed by postmineralization sedimentary and volcanic rocks, presenting an exploration challenge. Individual geophysical methods primarily assist regional characterization. Positive chargeability and conductivity anomalies are observed over a broad region surrounding the deposit, likely representing sulfide minerals that accumulated during multiple stages of hydrothermal alteration. The mineralized area occupies only a small part of the chargeability anomaly because sulfide precipitation was not unique to the deposit, and mafic rocks also exhibit strong chargeability. Conductivity anomalies similarly reflect widespread sulfides as well as water-saturated glacial sediments. Mineralogical and magnetic susceptibility data indicate magnetite destruction primarily within the Cu-Au-Mo mineralized area. The magnetic field does not show a corresponding anomaly low but the analytic signal does in areas where the deposit is not covered by postmineralization igneous rocks. The analytic signal shows similar lows over sedimentary rocks outside of the mineralized area, however, and cannot uniquely distinguish the deposit. We find that the intersection of positive chargeability anomalies with analytic signal lows, indicating elevated sulfide concentrations but low magnetite at shallow depths, roughly delineates the deposit where it is covered only by glacial sediments. Neither chargeability highs nor analytic signal lows are present where the deposit is covered by several hundred meters of sedimentary and volcanic rocks, but a 3D resistivity model derived from magnetotelluric data shows a corresponding zone of higher conductivity. Gravity data highlight geologic features within the

  19. Geophysics in Mexico

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. Urrutia

    The 1986 Annual Meeting of the Union Geofisica Mexicana (UGM) was held in Morelia, Michoacan, Mexico, during November 9-15, 1986. This annual meeting provides an opportunity for the presentation and discussion of new observations, data, interpretations, etc., in the various research areas of geophysics. It is also intended to bring together geophysicists from government institutions, industry, universities, and research centers, along with researchers from other countries. Since a substantial amount of the geophysical data that is gathered in Mexico remains unpublished or is published in internal reports of restricted circulation, it is important to have such a forum for local and foreign researchers. Many U.S. research groups are presently carrying out studies in Mexico (in seismology, tectonics, economic geology, volcanology, etc.), but their participation in these annual meetings has been very limited. Thus, in addition to giving a brief account of the meeting, we would like to encourage future participation by AGU members and also to announce the availability of material published from the meetings (abstracts with program and a proceedings volume).

  20. Ninety Years of International Cooperation in Geophysics

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Beer, T.

    2009-05-01

    , climate dynamics, and in geodetic, hydrological, meteorological, oceanographic, seismological, and volcanological research. IUGG also places particular emphasis on the scientific problems of economically less-developed countries by sponsoring activities relevant to their scientific needs (e.g. Geosciences in Africa, Water Resources, Health and Well-Being etc.) The American Geophysical Union was established as the U.S. National Committee for IUGG in 1919 and today has become a distinguished union of individual geoscientists around the world. Several regional geoscience societies also evolved during the last several decades, most prominent being the European Geosciences Union and the Asia Oceania Geosciences Society. These, and some other national and regional geophysical societies, together with IUGG play a strong part in the international cooperation and promotion of geophysical sciences. At the same time the "geosciences" space is getting crowded, and there is a lot of overlap. International linkages between IUGG, AGU, EGU and other geophysical societies as well as their linkage with International Scientific Unions, that comprise the GeoUnions, are going to become more and more important. Working together is going to be more fruitful than territorial disputes. But what mechanisms can be used to encourage relationships between the international, national and regional geophysical and geoscientific bodies? We will discuss some possibilities on how to come together, to develop and to implement joint programs, research meeting, open forums, and policy statements.

  1. Effects of Patellar Taping on Brain Activity During Knee Joint Proprioception Tests Using Functional Magnetic Resonance Imaging

    PubMed Central

    McKie, Shane; Richardson, Paul; Oldham, Jacqueline A.

    2012-01-01

    Background Patellar taping is a common treatment modality for physical therapists managing patellofemoral pain. However, the mechanisms of action remain unclear, with much debate as to whether its efficacy is due to a change in patellar alignment or an alteration in sensory input. Objective The purpose of this study was to investigate the sensory input hypothesis using functional magnetic resonance imaging when taping was applied to the knee joint during a proprioception task. Design This was an observational study with patellar taping intervention. Methods Eight male volunteers who were healthy and right-leg dominant participated in a motor block design study. Each participant performed 2 right knee extension repetitive movement tasks: one simple and one proprioceptive. These tasks were performed with and without patellar taping and were auditorally paced for 400 seconds at 72 beats/min (1.2 Hz). Results The proprioception task without patellar taping caused a positive blood oxygenation level–dependant (BOLD) response bilaterally in the medial supplementary motor area, the cingulate motor area, the basal ganglion, and the thalamus and medial primary sensory motor cortex. For the proprioception task with patellar taping, there was a decreased BOLD response in these regions. In the lateral primary sensory cortex, there was a negative BOLD response with less activity for the proprioception task with taping. Limitations This study may have been limited by the small sample size, a possible learning effect due to a nonrandom order of tasks, and use of a single-joint knee extension task. Conclusions This study demonstrated that patellar taping modulates brain activity in several areas of the brain during a proprioception knee movement task. PMID:22282771

  2. Image encryption schemes for joint photographic experts group and graphics interchange format formats based on three-dimensional baker with compound chaotic sequence generator

    NASA Astrophysics Data System (ADS)

    Ji, Shiyu; Tong, Xiaojun; Zhang, Miao

    2013-01-01

    We propose several methods to transplant the compound chaotic image encryption scheme with permutation based on three-dimensional (3-D) baker onto image formats such as the joint photographic experts group (JPEG) and graphics interchange format (GIF). The new methods avert the discrete cosine transform and quantization, which result in floating point precision loss, and succeed to encrypt and decrypt JPEG images lossless. The ciphered JPEG images generated by our solution own much better randomness than most other existing schemes. Our proposed method for GIF keeps the property of animation successfully. The security test results indicate the proposed methods have high security, and the speed of our algorithm is faster than classical solutions. Since JPEG and GIF image formats are popular contemporarily, we show that the prospect of chaotic image encryption is promising.

  3. Compression scheme for geophysical electromagnetic inversions

    NASA Astrophysics Data System (ADS)

    Abubakar, A.

    2014-12-01

    We have developed a model-compression scheme for improving the efficiency of the regularized Gauss-Newton inversion algorithm for geophysical electromagnetic applications. In this scheme, the unknown model parameters (the conductivity/resistivity distribution) are represented in terms of a basis such as Fourier and wavelet (Haar and Daubechies). By applying a truncation criterion, the model may then be approximated by a reduced number of basis functions, which is usually much less than the number of the model parameters. Further, because the geophysical electromagnetic measurements have low resolution, it is sufficient for inversion to only keep the low-spatial frequency part of the image. This model-compression scheme accelerates the computational time and also reduces the memory usage of the Gauss-Newton method. We are able to significantly reduce the algorithm computational complexity without compromising the quality of the inverted models.

  4. IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system

    NASA Technical Reports Server (NTRS)

    Libert, J. M.

    1982-01-01

    The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.

  5. Geophysics of Mars

    NASA Technical Reports Server (NTRS)

    Wells, R. A.

    1979-01-01

    A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.

  6. Sampling functions for geophysics

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.; Lunquist, C. A.

    1972-01-01

    A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.

  7. Serious games for Geophysics

    NASA Astrophysics Data System (ADS)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  8. Demonstrations in Introductory Geophysics

    NASA Astrophysics Data System (ADS)

    Schramm, K. A.; Stein, S.; van der Lee, S.; Swafford, L.; Klosko, E.; Delaughter, J.; Wysession, M.

    2005-12-01

    Geophysical concepts are challenging to teach at introductory levels, because students need to understand both the underlying physics and its geological application. To address this, our introductory courses include class demonstrations and experiments to demonstrate underlying physical principles and their geological applications. Demonstrations and experiments have several advantages over computer simulations. First, computer simulations "work" even if the basic principle is wrong. In contrast, simple demonstrations show that a principle is physically correct, rather than a product of computer graphics. Second, many students are unfamiliar with once-standard experiments demonstrating ideas of classical physics used in geophysics. Demonstrations are chosen that we consider stimulating, relevant, inexpensive, and easy to conduct in a non-lab classroom. These come in several groups. Many deal with aspects of seismic waves, using springs, light beams, and other methods such as talking from outside the room to illustrate the frequency dependence of diffraction (hearing but not seeing around a corner). Others deal with heat and mass transfer, such as illustrating fractional crystallization with apple juice and the surface/volume effect in planetary evolution with ice. Plate motions are illustrated with paper cutouts showing effects like motion on transform faults and how the Euler vector geometry changes a plate boundary from spreading, to strike-slip, to convergence along the Pacific-North America boundary from the Gulf of California to Alaska. Radioactive decay is simulated by having the class rise and sit down as a result of coin flips (one tail versus two gives different decay rates and hence half lives). This sessions' goal of exchanging information about demonstrations is an excellent idea: some of ours are described on http://www.earth.nwu.edu/people/seth/202.

  9. Magnetic resonance imaging of the wrist in rheumatoid arthritis: comparison with other inflammatory joint diseases and control subjects.

    PubMed

    Tonolli-Serabian, I; Poet, J L; Dufour, M; Carasset, S; Mattei, J P; Roux, H

    1996-03-01

    The aim of this study was to evaluate magnetic resonance images (MRI) of the wrist of rheumatoid arthritis (RA) patients. MRI and plain X-ray of the wrists were performed in 15 patients with RA, 7 patients with another chronic inflammatory joint disease (CIJD), and 10 control subjects. Patients had only minor changes on plain X-ray. Coronal T1 weighted spin echo sequences were performed before and after an intravenous pulse of gadolinium (GD). Contiguous 3 mm thick slices were obtained. Synovitis was frequently objectivized in the two groups of patients. MRI detected far more erosions and central bone geodes than plain X-ray. Geodes were frequent among controls while cortical bone erosions were frequent in patients. Most of the erosions were enhanced after GD injection in the RA patients but not in the 2 other groups. Thus MRI is not only useful in diagnosing inflammatory changes of the wrist but also in distinguishing early stage RA from other CIJD.

  10. Magnetic resonance imaging-verified temporomandibular joint disk displacement in relation to sagittal and vertical jaw deformities.

    PubMed

    Jung, W-S; Kim, H; Jeon, D-M; Mah, S-J; Ahn, S-J

    2013-09-01

    This retrospective study was designed to analyze the relationships between temporomandibular joint (TMJ) disk displacement and skeletal deformities in orthodontic patients. Subjects consisted of 460 adult patients. Before treatment, lateral cephalograms and TMJ magnetic resonance imaging (MRI) were recorded. Subjects were divided into six groups based on TMJ MRI according to increasing severity of TMJ disk displacement, in the following order: bilateral normal TMJs, unilateral disk displacement with reduction (DDR) and contralateral normal, bilateral DDR, unilateral disk displacement without reduction (DDNR) and contralateral normal, unilateral DDR and contralateral DDNR, and bilateral DDNR. Subjects were subdivided sagittally into skeletal Class I, II, and III deformities based on the ANB (point A, nasion, point B) angle and subdivided vertically into hypodivergent, normodivergent, and hyperdivergent deformities based on the facial height ratio. Linear trends between severity of TMJ disk displacement and sagittal or vertical deformities were analyzed by Cochran-Mantel-Haenszel test. The severity of TMJ disk displacement increased as the sagittal skeletal classification changed from skeletal Class III to skeletal Class II and the vertical skeletal classification changed from hypodivergent to hyperdivergent. There were no significant differences in the linear trend of TMJ disk displacement severity between the sexes according to the skeletal deformities. This study suggests that subjects with skeletal Class II and/or hyperdivergent deformities have a high possibility of severe TMJ disk displacement, regardless of sex.

  11. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  12. Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images

    NASA Astrophysics Data System (ADS)

    Samala, Ravi K.; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M.; Wei, Jun; Helvie, Mark A.

    2015-11-01

    We propose a novel approach for the detection of microcalcification clusters (MCs) using joint information from digital breast tomosynthesis (DBT) volume and planar projection (PPJ) image. A data set of 307 DBT views was collected with IRB approval using a prototype DBT system. The system acquires 21 projection views (PVs) from a wide tomographic angle of 60° (60°-21PV) at about twice the dose of a digital mammography (DM) system, which allows us the flexibility of simulating other DBT acquisition geometries using a subset of the PVs. In this study, we simulated a 30° DBT geometry using the central 11 PVs (30°-11PV). The narrower tomographic angle is closer to DBT geometries commercially available or under development and the dose is matched approximately to that of a DM. We developed a new joint-CAD system for detection of clustered microcalcifications. The DBT volume was reconstructed with a multiscale bilateral filtering regularized method and a PPJ image was generated from the reconstructed volume. Task-specific detection strategies were designed to combine information from the DBT volume and the PPJ image. The data set was divided into a training set (127 views with MCs) and an independent test set (104 views with MCs and 76 views without MCs). The joint-CAD system outperformed the individual CAD systems for DBT volume or PPJ image alone; the differences in the test performances were statistically significant (p  <  0.05) using JAFROC analysis.

  13. Computer-aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images.

    PubMed

    Samala, Ravi K; Chan, Heang-Ping; Lu, Yao; Hadjiiski, Lubomir M; Wei, Jun; Helvie, Mark A

    2015-11-01

    We propose a novel approach for the detection of microcalcification clusters (MCs) using joint information from digital breast tomosynthesis (DBT) volume and planar projection (PPJ) image. A data set of 307 DBT views was collected with IRB approval using a prototype DBT system. The system acquires 21 projection views (PVs) from a wide tomographic angle of 60° (60°-21PV) at about twice the dose of a digital mammography (DM) system, which allows us the flexibility of simulating other DBT acquisition geometries using a subset of the PVs. In this study, we simulated a 30° DBT geometry using the central 11 PVs (30°-11PV). The narrower tomographic angle is closer to DBT geometries commercially available or under development and the dose is matched approximately to that of a DM. We developed a new joint-CAD system for detection of clustered microcalcifications. The DBT volume was reconstructed with a multiscale bilateral filtering regularized method and a PPJ image was generated from the reconstructed volume. Task-specific detection strategies were designed to combine information from the DBT volume and the PPJ image. The data set was divided into a training set (127 views with MCs) and an independent test set (104 views with MCs and 76 views without MCs). The joint-CAD system outperformed the individual CAD systems for DBT volume or PPJ image alone; the differences in the test performances were statistically significant (p  <  0.05) using JAFROC analysis. PMID:26464355

  14. WE-E-BRF-01: The ESTRO-AAPM Joint Symposium On Imaging for Proton Treatment Planning and Guidance

    SciTech Connect

    Parodi, K; Dauvergne, D; Kruse, J

    2014-06-15

    In this first inaugural joint ESTRO-AAPM session we will attempt to provide some answers to the problems encountered in the clinical application of particle therapy. Indeed the main advantage is that the physical properties of ion beams offer high ballistic accuracy for tightly conformal irradiation of the tumour volume, with excellent sparing of surrounding healthy tissue and critical organs, This also its Achilles' heel calling for an increasing role of imaging to ensure safe application of the intended dose to the targeted area during the entire course of fractionated therapy. We have three distinguished speakers addressing possible solutions. Katia Parodi (Ludwig Maximilians University, Munich, Germany) To date, Positron Emission Tomography (PET) is the only technique which has been already clinically investigated for in-vivo visualization of the beam range during or shortly after ion beam delivery. The method exploits the transient amount of β{sup 2}-activity induced in nuclear interactions between the primary beam and the irradiated tissue, depending on the ion beam species, the tissue elemental composition and physiological properties (in terms of biological clearance), as well as the time course of irradiation and imaging. This contribution will review initial results, ongoing methodological developments and remaining challenges related to the clinical usage of viable but often suboptimal instrumentation and workflows of PET-based treatment verification. Moreover, it will present and discuss promising new detector developments towards next-generation dedicated PET scanners relying on full-ring or dual-head designs for in-beam quasi real-time imaging. Denis Dauvergne (Institut de Physique Nucleaire de Lyon, Lyon, France) Prompt gamma radiation monitoring of hadron therapy presents the advantage of real time capability to measure the ion range. Both simulations and experiments show that millimetric verification of the range can be achieved at the pencil beam

  15. Geophysics applications in critical zone science: emerging topics.

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Martinez, G.; Guber, A.; Walthall, C. L.; Vereecken, H.

    2012-12-01

    and ecological variables are bound to vary with support and spacing. The mismatch between supports of soil measurement and geophysical footprints has been acknowledged but not resolved. Search is under way for metrics to compress dense geophysical data to be analyzed jointly with the sparser ecological information in space and time. Segmentation methods are needed that are specific to the data generated in critical zone geophysics. The geophysical data presentation will remain an art to some extent, and therefore interaction between form and content in this presentation is of interest. Currently modeling abandons the role of consumer of the structural information about the flow and transport domain, and becomes an organic part of the retrieval process. Much more is done in aquifer modeling than in modeling of variably saturated domains. Model abstraction and multimodeling can provide the functional evaluation of the retrieval components, such as segmentation, and results. The gap remains between the rich information content of the geophysical data and complexity of models in which the retrieval results are used. Field critical zone research is hardly possible without the input from geophysics. It is critical to achieve a tighter coupling of geophysical tools with other tools used in diagnostics, monitoring, and prediction of critical zone processes.

  16. Cloud computing for geophysical applications (Invited)

    NASA Astrophysics Data System (ADS)

    Zhizhin, M.; Kihn, E. A.; Mishin, D.; Medvedev, D.; Weigel, R. S.

    2010-12-01

    Cloud computing offers a scalable on-demand resource allocation model to evolving needs in data intensive geophysical applications, where computational needs in CPU and storage can vary over time depending on modeling or field campaign. Separate, sometimes incompatible cloud platforms and services are already available from major computing vendors (Amazon AWS, Microsoft Azure, Google Apps Engine), government agencies (NASA Nebulae) and Open Source community (Eucalyptus). Multiple cloud platforms with layered virtualization patterns (hardware-platform- software-data-or-everything as a service) provide a feature-rich environment and encourage experimentation with distributed data modeling, processing and storage. However, application and especially database development in the Cloud is different from the desktop and the compute cluster. In this presentation we will review scientific cloud applications relevant to geophysical research and present our results in building software components and cloud services for a virtual geophysical data center. We will discuss in depth economy, scalability and reliability of the distributed array and image data stores, synchronous and asynchronous RESTful services to access and model georefernced data, virtual observatory services for metadata management, and data visualization for web applications in Cloud.

