Sample records for joint hydrologic study

  1. A Study of Natural and Restored Wetland Hydrology

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Sidle, William C.; Pavlovic, Noel B.

    1999-01-01

    The U.S. Geological Survey and the U.S. Environmental Protection Agency are jointly studying the hydrology of a long-existing natural wetland and a recently restored wetland in the Kankakee River Valley in northwestern Indiana. In characterizing the two wetlands, project investigators are testing innovative methods to identify the analytical tools best suited for evaluating the success of wetland restoration. Investigators also are examining and comparing the relations between hydrology and restored wetland vegetation.

  2. CLEANER-Hydrologic Observatory Joint Science Plan

    NASA Astrophysics Data System (ADS)

    Welty, C.; Dressler, K.; Hooper, R.

    2005-12-01

    modeling and decision-support tools to predict the underlying processes or subsequently forecast the effects of different management strategies. Water is a critical driver for the functioning of all ecosystems and development of human society, and it is a key ingredient for the success of industry, agriculture and, national economy. CLEANER-Hydrologic Observatories will foster cutting-edge science and engineering research that addresses major national needs (public and governmental) related to water and include, for example: (i) water resource problems, such as impaired surface waters, contaminated ground water, water availability for human use and ecosystem needs, floods and floodplain management, urban storm water, agricultural runoff, and coastal hypoxia; (ii) understanding environmental impacts on public health; (iii) achieving a balance of economic and environmental sustainability; (iv) reversing environmental degradation; and (v) protecting against chemical and biological threats. CLEANER (Collaborative Large-scale Engineering Analysis Network for Environmental Research) is an ENG initiative; the Hydrologic Observatory Network is GEO initiative through CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.). The two initiatives were merged into a joint, bi-directorate program in December 2004.

  3. Joint editorial - Fostering innovation and improving impact assessment for journal publications in hydrology

    NASA Astrophysics Data System (ADS)

    Koutsoyiannis, Demetris; Blöschl, Günter; Bárdossy, András; Cudennec, Christophe; Hughes, Denis; Montanari, Alberto; Neuweiler, Insa; Savenije, Hubert

    2016-06-01

    Editors from several journals in the field of hydrology met during the Assembly of the International Association of Hydrological Sciences-IAHS (within the Assembly of the International Union of Geodesy and Geophysics-IUGG) in Prague in June 2015. This event was a follow-up of a similar meeting in July 2013 in Gothenburg (as reported by Blöschl et al. (2014)). In these meetings the group of editors reviewed the current status of the journals and the publication process, and shared thoughts on future strategies. Journals were represented in the meeting through their editors, as shown in the list of authors. The main points on fostering innovation and improving impact assessment in journal publications in hydrology are communicated in this joint editorial published in journals that participated in the meeting.

  4. Joint editorial: Fostering innovation and improving impact assessment for journal publications in hydrology

    NASA Astrophysics Data System (ADS)

    Koutsoyiannis, Demetris; Blöschl, Günter; Bárdossy, András.; Cudennec, Christophe; Hughes, Denis; Montanari, Alberto; Neuweiler, Insa; Savenije, Hubert

    2016-04-01

    Editors of several journals in the field of hydrology met during the Assembly of the International Association of Hydrological Sciences—IAHS (within the Assembly of the International Union of Geodesy and Geophysics—IUGG) in Prague in June 2015. This event was a follow-up of a similar meeting held in July 2013 in Gothenburg (as reported by Blöschl et al. [2014]). These meetings enable the group of editors to review the current status of the journals and the publication process, and share thoughts on future strategies. Journals were represented in the 2015 meeting through their editors, as shown in the list of authors. The main points on fostering innovation and improving impact assessment in journal publications in hydrology are communicated in this joint editorial published in the above journals.

  5. Performance of two predictive uncertainty estimation approaches for conceptual Rainfall-Runoff Model: Bayesian Joint Inference and Hydrologic Uncertainty Post-processing

    NASA Astrophysics Data System (ADS)

    Hernández-López, Mario R.; Romero-Cuéllar, Jonathan; Camilo Múnera-Estrada, Juan; Coccia, Gabriele; Francés, Félix

    2017-04-01

    It is noticeably important to emphasize the role of uncertainty particularly when the model forecasts are used to support decision-making and water management. This research compares two approaches for the evaluation of the predictive uncertainty in hydrological modeling. First approach is the Bayesian Joint Inference of hydrological and error models. Second approach is carried out through the Model Conditional Processor using the Truncated Normal Distribution in the transformed space. This comparison is focused on the predictive distribution reliability. The case study is applied to two basins included in the Model Parameter Estimation Experiment (MOPEX). These two basins, which have different hydrological complexity, are the French Broad River (North Carolina) and the Guadalupe River (Texas). The results indicate that generally, both approaches are able to provide similar predictive performances. However, the differences between them can arise in basins with complex hydrology (e.g. ephemeral basins). This is because obtained results with Bayesian Joint Inference are strongly dependent on the suitability of the hypothesized error model. Similarly, the results in the case of the Model Conditional Processor are mainly influenced by the selected model of tails or even by the selected full probability distribution model of the data in the real space, and by the definition of the Truncated Normal Distribution in the transformed space. In summary, the different hypotheses that the modeler choose on each of the two approaches are the main cause of the different results. This research also explores a proper combination of both methodologies which could be useful to achieve less biased hydrological parameter estimation. For this approach, firstly the predictive distribution is obtained through the Model Conditional Processor. Secondly, this predictive distribution is used to derive the corresponding additive error model which is employed for the hydrological parameter

  6. Structural and Hydrologic Implications of Joint Orientations in the Warner Creek and Stony Clove Drainage Basins, Catskill Mountains, Eastern New York

    NASA Astrophysics Data System (ADS)

    Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.

    2010-12-01

    To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.

  7. Assessment of Hydrologic Response to Variable Precipitation Forcing: Russian River Case Study

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Hsu, C.; Johnson, L. E.

    2014-12-01

    NOAA Hydrometeorology Testbed (HMT) activities in California have involved deployment of advanced sensor networks to better track atmospheric river (AR) dynamics and inland penetration of high water vapor air masses. Numerical weather prediction models and decision support tools have been developed to provide forecasters a better basis for forecasting heavy precipitation and consequent flooding. The HMT also involves a joint project with California Department of Water Resources (CA-DWR) and the Scripps Institute for Oceanography (SIO) as part of CA-DWR's Enhanced Flood Response and Emergency Preparedness (EFREP) program. The HMT activities have included development and calibration of a distributed hydrologic model, the NWS Office of Hydrologic Development's (OHD) Research Distributed Hydrologic Model (RDHM), to prototype the distributed approach for flood and other water resources applications. HMT has applied RDHM to the Russian-Napa watersheds for research assessment of gap-filling weather radars for precipitation and hydrologic forecasting and for establishing a prototype to inform both the NWS Monterey Forecast Office and the California Nevada River Forecast Center (CNRFC) of RDHM capabilities. In this presentation, a variety of precipitation forcings generated with and without gap filling radar and rain gauge data are used as input to RDHM to assess the hydrologic response for selected case study events. Both the precipitation forcing and hydrologic model are run at different spatial and temporal resolution in order to examine the sensitivity of runoff to the precipitation inputs. Based on the timing of the events and the variations of spatial and temporal resolution, the parameters which dominate the hydrologic response are identified. The assessment is implemented at two USGS stations (Ukiah near Russian River and Austin Creek near Cazadero) that are minimally influenced by managed flows and objective evaluation can thus be derived. The results are assessed

  8. Contribution of lateral terrestrial water flows to the regional hydrological cycle: A joint soil-atmospheric moisture tagging procedure with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Arnault, Joel; Wei, Jianhui; Zhang, Zhenyu; Wagner, Sven; Kunstmann, Harald

    2017-04-01

    Water resources management requires an accurate knowledge of the behavior of the regional hydrological cycle components, including precipitation, evapotranspiration, river discharge and soil water storage. Atmospheric models such as the Weather Research and Forecasting (WRF) model provide a tool to evaluate these components. The main drawback of these atmospheric models, however, is that the terrestrial segment of the hydrological cycle is reduced to vertical infiltration, and that lateral terrestrial water flows are neglected. Recent model developments have focused on coupled atmospheric-hydrological modeling systems, such as WRF-hydro, in order to take into account subsurface, overland and river flow. The aim of this study is to investigate the contribution of lateral terrestrial water flows to the regional hydrological cycle, with the help of a joint soil-atmospheric moisture tagging procedure. This procedure is the extended version of an existing atmospheric moisture tagging method developed in WRF and WRF-Hydro (Arnault et al. 2017). It is used to quantify the partitioning of precipitation into water stored in the soil, runoff, evapotranspiration, and potentially subsequent precipitation through regional recycling. An application to a high precipitation event on 23 June 2009 in the upper Danube river basin, Germany and Austria, is presented. Precipitating water during this day is tagged for the period 2009-2011. Its contribution to runoff and evapotranspiration decreases with time, but is still not negligible in the summer 2011. At the end of the study period, less than 5 % of the precipitating water on 23 June 2009 remains in the soil. The additionally resolved lateral terrestrial water flows in WRF-Hydro modify the partitioning between surface and underground runoff, in association with a slight increase of evapotranspiration and recycled precipitation. Reference: Arnault, J., R. Knoche, J. Wei, and H. Kunstmann (2016), Evaporation tagging and atmospheric

  9. Multivariate hydrological frequency analysis for extreme events using Archimedean copula. Case study: Lower Tunjuelo River basin (Colombia)

    NASA Astrophysics Data System (ADS)

    Gómez, Wilmar

    2017-04-01

    By analyzing the spatial and temporal variability of extreme precipitation events we can prevent or reduce the threat and risk. Many water resources projects require joint probability distributions of random variables such as precipitation intensity and duration, which can not be independent with each other. The problem of defining a probability model for observations of several dependent variables is greatly simplified by the joint distribution in terms of their marginal by taking copulas. This document presents a general framework set frequency analysis bivariate and multivariate using Archimedean copulas for extreme events of hydroclimatological nature such as severe storms. This analysis was conducted in the lower Tunjuelo River basin in Colombia for precipitation events. The results obtained show that for a joint study of the intensity-duration-frequency, IDF curves can be obtained through copulas and thus establish more accurate and reliable information from design storms and associated risks. It shows how the use of copulas greatly simplifies the study of multivariate distributions that introduce the concept of joint return period used to represent the needs of hydrological designs properly in frequency analysis.

  10. Application of seismic-refraction techniques to hydrologic studies

    USGS Publications Warehouse

    Haeni, F.P.

    1986-01-01

    During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations, and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high seismic-velocity surfaces, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits,are ideally suited for applying seismic-refraction methods. These methods allow the economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies.This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of this technique in hydrologic investigations and describes the planning, equipment, field procedures, and intrepretation techniques needed for this type of study.Examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.

  11. Application of seismic-refraction techniques to hydrologic studies

    USGS Publications Warehouse

    Haeni, F.P.

    1988-01-01

    During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high-seismic-velocity surface, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits, are ideally suited for seismic-refraction methods. These methods allow economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies. This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of these techniques in hydrologic investigations and describes the planning, equipment, field procedures, and interpretation techniques needed for this type of study. Further-more, examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.

  12. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  13. Helicopter Electromagnetic Surveys for Hydrological Framework Studies in Nebraska

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; Abraham, J. A.; Cannia, J. C.; Steele, G. V.; Peterson, S. M.

    2008-12-01

    Management and allocation of water resources in Nebraska is based in part on understanding the relation between surface-water and ground-water systems. To help understand these complex relations, the U.S. Geological Survey (USGS) conducted airborne resistivity and magnetic (frequency domain helicopter electromagnetic, HEM) surveys in Eastern (2007) and Western (2008) Nebraska. These surveys were integrated with hydrologic studies (aquifer characteristics and modeling), and ground and borehole geophysical surveys to characterize and map the hydrogeologic framework in three-dimensions. The three study areas selected in Eastern Nebraska (Ashland, Firth, and Oakland) have glacial terrains and bedrock that typify different hydrogeologic settings for surface and ground water. The Eastern Nebraska Water Resources Assessment is a joint State of Nebraska and USGS study including the Conservation and Survey Division (University of Nebraska) and the following Natural Resources Districts (NRD): Lower Platte South, Lower Platte North, Lower Elkhorn, Lewis and Clark, Nemaha, and Papio-Missouri River. Approximately 600 line km were flown with HEM in each of the three glacial terrains with a line spacing of approximately 270 m and samples every three meters. One dimensional imaging was done along the flight lines for the HEM in each area. Models were compared to ground resistivity and time domain electromagnetic soundings and to borehole lithologic and geophysical logs. The map of the subsurface hydrogeologic properties inferred from the HEM modeling significantly improves the resolution of hydrologic models and understanding of ground-water resources. Surveys in western Nebraska panhandle, were done along the North Platte River and Lodgepole Creek Valleys. The geology consists of Quaternary alluvium, and interbeded Tertiary sandstones and siltstones above Cretaceous shale. The Quaternary alluvium comprises the primary aquifer in the North Platte River Valley, whereas thin

  14. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    NASA Astrophysics Data System (ADS)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  15. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  16. Panta Rhei: Global Perspectives on Hydrology, Society and Change

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Van Loon, A.; Mejia, A.; Liu, J.

    2016-12-01

    In 2013, the International Association of Hydrological Sciences - IAHS - launched the hydrological decade 2013-2022 with the theme `Panta Rhei: Change in Hydrology and Society'. The decade recognises the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This presentation provides an overview of the first three years of Panta Rhei, describing the scope, progress and future direction of the initiative. We provide a summary of the new science being undertaken by the 31 Panta Rhei working groups, demonstrating the views of the more than 400 members on the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in a world strongly impacted by humans and undergoing environmental change. There are many challenges associated with understanding and predicting change in hydrology and society, and empowering communities to mitigate and adapt to those changes. Such challenges can only be met by the concerted and joint efforts of hydrologists and affected societies around the world.

  17. Impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Li, Chao; Brissette, François P.; Chen, Hua; Wang, Mingna; Essou, Gilles R. C.

    2018-05-01

    Bias correction is usually implemented prior to using climate model outputs for impact studies. However, bias correction methods that are commonly used treat climate variables independently and often ignore inter-variable dependencies. The effects of ignoring such dependencies on impact studies need to be investigated. This study aims to assess the impacts of correcting the inter-variable correlation of climate model outputs on hydrological modeling. To this end, a joint bias correction (JBC) method which corrects the joint distribution of two variables as a whole is compared with an independent bias correction (IBC) method; this is considered in terms of correcting simulations of precipitation and temperature from 26 climate models for hydrological modeling over 12 watersheds located in various climate regimes. The results show that the simulated precipitation and temperature are considerably biased not only in the individual distributions, but also in their correlations, which in turn result in biased hydrological simulations. In addition to reducing the biases of the individual characteristics of precipitation and temperature, the JBC method can also reduce the bias in precipitation-temperature (P-T) correlations. In terms of hydrological modeling, the JBC method performs significantly better than the IBC method for 11 out of the 12 watersheds over the calibration period. For the validation period, the advantages of the JBC method are greatly reduced as the performance becomes dependent on the watershed, GCM and hydrological metric considered. For arid/tropical and snowfall-rainfall-mixed watersheds, JBC performs better than IBC. For snowfall- or rainfall-dominated watersheds, however, the two methods behave similarly, with IBC performing somewhat better than JBC. Overall, the results emphasize the advantages of correcting the P-T correlation when using climate model-simulated precipitation and temperature to assess the impact of climate change on watershed

  18. Forest hydrology

    Treesearch

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  19. The need for a European data platform for hydrological observatories

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Bogena, Heye; Jensen, Karsten; Zacharias, Steffen; Kunstmann, Harald; Heinrich, Ingo; Kunkel, Ralf; Vereecken, Harry

    2017-04-01

    argued that the main incentives lie in the shared learning from contrasting environments, which is at the heart of obtaining hydrological research findings that are generalizable beyond individual locations. From a more practical perspective, experience can be shared with testing measurement technologies and experimental design. Benefits to the wider community include a more coherent research thrust brought about by a common, accessible data set, a more long-term vision of experimental research, as well as greater visibility of experimental research. The common data platform is a first step towards a larger network of hydrological observatories. The larger network could involve a more aligned research collaboration including exchange of models, exchange of students, a joint research agenda and joint long-term projects. Ultimately, the aim is to align experimental research in hydrology to strengthen the discipline of hydrology as a whole.

  20. Hydrologic monitoring and selected hydrologic and environmental studies by the U.S. Geological Survey in Georgia, 2011–2013

    USGS Publications Warehouse

    Clarke, John S.; Dalton, Melinda J.

    2013-01-01

    This compendium of papers describes results of hydrologic monitoring and hydrologic and environmental studies completed by the U.S. Geological Survey (USGS) in Georgia during 2011–2013. The USGS addresses a wide variety of water issues in the State of Georgia working with local, State, and Federal partners. As the primary Federal science agency for water resource information, the USGS monitors the quantity and quality of water in the Nation’s rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. During 2011–2013, the USGS continued a long-term program of monitoring stream and groundwater resources, including flow, water quality, and water use. In addition, a variety of hydrologic and environmental studies were completed to assess water availability, hydrologic hazards, and the impact of development on water resources. Information on USGS activities in Georgia is available online at http://ga.water.usgs.gov/.

  1. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  2. Human impact parameterization in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide

    2017-04-01

    Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological

  3. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  4. Pitfalls and Limitations in the Interpretation of Geophysical Images for Hydrologic Properties and Processes

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.

    2014-12-01

    Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.

  5. Sidewalk undermining studies : phase I, hydrology and maintenance studies.

    DOT National Transportation Integrated Search

    1975-01-01

    Studies of the maintenance and hydrology considerations involved in a sidewalk undermining problem in the Fairfax area are reported. Sidewalk undermining is attributed principally to a highly erodible soil found in much of the area and to the fact th...

  6. Joint sealant study

    DOT National Transportation Integrated Search

    1987-09-01

    ADOT has approximately 550 lane miles of jointed portland cement pavement under its jurisdiction. The current practice is to saw and seal the joints at the time of construction and reseal the joints under a rehabilitation project. ADOT does not speci...

  7. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for

  8. Introduction to hydrology

    USDA-ARS?s Scientific Manuscript database

    Hydrology deals with the occurrence, movement, and storage of water in the Earth system. Hydrologic science comprises understanding the underlying physical and stochastic processes involved and estimating the quantity and quality of water in the various phases and stores. The study of hydrology als...

  9. Diagnosing hydrological limitations of a Land Surface Model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2015-08-01

    Land Surface Models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution and spatial water redistribution over the catchment's groundwater and surface water systems. Three types of information are utilised to improve the model's hydrology: (a) observations, (b) information about expected response from regionalised data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  10. Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin

    NASA Astrophysics Data System (ADS)

    Le Vine, N.; Butler, A.; McIntyre, N.; Jackson, C.

    2016-01-01

    Land surface models (LSMs) are prospective starting points to develop a global hyper-resolution model of the terrestrial water, energy, and biogeochemical cycles. However, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. A diagnostic approach to model evaluation and improvement is taken here that exploits hydrological expert knowledge to detect LSM inadequacies through consideration of the major behavioural functions of a hydrological system: overall water balance, vertical water redistribution in the unsaturated zone, temporal water redistribution, and spatial water redistribution over the catchment's groundwater and surface-water systems. Three types of information are utilized to improve the model's hydrology: (a) observations, (b) information about expected response from regionalized data, and (c) information from an independent physics-based model. The study considers the JULES (Joint UK Land Environmental Simulator) LSM applied to a deep-groundwater chalk catchment in the UK. The diagnosed hydrological limitations and the proposed ways to address them are indicative of the challenges faced while transitioning to a global high resolution model of the water cycle.

  11. [Socio-hydrology: A review].

    PubMed

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  12. PREFACE: XXIVth Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Bonacci, Ognjen; Nachtnebel, Peter Hans; Szolgay, Ján; Balint, Gabor

    2008-10-01

    This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the 24th Conference of the Danube Countries. Within the framework of the International Hydrological Program IHP of UNESCO. Since 1961 the Danube countries have successfully co-operated in organizing conferences on Hydrological Forecasting and Hydrological Water Management Issues. The 24th Conference of the Danube Countries took place between 2-4 June 2008 in Bled, Slovenia and was organized by the National Committee of Slovenia for the International Hydrological Program of UNESCO, under the auspices of the President of Republic of Slovenia. It was organized jointly by the Slovenian National Commission for UNESCO and the Environmental Agency of the Republic of Slovenia, under the support of UNESCO, WMO, and IAHS. Support for the attendance of some participants was provided by UNESCO. Additional support for the symposium was provided by the Slovene Commission for UNESCO, Environmental Agency of Slovenia, Karst Research Institute, Hydropower plants on the lower Sava River and Chair of Hydraulics Engineering FGG University of Ljubljana. All participants expressed great interest and enthusiasm in presenting the latest research results and sharing practical experiences in the Hydrology of the Danube River basin. The Editorial Board, who were nominated at the Conference, initially selected 80 full papers for publication from 210 submitted extended abstracts and papers provided by authors from twenty countries. Altogether 51 revised papers were accepted for publishing in this volume. Papers are divided by conference topics: Hydrological forecasting Hydro-meteorological extremes, floods and droughts Global climate change and antropogenic impacts on hydrological processes Water management Floods, morphological processes, erosion, sediment transport and sedimentation Developments in hydrology Mitja Brilly, Ognjen Bonacci, Peter Hans Nachtnebel, Ján Szolgay

  13. Development of Early Warning System for Landslide Using Electromagnetic, Hydrological, Geotechnical, and Geological Approaches

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Hattori, K.; Chae, B.

    2011-12-01

    The Joint Research Collaboration Program (JRCP) for Chinese-Korean-Japanese (CKJ) Research Collaboration is a new cooperative scheme for joint funding from Chinese Department of International Cooperation of the Ministry of Science and Technology (DOIC), Korea Foundation for International Cooperation of Science and Technology (KICOS) and Japan Science and Technology Agency (JST). In this paper, we will introduce the funded CKJ project entitled "Development of early warning system for landslide using electromagnetic, hydrological, geotechnical, and geological approaches". The final goal of the project is to develop a simple methodology for landslide monitoring/forecasting (early warning system) using self potential method in the frame work of joint research among China, Korea, and Japan. The project is developing a new scientific and technical methodology for prevention of natural soil disasters. The outline of the project is as follows: (1) basic understanding on the relationship between resistivity distribution and moisture in soil and their visualization of their dynamical changes in space and time using tomography technique, (2) laboratory experiments of rainfall induced landslides and sandbox for practical use of the basic understanding, (3) in-situ experiments for evaluation. Annual workshops/symposia, seminars will be organized for strengthening the scientific collaborations and exchanges. In consideration of the above issues, integration of geological, hydrological, geotechnical characteristics with electromagnetic one are adopted as the key approach in this project. This study is partially supported by the Joint Research Collaboration Program, DOIC, MOST, China (2010DFA21570) and the National Natural Science Foundation of China (40974038, 41025014).

  14. Joint Advertising Market Research & Studies (JAMRS)

    Science.gov Websites

    Market Research & Studies Marketing Communications Recruiting Database Affiliations WELCOME TO JOINT joint marketing communications and market research and studies. One of JAMRS' objectives is to explore reported to Congress. Our marketing communications programs help increase awareness and broaden people's

  15. Toward an Online Community of Educators: The Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Wagener, T.; Gooseff, M. N.; Gregg, S.; McGlynn, B. L.; Sharma, P.; Meixner, T.; Marshall, L. A.; McGuire, K. J.; Weiler, M.

    2009-12-01

    The field of hydrology encompasses a wide range of departments and disciplines, ranging from civil engineering to geography to geosciences. As a consequence, in-class hydrology education is often strongly biased towards the background of a single instructor, limiting the educational experience of the students and not allowing for a holistic approach to hydrology education. Recently established, the Modular Curriculum for Hydrologic Advancement (MOCHA) creates an online community of hydrologists from a range of backgrounds and disciplines to define the boundaries of an unbiased hydrology education and to jointly develop resources to overcome previous instructional limitations (http://www.mocha.psu.edu/). Our first objective is to create an evolving core curriculum for hydrology education freely available to, developed, evolved and reviewed by the worldwide hydrologic community. On a larger scale, we hope to raise the standard of hydrology education and to foster international collaboration and exchange. Our work began with an initial survey including over 100 hydrology educators to assess the state of current hydrology education. Based on the survey results, the MOCHA project was designed and implemented, and initial teaching material and pedagogical guidelines for good practice in teaching were prepared. This past fall and spring, we piloted the website and teaching material across several universities. The web-based MOCHA project has recently been opened to solicit contributions from the global hydrology community. Our presentation will focus on the overall vision behind MOCHA, lessons learned from our initial piloting, and current steps to achieve our vision.

  16. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    NASA Astrophysics Data System (ADS)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  17. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, FrançOis P.; Poulin, Annie; Leconte, Robert

    2011-12-01

    General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.

  18. An alternative approach for socio-hydrology: case study research

    NASA Astrophysics Data System (ADS)

    Mostert, Erik

    2018-01-01

    Currently the most popular approach in socio hydrology is to develop coupled human-water models. This article proposes an alternative approach, qualitative case study research, involving a systematic review of (1) the human activities affecting the hydrology in the case, (2) the main human actors, and (3) the main factors influencing the actors and their activities. Moreover, this article presents a case study of the Dommel Basin in Belgium and the Netherlands, and compares this with a coupled model of the Kissimmee Basin in Florida. In both basins a pendulum swing from water resources development and control to protection and restoration can be observed. The Dommel case study moreover points to the importance of institutional and financial arrangements, community values, and broader social, economic, and technical developments. These factors are missing from the Kissimmee model. Generally, case studies can result in a more complete understanding of individual cases than coupled models, and if the cases are selected carefully and compared with previous studies, it is possible to generalize on the basis of them. Case studies also offer more levers for management and facilitate interdisciplinary cooperation. Coupled models, on the other hand, can be used to generate possible explanations of past developments and quantitative scenarios for future developments. The article concludes that, given the limited attention they currently get and their potential benefits, case studies deserve more attention in socio-hydrology.

  19. The importance of hydrological uncertainty assessment methods in climate change impact studies

    NASA Astrophysics Data System (ADS)

    Honti, M.; Scheidegger, A.; Stamm, C.

    2014-08-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind

  20. On the importance of methods in hydrological modelling. Perspectives from a case study

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Kavetski, Dmitri

    2017-04-01

    The hydrological community generally appreciates that developing any non-trivial hydrological model requires a multitude of modelling choices. These choices may range from a (seemingly) straightforward application of mass conservation, to the (often) guesswork-like selection of constitutive functions, parameter values, etc. The application of a model itself requires a myriad of methodological choices - the selection of numerical solvers, objective functions for model calibration, validation approaches, performance metrics, etc. Not unreasonably, hydrologists embarking on ever ambitious projects prioritize hydrological insight over the morass of methodological choices. Perhaps to emphasize "ideas" over "methods", some journals have even reduced the fontsize of the methodology sections of its articles. However, the very nature of modelling is that seemingly routine methodological choices can significantly affect the conclusions of case studies and investigations - making it dangerous to skimp over methodological details in an enthusiastic rush towards the next great hydrological idea. This talk shares modelling insights from a hydrological study of a 300 km2 catchment in Luxembourg, where the diversity of hydrograph dynamics observed at 10 locations begs the question of whether external forcings or internal catchment properties act as dominant controls on streamflow generation. The hydrological insights are fascinating (at least to us), but in this talk we emphasize the impact of modelling methodology on case study conclusions and recommendations. How did we construct our prior set of hydrological model hypotheses? What numerical solver was implemented and why was an objective function based on Bayesian theory deployed? And what would have happened had we omitted model cross-validation, or not used a systematic hypothesis testing approach?

  1. Study of sealing practices for rigid pavement joints.

    DOT National Transportation Integrated Search

    1971-01-01

    The joint sealing materials and the rigid pavement joint sealing practices employed by Virginia and other highway agencies were studied. The studies showed that Virginia's sealant and joint designs were in need of updating and that higher quality pou...

  2. [Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters].

    PubMed

    Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting

    2018-04-01

    The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

  3. Longitudinal joint study.

    DOT National Transportation Integrated Search

    2001-09-01

    In previous years there has been a problem with longitudinal joint : deterioration, due in part to poor construction techniques. : The degradation of the longitudinal joints has increased the cost of : maintaining these projects and caused unnecessar...

  4. Transfer Relations Between Landscape Functions - The Hydrological Point of View

    NASA Astrophysics Data System (ADS)

    Fohrer, N.; Lenhart, T.; Eckhardt, K.; Frede, H.-G.

    EC market policies and regional subsidy programs have an enormous impact on local land use. This has far reaching consequences on various landscape functions. In the joint research project SFB299 at the Giessen University the effect of land use options on economic, ecological and hydrological landscape functions are under investigation. The continuous time step model SWAT-G (Eckhardt et al., 2000; Arnold et al., 1998) is employed to characterize the influence of land use patterns on hydrological processes. The model was calibrated and validated employing a split sample approach. For two mesoscale watersheds (Aar, 60 km2; Dietzhölze, 81 km2) located in the Lahn-Dill- Bergland, Germany, different land use scenarios were analyzed with regard to their hydrological impact. Additionally the effect of land use change was analyzed with an ecological and an agro-economic model. The impact of the stepwise changing land use was expressed as trade off relations between different landscape functions.

  5. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  6. Recent advances in catchment hydrology

    NASA Astrophysics Data System (ADS)

    van Meerveld, I. H. J.

    2017-12-01

    Despite the consensus that field observations and catchment studies are imperative to understand hydrological processes, to determine the impacts of global change, to quantify the spatial and temporal variability in hydrological fluxes, and to refine and test hydrological models, there is a decline in the number of field studies. This decline and the importance of fieldwork for catchment hydrology have been described in several recent opinion papers. This presentation will summarize these commentaries, describe how catchment studies have evolved over time, and highlight the findings from selected recent studies published in Water Resources Research.

  7. Sources of uncertainty in hydrological climate impact assessment: a cross-scale study

    NASA Astrophysics Data System (ADS)

    Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.

    2018-01-01

    Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.

  8. Use of GPM Data Products in SERVIR Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Limaye, A. S.; Mithieu, F.; Gurung, D. R.; Blankenship, C. B.; Crosson, W. L.; Anderson, E. R.; Flores, A.; Delgado, F.; Stanton, K.; Irwin, D.

    2015-12-01

    Availability of reliable precipitation data is a major challenge for SERVIR, a joint USAID-NASA project aimed at improving the environmental decision-making capacity of developing countries. GPM data products are fulfilling that challenge through frequent, high spatial resolution precipitation products over regional scales. SERVIR is using the products in different ways. First, SERVIR is using those in hydrologic modeling over Eastern Africa and in Hindu Kush Himalaya. SERVIR's distributed hydrologic modeling capability is helping the hydrological and meteorological departments in SERVIR regions, or Hubs, identify local watershed deserving immediate attention - such as recurring floods. Additionally, SERVIR technical implementers in the Hubs are building capacities of the departments and ministries in their member countries to effectively use the GPM products. SERVIR also provides an easy access for efficient integration of GPM products in web map services. This presentation will highlight ongoing collaborations and results generated through collaborative partnership among the water resources and hydrometeorology departments in Kenya, Uganda, Rwanda, Namibia, and Bhutan, SERVIR Hubs, and SERVIR Applied Sciences Team projects

  9. A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China

    NASA Astrophysics Data System (ADS)

    Liu, D.; Tian, F.; Lin, M.; Sivapalan, M.

    2015-02-01

    The complex interactions and feedbacks between humans and water are critically important issues but remain poorly understood in the newly proposed discipline of socio-hydrology (Sivapalan et al., 2012). An exploratory model with the appropriate level of simplification can be valuable for improving our understanding of the co-evolution and self-organization of socio-hydrological systems driven by interactions and feedbacks operating at different scales. In this study, a simplified conceptual socio-hydrological model based on logistic growth curves is developed for the Tarim River basin in western China and is used to illustrate the explanatory power of such a co-evolutionary model. The study area is the main stream of the Tarim River, which is divided into two modeling units. The socio-hydrological system is composed of four sub-systems, i.e., the hydrological, ecological, economic, and social sub-systems. In each modeling unit, the hydrological equation focusing on water balance is coupled to the other three evolutionary equations to represent the dynamics of the social sub-system (denoted by population), the economic sub-system (denoted by irrigated crop area ratio), and the ecological sub-system (denoted by natural vegetation cover), each of which is expressed in terms of a logistic growth curve. Four feedback loops are identified to represent the complex interactions among different sub-systems and different spatial units, of which two are inner loops occurring within each separate unit and the other two are outer loops linking the two modeling units. The feedback mechanisms are incorporated into the constitutive relations for model parameters, i.e., the colonization and mortality rates in the logistic growth curves that are jointly determined by the state variables of all sub-systems. The co-evolution of the Tarim socio-hydrological system is then analyzed with this conceptual model to gain insights into the overall system dynamics and its sensitivity to the

  10. Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter

    2017-06-01

    Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets

  11. Hydrologic risk analysis in the Yangtze River basin through coupling Gaussian mixtures into copulas

    NASA Astrophysics Data System (ADS)

    Fan, Y. R.; Huang, W. W.; Huang, G. H.; Li, Y. P.; Huang, K.; Li, Z.

    2016-02-01

    In this study, a bivariate hydrologic risk framework is proposed through coupling Gaussian mixtures into copulas, leading to a coupled GMM-copula method. In the coupled GMM-Copula method, the marginal distributions of flood peak, volume and duration are quantified through Gaussian mixture models and the joint probability distributions of flood peak-volume, peak-duration and volume-duration are established through copulas. The bivariate hydrologic risk is then derived based on the joint return period of flood variable pairs. The proposed method is applied to the risk analysis for the Yichang station on the main stream of the Yangtze River, China. The results indicate that (i) the bivariate risk for flood peak-volume would keep constant for the flood volume less than 1.0 × 105 m3/s day, but present a significant decreasing trend for the flood volume larger than 1.7 × 105 m3/s day; and (ii) the bivariate risk for flood peak-duration would not change significantly for the flood duration less than 8 days, and then decrease significantly as duration value become larger. The probability density functions (pdfs) of the flood volume and duration conditional on flood peak can also be generated through the fitted copulas. The results indicate that the conditional pdfs of flood volume and duration follow bimodal distributions, with the occurrence frequency of the first vertex decreasing and the latter one increasing as the increase of flood peak. The obtained conclusions from the bivariate hydrologic analysis can provide decision support for flood control and mitigation.

  12. Establishment of quantitative hydrological indexes for studies of hydro-biogeochemical interactions at the subsurface.

    NASA Astrophysics Data System (ADS)

    Alves Meira Neto, A.; Sengupta, A.; Wang, Y.; Volkmann, T.; Chorover, J.; Troch, P. A. A.

    2017-12-01

    Advances in the understanding of processes in the critical zone (CZ) are dependent on studies coupling the fields of hydrology, microbiology, geochemistry and soil development. At the same time, better insights are needed to integrate hydrologic information into biogeochemical analysis of subsurface environments. This study investigated potential hydrological indexes that help explaining spatiotemporal biogeochemical patterns. The miniLEO is a 2 m3, 10 degree sloping lysimeter located at Biosphere 2 - University of Arizona. The lysimeter was initially filled with pristine basaltic soil and subject to intermittent rainfall applications throughout the period of 18 months followed by its excavation, resulting in a grid-based sample collection at 324 locations. As a result, spatially distributed microbiological and geochemical patterns as well as soil physical properties were obtained. A hydrologic model was then developed in order to simulate the history of the system until the excavation. After being calibrated against sensor data to match its observed input-state-output behavior, the resulting distributed fields of flow velocities and moisture states were retrieved. These results were translated into several hydrological indexes to be used in with distributed microbiological and geochemical signatures. Our study attempts at conciliating sound hydrological modelling with an investigation of the subsurface biological signatures, thus providing a unique opportunity for understanding of fine-scale hydro-biological interactions.

  13. The concept of hydrologic landscapes

    USGS Publications Warehouse

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  14. A Cadaveric Study on Sacroiliac Joint Injection

    PubMed Central

    Zou, Yu-Cong; Li, Yi-Kai; Yu, Cheng-Fu; Yang, Xian-Wen; Chen, Run-Qi

    2015-01-01

    The scope of this study was to explore the possibility as well as the feasibility of sacroiliac joint injection following simple X-ray clip location. For the cadaveric study, 10 fixed sacroiliac joint (SIJ) sectional specimens, 4 dried cadaveric pelvises and 21 embalmed adult cadaveric pelvises were dissected, followed by an injection of contrast agent into the joint. The irrigation of the agent was observed through CT scanning. For the radiologic study, 188 CT scans of ankylosing spondylitis patients (143 male, 45 female) were collected from 2010 to 2012, in Nanfang Hospital. What was measured was (1) Distance between the posterior midline and sagittal synovium; (2) Length of the sagittal synovium; (3) Distance between the midpoint of the sagittal synovium and posterior superior iliac spine; and (4) Distance between the superficial skin vertical to the sagittal synovium point were measured. For the practice-based study: 20 patients (17 males and 3 females) with early ankylosing spondylitis, from Nanfang Hospital affiliated with Southern Medical University were recruited, and sacroiliac joint unguided injections were done on the basis of the cadaveric and radiologic study. Only the inferior 1/3rd portion parallel to the posterior midline could be injected into since the superior 2/3rd portion were filled with interosseous ligaments. Thirteen of the 20 patients received successful injections as identified by CT scan using the contrast agent. Sacroiliac joint injection following simple X-ray clip location is possible and feasible if the operation is performed by trained physicians familiar with the sacroiliac joint and its surrounding anatomic structures. PMID:25692437

  15. Development of hydrologic landscape regions for classifying hydrologic permanace and hydrological-ecological interactions

    EPA Science Inventory

    In a 2001 paper, Winter proposed the concept of the hydrologic landscape unit as a fundamental unit composed of an upland and lowland separated by a steeper slope. Winter suggested that this concept could be useful for hydrologic research, data analysis, and comparing hydrologic...

  16. Hydrological considerations in providing data for water agreements

    NASA Astrophysics Data System (ADS)

    Shamir, U.

    2011-12-01

    Conflicts over water are as old as human history. Still, analysis of past and present water conflicts, cooperation and agreements clearly indicate a preponderance of cooperation over conflict. How can hydrologists contribute to maximizing the probability that this will be the outcome when interests of adjacent political entities over water move towards conflict? Hydrology is among the most important data bases for crafting a water agreement across a political boundary (others include: political, social, and economic) and are often the most elusive and controversial. We deal here with cases of water scarcity, although flood protection issues are no less interesting and challenging. For hydrologists, some of the important points in this regard are: - Agreed and "stable" hydrological data base: hydrologists know that data bases are always a "moving target" that keeps changing with new and better information, improved understanding of the hydrological components and the use of models, as well as due to the influence of changing internal and external drivers (land use and land cover, modified precipitation fields, climate change). On the other hand, it is not possible to manage an agreement that requires continuous change of the hydrological information. To do so would cause endless discussions between the parties, causing the agreement to become unstable. The tendency is therefore to "freeze" the hydrological information in the agreement and introduce a mechanism for periodic update. - Variability and uncertainty: while the basic hydrology is to be kept "stable", the agreement must recognize variability and uncertainty. Various mechanisms can be used for this, depending on the specific circumstances of the case, including: the range of variability and the degree of uncertainty and the consequences of excursions systematic from nominal values and the effects of random variability. - Water quality is an important parameter that determines usability for various purposes

  17. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre

  18. Designing hydrologic monitoring networks to maximize predictability of hydrologic conditions in a data assimilation system: a case study from South Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Pathak, C. S.; Senarath, S. U.; Bras, R. L.

    2009-12-01

    Robust hydrologic monitoring networks represent a critical element of decision support systems for effective water resource planning and management. Moreover, process representation within hydrologic simulation models is steadily improving, while at the same time computational costs are decreasing due to, for instance, readily available high performance computing resources. The ability to leverage these increasingly complex models together with the data from these monitoring networks to provide accurate and timely estimates of relevant hydrologic variables within a multiple-use, managed water resources system would substantially enhance the information available to resource decision makers. Numerical data assimilation techniques provide mathematical frameworks through which uncertain model predictions can be constrained to observational data to compensate for uncertainties in the model forcings and parameters. In ensemble-based data assimilation techniques such as the ensemble Kalman Filter (EnKF), information in observed variables such as canal, marsh and groundwater stages are propagated back to the model states in a manner related to: (1) the degree of certainty in the model state estimates and observations, and (2) the cross-correlation between the model states and the observable outputs of the model. However, the ultimate degree to which hydrologic conditions can be accurately predicted in an area of interest is controlled, in part, by the configuration of the monitoring network itself. In this proof-of-concept study we developed an approach by which the design of an existing hydrologic monitoring network is adapted to iteratively improve the predictions of hydrologic conditions within an area of the South Florida Water Management District (SFWMD). The objective of the network design is to minimize prediction errors of key hydrologic states and fluxes produced by the spatially distributed Regional Simulation Model (RSM), developed specifically to simulate the

  19. Hydrological Retrospective of floods and droughts: Case study in the Amazon

    NASA Astrophysics Data System (ADS)

    Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter

    2017-04-01

    Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were

  20. Editorial for Journal of Hydrology: Regional Studies

    USGS Publications Warehouse

    Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.