  17. Jesuit Geophysical Observatories

    NASA Astrophysics Data System (ADS)

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  18. A ``model`` geophysics program

    SciTech Connect

    Nyquist, J.E.

    1994-03-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy`s Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994.

  19. Abstracts from the 2016 Joint Meeting of the International Confocal Group (ICG), the International Dermoscopy Society (IDS), and the International Society for Digital Imaging of the Skin (ISDIS)

    PubMed Central

    2016-01-01

    What follows are the abstracts presented at the Joint Meeting of the International Confocal Group (ICG), the International Dermoscopy Society (IDS), and the International Society for Digital Imaging of the Skin (ISDIS). The meeting was held on March 5, 2016, in Washington, DC, USA, in conjunction with the annual meeting of the American Academy of Dermatology (Figure 1). The abstracts appear in the order in which they were presented.

  20. Learning algorithms for both real-time detection of solder shorts and for SPC measurement correction using cross-sectional x-ray images of PCBA solder joints

    NASA Astrophysics Data System (ADS)

    Roder, Paul A.

    1994-03-01

    Learning algorithms are introduced for use in the inspection of cross-sectional X-ray images of solder joints. These learning algorithms improve measurement accuracy by accounting for localized shading effects that can occur when inspecting double- sided printed circuit board assemblies. Two specific examples are discussed. The first is an algorithm for detection of solder short defects. The second algorithm utilizes learning to generate more accurate statistical process control measurements.

  1. Integrating Geophysics, Geology, and Hydrology for Enhanced Hydrogeological Modeling

    NASA Astrophysics Data System (ADS)

    Auken, E.

    2012-12-01

    Geophysical measurements are important for providing information on the geological structure to hydrological models. Regional scale surveys, where several watersheds are mapped at the same time using helicopter borne transient electromagnetic, results in a geophysical model with a very high lateral and vertical resolution of the geological layers. However, there is a bottleneck when it comes to integrating the information from the geophysical models into the hydrological model. This transformation is difficult, because there is not a simple relationship between the hydraulic conductivity needed for the hydrological model and the electrical conductivity measured by the geophysics. In 2012 the Danish Council for Strategic Research has funded a large research project focusing on the problem of integrating geophysical models into hydrological models. The project involves a number of Danish research institutions, consulting companies, a water supply company, as well as foreign partners, USGS (USA), TNO (Holland) and CSIRO (Australia). In the project we will: 1. Use statistical methods to describe the spatial correlation between the geophysical and the lithological/hydrological data; 2. Develop semi-automatic or automatic methods for transforming spatially sampled geophysical data into geological- and/or groundwater-model parameter fields; 3. Develop an inversion method for large-scale geophysical surveys in which the model space is concordant with the hydrological model space 4. Demonstrate the benefits of spatially distributed geophysical data for informing and updating groundwater models and increasing the predictive power of management scenarios. 5. Develop a new receiver system for Magnetic Resonance Sounding data and further enhance the resolution capability of data from the SkyTEM system. 6. In test areas in Denmark, Holland, USA and Australia we will use data from existing airborne geophysical data, hydrological and geological data and also collect new airborne

  2. Geophysical methods for monitoring infiltration in soil

    NASA Astrophysics Data System (ADS)

    Coquet, Yves; Pessel, Marc; Saintenoy, Albane

    2015-04-01

    Geophysics provides useful tools for monitoring water infiltration in soil essentially because they are non-invasive and have a good time-resolution. We present some results obtained on different soils using two geophysical techniques: electrical resistivity tomography (ERT) and ground-penetrating radar (GPR). Infiltration in a loamy soil was monitored using a 2D Wenner array set up under a tension disc infiltrometer. A good imaging of the infiltration bulb below the infiltrometer could be achieved provided a sufficient resistivity contrast between the wet and the dry soil zones. ERT data could be used to invert soil hydraulic properties. However, we found that the information provided by the ERT could be of limited importance in regard to the information provided by the infiltration rate dynamics if the ERT spatial resolution is not small enough to capture the details of the infiltration front at the limit between the wet and dry soil zones. GPR was found to be a good tool to monitor the progression of the infiltration front in a sandy soil. By combining a water transport simulation model (HYDRUS-1D), a method for transforming water content into dielectric permittivity values (CRIM), and an electromagnetic wave propagation model (GprMax), the Mualem-van Genuchten hydraulic parameters could be retrieved from radargrams obtained under constant or falling head infiltration experiments. Both ERT and GPR methods have pros and cons. Time and spatial resolutions are of prime importance to achieve a sufficient sensitivity to all soil hydraulic parameters. Two exploration fields are suggested: the combination of different geophysical methods to explore infiltration in heterogeneous soils, and the development of integrated infiltrometers that allow geophysical measurements while monitoring water infiltration rate in soil.

  3. Hydrogeologic inferences from geophysical and geologic investigation of the Standard Mine site, Elk Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Minsley, B. J.; Caine, J. S.; Ball, L. B.; Burton, B.; Curry-Elrod, E.; Manning, A. H.; Verplanck, P. L.

    2009-12-01

    Geophysical and geologic data were collected at the Standard Mine in Elk Basin near Crested Butte, CO, to improve our understanding of the hydrogeologic controls in the basin and how they influence surface and groundwater interactions with nearby mine workings. The Tertiary Ohio Creek and Wasatch formations are the bedrock geologic units; both are primarily sandstones, but with differences in weathering and fracturing. Dikes, near-vertical normal faults, and polymetallic quartz veins with varying degrees of lateral continuity cut the sedimentary units. The net impact of these features, along with basin topography, makes it difficult to predict the behavior of the surface and groundwater systems. This integrated study utilizes geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements. This is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. The approach combines the benefit of direct, but sparse, field observations with spatially continuous, but indirect, measurements of physical properties through the use of geophysics. Surface geophysical data includes electrical resistivity profiles aimed at imaging variability in subsurface structural properties and fluid content; self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow flow patterns; and magnetic measurements, which provide information on lateral variability in near-surface geologic features, although the minerals at this site are not strongly magnetized. Downhole caliper and optical televiewer logs were acquired in one well and provide valuable information on fracture properties. Field geologic observations include hand sample mineralogy and detailed mapping and characterization of faults, joints, and veins. Analyses of representative rock samples include magnetic susceptibility, mercury injection capillary pressure, semi-quantitative x-ray diffraction

  4. Are temporomandibular joint signs and symptoms associated with magnetic resonance imaging findings in juvenile idiopathic arthritis patients? A longitudinal study.

    PubMed

    Zwir, Liete M L Figueiredo; Terreri, Maria Teresa R A; Sousa, Soraia Ale; Fernandes, Artur Rocha Corrêa; Guimarães, Antônio Sérgio; Hilário, Maria Odete E

    2015-12-01

    The aims of this longitudinal study were to perform a comprehensive clinical evaluation of temporomandibular joint (TMJ) and to investigate the association between the clinical and magnetic resonance imaging (MRI) findings in the TMJs of patients with juvenile idiopathic arthritis (JIA). Seventy-five patients with JIA participated in this study. All patients underwent a rheumatological examination performed by a paediatric rheumatologist, a TMJ examination performed by a single dentist and an MRI with contrast of the TMJs. These examinations were scheduled on the same date. The patients were examined again 1 year later. Twenty-eight (37.3 %) patients reported symptoms at the first evaluation and 11 (14.7 %) patients at the second evaluation. In relation to signs, 35 (46.7 %) of the patients presented at least one sign at the first evaluation and 29 (38.7 %) at the second. Intense contrast enhancement of TMJ was significantly associated with disease activity (p < 0.001) at the first evaluation and a trend to significance was observed at the second (p = 0.056), with poly/systemic subtypes (p = 0.028 and p = 0.049, respectively), with restricted mouth opening capacity (p = 0.013 and p = 0.001, respectively), with the presence of erosions at both evaluations (p = 0.0001 and p < 0.0001, respectively) and with altered condylar shape at the second evaluation (p = 0.0005). TMJ involvement is highly prevalent in JIA patients, with asymptomatic children presenting severe structural alterations of the TMJ. The TMJ should always be evaluated in JIA patients, even in the absence of signs and symptoms.

  5. Magnetic airborne survey - geophysical flight

    NASA Astrophysics Data System (ADS)

    de Barros Camara, Erick; Nei Pereira Guimarães, Suze

    2016-06-01

    This paper provides a technical review process in the area of airborne acquisition of geophysical data, with emphasis for magnetometry. In summary, it addresses the calibration processes of geophysical equipment as well as the aircraft to minimize possible errors in measurements. The corrections used in data processing and filtering are demonstrated with the same results as well as the evolution of these techniques in Brazil and worldwide.

  6. GPR and Geophysical Archaeometry

    NASA Astrophysics Data System (ADS)

    Goodman, D.; Schneider, K.; Piro, S.; Hongo, H.; Higashi, N.

    2005-05-01

    With advances in imaging software, the utility of ground penetrating radar (GPR) as a remote sensing tool for archaeological discovery has been greatly enhanced. Software has been the key to extracting subsurface information contained in (noisy) raw radargrams. Traditional time slice analysis, isosurface rendering, and "overlay analysis" are among several image analyses used to identify buried archaeology. Static corrections are developed for the first time which account for the tilt of GPR antenna at sites with topography. With the recent introduction of GPR-GPS surveying to facilitate and automate remote sensing, the accuracy in the 3D imaging of unmarked grave sites has been improved. Successful examples of GPR imaging and time/depth animations for the discovery of Roman sites, the internal design of Japanese tumulus mounds, and Native American Indian tribal grounds are shown

  7. Fast Monte Carlo based joint iterative reconstruction for simultaneous {sup 99m}Tc/{sup 123}I SPECT imaging

    SciTech Connect

    Ouyang Jinsong; El Fakhri, Georges; Moore, Stephen C.

    2007-08-15

    Simultaneous {sup 99m}Tc/{sup 123}I SPECT allows the assessment of two physiological functions under identical conditions. The separation of these radionuclides is difficult, however, because their energies are close. Most energy-window-based scatter correction methods do not fully model either physical factors or patient-specific activity and attenuation distributions. We have developed a fast Monte Carlo (MC) simulation-based multiple-radionuclide and multiple-energy joint ordered-subset expectation-maximization (JOSEM) iterative reconstruction algorithm, MC-JOSEM. MC-JOSEM simultaneously corrects for scatter and cross talk as well as detector response within the reconstruction algorithm. We evaluated MC-JOSEM for simultaneous brain profusion ({sup 99m}Tc-HMPAO) and neurotransmission ({sup 123}I-altropane) SPECT. MC simulations of {sup 99m}Tc and {sup 123}I studies were generated separately and then combined to mimic simultaneous {sup 99m}Tc/{sup 123}I SPECT. All the details of photon transport through the brain, the collimator, and detector, including Compton and coherent scatter, septal penetration, and backscatter from components behind the crystal, were modeled. We reconstructed images from simultaneous dual-radionuclide projections in three ways. First, we reconstructed the photopeak-energy-window projections (with an asymmetric energy window for {sup 123}I) using the standard ordered-subsets expectation-maximization algorithm (NSC-OSEM). Second, we used standard OSEM to reconstruct {sup 99m}Tc photopeak-energy-window projections, while including an estimate of scatter from a Compton-scatter energy window (SC-OSEM). Third, we jointly reconstructed both {sup 99m}Tc and {sup 123}I images using projection data associated with two photopeak energy windows and an intermediate-energy window using MC-JOSEM. For 15 iterations of reconstruction, the bias and standard deviation of {sup 99m}Tc activity estimates in several brain structures were calculated for NSC

  8. Planetary Geophysics and Tectonics

    NASA Technical Reports Server (NTRS)

    Zuber, Maria

    2005-01-01

    The broad objective of this work is to improve understanding of the internal structures and thermal and stress histories of the solid planets by combining results from analytical and computational modeling, and geophysical data analysis of gravity, topography and tectonic surface structures. During the past year we performed two quite independent studies in the attempt to explain the Mariner 10 magnetic observations of Mercury. In the first we revisited the possibility of crustal remanence by studying the conditions under which one could break symmetry inherent in Runcorn's model of a uniformly magnetized shell to produce a remanent signal with a dipolar form. In the second we applied a thin shell dynamo model to evaluate the range of intensity/structure for which such a planetary configuration can produce a dipole field consistent with Mariner 10 results. In the next full proposal cycle we will: (1) develop numerical and analytical and models of thin shell dynamos to address the possible nature of Mercury s present-day magnetic field and the demise of Mars magnetic field; (2) study the effect of degree-1 mantle convection on a core dynamo as relevant to the early magnetic field of Mars; (3) develop models of how the deep mantles of terrestrial planets are perturbed by large impacts and address the consequences for mantle evolution; (4) study the structure, compensation, state of stress, and viscous relaxation of lunar basins, and address implications for the Moon s state of stress and thermal history by modeling and gravity/topography analysis; and (5) use a three-dimensional viscous relaxation model for a planet with generalized vertical viscosity distribution to study the degree-two components of the Moon's topography and gravity fields to constrain the primordial stress state and spatial heterogeneity of the crust and mantle.

  9. Integrated Geophysical Methods Applied to Geotechnical and Geohazard Engineering: From Qualitative to Quantitative Analysis and Interpretation

    NASA Astrophysics Data System (ADS)

    Hayashi, K.

    2014-12-01

    The Near-Surface is a region of day-to-day human activity on the earth. It is exposed to the natural phenomena which sometimes cause disasters. This presentation covers a broad spectrum of the geotechnical and geohazard ways of mitigating disaster and conserving the natural environment using geophysical methods and emphasizes the contribution of geophysics to such issues. The presentation focusses on the usefulness of geophysical surveys in providing information to mitigate disasters, rather than the theoretical details of a particular technique. Several techniques are introduced at the level of concept and application. Topics include various geohazard and geoenvironmental applications, such as for earthquake disaster mitigation, preventing floods triggered by tremendous rain, for environmental conservation and studying the effect of global warming. Among the geophysical techniques, the active and passive surface wave, refraction and resistivity methods are mainly highlighted. Together with the geophysical techniques, several related issues, such as performance-based design, standardization or regularization, internet access and databases are also discussed. The presentation discusses the application of geophysical methods to engineering investigations from non-uniqueness point of view and introduces the concepts of integrated and quantitative. Most geophysical analyses are essentially non-unique and it is very difficult to obtain unique and reliable engineering solutions from only one geophysical method (Fig. 1). The only practical way to improve the reliability of investigation is the joint use of several geophysical and geotechnical investigation methods, an integrated approach to geophysics. The result of a geophysical method is generally vague, here is a high-velocity layer, it may be bed rock, this low resistivity section may contain clayey soils. Such vague, qualitative and subjective interpretation is not worthwhile on general engineering design works

  10. 3D stochastic geophysical inversion for contact surface geometry

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Farquharson, Colin; Bijani, Rodrigo

    2015-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. As such, 3D geological Earth models typically comprise wireframe contact surfaces of tessellated triangles or other polygonal planar facets. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy is to consider a fundamentally different type of inversion that works directly with models that comprise surfaces representing contacts between rock units. We are researching such an approach, our goal being to perform geophysical forward and inverse modelling directly with 3D geological models of any complexity. Geological and geophysical models should be specified using the same parameterization such that they are, in essence, the same Earth model. We parameterize the wireframe contact surfaces in a 3D model as the coordinates of the nodes (facet vertices). The physical properties of each rock unit in a model remain fixed while the geophysical inversion controls the position of the contact surfaces via the control nodes, perturbing the surfaces as required to fit the geophysical data responses. This is essentially a "geometry inversion", which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. We apply global optimization strategies to solve the inverse problem, including stochastic sampling to obtain statistical information regarding the likelihood of particular features in the model, helping to assess the viability of a proposed model. Jointly inverting multiple types of geophysical data is simple

  11. 18F-Sodium Fluoride PET-CT Hybrid Imaging of the Lumbar Facet Joints: Tracer Uptake and Degree of Correlation to CT-graded Arthropathy

    PubMed Central

    Mabray, Marc C.; Brus-Ramer, Marcel; Behr, Spencer C.; Pampaloni, Miguel H.; Majumdar, Sharmila; Dillon, William P.; Talbott, Jason F.

    2016-01-01

    We aim to evaluate 18F-NaF uptake by facet joints with hybrid PET-CT technique. Specifically, we evaluate NaF uptake in the facet joints of the lower lumbar spine, and correlate with the morphologic grade of facet arthropathy on CT. 30 consecutive patients who underwent standard vertex to toes NaF PET-CT for re-staging of primary neoplastic disease without measurable or documented bony metastases were identified. Maximum (SUVmax) and average (SUVavg) standardized uptake values were calculated for each L3-4, L4-5, and L5-S1 facet joint (n = 180) and normalized to average uptake in the non-diseased femur. A Pathria grade (0-3) was assigned to each facet based upon the CT morphology. Spearman's rank correlation was performed for normalized SUVmax and SUVavg with Pathria grade. ANOVA was performed with Tukey-Kramer pairwise tests to evaluate differences in uptake between Pathria groups. Facet normalized SUVmax (r = 0.31, P < 0.001) and SUVavg (r = 0.28, P < 0.001) demonstrated a mild positive correlation with CT Pathria grade. There was a wide range of uptake values within each Pathria grade subgroup with statistically significant differences in uptake only between Pathria grade 3 as compared to grades 0, 1, and 2. In conclusion, NaF uptake and morphologic changes of the facet joint on CT are weakly correlated. Physiologic information provided by NaF uptake is often discrepant with structural findings on CT suggesting NaF PET may supplement conventional structural imaging for identification of pain generating facet joints. Prospective investigation into the relationship of facet joint NaF uptake with pain and response to pain interventions is warranted. PMID:27134557

  12. Sustainable urban development and geophysics

    NASA Astrophysics Data System (ADS)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  13. SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images

    SciTech Connect

    Park, M; Choi, Y; Cho, A; Hwang, S; Cha, J; Lee, N; Yun, M

    2015-06-15

    Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from the CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.

  14. The Expanding Marketplace for Applied Geophysics

    NASA Astrophysics Data System (ADS)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  15. Indoor vs Outdoor Geophysics

    NASA Astrophysics Data System (ADS)

    Liebermann, R. C.