    2014-01-01

    Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.

  1. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  2. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  3. How to integrate social sciences in hydrological research?

    NASA Astrophysics Data System (ADS)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    The integration of interdisciplinary scientific and societal knowledge plays an increasing role in environmental science. Many scholars have long advocated for a joint effort of scientists from different disciplines (interdisciplinarity) to address the problems of the growing pressure on environmental and human systems (Nature, 2015). Such a need was also recognised for the hydrological sciences (HS) e.g. most recently by Vogel et al. (2015). Vibrant new approaches such as "Panta Rhei" (Montanari et al., 2013) and "Socio-Hydrology" (Sivapalan et al., 2012) discuss and propose options for the deeper involvement of hydrologists in socio-economic questions. While there is widespread consensus that coping with the challenges of global change in water resources requires more consideration of human activity, it still remains unclear which roles the social sciences and the humanities (SSH) should assume in this context. Despite the frequent usage of the term "interdisciplinarity" in related discussions, there seems to be a tendency towards assimilation of socio-economic aspects into hydrological research rather than an opening up for interdisciplinary collaboration with social scientists at eye level. The literature, however, remains vague with respect to the concepts of integration and does not allow confirming this assumed tendency. Moreover, the discourse within the hydrological research community on increasing the consideration of societal aspects in hydrological modelling and research is still led by a comparatively small group. In this contribution we highlight the most interesting results of a survey among hydrologists (with 184 respondents). The survey participants do not think that SSH is presently well integrated into hydrological research. They recognize the need for better cooperation between the two disciplines. When asked about ways to improve the status of cooperation, a higher status and acknowledgment of interdisciplinary research by colleagues do not

  4. Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Li, Zhijia; Zhu, Yuelong; Deng, Yuanqian; Zhang, Ke; Yao, Cheng

    2018-06-01

    Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.

  5. The hydrology of three high-altitude forests in Central Himalaya, India: a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Negi, G. C. S.; Rikhari, H. C.; Garkoti, S. C.

    1998-02-01

    In this preliminary study the partitioning of rain-water into various components of the hydrological cycle in three high-altitude forests of contrasting tree physiognomies (namely, Aesculus indica, Quercus semecarpifolia and Abies pindrow) were studied in the Nandadevi Biosphere Reserve, Central Himalaya, India. The results are compared with the hydrological characteristics of low-altitude forests of this region. The study has indicated a significant role of tree physiognomy with regard to rainfall partitioning into the various components of the hydrological cycle. It is suggested that A. pindrow (an evergreen tree) should be considered superior to A. indica (a deciduous tree) with regard to soil and water conservation in this region. This work is of relevance to land management programmes pertaining to afforestation, logging and regeneration.

  6. Climate Change-Induced Shifts in the Hydrological Regime of the Upper Amazon Basin and Its Impacts on Local Eco-Hydrology

    NASA Astrophysics Data System (ADS)

    Zulkafli, Z. D.; Buytaert, W.; Veliz, C.

    2014-12-01

    The potential impact of a changing climate on Andean-Amazonian hydrology is an important question for scientists and policymakers alike, because of its implications for local ecosystem services such as water resources availability, river flow regulation, and eco-hydrology. This study presents new projections of climate change impacts on the hydrological regime of the upper Amazon river in Peru, and the consequent effect on two vulnerable species of freshwater turtle populations Podocnemis expansa (Amazon turtle) and Podocnemis unilis (yellow-spotted side neck turtle), which nest on its banks. To do this, the global climate model outputs of radiation, temperature, precipitation, wind, and humidity data from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) are propagated through a hydrological model to simulate changes in river flow. The model consists of a land surface scheme called the Joint-UK Land Environment Simulator (JULES) that is coupled to a distributed river flow routing routine, which also accounts for floodplain attenuation of flood peaks. It is parameterized using a combination of remote sensing (TRMM, MODIS, an Landsat) and ground observational data to reproduce reliably the historical floodplain regime. The climate-induced shifts are inferred from a comparison between the RCP 4.5 and 8.5 projections against the historical scenario. Changes in the 10th and 95th percentile of flows, as well as the distributions in the length of the dry and wet seasons are analysed. These parameters are then used to construct probability models of biologically significant events (BSEs - extreme dry year, extreme wet year and repiquete), which are negative drivers of the turtle-egg ovipositioning, nesting and hatching. The results indicate that the projected increase in wet-season precipitation overcome the increase in evapotranspirative demand from an increase in temperature, resulting in more frequent and longer term flooding that causes a net loss of total

  7. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  8. Oregon Hydrologic Landscapes: An Approach for Broadscale Hydrologic Classification

    EPA Science Inventory

    Gaged streams represent only a small percentage of watershed hydrologic conditions throughout the Unites States and globe, but there is a growing need for hydrologic classification systems that can serve as the foundation for broad-scale assessments of the hydrologic functions of...

  9. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of

  10. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seibert, S. P.; Skublics, D.; Ehret, U.

    2014-09-01

    The coordinated operation of reservoirs in large-scale river basins has great potential to improve flood mitigation. However, this requires large scale hydrological models to translate the effect of reservoir operation to downstream points of interest, in a quality sufficient for the iterative development of optimized operation strategies. And, of course, it requires reservoirs large enough to make a noticeable impact. In this paper, we present and discuss several methods dealing with these prerequisites for reservoir operation using the example of three major floods in the Bavarian Danube basin (45,000 km2) and nine reservoirs therein: We start by presenting an approach for multi-criteria evaluation of model performance during floods, including aspects of local sensitivity to simulation quality. Then we investigate the potential of joint hydrologic-2d-hydrodynamic modeling to improve model performance. Based on this, we evaluate upper limits of reservoir impact under idealized conditions (perfect knowledge of future rainfall) with two methods: Detailed simulations and statistical analysis of the reservoirs' specific retention volume. Finally, we investigate to what degree reservoir operation strategies optimized for local (downstream vicinity to the reservoir) and regional (at the Danube) points of interest are compatible. With respect to model evaluation, we found that the consideration of local sensitivities to simulation quality added valuable information not included in the other evaluation criteria (Nash-Sutcliffe efficiency and Peak timing). With respect to the second question, adding hydrodynamic models to the model chain did, contrary to our expectations, not improve simulations, despite the fact that under idealized conditions (using observed instead of simulated lateral inflow) the hydrodynamic models clearly outperformed the routing schemes of the hydrological models. Apparently, the advantages of hydrodynamic models could not be fully exploited when

  11. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M., Jr.

    1978-01-01

    The past year saw a re-emphasis on the practical aspects of hydrology due to regional drought patterns, urban flooding, and agricultural and energy demands on water resources. Highlights of hydrologic symposia, publications, and events are included. (MA)

  12. Experimental studies of glued Aluminum-glass joints

    NASA Astrophysics Data System (ADS)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    Glued steel-glass or aluminum-glass joints are to be found, among other things, in vehicles (cars, buses, trains, trams) as windscreen assembly pieces for the supporting structure. For the purposes of the experiments, samples were made in which the top beam was made of the AW-2017A aluminum alloy and the bottom beam was made of thermally reinforced soda-lime glass whereas the glued joints were made of one-component polyurethane glue Körapur 175. The tests were performed under four-point bending conditions at monotonic incremental bending moment values on the Instron 5965 durability machine. The experimental study of the durability of glued joints under four-point bending conditions with the monotonic incremental bending moment allows to determine the values of stresses, whose value is related to initiation of damage of the tested joint.

  13. Five Guidelines for Selecting Hydrological Signatures

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to

  14. Hydrology and ecology of pinyon-juniper woodlands: Conceptual framework and field studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, B.P.; Breshears, D.D.

    1994-09-01

    Pinyon-juniper woodlands represent an important ecosystem in the semiarid western United States. Concern over the sustainability of, and management approaches for, these woodlands is increasing. As in other semiarid environments, water dynamics and vegetation patterns in pinyon-juniper woodlands are highly interrelated. An understanding of these relationships can aid in evaluating various management strategies. In this paper we describe a conceptual framework designed to increase our understanding of water and vegetation in pinyon-juniper woodlands. The framework comprises five different scales, at each of which the landscape is divided into {open_quotes}functional units{close_quotes} on the basis of hydrologic characteristics. The hydrologic behavior ofmore » each unit and the connections between units are being evaluated using an extensive network of hydrological and ecological field studies on the Pajarito Plateau in northern New Mexico. Data from these studies, coupled with application of the conceptual model, have led to the development of a number of hypotheses concerning the interrelationships of water and vegetation in pinyon-juniper woodlands.« less

  15. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the

  16. Hydrology for everyone: Share your knowledge

    NASA Astrophysics Data System (ADS)

    Dogulu, Nilay; Dogulu, Canay

    2015-04-01

    Hydrology, the science of water, plays a central role in understanding the function and behaviour of water on the earth. Given the increasingly complex, uncertain, and dynamic nature of this system, the study of hydrology presents challenges in solving water-related problems in societies. While researchers in hydrologic science and engineering embrace these challenges, it is important that we also realize our critical role in promoting the basic understanding of hydrology concepts among the general public. Hydrology is everywhere, yet, the general public often lacks the basic understanding of the hydrologic environment surrounding them. Essentially, we believe that a basic level of knowledge on hydrology is a must for everyone and that this knowledge might facilitate resilience of communities to hydrological extremes. For instance, in case of flood and drought conditions, which are the most frequent and widespread hydrological phenomena that societies live with, a key aspect of facilitating community resilience would be to create awareness on the hydrological, meteorological, and climatological processes behind floods and droughts, and also on their potential implications on water resources management. Such knowledge awareness can lead to an increase in individuals' awareness on their role in water-related problems which in turn can potentially motivate them to adopt preparedness behaviours. For these reasons, embracing an approach that will increase hydrologic literacy of the general public should be a common objective for the hydrologic community. This talk, hopefully, will motivate researchers in hydrologic science and engineering to share their knowledge with the general public. We, as early career hydrologists, should take this responsibility more than anybody else. Start teaching hydrology now and share your knowledge with people around you - friends, family, relatives, neighbours, and others. There is hydrology for everyone!

  17. Coupled land surface-subsurface hydrogeophysical inverse modeling to estimate soil organic carbon content and explore associated hydrological and thermal dynamics in the Arctic tundra

    NASA Astrophysics Data System (ADS)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.

    2017-09-01

    Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the

  18. Post-processing of multi-hydrologic model simulations for improved streamflow projections

    NASA Astrophysics Data System (ADS)

    khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid

    2016-04-01

    Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.

  19. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    extended period) in multiple basins, and (2) a comparison of the outcome of hydrological modelling using the distributed JULES (Joint-UK Land Environment Simulator) land surface model. First results indicate an improvement in the water balance that directly translates into an increased hydrological performance. The more interesting aspect of the study, however, will be the insights into the nature of satellite precipitation errors in this extreme environment and the optimal means of improving the data to generate increased confidence in hydrological predictions.

  20. Coupled geophysical-hydrological modeling of controlled NAPL spill

    NASA Astrophysics Data System (ADS)

    Kowalsky, M. B.; Majer, E.; Peterson, J. E.; Finsterle, S.; Mazzella, A.

    2006-12-01

    Past studies have shown reasonable sensitivity of geophysical data for detecting or monitoring the movement of non-aqueous phase liquids (NAPLs) in the subsurface. However, heterogeneity in subsurface properties and in NAPL distribution commonly results in non-unique data interpretation. Combining multiple geophysical data types and incorporating constraints from hydrological models will potentially decrease the non-uniqueness in data interpretation and aid in site characterization. Large-scale laboratory experiments have been conducted over several years to evaluate the use of various geophysical methods, including ground-penetrating radar (GPR), seismic, and electrical methods, for monitoring controlled spills of tetrachloroethylene (PCE), a hazardous industrial solvent that is pervasive in the subsurface. In the current study, we consider an experiment in which PCE was introduced into a large tank containing a heterogeneous distribution of sand and clay mixtures, and allowed to migrate while time-lapse geophysical data were collected. We consider two approaches for interpreting the surface GPR and crosswell seismic data. The first approach involves (a) waveform inversion of the surface GPR data using a non-gradient based optimization algorithm to estimate the dielectric constant distributions and (b) conversion of crosswell seismic travel times to acoustic velocity distributions; the dielectric constant and acoustic velocity distributions are then related to NAPL saturation using appropriate petrophysical models. The second approach takes advantage of a recently developed framework for coupled hydrological-geophysical modeling, providing a hydrological constraint on interpretation of the geophysical data and additionally resulting in quantitative estimates of the most relevant hydrological parameters that determine NAPL behavior in the system. Specifically, we simulate NAPL migration using the multiphase multicomponent flow simulator TOUGH2 with a 2-D radial

  1. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow

    USGS Publications Warehouse

    Burn, Donald H.; Hannaford, Jamie; Hodgkins, Glenn A.; Whitfield, Paul H.; Thorne, Robin; Marsh, Terry

    2012-01-01

    Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs.

  2. Enhancing a socio-hydrological modelling framework through field observations: a case study in India

    NASA Astrophysics Data System (ADS)

    den Besten, Nadja; Pande, Saket; Savenije, Huub H. G.

    2016-04-01

    Recently a smallholder socio-hydrological modelling framework was proposed and deployed to understand the underlying dynamics of Agrarian Crisis in Maharashtra state of India. It was found that cotton and sugarcane smallholders whom lack irrigation and storage techniques are most susceptible to distress. This study further expands the application of the modelling framework to other crops that are abundant in the state of Maharashtra, such as Paddy, Jowar and Soyabean to assess whether the conclusions on the possible causes behind smallholder distress still hold. Further, a fieldwork will be undertaken in March 2016 in the district of Pune. During the fieldwork 50 smallholders will be interviewed in which socio-hydrological assumptions on hydrology and capital equations and corresponding closure relationships, incorporated the current model, will be put to test. Besides the assumptions, the questionnaires will be used to better understand the hydrological reality of the farm holders, in terms of water usage and storage capacity. In combination with historical records on the smallholders' socio-economic data acquired over the last thirty years available through several NGOs in the region, socio-hydrological realism of the modelling framework will be enhanced. The preliminary outcomes of a desktop study show the possibilities of a water-centric modelling framework in understanding the constraints on smallholder farming. The results and methods described can be a first step guiding following research on the modelling framework: a start in testing the framework in multiple rural locations around the globe.

  3. Landsat Thematic Mapper studies of land cover spatial variability related to hydrology

    NASA Technical Reports Server (NTRS)

    Wharton, S.; Ormsby, J.; Salomonson, V.; Mulligan, P.

    1984-01-01

    Past accomplishments involving remote sensing based land-cover analysis for hydrologic applications are reviewed. Ongoing research in exploiting the increased spatial, radiometric, and spectral capabilities afforded by the TM on Landsats 4 and 5 is considered. Specific studies to compare MSS and TM for urbanizing watersheds, wetlands, and floodplain mapping situations show that only a modest improvement in classification accuracy is achieved via statistical per pixel multispectral classifiers. The limitations of current approaches to multispectral classification are illustrated. The objectives, background, and progress in the development of an alternative analysis approach for defining inputs to urban hydrologic models using TM are discussed.

  4. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  5. Hydrology

    USGS Publications Warehouse

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  6. OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef

    2017-04-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).

  7. Thoracic costotransverse joint pain patterns: a study in normal volunteers.

    PubMed

    Young, Brian A; Gill, Howard E; Wainner, Robert S; Flynn, Timothy W

    2008-10-15

    Pain referral patterns of asymptomatic costotransverse joints have not been established. The objective of this study was to determine the pain referral patterns of asymptomatic costotransverse joints via provocative intra-articular injection. Eight asymptomatic male volunteers received a combined total of 21 intra-articular costotransverse joint injections. Fluoroscopic imaging was used to identify and isolate each costotransverse joint and guide placement of a 25 gauge, 2.5 inch spinal needle into the costotransverse joint. Following contrast medium injection, the quality, intensity, and distribution of the resultant pain produced were recorded. Of the 21 costotransverse joint injections, 16 (76%) were classified as being intra-articular via arthrograms taken at the time of injection, and 14 of these injections produced a pain sensation distinctly different from that of needle placement. Average pain produced was 3.3/10 on a 0-10 verbal pain scale. Pain was described generally as a deep, dull ache, and pressure sensation. Pain patterns were located superficial to the injected joint, with only the right T2 injections showing referred pain 2 segments cranially and caudally. No chest wall, upper extremity or pseudovisceral pains were reported. This study provides preliminary data of the pain referral patterns of costotransverse joints. Further research is needed to compare these findings with those elicited from symptomatic subjects.

  8. Comparing Planning Hydrologic Ensembles associated with Paleoclimate, Projected Climate, and blended Climate Information Sets

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Prairie, J.; Pruitt, T.; Rajagopalan, B.; Woodhouse, C.

    2008-12-01

    Water resources adaptation planning under climate change involves making assumptions about probabilistic water supply conditions, which are linked to a given climate context (e.g., instrument records, paleoclimate indicators, projected climate data, or blend of these). Methods have been demonstrated to associate water supply assumptions with any of these climate information types. Additionally, demonstrations have been offered that represent these information types in a scenario-rich (ensemble) planning framework, either via ensembles (e.g., survey of many climate projections) or stochastic modeling (e.g., based on instrument records or paleoclimate indicators). If the planning goal involves using a hydrologic ensemble that jointly reflects paleoclimate (e.g., lower- frequency variations) and projected climate information (e.g., monthly to annual trends), methods are required to guide how these information types might be translated into water supply assumptions. However, even if such a method exists, there is lack of understanding on how such a hydrologic ensemble might differ from ensembles developed relative to paleoclimate or projected climate information alone. This research explores two questions: (1) how might paleoclimate and projected climate information be blended into an planning hydrologic ensemble, and (2) how does a planning hydrologic ensemble differ when associated with the individual climate information types (i.e. instrumental records, paleoclimate, projected climate, or blend of the latter two). Case study basins include the Gunnison River Basin in Colorado and the Missouri River Basin above Toston in Montana. Presentation will highlight ensemble development methods by information type, and comparison of ensemble results.

  9. Can spatial study of hydrological connectivity explain some behaviors of catchments?

    NASA Astrophysics Data System (ADS)

    Cantreul, Vincent

    2015-04-01

    Erosion is a major threat to European soil. Consequences can be very important both on-site and off-site. Belgian loamy soils are highly vulnerable to this threat because of their natural sensitivity to erosion on the one hand, and because the land is mainly used for intensive agricultural practices on the other hand. Over the last few decades, rising erosion has even been observed in our regions. This shows the importance of a deeper understanding of the coupled phenomena of runoff and erosion in order to manage soils at catchment scale. Plenty of research have already studied this but all agree to say that it seems to have a non-linear relationship between rainfall and discharge, as well as between rainfall and erosion. For that reason, a new concept has been developed a few years ago: the hydrological connectivity. Several research have focused on connectivity but up to now, each there are as much definition as papers. In this thesis, it will be important firstly to resume all these definitions to clarify this concept. Secondly, a methodology using various transects on the watershed and some pertinent field measurements will be used. These measurements include spatial distribution of particle size, surface states and soil moisture. A new approach of photogrammetry using an UAV will be used to observe erosion and deposition zones on the watershed. In this framework, several time scales will be studied from the event scale to the annual scale passing by monthly and seasonal scales. All this will serve to progress toward a better understanding of the concept of hydrological connectivity in order to study erosion at catchment scale. The final goal of this study is to describe hydrologically each different part of the catchment and to generalize these behaviors to other catchments with similar properties if possible. Afterwards, this research will be integrated in an existing (or not) model to improve the modelling of discharge and erosion in the catchment. Thanks to

  10. Annual compilation and analysis of hydrologic data for urban studies in the Bryan, Texas, metropolitan area, 1969

    USGS Publications Warehouse

    Robbins, W.D.

    1972-01-01

    Hydrologic investigations of urban areas in Texas were begun by the U.S. Geological Survey in 1954. These studies are now in progress in Austin, Houston, Dallas, Dallas County, Fort Worth, San Antonio, and Bryan. Hydrologic investigations of urban areas in Texas were begun by the U.S. Geological Survey in 1954. These studies are now in progress in Austin, Houston, Dallas, Dallas County, Fort Worth, San Antonio, and Bryan. 1. To determine, on the basis of historical data and hydrologic analyses, the magnitude and frequency of floods. 2. To document and define the areal extent of floods of greater than ordinary magnitude. 3. To determine the effect of urban development on flood peaks and volume. 4. To provide applied research facilities for studies at Texas A & M University at College Stations. This report, the first in a series of reports to be published annually, is primarily applicable to objectives 2, 3, and 4. The report presents the basic hydrologic data collected in two study areas during the 1969 water year (October 1, 1968, to September 30, 1969) and basic hydrologic data collected during part of the 1968 water year (April 5, 1968, to September 30, 1968). The locations of the two basins within the study area, Burton Creek and Hudson Creek, are shown on figure 1.

  11. Infrastructure Joint Venture Projects in Malaysia: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Romeli, Norsyakilah; Muhamad Halil, Faridah; Ismail, Faridah; Sufian Hasim, Muhammad

    2018-03-01

    As many developed country practise, the function of the infrastructure is to connect the each region of Malaysia holistically and infrastructure is an investment network projects such as transportation water and sewerage, power, communication and irrigations system. Hence, a billions allocations of government income reserved for the sake of the infrastructure development. Towards a successful infrastructure development, a joint venture approach has been promotes by 2016 in one of the government thrust in Construction Industry Transformation Plan which encourage the internationalisation among contractors. However, there is depletion in information on the actual practise of the infrastructure joint venture projects in Malaysia. Therefore, this study attempt to explore the real application of the joint venture in Malaysian infrastructure projects. Using the questionnaire survey, a set of survey question distributed to the targeted respondents. The survey contained three section which the sections are respondent details, organizations background and project capital in infrastructure joint venture project. The results recorded and analyse using SPSS software. The contractors stated that they have implemented the joint venture practice with mostly the client with the usual construction period of the infrastructure project are more than 5 years. Other than that, the study indicates that there are problems in the joint venture project in the perspective of the project capital and the railway infrastructure should be given a highlights in future study due to its high significant in term of cost and technical issues.

  12. Evaluation of traction stirrup distraction technique to increase the joint space of the shoulder joint in the dog: A cadaveric study.

    PubMed

    Devesa, V; Rovesti, G L; Urrutia, P G; Sanroman, F; Rodriguez-Quiros, J

    2015-06-01

    The objective of this study was to evaluate technical feasibility and efficacy of a joint distraction technique by traction stirrup to facilitate shoulder arthroscopy and assess potential soft tissue damage. Twenty shoulders were evaluated radiographically before distraction. Distraction was applied with loads from 40 N up to 200 N, in 40 N increments, and the joint space was recorded at each step by radiographic images. The effects of joint flexion and intra-articular air injection at maximum load were evaluated. Radiographic evaluation was performed after distraction to evaluate ensuing joint laxity. Joint distraction by traction stirrup technique produces a significant increase in the joint space; an increase in joint laxity could not be inferred by standard and stress radiographs. However, further clinical studies are required to evaluate potential neurovascular complications. A wider joint space may be useful to facilitate arthroscopy, reducing the likelihood for iatrogenic damage to intra-articular structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Alloplastic total temporomandibular joint replacements: do they perform like natural joints? Prospective cohort study with a historical control.

    PubMed

    Wojczyńska, A; Leiggener, C S; Bredell, M; Ettlin, D A; Erni, S; Gallo, L M; Colombo, V

    2016-10-01

    The aim of this study was to qualitatively and quantitatively describe the biomechanics of existing total alloplastic reconstructions of temporomandibular joints (TMJ). Fifteen patients with unilateral or bilateral TMJ total joint replacements and 15 healthy controls were evaluated via dynamic stereometry technology. This non-invasive method combines three-dimensional imaging of the subject's anatomy with jaw tracking. It provides an insight into the patient's jaw joint movements in real time and provides a quantitative evaluation. The patients were also evaluated clinically for jaw opening, protrusive and laterotrusive movements, pain, interference with eating, and satisfaction with the joint replacements. The qualitative assessment revealed that condyles of bilateral total joint replacements displayed similar basic motion patterns to those of unilateral prostheses. Quantitatively, mandibular movements of artificial joints during opening, protrusion, and laterotrusion were all significantly shorter than those of controls. A significantly restricted mandibular range of motion in replaced joints was also observed clinically. Fifty-three percent of patients suffered from chronic pain at rest and 67% reported reduced chewing function. Nonetheless, patients declared a high level of satisfaction with the replacement. This study shows that in order to gain a comprehensive understanding of complex therapeutic measures, a multidisciplinary approach is needed. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Hydrologic Modeling of Boreal Forest Ecosystems

    NASA Technical Reports Server (NTRS)

    Haddeland, I.; Lettenmaier, D. P.

    1995-01-01

    This study focused on the hydrologic response, including vegetation water use, of two test regions within the Boreal-Ecosystem-Atmosphere Study (BOREAS) region in the Canadian boreal forest, one north of Prince Albert, Saskatchewan, and the other near Thompson, Manitoba. Fluxes of moisture and heat were studied using a spatially distributed hydrology soil-vegetation-model (DHSVM).

  15. How do the methodological choices of your climate change study affect your results? A hydrologic case study across the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Chegwidden, O.; Nijssen, B.; Rupp, D. E.; Kao, S. C.; Clark, M. P.

    2017-12-01

    We describe results from a large hydrologic climate change dataset developed across the Pacific Northwestern United States and discuss how the analysis of those results can be seen as a framework for other large hydrologic ensemble investigations. This investigation will better inform future modeling efforts and large ensemble analyses across domains within and beyond the Pacific Northwest. Using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we provide projections of hydrologic change for the domain through the end of the 21st century. The dataset is based upon permutations of four methodological choices: (1) ten global climate models (2) two representative concentration pathways (3) three meteorological downscaling methods and (4) four unique hydrologic model set-ups (three of which entail the same hydrologic model using independently calibrated parameter sets). All simulations were conducted across the Columbia River Basin and Pacific coastal drainages at a 1/16th ( 6 km) resolution and at a daily timestep. In total, the 172 distinct simulations offer an updated, comprehensive view of climate change projections through the end of the 21st century. The results consist of routed streamflow at 400 sites throughout the domain as well as distributed spatial fields of relevant hydrologic variables like snow water equivalent and soil moisture. In this presentation, we discuss the level of agreement with previous hydrologic projections for the study area and how these projections differ with specific methodological choices. By controlling for some methodological choices we can show how each choice affects key climatic change metrics. We discuss how the spread in results varies across hydroclimatic regimes. We will use this large dataset as a case study for distilling a wide range of hydroclimatological projections into useful climate change assessments.

  16. Modeling Hydrological Extremes in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, Giuliano; Martinez, Fabian; Kalantari, Zahra; Viglione, Alberto

    2017-04-01

    Hydrological studies have investigated human impacts on hydrological extremes, i.e. droughts and floods, while social studies have explored human responses and adaptation to them. Yet, there is still little understanding about the dynamics resulting from two-way feedbacks, i.e. both impacts and responses. Traditional risk assessment methods therefore fail to assess future dynamics, and thus risk reduction strategies built on these methods can lead to unintended consequences in the medium-long term. Here we review the dynamics resulting from the reciprocal links between society and hydrological extremes, and describe initial efforts to model floods and droughts in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both hydrological extremes, and then present a stylized model simulating the reciprocal effects between droughts, foods and reservoir operation rules. Unprecedented opportunities offered by the growing availability of global data and worldwide archives to uncover the mutual shaping of hydrological extremes and society across places and scales are also discussed.

  17. HYDROSAT - An instrument platform for hydrology

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Engman, E. T.

    1993-01-01

    This paper discusses a multisensor satellite approach for the study of hydrological applications. Spectral as well as spatial and temporal characteristics of specific operational and planned instruments applicable to hydrology are presented. A hydrology specific series of sensors are proposed to fill the gaps not covered by the current and planned systems. We have called this hypothetical platform HYDROSAT. In addition, the trade-offs between a geostationary satellite and a polar orbiter are explored.

  18. Advances in Canadian forest hydrology, 1995-1998

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Creed, I. F.; Pomeroy, J. W.

    2000-06-01

    Approximately 42% of Canada is covered by forests, which in turn can be subdivided into nine distinct forest ecozones. Many forested ecozones are located in northern Canada, where cold winters and cool summers provide forest environments that are less well-understood than those in more temperate locations. A number of major developments in recent years have stressed the need for enhanced understanding of hydrological processes in these forest landscapes. These include an increased emphasis on sustainable forest management in Canada as well as major scientific initiatives (e.g. BOREAS) examining water, carbon and energy fluxes in forest ecosystems, with a particular focus on boreal and subarctic forests. Recent progress in our understanding of forest hydrology across Canada is reviewed. Studies of hydrological processes across the spectrum of forest ecozones are highlighted, as well as work on hydrological responses to forest disturbance and recovery. Links between studies of hydrological processes in Canada's forests and other fields of research are examined, with particular attention paid to ongoing efforts to model hydrological impacts and interactions with the climate, biogeochemistry, geomorphology and ecology of forested landscapes.

  19. Assessment of an improved hydrological loading model from space geodesy: case study in South America

    NASA Astrophysics Data System (ADS)

    Nicolas, Joëlle; Boy, Jean-Paul; Durand, Frédéric; Mémin, Anthony

    2017-04-01

    Loading effects are crustal deformations induced by ocean, atmosphere and continental water mass redistributions. In this study we focus on hydrological loading effect monitored by space geodesy and in particular by GNSS and GRACE. Classically, hydrological loading models take into account snow and soil-moisture but don't consider surface waters (rivers, lakes…). As a result, huge discrepancies between GPS observations and those models arise around large rivers such as the Amazon where nearly half of the vertical signal cannot be explained by the combination of atmospheric, oceanic and hydrological loading models. To better resolve the hydrological signal, we improve the continental water storage models computed from soil-moisture and snow GLDAS/Noah or MERRA data sets by including surface water runoff. We investigate how continental water storage model improvements are supported by GNSS and GRACE observations in South America main river basins: Amazon, Orinoco and Parana. In this area the hydrological effects are among the largest in the world mainly due to the river level variations. We present the results of time series analyses with spectral and principal component analysis (PCA) methods. We extract the dominant spatio-temporal annual mode. We also identify and characterize the spatio-temporal changes in the annual hydrology signal, which is the key to a better understanding of the water cycle variations of those major rivers. We demonstrate that it is crucial to take into account the river contribution in fluid signatures before investigating high-frequency variability and episodic events.

  20. Disturbance Hydrology in the Tropics: The Galápagos Islands as a Case Study

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, D. A.; Schmitt, S.; Percy, M.; Hu, J.; Singha, K.; Mirus, B. B.

    2015-12-01

    Tropical Latin America has shown the largest acceleration in land use change in recent decades. It is well established that changes in vegetation cover can lead to changes in water demand, evapotranspiration, and eventually soil textural characteristics. Given the projected changes in the intensity and distribution of rainfall in tropical regions in the coming decades, it is critical to characterize how changes in land use change across different climatic zones may fundamentally reshape water availability and storage, soil composition and associated hydraulic properties, and overall watershed hydrologic behavior. This study evaluates the role of anthropogenic disturbance on hydrological processes across different climatic zones in the tropics. We focus specifically on San Cristobal Island, the second most populated island of the iconic Galapagos archipelago, which is currently undergoing severe anthropogenic transformation. The island contains a spectrum of climates, ranging from very humid to arid, and has seen a dramatic increase in tourism and an increase in the permanent population of greater than 1000% in the last 40 years. Over 70% of the landscape of San Cristobal has been altered by land use change and invasive species. Our study identifies the complex interactions among hydrological, geological, economic, and social variables that tropical island systems will face in the years ahead, and the role and effects of a dynamic hydrologic cycle across multiple scales.

  1. Wetland Hydrology

    EPA Science Inventory

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  2. Hydrologic Predictions in the Anthropocene: Exploration with Co-evolutionary Socio-hydrologic Models

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2013-04-01

    Socio-hydrology studies the co-evolution and self-organization of humans in the hydrologic landscape, which requires a thorough understanding of the complex interactions between humans and water. On the one hand, the nature of water availability greatly impacts the development of society. On the other hand, humans can significantly alter the spatio-temporal distribution of water and in this way provide feedback to the society itself. The human-water system functions underlying such complex human-water interactions are not well understood. Exploratory models with the appropriate level of simplification in any given area can be valuable to understand these functions and the self-organization associated with socio-hydrology. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed, and is used to illustrate the explanatory power of such models. In the Tarim River, humans depend heavily on agricultural production (other industries can be ignored for a start), and the social processes can be described principally by two variables, i.e., irrigated-area and human population. The eco-hydrological processes are expressed in terms of area under natural vegetation and stream discharge. The study area is the middle and the lower reaches of the Tarim River, which is divided into two modeling units, i.e. middle reach and lower reach. In each modeling unit, four ordinary differential equations are used to simulate the dynamics of the hydrological system represented by stream discharge, ecological system represented by area under natural vegetation, the economic system represented by irrigated area under agriculture and social system represented by human population. The four dominant variables are coupled together by several internal variables. For example, the stream discharge is coupled to irrigated area by the colonization rate and mortality rate of the irrigated area in the middle reach and the irrigated area is coupled to stream

  3. Regionalization Study of Satellite based Hydrological Model (SHM) in Hydrologically Homogeneous River Basins of India

    NASA Astrophysics Data System (ADS)

    Kumari, Babita; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghvendra P.

    2017-04-01

    A new semi-distributed conceptual hydrological model, namely Satellite based Hydrological Model (SHM), has been developed under 'PRACRITI-2' program of Space Application Centre (SAC), Ahmedabad for sustainable water resources management of India by using data from Indian Remote Sensing satellites. Entire India is divided into 5km x 5km grid cells and properties at the center of the cells are assumed to represent the property of the cells. SHM contains five modules namely surface water, forest, snow, groundwater and routing. Two empirical equations (SCS-CN and Hargreaves) and water balance method have been used in the surface water module; the forest module is based on the calculations of water balancing & dynamics of subsurface. 2-D Boussinesq equation is used for groundwater modelling which is solved using implicit finite-difference. The routing module follows a distributed routing approach which requires flow path and network with the key point of travel time estimation. The aim of this study is to evaluate the performance of SHM using regionalization technique which also checks the usefulness of a model in data scarce condition or for ungauged basins. However, homogeneity analysis is pre-requisite to regionalization. Similarity index (Φ) and hierarchical agglomerative cluster analysis are adopted to test the homogeneity in terms of physical attributes of three basins namely Brahmani (39,033 km km^2)), Baitarani (10,982 km km^2)) and Kangsabati (9,660 km km^2)) with respect to Subarnarekha (29,196 km km^2)) basin. The results of both homogeneity analysis show that Brahmani basin is the most homogeneous with respect to Subarnarekha river basin in terms of physical characteristics (land use land cover classes, soiltype and elevation). The calibration and validation of model parameters of Brahmani basin is in progress which are to be transferred into the SHM set up of Subarnarekha basin and results are to be compared with the results of calibrated and validated

  4. Hyphenated hydrology: Interdisciplinary evolution of water resource science

    NASA Astrophysics Data System (ADS)

    McCurley, Kathryn L.; Jawitz, James W.

    2017-04-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-twentieth century. Modern water resource related questions have forced adaptation from exclusively physical or engineering science viewpoints toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution were foreseen by prominent expert hydrologists. However, their narrative descriptions have lacked substantial quantification. This study addressed that gap by measuring the prevalence of and analyzing the relationships between the terms most frequently used by hydrologists to define and describe their research. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerged. Our word frequency and term cooccurrence network results revealed the dynamic timing of the lateral movement of hydrology across multiple disciplines as well as the deepening of scientific discourse with respect to traditional hydrologic questions. The conversation among water resource scientists surrounding the hydrologic subdisciplines of catchment-hydrology, hydro-meteorology, socio-hydrology, hydro-climatology, and eco-hydrology gained statistically significant momentum in the analyzed time period, while that of hydro-geology and contaminant-hydrology experienced periods of increase followed by significant decline. This study concludes that formerly exotic disciplines can potentially modify hydrology, prompting new insights and inspiring unconventional perspectives on old questions that may have otherwise become obsolete.

  5. Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology

    EPA Science Inventory

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...

  6. On the Usefulness of Hydrologic Landscapes for Hydrologic Modeling and Water Management

    EPA Science Inventory

    Hydrologic Landscapes (HLs) are units that can be used in aggregate to describe the watershed-scale hydrologic response of an area through use of physical and climatic properties. The HL assessment unit is a useful classification tool to relate and transfer hydrologically meaning...

  7. On the Usefulness of Hydrologic Landscapes on Hydrologic Model calibration and Selection

    EPA Science Inventory

    Hydrologic Landscapes (HLs) are units that can be used in aggregate to describe the watershed-scale hydrologic response of an area through use of physical and climatic properties. The HL assessment unit is a useful classification tool to relate and transfer hydrologically meaning...

  8. Hydrological Classification, a Practical Tool for Mangrove Restoration

    PubMed Central

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  9. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    PubMed

    Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  10. Constructing temporary sampling platforms for hydrologic studies

    Treesearch

    Manuel H. Martinez; Sandra E. Ryan

    2000-01-01

    This paper presents instructions for constructing platforms that span the width of stream channels to accommodate the measurement of hydrologic parameters over a wide range of discharges. The platforms provide a stable, safe, noninvasive, easily constructed, and relatively inexpensive means for permitting data collection without wading in the flow. We have used the...

  11. Joint attention studies in normal and autistic children using NIRS

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Hall, Michael; Gutierrez, Anibal; Messinger, Daniel; Rey, Gustavo; Godavarty, Anuradha

    2011-03-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic. In this study Near infrared spectroscopy (NIRS) is being applied for the first time to study the difference in activation and connectivity in the frontal cortex of typically developing (TD) and autistic children between 4-8 years of age in response to joint attention task. The optical measurements are acquired in real time from frontal cortex using Imagent (ISS Inc.) - a frequency domain based NIRS system in response to video clips which engenders a feeling of joint attention experience in the subjects. A block design consisting of 5 blocks of following sequence 30 sec joint attention clip (J), 30 sec non-joint attention clip (NJ) and 30 sec rest condition is used. Preliminary results from TD child shows difference in brain activation (in terms of oxy-hemoglobin, HbO) during joint attention interaction compared to the nonjoint interaction and rest. Similar activation study did not reveal significant differences in HbO across the stimuli in, unlike in an autistic child. Extensive studies are carried out to validate the initial observations from both brain activation as well as connectivity analysis. The result has significant implication for research in neural pathways associated with autism that can be mapped using NIRS.

  12. Study on Hydrological Functions of Litter Layers in North China

    PubMed Central

    Li, Xiang; Niu, Jianzhi; Xie, Baoyuan

    2013-01-01

    Canopy interception, throughfall, stemflow, and runoff have received considerable attention during the study of water balance and hydrological processes in forested ecosystems. Past research has either neglected or underestimated the role of hydrological functions of litter layers, although some studies have considered the impact of various characteristics of rainfall and litter on litter interception. Based on both simulated rainfall and litter conditions in North China, the effect of litter mass, rainfall intensity and litter type on the maximum water storage capacity of litter (S) and litter interception storage capacity (C) were investigated under five simulated rainfall intensities and four litter masses for two litter types. The results indicated: 1) the S values increased linearly with litter mass, and the S values of broadleaf litter were on average 2.65 times larger than the S values of needle leaf litter; 2) rainfall intensity rather than litter mass determined the maximum interception storage capacity (Cmax); Cmax increased linearly with increasing rainfall intensity; by contrast, the minimum interception storage capacity (Cmin) showed a linear relationship with litter mass, but a poor correlation with rainfall intensity; 3) litter type impacted Cmax and Cmin; the values of Cmax and Cmin for broadleaf litter were larger than those of needle leaf litter, which indicated that broadleaf litter could intercepte and store more water than needle leaf litter; 4) a gap existed between Cmax and Cmin, indicating that litter played a significant role by allowing rainwater to infiltrate or to produce runoff rather than intercepting it and allowing it to evaporate after the rainfall event; 5) Cmin was always less than S at the same litter mass, which should be considered in future interception predictions. Vegetation and precipitation characteristics played important roles in hydrological characteristics. PMID:23936188

  13. Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices

    NASA Astrophysics Data System (ADS)

    Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il

    2018-04-01

    When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.

  14. 1990 Hydrology Prize awarded

    NASA Astrophysics Data System (ADS)

    The International Association of Hydrological Sciences awarded its 1990 International Hydrology Prize to Z. Kaczmarek of Warsaw, Poland. The award was presented on March 16 in Paris, France, during Unesco's Commemorative Symposium on 25 Years of the International Hydrological Decade/International Hydrological Program.The IAHS International Hydrology Prize, a silver medal, was first approved in 1979 as an annual award to a person who has made an outstanding contribution to hydrology and gives the candidate universal recognition of his international stature. The IAHS national committees give nominations to the IAHS Secretary General for consideration by a nominating committee, which consists of the IAHS president, the first and second vice presidents and representatives of Unesco and the World Meteorological Organization. The citation for the award to Kaczmarek, which was given by IAHS president Vit Klemes, follows.