    2009-05-01

    Research in mineral physics is essential for interpreting observational data from many other disciplines in the Earth Sciences, from geodynamics to seismology to geochemistry to petrology to geomagnetism to planetary science, and extending also to materials science and climate studies. The field of high-pressure mineral physics is highly interdisciplinary. Mineral physicists do not always study minerals nor use only physics; they study the science of materials which comprise the Earth and other planets and employ the concepts and techniques from chemistry, physics, materials science, and even biology. Observations from geochemistry and geophysics studies lead to the development of petrologic, seismic and geodynamical models of the Earth's deep interior. The goal of mineral physics is to interpret such models in terms of variations of pressure, temperature, mineralogy/crystallography, and/or chemical composition with depth. The discovery in 2004 of the post-perovskite phase of MgSiO3 at pressures in excess of 120 GPa and high temperatures has led to an explosion of both complimentary experimental and theoretical work in mineral physics and remarkable synergy between mineral physics and the disciplines of seismology, geodynamics and geochemistry. Similarly, the observation of high-spin to low-spin transitions in Fe-bearing minerals at high pressures has important implications for the lower mantle of the Earth. We focus in this talk on the use of experimental physical acoustics to conduct "indoor seismology" experiments to measure sound wave velocities of minerals under the pressure and temperature conditions of the Earth's mantle. This field of research has a long history dating back at least to the studies of Francis Birch in the 1950s. The techniques include ultrasonic interferometry, resonant ultrasound spectroscopy, and Brillouin spectroscopy. Many of these physical acoustic experiments are now performed in conjunction with synchrotron X-radiation sources at

  16. Seismic reflection imaging at a Shallow Site

    SciTech Connect

    Milligan, P.; Rector, J.; Bainer, R.

    1997-01-01

    The objective of our studies was to determine the best seismic method to image these sediments, between the water table at 3 m depth to the basement at 35 m depth. Good cross-correlation between well logs and the seismic data was also desirable, and would facilitate the tracking of known lithological units away from the wells. For instance, known aquifer control boundaries may then be mapped out over the boundaries, and may be used in a joint inversion with reflectivity data and other non-seismic geophysical data to produce a 3-D image containing quantitative physical properties of the target area.

  17. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  18. Collaborative research: Hydrogeological-geophysical methods for subsurface site characterization. 1997 annual progress report

    SciTech Connect

    Rubin, Y.; Morrison, F.; Rector, J.

    1997-10-31

    'In the first year of the project progress has been made in several areas which are central to the project. Development of Joint Hydrogcological-Geophysical Co-Interpretation Procedure A strong effort was invested in developing the concepts and the algorithm of the joint hydrogeological-geophysical co-interpretation approach. The reason for the concerted effort in that direction is the large amount of time the authors expect this task will take before completion, and also by the need to direct the data collection efforts. They are currently testing several ideas for co-interpretation, but they are at a quite advanced stage. They are testing these ideas using synthetic studies as well as some preliminary data that has been collected at the Lawrence Livermore National Lab site. Part of the efforts is in developing methods for estimation of the semi-variograms of the logconductivity based on direct measurements as well as on seimsic velocity measurements as obtained from cross-well tomography. Preliminary tests show that these two sources of data complement each other quite well: the direct measurements supply the medium to small wave number portion of the logconductivity spectra, while a high resolution seismic survey supplies a good coverage of the large wave number part of the spectra. They advanced significantly with formulating their approach for using Ground Penetrating Radar (GPR) imaging techniques in shallow subsurface surveys. Synthetic surveys show that GPR maybe very suitable for mapping spatial variations in saturations. They have access to field data and are analyzing it. Some additional issues that were investigated are also listed.'

  19. Joint aerosol and water-leaving radiance retrieval from Airborne Multi-angle SpectroPolarimeter Imager

    NASA Astrophysics Data System (ADS)

    Xu, F.; Dubovik, O.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.

    2015-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI typically acquires observations of a target area at 9 view angles between ±67° off the nadir. Its spectral channels are centered at 355, 380, 445, 470*, 555, 660*, and 865* nm, where the asterisk denotes the polarimetric bands. In order to retrieve information from the AirMSPI observations, we developed a efficient and flexible retrieval code that can jointly retrieve aerosol and water leaving radiance simultaneously. The forward model employs a coupled Markov Chain (MC) [2] and adding/doubling [3] radiative transfer method which is fully linearized and integrated with a multi-patch retrieval algorithm to obtain aerosol and water leaving radiance/Chl-a information. Various constraints are imposed to improve convergence and retrieval stability. We tested the aerosol and water leaving radiance retrievals using the AirMSPI radiance and polarization measurements by comparing to the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration to the values reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California. In addition, the MC-based retrievals of aerosol properties were compared with GRASP ([4-5]) retrievals for selected cases. The MC-based retrieval approach was then used to systematically explore the benefits of AirMSPI's ultraviolet and polarimetric channels, the use of multiple view angles, and constraints provided by inclusion of bio-optical models of the water-leaving radiance. References [1]. D. J. Diner, et al. Atmos. Meas. Tech. 6, 1717 (2013). [2]. F. Xu et al. Opt. Lett. 36, 2083 (2011). [3]. J. E. Hansen and L.D. Travis. Space Sci. Rev. 16, 527 (1974). [4]. O. Dubovik et al. Atmos. Meas. Tech., 4, 975 (2011). [5]. O. Dubovik et al. SPIE: Newsroom, DOI:10.1117/2.1201408.005558 (2014).

  20. SAGE celebrates 25 years of learning geophysics by doing geophysics

    USGS Publications Warehouse

    Jiracek, G.R.; Baldridge, W.S.; Sussman, A.J.; Biehler, S.; Braile, L.W.; Ferguson, J.F.; Gilpin, B.E.; McPhee, D.K.; Pellerin, L.

    2008-01-01

    The increasing world demand and record-high costs for energy and mineral resources, along with the attendant environmental and climate concerns, have escalated the need for trained geophysicists to unprecedented levels. This is not only a national need; it's a critical global need. As Earth scientists and educators we must seriously ask if our geophysics pipeline can adequately address this crisis. One program that has helped to answer this question in the affirmative for 25 years is SAGE (Summer of Applied Geophysical Experience). SAGE continues to develop with new faculty, new collaborations, and additional ways to support student participation during and after SAGE. ?? 2008 Society of Exploration Geophysicists.

  1. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints

    PubMed Central

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung

    2016-01-01

    Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625

  2. 2014 Korean Guidelines for Appropriate Utilization of Cardiovascular Magnetic Resonance Imaging: A Joint Report of the Korean Society of Cardiology and the Korean Society of Radiology

    PubMed Central

    Yoon, Yeonyee E.; Hong, Yoo Jin; Kim, Hyung-Kwan; Kim, Jeong A; Na, Jin Oh; Yang, Dong Hyun

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is now widely used in several fields of cardiovascular disease assessment due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there is no guideline which is suitable for Korean people for the use of CMR. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates and patients to improve the overall medical system performances. By addressing CMR usage and creating these guidelines we hope to contribute towards the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. PMID:25469078

  3. 2014 Korean Guidelines for Appropriate Utilization of Cardiovascular Magnetic Resonance Imaging: A Joint Report of the Korean Society of Cardiology and the Korean Society of Radiology

    PubMed Central

    Yoon, Yeonyee E.; Hong, Yoo Jin; Kim, Hyung-Kwan; Kim, Jeong A; Na, Jin Oh; Yang, Dong Hyun

    2014-01-01

    Cardiac magnetic resonance (CMR) imaging is now widely used in several fields of cardiovascular disease assessment due to recent technical developments. CMR can give physicians information that cannot be found with other imaging modalities. However, there is no guideline which is suitable for Korean people for the use of CMR. Therefore, we have prepared a Korean guideline for the appropriate utilization of CMR to guide Korean physicians, imaging specialists, medical associates and patients to improve the overall medical system performances. By addressing CMR usage and creating these guidelines we hope to contribute towards the promotion of public health. This guideline is a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. PMID:25469139

  4. Exploration of Tunnel Alignment using Geophysical Methods to Increase Safety for Planning and Minimizing Risk

    NASA Astrophysics Data System (ADS)

    Lehmann, Bodo; Orlowsky, Dirk; Misiek, Rüdiger

    2010-02-01

    Engineering geophysics provides valuable and continuous information for the planning and execution of tunnel construction projects. For geotechnical purposes special high-resolution geophysical methods have been developed during the last decades. The importance of applying geophysical methods in addition to usually used geological and geotechnical exploration techniques is increasing. The main goal is to achieve an accurate and continuous model of the subsurface in a relative short period of operation time. The routine application of engineering geophysical methods will increase in the coming years. Due to the high acceptance of engineering geophysics at construction sites, much wider application of geophysical investigations is expected. The combination of different methods—geophysics, geology, and geotechnics as well as the so-called joint interpretation techniques—will be of essential importance. Engineering geophysics will play an important role during the three phases: geological investigation, tunnel planning, and execution of tunnel construction. If hazards are well known in advance of a tunnel project the safety of workers will essentially be increased and geological risks will be minimized by means of successful and interdisciplinary cooperation.

  5. Continental crust: a geophysical approach

    SciTech Connect

    Meissner, R.

    1986-01-01

    This book develops an integrated and balanced picture of present knowledge of the continental crust. Crust and lithosphere are first defined, and the formation of crusts as a general planetary phenomenon is described. The background and methods of geophysical studies of the earth's crust and the collection of related geophysical parameters are examined. Creep and friction experiments and the various methods of radiometric age dating are addressed, and geophysical and geological investigations of the crustal structure in various age provinces of the continents are studied. Specific tectonic structures such as rifts, continental margins, and geothermal areas are discussed. Finally, an attempt is made to give a comprehensive view of the evolution of the continental crust and to collect and develop arguments for crustal accretion and recycling. 647 references.

  6. Object Storage for Geophysical Data

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Readey, J.

    2015-12-01

    Object storage systems (such as Amazon S3 or Ceph) have been shown to be cost-effective and highly scalable for data repositories in the Petabyte range and larger. However traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In this session we'll discuss the advantages and challenges of moving to an object store-based model for geophysical data. We'll review a proposed model for a geophysical data service that provides an API-compatible library for traditional NetCDF and HDF5 applications while providing high scalability and performance. One further advantage of this approach is that any dataset or dataset selection can be referenced as a URI. By using versioning, the data the URI references can be guaranteed to be unmodified, thus enabling reproducibility of referenced data.

  7. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  8. Validating Prior Geological Scenario Uncertainty with Geophysical Data

    NASA Astrophysics Data System (ADS)

    Scheidt, C.; Jeong, C.; Mukerji, T.; Caers, J.

    2014-12-01

    Subsurface reservoir modelling, whether for groundwater, storage or oil/gas production relies on geophysical data for determining structure, rocks and fluid variations. The traditional approach depends on stochastic inversion of the geophysical image into subsurface models. However, in addition to geophysical data a wealth of geological information is available from analog or previous studies. Most of this information is ignored, and inversions resort to more mathematically-inspired priors often based on covariance models. In this presentation, using a real field application, we propose a method to validate a rich geological prior with geophysical data without the need for costly inversions. The result of this work is a wide, but geologically-realistic prior that can then be used in subsequent stochastic inversions. To achieve this, we propose to validate plausible geological models (from analog studies) with the observed geophysical data through a global, pattern-based measure of dissimilarity. This global dissimilarity measure is defined between the forward simulated geophysical response of a large variety of geologically plausible models and the observed field data. The proposed dissimilarity measure relies on a comparison of the wavelet decompositions between observed and forward simulated geophysical responses. The difference in frequency distribution of the wavelet coefficients is used via a JS-divergence measure to define the dissimilarity between all the subsurface models and the observed data. The proposed approach is applied to a real field offshore reservoir in West Africa, where a 3D seismic cube is available. The uncertain geological parameters defined for this case are the rock physic model, the infill channels size, depth, sinuosity, the proportion of sand/shale and the stacking patterns.

  9. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in Ischemic Stroke

    PubMed Central

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about −15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization. PMID:27378836

  10. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    PubMed

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization. PMID:27378836

  11. Payload-Directed Control of Geophysical Magnetic Surveys

    NASA Technical Reports Server (NTRS)

    Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey

    2010-01-01

    Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.

  12. Quantitative characterization of brain β-amyloid in 718 normal subjects using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Lowe, Val J.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph E.; Petersen, Ronald C.; Robb, Richard A.; Holmes, David R.

    2016-03-01

    We have previously described an automated system for the co-registration of PiB and FDG PET images with structural MRI and a neurological anatomy atlas to produce region-specific quantization of cortical activity and amyloid burden. We also reported a global joint PiB/FDG histogram-based measure (FDG-Associated PiB Uptake Ratio - FAPUR) that performed as well as regional PiB ratio in stratifying Alzheimer's disease (AD) and Lewy Body Dementia (LBD) patients from normal subjects in an autopsy-verified cohort of 31. In this paper we examine results of this analysis on a clinically-verified cohort of 718 normal volunteers. We found that the global FDG ratio correlated negatively with age (r2 = 0.044) and global PiB ratio correlated positively with age (r2=0.038). FAPUR also correlated negatively with age (r2-.025), and in addition, we introduce a new metric - the Pearson's correlation coefficient (r2) of the joint PiB/FDG histogram which correlates positively (r2=0.014) with age. We then used these measurements to construct age-weighted Z-scores for all measurements made on the original autopsy cohort. We found similar stratification using Z-scores compared to raw values; however, the joint PiB/FDG r2 Z-score showed the greatest stratification ability.

  13. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  14. Geophysical applications of satellite altimetry

    SciTech Connect

    Sandwell, D.T. )

    1991-01-01

    Publications related to geophysical applications of Seasat and Geosat altimetry are reviewed for the period 1987-1990. Problems discussed include geoid and gravity errors, regional geoid heights and gravity anomalies, local gravity field/flexure, plate tectonics, and gridded geoid heights/gravity anomalies. 99 refs.

  15. Geophysical logging and geologic mapping data in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina

    USGS Publications Warehouse

    Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.

    2013-01-01

    Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.

  16. Imaging recommendations for acute stroke and transient ischemic attack patients: a joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery.

    PubMed

    Wintermark, Max; Sanelli, Pina C; Albers, Gregory W; Bello, Jacqueline A; Derdeyn, Colin P; Hetts, Steven W; Johnson, Michele H; Kidwell, Chelsea S; Lev, Michael H; Liebeskind, David S; Rowley, Howard A; Schaefer, Pamela W; Sunshine, Jeffrey L; Zaharchuk, Greg; Meltzer, Carolyn C

    2013-11-01

    In the article entitled "Imaging Recommendations for Acute Stroke and Transient Ischemic Attack Patients: A Joint Statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery", we are proposing a simple, pragmatic approach that will allow the reader to develop an optimal imaging algorithm for stroke patients at their institution. PMID:23948676

  17. [Approach to joint effusion].

    PubMed

    Henniger, M; Rehart, S

    2016-09-01

    The fundamental components of the differential diagnostics of joint effusions are the patient history and clinical examination. In the case of unclear findings, arthrosonography can provide information for the distinction between intra-articular and extra-articular pathologies. In atraumatic joint effusions inflammatory parameters in blood are determined in order to differentiate between systemic inflammatory and local inflammatory joint effusions. In the case of normal values further diagnostics are carried out using imaging. With elevated inflammatory parameters the main differential diagnoses are gouty arthritis, autoimmune joint processes and septic arthritis. When in doubt, a joint aspiration and synovial fluid analysis should be performed to rule out septic arthritis or if necessary confirmation of gouty arthritis. PMID:27562127

  18. Investigation of approaches for hydrogeophysical joint inversion using a parallel computing platform

    NASA Astrophysics Data System (ADS)

    Commer, M.; Kowalsky, M. B.; Doetsch, J.; Newman, G. A.; Finsterle, S.

    2012-12-01

    simulated conductive tracer injection, requiring a petrophysical model to link hydrological and geophysical attributes. The second approach involves a direct joint inversion of hydrological and geophysical measurements. During this iterative procedure, the subsurface electrical resistivity distribution is updated through a petrophysical model from the current hydrological parameter state and the ERT measurements are simulated. The simulated and measured ERT and hydrological data are concurrently matched in the estimation of unknown hydrological parameters. The third approach involves a coupled inversion using common-structure constraints based on the minimization of cross-gradients. Similar to the first method, this can be carried out sequentially, using the image resulting from the inversion of either the hydrological or geophysical dataset to constrain the subsequent inversion of the other dataset. Using model parameterization with varying complexity, we demonstrate the potential model resolution enhancement achieved by the various methods, as well as pitfalls that can arise in their application. While the benefits of including geophysical data for stabilizing the inverse problem are demonstrated for each approach, it is evident that the geophysical data must be implemented in the inversion framework with utmost care to avoid biased hydrological parameter estimates.

  19. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  20. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: scientific predictions, space physics, atmospheric sciences, snow, ice and permafrost, tectonics and sedimentation, seismology, volcanology, remote sensing, and other projects.

  1. In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint

    PubMed Central

    Jang, Andrew T.; Lin, Jeremy D.; Seo, Youngho; Etchin, Sergey; Merkle, Arno; Fahey, Kevin; Ho, Sunita P.

    2014-01-01

    This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics. PMID:24638035

  2. Joint Disorders

    MedlinePlus

    A joint is where two or more bones come together, like the knee, hip, elbow, or shoulder. Joints can be damaged by many types of injuries or diseases, including Arthritis - inflammation of a joint. It causes pain, stiffness, and swelling. Over time, ...

  3. Smith heads Reviews of Geophysics

    NASA Astrophysics Data System (ADS)

    On January 1, Jim Smith began his term as editor-in-chief of Reviews of Geophysics. As editor-in-chief, he leads the board of editors in enhancing the journal's role as an integrating force in the geophysical sciences by providing timely overviews of current research and its trends. Smith is already beginning to fulfill the journal's role of providing review papers on topics of broad interest to Union members as well as the occasional definitive review paper on selected topics of narrower focus. Smith will lead the editorial board until December 31, 2000. Michael Coffey, Tommy Dickey, James Horwitz, Roelof Snieder, and Thomas Torgersen have been appointed as editors to serve with Smith. At least one more editor will be named to round out the disciplinary expertise on the board.

  4. New Geophysical Observatory in Uruguay

    NASA Astrophysics Data System (ADS)

    Sanchez Bettucci, L.; Nuñez, P.; Caraballo, R. R.; Ogando, R.

    2013-05-01

    In 2011 began the installation of the first geophysical observatory in Uruguay, with the aim of developing the Geosciences. The Astronomical and Geophysical Observatory Aiguá (OAGA) is located within the Cerro Catedral Tourist Farm (-34 ° 20 '0 .89 "S/-54 ° 42 '44.72" W, h: 270m). This has the distinction of being located in the center of the South Atlantic Magnetic Anomaly. Geologically is emplaced in a Neoproterozoic basement, in a region with scarce anthropogenic interference. The OAGA has, since 2012, with a GSM-90FD dIdD v7.0 and GSM-90F Overhauser, both of GEM Systems. In addition has a super-SID receiver provided by the Stanford University SOLAR Center, as a complement for educational purposes. Likewise the installation of a seismograph REF TEK-151-120A and VLF antenna is being done since the beginning of 2013.