  15. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments

    Treesearch

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze

    2015-01-01

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  16. VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Santos, Fernando Acácio Monteiro dos; Almeida, Emerson Rodrigo

    2015-01-01

    Electrical (DC) and Transient Electromagnetic (TEM) soundings are used in a great number of environmental, hydrological, and mining exploration studies. Usually, data interpretation is accomplished by individual 1D models resulting often in ambiguous models. This fact can be explained by the way as the two different methodologies sample the medium beneath surface. Vertical Electrical Sounding (VES) is good in marking resistive structures, while Transient Electromagnetic sounding (TEM) is very sensitive to conductive structures. Another difference is VES is better to detect shallow structures, while TEM soundings can reach deeper layers. A Matlab program for 1D joint inversion of VES and TEM soundings was developed aiming at exploring the best of both methods. The program uses CRS - Controlled Random Search - algorithm for both single and 1D joint inversions. Usually inversion programs use Marquadt type algorithms but for electrical and electromagnetic methods, these algorithms may find a local minimum or not converge. Initially, the algorithm was tested with synthetic data, and then it was used to invert experimental data from two places in Paraná sedimentary basin (Bebedouro and Pirassununga cities), both located in São Paulo State, Brazil. Geoelectric model obtained from VES and TEM data 1D joint inversion is similar to the real geological condition, and ambiguities were minimized. Results with synthetic and real data show that 1D VES/TEM joint inversion better recovers simulated models and shows a great potential in geological studies, especially in hydrogeological studies.

  17. An ensemble-based dynamic Bayesian averaging approach for discharge simulations using multiple global precipitation products and hydrological models

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Liu, Junguo; Yang, Hong; Sweetapple, Chris

    2018-03-01

    Global precipitation products are very important datasets in flow simulations, especially in poorly gauged regions. Uncertainties resulting from precipitation products, hydrological models and their combinations vary with time and data magnitude, and undermine their application to flow simulations. However, previous studies have not quantified these uncertainties individually and explicitly. This study developed an ensemble-based dynamic Bayesian averaging approach (e-Bay) for deterministic discharge simulations using multiple global precipitation products and hydrological models. In this approach, the joint probability of precipitation products and hydrological models being correct is quantified based on uncertainties in maximum and mean estimation, posterior probability is quantified as functions of the magnitude and timing of discharges, and the law of total probability is implemented to calculate expected discharges. Six global fine-resolution precipitation products and two hydrological models of different complexities are included in an illustrative application. e-Bay can effectively quantify uncertainties and therefore generate better deterministic discharges than traditional approaches (weighted average methods with equal and varying weights and maximum likelihood approach). The mean Nash-Sutcliffe Efficiency values of e-Bay are up to 0.97 and 0.85 in training and validation periods respectively, which are at least 0.06 and 0.13 higher than traditional approaches. In addition, with increased training data, assessment criteria values of e-Bay show smaller fluctuations than traditional approaches and its performance becomes outstanding. The proposed e-Bay approach bridges the gap between global precipitation products and their pragmatic applications to discharge simulations, and is beneficial to water resources management in ungauged or poorly gauged regions across the world.

  18. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    PubMed Central

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  19. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  20. IMPACTS OF URBANIZATION ON WATERSHED HYDROLOGIC FUNCTION

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been studies to quantify basic hydrological relationships that are altered by the addition of impervious surfaces. The USDA-ARS and USEPA-ORD-NRMRL have initiated a pilot program to study the impacts...

  1. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  2. Using Scientific Visualization to Represent Soil Hydrology Dynamics

    ERIC Educational Resources Information Center

    Dolliver, H. A. S.; Bell, J. C.

    2006-01-01

    Understanding the relationships between soil, landscape, and hydrology is important for making sustainable land management decisions. In this study, scientific visualization was explored as a means to visually represent the complex spatial and temporal variations in the hydrologic status of soils. Soil hydrology data was collected at seven…

  3. Coracoclavicular joint: osteologic study of 1020 human clavicles

    PubMed Central

    Gumina, S; Salvatore, M; De Santis, P; Orsina, L; Postacchini, F

    2002-01-01

    We examined 1020 dry clavicles from cadavers of Italian origin to determine the prevalence of the coracoclavicular joint (ccj), a diarthrotic synovial joint occasionally present between the conoid tubercle of the clavicle and the superior surface of the horizontal part of the coracoid process. Five hundred and nine clavicles from individuals of different ages were submitted to X-ray examination. Using radiography, we measured the entire length and the index of sinuosity of the anterior lateral curve, on which the distance between the conoid tubercle and the coracoid process depends. We also used radiography to record the differences in prevalence of arthritis in two neighbouring joints, the acromioclavicular and sternoclavicular joints. Of the 1020 clavicles, eight (0.8%) displayed the articular facet of the ccj. No statistical correlation was found between clavicular length and the index of sinuosity of the anterior lateral curve. The prevalence of arthritis in clavicles with ccj was higher than that revealed in clavicles without ccj. The prevalence of ccj in the studied clavicles is lower than that observed in Asian cohorts. Furthermore, ccj is not conditioned by either length or sinuosity of the anterior lateral curve of the clavicle. Finally, the assumption that ccj is a predisposing factor for degenerative changes of neighbouring joints is statistically justified. PMID:12489763

  4. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also

  5. A Community Data Model for Hydrologic Observations

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  6. Hydrologic unit maps

    USGS Publications Warehouse

    Seaber, Paul R.; Kapinos, F. Paul; Knapp, George L.

    1987-01-01

    A set of maps depicting approved boundaries of, and numerical codes for, river-basin units of the United States has been developed by the U.S . Geological Survey. These 'Hydrologic Unit Maps' are four-color maps that present information on drainage, culture, hydrography, and hydrologic boundaries and codes of (1) the 21 major water-resources regions and the 222 subregions designated by the U.S . Water Resources Council, (2) the 352 accounting units of the U.S. Geological Survey's National Water Data Network, and (3) the 2,149 cataloging units of the U.S . Geological Survey's 'Catalog of information on Water Data:' The maps are plotted on the Geological Survey State base-map series at a scale of 1 :500,000 and, except for Alaska, depict hydrologic unit boundaries for all drainage basins greater than 700 square miles (1,813 square kilometers). A complete list of all the hydrologic units, along with their drainage areas, their names, and the names of the States or outlying areas in which they reside, is contained in the report. These maps and associated codes provide a standardized base for use by water-resources organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications. Because the maps have undergone extensive review by all principal Federal, regional, and State water-resource agencies, they are widely accepted for use in planning and describing water-use and related land-use activities, and in geographically organizing hydrologic data . Examples of these uses are given in the report . The hydrologic unit codes shown on the maps have been approved as a Federal Information Processing Standard for use by the Federal establishment.

  7. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  8. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have

  9. Facet joint hypertrophy is a misnomer: A retrospective study.

    PubMed

    An, Sang Joon; Seo, Mi Sook; Choi, Soo Il; Lim, Tae-Ha; Shin, So Jin; Kang, Keum Nae; Kim, Young Uk

    2018-06-01

    One of the major causes of lumbar spinal canal stenosis (LSCS) has been considered facet joint hypertrophy (FJH). However, a previous study asserted that "FJH" is a misnomer because common facet joints are no smaller than degenerative facet joints; however, this hypothesis has not been effectively demonstrated. Therefore, in order to verify that FJH is a misnomer in patients with LSCS, we devised new morphological parameters that we called facet joint thickness (FJT) and facet joint cross-sectional area (FJA).We collected FJT and FJA data from 114 patients with LSCS. A total of 86 control subjects underwent lumbar magnetic resonance imaging (MRI) as part of routine medical examinations, and axial T2-weighted MRI images were obtained from all participants. We measured FJT by drawing a line along the facet area and then measuring the narrowest point at L4-L5. We measured FJA as the whole cross-sectional area of the facet joint at the stenotic L4-L5 level.The average FJT was 1.60 ± 0.36 mm in the control group and 1.11 ± 0.32 mm in the LSCS group. The average FJA was 14.46 ± 5.17 mm in the control group and 9.31 ± 3.47 mm in the LSCS group. Patients with LSCS had significantly lower FJTs (P < .001) and FJAs (P < .001).FJH, a misnomer, should be renamed facet joint area narrowing. Using this terminology would eliminate confusion in descriptions of the facet joint.

  10. Multisource data assimilation in a Richards equation-based integrated hydrological model: a real-world application to an experimental hillslope

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Botto, A.

    2017-12-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.

  11. Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2016-01-01

    Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal

  12. Hydrologic and hydraulic flood forecasting constrained by remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.

    2017-12-01

    Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.

  13. Detection of Hydrological changes of Wujiang River

    NASA Astrophysics Data System (ADS)

    Dong, L.; Chen, Y.

    2016-12-01

    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  14. The GRASP project - a multidisciplinary study of hydrology and biogeochemistry in a periglacial catchment area

    NASA Astrophysics Data System (ADS)

    Johansson, Emma; Lindborg, Tobias

    2017-04-01

    The Arctic region is sensitive to global warming, and permafrost thaw and release of old carbon are examples of processes that may have a positive feedback effect to the global climate system. Quantification and assumptions on future change are often based on model predictions. Such models require cross-disciplinary data of high quality that often is lacking. Biogeochemical processes in the landscape are highly influenced by the hydrology, which in turn is intimately related to permafrost processes. Thus, a multidisciplinary approach is needed when collecting data and setting up field experiments aiming at increase the understanding of these processes. Here we summarize and present data collected in the GRASP, Greenland Analogue Surface Project. GRASP is a catchment-scale field study of the periglacial area in the Kangerlussuaq region, West Greenland, focusing on hydrological and biogeochemical processes in the landscape. The site investigations were initiated in 2010 and have since then resulted in three separate data sets published in ESSD (Earth system and Science Data) each one focusing on i) meteorological data and hydrology, ii) biogeochemistry and iii) geometries of sediments and the active layer. The three data-sets, which are freely available via the PANGAEA data base, enable conceptual and coupled numerical modeling of hydrological and biogeochemical processes. An important strength with the GRASP data is that all data is collected within the same, relatively small, catchment area. This implies that measurements are more easily linked to the right source area or process. Despite the small catchment area it includes the major units of the periglacial hydrological system; a lake, a talik, a supra- and subpermafrost aquifer and, consequently, biogeochemical processes in each of these units may be studied. The new data from GRASP is both used with the aim to increase the knowledge of present day periglacial hydrology and biogeochemistry but also in order to

  15. Comprehensive, Process-based Identification of Hydrologic Models using Satellite and In-situ Water Storage Data: A Multi-objective calibration Approach

    NASA Astrophysics Data System (ADS)

    Abdo Yassin, Fuad; Wheater, Howard; Razavi, Saman; Sapriza, Gonzalo; Davison, Bruce; Pietroniro, Alain

    2015-04-01

    The credible identification of vertical and horizontal hydrological components and their associated parameters is very challenging (if not impossible) by only constraining the model to streamflow data, especially in regions where the vertical processes significantly dominate the horizontal processes. The prairie areas of the Saskatchewan River basin, a major water system in Canada, demonstrate such behavior, where the hydrologic connectivity and vertical fluxes are mainly controlled by the amount of surface and sub-surface water storages. In this study, we develop a framework for distributed hydrologic model identification and calibration that jointly constrains the model response (i.e., streamflows) as well as a set of model state variables (i.e., water storages) to observations. This framework is set up in the form of multi-objective optimization, where multiple performance criteria are defined and used to simultaneously evaluate the fidelity of the model to streamflow observations and observed (estimated) changes of water storage in the gridded landscape over daily and monthly time scales. The time series of estimated changes in total water storage (including soil, canopy, snow and pond storages) used in this study were derived from an experimental study enhanced by the information obtained from the GRACE satellite. We test this framework on the calibration of a Land Surface Scheme-Hydrology model, called MESH (Modélisation Environmentale Communautaire - Surface and Hydrology), for the Saskatchewan River basin. Pareto Archived Dynamically Dimensioned Search (PA-DDS) is used as the multi-objective optimization engine. The significance of using the developed framework is demonstrated in comparison with the results obtained through a conventional calibration approach to streamflow observations. The approach of incorporating water storage data into the model identification process can more potentially constrain the posterior parameter space, more comprehensively

  16. Application of remote sensing to hydrological problems and floods

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    The main applications of remote sensors to hydrology are identified as well as the principal spectral bands and their advantages and disadvantages. Some examples of LANDSAT data applications to flooding-risk evaluation are cited. Because hydrology studies the amount of moisture and water involved in each phase of hydrological cycle, remote sensing must be emphasized as a technique for hydrological data acquisition.

  17. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  18. Acting, predicting and intervening in a socio-hydrological world

    NASA Astrophysics Data System (ADS)

    Lane, S. N.

    2014-03-01

    This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because

  19. Global-Scale Hydrology: Simple Characterization of Complex Simulation

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.

    1999-01-01

    Atmospheric general circulation models (AGCMS) are unique and valuable tools for the analysis of large-scale hydrology. AGCM simulations of climate provide tremendous amounts of hydrological data with a spatial and temporal coverage unmatched by observation systems. To the extent that the AGCM behaves realistically, these data can shed light on the nature of the real world's hydrological cycle. In the first part of the seminar, I will describe the hydrological cycle in a typical AGCM, with some emphasis on the validation of simulated precipitation against observations. The second part of the seminar will focus on a key goal in large-scale hydrology studies, namely the identification of simple, overarching controls on hydrological behavior hidden amidst the tremendous amounts of data produced by the highly complex AGCM parameterizations. In particular, I will show that a simple 50-year-old climatological relation (and a recent extension we made to it) successfully predicts, to first order, both the annual mean and the interannual variability of simulated evaporation and runoff fluxes. The seminar will conclude with an example of a practical application of global hydrology studies. The accurate prediction of weather statistics several months in advance would have tremendous societal benefits, and conventional wisdom today points at the use of coupled ocean-atmosphere-land models for such seasonal-to-interannual prediction. Understanding the hydrological cycle in AGCMs is critical to establishing the potential for such prediction. Our own studies show, among other things, that soil moisture retention can lead to significant precipitation predictability in many midlatitude and tropical regions.

  20. Joint bleeds in von Willebrand disease patients have significant impact on quality of life and joint integrity: a cross-sectional study.

    PubMed

    van Galen, K P M; Sanders, Y V; Vojinovic, U; Eikenboom, J; Cnossen, M H; Schutgens, R E G; van der Bom, J G; Fijnvandraat, K; Laros-Van Gorkom, B A P; Meijer, K; Leebeek, F W G; Mauser-Bunschoten, E P

    2015-05-01

    Joint bleeds (JB) are reported in a minority of patients with von Willebrand disease (VWD) but may lead to structural joint damage. Prevalence, severity and impact of JB in VWD are largely unknown. The aim of this study was to assess JB prevalence, onset, treatment and impact on health-related quality of life (HR-QoL) and joint integrity in moderate and severe VWD. In the Willebrand in the Netherlands study 804 moderate and severe VWD patients [von Willebrand factor (VWF) activity ≤30U dL(-1)] completed a questionnaire on occurrence, sites and consequences of JB. To analyse JB number, onset, treatment and impact on joint integrity we additionally performed a patient-control study on medical file data comparing patients with JB to age, gender, factor VIII (FVIII)- and VWF activity matched VWD patients without JB. Of all VWD patients 23% (184/804) self-reported JB. These 184 patients reported joint damage more often (54% vs. 18%, P < 0.001) and had lower HR-QoL (SF36, P < 0.05) compared to VWD patients not reporting JB. Of 55 patients with available JB data, 65% had the first JB before age 16. These 55 patients used more clotting factor concentrate (CFC; median dose 43 vs. 0 IE FVIII kg(-1) year(-1) , P < 0.001), more often had X-ray joint damage (44% vs. 11%, P = 0.001] and chronic joint pain (44% vs. 18%, P = 0.008) compared to 55 control VWD patients without JB. In conclusion, joint bleeds are reported by 23% of moderate and severe VWD patients, mostly start in childhood, are associated with more CFC use, joint pain, lower HR-QoL and significantly more radiological and self-reported joint damage. © 2015 John Wiley & Sons Ltd.

  1. Characterising the hydrological regime of an ungauged temporary river system: a case study.

    PubMed

    D'Ambrosio, Ersilia; De Girolamo, Anna Maria; Barca, Emanuele; Ielpo, Pierina; Rulli, Maria Cristina

    2017-06-01

    Temporary streams are characterised by specific hydrological regimes, which influence ecosystem processes, groundwater and surface water interactions, sediment regime, nutrient delivery, water quality and ecological status. This paper presents a methodology to characterise and classify the regime of a temporary river in Southern Italy based on hydrological indicators (HIs) computed with long-term daily flow records. By using a principal component analysis (PCA), a set of non-redundant indices were identified describing the main characteristics of the hydrological regime in the study area. The indicators identified were the annual maximum 30- and 90-day mean (DH4 and DH5), the number of zero flow days (DL6), flow permanence (MF) and the 6-month seasonal predictability of dry periods (SD6). A methodology was also tested to estimate selected HIs in ungauged river reaches. Watershed characteristics such as catchment area, gauging station elevation, mean watershed slope, mean annual rainfall, land use, soil hydraulic conductivity and available water content were derived for each site. Selected indicators were then linked to the catchment characteristics using a regression analysis. Finally, MF and SD6 were used to classify the river reaches on the basis of their degree of intermittency. The methodology presented in this paper constitutes a useful tool for ecologists and water resource managers in the Water Framework Directive implementation process, which requires a characterisation of the hydrological regime and a 'river type' classification for all water bodies.

  2. On the importance of measurement error correlations in data assimilation for integrated hydrological models

    NASA Astrophysics Data System (ADS)

    Camporese, Matteo; Botto, Anna

    2017-04-01

    Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows us to integrate multisource observation data in modeling predictions and, in doing so, to reduce uncertainty. For this reason, data assimilation has been recently the focus of much attention also for physically-based integrated hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). One of the typical assumptions in these studies is that the measurement errors are uncorrelated, whereas in certain situations it is reasonable to believe that some degree of correlation occurs, due for example to the fact that a pair of sensors share the same soil type. The goal of this study is to show if and how the measurement error correlations between different observation data play a significant role on assimilation results in a real-world application of an integrated hydrological model. The model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope. The physical model, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m, and width of 2 m. The hillslope is equipped with sensors to monitor the pressure head and soil moisture responses to a series of generated rainfall events applied onto a 60 cm thick sand layer overlying a sandy clay soil. The measurement network is completed by two tipping bucket flow gages to measure the two components (subsurface and surface) of the outflow. By collecting

  3. Study of simple CFRP-metal joint failure

    NASA Astrophysics Data System (ADS)

    Cheng, Jingquan; Rodriguez, Antonio; Emerson, Nicolas; Symmes, Arthur

    2008-07-01

    In millimeter wavelength telescope design and construction, there have been a number of mysterious failures of simple CFRF-metal joints. Telescope designers have not had satisfactory interpretations of these failures. In this paper, factors which may influence the failure of joints are discussed. These include stress concentration, material creep, joint fatigue, reasons related to chemical process and manufacture process. Extrapolation formulas for material creep, joint fatigue, and differential thermal stresses are derived in this paper. Detailed chemical and manufacturing factors are also discussed. All these issues are the causes of a number of early failures under a loading which is significantly lower than the strength of adhesives used. For ensuring reliability of a precision instrument structure joint, the designer should have a thorough understanding of all these factors.

  4. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  5. A Euclid, LSST and WFIRST Joint Processing Study

    NASA Astrophysics Data System (ADS)

    Chary, Ranga-Ram; Joint Processing Working Group

    2018-01-01

    Euclid, LSST and WFIRST are the flagship cosmological projects of the next decade. By mapping several thousand square degrees of sky and covering the electromagnetic spectrum from the optical to the NIR with (sub-)arcsec resolution, these projects will provide exciting new constraints on the nature of dark energy and dark matter. The ultimate cosmological, astrophysical and time-domain science yield from these missions, which will detect several billions of sources, requires joint processing at the pixel-level. Three U.S. agencies (DOE, NASA and NSF) are supporting an 18-month study which aims to 1) assess the optimal techniques to combine these, and ancillary data sets at the pixel level; 2) investigate options for an interface that will enable community access to the joint data products; and 3) identify the computing and networking infrastructure to properly handle and manipulate these large datasets together. A Joint Processing Working Group (JPWG) is carrying out this study and consists of US-based members from the community and science/data processing centers of each of these projects. Coordination with European partners is envisioned in the future and European Euclid members are involved in the JPWG as observers. The JPWG will scope the effort and resources required to build up the capabilities to support scientific investigations using joint processing in time for the start of science surveys by LSST and Euclid.

  6. Long-Term Forest Hydrologic Monitoring in Coastal Carolinas

    Treesearch

    Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs

    2003-01-01

    Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...

  7. Advances in Canadian forest hydrology, 1999-2003

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Creed, I. F.; Moore, R. D.

    2005-01-01

    Understanding key hydrological processes and properties is critical to sustaining the ecological, economic, social and cultural roles of Canada's varied forest types. This review examines recent progress in studying the hydrology of Canada's forest landscapes. Work in some areas, such as snow interception, accumulation and melt under forest cover, has led to modelling tools that can be readily applied for operational purposes. Our understanding in other areas, such as the link between runoff-generating processes in different forest landscapes and hydrochemical fluxes to receiving waters, is much more tentative. The 1999-2003 period saw considerable research examining hydrological and biogeochemical responses to natural and anthropogenic disturbance of forest landscapes, spurred by major funding initiatives at the provincial and federal levels. This work has provided valuable insight; however, application of the findings beyond the experimental site is often restricted by such issues as a limited consideration of the background variability of hydrological systems, incomplete appreciation of hydrological aspects at the experiment planning stage, and experimental design problems that often bedevil studies of basin response to disturbance. Overcoming these constraints will require, among other things, continued support for long-term hydroecological monitoring programmes, the embedding of process measurement and modelling studies within these programmes, and greater responsiveness to the vagaries of policy directions related to Canada's forest resources. Progress in these and related areas will contribute greatly to the development of hydrological indicators of sustainable forest management in Canada. Copyright

  8. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  9. A novel representation of chalk hydrology in a land surface model

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2016-04-01

    Unconfined chalk aquifers contain a significant portion of water in the United Kingdom. In order to optimize the assessment and management practices of water resources in the region, modelling and monitoring of soil moisture in the unsaturated zone of the chalk aquifers are of utmost importance. However, efficient simulation of soil moisture in such aquifers is difficult mainly due to the fractured nature of chalk, which creates high-velocity preferential flow paths in the unsaturated zone. In this study, the Joint UK Land Environment Simulator (JULES) is applied on a study area encompassing the Kennet catchment in Southern England. The fluxes and states of the coupled water and energy cycles are simulated for 10 consecutive years (2001-2010). We hypothesize that explicit representation for the soil-chalk layers and the inclusion of preferential flow in the fractured chalk aquifers improves the reproduction of the hydrological processes in JULES. In order to test this hypothesis, we propose a new parametrization for preferential flow in JULES. This parametrization explicitly describes the flow of water in soil matrices and preferential flow paths using a simplified approach which can be beneficial for large-scale hydrometeorological applications. We also define the overlaying soil properties obtained from the Harmonized World Soil Database (HWSD) in the model. Our simulation results are compared across spatial scales with measured soil moisture and river discharge, indicating the importance of accounting for the physical properties of the medium while simulating hydrological processes in the chalk aquifers.

  10. Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.

  11. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL

  12. Assimilation of satellite altimetry data in hydrological models for improved inland surface water information: Case studies from the "Sentinel-3 Hydrologic Altimetry Processor prototypE" project (SHAPE)

    NASA Astrophysics Data System (ADS)

    Gustafsson, David; Pimentel, Rafael; Fabry, Pierre; Bercher, Nicolas; Roca, Mónica; Garcia-Mondejar, Albert; Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    This communication is about the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) project, with a focus on the components dealing with assimilation of satellite altimetry data into hydrological models. The SHAPE research and development project started in September 2015, within the Scientific Exploitation of Operational Missions (SEOM) programme of the European Space Agency. The objectives of the project are to further develop and assess recent improvement in altimetry data, processing algorithms and methods for assimilation in hydrological models, with the overarching goal to support improved scientific use of altimetry data and improved inland water information. The objective is also to take scientific steps towards a future Inland Water dedicated processor on the Sentinel-3 ground segment. The study focuses on three main variables of interest in hydrology: river stage, river discharge and lake level. The improved altimetry data from the project is used to estimate river stage, river discharge and lake level information in a data assimilation framework using the hydrological dynamic and semi-distributed model HYPE (Hydrological Predictions for the Environment). This model has been developed by SMHI and includes data assimilation module based on the Ensemble Kalman filter method. The method will be developed and assessed for a number of case studies with available in situ reference data and satellite altimetry data based on mainly the CryoSat-2 mission on which the new processor will be run; Results will be presented from case studies on the Amazon and Danube rivers and Lake Vänern (Sweden). The production of alti-hydro products (water level time series) are improved thanks to the use of water masks. This eases the geo-selection of the CryoSat-2 altimetric measurements since there are acquired from a geodetic orbit and are thus spread along the river course in space and and time. The specific processing of data from this geodetic orbit space

  13. Regional frameworks applied to hydrology: can landscape-based frameworks capture the hydrologic variability?

    Treesearch

    R. McManamay; D. Orth; C. Dolloff; E. Frimpong

    2011-01-01

    Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...

  14. Coupling large scale hydrologic-reservoir-hydraulic models for impact studies in data sparse regions

    NASA Astrophysics Data System (ADS)

    O'Loughlin, Fiachra; Neal, Jeff; Wagener, Thorsten; Bates, Paul; Freer, Jim; Woods, Ross; Pianosi, Francesca; Sheffied, Justin

    2017-04-01

    As hydraulic modelling moves to increasingly large spatial domains it has become essential to take reservoirs and their operations into account. Large-scale hydrological models have been including reservoirs for at least the past two decades, yet they cannot explicitly model the variations in spatial extent of reservoirs, and many reservoirs operations in hydrological models are not undertaken during the run-time operation. This requires a hydraulic model, yet to-date no continental scale hydraulic model has directly simulated reservoirs and their operations. In addition to the need to include reservoirs and their operations in hydraulic models as they move to global coverage, there is also a need to link such models to large scale hydrology models or land surface schemes. This is especially true for Africa where the number of river gauges has consistently declined since the middle of the twentieth century. In this study we address these two major issues by developing: 1) a coupling methodology for the VIC large-scale hydrological model and the LISFLOOD-FP hydraulic model, and 2) a reservoir module for the LISFLOOD-FP model, which currently includes four sets of reservoir operating rules taken from the major large-scale hydrological models. The Volta Basin, West Africa, was chosen to demonstrate the capability of the modelling framework as it is a large river basin ( 400,000 km2) and contains the largest man-made lake in terms of area (8,482 km2), Lake Volta, created by the Akosombo dam. Lake Volta also experiences a seasonal variation in water levels of between two and six metres that creates a dynamic shoreline. In this study, we first run our coupled VIC and LISFLOOD-FP model without explicitly modelling Lake Volta and then compare these results with those from model runs where the dam operations and Lake Volta are included. The results show that we are able to obtain variation in the Lake Volta water levels and that including the dam operations and Lake Volta

  15. Study of hydrological extremes - floods and droughts in global river basins using satellite data and model output

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Fayne, J.; Bolten, J. D.

    2016-12-01

    We will use satellite data from TRMM (Tropical Rainfall Measurement Mission), AMSR (Advanced Microwave Scanning Radiometer), GRACE (Gravity Recovery and Climate Experiment) and MODIS (Moderate Resolution Spectroradiometer) and model output from NASA GLDAS (Global Land Data Assimilation System) to understand the linkages between hydrological variables. These hydrological variables include precipitation soil moisture vegetation index surface temperature ET and total water. We will present results for major river basins such as Amazon, Colorado, Mississippi, California, Danube, Nile, Congo, Yangtze Mekong, Murray-Darling and Ganga-Brahmaputra.The major floods and droughts in these watersheds will be mapped in time and space using the satellite data and model outputs mentioned above. We will analyze the various hydrological variables and conduct a synergistic study during times of flood and droughts. In order to compare hydrological variables between river basins with vastly different climate and land use we construct an index that is scaled by the climatology. This allows us to compare across different climate, topography, soils and land use regimes. The analysis shows that the hydrological variables derived from satellite data and NASA models clearly reflect the hydrological extremes. This is especially true when data from different sensors are analyzed together - for example rainfall data from TRMM and total water data from GRACE. Such analyses will help to construct prediction tools for water resources applications.

  16. Snow and Glacier Hydrology

    NASA Astrophysics Data System (ADS)

    Brubaker, Kaye

    The study of snow and ice is rich in both fundamental science and practical applications. Snow and Glacier Hydrology offers something for everyone, from resource practitioners in regions where water supply depends on seasonal snow pack or glaciers, to research scientists seeking to understand the role of the solid phase in the water cycle and climate. The book is aimed at the advanced undergraduate or graduate-level student. A perusal of online documentation for snow hydrology classes suggests that there is currently no single text or reference book on this topic in general use. Instructors rely on chapters from general hydrology texts or operational manuals, collections of journal papers, or their own notes. This variety reflects the fact that snow and ice regions differ in climate, topography, language, water law, hazards, and resource use (hydropower, irrigation, recreation). Given this diversity, producing a universally applicable book is a challenge.

  17. Hillslope hydrology and stability

    USGS Publications Warehouse

    Lu, Ning; Godt, Jonathan

    2012-01-01

    Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.

  18. Merging perspectives in the catchment sciences: the US-Japan Joint Seminar on catchment hydrology and forest biogeochemistry

    Treesearch

    Kevin J. McGuire; Stephen D. Sebestyen; Nobuhito Ohte; Emily M. Elliott; Takashi Gomi; Mark B. Green; Brian L. McGlynn; Naoko Tokuchi

    2014-01-01

    Japan has strong research programmes in the catchment sciences that overlap with interests in the US catchment science community, particularly in experimental and field-based research. Historically, however, there has been limited interaction between these two hydrologic science communities because of differences in language, culture, and research approaches. These...

  19. Hydrology of Malaria: A New Class of Models for Environmental Management and Studies of Climate Change

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A.

    2011-12-01

    A mechanistic and spatially-explicit model of hydrological and entomological processes that lead to malaria transmission is developed and tested against field observations. HYDREMATS (HYDRology, Entomology, and MAlaria Transmission Simulator) is described in (Bomblies and Eltahir, WRR, 44,2008). HYDREMATS is suitable for low cost screening of environmental management interventions, and for studying the impact of climate change on malaria transmission. Examples of specific applications will be presented from Niger in Africa. The potential for using HYDREMATS to study the impact of water reservoirs on malaria transmission will be discussed.

  20. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-04-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in facts typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of

  1. Prediction of future hydrological regimes in poorly gauged high altitude basins: the case study of the upper Indus, Pakistan

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D'Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C.

    2011-07-01

    In the mountain regions of the Hindu Kush, Karakoram and Himalaya (HKH) the "third polar ice cap" of our planet, glaciers play the role of "water towers" by providing significant amount of melt water, especially in the dry season, essential for agriculture, drinking purposes, and hydropower production. Recently, most glaciers in the HKH have been retreating and losing mass, mainly due to significant regional warming, thus calling for assessment of future water resources availability for populations down slope. However, hydrology of these high altitude catchments is poorly studied and little understood. Most such catchments are poorly gauged, thus posing major issues in flow prediction therein, and representing in fact typical grounds of application of PUB concepts, where simple and portable hydrological modeling based upon scarce data amount is necessary for water budget estimation, and prediction under climate change conditions. In this preliminarily study, future (2060) hydrological flows in a particular watershed (Shigar river at Shigar, ca. 7000 km2), nested within the upper Indus basin and fed by seasonal melt from major glaciers, are investigated. The study is carried out under the umbrella of the SHARE-Paprika project, aiming at evaluating the impact of climate change upon hydrology of the upper Indus river. We set up a minimal hydrological model, tuned against a short series of observed ground climatic data from a number of stations in the area, in situ measured ice ablation data, and remotely sensed snow cover data. The future, locally adjusted, precipitation and temperature fields for the reference decade 2050-2059 from CCSM3 model, available within the IPCC's panel, are then fed to the hydrological model. We adopt four different glaciers' cover scenarios, to test sensitivity to decreased glacierized areas. The projected flow duration curves, and some selected flow descriptors are evaluated. The uncertainty of the results is then addressed, and use of the

  2. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    NASA Astrophysics Data System (ADS)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  3. Experimental Studies on the Mechanical Behaviour of Rock Joints with Various Openings

    NASA Astrophysics Data System (ADS)

    Li, Y.; Oh, J.; Mitra, R.; Hebblewhite, B.

    2016-03-01

    The mechanical behaviour of rough joints is markedly affected by the degree of joint opening. A systematic experimental study was conducted to investigate the effect of the initial opening on both normal and shear deformations of rock joints. Two types of joints with triangular asperities were produced in the laboratory and subjected to compression tests and direct shear tests with different initial opening values. The results showed that opened rock joints allow much greater normal closure and result in much lower normal stiffness. A semi-logarithmic law incorporating the degree of interlocking is proposed to describe the normal deformation of opened rock joints. The proposed equation agrees well with the experimental results. Additionally, the results of direct shear tests demonstrated that shear strength and dilation are reduced because of reduced involvement of and increased damage to asperities in the process of shearing. The results indicate that constitutive models of rock joints that consider the true asperity contact area can be used to predict shear resistance along opened rock joints. Because rock masses are loosened and rock joints become open after excavation, the model suggested in this study can be incorporated into numerical procedures such as finite-element or discrete-element methods. Use of the model could then increase the accuracy and reliability of stability predictions for rock masses under excavation.

  4. Georgius Agricola's contributions to hydrology

    NASA Astrophysics Data System (ADS)

    Barton, Isabel F.

    2015-04-01

    Georgius Agricola's 1546 book De Ortu et Causis Subterraneorum (On the Source and Causes of What is Underground) was the first European work since antiquity to focus on hydrology and helped to shape the thought of Nicolaus Steno, Pierre Perrault, A.G. Werner, and other important figures in the history of hydrology and geology. De Ortu contains the first known expressions of numerous concepts important in modern hydrology: erosion as an active process, groundwater movement through pores and fissures, hydrofracturing, water-rock reaction, and others. The concepts of groundwater origins, movement, and nature in De Ortu were also the foundation for the theories of ore deposit formation for which Agricola is better known. In spite of their importance, most of Agricola's contributions to the study of groundwater are unrecognized today because De Ortu, alone of his major works, has never been translated out of Latin and no existing vernacular summary of it is longer than two pages. This article presents the first detailed description of Agricola's work on hydrology and discusses the derivation and impact of his ideas.

  5. Should we use seasonnal meteorological ensemble forecasts for hydrological forecasting? A case study for nordic watersheds in Canada.

    NASA Astrophysics Data System (ADS)

    Bazile, Rachel; Boucher, Marie-Amélie; Perreault, Luc; Leconte, Robert; Guay, Catherine

    2017-04-01

    Hydro-electricity is a major source of energy for many countries throughout the world, including Canada. Long lead-time streamflow forecasts are all the more valuable as they help decision making and dam management. Different techniques exist for long-term hydrological forecasting. Perhaps the most well-known is 'Extended Streamflow Prediction' (ESP), which considers past meteorological scenarios as possible, often equiprobable, future scenarios. In the ESP framework, those past-observed meteorological scenarios (climatology) are used in turn as the inputs of a chosen hydrological model to produce ensemble forecasts (one member corresponding to each year in the available database). Many hydropower companies, including Hydro-Québec (province of Quebec, Canada) use variants of the above described ESP system operationally for long-term operation planning. The ESP system accounts for the hydrological initial conditions and for the natural variability of the meteorological variables. However, it cannot consider the current initial state of the atmosphere. Climate models can help remedy this drawback. In the context of a changing climate, dynamical forecasts issued from climate models seem to be an interesting avenue to improve upon the ESP method and could help hydropower companies to adapt their management practices to an evolving climate. Long-range forecasts from climate models can also be helpful for water management at locations where records of past meteorological conditions are short or nonexistent. In this study, we compare 7-month hydrological forecasts obtained from climate model outputs to an ESP system. The ESP system mimics the one used operationally at Hydro-Québec. The dynamical climate forecasts are produced by the European Center for Medium range Weather Forecasts (ECMWF) System4. Forecasts quality is assessed using numerical scores such as the Continuous Ranked Probability Score (CRPS) and the Ignorance score and also graphical tools such as the

  6. Progressing the state of knowledge on the human influence on hydrological droughts through case studies

    NASA Astrophysics Data System (ADS)

    Rangecroft, Sally; Van Loon, Anne; Bosman, Marianne; Wanders, Niko; Di Baldassarre, Giuliano; AghaKouchak, Amir

    2017-04-01

    Human activities can have a large influence on changes in the hydrological system and hydrological extremes, more than climate variability and climate change in some cases. However, there are currently only a limited number of studies which aim to quantify the human impact on hydrological droughts. Here we present a synthesis study of existing and new results that aims to summarize and quantify the anthropogenic impact on hydrological drought from case studies and observations. By combining a large number of case studies, we allow conclusions to be drawn about the effects of different human activities. This work suggests ways forward to increase our understanding on how human activities are influencing drought characteristics; invaluable information for water resource management and adaptation. During this project, the impact of different human activities (e.g. water abstraction, reservoir building, urbanisation, etc) on drought frequency, duration and deficit has been calculated in a consistent manner, allowing for an improved understanding to how they have impacted droughts. This consistent methodology is a necessary element for this comparative hydrology exercise, yet we use one which is flexible and applicable to different case study set ups and data availability. The methodology used here depends on available observation data, with three possible approaches: i) paired catchment approach; ii) upstream-downstream comparison; iii) observation modelling framework. The synthesised results of the existing and new case studies cover a number of human activities, hydro-climatic and socio-economic contexts. In particular, we remove the climate dependency in the results by using case studies from multiple climatic regions, including UK, Italy, US, Australia, Mexico and Chile. For groundwater abstraction, it is clear across all the relevant case studies that abstraction activities worsen drought events. This is especially prominent in the deficit volumes, with nearly all

  7. Genetic Programming for Automatic Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  8. Quantitative and qualitative synthesis of socio-hydrological research

    NASA Astrophysics Data System (ADS)

    Xu, L.; Gober, P.; Wheater, H. S.; Kajikawa, Y.

    2017-12-01

    The challenge of climate change adaptation has raised awareness of the feedbacks and interconnections in complex human-natural coupled water systems. This has reinforced the call for a socio-hydrological approach to better understand, and represent in models, the associated system dynamics. Such models can potentially provide the tools to link knowledge about complex water systems to decision-making and policy frameworks. Socio-hydrology, as the subfield of human-natural coupled systems analysis, has been dramatically developed in the past few years. The purpose of this study is to empirically examine work that has been framed under the umbrella of socio-hydrology, to provide insights into the participants and their disciplinary perspectives, and to draw conclusions about where the field is headed. In doing so, we used a combined quantitative and qualitative approach to synthesise current knowledge of socio-hydrology and to propose some promising future directions in this subfield of water sciences. The general statistics of the existing literature showed that socio-hydrological research has become an emerging topic and is drawing more concern and engagement of hydrologists. However, the participation of social scientists is inadequate and greater cross-disciplinary integration is desirable. Current concerns in this subfield of water research centre on two basic challenges: (1) the need to embrace the social dimensions of water-related risks, and (2) the importance of interactions and feedbacks in dynamic socio-hydrological systems. A third challenge identified here relates to the large-scale implications of 1) and 2) above, i.e. virtual water flows as a mechanism to track the human use of water at the global scale. Accordingly, we propose five potential directions with regard to socio-hydrological models, interdisciplinary collaboration and transdisciplinary studies, the science-policy interface, resilience in socio-hydrological systems, and data sharing for human

  9. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  10. Terrestrial Hydrological Data from NASA's Hydrology Data and Information Services Center (HDISC): Products, Services, and Applications

    NASA Technical Reports Server (NTRS)

    Fang, Hongliang; Beaudoing, Hiroko K.; Mocko, David M.; Rodell, Matthew; Teng, Bill; Vollmer, Bruce

    2010-01-01

    Terrestrial hydrological variables are important in global hydrology, climate, and carbon cycle studies. The North American and Global Land Data Assimilation Systems (NLDAS and GLDAS, respectively) have been generating a series of land surface states (soil moisture, snow, and temperature) and fluxes (evapotranspiration, radiation, and heat flux) variables. These data, hosted at and available from NASA s Hydrology Data and Information Services Center (HDISC), include the NLDAS hourly 1/8 degree products and the GLDAS 3-hourly 0.25 and 1.0 degree products. HDISC provides easy access and visualization and analysis capabilities for these products, thus reducing the time and resources spent by scientists on data management and facilitating hydrological research. Users can perform spatial and parameter subsetting, data format transformation, and data analysis operations without needing to first download the data. HDISC is continually being developed as a data and services portal that supports weather and climate forecasts, and water and energy cycle research.

  11. Hydrological resiliency in the Western Boreal Plains: classification of hydrological responses using wavelet analysis to assess landscape resilience

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff

    2017-04-01

    The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic

  12. Integrating hydrology into catchment scale studies - need for new paradigms?

    NASA Astrophysics Data System (ADS)

    Teutsch, G.

    2009-04-01

    Until the seventies, scientific development in the field of groundwater hydrology concentrated mainly on a better understanding of the physics of subsurface flow in homogeneous or simply stratified porous respectively fractured media. Then, since mid of the seventies, a much more complex vision of groundwater hydrology gradually developed. A more realistic description of the subsurface including its heterogeneity, predominant physico-chemical-biological reactions and also technologies for the efficient clean-up of contaminants developed during the past 30 years, much facilitated by the advancement in numerical modelling techniques and the boost in computer power. Even though the advancements in this field have been very significant, a new grand challenge evolved during the past 10 years trying to bring together the fields needed to build Integrated Watershed Management Systems (IWMS). The fundamental conceptual question is: Do we need new approaches to groundwater hydrology, maybe even new paradigms in order to successfully build IWMS - or can we simply extrapolate our existing concepts and tool-sets to the scale of catchments and watersheds and simply add some interfaces to adjacent disciplines like economy, ecology and others? This lecture tries to provide some of the answers by describing some successful examples.

  13. Arid Zone Hydrology

    USDA-ARS?s Scientific Manuscript database

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  14. The national hydrologic bench-mark network

    USGS Publications Warehouse

    Cobb, Ernest D.; Biesecker, J.E.

    1971-01-01

    The United States is undergoing a dramatic growth of population and demands on its natural resources. The effects are widespread and often produce significant alterations of the environment. The hydrologic bench-mark network was established to provide data on stream basins which are little affected by these changes. The network is made up of selected stream basins which are not expected to be significantly altered by man. Data obtained from these basins can be used to document natural changes in hydrologic characteristics with time, to provide a better understanding of the hydrologic structure of natural basins, and to provide a comparative base for studying the effects of man on the hydrologic environment. There are 57 bench-mark basins in 37 States. These basins are in areas having a wide variety of climate and topography. The bench-mark basins and the types of data collected in the basins are described.

  15. A Multi-Tiered Approach for Building Capacity in Hydrologic Modeling for Water Resource Management in Developing Regions

    NASA Astrophysics Data System (ADS)

    Markert, K. N.; Limaye, A. S.; Rushi, B. R.; Adams, E. C.; Anderson, E.; Ellenburg, W. L.; Mithieu, F.; Griffin, R.

    2017-12-01

    Water resource management is the process by which governments, businesses and/or individuals reach and implement decisions that are intended to address the future quantity and/or quality of water for societal benefit. The implementation of water resource management typically requires the understanding of the quantity and/or timing of a variety of hydrologic variables (e.g. discharge, soil moisture and evapotranspiration). Often times these variables for management are simulated using hydrologic models particularly in data sparse regions. However, there are several large barriers to entry in learning how to use models, applying best practices during the modeling process, and selecting and understanding the most appropriate model for diverse applications. This presentation focuses on a multi-tiered approach to bring the state-of-the-art hydrologic modeling capabilities and methods to developing regions through the SERVIR program, a joint NASA and USAID initiative that builds capacity of regional partners and their end users on the use of Earth observations for environmental decision making. The first tier is a series of trainings on the use of multiple hydrologic models, including the Variable Infiltration Capacity (VIC) and Ensemble Framework For Flash Flood Forecasting (EF5), which focus on model concepts and steps to successfully implement the models. We present a case study for this in a pilot area, the Nyando Basin in Kenya. The second tier is focused on building a community of practice on applied hydrology modeling aimed at creating a support network for hydrologists in SERVIR regions and promoting best practices. The third tier is a hydrologic inter-comparison project under development in the SERVIR regions. The objective of this step is to understand model performance under specific decision-making scenarios, and to share knowledge among hydrologists in SERVIR regions. The results of these efforts include computer programs, training materials, and new

  16. Hydrological Modeling in Alaska with WRF-Hydro

    NASA Astrophysics Data System (ADS)

    Elmer, N. J.; Zavodsky, B.; Molthan, A.

    2017-12-01

    The operational National Water Model (NWM), implemented in August 2016, is an instantiation of the Weather Research and Forecasting hydrological extension package (WRF-Hydro). Currently, the NWM only covers the contiguous United States, but will be expanded to include an Alaska domain in the future. It is well known that Alaska presents several hydrological modeling challenges, including unique arctic/sub-arctic hydrological processes not observed elsewhere in the United States and a severe lack of in-situ observations for model initialization. This project sets up an experimental version of WRF-Hydro in Alaska mimicking the NWM to gauge the ability of WRF-Hydro to represent hydrological processes in Alaska and identify model calibration challenges. Recent and upcoming launches of hydrology-focused NASA satellite missions such as the Soil Moisture Active Passive (SMAP) and Surface Water Ocean Topography (SWOT) expand the spatial and temporal coverage of observations in Alaska, so this study also lays the groundwork for assimilating these NASA datasets into WRF-Hydro in the future.

  17. HydroViz: A web-based hydrologic observatory for enhancing hydrology and earth-science education

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Ma, Y.; Williams, D.

    2010-12-01

    The main goal of this study is to develop a virtual hydrologic observatory (HydroViz) that integrates hydrologic field observations with numerical simulations by taking advantage of advances in hydrologic field & remote sensing data, computer modeling, scientific visualization, and web resources and internet accessibility. The HydroViz system is a web-based teaching tool that can run on any web browsers. It leverages the strength of Google Earth to provide authentic and hands-on activities to improve learning. Evaluation of the HydroViz was performed in three engineering courses (a senior level course and two Introductory courses at two different universities). Evaluation results indicate that HydroViz provides an improvement over existing engineering hydrology curriculum. HydroViz was effective in facilitating students’ learning and understanding of hydrologic concepts & increasing related skills. HydroViz was much more effective for students in engineering hydrology classes rather than at the freshmen introduction to civil engineering class. We found that HydroViz has great potential for freshmen audience. Even though HydroViz was challenging to some freshmen, most of them still learned the key concepts and the tool increased the enthusiasm for half of the freshmen. The evaluation provided suggestions to create a simplified version of HydroViz for freshmen-level courses students. It identified concepts and tasks that might be too challenging or irrelevant to the freshmen and areas where we could provide more guidance in the tool. After the first round of evaluation, the development team has made significant improvements to HydroViz, which would further improve its effectiveness for next round of class applications which is planned for the Fall of 2010 to take place in 5 classes at 4 different institutions.

  18. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  19. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  20. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    NASA Astrophysics Data System (ADS)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  1. Effect and relevance of the artificial drainage system when assessing the hydrologic impact of the imperviousness distribution within the watershed

    NASA Astrophysics Data System (ADS)

    Thenoux, M.; Gironas, J. A.; Mejia, A.

    2013-12-01

    Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system

  2. Hydrological modelling in forested systems

    EPA Science Inventory

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  3. Jump-Diffusion models and structural changes for asset forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso

    2017-04-01

    Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater

  4. Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models

    NASA Astrophysics Data System (ADS)

    Brunner, Philip; Doherty, J.; Simmons, Craig T.

    2012-07-01

    The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.

  5. Study on key techniques for camera-based hydrological record image digitization

    NASA Astrophysics Data System (ADS)

    Li, Shijin; Zhan, Di; Hu, Jinlong; Gao, Xiangtao; Bo, Ping

    2015-10-01

    With the development of information technology, the digitization of scientific or engineering drawings has received more and more attention. In hydrology, meteorology, medicine and mining industry, the grid drawing sheet is commonly used to record the observations from sensors. However, these paper drawings may be destroyed and contaminated due to improper preservation or overuse. Further, it will be a heavy workload and prone to error if these data are manually transcripted into the computer. Hence, in order to digitize these drawings, establishing the corresponding data base will ensure the integrity of data and provide invaluable information for further research. This paper presents an automatic system for hydrological record image digitization, which consists of three key techniques, i.e., image segmentation, intersection point localization and distortion rectification. First, a novel approach to the binarization of the curves and grids in the water level sheet image has been proposed, which is based on the fusion of gradient and color information adaptively. Second, a fast search strategy for cross point location is invented and point-by-point processing is thus avoided, with the help of grid distribution information. And finally, we put forward a local rectification method through analyzing the central portions of the image and utilizing the domain knowledge of hydrology. The processing speed is accelerated, while the accuracy is still satisfying. Experiments on several real water level records show that our proposed techniques are effective and capable of recovering the hydrological observations accurately.

  6. Benchmarking observational uncertainties for hydrology (Invited)

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Krueger, T.; Freer, J. E.; Westerberg, I.

    2013-12-01

    There is a pressing need for authoritative and concise information on the expected error distributions and magnitudes in hydrological data, to understand its information content. Many studies have discussed how to incorporate uncertainty information into model calibration and implementation, and shown how model results can be biased if uncertainty is not appropriately characterised. However, it is not always possible (for example due to financial or time constraints) to make detailed studies of uncertainty for every research study. Instead, we propose that the hydrological community could benefit greatly from sharing information on likely uncertainty characteristics and the main factors that control the resulting magnitude. In this presentation, we review the current knowledge of uncertainty for a number of key hydrological variables: rainfall, flow and water quality (suspended solids, nitrogen, phosphorus). We collated information on the specifics of the data measurement (data type, temporal and spatial resolution), error characteristics measured (e.g. standard error, confidence bounds) and error magnitude. Our results were primarily split by data type. Rainfall uncertainty was controlled most strongly by spatial scale, flow uncertainty was controlled by flow state (low, high) and gauging method. Water quality presented a more complex picture with many component errors. For all variables, it was easy to find examples where relative error magnitude exceeded 40%. We discuss some of the recent developments in hydrology which increase the need for guidance on typical error magnitudes, in particular when doing comparative/regionalisation and multi-objective analysis. Increased sharing of data, comparisons between multiple catchments, and storage in national/international databases can mean that data-users are far removed from data collection, but require good uncertainty information to reduce bias in comparisons or catchment regionalisation studies. Recently it has

  7. Engineering studies on joint bar integrity, part II : finite element analysis

    DOT National Transportation Integrated Search

    2014-04-02

    This paper is the second in a two-part series describing : research sponsored by the Federal Railroad Administration : (FRA) to study the structural integrity of joint bars. In Part I, : observations from field surveys of joint bar inspections : cond...

  8. Hydrologic Effects of Brush Management in Central Texas

    NASA Astrophysics Data System (ADS)

    Banta, J. R.; Slattery, R.

    2011-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing brush management practices (removing the woody vegetation and allowing native grasses to reestablish in the area), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal cooperators, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Preliminary results indicate there are differences in the hydrologic budget as well as water quality between the watersheds during pre- and post-treatment periods.

  9. Hyphenated hydrology: Multidisciplinary evolution of water resource science

    NASA Astrophysics Data System (ADS)

    McCurley, K. 4553; Jawitz, J. W.

    2016-12-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-20th century. While hydrology may have evolved from the singular viewpoint of a more rigid physical or engineering science, modern water resource related questions have forced adaptation toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution have been foreseen by prominent expert hydrologists, though their narrative descriptions were not substantially quantified. This study addresses that gap by directly measuring and inspecting the words that hydrologists use to define and describe their research endeavors. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerges. Word frequency and term concurrence reveal the dynamic timing of the lateral movement of hydrology across multiple disciplines and a deepening of scientific discourse with respect to traditional hydrologic questions. This study concludes that formerly exotic disciplines are increasingly modifying hydrology, prompting new insights as well as inspiring unconventional perspectives on old questions.

  10. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    PubMed Central

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  11. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    PubMed

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2009-09-01

    Global geophysical excitation functions of polar motion do not explain fully the observed polar motion as determined by geodetic techniques. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation HAM (Hydrological Angular Momentum), is still inadequately estimated and not known so well as atmospheric and oceanic ones. Recently the GRACE (Gravity Recovery and Climate Experiment) satellite mission monitoring Earth's time variable gravity field has allowed us to determine global mass term of the polar motion excitation functions, which inherently includes the atmospheric, oceanic and hydrological portions. We use these terms to make comparisons with the mass term of the geodetic and geophysical excitation functions of polar motion on seasonal scales. Global GRACE excitation function of polar motion and hydrological excitation function of polar motion have been determined and were studied earlier

  13. A framework for human-hydrologic system model development integrating hydrology and water management: application to the Cutzamala water system in Mexico

    NASA Astrophysics Data System (ADS)

    Wi, S.; Freeman, S.; Brown, C.

    2017-12-01

    This study presents a general approach to developing computational models of human-hydrologic systems where human modification of hydrologic surface processes are significant or dominant. A river basin system is represented by a network of human-hydrologic response units (HHRUs) identified based on locations where river regulations happen (e.g., reservoir operation and diversions). Natural and human processes in HHRUs are simulated in a holistic framework that integrates component models representing rainfall-runoff, river routing, reservoir operation, flow diversion and water use processes. We illustrate the approach in a case study of the Cutzamala water system (CWS) in Mexico, a complex inter-basin water transfer system supplying the Mexico City Metropolitan Area (MCMA). The human-hydrologic system model for CWS (CUTZSIM) is evaluated in terms of streamflow and reservoir storages measured across the CWS and to water supplied for MCMA. The CUTZSIM improves the representation of hydrology and river-operation interaction and, in so doing, advances evaluation of system-wide water management consequences under altered climatic and demand regimes. The integrated modeling framework enables evaluation and simulation of model errors throughout the river basin, including errors in representation of the human component processes. Heretofore, model error evaluation, predictive error intervals and the resultant improved understanding have been limited to hydrologic processes. The general framework represents an initial step towards fuller understanding and prediction of the many and varied processes that determine the hydrologic fluxes and state variables in real river basins.

  14. Hands-On Hydrology

    ERIC Educational Resources Information Center

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  15. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments

    NASA Astrophysics Data System (ADS)

    Huang, Pengnian; Li, Zhijia; Chen, Ji; Li, Qiaoling; Yao, Cheng

    2016-11-01

    To simulate the hydrological processes in semi-arid areas properly is still challenging. This study assesses the impact of different modeling strategies on simulating flood processes in semi-arid catchments. Four classic hydrological models, TOPMODEL, XINANJIANG (XAJ), SAC-SMA and TANK, were selected and applied to three semi-arid catchments in North China. Based on analysis and comparison of the simulation results of these classic models, four new flexible models were constructed and used to further investigate the suitability of various modeling strategies for semi-arid environments. Numerical experiments were also designed to examine the performances of the models. The results show that in semi-arid catchments a suitable model needs to include at least one nonlinear component to simulate the main process of surface runoff generation. If there are more than two nonlinear components in the hydrological model, they should be arranged in parallel, rather than in series. In addition, the results show that the parallel nonlinear components should be combined by multiplication rather than addition. Moreover, this study reveals that the key hydrological process over semi-arid catchments is the infiltration excess surface runoff, a non-linear component.

  16. Quantifying hydrologic connectivity with measures from the brain neurosciences - a feasibility study

    NASA Astrophysics Data System (ADS)

    Rinderer, Michael; Ali, Genevieve; Larsen, Laurel

    2017-04-01

    While the concept of connectivity is increasingly applied in hydrology and ecology, little agreement exists on its definition and quantification approaches. In contrast, the neurosciences have developed a systematic conceptualization of connectivity and methods to quantify it. In particular, neuroscientists make a clear distinction between: 1) structural connectivity, which is determined by the anatomy of the brain neural network, 2) functional connectivity, that is based on statistical dependencies between neural signals, and 3) effective connectivity, that allows to infer causal relations based on the assumption that "true" interactions occur with a certain time delay. In a similar vein, in hydrology, structural connectivity can be defined as the physical adjacency of landscape elements that are seen as a prerequisite of material transfer, while functional or process connectivity would rather describe interactions or causal relations between spatial adjacency characteristics and temporally varying factors. While hydrologists have suggested methods to derive structural connectivity (SC), the quantification of functional (FC) or effective connectivity (EC) has remained elusive. The goal of the current study was therefore to apply timeseries analysis methods from brain neuroscience to quantify EC and FC among groundwater (n = 34) and stream discharge (n = 1) monitoring sites in a 20-ha Swiss catchment where topography is assumed to be a major driver of connectivity. SC was assessed through influence maps that quantify the percentage of flow from an upslope site to a downslope site by applying a multiple flow direction algorithm. FC was assessed by cross-correlation, total and partial mutual information while EC was quantified via total and partial entropy, Granger causality and a phase slope index. Our results showed that many structural connections were also expressed as functional or effective connections, which is reasonable in a catchment with shallow perched

  17. Hydrologic refugia, plants, and climate change.

    PubMed

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  18. Adaptable Web Modules to Stimulate Active Learning in Engineering Hydrology using Data and Model Simulations of Three Regional Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Tarboton, D. G.; Lall, U.; Bodin, M.; Rahill-Marier, B.; Chimmula, S.; Meselhe, E. A.; Ali, A.; Williams, D.; Ma, Y.

    2013-12-01

    The hydrologic community has long recognized the need for broad reform in hydrologic education. A paradigm shift is critically sought in undergraduate hydrology and water resource education by adopting context-rich, student-centered, and active learning strategies. Hydrologists currently deal with intricate issues rooted in complex natural ecosystems containing a multitude of interconnected processes. Advances in the multi-disciplinary field include observational settings such as Critical Zone and Water, Sustainability and Climate Observatories, Hydrologic Information Systems, instrumentation and modeling methods. These research advances theory and practices call for similar efforts and improvements in hydrologic education. The typical, text-book based approach in hydrologic education has focused on specific applications and/or unit processes associated with the hydrologic cycle with idealizations, rather than the contextual relations in the physical processes and the spatial and temporal dynamics connecting climate and ecosystems. An appreciation of the natural variability of these processes will lead to graduates with the ability to develop independent learning skills and understanding. This appreciation cannot be gained in curricula where field components such as observational and experimental data are deficient. These types of data are also critical when using simulation models to create environments that support this type of learning. Additional sources of observations in conjunction with models and field data are key to students understanding of the challenges associated with using models to represent such complex systems. Recent advances in scientific visualization and web-based technologies provide new opportunities for the development of active learning techniques utilizing ongoing research. The overall goal of the current study is to develop visual, case-based, data and simulation driven learning experiences to instructors and students through a web

  19. The Hydrologic Cycle Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Hardin, Danny M.; Goodman, H. Michael

    1995-01-01

    The Marshall Space Flight Center Distributed Active Archive Center in Huntsville, Alabama supports the acquisition, production, archival and dissemination of data relevant to the study of the global hydrologic cycle. This paper describes the Hydrologic Cycle DAAC, surveys its principle data holdings, addresses future growth, and gives information for accessing the data sets.

  20. Geospatial technology applications in forest hydrology

    Treesearch

    S.S. Panda; E. Masson; S. Sen; H.W. Kim; Devendra Amatya

    2016-01-01

    Two separate disciplines, hydrology and forestry, together constitute forest hydrology. It is obvious that forestry and forest hydrology disciplines are spatial entities. Forestry is the science that seeks to understand the nature of forests throygh their life cycle and interactions with the surrounding environment. Forest hydrology includes forest soil water, streams...

  1. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  2. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    NASA Astrophysics Data System (ADS)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  3. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  4. Experimental and numerical study of Bondura® 6.6 PIN joints

    NASA Astrophysics Data System (ADS)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  5. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted

  6. Histological study of the human temporo-mandibular joint and its surrounding muscles.

    PubMed

    Bravetti, P; Membre, H; El Haddioui, A; Gérard, H; Fyard, J P; Mahler, P; Gaudy, J F

    2004-10-01

    This is a histological study of the human temporo-mandibular joint and its surrounding muscles. Using a microscopic study of serial sections from anatomical specimens from six subjects, the detailed anatomy of the joint is presented with particular regard to the histology. This study has allowed, in particular, the description of the ligaments and capsule as well as the insertions of the masticatory muscles (temporalis, masseter, lateral pterygoid) on this joint. These observations are then compared with the anatomical and histological data already reported on this subject. This study shows that the bulk of the muscular fibres of the lateral pterygoid passes under the foot of the disc is attached over the whole height of the condylar, unite and extend as far as the medial pole of the joint under the insertion of the articular disc. An insertion of the temporo-masseter musculo-tendinous complex on the anterior and lateral capsulo-discal structures was observed. The lateral pterygoid is composed of a succession of tendinous and fleshy fibres. This study confirms the thickening of the lateral capsule that corresponds to a lateral collateral ligament, and the absence of a medial collateral ligament. Medial stability is conferred by the lateral ligament of the contralateral joint.

  7. Hydrological Forecasting Practices in Brazil

    NASA Astrophysics Data System (ADS)

    Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena

    2016-04-01

    This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.

  8. Viscoelastic study of an adhesively bonded joint

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.

    1983-01-01

    The plane strain problem of two dissimilar orthotropic plates bonded with an isotropic, linearly viscoelastic adhesive is considered. Both the shear and the normal stresses in the adhesive are calculated for various geometries and loading conditions. Transverse shear deformations of the adherends are taken into account, and their effect on the solution is shown in the results. All three inplane strains of the adhesive are included. Attention is given to the effect of temperature, both in the adhesive joint problem and to the heat generation in a viscoelastic material under cyclic loading. This separate study is included because heat generation and or spatially varying temperature are at present too difficult to account for in the analytical solution of the bonded joint, but whose effect can not be ignored in design.

  9. Improved hydrological modeling using AGWA; incorporation of different management practices in hydrological modeling.

    NASA Astrophysics Data System (ADS)

    Vithanage, J.; Miller, S. N.; Paige, G. B.; Liu, T.

    2017-12-01

    We present a novel way to simulate the effects of rangeland management decisions in a GIS-based hydrologic modeling toolkit. We have implemented updates to the Automated Geospatial Watershed Assessment tool (AGWA) in which a landscape can be broken into management units (e.g., high intensity grazing, low intensity grazing, fire management, and unmanaged), each of which is assigned a different hydraulic conductivity (Ks) parameter in KINEmatic Runoff and EROSion model (KINEROS2). These updates are designed to provide modeling support to land managers tasked with rangeland watershed management planning and/or monitoring, and evaluation of water resources management. Changes to hydrologic processes and resulting hydrographs and sedigraphs are simulated within the AGWA framework. Case studies are presented in which a user selects various management scenarios and design storms, and the model identifies areas that become susceptible to change as a consequence of management decisions. The baseline (unmanaged) scenario is built using commonly available GIS data, after which the watershed is subdivided into management units. We used an array of design storms with various return periods and frequencies to evaluate the impact of management practices while changing the scale of watershed. Watershed parameters governing interception, infiltration, and surface runoff were determined with the aid of literature published on research studies carried out in the Walnut Gulch Experimental Watershed in southeast Arizona. We observed varied, but significant changes in hydrological responses (runoff) with different management practices as well with varied scales of watersheds. Results show that the toolkit can be used to quantify potential hydrologic change as a result of unitized land use decision-making.

  10. Hydrological processes at the urban residential scale

    Treesearch

    Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin

    2007-01-01

    In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...

  11. Curricula and Syllabi in Hydrology.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of papers is intended to provide a means for the exchange of information on hydrological techniques and for the coordination of research and data collection. The objectives and trends in hydrological education are presented. The International Hydrological Decade (IHD) Working Group on Education recommends a series of topics that…

  12. Effect of Retrograde Reaming for Tibiotalocalcaneal Arthrodesis on Subtalar Joint Destruction: A Cadaveric Study.

    PubMed

    Lowe, Jason A; Routh, Lucas K; Leary, Jeffrey T; Buzhardt, Paul C

    2016-01-01

    Recent published data have suggested successful union of subtalar and tibiotalar joints without formal debridement during tibiotalocalcaneal (TTC) fusion procedures. Although previous studies have reported on the importance of the proper guidewire starting point and trajectory to obtain appropriate hindfoot alignment for successful fusion, to our knowledge, no studies have quantified the amount of articular damage to the subtalar joint with retrograde reaming. We hypothesized that reaming would destroy >50% of the posterior facet of the subtalar joint. The bilateral lower extremities of 5 cadavers were obtained and the subtalar joints exposed. Retrograde TTC nail guidewires were inserted, and a 12-mm reamer was passed through the subtalar and ankle joints. Pre- and postreaming images of the subtalar joint were obtained to compare the amount of joint destruction after reaming. We found an average of 5.89% articular destruction of the talar posterior facet and an average of 4.01% articular destruction of the posterior facet of the calcaneus. No damage to the middle facets of the subtalar joint was observed. TTC nailing is a successful procedure for ankle and subtalar joint fusion. Published studies have reported successful subtalar union using TTC nailing without formal open debridement of the subtalar joint, preserving the soft tissue envelope. TTC nail insertion using a 12-mm reamer will destroy 5.89% and 4.01% of the respective talar and calcaneal posterior facets of the subtalar joint. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Longitudinal pavement joint performance : a field study of infrared heated and notched wedge joint construction.

    DOT National Transportation Integrated Search

    2012-12-01

    This report presents the findings of a field study in Maine, constructed during summer 2012 using : two different joint technologies and an infrared heater. MaineDOT has previously used an infrared : heater and notch-wedge apparatus to improve longit...

  14. Projected impacts of urbanisation on hydrological resource flows: A case study within the uMngeni Catchment, South Africa.

    PubMed

    Schütte, S; Schulze, R E

    2017-07-01

    Significant land use changes from natural/agricultural to urban land uses have been proposed within the Mpushini/Mkhondeni sub-catchments of the uMngeni Catchment in South Africa. A better understanding of the influences which such land use changes are likely to have on hydrological flows, is required, in order to make informed land use decisions for a sustainable future. As a point of departure, an overview of linkages between urbanisation and hydrological flow responses within this sub-humid study area is given. The urban characteristics of increased impervious areas and the potential return flows from transfers of potable water from outside the catchment were identified as being important in regard to hydrological flow responses. A methodology was developed to model urban response scenarios with urban characteristics as variables, using the daily time-step process based ACRU model. This is a hydrological multi-process model and not an urban hydraulic model and it addresses the landscape as well as the channel components of a catchment, and in addition to runoff components includes evaporation and transpiration losses as outputs. For the study area strong links between proposed urbanisation and hydrological resource flow responses were found, with increases in stormflows, together with increased and more regulated baseflows, and with impacts varying markedly between dry or wet years and by season. The impacts will depend on the fractions of impervious areas, whether or not these are connected to permeable areas, the amount of imported water and water system leaks. Furthermore, the urban hydrological impacts were found to be relatively greater in more arid than humid areas because of changes in the rainfall to runoff conversion. Flow changes due to urbanisation are considered to have important environmental impacts, requiring mitigation. The methodology used in this paper could be used for other urbanising areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrologic controls on equilibrium soil depths

    NASA Astrophysics Data System (ADS)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  16. Urban Soil Hydrology: bridging the data gap with a nationwide field study

    NASA Astrophysics Data System (ADS)

    Schifman, L. A.; Shuster, W.

    2016-12-01

    Urban communities generally rely on hydrologic models or tools for assessing suitable sites for green infrastructure. These rainfall-runoff models, e.g. National Stormwater Calculator (NSWC), query soil hydrologic information from national databases, e.g. Soil Survey Geographic Database (SSURGO), or are estimated via pedotransfer-based algorithms like USDA Rosetta. As part of urban soil hydrologic assessments we have collected soil textural and hydrologic data in 12 cities throughout the United States and compared these measurements to NSWC and SSURGO queried infiltration rates (Kunsat) and Rosetta-estimated drainage rates (Ksat and Kunsat). We found that soil hydrologic parameters obtained through pedotransfer functions and queries to soil databases are not representative of field-measured values (RMSE range from 6.2 to 15.2 for infiltration and from 13.2 to 16.3 for drainage). Although the NSWC queries SSURGO, we found that SSURGO overestimates infiltration and NSWC underestimates with MEs of 4.9, and -1.4, respectively. In Rosetta, we found that pedotransfer functions overestimated drainage rates (MEs 1.8 to 3.8). In an attempt to improve drainage estimates using Rosetta the soil texture was adjusted in soils with an apparent portion of finer sands. Here, sand included: very coarse, coarse, and medium sand, whereas silt included fine, and very fine sand and silt, with the justification that fine sands behave similarly to silt. These adjusted estimates resulted in generally underestimating drainage and still not suitable for use in planning for stormwater detention (e.g., infiltrative green infrastructure). With this work we highlight the importance of obtaining field measured values when assessing sites for green infrastructure planning instead of relying on estimates, as the discrepancies in sensitive parameters such as Kunsat and Ksat, implications for parameter selection in error propagation through rainfall-runoff models, and consequences for over- or under

  17. Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna (GBM) basin

    NASA Astrophysics Data System (ADS)

    Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.

    2014-06-01

    The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979-2003), near-future (2015-2039) and far-future (2075-2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November-April) than that in wet season (May-October). Amongst three basins, Meghna shows the largest hydrological

  18. Biomechanical study of tarsometatarsal joint fusion using finite element analysis.

    PubMed

    Wang, Yan; Li, Zengyong; Zhang, Ming

    2014-11-01

    Complications of surgeries in foot and ankle bring patients with severe sufferings. Sufficient understanding of the internal biomechanical information such as stress distribution, contact pressure, and deformation is critical to estimate the effectiveness of surgical treatments and avoid complications. Foot and ankle is an intricate and synergetic system, and localized intervention may alter the functions to the adjacent components. The aim of this study was to estimate biomechanical effects of the TMT joint fusion using comprehensive finite element (FE) analysis. A foot and ankle model consists of 28 bones, 72 ligaments, and plantar fascia with soft tissues embracing all the segments. Kinematic information and ground reaction force during gait were obtained from motion analysis. Three gait instants namely the first peak, second peak and mid-stance were simulated in a normal foot and a foot with TMT joint fusion. It was found that contact pressure on plantar foot increased by 0.42%, 19% and 37%, respectively after TMT fusion compared with normal foot walking. Navico-cuneiform and fifth meta-cuboid joints sustained 27% and 40% increase in contact pressure at second peak, implying potential risk of joint problems such as arthritis. Von Mises stress in the second metatarsal bone increased by 22% at midstance, making it susceptible to stress fracture. This study provides biomechanical information for understanding the possible consequences of TMT joint fusion. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Hydrological AnthropoScenes

    NASA Astrophysics Data System (ADS)

    Cudennec, Christophe

    2016-04-01

    The Anthropocene concept encapsulates the planetary-scale changes resulting from accelerating socio-ecological transformations, beyond the stratigraphic definition actually in debate. The emergence of multi-scale and proteiform complexity requires inter-discipline and system approaches. Yet, to reduce the cognitive challenge of tackling this complexity, the global Anthropocene syndrome must now be studied from various topical points of view, and grounded at regional and local levels. A system approach should allow to identify AnthropoScenes, i.e. settings where a socio-ecological transformation subsystem is clearly coherent within boundaries and displays explicit relationships with neighbouring/remote scenes and within a nesting architecture. Hydrology is a key topical point of view to be explored, as it is important in many aspects of the Anthropocene, either with water itself being a resource, hazard or transport force; or through the network, connectivity, interface, teleconnection, emergence and scaling issues it determines. We will schematically exemplify these aspects with three contrasted hydrological AnthropoScenes in Tunisia, France and Iceland; and reframe therein concepts of the hydrological change debate. Bai X., van der Leeuw S., O'Brien K., Berkhout F., Biermann F., Brondizio E., Cudennec C., Dearing J., Duraiappah A., Glaser M., Revkin A., Steffen W., Syvitski J., 2016. Plausible and desirable futures in the Anthropocene: A new research agenda. Global Environmental Change, in press, http://dx.doi.org/10.1016/j.gloenvcha.2015.09.017 Brondizio E., O'Brien K., Bai X., Biermann F., Steffen W., Berkhout F., Cudennec C., Lemos M.C., Wolfe A., Palma-Oliveira J., Chen A. C-T. Re-conceptualizing the Anthropocene: A call for collaboration. Global Environmental Change, in review. Montanari A., Young G., Savenije H., Hughes D., Wagener T., Ren L., Koutsoyiannis D., Cudennec C., Grimaldi S., Blöschl G., Sivapalan M., Beven K., Gupta H., Arheimer B., Huang Y

  20. Hydrologic Services Course.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  1. [Research progress on hydrological scaling].

    PubMed

    Liu, Jianmei; Pei, Tiefan

    2003-12-01

    With the development of hydrology and the extending effect of mankind on environment, scale issue has become a great challenge to many hydrologists due to the stochasticism and complexity of hydrological phenomena and natural catchments. More and more concern has been given to the scaling issues to gain a large-scale (or small-scale) hydrological characteristic from a certain known catchments, but hasn't been solved successfully. The first part of this paper introduced some concepts about hydrological scale, scale issue and scaling. The key problem is the spatial heterogeneity of catchments and the temporal and spatial variability of hydrological fluxes. Three approaches to scale were put forward in the third part, which were distributed modeling, fractal theory and statistical self similarity analyses. Existing problems and future research directions were proposed in the last part.

  2. [Advance in researches on the effect of forest on hydrological process].

    PubMed

    Zhang, Zhiqiang; Yu, Xinxiao; Zhao, Yutao; Qin, Yongsheng

    2003-01-01

    According to the effects of forest on hydrological process, forest hydrology can be divided into three related aspects: experimental research on the effects of forest changing on hydrological process quantity and water quality; mechanism study on the effects of forest changing on hydrological cycle, and establishing and exploitating physical-based distributed forest hydrological model for resource management and engineering construction. Orientation experiment research can not only support the first-hand data for forest hydrological model, but also make clear the precipitation-runoff mechanisms. Research on runoff mechanisms can be valuable for the exploitation and improvement of physical based hydrological models. Moreover, the model can also improve the experimental and runoff mechanism researches. A review of above three aspects are summarized in this paper.

  3. Contemporary relevance of Rokliden, Sweden's first forest hydrology field study

    NASA Astrophysics Data System (ADS)

    Grip, Harald

    2015-04-01

    During the last decades of the 19th century a great worry arose about forest landscape paludification in Northern Sweden. This was the original impetus for forest hydrological research in Sweden and the Swedish Institute of Experimental Forestry established the first field research site in 1905 at Rokliden, close to Piteå in North Sweden. It comprised 8.64 ha located 2 km down a 3 km long gently sloping (ca 4%), north facing Norway spruce covered till slope, interspersed with small mires. By 1931 it was concluded that paludification was not spreading across Northern Sweden at an appreciable rate. Within the Rokliden research site 22 groundwater wells were installed and levels measured weekly until 1926. A map with 0.5 m equidistance, 10 vegetation classes, and soil profiles was established. A limited forest harvest was done in 1908, but significant effects on groundwater levels were not found. Groundwater flow velocity was estimated by tracing added sodium chloride. Hydraulic conductivity was measured on undisturbed soil cores, while mechanical and chemical analyses were done on other samples. Groundwater was collected and analyzed for dissolved compounds including oxygen. Hydrology was found important for soil types and vegetation development. The necessary profile drainage for podzol soil development was identified as vein drainage at the bedrock surface. The low lateral hydraulic gradient in the gentle slopes and the low hydraulic conductivity in the deeper till soil made lateral flow much smaller than required. The vein drainage was a perfect solution to the problem and great effort was put into showing the existence and importance of veins. Modern measurements in the re-established groundwater observation network and re-analysis of old data confirmed the plausibility of these original conclusions. Partial catchment area could explain rates of both groundwater level rise and recession. Revisiting this field study reveals that many issues in contemporary

  4. Hydrological regions in monsoon Asia

    NASA Astrophysics Data System (ADS)

    Kondoh, Akihiko; Budi Harto, Agung; Eleonora, Runtunuwu; Kojiri, Toshiharu

    2004-11-01

    Monsoon Asia is characterized by its diversity of natural and social environments. These environments range from humid tropics to arid regions and there exist associated various hydrological phenomena. This paper attempts to characterize the hydrological regions of monsoon Asia based on the water budget calculated using grid-based global datasets. A map of hydrological regions is created by ranking the value of water surplus and deficit. A humid zone with large water surplus extending from Southeast Asia to the Japanese archipelago, rapid transition from humid to arid environments in eastern China, and an arid region surrounded by a humid region in continental Southeast Asia are the most remarkable features in monsoon Asia. The map reveals that an essential characteristic of monsoon Asia is the proximity of the arid and humid environments. Many water problems and water management practices in a region can be easily understood by plotting them on a map. The boundaries of several large river basins are superimposed on the map, and examined for the water budget and flow regimes. The results are found to explain the regional characteristics of the seasonal runoff regimes satisfactorily. The importance of using a spatial framework for the comparative hydrological study in Monsoon Asia is highlighted.

  5. Joint inversion of crosshole GPR and temporal moments of tracer data for improved estimation of hydraulic conductivity at the aquifer scale

    NASA Astrophysics Data System (ADS)

    Lochbühler, T.; Linde, N.

    2012-04-01

    Geophysical methods are widely used for aquifer characterization, but they usually fail to directly provide models of hydraulic conductivity. Here, a method is presented to jointly invert crosshole ground-penetrating radar (GPR) travel times and hydrological data to estimate the 2-D distribution of both GPR velocities and hydraulic conductivities. The hydrological data are the first temporal moments of tracer breakthrough curves measured at different depths (i.e., the mean arrival times of the tracer at the given locations). Structural resemblance between the geophysical and the hydrological model is enforced by strongly penalizing models for which the cross products of the model gradients are non-zero. The proposed method was first tested on a synthetic categorical facies model. The high resolution of the GPR velocity model markedly improves the hydraulic conductivity model by adding small-scale structures that remain unresolved by the individual inversion of the hydrological data. The method was then applied to field data acquired within a gravel aquifer located close to the Thur River, northeastern Switzerland. The hydrological data used were derived from transfer functions obtained by deconvolving groundwater electrical conductivity time series with electrical conductivity variations of the river water. These data were recorded over several years at three depth levels in three boreholes aligned along the main groundwater flow direction. The transfer functions are interpreted as breakthrough curves of a pulse injection in the river from which we retrieve the first temporal moments. These data were complemented with crosshole GPR data acquired between the three boreholes. Both the individual and joint inversion models provide a smooth hydraulic conductivity model that retrieves the same general trend as EM flowmeter data, but does not resolve small-scale variability.

  6. Strategies for Hydrology Teaching for a Changing World

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2010-05-01

    Hydrology as a science has undergone dramatic changes in the past 80 years. However, as evidenced by the text books that are being used and conversations with many educators, it appears that hydrologic education has not kept pace. The legacy of the past growth of hydrology is reflected in the materials and methods used in hydrology teaching as practiced now. Current teaching methods tend to present a mix of empirical approaches (e.g., data analysis, multiple regressions), systems approaches (e.g., unit hydrograph methods, bucket models), and process theories (e.g., infiltration, runoff generation, evaporation, channel flow), often in the form of recipes or skill sets. However, they represent an old paradigm where hydrology was seen as dealing with the movement of water through and over a static earth, aimed at solving one or a combination of separate boundary value problems. However at least since the 1990s there is a new research paradigm operating, which treats hydrology as a distinct geoscience, which does not just deal with the movement of water, but with an interacting holistic earth system that includes not just hydrological but also biogeochemical, ecological and human subsystems. Global change increasingly dictates that this geoscience paradigm be further extended to include highly non-stationary, evolutionary behaviors strongly governed by human-nature interactions. Shouldn't this be recognized in our teaching, and if so how can we achieve it? In this talk I will outline broad strategies we can adopt that could pave the way for a paradigm shift also in the way we teach hydrology. Beyond the essential skills that we have always taught, some of the new skill sets we need to impart are, amongst many others: learning to read the landscape, learning from patterns in the data, including patterns in the landscape and in the atmosphere (e.g., channel morphology, vegetation patterns, climatic patterns), comparative studies as opposed to place-based studies

  7. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  8. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  9. How Misapplication of the Hydrologic Unit Framework ...

    EPA Pesticide Factsheets

    Hydrologic units provide a convenient nationwide set of geographic polygons based on an arbitrary subdivision of the drainage of land surface areas at several hierarchical levels. Half or more of these units, however, are not true watersheds as the official name of the framework, Watershed Boundary Dataset (WBD), implies. Hydrologic units and watersheds are commonly treated as synonymous, and this misuse and misunderstanding can have some serious consequences. We discuss some of the strengths and limitations of watersheds and hydrologic units as spatial frameworks. Using examples from the Northwest and Southeast U.S., we explain how the misuse of the hydrologic unit framework has affected the meaning of watersheds and can impair the understanding of the associations of spatial geographic phenomena relative to a potentially infinite number of points on streams due to their linear nature. Watersheds are a fundamental geographic unit used to study the effects of natural and anthropogenic characteristics on the quality and quantity of water. Most scientists and resource managers historically have been in agreement on the spatial meaning of the term ‘watershed’ – that is, the topographic area within which water drains to a specific point on a stream, river, or particular waterbody. The Hydrologic Unit Code (HUC) framework, however, has changed this understanding. Hydrologic units provide a convenient nationwide set of geographic polygons based on an arbitra

  10. Framework for a hydrologic climate-response network in New England

    USGS Publications Warehouse

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  11. The current state of Socio-hydrology

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Viglione, Alberto; Di Baldassarre, Giuliano; Pande, Saket

    2016-04-01

    Socio-hydrology was introduced 4 years ago into the scientific lexicon, and elicited several reactions about the meaning and originality of the concept. However, there has also been much activity triggered by the original paper, including further commentaries that clarified the definitions, and several papers that acted on the definitions, and through them further clarified and illustrated the meaning and usefulness of socio-hydrology for understanding coupled human-water systems and underpinning sustainable water management. This presentation discusses how useful these recent studies have been towards the need for socio-hydrology to explain phenomena, such as rise and decline of human population or food production in water scarce basins ('pendulum swing'), the levee effect, small scale farmer suicides, anthropogenic droughts, etc… We also discuss its foundation as a Science, its similarities and dissimilarities with other fields that study human-water interactions, such as hydro-sociology and hydro-economics, its foundation as a Science, current gaps and the challenges that lie ahead.