  5. Geophysical investigations at Momotombo, Nicaragua

    SciTech Connect

    Cordon, U.J.; Zurflueh, E.G.

    1980-09-01

    The Momotombo geothermal field in Nicaragua was investigated in three exploration stages, using a number of geophysical techniques. Stage 1 of the investigations by Texas Instruments, Inc., (1970) located and delineated a potential geothermal field, with the dipole mapping surveys and electromagnetic soundings being most effective. Stage 2 of the investigations, performed in 1973 by the United Nations Development Program (UNDP), outlined the resistivity anomalies in the area west of the previously selected field; Schlumberger VES soundings and constant depth profiling (SCDP) proved most useful. During Stage 3 of the investigations, Electroconsult (ELC) performed 20 additional Schlumberger VES soundings as part of the 1975 plant feasibility studies. Results of these geophysical techniques are summarized and their effectiveness briefly discussed.

  6. More on South American geophysics

    NASA Astrophysics Data System (ADS)

    Lomnitz, Cinna

    As an addendum to J. Urrutia Fucugauchi's (Eos, 63, June 8, 1982, p. 529) excellent analysis of why things go wrong in Latin American geophysics, I submit that funds in whatever form are not the only answer. In Mexico over the past decade there has been a reasonable availability of funds, yet no dramatic increase in the quality or quantity of geophysical research was detected. Graduate scholarships have even gone begging for applicants in the earth sciences!Leadership is the big problem. National plans and forecasts for science and technology continue to ignore this central fact. They want to generate hundreds, nay thousands, of middle-level scientists while providing no incentive for excellence. As others have found out long before us, this approach is doomed from the start.

  7. Quantitative characterization of brain β-amyloid using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Holmes, David R.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph; Petersen, Ronald C.; Lowe, Val J.; Robb, Richard A.

    2014-03-01

    A complex analysis performed by spatial registration of PiB and MRI patient images in order to localize the PiB signal to specific cortical brain regions has been proven effective in identifying imaging characteristics associated with underlying Alzheimer's Disease (AD) and Lewy Body Disease (LBD) pathology. This paper presents an original method of image analysis and stratification of amyloid-related brain disease based on the global spatial correlation of PiB PET images with 18F-FDG PET images (without MR images) to categorize the PiB signal arising from the cortex. Rigid registration of PiB and 18F-FDG images is relatively straightforward, and in registration the 18F-FDG signal serves to identify the cortical region in which the PiB signal is relevant. Cortical grey matter demonstrates the highest levels of amyloid accumulation and therefore the greatest PiB signal related to amyloid pathology. The highest intensity voxels in the 18F-FDG image are attributed to the cortical grey matter. The correlation of the highest intensity PiB voxels with the highest 18F-FDG values indicates the presence of β-amyloid protein in the cortex in disease states, while correlation of the highest intensity PiB voxels with mid-range 18F-FDG values indicates only nonspecific binding in the white matter.

  8. Maximum-Likelihood Joint Image Reconstruction/Motion Estimation in Attenuation-Corrected Respiratory Gated PET/CT Using a Single Attenuation Map.

    PubMed

    Bousse, Alexandre; Bertolli, Ottavia; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2016-01-01

    This work provides an insight into positron emission tomography (PET) joint image reconstruction/motion estimation (JRM) by maximization of the likelihood, where the probabilistic model accounts for warped attenuation. Our analysis shows that maximum-likelihood (ML) JRM returns the same reconstructed gates for any attenuation map (μ-map) that is a deformation of a given μ-map, regardless of its alignment with the PET gates. We derived a joint optimization algorithm accordingly, and applied it to simulated and patient gated PET data. We first evaluated the proposed algorithm on simulations of respiratory gated PET/CT data based on the XCAT phantom. Our results show that independently of which μ-map is used as input to JRM: (i) the warped μ-maps correspond to the gated μ-maps, (ii) JRM outperforms the traditional post-registration reconstruction and consolidation (PRRC) for hot lesion quantification and (iii) reconstructed gated PET images are similar to those obtained with gated μ-maps. This suggests that a breath-held μ-map can be used. We then applied JRM on patient data with a μ-map derived from a breath-held high resolution CT (HRCT), and compared the results with PRRC, where each reconstructed PET image was obtained with a corresponding cine-CT gated μ-map. Results show that JRM with breath-held HRCT achieves similar reconstruction to that using PRRC with cine-CT. This suggests a practical low-dose solution for implementation of motion-corrected respiratory gated PET/CT.

  9. Air-depolyable geophysics package

    SciTech Connect

    Hunter, S.L.; Harben, P.E.

    1993-11-01

    We are using Lawrence Livermore National Laboratory`s (LLNL`s) diverse expertise to develop a geophysical monitoring system that can survive being dropped into place by a helicopter or airplane. Such an air-deployable system could significantly decrease the time and effort needed to set up such instruments in remote locations following a major earthquake or volcanic eruption. Most currently available geophysical monitoring and survey systems, such as seismic monitoring stations, use sensitive, fragile instrumentation that requires personnel trained and experienced in data acquisition and field setup. Rapid deployment of such equipment can be difficult or impossible. Recent developments in low-power electronics, new materials, and sensors that are resistant to severe impacts have made it possible to develop low-cost geophysical monitoring packages for rapid deployment missions. Our strategy was to focus on low-cost battery-powered systems that would have a relatively long (several months) operational lifetime. We concentrated on the conceptual design and engineering of a single-component seismic system that could survive an air-deployment into an earth material, such as alluvium. Actual implementation of such a system is a goal of future work on this concept. For this project, we drew on LLNL`s Earth Sciences Department, Radio Shop, Plastics Shop, and Weapons Program. The military has had several programs to develop air-deployed and cannon-deployed seismometers. Recently, a sonobuoy manufacturer has offered an air-deployable geophone designed to make relatively soft landings.

  10. Rapid Geophysical Surveyor. Final report

    SciTech Connect

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2{1/2} in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques.

  11. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  12. Ultrasound and magnetic resonance imaging of healthy paediatric ankles and knees: a baseline for comparison with haemophilic joints.

    PubMed

    Keshava, S N; Gibikote, S V; Mohanta, A; Poonnoose, P; Rayner, T; Hilliard, P; Lakshmi, K M; Moineddin, R; Ignas, D; Srivastava, A; Blanchette, V; Doria, A S

    2015-05-01

    The study was undertaken to document cartilage and soft tissue changes/findings in ankles and knees of normal children of different age groups to be used for comparison in the assessment of children with haemophilia. Cartilage thickness and soft tissue changes were recorded at predetermined sites of ankles/knees on both US and MRI in healthy boys in three age groups: 7-9; 10-14; and 15-18 years. To assess the validity of the ultrasound and MRI measurements, an ex vivo study was done using agar phantoms with techniques and scanners similar to those applied in vivo. Twenty (48%) knees and 22 (52%) ankles of 42 boys, were evaluated. There was a reduction in the thickness of joint cartilage with age. A difference in cartilage measurements was noted in most sites between the age groups on both US and MRI (P < 0.05 each), but such difference was not noted for joint fluid in ankles or knees (P = 0.20, P = 0.68 or P = 0.75, P = 0.63 for US, MRI, respectively). Although cartilage measurements were smaller on US than on MRI for both ankles and knees (P < 0.05 each), this observation was not recorded for fluid in knees (P = 0.02). For diminutive measurements (2 mm) mean US measurements were smaller than corresponding phantom's measurements, P = 0.02. Age-related measurements were noted for cartilage thickness on US and MRI in ankles and knees. US measurements were smaller than corresponding MRI measurements at most joint sites, which were supported by results on small-diameter phantoms.

  13. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  14. Geological and geophysical characterization of the south-eastern side of the High Agri Valley (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Giocoli, A.; Stabile, T. A.; Adurno, I.; Perrone, A.; Gallipoli, M. R.; Gueguen, E.; Norelli, E.; Piscitelli, S.

    2014-10-01

    In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the south-eastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results of the in situ geophysical investigation. Electrical Resistivity Tomography (ERT) and Horizontal to Vertical Spectral Ratio (HVSR) by earthquakes and ambient noise measurements were carried out in the study area. The results were supported by interpretation of aerial photos, geological field surveys, morphotectonic investigation and borehole data. The joint analysis of geological, ERT and HVSR data allowed us to (1) show the shallow geological and structural setting, (2) detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) image a previously unmapped fault beneath suspected scarps/warps and (4) characterize the geometry of an active landslide that caused damages to structures and infrastructures.

  15. Marine Magnetic Data Holdings of World Data Center-a for Marine Geology and Geophysics

    NASA Technical Reports Server (NTRS)

    Sharman, George F.; Metzger, Dan

    1992-01-01

    The World Data Center-A for Marine Geology and Geophysics is co-located with the Marine Geology & Geophysical Data Center, Boulder, CO. Fifteen million digital marine magnetic trackline measurements are managed within the GEOphysical DAta System (GEODAS). The bulk of these data were collected with proton precision magnetometers under Transit Satellite navigational control. Along-track sampling averages about 1 sample per kilometer, while spatial density, a function of ship's track and survey pattern, range from 4 to 0.02 data points/sq. km. In the near future, the entire geophysical data set will be available on CD-ROM. The Marine Geology and Geophysics Division (World Data Center-A for MGG), of the National Geophysical Data Center, handles a broad spectrum of marine geophysical data, including measurements of bathymetry, magnetics, gravity, seismic reflection subbottom profiles, and side-scan images acquired by ships throughout the world's oceans. Digital data encompass the first three, while the latter two are in analog form, recorded on 35mm microfilm. The marine geophysical digital trackline data are contained in the GEODAS data base which includes 11.6 million nautical miles of cruise trackline coverage contributed by more than 70 organizations worldwide. The inventory includes data from 3206 cruises with 33 million digital records and indexing to 5.3 million track miles of analog data on microfilm.

  16. Improved characterization through joint hydrogeophysicalinversion: Examples of three different approaches

    SciTech Connect

    Linde, Niklas; Chen, Jinsong; Kowalsky, Michael; Finsterle,Stefan; Rubin, Yoram; Hubbard, Susan

    2004-07-01

    With the increasing application of geophysical methods to hydrogeological problems, approaches for obtaining quantitative estimates of hydrogeological parameters using geophysical data are in great demand. A common approach to hydrogeological parameter estimation using geophysical and hydrogeological data is to first invert the geophysical data using a geophysical inversion procedure, and subsequently use the resulting estimates together with available hydrogeological information to estimate a hydrogeological parameter field. This approach does not allow us to constrain the geophysical inversion by hydrogeological data and prior information, and thus decreases our ability to make valid estimates of the hydrogeological parameter field. Furthermore, it is difficult to quantify the uncertainty in the corresponding estimates and to validate the assumptions made. They are developing alternative approaches that allow for the joint inversion of all available hydrological and geophysical data. In this presentation, they consider three studies and draw various conclusions, such as on the potential benefits of estimating the petrophysical relationships within the inversion framework and of constraining the geophysical estimates on geophysical, as well as hydrogeological data.

  17. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect

    Shur, V. Ya. Zelenovskiy, P. S.

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  18. Maximum-likelihood joint image reconstruction and motion estimation with misaligned attenuation in TOF-PET/CT

    NASA Astrophysics Data System (ADS)

    Bousse, Alexandre; Bertolli, Ottavia; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F.; Thielemans, Kris

    2016-02-01

    This work is an extension of our recent work on joint activity reconstruction/motion estimation (JRM) from positron emission tomography (PET) data. We performed JRM by maximization of the penalized log-likelihood in which the probabilistic model assumes that the same motion field affects both the activity distribution and the attenuation map. Our previous results showed that JRM can successfully reconstruct the activity distribution when the attenuation map is misaligned with the PET data, but converges slowly due to the significant cross-talk in the likelihood. In this paper, we utilize time-of-flight PET for JRM and demonstrate that the convergence speed is significantly improved compared to JRM with conventional PET data.

  19. Maximum-likelihood joint image reconstruction and motion estimation with misaligned attenuation in TOF-PET/CT.

    PubMed

    Bousse, Alexandre; Bertolli, Ottavia; Atkinson, David; Arridge, Simon; Ourselin, Sébastien; Hutton, Brian F; Thielemans, Kris

    2016-02-01

    This work is an extension of our recent work on joint activity reconstruction/motion estimation (JRM) from positron emission tomography (PET) data. We performed JRM by maximization of the penalized log-likelihood in which the probabilistic model assumes that the same motion field affects both the activity distribution and the attenuation map. Our previous results showed that JRM can successfully reconstruct the activity distribution when the attenuation map is misaligned with the PET data, but converges slowly due to the significant cross-talk in the likelihood. In this paper, we utilize time-of-flight PET for JRM and demonstrate that the convergence speed is significantly improved compared to JRM with conventional PET data.

  20. Detecting Underground Mine Voids Using Complex Geophysical Techniques

    SciTech Connect

    Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.; Ackman, T. E

    2006-12-01

    In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filled with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.

  1. Software complex for geophysical data visualization

    NASA Astrophysics Data System (ADS)

    Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.

    2013-04-01

    The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The

  2. Imaging active faults in a region of distributed deformation from joint focal mechanism and hypocenter clustering: Application to western Iberia

    NASA Astrophysics Data System (ADS)

    Custodio, S.; Lima, V.; Vales, D.; Carrilho, F.; Cesca, S.

    2015-12-01

    Mainland Portugal, on the SW edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation, which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. We analyse the instrumental earthquake catalog for western Iberia, enriched with data from recent dense broadband deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high quality data, earthquakes collapse into well-defined clusters and lineations. We then present a new joint focal mechanism and hypocenter cluster algorithm that is able to extract coherent information between hypocenter locations and focal mechanisms. We apply the method to the Azores-western Mediterranean region, with emphasis on western Iberia. In addition to identifying well-known seismo-tectonic features, the joint clustering algorithm identifies eight new clusters of earthquakes with a good match between the directions of epicentre lineations and focal mechanism fault planes. These clusters may signal single active faults or wider fault zones accommodating a consistent type of faulting. Mainland Portugal is dominated by strike-slip faulting, consistent with the NNE-SSW and WNW-ESE oriented lineations. The region offshore SW Iberia displays clusters that are either predominantly strike-slip or reverse, indicating slip partitioning. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, where high-magnitude earthquakes occur with long recurrence intervals.

  3. Reduction of radiation dose during facet joint injection using the new image guidance system SabreSource™: a prospective study in 60 patients

    PubMed Central

    Proschek, Dirk; Kafchitsas, K.; Rauschmann, M. A.; Kurth, A. A.; Vogl, T. J.

    2008-01-01

    Interventional procedures are associated with high radiation doses for both patients and surgeons. To reduce the risk from ionizing radiation, it is essential to minimize radiation dose. This prospective study was performed to evaluate the effectiveness in reducing radiation dose during facet joint injection in the lumbar spine and to evaluate the feasibility and possibilities of the new real time image guidance system SabreSource™. A total of 60 patients, treated with a standardized injection therapy of the facet joints L4–L5 or L5–S1, were included in this study. A total of 30 patients were treated by fluoroscopy guidance alone, the following 30 patients were treated using the new SabreSource™ system. Thus a total of 120 injections to the facet joints were performed. Pain, according to the visual analogue scale (VAS), was documented before and 6 h after the intervention. Radiation dose, time of radiation and the number of exposures needed to place the needle were recorded. No significant differences concerning age (mean age 60.5 years, range 51–69), body mass index (mean BMI 26.2, range 22.2–29.9) and preoperative pain (VAS 7.9, range 6–10) were found between the two groups. There was no difference in pain reduction between the two groups (60 vs. 61.5%; P = 0.001) but the radiation dose was significantly smaller with the new SabreSource™ system (reduction of radiation dose 32.7%, P = 0.01; reduction of mean entrance surface dose 32.3%, P = 0.01). The SabreSource™ System significantly reduced the radiation dose received during the injection therapy of the lumbar facet joints. With minimal effort for the setup at the beginning of a session, the system is easy to handle and can be helpful for other injection therapies (e.g. nerve root block therapies). PMID:19082641

  4. Studies in geophysics: Active tectonics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Active tectonics is defined within the study as tectonic movements that are expected to occur within a future time span of concern to society. Such movements and their associated hazards include earthquakes, volcanic eruptions, and land subsidence and emergence. The entire range of geology, geophysics, and geodesy is, to some extent, pertinent to this topic. The needs for useful forecasts of tectonic activity, so that actions may be taken to mitigate hazards, call for special attention to ongoing tectonic activity. Further progress in understanding active tectonics depends on continued research. Particularly important is improvement in the accuracy of dating techniques for recent geologic materials.

  5. Imaging Two-Dimensional Displacements and Strains in Skeletal Muscle during Joint Motion by Cine DENSE MR

    PubMed Central

    Zhong, Xiaodong; Epstein, Frederick H.; Spottiswoode, Bruce S.; Helm, Patrick A.; Blemker, Silvia S.

    2008-01-01

    The objective of this study was to apply cine magnetic resonance imaging (MRI) using displacement encoding with stimulated echoes (DENSE) to measure the dynamic two-dimensional (2D) displacement and Lagrangian strain fields in the biceps brachii muscle. Six healthy volunteers underwent cine DENSE MRI during repeated elbow flexion against the load of gravity. Displacement encoded dynamic images of the upper arm were acquired with spatial and temporal resolutions of 1.9 × 1.9 mm2 and 30 ms, respectively. Pixel-wise Lagrangian displacement and strain fields were calculated from the measured images. We extracted first and second principal strains (E1 and E2) along the centerline and anterior regions of the muscle. E1 and E2 were relatively uniform along the anterior region. However, E1 and E2 were both nonuniform along the centerline region – normalized values for E1 and E2 varied over the ranges of 0.27 to 1.35, and 0.45 to 2.36, respectively. The directions of the first and second principal strains varied throughout the muscle and showed that the direction of principal shortening is not necessarily aligned with fascicle direction. This study demonstrates the utility of cine DENSE MR imaging for analyzing skeletal muscle mechanics and provides data describing the in vivo mechanics of muscle tissue to a level of detail that has not been previously possible. PMID:18177655

  6. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  7. [Standardizing a protocol of magnetic resonance imaging of temporomandibular joints. Part 2. Unification of analysis of obtained data].