  12. Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting

    NASA Astrophysics Data System (ADS)

    Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur

    2017-04-01

    Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff

  13. Impact extractive fracture of jointed steel plates of a bolted joint

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.

    2012-08-01

    This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.

  14. Hydrologic Predictions in the Anthropocene: A Research Framework Based on a Co-evolutionary Socio-hydrologic Perspective

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Bloeschl, G.

    2012-12-01

    The world is facing a water management crisis, in the context of fast rising demand for water due to growth of human populations and changing lifestyles, and depletion of freshwater resources. In many parts of the world, poor distribution of freshwater in relation to demand is already the cause of serious water scarcity, exacerbated by climate change. Cumulatively, these result in increased human appropriation of water resources, significant modification of landscapes, and a strong human imprint on water cycle dynamics from local to global scales. Hydrologic predictions in such a fast changing environment face significant challenges. Traditional models for predictions treat the hydrologic system as a simple input-output system, and propagate variability of external inputs or disturbances through the various hydrologic subsystems, but assuming stationarity. However, in a fast changing world, none of the subsystems can be assumed to be stationary, but as co-evolving parts of a complex system. The role of humans takes on an important role, which can no longer be assumed to independent of the natural system. We need new socio-hydrologic frameworks to observe, monitor, understand and predict the co-evolution of coupled human-natural systems. In this talk, using examples from one or more real-world settings (from Australia and Europe) involving human interactions with hydrologic systems, we will present new theoretical frameworks that should be adopted to advance the emergent new sub-discipline of socio-hydrology. The proposed research agenda is organized under (i) process socio-hydrology, (ii) comparative socio-hydrology, and (iii) historical socio-hydrology.

  15. Joint distraction for thumb carpometacarpal osteoarthritis: a feasibility study with 1-year follow-up.

    PubMed

    Spaans, Anne J; Minnen, L Paul van; Braakenburg, Assa; Mink van der Molen, Aebele B

    2017-08-01

    The purpose of this pilot study was to evaluate the feasibility of joint distraction of the first carpometacarpal (CMC1) joint in patients with CMC1 osteoarthritis (OA). An external joint distractor was placed over the CMC1 joint by K-wire fixation in the trapezium and the metacarpal. The joint was distracted 3 mm during surgery. The device was then kept in place for 8 weeks. Disabilities of the Arm, Shoulder, and Hand (DASH) score, Michigan Hand Outcome Questionnaire (MHQ), Visual Analogue Scale (VAS), and grip strength were recorded preoperatively and at set postoperative intervals. Five female patients with an average age of 53 years (range = 41-61) were included. One year postoperatively, average DASH, MHQ, and VAS scores improved compared to preoperative values; DASH 53 to 27, MHQ 48 to 76, and VAS pain 48 to 14. There were no technical problems associated with the device. One patient had a local pin site infection treated successfully with oral antibiotics. This study concludes that joint distraction of the osteoarthritic CMC1 joint is technically feasible. In this small, prospective pilot study the majority of the results were favourable during short-term follow-up.

  16. An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service

    Treesearch

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons

    2004-01-01

    Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...

  17. Hydrologic data for urban studies in the Houston, Texas, metropolitan area, 1979

    USGS Publications Warehouse

    Liscum, Fred; Weigel, Jay F.; Bruchmiller, J.P.

    1982-01-01

    Hydrologic investigations of urban watersheds in Texas were begun by the U.S. Geological Survey in 1954. Studies are now in progress in Austin, Houston, and San Antonio.The U.S. Geological Survey, in cooperation with the city of Houston, began studies in the Houston metropolitan area in 1964. The program was expanded in 1968 to include collection of water-quality data. The objectives of the Houston urban-hydrology study are as follows:To determine, on the basis of historical data and hydro!ogic analyses, the magnitude and frequency of flood peaks and flood volumes.To determine the effect of urban development on flood peaks and volumes.To ascertain the variation in water quality for different flow conditions and different seasons.This report, the sixteenth in a series of reports to be published annually, is primarily applicable to objective 2. The report presents hydro!ogic data collected in the Houston urban area for the 1979 water year (October 1, 1978 to September 30, 1979).A report by Johnson and Sayre (1973) utilized records collected from 1965 to 1969 to make a study of the effects of urbanization on floods in the Houston area. The report also summarizes various basin parameters. A report by Waddell, Massey, and Jennings (1979) presents data on computed runoff from the Houston area and computed concentrations and loads of selected waterquality constituents combined in the inflow to Galveston Bay. The study utilized a variation of the "STORM" model developed by the Hydro!ogic Engineering Center of the U.S. Army Corps of Engineers. A report prepared by Li scum and Massey (1980) presents a technique for estimating the magnitude and frequency of floods in the Houston area from drainage areas, bank-full conveyance, and percentage of urban development.A definition of terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined in "U.S. Geological Survey, Water-resources data for Texas, volume 2, 1979."To facilitate the

  18. Radiologic Analysis and Clinical Study of the Upper One-third Joint Technique for Fluoroscopically Guided Sacroiliac Joint Injection.

    PubMed

    Park, Junghyun; Park, Hue Jung; Moon, Dong Eon; Sa, Gye Jeol; Kim, Young Hoon

    2015-01-01

    Sacroiliac intraarticular injection by the traditional technique can be challenging to perform when the joint is covered with osteophytes or is extremely narrow. To examine whether there is enough space for the needle to be advanced from the L5-S1 interspinous space to the upper one-third sacroiliac joint (SIJ) by magnetic resonance image (MRI) analysis as an alternative to fluoroscopically guided SIJ injection with the lower one-third joint technique, and to determine the feasibility of this novel technique in clinical practice. MRI analysis and observational study. An interventional pain management practice at a university hospital. We analyzed 200 axial T2-weighted MRIs between the L5 and S1 vertebrae of 100 consecutive patients. The following measurements were obtained on both sides: 1) the thickness of fat in the midline; 2) the distance between the midline (Point C) and the junction (Point A) of the skin and the imaginary line that connects the SIJ and the most medial cortex of the ilium; 3) the distance between the midline (Point C) and the junction (Point B) of the skin and the imaginary line that connects the SIJ and the L5 spinous process; 4) the distance between the SIJ and midline (Point C) on the skin, or between the SIJ and the midpoint (Point C') of the line from Point A to Point B; and 5) the angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin. The upper one-third joint technique was performed to establish the feasibility of the alternative technique in 20 patients who had unsuccessful sacroiliac intraarticular injections using the lower one-third joint technique. The mean distances from the midline to Point A and to Point B were 21.9 ± 13.7 mm and 27.8 ± 13.6 mm, respectively. The mean distance between the SIJ and Point C (or Point C') was 81.0 ± 13.3 mm. The angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin was 42.8 ± 5.1°. The success

  19. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  20. Cadaveric Study of the Articular Branches of the Shoulder Joint.

    PubMed

    Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S

    This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.

  1. Studies of ice sheet hydrology using SAR

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.; Vornberger, P. L.

    1989-01-01

    Analysis of SAR data of the Greenland ice sheet in summer and winter suggest the use of SAR to monitor the temporal hydrology of ice sheets. Comparisons of each SAR data set with summer Landsat TM imagery show an areal-positive correlation with summer SAR data and a negative correlation with winter SAR data. It is proposed that the summer SAR data are most sensitive to the variable concentrations of free water in the surface snow and that the winter SAR data indicate variations in snow grain size.

  2. Study of Parameters And Methods of LL-Ⅳ Distributed Hydrological Model in DMIP2

    NASA Astrophysics Data System (ADS)

    Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.

    2008-05-01

    : The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP),that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-Ⅳ was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-Ⅳ distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion

  3. The potential of historical hydrology in Switzerland

    NASA Astrophysics Data System (ADS)

    Wetter, Oliver

    2017-11-01

    Historical hydrology is based on data derived from historical written, pictorial and epigraphic documentary sources. It lies at the interface between hydrology and environmental history, using methodologies from both disciplines basically with the goal of significantly extending the instrumental measurement period with experience from the pre-instrumental past. Recently this field of research has gained increased recognition as a tool to improve current flood risk estimations when EU guidelines regulated by law the quantitative consideration of previous floods.1 Awareness to consider pre-instrumental experience in flood risk analysis seems to have risen at the level of local and federal authorities in Switzerland as well. The 2011 Fukushima catastrophe probably fostered this rethinking process, when pressure from the media, society and politics as well as the regulations of the International Atomic Energy Agency (IAEA) forced the authorities to reassess the current flood risk analysis for Swiss nuclear power plants. In 2015 a historical hydrological study was commissioned by the Federal Office for the Environment (FOEN) to assess the magnitudes of pre-instrumental Aare River flood discharges, including the most important tributaries (the Saane, Emme, Reuss and Limmat rivers). The results of the historical hydrological study serve now as the basis for the main study, EXAR (commissioned under the lead of FOEN in cooperation with the Swiss Nuclear Safety Inspectorate (ENSI), the Swiss Federal Office of Energy (SFOE), the Federal Office for Civil Protection (FOCP), and the Federal Office of Meteorology and Climatology (MeteoSwiss)), which combines historical and climatological analysis with statistical approaches and mathematical models with the goal of better understanding the hazards and possible interactions that can be caused by extreme flood events. In a second phase the catchment of the River Rhine will be targeted as well. More recently several local historical

  4. Hydrological changes in the Amur river basin: two approaches for assignment of climate projections into hydrological model

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Kalugin, Andrei; Motovilov, Yury

    2017-04-01

    A regional hydrological model was setup to assess possible impact of climate change on the hydrological regime of the Amur drainage basin (the catchment area is 1 855 000 km2). The model is based on the ECOMAG hydrological modeling platform and describes spatially distributed processes of water cycle in this great basin with account for flow regulation by the Russian and Chinese reservoirs. Earlier, the regional hydrological model was intensively evaluated against 20-year streamflow data over the whole Amur basin and, being driven by 252-station meteorological observations as input data, demonstrated good performance. In this study, we firstly assessed the reliability of the model to reproduce the historical streamflow series when Global Climate Model (GCM) simulation data are used as input into the hydrological model. Data of nine GCMs involved in CMIP5 project was utilized and we found that ensemble mean of annual flow is close to the observed flow (error is about 14%) while data of separate GCMs may result in much larger errors. Reproduction of seasonal flow for the historical period turned out weaker; first of all because of large errors in simulated seasonal precipitation, so hydrological consequences of climate change were estimated just in terms of annual flow. We analyzed the hydrological projections from the climate change scenarios. The impacts were assessed in four 20-year periods: early- (2020-2039), mid- (2040-2059) and two end-century (2060-2079; 2080-2099) periods using an ensemble of nine GCMs and four Representative Concentration Pathways (RCP) scenarios. Mean annual runoff anomalies calculated as percentages of the future runoff (simulated under 36 GCM-RCP combinations of climate scenarios) to the historical runoff (simulated under the corresponding GCM outputs for the reference 1986-2005 period) were estimated. Hydrological model gave small negative runoff anomalies for almost all GCM-RCP combinations of climate scenarios and for all 20-year

  5. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for

  6. Biomechanical evaluation of native acromioclavicular joint ligaments and two reconstruction techniques in the presence of the sternoclavicular joint: A cadaver study.

    PubMed

    Masionis, Povilas; Šatkauskas, Igoris; Mikelevičius, Vytautas; Ryliškis, Sigitas; Bučinskas, Vytautas; Griškevičius, Julius; Martin Oliva, Xavier; Monzó Planella, Mariano; Porvaneckas, Narūnas; Uvarovas, Valentinas

    2017-01-01

    Where is over 100 reconstruction techniques described for acromioclavicular (AC) joint reconstruction. Although, it is not clear whether the presence of the sternoclavicular (SC) joint influences the biomechanical properties of native AC ligaments and reconstruction techniques. The purpose of the present study was to investigate the biomechanical properties of native AC joint ligaments and two reconstruction techniques in cadavers with the SC joint still present. We tested eight fresh-frozen cadaver hemithoraces for superior translation (70 N load) and translation increment after 1000 cycles (loading from 20 to 70 N) in a controlled laboratory study. There were three testing groups created: native ligaments, the single coracoclavicular loop (SCL) technique, and the two coracoclavicular loops (TCL) technique. Superior translation was measured after static loading. Translation increment was calculated as the difference between superior translation after cyclic and static loading. Native AC ligaments showed significantly lower translation than the SCL ( p = 0.023) and TCL ( p = 0.046) groups. The SCL had a significantly lower translation increment than native AC ligaments ( p = 0.028). There was no significant difference between reconstruction techniques in terms of translation ( p = 0.865) and translation increment ( p = 0.113). Native AC joint ligaments had better static properties than both reconstruction techniques and worse dynamic biomechanical properties than the SCL technique. The SCL technique appeared to be more secure than the TCL technique. The presence of the SC joint did not have an observable influence on test results.

  7. Earth Surface Deformation in the North China Plain Detected by Joint Analysis of GRACE and GPS Data

    PubMed Central

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C.K.; Li, Zhao

    2014-01-01

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1–4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1–2 mm/year and a correlation of 85.0%–98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements. PMID:25340454

  8. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    PubMed

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-10-22

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.

  9. A comparison between conventional and LANDSAT based hydrologic modeling: The Four Mile Run case study

    NASA Technical Reports Server (NTRS)

    Ragan, R. M.; Jackson, T. J.; Fitch, W. N.; Shubinski, R. P.

    1976-01-01

    Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of $14,000. The LANDSAT based approach required 6.9 man-days and cost $2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives.

  10. Hydrological response of the Mediterranean catchments- A review

    NASA Astrophysics Data System (ADS)

    Merheb, Mohammad; Moussa, Roger; Abdallah, Chadi; Colin, François; Perrin, Charles; Baghdadi, Nicolas

    2015-04-01

    The Mediterranean region is a water stressed environment with increasing climatic and anthropogenic pressures. This work presents a review of 120 hydrological studies carried out in the Mediterranean region. It contributes to the ongoing hydrological research initiative on "Hydrology in a changing world" launched by the IAHS in 2014. It aims to understand the characteristics of hydrological response under Mediterranean conditions, taking into account changes driven by anthropogenic and climatic factors; and to compare modeling and regionalization approaches in use. The study region is divided into three sub-regions: Northwestern Mediterranean (NWM), Eastern (EM) and Southern Mediterranean (SM). Information on catchments responses and modeling approaches at different time scales (annual, dry season and event) were extracted from published studies, and analyzed. Results indicate regional discrepancies (between NWM, EM and SM sub-regions) in the distribution of climatic and hydrological response characteristics at the annual and the event scale. The NWM catchments are the wettest, and the SM catchments are the driest, while the EM catchments are intermediate and exhibit the largest variability. The NWM sub-region shows the most extreme rainfall regime in the Mediterranean, particularly, in an arc that extends from Northeastern Spain to Northeastern Italy. Observations indicate decreasing tendency in water resources due to both anthropogenic and climatic impacts, and a more extreme rainfall regime. Moreover, Mediterranean catchments show very heterogeneous responses in time and space which make the modeling of their hydrological functioning very complicated and data demanding, with increasing model limitations and uncertainties. Nevertheless, the models in use are classical ones; very few were developed to address these regional specificities. Regionalization studies in the Mediterranean are scarce even in term of low flows and FDCs which is surprising in a water

  11. EVALUATION OF URBANIZATION IMPACTS ON HYDROLOGY - LABORATORY AND FIELD APPROACHES

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been many studies to quantify how basic hydrological relationships are altered by the addition of impervious surface under controlled conditions. In addition, few studies have been conducted to quanti...

  12. Development of a Historical Hydrological online research and application platform for Switzerland - Historical Hydrological Atlas of Switzerland (HHAS)

    NASA Astrophysics Data System (ADS)

    Wetter, Oliver

    2017-04-01

    It is planned to develop and maintain a historical hydrological online platform for Switzerland, which shall be specially designed for the needs of research and federal, cantonal or private institutions being interested in hydrological risk assessment and protection measures. The aim is on the one hand to facilitate the access to raw data which generally is needed for further historical hydrological reconstruction and quantification, so that future research will be achieved in significantly shorter time. On the other hand, new historical hydrological research results shall be continuously included in order to establish this platform as a useful tool for the assessment of hydrological risk by including the long term experience of reconstructed pre-instrumental hydrological extreme events like floods and droughts. Meteorological parameters that may trigger extreme hydrological events, like monthly or seasonally resolved reconstructions of temperature and precipitation shall be made accessible in this platform as well. The ultimate goal will be to homogenise the reconstructed hydrological extreme events which usually appeared in the pre anthropogenic influence period under different climatological as well as different hydrological regimes and topographical conditions with the present day state. Long term changes of reconstructed small- to extreme flood seasonality, based on municipal accounting records, will be included in the platform as well. This helps - in combination with the before mentioned meteorological parameters - to provide an increased understanding of the major changes in the generally complex overall system that finally causes hydrological extreme events. The goal of my presentation at the Historical Climatology session is to give an overview about the applied historical climatological and historical hydrological methodologies that are applied on the historical raw data (evidence) to reconstruct pre instrumental hydrological events and meteorological

  13. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    NASA Astrophysics Data System (ADS)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  14. Physical indicators of hydrologic permanence in forested headwater streams

    EPA Science Inventory

    Recent court cases have brought headwater streams and their hydrologic permanence into the forefront for regulatory agencies, so rapid field-based indicators of hydrologic permanence in streams are critically needed. Our study objectives were to 1) identify environmental charact...

  15. A comparison of hydrological deformation using GPS and global hydrological model for the Eurasian plate

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yue, Jianping; Li, Wang; Lu, Dekai; Li, Xiaogen

    2017-08-01

    The 0.5° × 0.5° gridded hydrological loading from Global Land Surface Discharge Model (LSDM) mass distributions is adopted for 32 GPS sites on the Eurasian plate from January 2010 to January 2014. When the heights of these sites that have been corrected for the effects of non-tidal atmospheric and ocean loading are adjusted by the hydrological loading deformation, more than one third of the root-mean-square (RMS) values of the GPS height variability become larger. After analyzing the results by continuous wavelet transform (CWT) and wavelet transform coherence (WTC), we confirm that hydrological loading primarily contributes to the annual variations in GPS heights. Further, the cross wavelet transform (XWT) is used to investigate the relative phase between the time series of GPS heights and hydrological deformation, and it is indicated that the annual oscillations in the two time series are physically related for some sites; other geophysical effect, GPS systematic errors and hydrological modeling errors could result in the phase asynchrony between GPS and hydrological loading signals for the other sites. Consequently, the phase asynchrony confirms that the annual fluctuations in GPS observations result from a combination of geophysical signals and systematic errors.

  16. Hydrology Domain Cyberinfrastructures: Successes, Challenges, and Opportunities

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.

    2015-12-01

    Anticipated changes to climate, human population, land use, and urban form will alter the hydrology and availability of water within the water systems on which the world's population relies. Understanding the effects of these changes will be paramount in sustainably managing water resources, as well as maintaining associated capacity to provide ecosystem services (e.g., regulating flooding, maintaining instream flow during dry periods, cycling nutrients, and maintaining water quality). It will require better information characterizing both natural and human mediated hydrologic systems and enhanced ability to generate, manage, store, analyze, and share growing volumes of observational data. Over the past several years, a number of hydrology domain cyberinfrastructures have emerged or are currently under development that are focused on providing integrated access to and analysis of data for cross-domain synthesis studies. These include the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), the Critical Zone Observatory Information System (CZOData), HyroShare, the BiG CZ software system, and others. These systems have focused on sharing, integrating, and analyzing hydrologic observations data. This presentation will describe commonalities and differences in the cyberinfrastructure approaches used by these projects and will highlight successes and lessons learned in addressing the challenges of big and complex data. It will also identify new challenges and opportunities for next generation cyberinfrastructure and a next generation of cyber-savvy scientists and engineers as developers and users.

  17. Adaptive linearization of phase space. A hydrological case study

    NASA Astrophysics Data System (ADS)

    Angarita, Hector; Domínguez, Efraín

    2013-04-01

    Here is presented a method and its implementation to extract transition operators from hydrological signals with significant algorithmic complexity, i.e. signals with an identifiable deterministic component and a non-periodic and irregular part, being the latter a source of uncertainty for the observer. The method assumes that in a system such as a hydrological system, from the perspective of information theory, signals cannot be known to an arbitrary level of precision due to limited observation or coding capabilities. According to the Shannon-Hartley theorem, at a given sampling frequency -fs' there is a theoretical peak capacity C to observe data from a random signal (i.e. the discharge) transmitted through a noisy channel with a signal to noise ratio -SNR. This imposes a limit on the observer capability to completely reconstruct an observed signal if the sampling frequency -fs' is lower than a given threshold -fs', for which a system signal can be completely recovered for any given SNR. Since most hydrological monitoring systems have low monitoring frequency, the observations may contain less information than required to describe the process dynamics and as a result observed signals exhibit some level of uncertainty if compared with the "true" signal. In the proposed approach, a simple local phase-space model, with locally linearized deterministic and stochastic differential equations, is applied to extract system's state transition operators and to probabilistically characterize the signal uncertainty. In order to determine optimality of the local operators, three main elements are considered: i: System state dimensionality, ii. Sampling frequency and, iii. Parameterization window length. Two examples are shown and discussed to illustrate the method. First, the evaluation of the feasibility of real-time forecasting models for levels and fow rates, from hourly to 14-day lead times. The results of this application demonstrate the operational feasibility for

  18. Oregon Hydrologic Landscapes: A Classification Framework

    EPA Science Inventory

    There is a growing need for hydrologic classification systems that can provide a basis for broad-scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classifica...

  19. Curricula and Syllabi in Hydrology. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 22. Second Edition.

    ERIC Educational Resources Information Center

    Chandra, Satish, Ed.; Mostertman, L. J., Ed.

    Hydrology is the science dealing with the earth's waters, their occurrence, circulation, and distribution, their chemical and physical properties, and their reaction with the environment. As such, hydrology is an indispensible requirement for planning in the field of water resources. Objectives for, spectrum of, and topics for education in…

  20. Robust and Heterogeneous Hydrological Changes under Global Warming

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.

    2015-12-01

    The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.

  1. Land Cover Vegetation Changes and Hydrology in Central Texas

    NASA Astrophysics Data System (ADS)

    Banta, J. R.; Slattery, R.

    2013-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing changes in land cover vegetation (removing the woody vegetation and allowing native grasses to reestablish in the area, commonly referred to as brush management), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal agencies, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and potential groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Results indicate there are differences in the hydrologic budget and water quality between the reference and treatment watersheds, as well as between pre- and post-brush management periods.

  2. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study.

    PubMed

    Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Kovalsky, Don A; Lockstadt, Harry

    2016-05-01

    Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption.

  3. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study

    PubMed Central

    Duhon, Bradley S.; Cher, Daniel J.; Wine, Kathryn D.; Kovalsky, Don A.; Lockstadt, Harry

    2015-01-01

    Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption. PMID:27099817

  4. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Thielen, J.; Pappenberger, F.; Schaake, J. C.; Hartman, R. K.

    2012-12-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF). With support from the US National Weather Service (NWS) and the European Commission (EC), the HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support in emergency management and water resources sectors. The strategy to meet this goal includes meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. HEPEX has organized about a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Today, the HEPEX mission is to demonstrate the added value of hydrological ensemble prediction systems (HEPS) for emergency management and water resources sectors to make decisions that have important consequences for economy, public health, safety, and the environment. HEPEX is now organised around six major themes that represent core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  5. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  6. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    NASA Astrophysics Data System (ADS)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  7. Towards Optimal Operation of the Reservoir System in Upper Yellow River: Incorporating Long- and Short-term Operations and Using Rolling Updated Hydrologic Forecast Information

    NASA Astrophysics Data System (ADS)

    Si, Y.; Li, X.; Li, T.; Huang, Y.; Yin, D.

    2016-12-01

    The cascade reservoirs in Upper Yellow River (UYR), one of the largest hydropower bases in China, play a vital role in peak load and frequency regulation for Northwest China Power Grid. The joint operation of this system has been put forward for years whereas has not come into effect due to management difficulties and inflow uncertainties, and thus there is still considerable improvement room for hydropower production. This study presents a decision support framework incorporating long- and short-term operation of the reservoir system. For long-term operation, we maximize hydropower production of the reservoir system using historical hydrological data of multiple years, and derive operating rule curves for storage reservoirs. For short-term operation, we develop a program consisting of three modules, namely hydrologic forecast module, reservoir operation module and coordination module. The coordination module is responsible for calling the hydrologic forecast module to acquire predicted inflow within a short-term horizon, and transferring the information to the reservoir operation module to generate optimal release decision. With the hydrologic forecast information updated, the rolling short-term optimization is iterated until the end of operation period, where the long-term operating curves serve as the ending storage target. As an application, the Digital Yellow River Integrated Model (referred to as "DYRIM", which is specially designed for runoff-sediment simulation in the Yellow River basin by Tsinghua University) is used in the hydrologic forecast module, and the successive linear programming (SLP) in the reservoir operation module. The application in the reservoir system of UYR demonstrates that the framework can effectively support real-time decision making, and ensure both computational accuracy and speed. Furthermore, it is worth noting that the general framework can be extended to any other reservoir system with any or combination of hydrological model

  8. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    NASA Astrophysics Data System (ADS)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  9. Towards a simple representation of chalk hydrology in land surface modelling

    NASA Astrophysics Data System (ADS)

    Rahman, Mostaquimur; Rosolem, Rafael

    2017-01-01

    Modelling and monitoring of hydrological processes in the unsaturated zone of chalk, a porous medium with fractures, is important to optimize water resource assessment and management practices in the United Kingdom (UK). However, incorporating the processes governing water movement through a chalk unsaturated zone in a numerical model is complicated mainly due to the fractured nature of chalk that creates high-velocity preferential flow paths in the subsurface. In general, flow through a chalk unsaturated zone is simulated using the dual-porosity concept, which often involves calibration of a relatively large number of model parameters, potentially undermining applications to large regions. In this study, a simplified parameterization, namely the Bulk Conductivity (BC) model, is proposed for simulating hydrology in a chalk unsaturated zone. This new parameterization introduces only two additional parameters (namely the macroporosity factor and the soil wetness threshold parameter for fracture flow activation) and uses the saturated hydraulic conductivity from the chalk matrix. The BC model is implemented in the Joint UK Land Environment Simulator (JULES) and applied to a study area encompassing the Kennet catchment in the southern UK. This parameterization is further calibrated at the point scale using soil moisture profile observations. The performance of the calibrated BC model in JULES is assessed and compared against the performance of both the default JULES parameterization and the uncalibrated version of the BC model implemented in JULES. Finally, the model performance at the catchment scale is evaluated against independent data sets (e.g. runoff and latent heat flux). The results demonstrate that the inclusion of the BC model in JULES improves simulated land surface mass and energy fluxes over the chalk-dominated Kennet catchment. Therefore, the simple approach described in this study may be used to incorporate the flow processes through a chalk unsaturated

  10. Changes in Hydrological Extremes and its Relation to Climate Variability in Mountainous Watershed: A Case Study from Gandaki River Basin, Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, N. S.; Dahal, P.

    2016-12-01

    Changes in the hydrological extreme are expected due to climate variability and are needed to assess at local and regional scales since these changes are not uniform over the globe. This study analyses the changes in intensity, frequency and persistence hydrological extreme in Gandaki River Basin (GRB) Nepal over past and future and its relation to climate variability. Hydrological data of 12 different hydrological stations covering all the sub basins of Gandaki River Basin were analyzed. At least 1 hydrological station in each sub basin to the maximum of 3 was taken into consideration for this study. Results show that hydrological extreme have increased in intensity, frequency and persistence over recent year and are predicted to increase in future (2030-2060). The time-series analysis revealed an increase in the magnitude, frequency and duration of flood and drought. The instantaneous maximum flow, flood events and duration of flood events are found to have increasing trend. The minimum discharge was observed to be decreasing which entails that the water availability in the driest time is decreasing. Trend analysis of seasonal flow revealed an increase in monsoon flows and decreasing in post monsoon. Changes in climate variability over the same period shows higher anomalies in both temperature and precipitation in recent decades (1990s and 2000s) compared to the baseline period (1970-2000). Model suggests an increasing trend in annual flows with the increase more pronounced in 2060s. Significant increase in extreme flows and subsequent decrease in dependable flows suggest increase in frequency of isolated extreme flows followed by prolonged dry spells. Data also showed that the mean temperature will be increasing from 1.9 0C to 3.1 0C and precipitation will be changing by -8% to +12% in 2031-2060 compared to the baseline period. For long-term planning and management of water resources, current trend and future change in the pattern of water availability should be

  11. An annotated bibliography of the hydrology and fishery studies of the South Fork Salmon River

    Treesearch

    Kathleen A. Seyedbagheri; Michael L. McHenry; William S. Platts

    1987-01-01

    A brief summary of the land management history of the South Fork Salmon River (Idaho) watershed includes citations and annotations of published and unpublished reports of fishery and hydrology studies conducted in the South Fork drainage for 1960 to 1986.

  12. THE DOWNSLOPE PROPAGATION OF A DISTURBANCE IN A FORESTED CATCHMENT: AN ECO-HYDROLOGIC SIMULATION STUDY

    EPA Science Inventory

    We developed and applied a spatially-explicit, eco-hydrologic model to examine how a landscape disturbance affects hydrologic processes, ecosystem cycling of C and N, and ecosystem structure. We simulated how the pattern and magnitude of tree removal in a catchment influences fo...

  13. Flash flood forecasting using simplified hydrological models, radar rainfall forecasts and data assimilation

    NASA Astrophysics Data System (ADS)

    Smith, P. J.; Beven, K.; Panziera, L.

    2012-04-01

    The issuing of timely flood alerts may be dependant upon the ability to predict future values of water level or discharge at locations where observations are available. Catchments at risk of flash flooding often have a rapid natural response time, typically less then the forecast lead time desired for issuing alerts. This work focuses on the provision of short-range (up to 6 hours lead time) predictions of discharge in small catchments based on utilising radar forecasts to drive a hydrological model. An example analysis based upon the Verzasca catchment (Ticino, Switzerland) is presented. Parsimonious time series models with a mechanistic interpretation (so called Data-Based Mechanistic model) have been shown to provide reliable accurate forecasts in many hydrological situations. In this study such a model is developed to predict the discharge at an observed location from observed precipitation data. The model is shown to capture the snow melt response at this site. Observed discharge data is assimilated to improve the forecasts, of up to two hours lead time, that can be generated from observed precipitation. To generate forecasts with greater lead time ensemble precipitation forecasts are utilised. In this study the Nowcasting ORographic precipitation in the Alps (NORA) product outlined in more detail elsewhere (Panziera et al. Q. J. R. Meteorol. Soc. 2011; DOI:10.1002/qj.878) is utilised. NORA precipitation forecasts are derived from historical analogues based on the radar field and upper atmospheric conditions. As such, they avoid the need to explicitly model the evolution of the rainfall field through for example Lagrangian diffusion. The uncertainty in the forecasts is represented by characterisation of the joint distribution of the observed discharge, the discharge forecast using the (in operational conditions unknown) future observed precipitation and that forecast utilising the NORA ensembles. Constructing the joint distribution in this way allows the full

  14. A Hydrological Perspective to Advance Understanding of the Water Cycle

    NASA Astrophysics Data System (ADS)

    Berghuijs, W.

    2014-12-01

    In principle hydrologists are scientists that study relationships within the water cycle. Yet, current technology makes it tempting for hydrology students to lose their "hydrological perspective" and become instead full-time computer programmers or statisticians. I assert that students should ensure their hydrological perspective thrives, notwithstanding the importance and possibilities of current technology. This perspective is necessary to advance the science of hydrology. As other hydrologists have pondered similar views before, I make no claims of originality here. I just hope that in presenting my perspective on this issue I may spark the interest of other early career hydrologists.

  15. Effect of water table dynamics on land surface hydrologic memory

    NASA Astrophysics Data System (ADS)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  16. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought.

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Hoerling, M. P.

    2014-12-01

    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  17. Five hydrologic studies conducted by or in cooperation with the Center for Forested Wetlands Research

    Treesearch

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; T.J. Callahan; Ge Sun; J.E. Nettles; J.E. Parsons; M. Miwa

    2005-01-01

    The U.S. Department of Agriculture Forest Service Center for Forested Wetlands Research has conducted or cooperated in studies designed to improve understanding of fundamental hydrologic and biogeochemical processes that link aquatic and terrestrial ecosystems. Five of these studies are discussed here. The first is based on observations made on long-term experimental...

  18. Prevalence of sesamoid bones in the interphalangeal joint of the thumb and fingers: a radiographic study.

    PubMed

    Seki, Yasuhiro; Hoshino, Yuko; Kuroda, Hiroshi

    2013-10-01

    The prevalence of sesamoid bones in the hands has been reported in some previous articles. Most of them, however, have reported sesamoid bones of the metacarpophalangeal joint of the hand and of the interphalangeal (IP) joint of the thumb. The present study investigates the prevalence of sesamoid bones of the IP joint of the thumb and fingers. A retrospective review of radiologic views of the IP joints in the thumb or fingers was performed, including a total of 650 patients (1,096 thumbs or fingers). Sesamoid bones were found in the IP joint of the thumb at 67% (212 of 318), while the index, middle, ring, little fingers had sesamoid bones in the proximal interphlangeal (PIP) joint at 0% (0 of 172), 0.4% (1 of 244), 0.5% (1 of 183), and 1% (2 of 179), respectively. None of the four fingers had sesamoid bones in the distal IP joint. Previous articles have described the similar prevalence to the present study, of sesamoid bones of the IP joint of the thumb, while some others reported the different prevalence. About the PIP joint, no previous articles have found a sesamoid bone. Because the lateral X-ray view is more accurate and suitable to evaluate sesamoid bones, we used the lateral one for the present study. The knowledge that sesamoid bones occurs at these rates in the thumb IP joint and finger PIP joints is helpful to differentiate chip fractures from sesamoid bones near the IP joint, including the PIP joint. Copyright © 2012 Wiley Periodicals, Inc.

  19. Teaching geographical hydrology in a non-stationary world

    NASA Astrophysics Data System (ADS)

    Hendriks, Martin R.; Karssenberg, Derek

    2010-05-01

    Understanding hydrological processes in a non-stationary world requires knowledge of hydrological processes and their interactions. Also, one needs to understand the (non-linear) relations between the hydrological system and other parts of our Earth system, such as the climate system, the socio-economic system, and the ecosystem. To provide this knowledge and understanding we think that three components are essential when teaching geographical hydrology. First of all, a student needs to acquire a thorough understanding of classical hydrology. For this, knowledge of the basic hydrological equations, such as the energy equation (Bernoulli), flow equation (Darcy), continuity (or water balance) equation is needed. This, however, is not sufficient to make a student fully understand the interactions between hydrological compartments, or between hydrological subsystems and other parts of the Earth system. Therefore, secondly, a student also needs to be knowledgeable of methods by which the different subsystems can be coupled; in general, numerical models are used for this. A major disadvantage of numerical models is their complexity. A solution may be to use simpler models, provided that a student really understands how hydrological processes function in our real, non-stationary world. The challenge for a student then lies in understanding the interactions between the subsystems, and to be able to answer questions such as: what is the effect of a change in vegetation or land use on runoff? Thirdly, knowledge of field hydrology is of utmost importance. For this a student needs to be trained in the field. Fieldwork is very important as a student is confronted in the field with spatial and temporal variability, as well as with real life uncertainties, rather than being lured into believing the world as presented in hydrological textbooks and models, e.g. the world under study is homogeneous, isotropic, or lumped (averaged). Also, students in the field learn to plan and

  20. The hindlimb in walking horses: 2. Net joint moments and joint powers.

    PubMed

    Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R

    2001-01-01

    The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.

  1. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2009-11-01

    We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.

  2. Fundamentals of watershed hydrology

    Treesearch

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  3. Entropy of hydrological systems under small samples: Uncertainty and variability

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua

    2016-01-01

    Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.

  4. Hydrologic modeling for water resource assessment in a developing country: the Rwanda case study

    Treesearch

    Steve McNulty; Erika Cohen Mack; Ge Sun; Peter Caldwell

    2016-01-01

    Accurate water resources assessment using hydrologic models can be a challenge anywhere, but particularly for developing countries with limited financial and technical resources. Developing countries could most benefit from the water resource planning capabilities that hydrologic models can provide, but these countries are least likely to have the data needed to run ...

  5. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2018-03-01

    Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations

  6. Effects of hydrology on red mangrove recruits

    USGS Publications Warehouse

    Doyle, Thomas W.

    2003-01-01

    Coastal wetlands along the Gulf of Mexico have been experiencing significant shifts in hydrology and salinity levels over the past century as a result of changes in sea level and freshwater drainage patterns. Local land management in coastal zones has also impacted the hydrologic regimes of salt marshes and mangrove areas. Parks and refuges in south Florida that contain mangrove forests have, in some cases, been ditched or impounded to control mosquito outbreaks and to foster wildlife use. And while mangroves dominate the subtropical coastlines of Florida and thrive in saltwater environments, little is known about how they respond to changes in hydrology under managed or variable tidal conditions. USGS researchers designed a study to evaluate the basic hydrological requirements of mangroves so that their health and survival may be more effectively managed in controlled impoundments and restored wetlands. Mangroves are commonly found in the intertidal zone (between low and high tides) in a rather broad spectrum of hydrologic settings. Because they thrive at the interface of land and sea, mangroves are subject to changes in freshwater flow (flow rate, nutrients, pollutants) and to marine influences (sea-level rise, salinity). Salinity has long been recognized as a controlling factor that determines the health and distribution of mangrove forests. Field and experimental observations indicate that most mangrove species achieve their highest growth potential under brackish conditions (modest salinity) between 10 and 20 parts per thousand (ppt). Yet, if provided with available propagules, successful regeneration, and limited competition from other plants, then mangroves can survive and thrive in freshwater systems as well. Because little is known about the growthand survival patterns of mangrove species relative to changing hydrology, USGS scientists conducted greenhouse and field experiments to determine how flooded or drained patterns of hydrology would influence

  7. Comparative study of the detection of joint injury in early-stage rheumatoid arthritis by magnetic resonance imaging of the wrist and finger joints and physical examination.

    PubMed

    Tamai, Mami; Kawakami, Atsushi; Iwamoto, Naoki; Kawashiri, Shin-Ya; Fujikawa, Keita; Aramaki, Toshiyuki; Kita, Junko; Okada, Akitomo; Koga, Tomohiro; Arima, Kazuhiko; Kamachi, Makoto; Yamasaki, Satoshi; Nakamura, Hideki; Ida, Hiroaki; Origuchi, Tomoki; Takao, Shoichiro; Aoyagi, Kiyoshi; Uetani, Masataka; Eguchi, Katsumi

    2011-03-01

    To verify whether magnetic resonance imaging (MRI)-proven joint injury is sensitive as compared with joint injury determined by physical examination. MRI of the wrist and finger joints of both hands was examined in 51 early-stage rheumatoid arthritis (RA) patients by both plain and gadolinium diethylenetriaminepentaacetic acid-enhanced MRI. Synovitis, bone edema, and bone erosion (the latter two included as bone lesions at the wrist joints); metacarpophalangeal joints; and proximal interphalangeal joints were considered as MRI-proven joint injury. Japan College of Rheumatology-certified rheumatologists had given a physical examination just before the MRI study. The presence of tender and/or swollen joints in the same fields as MRI was considered as joint injury on physical examination. The association of MRI-proven joint injury with physical examination-proven joint injury was examined. A total of 1,110 sites were available to be examined. MRI-proven joint injury was found in 521 sites, whereas the other 589 sites were normal. Physical examination-proven joint injury was found in 305 sites, which was significantly low as compared with MRI-proven joint injury (P = 1.1 × 10(-12) versus MRI). Joint injury on physical examination was not found in 81.5% of the sites where MRI findings were normal. Furthermore, an association of the severity of MRI-proven joint injury with that of joint injury on physical examination was clearly demonstrated (P = 1.6 × 10(-15), r(s) = 0.469). Our present data suggest that MRI is not only sensitive but accurately reflects the joint injury in patients with early-stage RA. Copyright © 2011 by the American College of Rheumatology.

  8. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  9. Simultaneous Analyses and Applications of Multiple Fluorobenzoate and Halide Tracers in Hydrologic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Moran, J E

    2004-01-22

    An analytical method that employs ion chromatography has been developed to more fully exploit the use of fluorobenzoic acids (FBAs) and halides as hydrologic tracers. In a single run, this reliable, sensitive, and robust method can simultaneously separate and quantify halides (fluoride, chloride, bromide, and iodide) and up to seven FBAs from other common groundwater constituents (e.g., nitrate and sulfate). The usefulness of this ion chromatographic (IC) analytical method is demonstrated in both field and laboratory tracer experiments. Field experiments in unsaturated tuff featuring fractures or a fault show that this efficient and cost-effective method helps achieve the objectives ofmore » tracer studies that use multiple FBAs and/or diffusivity tracers (simultaneous use of one or more FBA and halide). The field study examines the hydrologic response of fractures and the matrix to different flow rates and the contribution of matrix diffusion in chemical transport. Laboratory tracer experiments with eight geologic media from across the United States--mostly from Department of Energy facilities where groundwater contamination is prevalent and where subsurface characterization employing tracers has been ongoing or is in need--reveal several insights about tracer transport behavior: (1) Bromide and FBAs are not always transported conservatively. (2) The delayed transport of these anionic tracers is likely related to geologic media characteristics, such as organic matter, pH, iron oxide content, and clay mineralogy. (3) Any use of iodine as a hydrologic tracer should take into account the different sorption behaviors of iodide and iodate and the possible conversion of iodine's initial chemical form. (4) The transport behavior of potential FBA and halide tracers under relevant geochemical conditions should be evaluated before beginning ambitious, large-scale field tracer experiments.« less

  10. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  11. Hydrologic response of Pacific Northwest river to climate change

    NASA Astrophysics Data System (ADS)

    Su, F.; Cuo, L.; Wu, H.; Mantua, N.; Lettenmaier, D. P.

    2009-12-01

    The climate of the Pacific Northwest (PNW - which we define as the Columbia River basin and watersheds draining to the Oregon and Washington coasts) is expected to warm by approximately 0.3°C per decade in the next 100 years based on the IPCC the Fourth Assessment Report (AR4) results. PNW hydrology is particularly sensitive to a warming climate because of the dominant role of snowmelt in seasonal streamflow. Timing shifts in seasonality of flows, peak discharge, and base flows will impact water resource management, regional electrical energy production, and freshwater ecosystems. In this work we update previous studies of implications of climate change on PNW hydrology using a macroscale hydrology model driven by simulations of temperature and precipitation downscaled from runs of 20 General Circulation Models (GCMs) under two emissions scenarios (lower B1 and mid-high A1B) in the 21st century. The hydrology model is implemented at 1/16th degree spatial resolution over the entire PNW. A (statistical) bias-correction and spatial disaggregation downscaling approach is used for translating the transient monthly climate model output into continuous daily forcings for the hydrologic analysis. We evaluate projected changes in snow water equivalent, seasonal streamflow, and frequency of peak low flows over a set of case study watersheds in the region. We also compare these hydrologic projections with previous analysis based on delta downscaling method over the PNW. This research is part of a project investigating climate change impacts on the future of wild Pacific salmon, and is a pilot effort to investigate the hydrologic sensitivity of salmon bearing watersheds around the entire North Pacific Rim.

  12. Scaling biodiversity responses to hydrological regimes.

    PubMed

    Rolls, Robert J; Heino, Jani; Ryder, Darren S; Chessman, Bruce C; Growns, Ivor O; Thompson, Ross M; Gido, Keith B

    2018-05-01

    Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of

  13. A numerical study on hydrological impacts of forest restoration in the southern United States

    Treesearch

    Y.-Q. Liu

    2010-01-01

    Landscape in the southern United States changed dramatically during the 1930s and the following decades when massive agricultural and abandoned logging lands were converted to forest lands through natural restoration and silviculture. The impacts of this forest restoration on hydrology were investigated in this study by conducting numerical experiments with a regional...

  14. DEVELOPMENT OF HYDROLOGICAL EDUCATION IN UKRAINE

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2009-12-01

    In order to protect water from deterioration, improve water-environmental quality require the use of advanced science and technology, sufficient investment and appropriate management. All of these need effective and efficient education in different components of hydrology. The hydrological education is part of the national water - related activities in Ukraine. The needs in the quality of hydrological education will increase with introduction of new ideas and techniques into practices of water resources planners and managers. The environmentally oriented water resources development, the climate change impact on waters have to be tackled worldwide by well trained engineers and scientist relying on modern technology. Ukraine has more than 70 years of experience in the training of hydrologists. At the present hydrologists of B.Sc., M. Sc. and Ph D levels are trained at the Odesa State Environmental University (on the engineering basis) and at the Faculty of Geography of the Kyiv National University (on the geographical basis). The total duration of B.Sc. training is 4 years and M.Sc. - 5 years. The Geographical training of hydrologists at the Kyiv National University provides deeper understanding of natural processes in rivers, lakes and reservoirs, to view them in geographical complex with other physiogeographical phenomena. For this purpose students study geology, geomorphology, biology, meteorology, soil science, physical geography etc. The graduate hydrologists work in the organizations of the State Hydrometeorological Service, the State Committee for Water Management, the Academy of Sciences, others governmental and private organizations. The requirements for hydrologists of all these organizations are different in context and scope. This leads to the conclusion that a level of training of hydrologists should have a wide-scope in education. This is achieved by the university-wide fundamental and general geographic training at the first 2 years and orientation on

  15. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations.

    NASA Astrophysics Data System (ADS)

    López López, Patricia; Wanders, Niko; Sutanudjaja, Edwin; Renzullo, Luigi; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc

    2015-04-01

    The coarse spatial resolution of global hydrological models (typically > 0.25o) often limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tunes river models. A possible solution to the problem may be to drive the coarse resolution models with high-resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the modelling resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigated the impact that assimilating streamflow and satellite soil moisture observations have on global hydrological model estimation, driven by coarse- and high-resolution meteorological observations, for the Murrumbidgee river basin in Australia. The PCR-GLOBWB global hydrological model is forced with downscaled global climatological data (from 0.5o downscaled to 0.1o resolution) obtained from the WATCH Forcing Data (WFDEI) and local high resolution gauging station based gridded datasets (0.05o), sourced from the Australian Bureau of Meteorology. Downscaled satellite derived soil moisture (from 0.5o downscaled to 0.1o resolution) from AMSR-E and streamflow observations collected from 25 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global climatological data. Results show that the assimilation of streamflow observations result in the largest improvement of the model estimates. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improved in streamflow simulations (10% reduction in RMSE), mainly in the headwater catchments (up to 10,000 km2). Results also show that the added contribution of data assimilation, for both soil

  16. High-school software development project helps increasing students' awareness of geo-hydrological hazards and their risks

    NASA Astrophysics Data System (ADS)

    Marchesini, Ivan; Rossi, Mauro; Balducci, Vinicio; Salvati, Paola; Guzzetti, Fausto; Bianchini, Andrea; Grzeleswki, Emanuell; Canonico, Andrea; Coccia, Rita; Fiorucci, Gianni Mario; Gobbi, Francesca; Ciuchetti, Monica

    2015-04-01

    In Italy, inundation and landslides are widespread phenomena that impact the population and cause significant economic damage to private and public properties. The perception of the risk posed by these natural geo-hydrological hazards varies geographically and in time. The variation in the perception of the risks has negative consequences on risk management, and limits the adoption of effective risk reduction strategies. We maintain that targeted education can foster the understanding of geo-hydrological hazards, improving their perception and the awareness of the associated risk. Collaboration of a research center experienced in geo-hydrological hazards and risks (CNR IRPI, Perugia) and a high school (ITIS Alessandro Volta, Perugia) has resulted in the design and execution of a project aimed at improving the perception of geo-hydrological risks in high school students and teachers through software development. In the two-year project, students, high school teachers and research scientists have jointly developed software broadly related to landslide and flood hazards. User requirements and system specifications were decided to facilitate the distribution and use of the software among students and their peers. This allowed a wider distribution of the project results. We discuss two prototype software developed by the high school students, including an application of augmented reality for improved dissemination of information of landslides and floods with human consequences in Italy, and a crowd science application to allow students (and others, including their families and friends) to collect information on landslide and flood occurrence exploiting modern mobile devices. This information can prove important e.g., for the validation of landslide forecasting models.

  17. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study.

    PubMed

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a "soft" constraint using a penalty-based method, this elastic joint description challenges the strictness of "hard" constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

  18. Three-Dimensional Structural and Hydrologic Evolution of Sant Corneli Anticline, a Fault-Cored Fold in the Central Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    Shackleton, J. R.; Cooke, M. L.

    2005-12-01

    The Sant Corneli Anticline is a well-exposed example of a fault-cored fold whose hydrologic evolution and structural development are directly linked. The E-W striking anticline is ~ 5 km wide with abrupt westerly plunge, and formed in response to thrusting associated with the upper Cretaceous to Miocene collision of Iberia with Europe. The fold's core of fractured carbonates contains a variety of west dipping normal faults with meter to decameter scale displacement and abundant calcite fill. This carbonate unit is capped by a marl unit with low angle, calcite filled normal faults. The marl unit is overlain by clastic syn-tectonic strata whose sedimentary architecture records limb rotation during the evolution of the fold. The syn-tectonic strata contain a variety of joint sets that record the stresses before, during, and possibly after fold growth. Faulting in the marl and calcite-filled joints in the syn-tectonic strata suggest that normal faults within the carbonate core of the fold eventually breached the overlying marl unit. This breach may have connected the joints of the syn-tectonic strata to the underlying carbonate reservoir and eliminated previous compartmentalization of fluids. Furthermore, breaching of the marl units probably enhanced joint formation in the overlying syn-tectonic strata. Future geochemical studies of calcite compositions in the three units will address this hypothesis. Preliminary mapping of joint sets in the syn-tectonic strata reveal a multistage history of jointing. Early bed-perpendicular joints healed by calcite strike NE-SW, parallel to normal faults in the underlying carbonates, and may be related to an early regional extensional event. Younger healed bed-perpendicular joints cross cut the NE-SW striking set, and are closer to N-S in strike: these joints are interpreted to represent the initial stages of folding. Decameter scale, bed perpendicular, unfilled fractures that are sub-parallel to strike probably represent small joints

  19. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  20. A micro-hydrology computation ordering algorithm

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-11-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.

  1. Wetland Hydrological Connectivity: A Classification Approach ...

    EPA Pesticide Factsheets

    Connectivity has become a major focus of hydrological and ecological studies. Connectivity influences fluxes between landscape elements, while isolation reduces flows between elements. Thus connectivity can be an important characteristic controlling ecosystem services. Hydrologic connectivity is particularly significant, since movement of chemical constituents and biota flows are often associated with water flow. While wetlands have many important on-site functions, the degree to which they are connected to other ecosystems is a controlling influence on the effect these waters have on the larger landscape. Specifically, wetlands with high connectivity can serve as sources (e.g., net exporters of dissolved carbon), while those with low connectivity can function as sinks (e.g., net importers of suspended sediments). Here we focus on so-called “geographically isolated wetlands” (GIWs), or wetlands that are completely surrounded by uplands. While these wetlands normally lack surface water connections, they can be hydrologically connected to downstream waters through intermittent surface flow or groundwater. To help quantify connectivity of GIWs with downstream waters, we developed a system to classify GIWs based on type, magnitude, and frequency of hydrologic connectivity. We determine type (overland, shallow groundwater, or deep groundwater connectivity) by considering soil and bedrock permeability. For magnitude, we developed indices to repre

  2. Nested Tracer Studies In Catchment Hydrology: Towards A Multiscale Understanding of Runoff Generation and Catchment Funtioning

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.

    Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly

  3. Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study.

    PubMed

    Herold, Christian; Rennekampff, Hans-Oliver; Groddeck, Robert; Allert, Sixtus

    2017-08-01

    Most operations for carpometacarpal joint osteoarthritis of the thumb irreversibly alter or destroy the anatomy. There is a high demand for minimally invasive alternatives. The authors report the results of autologous fat transfer for treatment of thumb carpometacarpal joint osteoarthritis. In a prospective study, 50 patients with thumb carpometacarpal joint osteoarthritis were observed for 1 year after autologous fat transfer. Manual liposuction and centrifugation were performed. Pain rating according to visual analogue pain scale; objective force of pinch grip and fist closure; and Disabilities of the Arm, Shoulder, and Hand questionnaire scores before and after treatment were analyzed. The average pain in stage 2 patients preoperatively was 7.7 ± 1.3; it was 1.8 ± 1.9 after 6 months and 2.4 ± 3.1 after 12 months. Patients with stage 2 osteoarthritis demonstrated a superior benefit from this treatment compared with patients with either stage 3 or stage 4 thumb carpometacarpal joint osteoarthritis. There were similar improvements for the parameters strength and Disabilities of the Arm, Shoulder, and Hand questionnaire score. No serious adverse events were observed. Autologous fat transplantation is an appealing alternative, especially in early-stage basal joint osteoarthritis of the thumb. The low invasiveness of the procedure and early recovery of patients compared with classical procedures such as trapeziectomy, and the superior long-term results compared with classical injection therapy, make this approach feasible as a first-line therapy in early-stage basal joint osteoarthritis of the thumb. Therapeutic, IV.

  4. Study on Joint Interface and Mechanical Properties of Cu/Pb-Sn/Cu Lap Joint Produced by Friction Stir Soldering Process

    NASA Astrophysics Data System (ADS)

    Sarkari Khorrami, Mahmoud; Kokabi, Amir Hossein; Movahedi, Mojtaba

    2015-05-01

    In this work, friction stir soldering (FSS) as a new approach for fabrication of copper/copper lap joints was introduced. This process is principally based on the friction stir processing (FSP) that can be performed using FSP tools with and without pin on the top sheet. In the present study, Pb-Sn foil was used as a solder which would be melted and then extruded in the area between the copper sheets during FSS process. This process was carried out using tools with and without pin at various rotation speeds of 1200, 1400, and 1600 rpm and traverse speed of 32 mm/min. Also, the same joint was fabricated using furnace soldering to compare the mechanical properties obtained with FSS and furnace soldering processes. It was observed that FSS possesses some advantages over the conventional furnace soldering process including the formation of more bond area at the interface corresponding to the higher fracture load of FSS joints compared with furnace soldering one. Moreover, it was concluded that the thickness of intermetallic compounds (IMCs) and the formation of voids at the joint interface were the predominant factor determining the mechanical properties of the FSS joints produced by FSS tool with and without pin, respectively. The microstructural examinations revealed that Cu-Sn IMCs of Cu3Sn and Cu6Sn5 were formed at the joint interface. It was observed that the FSS joint produced by tool with pin experienced the more peak temperature in comparison with that produced by pin-free tool. This may lead to the formation of thicker IMCs at the interface. Of course, the thickness of IMCs can be controlled by choosing proper FSS parameters, especially the rotation speed of the tool.

  5. Debates—Hypothesis testing in hydrology: Introduction

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter

    2017-03-01

    This paper introduces the papers in the "Debates—Hypothesis testing in hydrology" series. The four articles in the series discuss whether and how the process of testing hypotheses leads to progress in hydrology. Repeated experiments with controlled boundary conditions are rarely feasible in hydrology. Research is therefore not easily aligned with the classical scientific method of testing hypotheses. Hypotheses in hydrology are often enshrined in computer models which are tested against observed data. Testability may be limited due to model complexity and data uncertainty. All four articles suggest that hypothesis testing has contributed to progress in hydrology and is needed in the future. However, the procedure is usually not as systematic as the philosophy of science suggests. A greater emphasis on a creative reasoning process on the basis of clues and explorative analyses is therefore needed.

  6. Acromioclavicular joint reconstruction using the LockDown synthetic implant: a study with cadavers.

    PubMed

    Taranu, R; Rushton, P R P; Serrano-Pedraza, I; Holder, L; Wallace, W A; Candal-Couto, J J

    2015-12-01

    Dislocation of the acromioclavicular joint is a relatively common injury and a number of surgical interventions have been described for its treatment. Recently, a synthetic ligament device has become available and been successfully used, however, like other non-native solutions, a compromise must be reached when choosing non-anatomical locations for their placement. This cadaveric study aimed to assess the effect of different clavicular anchorage points for the Lockdown device on the reduction of acromioclavicular joint dislocations, and suggest an optimal location. We also assessed whether further stability is provided using a coracoacromial ligament transfer (a modified Neviaser technique). The acromioclavicular joint was exposed on seven fresh-frozen cadaveric shoulders. The joint was reconstructed using the Lockdown implant using four different clavicular anchorage points and reduction was measured. The coracoacromial ligament was then transferred to the lateral end of the clavicle, and the joint re-assessed. If the Lockdown ligament was secured at the level of the conoid tubercle, the acromioclavicular joint could be reduced anatomically in all cases. If placed medial or 2 cm lateral, the joint was irreducible. If the Lockdown was placed 1 cm lateral to the conoid tubercle, the joint could be reduced with difficulty in four cases. Correct placement of the Lockdown device is crucial to allow anatomical joint reduction. Even when the Lockdown was placed over the conoid tubercle, anterior clavicle displacement remained but this could be controlled using a coracoacromial ligament transfer. ©2015 The British Editorial Society of Bone & Joint Surgery.

  7. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    NASA Astrophysics Data System (ADS)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  8. Operational hydrological forecasting in Bavaria. Part I: Forecast uncertainty

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In Bavaria, operational flood forecasting has been established since the disastrous flood of 1999. Nowadays, forecasts based on rainfall information from about 700 raingauges and 600 rivergauges are calculated and issued for nearly 100 rivergauges. With the added experience of the 2002 and 2005 floods, awareness grew that the standard deterministic forecast, neglecting the uncertainty associated with each forecast is misleading, creating a false feeling of unambiguousness. As a consequence, a system to identify, quantify and communicate the sources and magnitude of forecast uncertainty has been developed, which will be presented in part I of this study. In this system, the use of ensemble meteorological forecasts plays a key role which will be presented in part II. Developing the system, several constraints stemming from the range of hydrological regimes and operational requirements had to be met: Firstly, operational time constraints obviate the variation of all components of the modeling chain as would be done in a full Monte Carlo simulation. Therefore, an approach was chosen where only the most relevant sources of uncertainty were dynamically considered while the others were jointly accounted for by static error distributions from offline analysis. Secondly, the dominant sources of uncertainty vary over the wide range of forecasted catchments: In alpine headwater catchments, typically of a few hundred square kilometers in size, rainfall forecast uncertainty is the key factor for forecast uncertainty, with a magnitude dynamically changing with the prevailing predictability of the atmosphere. In lowland catchments encompassing several thousands of square kilometers, forecast uncertainty in the desired range (usually up to two days) is mainly dependent on upstream gauge observation quality, routing and unpredictable human impact such as reservoir operation. The determination of forecast uncertainty comprised the following steps: a) From comparison of gauge

  9. Hydrologic Design in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Vogel, R. M.; Farmer, W. H.; Read, L.

    2014-12-01

    In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood

  10. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  11. Hydrologic Extremes and Risk Assessment under Non-stationarity

    NASA Astrophysics Data System (ADS)

    Mondal, A.

    2015-12-01

    In the context of hydrologic designs, robust assessment and communication of risk is crucial to ascertain a sustainable water future. Traditional methods for defining return period, risk or reliability assumes a stationary regime which may no longer be valid because of natural or man-made changes. Reformulations are suggested in recent literature to account for non-stationarity in the definition of hydrologic risk, as time evolves. This study presents a comparative analysis of design levels under non-stationarity based on time varying annual exceedance probabilities, waiting time of a hazardous event, number of hazardous events and probability of failure. A case study application is shown for peak streamflow in the flood-prone delta area of the Krishna River in India where an increasing trend in annual maximum flows are observed owing to persistent silting. Considerable disagreement is found between the design magnitudes of flood obtained by the different definitions of hydrologic risk. Such risk is also found to be highly sensitive to the assumed design life period and projections of trend in that period or beyond. Additionally, some critical points on the assumption of a deterministic non-stationary model for an observed natural process are also discussed. The findings highlight the necessity for a unifying framework for assessment and communication of hydrologic risk under transient hydro-climatic conditions. The concepts can also be extended to other applications such as regional hydrologic frequency analysis or development of precipitation intensity-duration-frequency relationships for infrastructure design.

  12. Water yield and hydrology

    Treesearch

    Pamela J. Edwards; Charles A. Troendle

    2012-01-01

    Investigations of hydrologic responses resulting from reducing vegetation density are fairly common throughout the Eastern United States. Although most studies have focused on the potential for increasing water yields or documenting effects from intensive practices that far exceed what would be done for fuel-reduction objectives, data from some less-intensive...

  13. Towards a delimitation of southwestern Nigeria into hydrological regions

    NASA Astrophysics Data System (ADS)

    Ogunkoya, O. O.

    1988-05-01

    Fifteen third-order drainage basins (1:50,000) on the Basement Complex rocks of southwestern Nigeria are classified into hydrological regions using hydrologic response parameters of average daily mean specific discharge ( QA); daily mean specific discharges equalled or exceeded 90% ( Q90), 50% ( Q50) and 10% ( Q10) of the study period; variability index of flow ( VI); recession constant ( K) of flow from peak discharge at the end of the rainy season to minimum discharge in the dry season; total annual runoff ( RO); total runoff within the dry season ( DSRO); dry season runoff as a percentage of total annual runoff (% DSRO); runoff coefficient ( ROC); and, number of days during the study period when there was no flow ( NFD). An ordination technique and a classification algorithm derived from cluster analysis technique and incorporating the analysis of variance (ANOVA) tests to determine the level of significance of the homogeneity of derived classes, were used to classify the fifteen basins into five hydrologically homogeneous regions. The constituent basins of each region were observed to share common basin geology. It was observed that those drainage basins having at least 50% of their basin area underlain by quartzitic rocks form two groups and have the most desirable or optimal hydrologic response patterns, desirability or optimality being in terms of ability to potentially meet water resource development requirements (i.e. high perennial discharge, low variability and large groundwater contribution to stream flow). The basins predominantly underlain by granite-gneisses and amphibolitic rocks have much poorer hydrologic response patterns. Hydrological regionalization in southwestern Nigeria appears to be influenced by drainage basin geology while percentage area of the basin underlain by massive quartzites could be used as an index of occurrence of desirable hydrologic response pattern.

  14. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  15. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  16. Simulating hydrological processes of a typical small mountainous catchment in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Y. P.; Bai, Z.; Fu, Q.; Pan, S.; Zhu, C.

    2017-12-01

    Water cycle of small watersheds with seasonal/permanent frozen soil and snow pack in Tibetan Plateau is seriously affected by climate change. The objective of this study is to find out how much and in what way the frozen soil and snow pack will influence the hydrology of small mountainous catchments in cold regions and how can the performance of simulation by a distributed hydrological model be improved. The Dong catchment, a small catchment located in Tibetan Plateau, is used as a case study. Two measurement stations are set up to collect basic meteorological and hydrological data for the modeling purpose. Annual and interannual variations of runoff indices are first analyzed based on historic data series. The sources of runoff in dry periods and wet periods are analyzed respectively. Then, a distributed hydrology soil vegetation model (DHSVM) is adopted to simulate the hydrological process of Dong catchment based on limited data set. Global sensitivity analysis is applied to help determine the important processes of the catchment. Based on sensitivity analysis results, the Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) is finally added into the hydrological model to calibrate the hydrological model in a multi-objective way and analyze the performance of DHSVM model. The performance of simulation is evaluated with several evaluation indices. The final results show that frozen soil and snow pack do play an important role in hydrological processes in cold mountainous region, in particular in dry periods without precipitation, while in wet periods precipitation is often the main source of runoff. The results also show that although the DHSVM hydrological model has the potential to model the hydrology well in small mountainous catchments with very limited data in Tibetan Plateau, the simulation of hydrology in dry periods is not very satisfactory due to the model's insufficiency in simulating seasonal frozen soil.

  17. An approach to measure parameter sensitivity in watershed hydrological modelling

    EPA Science Inventory

    Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the...

  18. Surgical anatomy of the sternoclavicular joint: a qualitative and quantitative anatomical study.

    PubMed

    Lee, Jared T; Campbell, Kevin J; Michalski, Max P; Wilson, Katharine J; Spiegl, Ulrich J A; Wijdicks, Coen A; Millett, Peter J

    2014-10-01

    The quantitative anatomical relationships of the main ligamentous, tendinous, and osseous structures of the sternoclavicular joint have not been widely investigated. The purpose of this study was to provide a quantitative description of the sternoclavicular joint in relation to relevant surgical landmarks. We dissected eleven nonpaired, fresh-frozen cadaveric sternoclavicular joints from four men and seven women (mean age at death, fifty-three years; range, thirty-three to sixty-four years) and measured the ligaments, musculature, and osseous landmarks with use of a three-dimensional coordinate-measuring device. The clavicular pectoralis ridge, located at the 9:30 clock-face position on a right clavicle, served as a reliable osseous landmark for reference to the soft-tissue attachments around the sternoclavicular joint. The costoclavicular ligament was the largest ligament of the sternoclavicular joint, with 80% greater footprint area than that of the posterior sternoclavicular ligament. Articular cartilage covered 67% of the medial end of the clavicle and was located anteroinferiorly. The sternohyoid muscle inserted directly over the posterior sternoclavicular joint and the medial end of the clavicle, whereas the sternothyroid muscle inserted 9.5 mm inferior to the posterior-superior articular margin of the manubrium and coursed 19.8 mm laterally along the first rib. An avascular plane that can serve as a "safe zone" for posterior dissection was observed in each specimen, posterior to the sternoclavicular joint and anterior to the sternohyoid and sternothyroid muscles. The clavicular pectoralis ridge can be used as an intraoperative guide for clavicle orientation and tunnel placement in sternoclavicular ligament reconstruction. Sternoclavicular joint resection arthroplasty should avoid injuring the costoclavicular ligament, which is the largest sternoclavicular joint ligament. Resection of only the anteroinferior aspect of the medial end of the clavicle may

  19. Decision Support System for hydrological extremes

    NASA Astrophysics Data System (ADS)

    Bobée, Bernard; El Adlouni, Salaheddine

    2014-05-01

    The study of the tail behaviour of extreme event distributions is important in several applied statistical fields such as hydrology, finance, and telecommunications. For example in hydrology, it is important to estimate adequately extreme quantiles in order to build and manage safe and effective hydraulic structures (dams, for example). Two main classes of distributions are used in hydrological frequency analysis: the class D of sub-exponential (Gamma (G2), Gumbel, Halphen type A (HA), Halphen type B (HB)…) and the class C of regularly varying distributions (Fréchet, Log-Pearson, Halphen type IB …) with a heavier tail. A Decision Support System (DSS) based on the characterization of the right tail, corresponding low probability of excedence p (high return period T=1/p, in hydrology), has been developed. The DSS allows discriminating between the class C and D and in its last version, a new prior step is added in order to test Lognormality. Indeed, the right tail of the Lognormal distribution (LN) is between the tails of distributions of the classes C and D; studies indicated difficulty with the discrimination between LN and distributions of the classes C and D. Other tools are useful to discriminate between distributions of the same class D (HA, HB and G2; see other communication). Some numerical illustrations show that, the DSS allows discriminating between Lognormal, regularly varying and sub-exponential distributions; and lead to coherent conclusions. Key words: Regularly varying distributions, subexponential distributions, Decision Support System, Heavy tailed distribution, Extreme value theory

  20. Signaling networks in joint development

    PubMed Central

    Salva, Joanna E.; Merrill, Amy E.

    2016-01-01

    Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints unite adjacent bones through either a hyaline cartilage or fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. PMID:27859991

  1. The joint flanker effect and the joint Simon effect: On the comparability of processes underlying joint compatibility effects.

    PubMed

    Dittrich, Kerstin; Bossert, Marie-Luise; Rothe-Wulf, Annelie; Klauer, Karl Christoph

    2017-09-01

    Previous studies observed compatibility effects in different interference paradigms such as the Simon and flanker task even when the task was distributed across two co-actors. In both Simon and flanker tasks, performance is improved in compatible trials relative to incompatible trials if one actor works on the task alone as well as if two co-actors share the task. These findings have been taken to indicate that actors automatically co-represent their co-actor's task. However, recent research on the joint Simon and joint flanker effect suggests alternative non-social interpretations. To which degree both joint effects are driven by the same underlying processes is the question of the present study, and it was scrutinized by manipulating the visibility of the co-actor. While the joint Simon effect was not affected by the visibility of the co-actor, the joint flanker effect was reduced when participants did not see their co-actors but knew where the co-actors were seated. These findings provide further evidence for a spatial interpretation of the joint Simon effect. In contrast to recent claims, however, we propose a new explanation of the joint flanker effect that attributes the effect to an impairment in the focusing of spatial attention contingent on the visibility of the co-actor.

  2. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study

    PubMed Central

    Kiapour, Ali; Yerby, Scott A.; Goel, Vijay K.

    2015-01-01

    Background Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. Methods An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. Results The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Conclusions Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated. PMID:26767156

  3. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    PubMed

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  4. Gender differences in joint biomechanics during walking: normative study in young adults.

    PubMed

    Kerrigan, D C; Todd, M K; Della Croce, U

    1998-01-01

    The effect of gender on specific joint biomechanics during gait has been largely unexplored. Given the perceived, subjective, and temporal differences in walking between genders, we hypothesized that quantitative analysis would reveal specific gender differences in joint biomechanics as well. Sagittal kinematic (joint motion) and kinetic (joint torque and power) data from the lower limbs during walking were collected and analyzed in 99 young adult subjects (49 females), aged 20 to 40 years, using an optoelectronic motion analysis and force platform system. Kinetic data were normalized for both height and weight. Female and male data were compared graphically and statistically to assess differences in all major peak joint kinematic and kinetic values. Females had significantly greater hip flexion and less knee extension before initial contact, greater knee flexion moment in pre-swing, and greater peak mechanical joint power absorption at the knee in pre-swing (P < 0.0019 for each parameter). Other differences were noted (P < 0.05) that were not statistically significant when accounting for multiple comparisons. These gender differences may provide new insights into walking dynamics and may be important for both clinical and research studies in motivating the development of separate biomechanical reference databases for males and females.

  5. Multi-temporal study of BELVEDERE glacier for hydrologic hazard monitoring and water resource estimation using UAV: tests and first results

    NASA Astrophysics Data System (ADS)

    Piras, Marco; Cina, Alberto; De Michele, Carlo; Pinto, Livio; Barzaghi, Riccardo; Maschio, Paolo F.; Avanzi, Francesco; Bianchi, Alberto; Deidda, Cristina; Donizetti, Alberto; Giani, Giulia; Giarrizzo, Giuseppe; Negrini, Alessandro; Rampazzo, Alessandro; Savaia, Gianluca; Soria, Enrica

    2016-04-01

    Nowadays, expected effects of climate change at local, regional and global scales endanger hydrologic budgets of Alpine regions. An example is the massive shrinkage of mountain glaciers, with the consequent problem of water resources reduction for civil population and ecosystems. Therefore, it is very important to monitor glaciers' evolution, in order to allow an estimation of glaciers' reduction and possible effects on the hydrologic cycle. In 2015, a research team called DREAM (Drone Technology for Water Resources and hydrologic hazards Monitoring) has been created within the framework of "Alta Scuola Politecnica", joint initiative between Politecnico di Milano and Politecnico di Torino (Italy), and composed by 15 people among students, research associates and professors belonging to the two universities. The goal of the research team is to investigate new technologies and tools, including Unmanned Aerial Vehicle (UAVs), for monitoring natural hazard and evaluating water resources at different scales. In particular, in this first step, the DREAM team has selected as test site the eastern slopes of Monte Rosa and its long glacier tongue (Belvedere glacier). This area of Monte Rosa massif has an altitude range between 2000 m up to 4500 m ASL, while the glacier tongue has an extension greater than 3 km 2. Usually, glacier thickness and area evolution are monitored using, e.g., time-consuming field activities based on point stratigraphy and mass balances, or radar sounding, which do not allow to obtain a continuous-time, detailed and accurate information about surface and volume evolution at fine spatial resolutions. In this framework, we have used a fixed-wing UAV (eBee sensesly) to acquire RGB images, in order to generate a dense DSM (DDSM) and an orthophoto of the glacier, with a high resolution (4-6 cm). In this way, we aim at analyzing the variations of glacier volume in time. The acquisition was carried out with two different campaigns of measurement in October

  6. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  7. Ankle joint function during walking in tophaceous gout: A biomechanical gait analysis study.

    PubMed

    Carroll, Matthew; Boocock, Mark; Dalbeth, Nicola; Stewart, Sarah; Frampton, Christopher; Rome, Keith

    2018-04-17

    The foot and ankle are frequently affected in tophaceous gout, yet kinematic and kinetic changes in this region during gait are unknown. The aim of the study was to evaluate ankle biomechanical characteristics in people with tophaceous gout using three-dimensional gait analysis. Twenty-four participants with tophaceous gout were compared with 24 age-and sex-matched control participants. A 9-camera motion analysis system and two floor-mounted force plates were used to calculate kinematic and kinetic parameters. Peak ankle joint angular velocity was significantly decreased in participants with gout (P < 0.01). No differences were found for ankle ROM in either the sagittal (P = 0.43) or frontal planes (P = 0.08). No differences were observed between groups for peak ankle joint power (P = 0.41), peak ankle joint force (P = 0.25), peak ankle joint moment (P = 0.16), timing for peak ankle joint force (P = 0.81), or timing for peak ankle joint moment (P = 0.16). Three dimensional gait analysis demonstrated that ankle joint function does not change in people with gout. People with gout demonstrated a reduced peak ankle joint angular velocity which may reflect gait-limiting factors and adaptations from the high levels of foot pain, impairment and disability experienced by this population. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Hydrological Flowpaths and Their Controls at LBA Biogeochemistry Study Sites - Communalities, Contrasts and Representativeness

    NASA Astrophysics Data System (ADS)

    Elsenbeer, H.; Johnson, M.; Neill, C.

    2006-12-01

    Several LBA projects have focused on nutrient fluxes within and nutrient export from forested terra firme headwater catchments. Their physiographic settings encompass the most common soil types of Amazonia, i.e., Oxisols and Ultisols, and share the topography typical of recently dissected landscapes. We will explore to which degree pedological and geomorphological similarities among sites in Amazonas, Mato Grosso and Rondonia extend to near-surface hydrological behavior. We will then interpret differences in nutrient dynamics in terms of contrasting hydrological flowpaths and soil chemistry. Special attention will be given to the usefulness, or lack thereof, of soil taxonomic information as a predictor of near-surface hydrological and hydrochemical behavior in Amazonia, and to the role of riparian zones in masking terra firme processes. Against this background, we will evaluate the representativeness of these LBA sites in the Amazonian context.

  9. Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River

    NASA Astrophysics Data System (ADS)

    Lobanova, Anastasia; Liersch, Stefan; Tàbara, J. David; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2017-05-01

    Conventional water management strategies, that serve solely socio-economic demands and neglect changing natural conditions of the river basins, face significant challenges in governing complex human-hydrological systems, especially in the areas with constrained water availability. In this study we assess the possibility to harmonize the inter-sectoral water allocation scheme within a highly altered human-hydrological system under reduction in water availability, triggered by projected climate change applying scenario-based approach. The Tagus River Basin headwaters, with significant disproportion in the water resources allocation between the environmental and socio-economic targets were taken as a perfect example of such system out of balance. We propose three different water allocation strategies for this region, including two conventional schemes and one imposing shift to sustainable water management and environmental restoration of the river. We combine in one integrated modelling framework the eco-hydrological process-based Soil and Water Integrated Model (SWIM), coupled with the conceptual reservoir and water allocation modules driven by the latest bias-corrected climate projections for the region and investigate possible water allocation scenarios in the region under constrained water availability in the future. Our results show that the socio-economic demands have to be re-considered and lowered under any water allocation strategy, as the climate impacts may significantly reduce water availability in the future. Further, we show that a shift to sustainable water management strategy and river restoration is possible even under reduced water availability. Finally, our results suggest that the adaptation of complex human-hydrological systems to climate change and a shift to a more sustainable water management are likely to be parts of one joint strategy to cope with climate change impacts.

  10. Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study

    PubMed Central

    Richard, Vincent; Lamberto, Giuliano; Lu, Tung-Wu; Cappozzo, Aurelio; Dumas, Raphaël

    2016-01-01

    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO. PMID:27314586

  11. CrowdHydrology: crowdsourcing hydrologic data and engaging citizen scientists.

    PubMed

    Lowry, Christopher S; Fienen, Michael N

    2013-01-01

    Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  12. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  13. Designing a visualization system for hydrological data

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Sven

    2000-02-01

    The field of hydrology is, as any other scientific field, strongly affected by a massive technological evolution. The spread of modern information and communication technology within the last three decades has led to an increased collection, availability and use of spatial and temporal digital hydrological data. In a two-year research period a working group in Muenster applied and developed methods for the visualization of digital hydrological data and the documentation of hydrological models. A low-cost multimedial, hydrological visualization system (HydroVIS) for the Weser river catchment was developed. The research group designed HydroVIS under freeware constraints and tried to show what kind of multimedia visualization techniques can be effectively used with a nonprofit hydrological visualization system. The system's visual components include features such as electronic maps, temporal and nontemporal cartographic animations, the display of geologic profiles, interactive diagrams and hypertext, including photographs and tables.

  14. Joint symptoms associated with anastrozole and letrozole in patients with breast cancer: a retrospective comparative study.

    PubMed

    Morimoto, Yoshihito; Sarumaru, Shuhei; Oshima, Yuko; Tsuruta, Chiho; Watanabe, Kazuhiro

    2017-01-01

    Joint symptoms are a common side effect of aromatase inhibitors. However, it is not known if the risk of these symptoms varies between the members of this drug class. The aim of this study was to compare the frequency of joint symptoms associated with anastrozole and that associated with letrozole. We retrospectively reviewed patients with breast cancer who were treated with anastrozole or letrozole at Tsukiji Breast Clinic, Japan, between April 2008 and July 2014. Joint symptoms were deemed to include both joint pain and painless joint symptoms. The time to onset of joint symptoms in the anastrozole group was compared with that in the letrozole group using Kaplan-Meier curves and the log-rank test. Of 141 patients identified to have received aromatase inhibitors, 70 had been treated with anastrozole and 71 with letrozole. Joint symptoms occurred in 60.3% of the 141 patients (60.0% in the anastrozole group and 60.6% in the letrozole group; p  = 1). Median time to appearance of joint symptoms was 583 days, with no significant difference between the anastrozole and letrozole groups ( p  = 0.962). There was no significant difference in time to onset of joint pain ( p  = 0.139); however, time to onset of painless joint symptoms was significantly shorter in the anastrozole group ( p  = 0.022). The sites at which joint symptoms occurred were similar in the two groups. The results of this study indicate that there is no difference in the pattern of occurrence of joint symptoms caused by anastrozole and those caused by letrozole. Trial registration was not required for this study because of its retrospective nature and lack of intervention.

  15. An Agenda for Land-Surface Hydrology Research and a Call for the Second International Hydrological Decade

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Bras, Rafael L.; McLaughlin, Dennis B.; Asrar, Ghassem R.; Wei, Ying; Betts, Alan K.; Beven, Keith J.; Duffy, Christopher J.; Dunne, Thomas; Koster, Randall D.; hide

    1998-01-01

    An agenda for land-surface hydrology research is proposed to open the debate for more comprehensive prioritization of science and application activities in the hydrologic sciences. A set of science questions are posed and the observational requirements to achieve substantial progress are identified. In this context, the proposal to initiate the 2nd International Hydrologic Decade (IHD) is put forth. The benefits of this initiative for enhanced scientific understanding and improved capability in meeting societal needs are also identified.

  16. Revisiting an interdisciplinary hydrological modelling project. A socio-hydrology (?) example from the early 2000s

    NASA Astrophysics Data System (ADS)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    Interdisciplinary scientific and societal knowledge plays an increasingly important role in global change research. Also, in the field of water resources interdisciplinarity as well as cooperation with stakeholders from outside academia have been recognized as important. In this contribution, we revisit an integrated regional modelling system (DANUBIA), which was developed by an interdisciplinary team of researchers and relied on stakeholder participation in the framework of the GLOWA-Danube project from 2001 to 2011 (Mauser and Prasch 2016). As the model was developed before the current increase in literature on participatory modelling and interdisciplinarity, we ask how a socio-hydrology approach would have helped and in what way it would have made the work different. The present contribution firstly presents the interdisciplinary concept of DANUBIA, mainly with focus on the integration of human behaviour in a spatially explicit, process-based numerical modelling system (Roland Barthel, Janisch, Schwarz, Trifkovic, Nickel, Schulz, and Mauser 2008; R. Barthel, Nickel, Meleg, Trifkovic, and Braun 2005). Secondly, we compare the approaches to interdisciplinarity in GLOWA-Danube with concepts and ideas presented by socio-hydrology. Thirdly, we frame DANUBIA and a review of key literature on socio-hydrology in the context of a survey among hydrologists (N = 184). This discussion is used to highlight gaps and opportunities of the socio-hydrology approach. We show that the interdisciplinary aspect of the project and the participatory process of stakeholder integration in DANUBIA were not entirely successful. However, important insights were gained and important lessons were learnt. Against the background of these experiences we feel that in its current state, socio-hydrology is still lacking a plan for knowledge integration. Moreover, we consider necessary that socio-hydrology takes into account the lessons learnt from these earlier examples of knowledge integration

  17. Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Bai, P.

    2017-12-01

    Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.

  18. Hydrology for a Changing World

    NASA Astrophysics Data System (ADS)

    Hirsch, R. M.