    PubMed

    Bulanova, T V

    2004-01-01

    The paper presents a unified protocol for analyzing the data obtained by magnetic resonance tomography, which has been used to examine 350 patients. It characterizes the MR semiotics of different pathological conditions of articular structures, which are illustrated by MR images. An optimal terminology is proposed for the evaluation of bone and soft tissue changes.

  8. Lab-Scale Investigation of Multi-dimensional Relationships between Soil Intrinsic Properties to Improve Estimation of Soil Organic and Ice Content using Novel Core Imaging and Geophysical Techniques in Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Dafflon, B.; Wu, Y.; Kneafsey, T. J.; López, R. D.; Peterson, J.; Hubbard, S. S.

    2015-12-01

    Shallow permafrost distribution and characteristics are important for predicting ecosystem feedbacks to a changing climate over decadal to century timescales. These can drive active layer deepening and land surface deformation, which in turn can significantly affect hydrological and biogeochemical responses, including greenhouse gas dynamics. Investigating permafrost soil intrinsic properties generally involves time-consuming and expensive lab-based analysis of few soil cores over a large area and extrapolating between points to characterize spatial variations in soil properties. Geophysical techniques provide lower resolution data over a spatially large area and when coupled with high-resolution point data can potentially estimate with greater accuracy the spatial variation of investigated properties, thus limiting the difficulty of collecting many soil cores in remote areas. As part of the Next-Generation Ecosystem Experiment (NGEE-Arctic), we investigate multi-dimensional relationships between various permafrost intrinsic soil properties, and further linkages with geophysical parameters such as density from X-ray computed tomography (CT) and electrical conductivity from electrical resistance tomography (ERT) to evaluate how best to constrain estimation of properties as soil organic carbon content, ice content and saturation across low- to high-centered polygon features in the arctic tundra. Results of this study enable the quantification of the multi-dimensional relationships between intrinsic properties, which can be further used to constrain estimation of such properties from geophysical data and/or where limited core-based information is available. This study also enables the identification of the key controls on soil electrical resistivity and density at the investigated permafrost site, including salinity, porosity, water content, ice content, soil organic matter, and lithological properties. Overall, inferred multi-dimensional relationships and related

  9. Sodium Magnetic Resonance Imaging of Ankle Joint in Cadaver Specimens, Volunteers, and Patients After Different Cartilage Repair Techniques at 7 T

    PubMed Central

    Zbýň, Štefan; Brix, Martin O.; Juras, Vladimir; Domayer, Stephan E.; Walzer, Sonja M.; Mlynarik, Vladimir; Apprich, Sebastian; Buckenmaier, Kai; Windhager, Reinhard; Trattnig, Siegfried

    2015-01-01

    Objectives The goal of cartilage repair techniques such as microfracture (MFX) or matrix-associated autologous chondrocyte transplantation (MACT) is to produce repair tissue (RT) with sufficient glycosaminoglycan (GAG) content. Sodium magnetic resonance imaging (MRI) offers a direct and noninvasive evaluation of the GAG content in native cartilage and RT. In the femoral cartilage, this method was able to distinguish between RTs produced by MFX and MACT having different GAG contents. However, it needs to be clarified whether sodium MRI can be useful for evaluating RT in thin ankle cartilage. Thus, the aims of this 7-T study were (1) to validate our sodium MRI protocol in cadaver ankle samples, (2) to evaluate the sodium corrected signal intensities (cSI) in cartilage of volunteers, (3) and to compare sodium values in RT between patients after MFX and MACT treatment. Materials and Methods Five human cadaver ankle samples as well as ankles of 9 asymptomatic volunteers, 6 MFX patients and 6 MACT patients were measured in this 7-T study. Sodium values from the ankle samples were compared with histochemically evaluated GAG content. In the volunteers, sodium cSI values were calculated in the cartilages of ankle and subtalar joint. In the patients, sodium cSI in RT and reference cartilage were measured, morphological appearance of RT was evaluated using the magnetic resonance observation of cartilage repair tissue (MOCART) scoring system, and clinical outcome before and after surgery was assessed using the American Orthopaedic Foot and Ankle Society score and Modified Cincinnati Knee Scale. All regions of interest were defined on morphological images and subsequently transferred to the corresponding sodium images. Analysis of variance, t tests, and Pearson correlation coefficients were evaluated. Results In the patients, significantly lower sodium cSI values were found in RT than in reference cartilage for the MFX (P = 0.007) and MACT patients (P = 0.008). Sodium cSI and

  10. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  11. Indian Geophysical Union celebrates 25th anniversary

    NASA Astrophysics Data System (ADS)

    The Indian Geophysical Union under its president A.P. Mitra, director-general of the Council of Scientific and Industrial Research, is holding the seminar “Advances in Geophysical Research in India” at its 25th annual convention February 1-3 at the National Geophysical Research Institute (NGRI) in Hyderabad. Broad disciplines covered in the seminar are solid Earth geophysics, physics of the oceans, atmospheric sciences, solar-terrestrial relations, space sciences and planetology, and instrumentation. An international symposium on structure and dynamics of the Indian lithosphere is also part of the convention program.

  12. Environmental and Engineering Geophysical University at SAGEEP 2008: Geophysical Instruction for Non-Geophysicists

    SciTech Connect

    Jeffrey G. Paine

    2009-03-13

    The Environmental and Engineering Geophysical Society (EEGS), a nonprofit professional organization, conducted an educational series of seminars at the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP) in Philadelphia in April 2008. The purpose of these seminars, conducted under the name Environmental and Engineering Geophysical University (EEGU) over three days in parallel with the regular SAGEEP technical sessions, was to introduce nontraditional geophysical conference attendees to the appropriate use of geophysics in environmental and engineering projects. Five half-day, classroom-style sessions were led by recognized experts in the application of seismic, electrical, gravity, magnetics, and ground-penetrating radar methods. Classroom sessions were intended to educate regulators, environmental program managers, consultants, and students who are new to near-surface geophysics or are interested in learning how to incorporate appropriate geophysical approaches into characterization or remediation programs or evaluate the suitability of geophysical methods for general classes of environmental or engineering problems.

  13. Creating a Research Experience in an Undergraduate Geophysics Course: Integrated Geophysical Study of the Silver Creek Fault, Santa Clara Valley, California

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Williams, R.

    2006-12-01

    An undergraduate geophysics course at the San Jose State University was redesigned to focus on providing students with an integrated research experience that included both formative and summative assessments of learning. To this end, the students carried out four geophysical studies (gravity, magnetic, refraction, and reflection) across the inferred location of the Silver Creek fault, which is buried by the Quaternary alluvium of the Santa Clara Valley within walking distance of the university. The seismic experiments were made possible with equipment loaned by Geometrics Inc. and seismic and borehole data first acquired during a joint study by the U.S. Geological Survey and the Santa Clara Valley Water District. Three field reports, one produced after each of the first three field experiments, provided formative assessment of each student's understanding of the geophysical method, its application to the primary research objective of defining the location and structure of the Silver Creek fault, and their ability to produce a manuscript of professional quality. After each of the field reports, students were required to rewrite the report, based on feedback provided by the instructor, as well as incorporate the analysis and interpretation of the subsequent geophysical study. Students also modified conclusions of the preceding surveys in order to produce an internally consistent interpretation with each new analysis. Regional geologic relations and borehole data provided additional constraints to interpretations based on the geophysical analyses. For summative assessment, students submitted a final manuscript that had undergone three revisions as well as presented an integrated geophysical study of the Silver Creek fault based on the four geophysical experiments. The quality of the field reports showed marked improvement with each successive submission during the semester and were significantly better than in previous versions of the course, which featured various

  14. Markov Chain Monte Carlo Joint Analysis of Chandra X-Ray Imaging Spectroscopy and Sunyaev-Zel'dovich Effect Data

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.

    2004-01-01

    X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.

  15. Joint detection of anatomical points on surface meshes and color images for visual registration of 3D dental models

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves

    2015-04-01

    Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.

  16. Geophysical and Geotechnical Investigations for Proposed Dominica Airport

    NASA Astrophysics Data System (ADS)

    Morgan, F.; Derek, G.; Vichabian, Y.; Reppert, P.; Wharton, A.; Sogade, J.

    2005-05-01

    The results of geophysical and geotechnical investigations carried out at the site of the proposed International Airport at Melville Hall, Commonwealth of Dominica, West Indies, are presented. The geotechnical investigation confirms the findings of the previous geophysical investigation, which concludes that bedrock is not likely to be encountered within the proposed depths of excavation. The stratigraphic models of both geophysical and geotechnical investigations are compatible and suggest that the soil profile is one of deeply weathered pyroclastic tuff and ash deposits transitioning to a boulder conglomerate ash horizon. The main geophysical method used was seismic refraction, additionally ground penetrating radar, resistivity sounding and resistivity tomographic imaging were also performed at some of the sites. Analysis of the seismic data shows a gradual increase in velocity with depth for which a model has been determined. Ancillary models or predictions of porosity, density, and (natural) compaction with depth are given, based on the basic seismic model. The main geotechnical investigative methods comprised of boreholes to 30 m depth with Standard Penetrating Testing (SPT) and undisturbed Shelby tube, and disturbed Split Spoon soil sampling. Water content, plasiticity, and grainsize distribution characteristics are obtained from laboratory testing leading to a classification of elastic silts and elastic silts with sand using the Unified Classification System. Geophysical and geotechnical data correlations are presented. Seismic velocity and SPT-N blow counts appear to be well correlated by a linear model. A model relationship between SPT and seismic dynamic elastic modulus is developed derived from seismic velocity. SPT-N is better correlated with the dynamic elastic modulus than with seismic velocity. The results show that seismically derived dynamic elastic modulus can accurately predict soil strength as measured by SPT blow counts.

  17. Imaging two-dimensional displacements and strains in skeletal muscle during joint motion by cine DENSE MR.

    PubMed

    Zhong, Xiaodong; Epstein, Frederick H; Spottiswoode, Bruce S; Helm, Patrick A; Blemker, Silvia S

    2008-01-01

    The objective of this study was to apply cine magnetic resonance imaging (MRI) using displacement encoding with stimulated echoes (DENSE) to measure the dynamic two-dimensional (2D) displacement and Lagrangian strain fields in the biceps brachii muscle. Six healthy volunteers underwent cine DENSE MRI during repeated elbow flexion against the load of gravity. Displacement encoded dynamic images of the upper arm were acquired with spatial and temporal resolutions of 1.9 x 1.9 mm(2) and 30 ms, respectively. Pixel-wise Lagrangian displacement and strain fields were calculated from the measured images. We extracted the first and second principal strains (E1 and E2) along the centerline and anterior regions of the muscle. E1 and E2 were relatively uniform along the anterior region. However, E1 and E2 were both non-uniform along the centerline region-normalized values for E1 and E2 varied over the ranges of 0.27-1.35, and 0.45-2.36, respectively. The directions of the first and second principal strains varied throughout the muscle and showed that the direction of principal shortening is not necessarily aligned with fascicle direction. This study demonstrates the utility of cine DENSE MRI for analyzing skeletal muscle mechanics and provides data describing the in vivo mechanics of muscle tissue to a level of detail that has not been previously possible. PMID:18177655

  18. Geospatial and geophysical information for earthquake hazard assessment in Vrancea area, Romania

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    2010-05-01

    detectable from space which can also be observed by ground-based monitoring experiments: surface deformation provided by GPS and SAR imaging, land surface temperature changes as possible precursors provided by ASTER, Landsat TM and ETM, electromagnetic and ionospheric anomalies, radon gas emissions in the faults areas prior to earthquakes, as well as seismicity. Multispectral and multitemporal satellite images (LANDSAT TM, ETM , ASTER, MODIS) over 1989-2009 period have been analyzed for recognizing the continuity and regional relationships of active faults as well as for geologic and seismic hazard mapping. In spite of providing the best constraints on the rate of strain accumulation on active faults (coseismic, postseismic, and interseismic deformation; plate motion and crustal deformation at plate boundaries), GPS measurements have a low spatial resolution, and deformation in the vertical direction can not be determined very accurately. As Vrancea area has a significant regional tectonic activity in Romania and Europe, the joint analysis of geospatial and in-situ geophysical information is revealing new insights in the field of hazard assessment. For Vrancea region, observations of surface kinematics with data provided by Global Positioning System (GPS) network constitute a new and independent data source. In combination with geologic and geophysical information, surface motions may help to unravel the intriguing tectonics of the region. GPS Romanian network stations data revealed a displacement of about few millimeters (5-6 mm) per year in horizontal direction relative motion, and a (2-3 mm) per year in vertical direction. As Vrancea area is characterized by a significant regional tectonic activity, evidenced by neotectonic deformation and seismicity, future use of long-term interferometric data will be a useful tool in active tectonic investigation for this region. The joint analysis of geodetic, seismological and geological information on the spatial distribution of

  19. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  20. Temporomandibular Joint, Closed

    MedlinePlus

    ... Oral Health > The Temporomandibular Joint, Closed The Temporomandibular Joint, Closed Main Content Title: The Temporomandibular Joint, Closed Description: The temporomandibular joint connects the lower ...

  1. The Crust and Upper Mantle Structure of Northeastern Iran from Joint Waveform Tomography Imaging of Body and Surface Waves

    NASA Astrophysics Data System (ADS)

    Baker, B.; Roecker, S. W.; Priestley, K. F.; Tatar, M.

    2012-12-01

    The deformation resulting from the Arabian-Eurasian collision at the longitude of Iran is concentrated in the Zagros, Alborz and Kopeh Dagh Mountains. The Zagros and Alborz Mountains have been the focus of a number of studies but little is known about the structure of NE Iran and the Kopeh Dagh. The Kopeh Dagh form a linear intracontinental fold-and-thrust belt trending NW-SE between the stable Turkmenistan platform and Central Iran, and mark the northern limit to deformation in NE Iran. To the south of the Kopeh Dagh lie a series of elongated mountain ranges: the Binalud, which is a structural and geological eastward continuation of the Alborz, the Siah Kuh near Sabzevar and the Kuh-e-Sorkh near Kashmar. Between August 2006 and February 2008 we operated 17 broadband seismographs along a profile from Sarakhs, near the northeastern political border of Iran with Turkmenistan, across the Kopeh Dagh Mountains, to Yazd in Central Iran. We apply a combination of the teleseismic body wave waveform tomography technique of Roecker et al (2010) with an extension of this technique to surface waves (Roecker et al, 2011) to analyze this data to determine the elastic wavespeed structure of this area. The joint inversion of these different types of waves affords similar types of advantages that are common to combined surface wave dispersion/receiver function inversions in compensating for intrinsic weaknesses in horizontal and vertical resolution capabilities. We compare results recovered from a several different inverse methods, starting with simple gradient techniques to the more sophisticated pseudo-Hessian or L-BFGS approach, and find that the latter are generally more robust. Modelling of receiver functions and surface wave dispersion prior to the analysis is shown to be an efficacious way to generate starting models for this analysis.

  2. Geophysics: Building E5440 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Thompson, M.D.; McGinnis, M.G.

    1992-11-01

    Building E5440 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The results show several complex geophysical signatures. Isolated, one-point, magnetic anomalies surrounding the building may be associated with construction fill. A 10-ft-wide band of strongly magnetic positive anomalies bordering the north side of the building obliterates small magnetic sources that might otherwise be seen. A prominent magnetic nose'' extending northward from this band toward a standpipe at 100N,63E may be connected to an underground tank. The southeast corner of the site is underlain by a rectangular, magnetized source associated with strong radar images. A magnetic lineament extending south from the anomaly may be caused by a buried pipe; the anomaly itself may be caused by subsurface equipment associated with a manhole or utility access pit. A 2,500-gamma, positive magnetic anomaly centered at 0N,20E, which is also the location of a 12 [Omega]-m resistivity minimum, may be caused by a buried vault. It appears on radar imaging as a strong reflector.

  3. Geophysical Characterization of Subsurface Properties Relevant to the Hydrology of the Standard Mine in Elk Basin, Colorado

    USGS Publications Warehouse

    Minsley, Burke J.; Ball, Lyndsay B.; Burton, Bethany L.; Caine, Jonathan S.; Curry-Elrod, Erika; Manning, Andrew H.

    2010-01-01

    Geophysical data were collected at the Standard Mine in Elk Basin near Crested Butte, Colorado, to help improve the U.S. Environmental Protection Agency's understanding of the hydrogeologic controls in the basin and how they affect surface and groundwater interactions with nearby mine workings. These data are discussed in the context of geologic observations at the site, the details of which are provided in a separate report. This integrated approach uses the geologic observations to help constrain subsurface information obtained from the analysis of surface geophysical measurements, which is a critical step toward using the geophysical data in a meaningful hydrogeologic framework. This approach combines the benefit of many direct but sparse field observations with spatially continuous but indirect measurements of physical properties through the use of geophysics. Surface geophysical data include: (1) electrical resistivity profiles aimed at imaging variability in subsurface structures and fluid content; (2) self-potentials, which are sensitive to mineralized zones at this site and, to a lesser extent, shallow-flow patterns; and (3) magnetic measurements, which provide information on lateral variability in near-surface geologic features, although there are few magnetic minerals in the rocks at this site. Results from the resistivity data indicate a general two-layer model in which an upper highly resistive unit, 3 to 10 meters thick, overlies a less resistive unit that is imaged to depths of 20 to 25 meters. The high resistivity of the upper unit likely is attributed to unsaturated conditions, meaning that the contact between the upper and lower units may correspond to the water table. Significant lateral heterogeneity is observed because of the presence of major features such as the Standard and Elk fault veins, as well as highly heterogeneous joint distributions. Very high resistivities (greater than 10 kiloohmmeters) are observed in locations that may correspond

  4. A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging.

    PubMed

    Ning, Lipeng; Setsompop, Kawin; Michailovich, Oleg; Makris, Nikos; Shenton, Martha E; Westin, Carl-Fredrik; Rathi, Yogesh

    2016-01-15

    Diffusion MRI (dMRI) can provide invaluable information about the structure of different tissue types in the brain. Standard dMRI acquisitions facilitate a proper analysis (e.g. tracing) of medium-to-large white matter bundles. However, smaller fiber bundles connecting very small cortical or sub-cortical regions cannot be traced accurately in images with large voxel sizes. Yet, the ability to trace such fiber bundles is critical for several applications such as deep brain stimulation and neurosurgery. In this work, we propose a novel acquisition and reconstruction scheme for obtaining high spatial resolution dMRI images using multiple low resolution (LR) images, which is effective in reducing acquisition time while improving the signal-to-noise ratio (SNR). The proposed method called compressed-sensing super resolution reconstruction (CS-SRR), uses multiple overlapping thick-slice dMRI volumes that are under-sampled in q-space to reconstruct diffusion signal with complex orientations. The proposed method combines the twin concepts of compressed sensing and super-resolution to model the diffusion signal (at a given b-value) in a basis of spherical ridgelets with total-variation (TV) regularization to account for signal correlation in neighboring voxels. A computationally efficient algorithm based on the alternating direction method of multipliers (ADMM) is introduced for solving the CS-SRR problem. The performance of the proposed method is quantitatively evaluated on several in-vivo human data sets including a true SRR scenario. Our experimental results demonstrate that the proposed method can be used for reconstructing sub-millimeter super resolution dMRI data with very good data fidelity in clinically feasible acquisition time.