    2017-12-01

    To support critical decisions related to water quantity, quality, and hazard mitigation, surface water hydrologists and water resources engineers have historically invoked the assumption that hydrologic systems are stationary; variables such as discharge or solute fluxes were assumed to have a mean, a variance, and other statistical properties that did not change over time. Today, the drivers of non-stationarity such as urbanization, groundwater depletion, engineered land-drainage systems, application of nutrients at the land surface, new farming technologies, and changes in greenhouse gas forcing of the global atmosphere have perturbed hydrologic systems enough so that this assumption must be challenged. Understanding of the non-stationarity in hydrologic systems is important for at least two major reasons: (1) Society needs insights on the hydrologic conditions of the future as a basis for planning, operating, and regulating water resources in the future. Water resources engineers cannot depend solely on records of the past to design and operate in the future. However, simply substituting model projections for historic records, without evaluation of the ability of those models to produce realistic projections, is not acceptable. (2) Non-stationarity provides a framework to identify emerging water resource issues and evaluate our society's success in achieving its environmental goals. The study of hydrologic change is our greatest challenge. We must learn how best to blend our knowledge of the past with our projections of the future. In this non-stationary world, observing systems and networks become even more critically important and our models must be tested using historical records to ensure that they produce useful projections of our future. In the words of Ralph Keeling, "The only way to figure out what is happening to our planet is to measure it, and this means tracking the changes decade after decade, and poring over the records." Walter Langbein knew the

  19. ERM model analysis for adaptation to hydrological model errors

    NASA Astrophysics Data System (ADS)

    Baymani-Nezhad, M.; Han, D.

    2018-05-01

    Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.

  20. How to handle spatial heterogeneity in hydrological models.

    NASA Astrophysics Data System (ADS)

    Loritz, Ralf; Neuper, Malte; Gupta, Hoshin; Zehe, Erwin

    2017-04-01

    The amount of data we observe in our environmental systems is larger than ever. This leads to a new kind of problem where hydrological modelers can have access to large datasets with various quantitative and qualitative observations but are uncertain about the information content with respect to the hydrological functioning of a landscape. For example digital elevation models obviously contain plenty of information about the topography of a landscape; however the question of relevance for Hydrology is how much of this information is important for the hydrological functioning of a landscape. This kind of question is not limited to topography and we can ask similar questions when handling distributed rainfall data or geophysical images. In this study we would like to show how one can separate dominant patterns in the landscape from idiosyncratic system details. We use a 2D numerical hillslope model in combination with an extensive research data set to test a variety of different model setups that are built upon different landscape characteristics and run by different rainfalls measurements. With the help of information theory based measures we can identify and learn how much heterogeneity is really necessary for successful hydrological simulations and how much of it we can neglect.

  1. Hydrological excitation of polar motion by different variables of the GLDAS models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.

  2. The Hydrologic Ensemble Prediction Experiment (HEPEX)

    NASA Astrophysics Data System (ADS)

    Wood, Andy; Wetterhall, Fredrik; Ramos, Maria-Helena

    2015-04-01

    The Hydrologic Ensemble Prediction Experiment was established in March, 2004, at a workshop hosted by the European Center for Medium Range Weather Forecasting (ECMWF), and co-sponsored by the US National Weather Service (NWS) and the European Commission (EC). The HEPEX goal was to bring the international hydrological and meteorological communities together to advance the understanding and adoption of hydrological ensemble forecasts for decision support. HEPEX pursues this goal through research efforts and practical implementations involving six core elements of a hydrologic ensemble prediction enterprise: input and pre-processing, ensemble techniques, data assimilation, post-processing, verification, and communication and use in decision making. HEPEX has grown through meetings that connect the user, forecast producer and research communities to exchange ideas, data and methods; the coordination of experiments to address specific challenges; and the formation of testbeds to facilitate shared experimentation. In the last decade, HEPEX has organized over a dozen international workshops, as well as sessions at scientific meetings (including AMS, AGU and EGU) and special issues of scientific journals where workshop results have been published. Through these interactions and an active online blog (www.hepex.org), HEPEX has built a strong and active community of nearly 400 researchers & practitioners around the world. This poster presents an overview of recent and planned HEPEX activities, highlighting case studies that exemplify the focus and objectives of HEPEX.

  3. Hydrology

    Treesearch

    Mark H. Eisenbies; W. Brian Hughes

    2000-01-01

    Hydrologic processes are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic produvtivity, biodiversity, and biogeochemical cycling....

  4. Joint Assimilation of SMOS Brightness Temperature and GRACE Terrestrial Water Storage Observations for Improved Soil Moisture Estimation

    NASA Technical Reports Server (NTRS)

    Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew

    2017-01-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  5. Joint assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for improved soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.

    2017-12-01

    Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.

  6. The development of a hydrologic-hydraulic representation of an urbanscape: the case study of Nashville, Tennessee

    NASA Astrophysics Data System (ADS)

    Sedlar, F.; Ivanov, V. Y.; Shao, J.; Narayan, U.; Nardi, F.; Adams, T. E.; Merwade, V.; Wright, D. B.; Kim, J.; Fatichi, S.; Rakhmatulina, E.

    2013-12-01

    Incorporating elevation data into coupled hydraulic and hydrologic models with the use of triangulated irregular networks (TINs) provides a detailed and highly customizable representation of the original domain. Until recently the resolution of such digital elevation models was 1 or 1/3 arc second (10-30 meters). Aided by the use of LiDAR, digital elevation models are now available at the 1/9 arc second resolution (1-3 meters). With elevation data at this level of resolution watershed details that are overlooked at a 10-30 meter resolution can now be resolved and incorporated into the TIN. For urban flood modeling this implies that street level features can be resolved. However to provide a useful picture of the flooding as a whole, this data would need to be integrated across a citywide scale. To prove the feasibility, process, and capabilities of generating such a detailed and large scale TIN, we present a case study of Nashville, TN, USA, during the May 1-2, 2010 flooding, a 1,000 year storm event. With the use of ArcGIS, HEC-RAS, Triangle, and additionally developed processing methodologies, an approach is developed to generate a hydrologically relevant and detailed TIN of the entire urbanscape of Nashville. This TIN incorporates three separate aspects; the watershed, the floodplain, and the city. The watershed component contains the elevation data for the delineated watershed, roughly 1,000 km2 at 1-3 meter resolution. The floodplain encompasses over 300 channel cross sections of the Cumberland River and a delineated floodplain. The city element comprises over 500,000 buildings and all major roadways within the watershed. Once generated, the resulting triangulation of the TIN is optimized with the Triangle software for input to the coupled hydraulic and hydrological model, tRIBS-OFM. Hydrologically relevant areas such as the floodplain are densified and constraints are set on the minimum triangle area for the entire TIN. Upon running the coupled hydraulic and

  7. Hydrology and Conservation Ecology

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  8. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects ofmore » local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects

  9. USDA-ARS Hydrology Laboratory MISWG Hydrology Workshop

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.

    1982-01-01

    Current research being conducted in remote sensing techniques for measuring hydrologic parameters and variables deals with runoff curve numbers (CN), evapotranspiration (ET), and soil moisture. The CN and ET research utilizes visible and infrared measurements. Soil moisture investigations focus on the microwave region of the electromagnetic spectrum.

  10. Towards Reproducibility in Computational Hydrology

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit

    2017-04-01

    Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (http://www.switch-on-vwsl.eu/participate/), which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as

  11. Avenues for crowd science in Hydrology.

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Stisen, Simon

    2016-04-01

    Crowd science describes research that is conducted with the participation of the general public (the crowd) and gives the opportunity to involve the crowd in research design, data collection and analysis. In various fields, scientists have already drawn on underused human resources to advance research at low cost, with high transparency and large acceptance of the public due to the bottom up structure and the participatory process. Within the hydrological sciences, crowd research has quite recently become more established in the form of crowd observatories to generate hydrological data on water quality, precipitation or river flow. These innovative observatories complement more traditional ways of monitoring hydrological data and strengthen a community-based environmental decision making. However, the full potential of crowd science lies in internet based participation of the crowd and it is not yet fully exploited in the field of Hydrology. New avenues that are not primarily based on the outsourcing of labor, but instead capitalize the full potential of human capabilities have to emerge. In multiple realms of solving complex problems, like image detection, optimization tasks, narrowing of possible solutions, humans still remain more effective than computer algorithms. The most successful online crowd science projects Foldit and Galaxy Zoo have proven that the collective of tens of thousands users could clearly outperform traditional computer based science approaches. Our study takes advantage of the well trained human perception to conduct a spatial sensitivity analysis of land-surface variables of a distributed hydrological model to identify the most sensitive spatial inputs. True spatial performance metrics, that quantitatively compare patterns, are not trivial to choose and their applicability is often not universal. On the other hand humans can quickly integrate spatial information at various scales and are therefore a trusted competence. We selected

  12. Hydrologic data and description of a hydrologic monitoring plan for Medicine Lake Volcano, California

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, W.D.

    1996-01-01

    A hydrologic reconnaissance of the Medicine Lake Volcano area was done to collect data needed for the design of a hydrologic monitoring plan. The reconnaissance was completed during two field trips made in June and September 1992, during which geothermal and hydrologic features of public interest in the Medicine Lake area were identified. Selected wells, springs, and geothermal features were located and documented, and initial water-level, discharge, temperature, and specific-conductance measurements were made. Lakes in the study area also were surveyed during the September field trip. Temperature, specific- conductance, dissolved oxygen, and pH data were collected by using a multiparameter probe. The proposed monitoring plan includes measurement of water levels in wells, discharge from springs, and lake stage, as well as analysis of well-,spring-, and lake-water quality. In determining lake-water quality, data for both stratified and unstratified conditions would be considered. (Data for stratified conditions were collected during the reconnaissance phase of this project, but data for unstratified conditions were not.) In addition, lake stage also would be monitored. A geothermal feature near Medicine Lake is a "hot spot" from which hot gases discharge from two distinct vents. Gas chemistry and temperature would be monitored in one of these vents.

  13. 30 CFR 817.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic-balance protection. 817.41 Section... ACTIVITIES § 817.41 Hydrologic-balance protection. (a) General. All underground mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and...

  14. 30 CFR 817.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic-balance protection. 817.41 Section... ACTIVITIES § 817.41 Hydrologic-balance protection. (a) General. All underground mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and...

  15. 30 CFR 816.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic-balance protection. 816.41 Section... ACTIVITIES § 816.41 Hydrologic-balance protection. (a) General. All surface mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and adjacent...

  16. 30 CFR 816.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic-balance protection. 816.41 Section... ACTIVITIES § 816.41 Hydrologic-balance protection. (a) General. All surface mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and adjacent...

  17. Perspective on Eco-Hydrology Developing Strategy in China

    NASA Astrophysics Data System (ADS)

    Xia, J.

    2017-12-01

    China is one of developing countries with higher eco-environmental press in the world due to large population and its socio-economic development. In China, water is not only the sources for life, but also the key for production, and the foundation for eco-system. Thus, Eco-hydrology becomes a fundamental also an applied sciences related to describe the hydrologic mechanisms that underlie ecologic patterns and processes. This paper addresses the issue of Eco-hydrology Developing Strategy in China, supported by Chinese Academy of Sciences (CAS). Major contents include four aspects, namely: (1) Demands and frontier of eco-hydrology in the world; (2) Major theories and approaches of Eco-hydrology; (3) Perspective of future development on Eco-hydrology; (4) Enacting and proposal for China development strategy on Eco-hydrology. Application fields involves urban, rural area, wetland, river & lake, forest and special regions in China, such as the arid and semi-arid region and so on. The goal is to promote the disciplinary development of eco-hydrology, and serve for national demands on ecological civilization construction in China.

  18. Mapping (dis)agreement in hydrologic projections

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Addor, Nans; Mizukami, Naoki; Newman, Andrew J.; Torfs, Paul J. J. F.; Clark, Martyn P.; Uijlenhoet, Remko; Teuling, Adriaan J.

    2018-03-01

    Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070-2100 compared to 1985-2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning.

  19. Evaluating Coupled Human-Hydrologic Systems in High Altitude Regions: A Case Study of the Arun Watershed, Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Voss, K.; Bookhagen, B.; Tague, C.; Lopez-Carr, D.

    2014-12-01

    The Himalaya exhibit dynamic ecological, hydrological, and climatic extremes that magnify the variability and extent of natural hazards, resulting in destruction to both physical and human landscapes. Coupled with poverty, these factors intensify local communities' vulnerability to climate change. This study highlights the Arun watershed in eastern Nepal as a case study to evaluate how local communities in high altitude regions are managing their water for domestic and agricultural needs while coping with extreme events, such as floods and landslides. Remotely-sensed precipitation, snowpack and glacial extent data from the past decade are combined with preliminary results from extensive field-based community surveys in the Arun watershed. The analysis of remotely-sensed data will describe seasonal trends in water availability, glacial lake growth, and the spatial variation of these trends within the basin. These hydrologic changes will be linked to the human survey analysis, which will provide an understanding of locals' perceptions of water challenges and the current water management strategies within the basin. Particular attention will be given to a comparison between the eastern and western tributaries of the Arun River, where the catchments are mainly rain-fed (eastern) versus glacial-fed (western). This contrast will highlight how different hydrologic scenarios evidenced from remote-sensing data motivate diverse human water management responses as defined in field surveys. A particular focus will be given to management decisions related to agriculture expansion and hydropower development. This synthesis of remote-sensing and social research methodologies provides a valuable perspective on coupled human-hydrologic systems.

  20. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: CRITICAL ZONE HYDROLOGY

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water‐related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to themore » base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross‐site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  1. Characteristics and Impact of Imperviousness From a GIS-based Hydrological Perspective

    NASA Astrophysics Data System (ADS)

    Moglen, G. E.; Kim, S.

    2005-12-01

    With the concern that imperviousness can be differently quantified depending on data sources and methods, this study assessed imperviousness estimates using two different data sources: land use and land cover. Year 2000 land use developed by the Maryland Department of Planning was utilized to estimate imperviousness by assigning imperviousness coefficients to unique land use categories. These estimates were compared with imperviousness estimates based on satellite-derived land cover from the 2001 National Land Cover Dataset. Our study developed the relationships between these two estimates in the form of regression equations to convert imperviousness derived from one data source to the other. The regression equations are considered reliable, based on goodness-of-fit measures. Furthermore, this study examined how quantitatively different imperviousness estimates affect the prediction of hydrological response both in the flow regime and in the thermal regime. We assessed the relationships between indicators of hydrological response and imperviousness-descriptors. As indicators of flow variability, coefficient of variance, lag-one autocorrelation, and mean daily flow change were calculated based on measured mean daily stream flow from the water year 1997 to 2003. For thermal variability, indicators such as percent-days of surge, degree-day, and mean daily temperature difference were calculated base on measured stream temperature over several basins in Maryland. To describe imperviousness through the hydrological process, GIS-based spatially distributed hydrological models were developed based on a water-balance method and the SCS-CN method. Imperviousness estimates from land use and land cover were used as predictors in these models to examine the effect of imperviousness using different data sources on the prediction of hydrological response. Indicators of hydrological response were also regressed on aggregate imperviousness. This allowed for identifying if

  2. A sensitivity analysis of regional and small watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.

    1975-01-01

    Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.

  3. Pedologic influences on hillslope hydrology: The relationships between soil and hydrologic connectivity in a Californian oak-woodland

    NASA Astrophysics Data System (ADS)

    Alldritt, K.; O'Geen, A.; Dahlgren, R. A.

    2013-12-01

    Understanding what controls hydrologic connectivity and how it develops has important implications for ecosystem services. It can affect water quality, nutrient and sediment delivery to the stream, carbon and nitrogen cycling, and more. Bedrock topography and soil act in concert as primary physical controls on hydrologic connectivity. However, the important role soil can play is not well understood. A hillslope study was conducted to explore the dynamics between soil and hydrologic connectivity. The hillslope was in a zero-order watershed with a flashy ephemeral stream. It was located in an oak-woodland in the Californian northern Sierra foothills. The research objectives were to 1) identify and characterize hydrologically significant soil properties; 2) explore how soil stratigraphy and morphology influence hydrologic connectivity; and 3) examine potential causes for connection and disconnection of hydrologic flowpaths during and between rain storm events. During the 2012 wet season a 210-m hillslope transect was instrumented to collect soil moisture data every five minutes. The instruments were put at multiple locations and depths to capture the soil spatial variability. Once the soil became too dry for monitoring the transect was trenched, characterized and sampled. Texture, bulk density, saturated hydraulic conductivity and soil water retention curves were measured in the lab. Structure, color, redoximorphic features, soil horizon spatial differentiation, saprolite and bedrock characteristics, and coarse fragment percentage were recorded in the field. Prior to excavation an electromagnetic induction (EMI) and ground penetrating radar (GPR) survey in conjunction with the Natural Resource Conservation Service (NRCS) was performed along the hillslope. The goal of the survey was to explore non-invasive techniques to determine spatial variability of hydrologically significant soil horizons and bedrock. The GPR was found not to be reliable at the site. However, the

  4. 30 CFR 822.11 - Essential hydrologic functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Essential hydrologic functions. 822.11 Section... IN ALLUVIAL VALLEY FLOORS § 822.11 Essential hydrologic functions. (a) The operator of a surface coal... throughout the mining and reclamation process the essential hydrologic functions of an alluvial valley floor...

  5. Hydrological modeling in forested systems

    Treesearch

    H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun

    2015-01-01

    Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...

  6. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.

    2013-12-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can

  7. Promoting acquisition of competences and standardization of curricula in Rural Engineering teaching through common practical cases in Hydrology: CN-match

    NASA Astrophysics Data System (ADS)

    Licciardello, Feliciana; Consoli, Simona; Atlaw, Tigist; Nicastro, Roberto; Brígido, Consuelo C.; Lorite, Ángela; Taguas, Encarnación V.

    2014-05-01

    The co-operation between Universities located in different countries, promoting similar topics and teaching methodologies, is paramount in the educational training to meet the objectives of the Bologna Process and developing new skills matching the labor market requirements. With this focus, the work herein presented contributes to both these aims, by implementing, in two Universities courses in Spain and Italy, a joint methodology in Hydrology. Both courses present common matters related with hydrological engineering projects. "Water Resources Management in Agriculture" is the course name at the University of Catania, Italy whereas "Software and tools in Engineering projects" is the subject tough for the students of Forest Engineering in the Agronomist and Forest Engineering School of the University of Cordoba. This work presents an experience whose main objective is to involve the students into the technical knowledge and skill acquisition by a competition, following the philosophy of football leagues which are quite appreciated in both countries. Basically, we have prepared a practical case of hydrological design which two-student groups have to solve. The best teams of each country have to play the international final match, which will take place by videoconference. The awards for the winners in each country are merits for their curricula such as the participation in the EGU Assembly 2014 and a certificate of winners. The practical case is based on the Curve Number method developed by the Soil Conservation Service (1972) in order to compute abstractions from storm rainfall and calculate design hydrographs (CN-SCS method). The CN-SCS method is one of the most used methods for implementing hydrological studies of a catchment aimed for example at assessing management practices and hydro-geological risk plans as well as water resources protection measures. In general hydro-geological risk assessment and modeling studies are necessary for a reliable urban planning

  8. Hydrology: The interdisciplinary science of water

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-06-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth's hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  9. Hydrology: The interdisciplinary science of water

    USGS Publications Warehouse

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-01-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  10. The Importance of Hydrological Signature and Its Recurring Dynamics

    NASA Astrophysics Data System (ADS)

    Wendi, D.; Marwan, N.; Merz, B.

    2017-12-01

    Temporal changes in hydrology are known to be challenging to detect and attribute due to multiple drivers that include complex processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defense, river training, and land use change, could impact variably on space-time scales and influence or mask each other. Besides, data depicting these drivers are often not available. One conventional approach of analyzing the change is based on discrete points of magnitude (e.g. the frequency of recurring extreme discharge) and often linearly quantified and hence do not reveal the potential change in the hydrological process. Moreover, discharge series are often subject to measurement errors, such as rating curve error especially in the case of flood peaks where observation are derived through extrapolation. In this study, the system dynamics inferred from the hydrological signature (i.e. the shape of hydrograph) is being emphasized. One example is to see if certain flood dynamics (instead of flood peak) in the recent years, had also occurred in the past (or rather extraordinary), and if so what is its recurring rate and if there had been a shift in its occurrence in time or seasonality (e.g. earlier snow melt dominant flood). The utilization of hydrological signature here is extended beyond those of classical hydrology such as base flow index, recession and rising limb slope, and time to peak. It is in fact all these characteristics combined i.e. from the start until the end of the hydrograph. Recurrence plot is used as a method to quantify and visualize the recurring hydrological signature through its phase space trajectories, and usually in the order of dimension above 2. Such phase space trajectories are constructed by embedding the time series into a series of variables (i.e. number of dimension) corresponding to the time delay. Since the method is rather novel in

  11. Hydrological states and the resilience of deltaic forested wetlands

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2017-12-01

    The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.

  12. Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.

    2012-01-01

    Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.

  13. Integrating Gridded NASA Hydrological Data into CUAHSI HIS

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, William; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Whiteaker, Tim; Valentine, David; Maidment, David; Hooper, Richard

    2011-01-01

    The amount of hydrological data available from NASA remote sensing and modeling systems is vast and ever-increasing;but, one challenge persists:increasing the usefulness of these data for, and thus their use by, end user communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of different end users, to thus better able to bridge the gap between NASA data and end user communities. One effective strategy is integrating the data in to end user community tools and environments. There is an ongoing collaborative effort between NASA HDISC, NASA Hydrological Sciences Branch, and CUAHSI to integrate NASA gridded hydrology data in to the CUAHSI Hydrologic Information System (HIS).

  14. Testing the Hydrological Coherence of High-Resolution Gridded Precipitation and Temperature Data Sets

    NASA Astrophysics Data System (ADS)

    Laiti, L.; Mallucci, S.; Piccolroaz, S.; Bellin, A.; Zardi, D.; Fiori, A.; Nikulin, G.; Majone, B.

    2018-03-01

    Assessing the accuracy of gridded climate data sets is highly relevant to climate change impact studies, since evaluation, bias correction, and statistical downscaling of climate models commonly use these products as reference. Among all impact studies those addressing hydrological fluxes are the most affected by errors and biases plaguing these data. This paper introduces a framework, coined Hydrological Coherence Test (HyCoT), for assessing the hydrological coherence of gridded data sets with hydrological observations. HyCoT provides a framework for excluding meteorological forcing data sets not complying with observations, as function of the particular goal at hand. The proposed methodology allows falsifying the hypothesis that a given data set is coherent with hydrological observations on the basis of the performance of hydrological modeling measured by a metric selected by the modeler. HyCoT is demonstrated in the Adige catchment (southeastern Alps, Italy) for streamflow analysis, using a distributed hydrological model. The comparison covers the period 1989-2008 and includes five gridded daily meteorological data sets: E-OBS, MSWEP, MESAN, APGD, and ADIGE. The analysis highlights that APGD and ADIGE, the data sets with highest effective resolution, display similar spatiotemporal precipitation patterns and produce the largest hydrological efficiency indices. Lower performances are observed for E-OBS, MESAN, and MSWEP, especially in small catchments. HyCoT reveals deficiencies in the representation of spatiotemporal patterns of gridded climate data sets, which cannot be corrected by simply rescaling the meteorological forcing fields, as often done in bias correction of climate model outputs. We recommend this framework to assess the hydrological coherence of gridded data sets to be used in large-scale hydroclimatic studies.

  15. CUAHSI Hydrologic Information Systems

    NASA Astrophysics Data System (ADS)

    Maidment, D.; Zaslavsky, I.; Tarboton, D.; Piasecki, M.; Goodall, J.

    2006-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc (CUAHSI) has a Hydrologic Information System (HIS) project, which is supported by NSF to develop infrastructure and services to support the advance of hydrologic science in the United States. This paper provides an overview of the HIS project. A set of web services called WaterOneFlow is being developed to provide better access to water observations data (point measurements of streamflow, water quality, climate and groundwater levels) from government agencies and individual investigator projects. Successful partnerships have been created with the USGS National Water Information System, EPA Storet and the NCDC Climate Data Online. Observations catalogs have been created for stations in the measurement networks of each of these data systems so that they can be queried in a uniform manner through CUAHSI HIS, and data delivered from them directly to the user via web services. A CUAHSI Observations Data Model has been designed for storing individual investigator data and an equivalent set of web services created for that so that individual investigators can publish their data onto the internet in the same format CUAHSI is providing for the federal agency data. These data will be accessed through HIS Servers hosted at the national level by CUAHSI and also by research centers and academic departments for regional application of HIS. An individual user application called HIS Analyst will enable individual hydrologic scientists to access the information from the network of HIS Servers. The present focus is on water observations data but later development of this system will include weather and climate grid information, GIS data, remote sensing data and linkages between data and hydrologic simulation models.

  16. Hydrologic processes influencing meadow ecosystems [chapter 4

    Treesearch

    Mark L. Lord; David G. Jewett; Jerry R. Miller; Dru Germanoski; Jeanne C. Chambers

    2011-01-01

    The hydrologic regime exerts primary control on riparian meadow complexes and is strongly influenced by past and present geomorphic processes; biotic processes; and, in some cases, anthropogenic activities. Thus, it is essential to understand not only the hydrologic processes that operate within meadow complexes but also the interactions of meadow hydrology with other...

  17. Study of the joining of polycarbonate panels in butt joint configuration through friction stir welding

    NASA Astrophysics Data System (ADS)

    Astarita, Antonello; Boccarusso, Luca; Carrino, Luigi; Durante, Massimo; Minutolo, Fabrizio Memola Capece; Squillace, Antonino

    2018-05-01

    Polycarbonate sheets, 3 mm thick, were successfully friction stir welded in butt joint configuration. Aiming to study the feasibility of the process and the influence of the process parameters joints under different processing conditions, obtained by varying the tool rotational speed and the tool travel speed, were realized. Tensile tests were carried out to characterize the joints. Moreover the forces arising during the process were recorded and carefully studied. The experimental outcomes proved the feasibility of the process when the process parameters are properly set, joints retaining more than 70% of the UTS of the base material were produced. The trend of the forces was described and explained, the influence of the process parameters was also introduced.

  18. Hydrologic modeling strategy for the Islamic Republic of Mauritania, Africa

    USGS Publications Warehouse

    Friedel, Michael J.

    2008-01-01

    The government of Mauritania is interested in how to maintain hydrologic balance to ensure a long-term stable water supply for minerals-related, domestic, and other purposes. Because of the many complicating and competing natural and anthropogenic factors, hydrologists will perform quantitative analysis with specific objectives and relevant computer models in mind. Whereas various computer models are available for studying water-resource priorities, the success of these models to provide reliable predictions largely depends on adequacy of the model-calibration process. Predictive analysis helps us evaluate the accuracy and uncertainty associated with simulated dependent variables of our calibrated model. In this report, the hydrologic modeling process is reviewed and a strategy summarized for future Mauritanian hydrologic modeling studies.

  19. Plot-scale field experiment of surface hydrologic processes with EOS implications

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  20. From local hydrological process analysis to regional hydrological model application in Benin: Concept, results and perspectives

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Faß, T.; Giertz, S.; Junge, B.; Diekkrüger, B.; Reichert, B.; Skowronek, A.

    This paper presents the concept, first results and perspectives of the hydrological sub-project of the IMPETUS-Benin project which is part of the GLOWA program funded by the German ministry of education and research. In addition to the research concept, first results on field hydrology, pedology, hydrogeology and hydrological modelling are presented, focusing on the understanding of the actual hydrological processes. For analysing the processes a 30 km 2 catchment acting as a super test site was chosen which is assumed to be representative for the entire catchment of about 15,000 km 2. First results of the field investigations show that infiltration, runoff generation and soil erosion strongly depend on land cover and land use which again influence the soil properties significantly. A conceptual hydrogeological model has been developed summarising the process knowledge on runoff generation and subsurface hydrological processes. This concept model shows a dominance of fast runoff components (surface runoff and interflow), a groundwater recharge along preferential flow paths, temporary interaction between surface and groundwater and separate groundwater systems on different scales (shallow, temporary groundwater on local scale and permanent, deep groundwater on regional scale). The findings of intensive measurement campaigns on soil hydrology, groundwater dynamics and soil erosion have been integrated into different, scale-dependent hydrological modelling concepts applied at different scales in the target region (upper Ouémé catchment in Benin, about 15,000 km 2). The models have been applied and successfully validated. They will be used for integrated scenario analyses in the forthcoming project phase to assess the impacts of global change on the regional water cycle and on typical problem complexes such as food security in West African countries.

  1. Influences of frozen ground and climate change on hydrological processes in an alpine watershed: A case study in the upstream area of the Hei’he River, Northwest China

    USDA-ARS?s Scientific Manuscript database

    Frozen soil prevails in cold regions and exerts significant influence on the hydrological cycle. In the context of climate warming, the spatial and temporal dynamics of frozen soil and hydrological processes also will change. How these changes inter-relate is a key challenge in studies of hydrologic...

  2. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General

  3. The citation impact of hydrology journals

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Hanson, R. Brooks

    2017-06-01

    We examine a suite of journal-level productivity and citation statistics for six leading hydrology journals in order to help authors understand the robustness and meaning of journal impact factors. The main results are (1) the probability distribution of citations is remarkably homogenous across hydrology journals; (2) hydrology papers tend to have a long-lasting impact, with a large fraction of papers cited after the 2 year window used to calculate the journal impact factor; and (3) journal impact factors are characterized by substantial year-to-year variability (especially for smaller journals), primarily because a small number of highly cited papers have a large influence on the journal impact factor. Consequently, the ranking of hydrology journals with respect to the journal impact factor in a given year does not have much information content. These results highlight problems in using citation data to evaluate hydrologic science. We hope that this analysis helps authors better understand journal-level citation statistics, and also helps improve research assessments in institutions and funding agencies.

  4. Does metaphyseal cement augmentation in fracture management influence the adjacent subchondral bone and joint cartilage?: an in vivo study in sheep stifle joints.

    PubMed

    Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael

    2015-01-01

    Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.

  5. Institutionalizing Blended Learning into Joint Training: A Case Study and Ten Recommendations

    DTIC Science & Technology

    2014-12-01

    mail.mil pbockelman@mesh.dsci.com ABSTRACT In 2011, the Joint Staff J7 (Joint Training) directorate initiated the Continuum of eLearning project in...Orlando, FL. 14. ABSTRACT In 2011, the Joint Staff J7 (Joint Training) directorate initiated the Continuum of eLearning project in order to integrate...dispersed organizations still poses significant challenges. The Joint Staff J7, Deputy Director for Joint Training initiated the Continuum of eLearning

  6. Clinical and radiographic study of bone and joint lesions in 26 dogs with leishmaniasis.

    PubMed

    Agut, A; Corzo, N; Murciano, J; Laredo, F G; Soler, M

    2003-11-22

    Twenty-six dogs with parasitologically confirmed leishmaniasis and abnormalities of gait were studied to determine the most common radiological patterns of bone and joint lesions. The clinical findings included either lameness, joint pain and crepitation, soft tissue swelling and/or muscle atrophy. Bone lesions were observed radiographically in 12 of the 26 dogs; the radius and ulna were affected in seven, the tibia in six and the femur in six. Joint lesions were observed radiographically in 15 of the 26 dogs; the carpus and stifle were affected in all 15, and the tarsus in nine. There was a tendency for the bones and joints to be affected bilaterally. The radiographic patterns observed were different in the long bones and the joints. In the long bones, the most common pattern was periosteal and intramedullary proliferation, involving the diaphyses and related to the nutrient foramen; in the joints, two patterns, either non-erosive or erosive polyarthritis with soft-tissue swelling, were observed. The changes observed in the synovial fluid were associated in most cases with osteolytic lesions. However, Leishmania organisms were identified in the synovial fluid from joints without bony radiographic changes.

  7. On science versus engineering in hydrological modelling

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke

    2017-04-01

    It is always stressed that hydrological modelling is very important, to prevent floods, to mitigate droughts, to ensure food production or nature conservation. All very true, but I believe that focussing so much on the application of our knowledge (which I call `the engineering approach'), does not stimulate thorough system understanding (which I call `the scientific approach'). In many studies, science and engineering approaches are mixed, which results in large uncertainty e.g. due to a lack of system understanding. To what extent engineering and science approached are mixed depends on the Philosophy of Science of the researcher; verificationism seems to be closer related to engineering, than falsificationism or Bayesianism. In order to grow our scientific knowledge, which means increasing our understanding of the system, we need to be more critical towards the models that we use, but also recognize all the processes that influence the hydrological cycle. In an era called 'The Anthropocene' the influence of humans on the water system can no longer be neglected, and if we choose a scientific approach we have to account for human-induced processes. Summarizing, I believe that we have to account for human impact on the hydrological system, but we have to resist the temptation to directly quantify the hydrological impact on the human system.

  8. netherland hydrological modeling instrument

    NASA Astrophysics Data System (ADS)

    Hoogewoud, J. C.; de Lange, W. J.; Veldhuizen, A.; Prinsen, G.

    2012-04-01

    Netherlands Hydrological Modeling Instrument A decision support system for water basin management. J.C. Hoogewoud , W.J. de Lange ,A. Veldhuizen , G. Prinsen , The Netherlands Hydrological modeling Instrument (NHI) is the center point of a framework of models, to coherently model the hydrological system and the multitude of functions it supports. Dutch hydrological institutes Deltares, Alterra, Netherlands Environmental Assessment Agency, RWS Waterdienst, STOWA and Vewin are cooperating in enhancing the NHI for adequate decision support. The instrument is used by three different ministries involved in national water policy matters, for instance the WFD, drought management, manure policy and climate change issues. The basis of the modeling instrument is a state-of-the-art on-line coupling of the groundwater system (MODFLOW), the unsaturated zone (metaSWAP) and the surface water system (MOZART-DM). It brings together hydro(geo)logical processes from the column to the basin scale, ranging from 250x250m plots to the river Rhine and includes salt water flow. The NHI is validated with an eight year run (1998-2006) with dry and wet periods. For this run different parts of the hydrology have been compared with measurements. For instance, water demands in dry periods (e.g. for irrigation), discharges at outlets, groundwater levels and evaporation. A validation alone is not enough to get support from stakeholders. Involvement from stakeholders in the modeling process is needed. There fore to gain sufficient support and trust in the instrument on different (policy) levels a couple of actions have been taken: 1. a transparent evaluation of modeling-results has been set up 2. an extensive program is running to cooperate with regional waterboards and suppliers of drinking water in improving the NHI 3. sharing (hydrological) data via newly setup Modeling Database for local and national models 4. Enhancing the NHI with "local" information. The NHI is and has been used for many

  9. Estimating hydrologic budgets for six Persian Gulf watersheds, Iran

    NASA Astrophysics Data System (ADS)

    Hosseini, Majid; Ghafouri, Mohammad; Tabatabaei, MahmoudReza; Goodarzi, Masoud; Mokarian, Zeinab

    2017-10-01

    Estimation of the major components of the hydrologic budget is important for determining the impacts on the water supply and quality of either planned or proposed land management projects, vegetative changes, groundwater withdrawals, and reservoir management practices and plans. As acquisition of field data is costly and time consuming, models have been created to test various land use practices and their concomitant effects on the hydrologic budget of watersheds. To simulate such management scenarios realistically, a model should be able to simulate the individual components of the hydrologic budget. The main objective of this study is to perform the SWAT2012 model for estimation of hydrological budget in six subbasin of Persian Gulf watershed; Golgol, Baghan, Marghab Shekastian, Tangebirim and Daragah, which are located in south and south west of Iran during 1991-2009. In order to evaluate the performance of the model, hydrological data, soil map, land use map and digital elevation model (DEM) are obtained and prepared for each catchment to run the model. SWAT-CUP with SUFI2 program was used for simulation, uncertainty and validation with 95 Percent Prediction Uncertainty. Coefficient of determination ( R 2) and Nash-Sutcliffe coefficient (NS) were used for evaluation of the model simulation results. Comparison of measured and predicted values demonstrated that each component of the model gave reasonable output and that the interaction among components was realistic. The study has produced a technique with reliable capability for annual and monthly water budget components in Persian Gulf watershed.

  10. Comparison of the performance and reliability of 18 lumped hydrological models driven by ECMWF rainfall ensemble forecasts: a case study on 29 French catchments

    NASA Astrophysics Data System (ADS)

    Velázquez, Juan Alberto; Anctil, François; Ramos, Maria-Helena; Perrin, Charles

    2010-05-01

    An ensemble forecasting system seeks to assess and to communicate the uncertainty of hydrological predictions by proposing, at each time step, an ensemble of forecasts from which one can estimate the probability distribution of the predictant (the probabilistic forecast), in contrast with a single estimate of the flow, for which no distribution is obtainable (the deterministic forecast). In the past years, efforts towards the development of probabilistic hydrological prediction systems were made with the adoption of ensembles of numerical weather predictions (NWPs). The additional information provided by the different available Ensemble Prediction Systems (EPS) was evaluated in a hydrological context on various case studies (see the review by Cloke and Pappenberger, 2009). For example, the European ECMWF-EPS was explored in case studies by Roulin et al. (2005), Bartholmes et al. (2005), Jaun et al. (2008), and Renner et al. (2009). The Canadian EC-EPS was also evaluated by Velázquez et al. (2009). Most of these case studies investigate the ensemble predictions of a given hydrological model, set up over a limited number of catchments. Uncertainty from weather predictions is assessed through the use of meteorological ensembles. However, uncertainty from the tested hydrological model and statistical robustness of the forecasting system when coping with different hydro-meteorological conditions are less frequently evaluated. The aim of this study is to evaluate and compare the performance and the reliability of 18 lumped hydrological models applied to a large number of catchments in an operational ensemble forecasting context. Some of these models were evaluated in a previous study (Perrin et al. 2001) for their ability to simulate streamflow. Results demonstrated that very simple models can achieve a level of performance almost as high (sometimes higher) as models with more parameters. In the present study, we focus on the ability of the hydrological models to

  11. Hydrology, phenology and the USA National Phenology Network

    USGS Publications Warehouse

    Kish, George R.

    2010-01-01

    Phenology is the study of seasonally-recurring biological events (such as leaf-out, fruit production, and animal reproduction and migration) and how these events are influenced by environmental change. Phenological changes are some of the most sensitive biological indicators of climate change, and also affect nearly all aspects of ecosystem function. Spatially extensive patterns of phenological observations have been closely linked with climate variability. Phenology and hydrology are closely linked and affect one another across a variety of scales, from leaf intercellular spaces to the troposphere, and over periods of seconds to centuries. Ecosystem life cycles and diversity are also influenced by hydrologic processes such as floods and droughts. Therefore, understanding the relationships between hydrology and phenology is increasingly important in understanding how climate change affects biological and physical systems.

  12. Non-invasive water-table imaging with joint DC-resistivity/microgravity/hydrologic-model inversion

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Macy, J. P.

    2017-12-01

    The depth of the water table, and fluctuations thereof, is a primary concern in hydrology. In riparian areas, the water table controls when and where vegetation grows. Fluctuations in the water table depth indicate changes in aquifer storage and variation in ET, and may also be responsible for the transport and degradation of contaminants. In the latter case, installation of monitoring wells is problematic because of the potential to create preferential flow pathways. We present a novel method for non-invasive water table monitoring using combined DC resistivity and repeat microgravity data. Resistivity profiles provide spatial resolution, but a quantifiable relation between resistivity changes and aquifer-storage changes depends on a petrophysical relation (typically, Archie's Law), with additional parameters and therefore uncertainty. Conversely, repeat microgravity data provide a direct, quantifiable measurement of aquifer-storage change but lack depth resolution. We show how these two geophysical measurements, together with an unsaturated-zone flow model (Hydrogeosphere), effectively constrain the water table position and help identify groundwater-flow model parameters. A demonstration of the method is made using field data collected during the historic 2014 pulse flow in the Colorado River Delta, which shows that geophysical data can effectively constrain a coupled surface-water/groundwater model used to simulate the potential for riparian vegetation germination and recruitment.

  13. Multi-model analysis in hydrological prediction

    NASA Astrophysics Data System (ADS)

    Lanthier, M.; Arsenault, R.; Brissette, F.

    2017-12-01

    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  14. Testing the Structure of Hydrological Models using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  15. Probabilistic graphs as a conceptual and computational tool in hydrology and water management

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit

    2014-05-01

    Originally developed in the fields of machine learning and artificial intelligence, probabilistic graphs constitute a general framework for modeling complex systems in the presence of uncertainty. The framework consists of three components: 1. Representation of the model as a graph (or network), with nodes depicting random variables in the model (e.g. parameters, states, etc), which are joined together by factors. Factors are local probabilistic or deterministic relations between subsets of variables, which, when multiplied together, yield the joint distribution over all variables. 2. Consistent use of probability theory for quantifying uncertainty, relying on basic rules of probability for assimilating data into the model and expressing unknown variables as a function of observations (via the posterior distribution). 3. Efficient, distributed approximation of the posterior distribution using general-purpose algorithms that exploit model structure encoded in the graph. These attributes make probabilistic graphs potentially useful as a conceptual and computational tool in hydrology and water management (and beyond). Conceptually, they can provide a common framework for existing and new probabilistic modeling approaches (e.g. by drawing inspiration from other fields of application), while computationally they can make probabilistic inference feasible in larger hydrological models. The presentation explores, via examples, some of these benefits.

  16. GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH

    NASA Astrophysics Data System (ADS)

    Nicotina, L.; Rinaldo, A.; Tarboton, D. G.