  5. Capturing three-dimensional in vivo lumbar intervertebral joint kinematics using dynamic stereo-X-ray imaging.

    PubMed

    Aiyangar, Ameet K; Zheng, Liying; Tashman, Scott; Anderst, William J; Zhang, Xudong

    2014-01-01

    Availability of accurate three-dimensional (3D) kinematics of lumbar vertebrae is necessary to understand normal and pathological biomechanics of the lumbar spine. Due to the technical challenges of imaging the lumbar spine motion in vivo, it has been difficult to obtain comprehensive, 3D lumbar kinematics during dynamic functional tasks. The present study demonstrates a recently developed technique to acquire true 3D lumbar vertebral kinematics, in vivo, during a functional load-lifting task. The technique uses a high-speed dynamic stereo-radiography (DSX) system coupled with a volumetric model-based bone tracking procedure. Eight asymptomatic male participants performed weight-lifting tasks, while dynamic X-ray images of their lumbar spines were acquired at 30 fps. A custom-designed radiation attenuator reduced the radiation white-out effect and enhanced the image quality. High resolution CT scans of participants' lumbar spines were obtained to create 3D bone models, which were used to track the X-ray images via a volumetric bone tracking procedure. Continuous 3D intervertebral kinematics from the second lumbar vertebra (L2) to the sacrum (S1) were derived. Results revealed motions occurring simultaneously in all the segments. Differences in contributions to overall lumbar motion from individual segments, particularly L2-L3, L3-L4, and L4-L5, were not statistically significant. However, a reduced contribution from the L5-S1 segment was observed. Segmental extension was nominally linear in the middle range (20%-80%) of motion during the lifting task, but exhibited nonlinear behavior at the beginning and end of the motion. L5-S1 extension exhibited the greatest nonlinearity and variability across participants. Substantial AP translations occurred in all segments (5.0 ± 0.3 mm) and exhibited more scatter and deviation from a nominally linear path compared to segmental extension. Maximum out-of-plane rotations (<1.91 deg) and translations (<0.94 mm) were

  6. Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores-western Mediterranean region

    NASA Astrophysics Data System (ADS)

    Custódio, Susana; Lima, Vânia; Vales, Dina; Cesca, Simone; Carrilho, Fernando

    2016-04-01

    The matching between linear trends of hypocentres and fault planes indicated by focal mechanisms (FMs) is frequently used to infer the location and geometry of active faults. This practice works well in regions of fast lithospheric deformation, where earthquake patterns are clear and major structures accommodate the bulk of deformation, but typically fails in regions of slow and distributed deformation. We present a new joint FM and hypocentre cluster algorithm that is able to detect systematically the consistency between hypocentre lineations and FMs, even in regions of distributed deformation. We apply the method to the Azores-western Mediterranean region, with particular emphasis on western Iberia. The analysis relies on a compilation of hypocentres and FMs taken from regional and global earthquake catalogues, academic theses and technical reports, complemented by new FMs for western Iberia. The joint clustering algorithm images both well-known and new seismo-tectonic features. The Azores triple junction is characterised by FMs with vertical pressure (P) axes, in good agreement with the divergent setting, and the Iberian domain is characterised by NW-SE oriented P axes, indicating a response of the lithosphere to the ongoing oblique convergence between Nubia and Eurasia. Several earthquakes remain unclustered in the western Mediterranean domain, which may indicate a response to local stresses. The major regions of consistent faulting that we identify are the mid-Atlantic ridge, the Terceira rift, the Trans-Alboran shear zone and the north coast of Algeria. In addition, other smaller earthquake clusters present a good match between epicentre lineations and FM fault planes. These clusters may signal single active faults or wide zones of distributed but consistent faulting. Mainland Portugal is dominated by strike-slip earthquakes with fault planes coincident with the predominant NNE-SSW and WNW-ESE oriented earthquake lineations. Clusters offshore SW Iberia are

  7. Geophysical characterization of Hydrogeological processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Flores Orozco, Adrian; Gallistl, Jakob; Schlögel, Ingrid; Chwatal, Werner; Oismüller, Markus; Blöschl, Günter

    2016-04-01

    The characterization of hydrogeological properties in the subsurface with high resolution across space and time scales is critical to improve our understanding of water flow and transport processes. However, to date, hydrogeological investigations are mainly performed through well-tests or the analysis of samples, thus, limiting the spatial resolution of the investigation. To properly capture heterogeneities in the subsurface controlling surface-groundwater interactions, modern hydrogeological studies require the development of innovative investigation techniques that permit to gain continuous information about subsurface state with high spatial and temporal resolution at different scales: from the pore-space all the way to the catchment. To achieve this, we propose the conduction of geophysical surveys, in particular field-scale Spectral Induced Polarization (SIP) imaging measurements. SIP images provide information about the complex electrical conductivity (CEC), which is controlled by important hydrogeological parameters, such as porosity, water content and the chemical properties of the pore-water. Here, we present imaging results collected at the catchment scale (approximately 66 ha), which permitted to gain detailed information about the spatial variability of hydrogeological parameters at different scales. The heterogeneities observed in the geophysical images revealed consistency with independent information collected at the study area. In addition to this, and taking into account that different geophysical methods yield information about different properties and at diverse scales, interpretation of the SIP images was improved by incorporation of complementary measurements, such as: ElectroMagnetic Induction (EMI), Ground Penetrating Radar (GPR), Multichannel Analysis of Surface-Waves (MASW) and Seismic Refraction-Reflection (SRR).

  8. Research and career opportunities in the geophysical sciences for physics students

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew

    2008-10-01

    The field of geophysics involves using most branches of physics to investigate the physical structure and process that characterize the solid and fluid parts of our planet. Major advances in geophysics have come about from physicists crossing disciplinary boundaries and using their skills and knowledge to address first-order problems about the nature and structure of our planet and how the planet has changed over time. Indeed, some of the largest scientific breakthroughs in geophysics have come from physicists. As a way to introduce students to the field of geophysics and to provide them with information about research and career opportunities in geophysics, this talk will focus on one area of geophysics, seismology. This is an area of geophysics that has not only been instrumental in advancing our understanding of solid Earth structure and processes, but one that also has an applied side used for oil, gas and mineral exploration, as well as for environmental work. Examples of research projects involving seismic wave propagation and tomographic imaging will be presented, along the short descriptions of career opportunities in industry, government and academic institutions. In collaboration with Solomon Bililign, North Carolina A&T State University.

  9. Unsaturated zone characterization in soil through transient wetting and drying using GPR joint time-frequency analysis and grayscale images

    NASA Astrophysics Data System (ADS)

    Lai, W. L.; Kou, S. C.; Poon, C. S.

    2012-07-01

    SummaryThis paper describes an experimental method to characterize the soil's unsaturated zone by constructing a scenario in which transient downward water infiltration took place from the topsoil to the bottom soil continuously. During the water infiltration, GPR waveforms and side-view grayscale images of the soil column were simultaneously and continuously captured. The GPR wavelets associated with the wetting front were analyzed using short time fourier transform (STFT) algorithm. The downward wetting front and the stretch of unsaturated transition zone decelerated and eased the wetting front's reflection in the time domain; as well as reduced the peak frequency and attenuated the frequency spectra in the frequency domain. The subsequent drying process further attenuated but accelerated the wetting front's reflection in both time and frequency domains. These observations were correlated with the image pixel profiles, from which GPR velocity profiles at different lapsed times were generated after computation via a complex refractive index model (CRIM). The CRIM method is entirely non-invasive and not only offers very detailed measurement of the water saturation profile of the transition zone in laboratory scale, but also is potentially useful for the further study of a variety of vadose zone properties.

  10. Satellite Relaying of Geophysical Data

    NASA Technical Reports Server (NTRS)

    Allenby, R. J.

    1977-01-01

    Data Collection Platforms (DCPs) for transmitting surface data to an orbiting satellite for relaying to a central data distribution center are being used in a number of geophysical applications. "Off-the-shelf" DCP's, transmitting through Landsat or GOES satellites, are fully capable of relaying data from low-data-rate instruments, such as tiltmeters or tide gauges. In cooperation with the Lamont-Doherty Geological Observatory, Goddard has successfully installed DCP systems on a tide gauge and tiltmeter array on Anegada, British Virgin Islands. Because of the high-data-rate requirements, a practical relay system capable of handling seismic information is not yet available. Such a system could become the basis of an operational hazard prediction system for reducing losses due to major natural catastrophies such as earthquakes, volcanic eruptions, landslides or tsunamis.

  11. Goddard Geophysical and Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Figueroa, Ricardo

    2013-01-01

    This report summarizes the technical parameters and the technical staff of the VLBI system at the fundamental station GGAO. It also gives an overview about the VLBI activities during the report year. The Goddard Geophysical and Astronomical Observatory (GGAO) consists of a 5-meter radio telescope for VLBI, a new 12-meter radio telescope for VLBI2010 development, a 1-meter reference antenna for microwave holography development, an SLR site that includes MOBLAS-7, the NGSLR development system, and a 48" telescope for developmental two-color Satellite Laser Ranging, a GPS timing and development lab, a DORIS system, meteorological sensors, and a hydrogen maser. In addition, we are a fiducial IGS site with several IGS/IGSX receivers. GGAO is located on the east coast of the United States in Maryland. It is approximately 15 miles NNE of Washington, D.C. in Greenbelt, Maryland.

  12. Fractals in geology and geophysics

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1989-01-01

    The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.

  13. Strainmeters and tiltmeters in geophysics

    NASA Technical Reports Server (NTRS)

    Goulty, N. R.

    1976-01-01

    Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.

  14. Agricultural Geophysics: Past, present, and future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...

  15. Remote sensing-a geophysical perspective.

    USGS Publications Warehouse

    Watson, K.

    1985-01-01

    In this review of developments in the field of remote sensing from a geophysical perspective, the subject is limited to the electromagnetic spectrum from 0.4 mu m to 25cm. Three broad energy categories are covered: solar reflected, thermal infrared, and microwave.-from Authorremote sensing electromagnetic spectrum solar reflected thermal infrared microwave geophysics

  16. Elastic Wavespeed Images of Northern Chile Subduction Zone from the Joint Inversion of Body and Surface Waves: Structure of the Andean Forearc and the Double Seismic Zone

    NASA Astrophysics Data System (ADS)

    Comte, D.; Carrizo, D.; Roecker, S. W.; Peyrat, S.; Arriaza, R.; Chi, R. K.; Baeza, S.

    2015-12-01

    Partly in anticipation of an imminent megathrust earthquake, a significant amount of seismic data has been collected over the past several years in northern Chile by local deployments of seismometers. In this study we generate elastic wavespeed images of the crust and upper mantle using a combination of body wave arrival times and surface wave dispersion curves. The body wave data set consists of 130000 P and 108000 S wave arrival times generated by 12000 earthquakes recorded locally over a period of 25 years by networks comprising about 360 stations. The surface wave data set consists of Rayleigh wave dispersion curves determined from ambient noise recorded by 60 broad band stations from three different networks over a period of three years. Transit time biases due to an uneven distribution of noise were estimated using a technique based on that of Yao and van der Hilst (2009) and found to be as high as 5% for some station pairs. We jointly invert the body and surface wave observations to both improve the overall resolution of the crustal images and reduce the trade-off between shallow and deep structures in the images of the subducted slab. Of particular interest in these images are three regions of anomalous Vp/Vs: (1) An extensive zone of low Vp/Vs (1.68) correlates with trench-parallel magmatic belts emplaced in the upper continental crust. In the region of the coast and continental slope, low Vp/Vs corresponds to batholithic structures in the Jurassic-Cretaceous magmatic arc. Between the central depression and Domeyko Cordillera, low Vp/Vs correlates with the distribution of magmatic arcs of Paleocene-Oligocene and Eocene-Oligocene age. Low Vp/Vs also correlates with the location of the Mejillones Peninsula. (2) A region of high Vp/Vs occurs in what is most likely the serpentinized wedge of the subduction zone. (3) An additional zone of low Vp/Vs is located in the middle of the double seismic zone at depths of 90-110 km. This region may exist all along the

  17. Compliant joint

    NASA Technical Reports Server (NTRS)

    Eklund, Wayne D. (Inventor); Kerley, James J. (Inventor)

    1990-01-01

    A compliant joint is provided for prosthetic and robotic devices which permits rotation in three different planes. The joint provides for the controlled use of cable under motion. Perpendicular outer mounting frames are joined by swaged cables that interlock at a center block. Ball bearings allow for the free rotation of the second mounting frame relative to the first mounting frame within a predetermined angular rotation that is controlled by two stop devices. The cables allow for compliance at the stops and the cables allow for compliance in six degrees of freedom enabling the duplication or simulation of the rotational movement and flexibility of a natural hip or knee joint, as well as the simulation of a joint designed for a specific robotic component for predetermined design parameters.

  18. Joint Commission

    MedlinePlus

    ... Sunday 1:00 CST, November 6, 2016 Workplace Violence Prevention Resources The Joint Commission has launched “Workplace Violence Prevention Resources,” an online resource center dedicated to ...

  19. Joint Problems

    MedlinePlus

    ... ankles and toes. Other types of arthritis include gout or pseudogout. Sometimes, there is a mechanical problem ... for more information on osteoarthritis, rheumatoid arthritis and gout. How Common are Joint Problems? Osteoarthritis, which affects ...

  20. Agricultural geophysics: Past/present accomplishments and future advancements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...

  1. Geophysical Inversion through Hierarchical Genetic Algorithm Scheme

    NASA Astrophysics Data System (ADS)

    Furman, Alex; Huisman, Johan A.

    2010-05-01

    Geophysical investigation is a powerful tool that allows non-invasive and non-destructive mapping of subsurface states and properties. However, non-uniqueness associated with the inversion process halts these methods from becoming of more quantitative use. One major direction researchers are going is constraining the inverse problem by hydrological observations and models. An alternative to the commonly used direct inversion methods are global optimization schemes (such as genetic algorithms and Monte Carlo Markov Chain methods). However, the major limitation here is the desired high resolution of the tomographic image, which leads to a large number of parameters and an unreasonably high computational effort when using global optimization schemes. One way to overcome these problems is to combine the advantages of both direct and global inversion methods through hierarchical inversion. That is, starting the inversion with relatively coarse resolution of parameters, achieving good inversion using one of the two inversion schemes (global or direct), and then refining the resolution and applying a combination of global and direct inversion schemes for the whole domain or locally. In this work we explore through synthetic case studies the option of using a global optimization scheme for inversion of electrical resistivity tomography data through hierarchical refinement of the model resolution.

  2. Geometry of the Farallon Slab Revealed by Joint Interpretation of Wavefield Imaging and Tomography Results from the Earthscope Transportable Array

    NASA Astrophysics Data System (ADS)

    Pavlis, G. L.; Wang, Y.

    2015-12-01

    A significant number of P and S wave tomography models have been produced in the past decade using various subsets of data from the Earthscope USArray and different inversion algorithms. We focus here on published tomography results that span large portions of the final footprint of the USArray. We use 3D visualization techniques to search for common features in different tomography models. We also compare tomography results to features seen in our current generation wavefield images. Recent innovations of our plane wave migration method have yielded what is arguably the highest resolution image ever produced of the mantle in the vicinity of the transition zone. The new results reveal a rich collection of coherent, dipping structures seen throughout the upper mantle and transition zone. These dipping interfaces are judged significant according to a coherence metric. We treat these surfaces as strain markers to assess proposed models for geometry of the 3D geometry of the Farallon Slab under North America. We find the following geologic interpretations are well supported by independent results: 1. The old Farallon under eastern North America and below the base of transition zone is universally seen as a high velocity anomaly. 2. All results support a simple, 3D kinematic model of the updip limit of the Farallon slab window that follows a track from Cape Mendocino, across Nevada, and northern Arizona and New Mexico. 3. All models show a strong low-velocity mantle under the southwestern U.S. 4. A low-velocity features is universally seen related to the Yellowstone-Snake River system. Shorter wavelength features observed in different tomography models are inconsistent showing that the theme of this session is very important to understand what features are in current results are real. Isopach maps of the thickness of the transition show a systematic difference in transition zone thickness in the western and eastern US. The transition zone thickens in the eastern US in

  3. Joint shape morphogenesis precedes cavitation of the developing hip joint

    PubMed Central

    Nowlan, Niamh C; Sharpe, James

    2014-01-01

    The biology and mechanobiology of joint cavitation have undergone extensive investigation, but we have almost no understanding of the development of joint shape. Joint morphogenesis, the development of shape, has been identified as the ‘least understood aspect of joint formation’ (2005, Birth Defects Res C Embryo Today 75, 237), despite the clinical relevance of shape morphogenesis to postnatal skeletal malformations such as developmental dysplasia of the hip. In this study, we characterise development of early hip joint shape in the embryonic chick using direct capture 3D imaging. Contrary to formerly held assumptions that cavitation precedes morphogenesis in joint development, we have found that the major anatomical features of the adult hip are present at Hamburger Hamilton (HH)32, a full day prior to cavitation of the joint at HH34. We also reveal that the pelvis undergoes significant changes in orientation with respect to the femur, despite the lack of a joint cavity between the rudiments. Furthermore, we have identified the appearance of the ischium and pubis several developmental stages earlier than was previously reported, illustrating the value and importance of direct capture 3D imaging. PMID:24266523

  4. Anatomy and histology of the sacroiliac joints.

    PubMed

    Egund, Niels; Jurik, Anne Grethe

    2014-07-01

    The anatomy of joints provides an important basis for understanding the nature and imaging of pathologic lesions and their imaging appearance. This applies especially to the sacroiliac (SI) joints, which play a major role in the diagnosis of spondyloarthritis. They are composed of two different joint portions, a cartilage-covered portion ventrally and a ligamentous portion dorsally, and thus rather complex anatomically. Knowledge of anatomy and the corresponding normal imaging findings are important in the imaging diagnosis of sacroiliitis, especially by MR imaging. A certain distinction between the two joint portions by MR imaging is only obtainable by axial slice orientation. Together with a perpendicular coronal slice orientation, it provides adequate anatomical information and thereby a possibility for detecting the anatomical site of disease-specific characteristics and normal variants simulating disease. This overview describes current knowledge about the normal macroscopic and microscopic anatomy of the SI joints.

  5. Joint Tomographic Imaging of 3-­-D Density Structure Using Cosmic Ray Muons and High-­-Precision Gravity Data

    NASA Astrophysics Data System (ADS)

    Rowe, C. A.; Guardincerri, E.; Roy, M.; Dichter, M.

    2015-12-01

    As part of the CO2 reservoir muon imaging project headed by the Pacific Northwest National Laboraory (PNNL) under the U.S. Department of Energy Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) iniative, Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) plan to leverage the recently decommissioned and easily accessible Tunnel Vault on LANL property to test the complementary modeling strengths of muon radiography and high-precision gravity surveys. This tunnel extends roughly 300 feet into the hillside, with a maximum depth below the surface of approximately 300 feet. We will deploy LANL's Mini Muon Tracker (MMT), a detector consisting of 576 drift tubes arranged in alternating parallel planes of orthogonally oriented tubes. This detector is capable of precise determination of trajectories for incoming muons with angular resolution of a few milliradians. We will deploy the MMT at several locations within the tunnel, to obtain numerous crossing muon trajectories and permit a 3D tomographic image of the overburden to be built. In the same project, UNM will use a Scintrex digital gravimeter to collect high-precision gravity data from a dense grid on the hill slope above the tunnel as well as within the tunnel itself. This will provide both direct and differential gravity readings for density modeling of the overburden. By leveraging detailed geologic knowledge of the canyon and the lithology overlying the tunnel, as well as the structural elements, elevations and blueprints of the tunnel itself, we will evaluate the muon and gravity data both independently and in a simultaneous, joint inversion to build a combined 3D density model of the overburden.

  6. Joint feature selection and classification using a Bayesian neural network with automatic relevance determination priors: potential use in CAD of medical imaging

    NASA Astrophysics Data System (ADS)

    Chen, Weijie; Zur, Richard M.; Giger, Maryellen L.

    2007-03-01

    Bayesian neural network (BNN) with automatic relevance determination (ARD) priors has the ability to assess the relevance of each input feature during network training. Our purpose is to investigate the potential use of BNN-with-ARD-priors for joint feature selection and classification in computer-aided diagnosis (CAD) of medical imaging. With ARD priors, each group of weights that connect an input feature to the hidden units is associated with a hyperparameter controlling the magnitudes of the weights. The hyperparameters and the weights are updated simultaneously during neural network training. A smaller hyperparameter will likely result in larger weight values and the corresponding feature will likely be more relevant to the output, and thus, to the classification task. For our study, a multivariate normal feature space is designed to include one feature with high classification performance in terms of both ideal observer and linear observer, two features with high ideal observer performance but low linear observer performance and 7 useless features. An exclusive-OR (XOR) feature space is designed to include 2 XOR features and 8 useless features. Our simulation results show that the ARD-BNN approach has the ability to select the optimal subset of features on the designed nonlinear feature spaces on which the linear approach fails. ARD-BNN has the ability to recognize features that have high ideal observer performance. Stepwise linear discriminant analysis (SWLDA) has the ability to select features that have high linear observer performance but fails to select features that have high ideal observer performance and low linear observer performance. The cross-validation results on clinical breast MRI data show that ARD-BNN yields statistically significant better performance than does the SWLDA-LDA approach. We believe that ARD-BNN is a promising method for pattern recognition in computer-aided diagnosis of medical imaging.

  7. The evaluation of lateral pterygoid muscle pathologic changes and insertion patterns in temporomandibular joints with or without disc displacement using magnetic resonance imaging.

    PubMed

    Imanimoghaddam, M; Madani, A S; Hashemi, E M

    2013-09-01

    Temporomandibular joint (TMJ) disc displacement is a common disorder in patients with internal derangement. Certain anatomic features of TMJ may make the patient prone to this condition, namely lateral pterygoid muscle (LPM) insertion variations. The aim of this study was to investigate LPM attachments and their relationships with disc displacement and subsequent pathologic changes. A total of 26 patients with clinical temporomandibular disorders (TMDs) and a control group of 14 unaffected individuals were studied. Magnetic resonance images (MRIs) were taken to evaluate LPM insertion patterns, superior LPM head pathologic changes, and relative disc to condyle position. Data registration and analysis were done using SPSS v. 16.0. The most common variation (type I) was shown to be the superior head with two bundles, one attached to the disc and another to the condyle. No significant relationship between LPM insertion type and disc displacement or pathologic changes of the muscle was found. However, a link between disc displacement and muscle pathologic changes was established (P=0.001).

  8. Calibration and Confirmation in Geophysical Models

    NASA Astrophysics Data System (ADS)

    Werndl, Charlotte

    2016-04-01

    For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.

  9. Bringing a Bayesian Perspective to Large Dimensional Problems in Geophysics

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Simons, M.; Jolivet, R.; Zaroli, C.; Rivera, L. A.; Ampuero, J. P.; Gombert, B.; Minson, S. E.

    2015-12-01

    The last decade has seen a substantial expansion of geophysical observations. Exploiting this wealth of data involves large ill-conditioned inverse problems requiring large numbers of uncertain parameters. A common approach in geophysics is to use some form of regularization that transforms the inversion into a well-conditioned optimization problem. While this approach is convenient and computationally inexpensive, the inherent non-uniqueness of our problems suggest that we should not simply search for a single optimal model, but rather attempt to describe the ensemble of plausible models that can fit the data and are consistent with prior information. This talk will present various applications of full Bayesian analysis techniques to large ill-posed inverse problems in geophysics. Despite significant computational cost, Bayesian sampling is a powerful tool to combine prior information, theoretical knowledge and data in order to address scientific problems probabilistically. We shall illustrate this by showing recent results for two types of problems: (1) the study of earthquakes sources and (2) imaging of the Earth interior. In particular, we will present different strategies that can be employed in order to achieve realistic uncertainty estimates.

  10. Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics

    NASA Technical Reports Server (NTRS)

    Csatho, Beata M.

    2003-01-01

    Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.

  11. Electrical Resistivity Imaging

    EPA Science Inventory

    Electrical resistivity imaging (ERI) is a geophysical method originally developed within the mining industry where it has been used for decades to explore for and characterize subsurface mineral deposits. It is one of the oldest geophysical methods with the first documented usag...

  12. Geophysical characterisation of Carlo's V Castle (Crotone, Italy)

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Giocoli, A.; Rizzo, E.; Lapenna, V.

    2009-04-01

    The Carlo's V Castle, located in Crotone Town, on the Ionian coast of the Calabria Region (Italy), date back to the 13th century d.C. (Fig. 1). During its long life, the building changed several owners and sustained the damages and the consequent reconstructions due to the innumerable naval battles. Moreover, the castle suffered the action of the earthquakes which always afflict the region. With the principal aim of detecting the location, depth and geometry of the rests of destroyed structures, a systematic Ground Penetrating Radar (GPR) survey was carried out in the area inside the boundary walls. The results are sixty-two one-meter-spaced, filtered and migrated radargrams arranged in four 3D data-sets. From each data-set, the most significant time-slice was extracted. To reduce the ambiguity in the GPR data interpretation, additional geophysical techniques, such as Magnetic (M), and Electrical Resistivity Tomography (ERT), were carried out with a partial superimposition with the GPR data. A comparison and a joint interpretation amongst different geophysical data pointed out some very remarkable features associated to buried remains and possible buried cannonballs. With the secondary aim to check the presence of an old military walkway linking two bastions a GPR profile was carried out on the sea side boundary wall. The GPR results are in agreement with an ERT survey carried out on the same profile and consistent with the presence of an underground passage.

  13. Tabletop Models for Electrical and Electromagnetic Geophysics.

    ERIC Educational Resources Information Center

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  14. Physicist + Geologist points to Geophysics Course

    ERIC Educational Resources Information Center

    Julian, Glenn M.; Stueber, Alan M.

    1974-01-01

    A two-quarter introductory course in geophysics at the advanced undergraduate/beginning graduate level is described. An outline of course content is provided, and mechanics of instruction are discussed. (DT)

  15. Fundamental issues in the geology and geophysics of Venus

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Head, J. W.

    1991-04-01

    A number of important and currently unresolved issues in the global geology and geophysics of Venus will be addressable with the radar imaging, altimetry, and gravity measurements now forthcoming from the Magellan mission. Among these are the global volcanic flux and the rate of formation of new crust; the global heat flux and its regional variations; the relative importance of localized hot spots and linear centers of crustal spreading to crustal formation and tectonics; and the planform of mantle convection on Venus and the nature of the interactions among interior convective flow, near-surface deformation, and magmatism.

  16. Electromagnetic geophysical observation with controlled source

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Oleg

    2016-04-01

    In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock

  17. Water-Energy-Food Nexus: Compelling Issues for Geophysical Research

    NASA Astrophysics Data System (ADS)

    Akhbari, M.; Grigg, N. S.; Waskom, R.

    2014-12-01

    The joint security of water, food, and energy systems is an urgent issue everywhere, and strong drivers of development and land use change, exacerbated by climate change, require new knowledge to achieve integrated solution using a nexus-based approach to assess inter-dependencies. Effective research-based decision support tools are essential to identify the major issues and interconnections to help in implementation of the nexus approach. The major needs are models and data to clearly and unambiguously present decision scenarios to local cooperative groups of farmers, electric energy generators and water officials for joint decisions. These can be developed by integrated models to link hydrology, land use, energy use, cropping simulation, and optimization with economic objectives and socio-physical constraints. The first step in modeling is to have a good conceptual model and then to get data. As the linking of models increases uncertainties, each one should be supplied with adequate data at suitable spatial and temporal resolutions. Most models are supplied with data by geophysical scientists, such as hydrologists, geologists, atmospheric scientists, soil scientists, and climatologists, among others. Outcomes of a recently-completed project to study the water-energy-food nexus will be explained to illuminate the model and data needs to inform future management actions across the nexus. The project included a workshop of experts from government, business, academia, and the non-profit sector who met to define and explain nexus interactions and needs. An example of the findings is that data inconsistencies among sectors create barriers to integrated planning. A nexus-based systems model is needed to outline sectoral inter-dependencies and identify data demands and gaps. Geophysical scientists can help to create this model and take leadership on designing data systems to facilitate sharing and enable integrated management.

  18. The remote sensing needs of Arctic geophysics

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1970-01-01

    The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.

  19. Recommended reference figures for geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.; Okeefe, J. A.

    1973-01-01

    Specific reference figures are recommended for consistent use in geophysics and geodesy. The selection of appropriate reference figure for geophysical studies suggests a relationship between the Antarctic negative gravity anomaly and the great shrinkage of the Antarctic ice cap about 4-5 million years ago. The depression of the south polar regions relative to the north polar regions makes the Southern Hemisphere flatter than the Northern Hemisphere, thus producing the third harmonic (pear-shaped) contribution to the earth's figure.

  20. Rapid kinematic slip inversion with regional geophysical data: towards site-specific tsunami intensity forecasts.

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Bock, Y.

    2014-12-01

    Rapid kinematic slip inversions immediately following earthquake rupture is traditionally limited to teleseismic data and delayed many hours after large events. Regional data such as strong motion is difficult to incorporate quickly into images of the source process because baseline offsets render the long period portion of the recording unreliable. Recently it's been demonstrated that high rate GPS can potentially produce rapid slip inversions for large events but is limited to very long periods. With an example of the 2011 M9 Tohoku-oki event we will demonstrate that the optimal on-the-fly combination of GPS and strong motion through a seismogeodetic Kalman filter produces reliable, broadband strong motion displacement and velocity waveforms that can be used for kinematic inversion. Through joint inversion of displacement and velocity waveforms we will show that it is possible to obtain a broadband image of the source. Furthermore, we will also show that it is possible to include offshore geophysical observables such as sea surface measurements of tsunami propagation from GPS buoys and ocean bottom pressure sensors into the kinematic inversion. These data better constrain the shallowest part of rupture. We will use the time-dependent deformation of bathymetry predicted from the inversion results as an initial condition for tsunami propagation and inundation modeling. Through a comparison to post-event survey observations we will demonstrate that it is possible to reproduce the inundation pattern along the coastline in great detail and argue that detailed site-specific forecast of tsunami intensity is achievable with current methods and instrumentation.

  1. Geophysical applications for levee assessment

    NASA Astrophysics Data System (ADS)

    Chlaib, Hussein Khalefa

    Levees are important engineering structures that build along the rivers to protect the human lives and shield the communities as well as agriculture lands from the high water level events. Animal burrows, subsurface cavities, and low density (high permeability) zones are weakness features within the levee body that increase its risk of failure. To prevent such failure, continuous monitoring of the structure integrity and early detection of the weakness features must be conducted. Application of Ground Penetrating Radar (GPR) and Capacitively Coupled Resistivity (CCR) methods were found to be very effective in assessing the levees and detect zones of weakness within the levee body. GPR was implemented using multi-frequency antennas (200, 400, and 900 MHz) with survey cart/wheel and survey vehicle. The (CCR) method was applied by using a single transmitter and three receivers. Studying the capability and the effectiveness of these methods in levee monitoring, subsurface weakness feature detection, and studying the structure integrity of levees were the main tasks of this dissertation. A set of laboratory experiments was conducted at the Geophysics Laboratory of the University of Arkansas at Little Rock (UALR) to analyze the polarity change in GPR signals in the presence of subsurface voids and water-filled cavities. Also three full scale field expeditions at the Big Dam Bridge (BDB) Levee, Lollie Levee, and Helena Levee in Arkansas were conducted using the GPR technique. This technique was effective in detecting empty, water, and clay filled cavities as well as small scale animal burrows (small rodents). The geophysical work at BDB and Lollie Levees expressed intensive subsurface anomalies which might decrease their integrity while the Helena Levee shows less subsurface anomalies. The compaction of levee material is a key factor affecting piping phenomenon. The structural integrity of the levee partially depends on the density/compaction of the soil layers. A

  2. Geophysical observations at cavity collapse

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  3. Prediction of Geophysical Flow Mobility

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Piersanti, A.

    2014-12-01

    The prediction of the mobility of geophysical flows to assess their hazards is one of the main research goals in the earth sciences. Our laboratory experiments and numerical simulations are carried out to understand the effects of grain size and flow volume on the mobility of the centre of mass of dry granular flows of angular rock fragments that have pyroclastic flows and rock avalanches as counterpart in nature. We focus on the centre of mass because it provides information about the intrinsic ability of a flow to dissipate more or less energy as a function of its own features. We show that the grain size and flow volume effects can be expressed by a linear relationship between scaling parameters where the finer the grain size or the smaller the flow volume, the more mobile the centre of mass of the granular flow. The grain size effect is the result of the decrease of particle agitation per unit of flow mass, and thus, the decrease of energy dissipation per unit of travel distance, as grain size decreases. In this sense, flows with different grain sizes are like cars with engines with different fuel efficiencies. The volume effect is the result of the fact that the deposit accretes backward during its formation on a slope change (either gradual or abrupt). We adopt for the numerical simulations a 3D discrete element modeling which confirms the grain size and flow volume effects shown by the laboratory experiments. This confirmation is obtained without prior fine tuning of the parameter values to get the desired output. The numerical simulations reveal also that the larger the initial compaction of the granular mass before release, the more mobile the flow. This behaviour must be taken into account to prevent misinterpretation of laboratory and field data. Discrete element modeling predicts the correct effects of grain size and flow volume because it takes into consideration particle interactions that are responsible for the energy dissipated by the flows.

  4. Geophysics of Small Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Asphaug, Erik I.

    1998-01-01

    As a SETI Institute PI from 1996-1998, Erik Asphaug studied impact and tidal physics and other geophysical processes associated with small (low-gravity) planetary bodies. This work included: a numerical impact simulation linking basaltic achondrite meteorites to asteroid 4 Vesta (Asphaug 1997), which laid the groundwork for an ongoing study of Martian meteorite ejection; cratering and catastrophic evolution of small bodies (with implications for their internal structure; Asphaug et al. 1996); genesis of grooved and degraded terrains in response to impact; maturation of regolith (Asphaug et al. 1997a); and the variation of crater outcome with impact angle, speed, and target structure. Research of impacts into porous, layered and prefractured targets (Asphaug et al. 1997b, 1998a) showed how shape, rheology and structure dramatically affects sizes and velocities of ejecta, and the survivability and impact-modification of comets and asteroids (Asphaug et al. 1998a). As an affiliate of the Galileo SSI Team, the PI studied problems related to cratering, tectonics, and regolith evolution, including an estimate of the impactor flux around Jupiter and the effect of impact on local and regional tectonics (Asphaug et al. 1998b). Other research included tidal breakup modeling (Asphaug and Benz 1996; Schenk et al. 1996), which is leading to a general understanding of the role of tides in planetesimal evolution. As a Guest Computational Investigator for NASA's BPCC/ESS supercomputer testbed, helped graft SPH3D onto an existing tree code tuned for the massively parallel Cray T3E (Olson and Asphaug, in preparation), obtaining a factor xIO00 speedup in code execution time (on 512 cpus). Runs which once took months are now completed in hours.

  5. Non-Seismic Geophysical Approaches to Monitoring

    SciTech Connect

    Hoversten, G.M.; Gasperikova, Erika

    2004-09-01

    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  6. The implementation of multi-task geophysical survey to locate Cleopatra Tomb at Tap-Osiris Magna, Borg El-Arab, Alexandria, Egypt “Phase II”

    NASA Astrophysics Data System (ADS)

    Abbas, Abbas M.; Khalil, Mohamed A.; Massoud, Usama; Santos, Fernando M.; Mesbah, Hany A.; Lethy, Ahmed; Soliman, Mamdouh; Ragab, El Said A.

    2012-06-01

    According to some new discoveries at Tap-Osiris Magna temple (West of Alexandria), there is potentiality to uncover a remarkable archeological finding at this site. Three years ago many significant archeological evidences have been discovered sustaining the idea that the tomb of Cleopatra and Anthony may be found in the Osiris temple inside Tap-Osiris Magna temple at a depth from 20 to 30 m. To confirm this idea, PHASE I was conducted in by joint application of Ground Penetrating Radar “GPR”, Electrical Resistivity Tomography “ERT” and Magnetometry. The results obtained from PHASE I could not confirm the existence of major tombs at this site. However, small possible cavities were strongly indicated which encouraged us to proceed in investigation of this site by using another geophysical approach including Very Low Frequency Electro Magnetic (VLF-EM) technique. VLF-EM data were collected along parallel lines covering the investigated site with a line-to-line spacing of 1 m. The point-to-point distance of 1 m along the same line was employed. The data were qualitatively interpreted by Fraser filtering process and quantitatively by 2-D VLF inversion of tipper data and forward modeling. Results obtained from VLF-EM interpretation are correlated with 2-D resistivity imaging and drilling information. Findings showed a highly resistive zone at a depth extended from about 25-45 m buried beneath Osiris temple, which could be indicated as the tomb of Cleopatra and Anthony. This result is supported by Fraser filtering and forward modeling results. The depth of archeological findings as indicated from the geophysical survey is correlated well with the depth expected by archeologists, as well as, the depth of discovered tombs outside Tap-Osiris Magna temple. This depth level has not been reached by drilling in this site. We hope that the site can be excavated in the future based on these geophysical results.

  7. Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children.

    PubMed

    Assi, Ayman; Sauret, Christophe; Massaad, Abir; Bakouny, Ziad; Pillet, Hélène; Skalli, Wafa; Ghanem, Ismat

    2016-07-01

    Localization of the hip joint center (HJC) is essential in computation of gait data. EOS low dose biplanar X-rays have been shown to be a good reference in evaluating various methods of HJC localization in adults. The aim is to evaluate predictive and functional techniques for HJC localization in typically developing (TD) and cerebral palsy (CP) children, using EOS as an image based reference. Eleven TD and 17 CP children underwent 3D gait analysis. Six HJC localization methods were evaluated in each group bilaterally: 3 predictive (Plug in Gait, Bell and Harrington) and 3 functional methods based on the star arc technique (symmetrical center of rotation estimate, center transformation technique and geometrical sphere fitting). All children then underwent EOS low dose biplanar radiographs. Pelvis, lower limbs and their corresponding external markers were reconstructed in 3D. The center of the femoral head was considered as the reference (HJCEOS). Euclidean distances between HJCs estimated by each of the 6 methods and the HJCEOS were calculated; distances were shown to be lower in predictive compared to functional methods (p<0.0001). Contrarily to findings in adults, functional methods were shown to be less accurate than predictive methods in TD and CP children, which could be mainly due to the shorter thigh segment in children. Harrington method was shown to be the most accurate in the prediction of HJC (mean error≈18mm, SD=9mm) and quasi-equivalent to the Bell method. The bias for each method was quantified, allowing its correction for an improved HJC estimation. PMID:27477704

  8. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-01

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  9. Russian Meteorological and Geophysical Rockets of New Generation

    NASA Astrophysics Data System (ADS)

    Yushkov, V.; Gvozdev, Yu.; Lykov, A.; Shershakov, V.; Ivanov, V.; Pozin, A.; Afanasenkov, A.; Savenkov, Yu.; Kuznetsov, V.

    2015-09-01

    To study the process in the middle and upper atmosphere, ionosphere and near-Earth space, as well as to monitor the geophysical environment in Russian Federal Service for Hydrology and Environmental Monitoring (ROSHYDROMET) the development of new generation of meteorological and geophysical rockets has been completed. The modern geophysical research rocket system MR-30 was created in Research and Production Association RPA "Typhoon". The basis of the complex MR-30 is a new geophysical sounding rocket MN-300 with solid propellant, Rocket launch takes place at an angle of 70º to 90º from the launcher, which is a farm with a guide rail type required for imparting initial rotation rocket. The Rocket is spin stabilized with a spin rate between 5 and 7 Hz. Launch weight is 1564 kg, and the mass of the payload of 50 to 150 kg. MR-300 is capable of lifting up to 300 km, while the area of dispersion points for booster falling is an ellipse with parameters 37x 60 km. The payload of the rocket MN-300 consists of two sections: a sealed, located below the instrument compartment, and not sealed, under the fairing. Block of scientific equipment is formed on the platform in a modular layout. This makes it possible to solve a wide range of tasks and conduct research and testing technologies using a unique environment of space, as well as to conduct technological experiments testing and research systems and spacecraft equipment. New Russian rocket system MERA (MEteorological Rocket for Atmospheric Research) belongs to so called "dart" technique that provide lifting of small scientific payload up to altitude 100 km and descending with parachute. It was developed at Central Aerological Observatory jointly with State Unitary Enterprise Instrument Design Bureau. The booster provides a very rapid acceleration to about Mach 5. After the burning phase of the buster the dart is separated and continues ballistic flight for about 2 minutes. The dart carries the instrument payload+ parachute

  10. Geophysical and transport properties of reservoir rocks. Summary annual report

    SciTech Connect

    Cook, N.G.W.

    1990-04-29

    Definition of petrophysical properties, such as porosity, permeability and fluid saturation, on the scale of meters, is the key to planning and control of successful Enhanced Oil Recovery techniques for domestic reservoirs. Macroscopic transport properties in reservoir rocks depend critically upon processes at the pore level involving interactions between the pore topology and the physical and chemical properties of the rock minerals and interstitial fluids. Similar interactions at the pore level determine also the macroscopic electrical and seismic properties of reservoir rocks. The objective of this research is to understand, using analysis and experiment, how fluids in pores affect the geophysical and sport properties of reservoir rocks. The goal is to develop equations-relating seismic and electrical properties of rock to the porosity, permeability and fluid saturations so as to invert geophysical images for improved reservoir management. Results from seismic measurements performed so far in this study suggest that even subtle changes in fluid contacts and the in-situ state of effective stress can be detected using geophysical imaging techniques. The experiments using Wood`s metal and wax are revealing the topology and sport properties of the pore space in clastic sedimentary rocks. A deeper understanding of these properties is considered-to be the key to the recovery of much of the mobile oil left in domestic reservoirs and to the effective management of enhanced oil recovery techniques. The results of Wood`s metal percolation tests indicate that most of the permeability of Berea sandstone resides in the critical percolating paths and these paths occupy only a small fraction of the total porosity. This result may have important implications for flooding in terms of override and efficiency as a function of saturation.

  11. Knee joint replacement - series (image)

    MedlinePlus

    ... However, you may receive intravenous (IV) medicine to control your pain for the first 3 days after surgery. The ... you take by mouth may be enough to control your pain. You will also return from surgery with several ...

  12. Hip joint replacement - series (image)

    MedlinePlus

    ... hip socket. The socket is usually made of metal. A liner that fits inside the socket. It ... usually plastic, but some surgeons use ceramic and metal. The liner allows the hip to move smoothly. ...

  13. Joint inversion of teleseismic and GOCE gravity data : Application to the Himalayas

    NASA Astrophysics Data System (ADS)

    Basuyau, C.; Diament, M.; Tiberi, C.; Hetenyi, G.; Vergne, J.; Peyrefitte, A.

    2011-12-01

    The knowledge and the understanding of the Earth structure are still challenging. Many geophysical methods have been used to image the Earth's interior. However, in many cases, the results we obtain differ from one another. This phenomenon can be explained by measurement errors, rough estimates or varying sensibility to physical parameters, among others. Joint inversions have been developed to better constrain geophysical models. Gravity - teleseismic P-wave tomography joint inversion is based on the existence of empiric laws linking velocity and density. Thus far, the upper-mantle part of the velocity-density model is mainly constrained by the seismological data that are recorded by regional networks whereas crustal anomalies are deduced from ground gravity measurements. The GOCE gravity data now allow us to develop a new philosophy for gravity-tomography inversion. Indeed, one of the objectives of the GOCE mission is to record the gravity field with an accuracy of 1-2 mgal and a spatial resolution of 100 km to observe the lithosphere and upper-mantle structure. Thus, the use of GOCE gravity data combined with regional teleseismic data in a joint inversion scheme will lead to a lithospheric gravity-density models constrained in two ways. First comparison between gravity fields based on GOCE data and preexisting ones reveals significant discrepancies in some areas, especially over the Himalayan ranges. We then decided to apply this improved joint inversion scheme to a region presenting a high geodynamical interest and a great amount of seismological data. The Hi-Climb (Himalayan - Tibetan Continental Lithosphere during Mountain Building) seismological network was deployed in South Tibet and the Himalayas during almost three years. The important size of the network (800 km), the high quality of the seismic data and the new GOCE gravity dataset allow us to image the entire lithosphere of this active area in an innovative way. Primary results of the joint inversion

  14. Geophysical Investigation of Oldoinyo Lengai

    NASA Astrophysics Data System (ADS)

    Scheiber, S. E.; Webb, S. J.; Dirks, P. H.

    2006-12-01

    Oldoinyo Lengai, which means "Mountain of God" in Maasai, is a 2886 m high stratovolcano situated in Northern Tanzania, next to one of the large fault scarps that defines the western edge of the East African Rift Valley. Lengai is the only volcano in the world that erupts natrocarbonatite lava and has been in a state of near-eruption since 1983. A large amount of work has been done in terms of the geology and petrology of this unique volcano, but very little has been done in terms of geophysics. A research team from the University of the Witwatersrand, South Africa will be conducting a gravity and differential GPS survey on Lengai during December 2006 and January 2007. Seismic monitoring of the volcano will also take place for the duration of the survey using vertical 1 Hz geophones. A gravity profile collected over the volcano by the British Schools Exploring Society in 2004 shows a negative anomaly of approximately 185 mGals. This is after a terrain correction is applied to the data using 1:50000 digitized maps and a vertical prism formula. A single seismometer, with a frequency of 1Hz and then 0.033 Hz, was set up on the volcano in 2001 and 2002 by a graduate student from the University of Washington. A few local volcanotectonic (VT) events were recorded; however the research team was unable to conclude whether the events were from Lengai or the nearby rift. A sustained non-harmonic tremor signal with a fairly broad spectral peak was also observed, but no very long-period (VLP) signals. The gravity and DGPS data collected during the 2006/2007 survey will be processed and used as a baseline for future measurements on the volcano. The data will also be modeled in an attempt to determine the size and position of the magma chamber. These gravity data will be compared with the profile collected in 2004 in an attempt to see whether there have been any large subsurface mass changes over the past two years, or the extent of weathering. Recorded seismicity will be used

  15. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  16. The Environmental Geophysics Web Site and Geophysical Decision Support System (GDSS)

    EPA Science Inventory

    This product provides assistance to project managers, remedial project managers, stakeholders, and anyone interested in on-site investigations or environmental geophysics. The APM is the beta version of the new U.S. EPA Environmental Geophysics Web Site which includes the Geophys...

  17. Photoacoustic tomography of small-animal and human peripheral joints

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Chamberland, David L.; Fowlkes, J. Brian; Carson, Paul L.; Jamadar, David A.

    2008-02-01

    As an emerging imaging technology that combines the merits of both light and ultrasound, photoacoustic tomography (PAT) holds promise for screening and diagnosis of inflammatory joint diseases such as rheumatoid arthritis. In this study, the feasibility of PAT in imaging small-animal joints and human peripheral joints in a noninvasive manner was explored. Ex vivo rat tail and fresh cadaveric human finger joints were imaged. Based on the intrinsic optical contrast, intra- and extra-articular tissue structures in the joints were visualized successfully. Using light in the near-infrared region, the imaging depth of PAT is sufficient for cross-sectional imaging of a human peripheral joint as a whole organ. PAT, as a novel imaging modality with unique advantages, may contribute significantly to the early diagnosis of inflammatory joint disorders and accurate monitoring of disease progression and response to therapy.

  18. Geophysics: Building E5481 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-11-01

    Building E5481 is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The building is located on the northern margin of a landfill that was sited in a wetland. The large number of magnetic sources surrounding the building are believed to be contained in construction fill that had been used to raise the grade. The smaller anomalies, for the most part, are not imaged with ground radar or by electrical profiling. A conductive zone trending northwest to southeast across the site is spatially related to an old roadbed. Higher resistivity areas in the northeast and east are probably representive of background values. Three high-amplitude, positive, rectangular magnetic anomalies have unknown sources. The features do not have equivalent electrical signatures, nor are they seen with radar imaging.

  19. The Unconventional Revolution in Exploration Geophysics

    NASA Astrophysics Data System (ADS)

    House, N. J.

    2014-12-01

    During the last 25 years, 3D seismic imaging has revolutionized hydrocarbon exploration by delivering an accurate 3 dimensional picture of the subsurface. The image is capable of detecting fluids within the reservoir, and has significantly reduced the risk of locating and developing hydrocarbon deposits. In late 1990s, deregulation of natural gas prices allowed long recognized deposits of natural gas locked in tight rocks be economic. It sparked factory drilling (repeatable high density evenly spaced) wells and hydraulic fracturing that would help unlock the reservoirs. All that was needed was a geologist to determine depths and limits of the reservoir and engineers to drill and complete the wells. If 3D seismic data was available, it might have been used to define both the limits of the field and drilling hazards. Generally the cost and time required to process and interpret 3D Seismic was considered too high to affect the perceived geologic risk of the Factory approach. Completion costs in unconventional reservoirs account for over 50% of the well costs. It's therefore critical to understand the geometry of how the rock is fracturing and determine optimum well spacing to balance the cost of development with the value of the gas or oil being produced. By extending AVO to the pre-stack domain, it's possible to simultaneously invert for Vp, Vs and density. Armed with these three fundamental rock properties that dictate elastic and inelastic rock response, researchers were able to combine those properties to tie directly to how well a rock will respond to hydraulic fracturing, or which rocks contain a higher TOC, or other rock properties that control how a rock responds to seismic waves or hydraulic fracturing. Combining these results allows interpreters to map areas of higher productivity, and identify bypassed reserves. Currently hundreds of different seismic attributes that are generated from 3D seismic data are used to identify the highest productive areas and

  20. Looking Forward to the electronic Geophysical Year

    NASA Astrophysics Data System (ADS)

    Kamide, Y.; Baker, D. N.; Thompson, B.; Barton, C.; Kihn, E.

    2004-12-01

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We discuss plans to aggregate measurements into a readily accessible database along with analysis, visualization, and display tools that will make information available and useful to the scientific community, to the user community, and to the general public. We are examining the possibilities for near-realtime acquisition of data and utilization of forecast tools in order to provide users with advanced space weather capabilities. This program will provide powerful tools for education and public outreach concerning the connected Sun-Earth System.

  1. An Introduction to Geophysical Exploration: Third Edition

    NASA Astrophysics Data System (ADS)

    Tatham, Robert H.

    Finding a modern textbook that covers all aspects of exploration geophysics is difficult, but An Introduction to Geophysical Exploration certainly fills the bill. Appropriate for an introductory course addressing a range of techniques the book's breadth is demonstrated by comprehensive inclusion of non-seismic exploration methods. In fact, half of the book is devoted to non-seismic methods, providing students with a permanent reference to these infrequently applied exploration methods.This book came to my attention while I was ordering textbooks for a course in exploration geophysics only to find that the text of my choice was out of print. I quickly substituted An Introduction to Geophysical Exploration, and it has served the class well, including senior-level undergraduates and first-year graduate students in both soft-rock geology and geophysics. The material is comprehensive and well organized. The non-seismic topics include not only chapters on potential fields— one each on gravity and magnetic methods— but also chapters on electrical and electromagnetic methods, including ground-penetrating radar (GPR). Short chapters on radiometric surveying and borehole logging are also provided.

  2. Geophysical aspects of remote sensing

    NASA Technical Reports Server (NTRS)

    Watson, K.

    1971-01-01

    Results obtained through the NASA Earth Resources Aircraft Program at Mill Creek, Oklahoma, provide a case history example of the application of remote sensing to the identification of geologic rock units. Thermal infrared images are interpreted by means of a sequence of models of increasing complexity. The roles of various parameters are examined: rock properties (thermal inertia, albedo, emissivity), site location (latitude), season (sun's declination), atmospheric effects (cloud cover, transmission, air temperature), and topographic orientation (slope, azimuth). The results obtained at this site also illustrate the development of an important application of remote sensing in geologic identification. Relatively pure limestones and dolomites of the Mill Creek test area can be differentiated in nighttime infrared images, and facies changes between them can be detected along and across strike. The predominance on the earth's surface of sedimentary rocks, of which limestone and dolomite are major members, indicates the importance of this discrimination.

  3. Combination of Geophysical Methods to Support Urban Geological Mapping

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S.; Vilà, M.

    2014-07-01

    Urban geological mapping is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards. Geophysics can have a pivotal role to yield subsurface information in urban areas provided that geophysical methods are capable of dealing with challenges related to these scenarios (e.g., low signal-to-noise ratio or special logistical arrangements). With this principal aim, a specific methodology is developed to characterize lithological changes, to image fault zones and to delineate basin geometry in the urban areas. The process uses the combination of passive and active techniques as complementary data: controlled source audio-magnetotelluric method (CSAMT), magnetotelluric method (MT), microtremor H/V analysis and ambient noise array measurements to overcome the limitations of traditional geophysical methodology. This study is focused in Girona and Salt surrounding areas (NE of Spain) where some uncertainties in subsurface knowledge (maps of bedrock depth and the isopach maps of thickness of quaternary sediments) need to be resolved to carry out the 1:5000 urban geological mapping. These parameters can be estimated using this proposed methodology. (1) Acoustic impedance contrast between Neogene sediments and Paleogene or Paleozoic bedrock is detected with microtremor H/V analysis that provides the soil resonance frequency. The minimum value obtained is 0.4 Hz in Salt city, and the maximum value is the 9.5 Hz in Girona city. The result of this first method is a fast scanner of the geometry of basement. (2) Ambient noise array constrains the bedrock depth using the measurements of shear-wave velocity of soft soil. (3) Finally, the electrical resistivity models contribute with a good description of lithological changes and fault imaging. The conductive materials (1-100 Ωm) are associated with Neogene Basin composed by unconsolidated detrital sediments; medium resistive materials (100-400 Ωm) correspond to

  4. Evidence for a critical Earth: the New Geophysics

    NASA Astrophysics Data System (ADS)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This

  5. Introduction to Rheology and Application to Geophysics

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    This chapter gives an overview of the major current issues in rheology through a series of different problems of particular relevance to geophysics. For each topic considered here, we will outline the key elements and point the reader to ward the most helpful references and authoritative works. The reader is also referred to available books introducing rheology [1, 2] for a more complete presentation and to the tutorial written by Middleton and Wilcock on mechanical and rheological app lications in geophysics [3]. This chapter will focus on materials encountered by geophysicists (mud, snow, magma, etc.), although in most cases we will consider only suspensions of particles within an interstitial fluid without loss of generality. Other complex fluids such as polymeric liquids are rarely encountered in geophysics.

  6. Geophysical Institute biennial report 1995--1996

    SciTech Connect

    1998-06-01

    The mission of the Geophysical Institute is to understand the basic physica