    2009-12-01

    In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under

  17. Model Calibration in Watershed Hydrology

    NASA Technical Reports Server (NTRS)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  18. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  19. Hydrologic Landscape Characterization for the Pacific Northwest, USA

    EPA Science Inventory

    Hydrologic classification can help address some of the challenges facing catchment hydrology. Wigington et al. (2013) developed a hydrologic landscape (HL) approach to classification that was applied to the state of Oregon. Several characteristics limited its applicability outs...

  20. An Educational Model for Hands-On Hydrology Education

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Nakhjiri, N.; Habib, E. H.

    2014-12-01

    This presentation provides an overview of a hands-on modeling tool developed for students in civil engineering and earth science disciplines to help them learn the fundamentals of hydrologic processes, model calibration, sensitivity analysis, uncertainty assessment, and practice conceptual thinking in solving engineering problems. The toolbox includes two simplified hydrologic models, namely HBV-EDU and HBV-Ensemble, designed as a complement to theoretical hydrology lectures. The models provide an interdisciplinary application-oriented learning environment that introduces the hydrologic phenomena through the use of a simplified conceptual hydrologic model. The toolbox can be used for in-class lab practices and homework assignments, and assessment of students' understanding of hydrological processes. Using this modeling toolbox, students can gain more insights into how hydrological processes (e.g., precipitation, snowmelt and snow accumulation, soil moisture, evapotranspiration and runoff generation) are interconnected. The educational toolbox includes a MATLAB Graphical User Interface (GUI) and an ensemble simulation scheme that can be used for teaching more advanced topics including uncertainty analysis, and ensemble simulation. Both models have been administered in a class for both in-class instruction and a final project, and students submitted their feedback about the toolbox. The results indicate that this educational software had a positive impact on students understanding and knowledge of hydrology.

  1. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yang; Lei, Huimin; Yang, Dawen

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less

  2. Assessing the hydrologic response to wildfires in mountainous regions

    NASA Astrophysics Data System (ADS)

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a

  3. Implications of the methodological choices for hydrologic portrayals of climate change over the contiguous United States: Statistically downscaled forcing data and hydrologic models

    USGS Publications Warehouse

    Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.

    2016-01-01

    Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.

  4. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation

  5. Brokering as a framework for hydrological model repeatability

    NASA Astrophysics Data System (ADS)

    Fuka, Daniel; Collick, Amy; MacAlister, Charlotte; Braeckel, Aaron; Wright, Dawn; Jodha Khalsa, Siri; Boldrini, Enrico; Easton, Zachary

    2015-04-01

    Data brokering aims to provide those in the the sciences with quick and repeatable access to data that represents physical, biological, and chemical characteristics; specifically to accelerate scientific discovery. Environmental models are useful tools to understand the behavior of hydrological systems. Unfortunately, parameterization of these hydrological models requires many different data, from different sources, and from different disciplines (e.g., atmospheric, geoscience, ecology). In basin scale hydrological modeling, the traditional procedure for model initialization starts with obtaining elevation models, land-use characterizations, soils maps, and weather data. It is often the researcher's past experience with these datasets that determines which datasets will be used in a study, and often newer, or more suitable data products will exist. An added complexity is that various science communities have differing data formats, storage protocols, and manipulation methods, which makes use by a non native user exceedingly difficult and time consuming. We demonstrate data brokering as a means to address several of these challenges. We present two test case scenarios in which researchers attempt to reproduce hydrological model results using 1) general internet based data gathering techniques, and 2) a scientific data brokering interface. We show that data brokering can increase the efficiency with which data are obtained, models are initialized, and results are analyzed. As an added benefit, it appears brokering can significantly increase the repeatability of a given study.

  6. Hydrologic data for urban studies in the Houston metropolitan area, Texas, 1984

    USGS Publications Warehouse

    Liscum, Fred; Bruchmiller, J.P.; Brown, D.W.; Paul, E.M.

    1987-01-01

    A definition of terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined in "U.S. Geological Survey, Water-resources data for Texas, water year 1984, volume 2."

  7. Hydrologic data for urban studies in the Houston metropolitan area, Texas, 1983

    USGS Publications Warehouse

    Liscum, Fred

    1986-01-01

    A definition of terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined in " U.S. Geological Survey, Water-resources data for Texas, water year 1983, volume 2."

  8. Hydrology with unmanned aerial vehicles (UAVs)

    USDA-ARS?s Scientific Manuscript database

    Hydrologic remote sensing currently depends on expensive and infrequent aircraft observations for validation of operational satellite products, typically conducted during field campaigns that also include ground-based measurements. With the advent of new, hydrologically-relevant satellite missions, ...

  9. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level

    NASA Astrophysics Data System (ADS)

    Sharma, Arabinda; Tiwari, K. N.

    2014-11-01

    The Shuttle Radar Topography Mission (SRTM) data has emerged as a global elevation data in the past one decade because of its free availability, homogeneity and consistent accuracy compared to other global elevation dataset. The present study explores the consistency in hydrological behavior of the SRTM digital elevation model (DEM) with reference to easily available regional 20 m contour interpolated DEM (TOPO DEM). Analysis ranging from simple vertical accuracy assessment to hydrological simulation of the studied Maithon catchment, using empirical USLE model and semidistributed, physical SWAT model, were carried out. Moreover, terrain analysis involving hydrological indices was performed for comparative assessment of the SRTM DEM with respect to TOPO DEM. Results reveal that the vertical accuracy of SRTM DEM (±27.58 m) in the region is less than the specified standard (±16 m). Statistical analysis of hydrological indices such as topographic wetness index (TWI), stream power index (SPI), slope length factor (SLF) and geometry number (GN) shows a significant differences in hydrological properties of the two studied DEMs. Estimation of soil erosion potentials of the catchment and conservation priorities of microwatersheds of the catchment using SRTM DEM and TOPO DEM produce considerably different results. Prediction of soil erosion potential using SRTM DEM is far higher than that obtained using TOPO DEM. Similarly, conservation priorities determined using the two DEMs are found to be agreed for only 34% of microwatersheds of the catchment. ArcSWAT simulation reveals that runoff predictions are less sensitive to selection of the two DEMs as compared to sediment yield prediction. The results obtained in the present study are vital to hydrological analysis as it helps understanding the hydrological behavior of the DEM without being influenced by the model structural as well as parameter uncertainty. It also reemphasized that SRTM DEM can be a valuable dataset for

  10. 30 CFR 817.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Discharge structures. 817...-UNDERGROUND MINING ACTIVITIES § 817.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  11. 30 CFR 817.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Discharge structures. 817...-UNDERGROUND MINING ACTIVITIES § 817.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  12. 30 CFR 816.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Discharge structures. 816...-SURFACE MINING ACTIVITIES § 816.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  13. 30 CFR 816.47 - Hydrologic balance: Discharge structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Discharge structures. 816...-SURFACE MINING ACTIVITIES § 816.47 Hydrologic balance: Discharge structures. Discharge from sedimentation... the hydrologic balance. Discharge structures shall be designed according to standard engineering...

  14. Hydrological balance and water transport processes of partially sealed soils

    NASA Astrophysics Data System (ADS)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  15. Hydrologic Resources of Guam

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2003-01-01

    Introduction The U.S. Territory of Guam, which lies in the western Pacific Ocean near latitude 13?28'N and longitude 144?45'E, is the largest (211 mi2) and southernmost of the islands in the Mariana chain. Ground water supplies about 80 percent of the drinking water for the island's 150,000 residents and nearly one million visitors per year. In northern Guam, water is obtained from wells that tap the upper part of a fresh ground-water lens in an aquifer composed mainly of limestone. About 180 wells, nearly all in the north, withdraw about 35 Mgal/d of water with chloride concentrations ranging from 6 to 585 mg/L. In southern Guam, the main source of freshwater is from surface water that runs off the weathered volcanic rocks that are exposed over much of the area. About 9.9 Mgal/d of freshwater is obtained using surface reservoirs. The island's freshwater resources are adequate to meet current (2003) needs, but future demands will eventually be higher. To better understand the hydrology of the island, the U.S. Geological Survey (USGS) entered into a cooperative study with the Water and Environmental Research Institute of the Western Pacific (WERI) at the University of Guam. The objective of the study was to provide a better understanding of the water resources of the island through analysis of data collected by the USGS on Guam. This report provides a description of the general hydrologic principles of the island's ground-water systems, as well as of the rainfall and geology of Guam. Hydrologic data described in the report include water levels, chloride concentrations, and pumpage from ground-water wells and streamflow data from southern Guam.

  16. Mutual coordination strengthens the sense of joint agency in cooperative joint action.

    PubMed

    Bolt, Nicole K; Poncelet, Evan M; Schultz, Benjamin G; Loehr, Janeen D

    2016-11-01

    Philosophers have proposed that when people coordinate their actions with others they may experience a sense of joint agency, or shared control over actions and their effects. However, little empirical work has investigated the sense of joint agency. In the current study, pairs coordinated their actions to produce tone sequences and then rated their sense of joint agency on a scale ranging from shared to independent control. People felt more shared than independent control overall, confirming that people experience joint agency during joint action. Furthermore, people felt stronger joint agency when they (a) produced sequences that required mutual coordination compared to sequences in which only one partner had to coordinate with the other, (b) held the role of follower compared to leader, and (c) were better coordinated with their partner. Thus, the strength of joint agency is influenced by the degree to which people mutually coordinate with each other's actions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Impact of a statistical bias correction on the projected simulated hydrological changes obtained from three GCMs and two hydrology models

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Chen, Cui; Haerter, Jan O.; Gerten, Dieter; Heinke, Jens; Piani, Claudio

    2010-05-01

    Future climate model scenarios depend crucially on their adequate representation of the hydrological cycle. Within the European project "Water and Global Change" (WATCH) special care is taken to couple state-of-the-art climate model output to a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, due to the systematic model errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed, which can be used for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. As observations, global re-analysed daily data of precipitation and temperature are used that are obtained in the WATCH project. We will apply the bias correction to global climate model data of precipitation and temperature from the GCMs ECHAM5/MPIOM, CNRM-CM3 and LMDZ-4, and intercompare the bias corrected data to the original GCM data and the observations. Then, the orginal and the bias corrected GCM data will be used to force two global hydrology models: (1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the Simplified Land surface (SL) scheme and the Hydrological Discharge (HD) model, and (2) the dynamic vegetation model LPJmL operated by the Potsdam Institute for Climate Impact Research. The impact of the bias correction on the projected simulated hydrological changes will be analysed, and the resulting behaviour of the two hydrology models will be compared.

  18. Practical guidance on representing the heteroscedasticity of residual errors of hydrological predictions

    NASA Astrophysics Data System (ADS)

    McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George

    2016-04-01

    Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).

  19. Hydrological sciences and water security: An overview

    NASA Astrophysics Data System (ADS)

    Young, G.; Demuth, S.; Mishra, A.; Cudennec, C.

    2015-04-01

    This paper provides an introduction to the concepts of water security including not only the risks to human wellbeing posed by floods and droughts, but also the threats of inadequate supply of water in both quantity and quality for food production, human health, energy and industrial production, and for the natural ecosystems on which life depends. The overall setting is one of constant change in all aspects of Earth systems. Hydrological systems (processes and regimes) are changing, resulting from varying and changing precipitation and energy inputs, changes in surface covers, mining of groundwater resources, and storage and diversions by dams and infrastructures. Changes in social, political and economic conditions include population and demographic shifts, political realignments, changes in financial systems and in trade patterns. There is an urgent need to address hydrological and social changes simultaneously and in combination rather than as separate entities, and thus the need to develop the approach of `socio-hydrology'. All aspects of water security, including the responses of both UNESCO and the International Association of Hydrological Sciences (IAHS) to the concepts of socio-hydrology, are examined in detailed papers within the volume titled Hydrological Sciences and Water Security: Past, Present and Future.

  20. A critical review of hydrological data collection for assessing preservation risk for urban waterlogged archaeology: A case study from the City of York, UK.

    PubMed

    Holden, Joseph; Howard, Andy J; West, L Jared; Maxfield, Eleanor; Panter, Ian; Oxley, John

    2009-08-01

    Environmental change caused by urban development, possibly augmented by climate change, may result in accelerated decay of in situ archaeological resources. Damage may be related to changes in hydrological processes. Such archaeological resources have to be considered in environmental planning. In this paper we highlight the need for improved hydrological data from urban archaeological sites using the case study of the City of York, UK, arguably one of the most well studied and well preserved urban archaeological environments globally. We suggest that the quality of hydrological data collected during routine surveys and experimental work must be improved and standardised in order for us to produce reliable archaeological risk models for urban sites.

  1. Steponas Kolupaila's contribution to hydrological science development

    NASA Astrophysics Data System (ADS)

    Valiuškevičius, Gintaras

    2017-08-01

    Steponas Kolupaila (1892-1964) was an important figure in 20th century hydrology and one of the pioneers of scientific water gauging in Europe. His research on the reliability of hydrological data and measurement methods was particularly important and contributed to the development of empirical hydrological calculation methods. Kolupaila was one of the first who standardised water-gauging methods internationally. He created several original hydrological and hydraulic calculation methods (his discharge assessment method for winter period was particularly significant). His innate abilities and frequent travel made Kolupaila a universal specialist in various fields and an active public figure. He revealed his multilayered scientific and cultural experiences in his most famous book, Bibliography of Hydrometry. This book introduced the unique European hydrological-measurement and computation methods to the community of world hydrologists at that time and allowed the development and adaptation of these methods across the world.

  2. Combining remotely sensed and other measurements for hydrologic areal averages

    NASA Technical Reports Server (NTRS)

    Johnson, E. R.; Peck, E. L.; Keefer, T. N.

    1982-01-01

    A method is described for combining measurements of hydrologic variables of various sampling geometries and measurement accuracies to produce an estimated mean areal value over a watershed and a measure of the accuracy of the mean areal value. The method provides a means to integrate measurements from conventional hydrological networks and remote sensing. The resulting areal averages can be used to enhance a wide variety of hydrological applications including basin modeling. The correlation area method assigns weights to each available measurement (point, line, or areal) based on the area of the basin most accurately represented by the measurement. The statistical characteristics of the accuracy of the various measurement technologies and of the random fields of the hydrologic variables used in the study (water equivalent of the snow cover and soil moisture) required to implement the method are discussed.

  3. Implications of GRACE Satellite Gravity Measurements for Diverse Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Yirdaw-Zeleke, Sitotaw

    Soil moisture plays a major role in the hydrologic water balance and is the basis for most hydrological models. It influences the partitioning of energy and moisture inputs at the land surface. Because of its importance, it has been used as a key variable for many hydrological studies such as flood forecasting, drought studies and the determination of groundwater recharge. Therefore, spatially distributed soil moisture with reasonable temporal resolution is considered a valuable source of information for hydrological model parameterization and validation. Unfortunately, soil moisture is difficult to measure and remains essentially unmeasured over spatial and temporal scales needed for a number of hydrological model applications. In 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite platform was launched to measure, among other things, the gravitational field of the earth. Over its life span, these orbiting satellites have produced time series of mass changes of the earth-atmosphere system. The subsequent outcome of this, after integration over a number of years, is a time series of highly refined images of the earth's mass distribution. In addition to quantifying the static distribution of mass, the month-to-month variation in the earth's gravitational field are indicative of the integrated value of the subsurface total water storage for specific catchments. Utilization of these natural changes in the earth's gravitational field entails the transformation of the derived GRACE geopotential spherical harmonic coefficients into spatially varying time series estimates of total water storage. These remotely sensed basin total water storage estimates can be routinely validated against independent estimates of total water storage from an atmospheric-based water balance approach or from well calibrated macroscale hydrologic models. The hydrological relevance and implications of remotely estimated GRACE total water storage over poorly gauged, wetland

  4. Sacroiliac joint pain: Prospective, randomised, experimental and comparative study of thermal radiofrequency with sacroiliac joint block.

    PubMed

    Cánovas Martínez, L; Orduña Valls, J; Paramés Mosquera, E; Lamelas Rodríguez, L; Rojas Gil, S; Domínguez García, M

    2016-05-01

    To compare the analgesic effects between the blockade and bipolar thermal radiofrequency in the treatment of sacroiliac joint pain. Prospective, randomised and experimental study conducted on 60 patients selected in the two hospitals over a period of nine months, who had intense sacroiliac joint pain (Visual Analogue Scale [VAS]>6) that lasted more than 3 months. Patients were randomised into three groups (n=20): Group A (two intra-articular sacroiliac injections of local anaesthetic/corticosteroid guided by ultrasound in 7 days). Group B: conventional bipolar radiofrequency "palisade". Target points were the lateral branch nerves of S1, S2, and S3, distance needles 1cm. Group C: modified bipolar radiofrequency "palisade" (needle distance >1cm). Patients were evaluated at one month, three months, and one year. Demographic data, VAS reduction, and side effects of the techniques were assessed. One month after the treatment, pain reduction was >50% in the three groups P<.001. Three and 12 months after the technique, the patients of the group A did not have a significant reduction in pain. At 3 months, almost 50% patients of the group B referred to improvement of the pain (P=.03), and <25% at 12 months, and those results were statistically significant (P=.01) compared to the baseline. Group C showed an improvement of 50% at 3 and 12 months (P<.001). All patients completed the study. Bipolar radiofrequency "palisade", especially when the distance between the needles was increased, was more effective and lasted longer, compared to join block and steroids, in relieving pain sacroiliac joint. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Hydrology and water quality of the copper-nickel study region, northeastern Minnesota

    USGS Publications Warehouse

    Siegel, Donald I.; Ericson, Donald W.

    1980-01-01

    Data were collected on the hydrology of the Copper-Nickel study region to identify the location and nature of groundwater resources, determine the flow characteristics and general quality of the major streams, and determine the potential effects of mining copper and nickel on the hydrologic stream. Groundwater generally occurs in local flow systems within surficial deposits and in fractures in the upper few hundred feet of bedrock. Yields commonly range from 1 to 5 gallons per minute from wells in surficial materials and bedrock, but can be as much as 1,000 gallons per minute from wells in the sand and gravel aquifer underlying the Embarrass River valley. Groundwater generally is calcium-magnesium bicarbonate types. Over a mineralized zone, groundwater has concentrations of copper and nickel greater than 5 micrograms per liter. The average annual runoff from streams in the study area is about 10 inches. About 60% of the annual runoff occurs during snowmelt in spring. Flood peaks are reduced in streams that have surface storage available in on-channel lakes and wetlands. Specific conductance in streams can exceed 250 micromhos per centimeter at 25 Celsius where mine dewatering supplements natural discharge. Estimated groundwater discharge to projected copper-nickel mines ranges from less than 25 to about 2,000 gallons per minute. The introduction of trace metals from future mining activities to the groundwater system can be reduced if tailings basins and stockpiles are located on material which has low permeability, such as till, peat, or bedrock. (USGS)

  6. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Treesearch

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  7. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  8. Crowdsourcing to Acquire Hydrologic Data and Engage Citizen Scientists: CrowdHydrology

    USGS Publications Warehouse

    Fienen, Michael N.; Lowry, Chris

    2013-01-01

    Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement.

  9. 2006 Horton (Hydrology) Research Grant Recipients

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The 2006 Horton (Hydrology) Research Grant Committee selected two recipients, Xingyuan Chen and Carl Legleiter. The research grant, which is separate from the Horton Award, supports projects in hydrology and water resources by doctoral candidates at institutions of higher learning.

  10. Experimental joint immobilization in guinea pigs. Effects on the knee joint

    NASA Technical Reports Server (NTRS)

    Marcondesdesouza, J. P.; Machado, F. F.; Sesso, A.; Valeri, V.

    1980-01-01

    In young and adult guinea pigs, the aftermath experimentally induced by the immobilization of the knee joint in hyperextended forced position was studied. Joint immobilization which varied from one to nine weeks was attained by plaster. Eighty knee joints were examined macro and microscopically. Findings included: (1) muscular hypotrophy and joint stiffness in all animals, directly proportional to the length of immobilization; (2) haemoarthrosis in the first week; (3) intra-articular fibrous tissue proliferation ending up with fibrous ankylosis; (4) hyaline articular cartilage erosions; (5) various degrees of destructive menisci changes. A tentative explanation of the fibrous tissue proliferation and of the cartilage changes is offered.

  11. Mapping (un)certainties in the sign of hydrological projections

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Addor, Nans; Mizukami, Naoki; Newman, Andrew; Torfs, Paul; Clark, Martyn; Uijlenhoet, Remko; Teuling, Ryan

    2017-04-01

    While hydrological projections are of vital importance, particularly for water infrastructure design and food production, they are also prone to different sources of uncertainty. Using a multi-model set-up we investigated the uncertainty in hydrological projections for the period 2070-2100 associated with the parameterization of hydrological models, hydrological model structure, and General Circulation Models (GCMs) needed to force the hydrological model, for 605 basins throughout the contiguous United States. The use of such a large sample of basins gave us the opportunity to recognize spatial patterns in the results, and to attribute the uncertainty to particular hydrological processes. We investigated the sign of the projected change in mean annual runoff. The parameterization influenced the sign of change in 5 to 34% of the basins, depending on the hydrological model and GCM forcing. The hydrological model structure led to uncertainty in the sign of the change in 13 to 26% of the basins, depending on GCM forcing. This uncertainty could largely be attributed to the conceptualization of snow processes in the hydrological models. In 14% of the basins, none of the hydrological models was behavioural, which could be related to catchments with high aridity and intermittent flow behaviour. In 41 to 69% of the basins, the sign of the change was uncertain due to GCM forcing, which could be attributed to disagreement among the climate models regarding the projected change in precipitation. The results demonstrate that even the sign of change in mean annual runoff is highly uncertain in the majority of the investigated basins. If we want to use hydrological projections for water management purposes, including the design of water infrastructure, we clearly need to increase our understanding of climate and hydrological processes and their feedbacks.

  12. Advancing Data Assimilation in Operational Hydrologic Forecasting: Progresses, Challenges, and Emerging Opportunities

    NASA Technical Reports Server (NTRS)

    Liu, Yuqiong; Weerts, A.; Clark, M.; Hendricks Franssen, H.-J; Kumar, S.; Moradkhani, H.; Seo, D.-J.; Schwanenberg, D.; Smith, P.; van Dijk, A. I. J. M.; hide

    2012-01-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions as demonstrated in numerous research studies. However, advances in hydrologic DA research have not been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. This is due in part to a lack of mechanisms to properly quantify the uncertainty in observations and forecast models in real-time forecasting situations and to conduct the merging of data and models in a way that is adequately efficient and transparent to operational forecasters. The need for effective DA of useful hydrologic data into the forecast process has become increasingly recognized in recent years. This motivated a hydrologic DA workshop in Delft, the Netherlands in November 2010, which focused on advancing DA in operational hydrologic forecasting and water resources management. As an outcome of the workshop, this paper reviews, in relevant detail, the current status of DA applications in both hydrologic research and operational practices, and discusses the existing or potential hurdles and challenges in transitioning hydrologic DA research into cost-effective operational forecasting tools, as well as the potential pathways and newly emerging opportunities for overcoming these challenges. Several related aspects are discussed, including (1) theoretical or mathematical aspects in DA algorithms, (2) the estimation of different types of uncertainty, (3) new observations and their objective use in hydrologic DA, (4) the use of DA for real-time control of water resources systems, and (5) the development of community-based, generic DA tools for hydrologic applications. It is recommended that cost-effective transition of hydrologic DA from research to operations should be helped by developing community-based, generic modeling and DA tools or frameworks, and through fostering collaborative efforts among hydrologic modellers, DA

  13. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key

  14. The European 2015 drought from a hydrological perspective

    NASA Astrophysics Data System (ADS)

    Laaha, Gregor; Gauster, Tobias; Tallaksen, Lena M.; Vidal, Jean-Philippe; Stahl, Kerstin; Prudhomme, Christel; Heudorfer, Benedikt; Vlnas, Radek; Ionita, Monica; Van Lanen, Henny A. J.; Adler, Mary-Jeanne; Caillouet, Laurie; Delus, Claire; Fendekova, Miriam; Gailliez, Sebastien; Hannaford, Jamie; Kingston, Daniel; Van Loon, Anne F.; Mediero, Luis; Osuch, Marzena; Romanowicz, Renata; Sauquet, Eric; Stagge, James H.; Wong, Wai K.

    2017-06-01

    In 2015 large parts of Europe were affected by drought. In this paper, we analyze the hydrological footprint (dynamic development over space and time) of the drought of 2015 in terms of both severity (magnitude) and spatial extent and compare it to the extreme drought of 2003. Analyses are based on a range of low flow and hydrological drought indices derived for about 800 streamflow records across Europe, collected in a community effort based on a common protocol. We compare the hydrological footprints of both events with the meteorological footprints, in order to learn from similarities and differences of both perspectives and to draw conclusions for drought management. The region affected by hydrological drought in 2015 differed somewhat from the drought of 2003, with its center located more towards eastern Europe. In terms of low flow magnitude, a region surrounding the Czech Republic was the most affected, with summer low flows that exhibited return intervals of 100 years and more. In terms of deficit volumes, the geographical center of the event was in southern Germany, where the drought lasted a particularly long time. A detailed spatial and temporal assessment of the 2015 event showed that the particular behavior in these regions was partly a result of diverging wetness preconditions in the studied catchments. Extreme droughts emerged where preconditions were particularly dry. In regions with wet preconditions, low flow events developed later and tended to be less severe. For both the 2003 and 2015 events, the onset of the hydrological drought was well correlated with the lowest flow recorded during the event (low flow magnitude), pointing towards a potential for early warning of the severity of streamflow drought. Time series of monthly drought indices (both streamflow- and climate-based indices) showed that meteorological and hydrological events developed differently in space and time, both in terms of extent and severity (magnitude). These results

  15. Evolving soils and hydrologic connectivity in semiarid hillslopes

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.

    2015-04-01

    Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical

  16. Delineating wetland catchments and modeling hydrologic ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that

  17. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be

  18. Hydrology for Engineers, Geologists, and Environmental Professionals

    NASA Astrophysics Data System (ADS)

    Ince, Simon

    For people who are involved in the applied aspects of hydrology, it is refreshing to find a textbook that begins with a meaningful disclaimer, albeit in fine print on the back side of the frontispiece:“The present book and the accompanying software have been written according to the latest techniques in scientific hydrology. However, hydrology is at best an inexact science. A good book and a good computer software by themselves do not guarantee accurate or even realistic predictions. Acceptable results in the applications of hydrologic methods to engineering and environmental problems depend to a greater extend (sic) on the skills, logical assumptions, and practical experience of the user, and on the quantity and quality of long-term hydrologic data available. Neither the author nor the publisher assumes any responsibility or any liability, explicitly or implicitly, on the results or the consequences of using the information contained in this book or its accompanying software.”

  19. Mountain hydrology of the western United States

    USGS Publications Warehouse

    Bales, Roger C.; Molotch, Noah P.; Painter, Thomas H; Dettinger, Michael D.; Rice, Robert; Dozier, Jeff

    2006-01-01

    Climate change and climate variability, population growth, and land use change drive the need for new hydrologic knowledge and understanding. In the mountainous West and other similar areas worldwide, three pressing hydrologic needs stand out: first, to better understand the processes controlling the partitioning of energy and water fluxes within and out from these systems; second, to better understand feedbacks between hydrological fluxes and biogeochemical and ecological processes; and, third, to enhance our physical and empirical understanding with integrated measurement strategies and information systems. We envision an integrative approach to monitoring, modeling, and sensing the mountain environment that will improve understanding and prediction of hydrologic fluxes and processes. Here extensive monitoring of energy fluxes and hydrologic states are needed to supplement existing measurements, which are largely limited to streamflow and snow water equivalent. Ground‐based observing systems must be explicitly designed for integration with remotely sensed data and for scaling up to basins and whole ranges.

  20. Cumulative effects of wetland drainage on watershed-scale subsurface hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Ameli, A.

    2017-12-01

    Subsurface hydrologic connectivity influences hydrological, biogeochemical and ecological responses within watersheds. However, information about the location, duration, and frequency of subsurface hydrologic connections within wetlandscapes and between wetlandscapes and streams is often not available. This leads to a lack of understanding of the potential effects of human modifications of the landscape, including wetland degradation and removal, on subsurface hydrologic connectivity and therefore watershed responses. Herein, we develop a computationally efficient, physically-based subsurface hydrologic connectivity model that explicitly characterizes the effects of wetland degradation and removal on the distribution, length, and timing of subsurface hydrologic connectivity within a wetland-dominated watershed in the Prairie Pothole Region of North America. We run the model using a time series of wetland inventories that reflect incremental wetland loss from 1962, to 1993, and to 2009. We also consider a potential future wetland loss scenario based on removal of all wetlands outside of the protected areas of the watershed. Our findings suggest that wetland degradation and removal over this period increased the average length, transit time, and frequency of subsurface hydrologic connections to the regional surface waters, resulting in decreased baseflow in the major river network. This study provides important insights that can be used by wetland managers and policy makers to support watershed-scale wetland protection and restoration plans to improve water resource management.

  1. Accuracy of acromioclavicular joint injections.

    PubMed

    Wasserman, Bradley R; Pettrone, Sarah; Jazrawi, Laith M; Zuckerman, Joseph D; Rokito, Andrew S

    2013-01-01

    Injection to the acromioclavicular (AC) joint can be both diagnostic and therapeutic. The purpose of this study was to evaluate the accuracy of in vivo AC joint injections. Case series; Level of evidence, 4. Thirty patients with pain localized to the AC joint were injected with 1 mL of 1% lidocaine and 0.5 mL of radiographic contrast material (Isovue). Radiographs of the AC joint were taken after the injection. Each radiograph was reviewed by a musculoskeletal radiologist and graded as intra-articular, extra-articular, or partially intra-articular. Of the 30 injections performed, 13 (43.3%) were intra-articular, 7 (23.3%) were partially articular, and 10 (33.3%) were extra-articular. When the intra-articular and the partially articular groups were combined, 20 patients (66.7%) had some contrast dye in the AC joint. This study demonstrates that despite the relatively superficial location of the AC joint, the clinical accuracy of AC joint injections remains relatively low.

  2. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small

  3. RHydro - Hydrological models and tools to represent and analyze hydrological data in R

    NASA Astrophysics Data System (ADS)

    Reusser, Dominik; Buytaert, Wouter

    2010-05-01

    In hydrology, basic equations and procedures keep being implemented from scratch by scientist, with the potential for errors and inefficiency. The use of libraries can overcome these problems. Other scientific disciplines such as mathematics and physics have benefited significantly from such an approach with freely available implementations for many routines. As an example, hydrological libraries could contain: Major representations of hydrological processes such as infiltration, sub-surface runoff and routing algorithms. Scaling functions, for instance to combine remote sensing precipitation fields with rain gauge data Data consistency checks Performance measures. Here we present a beginning for such a library implemented in the high level data programming language R. Currently, Top-model, data import routines for WaSiM-ETH as well basic visualization and evaluation tools are implemented. The design is such, that a definition of import scripts for additional models is sufficient to have access to the full set of evaluation and visualization tools.

  4. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  5. The case for probabilistic forecasting in hydrology

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    2001-08-01

    That forecasts should be stated in probabilistic, rather than deterministic, terms has been argued from common sense and decision-theoretic perspectives for almost a century. Yet most operational hydrological forecasting systems produce deterministic forecasts and most research in operational hydrology has been devoted to finding the 'best' estimates rather than quantifying the predictive uncertainty. This essay presents a compendium of reasons for probabilistic forecasting of hydrological variates. Probabilistic forecasts are scientifically more honest, enable risk-based warnings of floods, enable rational decision making, and offer additional economic benefits. The growing demand for information about risk and the rising capability to quantify predictive uncertainties create an unparalleled opportunity for the hydrological profession to dramatically enhance the forecasting paradigm.

  6. Quantitative assessment of joint position sense recovery in subacute stroke patients: a pilot study.

    PubMed

    Kattenstroth, Jan-Christoph; Kalisch, Tobias; Kowalewski, Rebecca; Tegenthoff, Martin; Dinse, Hubert R

    2013-11-01

    To assess joint position sense performance in subacute stroke patients using a novel quantitative assessment. Proof-of-principle pilot study with a group of subacute stroke patients. Assessment at baseline and after 2 weeks of intervention. Additional data for a healthy age-matched control group. Ten subacute stroke patients (aged 65.41 years (standard deviation 2.5), 4 females, 2.3 weeks (standard deviation 0.2)) post-stroke receiving in-patient standard rehabilitation and repetitive electrical stimulation of the affected hand. Joint position sense was assessed based on the ability of correctly perceiving the opening angles of the finger joints. Patients had to report size differences of polystyrene balls of various sizes, whilst the balls were enclosed simultaneously by the affected and the non-affected hands. A total of 21 pairwise size comparisons was used to quantify joint position performance. After 2 weeks of therapeutic intervention a significant improvement in joint position sense performance was observed; however, the performance level was still below that of a healthy control group. The results indicate high feasibility and sensitivity of the joint position test in subacute stroke patients. Testing allowed quantification of both the deficit and the rehabilitation outcome.

  7. Applicability of Hydrologic Landscapes for Model Calibration ...

    EPA Pesticide Factsheets

    The Pacific Northwest Hydrologic Landscapes (PNW HL) at the assessment unit scale has provided a solid conceptual classification framework to relate and transfer hydrologically meaningful information between watersheds without access to streamflow time series. A collection of techniques were applied to the HL assessment unit composition in watersheds across the Pacific Northwest to aggregate the hydrologic behavior of the Hydrologic Landscapes from the assessment unit scale to the watershed scale. This non-trivial solution both emphasizes HL classifications within the watershed that provide that majority of moisture surplus/deficit and considers the relative position (upstream vs. downstream) of these HL classifications. A clustering algorithm was applied to the HL-based characterization of assessment units within 185 watersheds to help organize watersheds into nine classes hypothesized to have similar hydrologic behavior. The HL-based classes were used to organize and describe hydrologic behavior information about watershed classes and both predictions and validations were independently performed with regard to the general magnitude of six hydroclimatic signature values. A second cluster analysis was then performed using the independently calculated signature values as similarity metrics, and it was found that the six signature clusters showed substantial overlap in watershed class membership to those in the HL-based classes. One hypothesis set forward from thi

  8. Linking scientific disciplines: Hydrology and social sciences

    NASA Astrophysics Data System (ADS)

    Seidl, R.; Barthel, R.

    2017-07-01

    The integration of interdisciplinary scientific and societal knowledge plays an increasing role in sustainability science and more generally, in global change research. In the field of water resources, interdisciplinarity has long been recognized as crucial. Recently, new concepts and ideas about how to approach water resources management more holistically have been discussed. The emergence of concepts such as socio-hydrology indicates the growing relevance of connections between social and hydrological disciplines. In this paper, we determine how well social sciences are integrated with hydrological research by using two approaches. First, we conducted a questionnaire survey with a sample of hydrology researchers and professionals (N = 353) to explore current opinions and developments related to interdisciplinary collaboration between hydrologists and social scientists. Second, we analyzed the disciplinary composition of author teams and the reference lists of articles pertaining to the socio-hydrology concept. We conclude that interdisciplinarity in water resources research is on a promising track but may need to mature further in terms of its aims and methods of integration. We find that current literature pays little attention to the following questions: What kind of interdisciplinarity do different scholars want? What are social scientists' preferred roles and knowledge from a hydrology perspective?

  9. Impact of land-use and climatic changes on hydrology of the Himalayan Basin: A case study of the Kosi Basin

    NASA Astrophysics Data System (ADS)

    Sharma, Keshav Prasad

    1997-10-01

    Land-use and climatic changes are of major concern in the Himalayan region because of their potential impacts on a predominantly agriculture-based economy and a regional hydrology dominated by strong seasonality. Such concerns are not limited to any particular basin but exist throughout the region including the downstream plain areas. As a representative basin of the Himalayas, we studied the Kosi basin (54,000 km2) located in the mountainous area of the central Himalayan region. We analyzed climatic and hydrologic information to assess the impacts of existing and potential future land-use and climatic changes over the basin. The assessment of anthropogenic inputs showed that the population grew at a compound growth rate of about one percent per annum over the basin during the last four decades. The comparison of land-use data based on the surveys made in the 1960s, and the surveys of 1978-79 did not reveal noticeable trends in land-use change. Analysis of meteorological and hydrological trends using parametric and nonparametric statistics for monthly data from 1947 to 1993 showed some increasing tendency for temperature and precipitation. Statistical tests of hydrological trends indicated an overall decrease of discharge along mainstem Kosi River and its major tributaries. The decreasing trends of streamflow were more significant during low-flow months. Statistical analysis of homogeneity showed that the climatological as well as the hydrological trends were more localized in nature lacking distinct basinwide significance. Statistical analysis of annual sediment time series, available for a single station on the Kosi River did not reveal a significant trend. We used water balance, statistical correlation, and distributed deterministic modeling approaches to analyze the hydrological sensitivity of the basin to possible land-use and climatic changes. The results indicated a stronger influence of basin characteristics compared to climatic characteristics on flow

  10. 30 CFR 819.15 - Auger mining: Hydrologic balance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: Hydrologic balance. 819.15... MINING § 819.15 Auger mining: Hydrologic balance. (a) Auger mining shall be planned and conducted to minimize disturbances of the prevailing hydrologic balance in accordance with the requirements of §§ 816.41...

  11. 30 CFR 819.15 - Auger mining: Hydrologic balance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Hydrologic balance. 819.15... MINING § 819.15 Auger mining: Hydrologic balance. (a) Auger mining shall be planned and conducted to minimize disturbances of the prevailing hydrologic balance in accordance with the requirements of §§ 816.41...

  12. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-12-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  13. Disturbance hydrology: Preparing for an increasingly disturbed future

    USGS Publications Warehouse

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-01-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre- and post-disturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  14. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): skill, case studies and scenarios

    NASA Astrophysics Data System (ADS)

    Addor, N.; Jaun, S.; Zappa, M.

    2011-01-01

    The Sihl River flows through Zurich, Switzerland's most populated city, for which it represents the largest flood threat. To anticipate extreme discharge events and provide decision support in case of flood risk, a hydrometeorological ensemble prediction system (HEPS) was launched operationally in 2008. This models chain relies on limited-area atmospheric forecasts provided by the deterministic model COSMO-7 and the probabilistic model COSMO-LEPS. These atmospheric forecasts are used to force a semi-distributed hydrological model (PREVAH), coupled to a hydraulic model (FLORIS). The resulting hydrological forecasts are eventually communicated to the stakeholders involved in the Sihl discharge management. This fully operational setting provides a real framework to compare the potential of deterministic and probabilistic discharge forecasts for flood mitigation. To study the suitability of HEPS for small-scale basins and to quantify the added-value conveyed by the probability information, a reforecast was made for the period June 2007 to December 2009 for the Sihl catchment (336 km2). Several metrics support the conclusion that the performance gain can be of up to 2 days lead time for the catchment considered. Brier skill scores show that COSMO-LEPS-based hydrological forecasts overall outperform their COSMO-7 based counterparts for all the lead times and event intensities considered. The small size of the Sihl catchment does not prevent skillful discharge forecasts, but makes them particularly dependent on correct precipitation forecasts, as shown by comparisons with a reference run driven by observed meteorological parameters. Our evaluation stresses that the capacity of the model to provide confident and reliable mid-term probability forecasts for high discharges is limited. The two most intense events of the study period are investigated utilising a novel graphical representation of probability forecasts and used to generate high discharge scenarios. They

  15. Understanding the Amazon Hydrology for Sustainable Hydropower Development

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Chaudhari, S. N.

    2017-12-01

    Construction of 147 new hydropower dams, many of which are large, has been proposed in the Amazon river basin, despite the continuous stacking of negative impacts from the existing ones. These dams are continued to be built in a way that disrupts river ecology, causes large-scale deforestation, and negatively affects both the food systems nearby and downstream communities. In this study, we explore the impacts of the existing and proposed hydropower dams on the hydrological fluxes across the Amazonian Basin by incorporating human impact modules in an extensively validated regional hydrological model called LEAF-Hydro-Flood (LHF). We conduct two simulations, one in offline mode, forced by observed meteorological data for the historical period of 2000-2016 and the other in a coupled mode using the Weather Research and Forecasting (WRF) regional climate model. We mainly analyze terrestrial water storage and streamflow changes during the period of dam operations with and without human impacts. It is certain that the Amazon will undergo some major hydrological changes such as decrease in streamflow downstream in the coming decades caused due to these proposed dams. This study helps us understand and represent processes in a predictable manner, and provides the ability to evaluate future scenarios with dams and other major human influences while considering climate change in the basin. It also provides important insights on how to redesign the hydropower systems to make them truly renewable in terms of energy production, hydrology and ecology.

  16. Hydrological connectivity of perched aquifers and regional aquifers in semi-arid environments: a case study from Namibia

    NASA Astrophysics Data System (ADS)

    Hamutoko, J. T.; Wanke, H.

    2017-12-01

    Integrated isotopic and hydrological tracers along with standard hydrological data are used to understand complex dry land hydrological processes on different spatial and temporal scales. The objective of this study is to analyse the relationship between the perched aquifers and the regional aquifer using hydrochemical data and isotopic composition in the Cuvelai-Etosha Basin in Namibia. This relation between the aquifers will aid in understanding groundwater recharge processes and flow dynamics. Perched aquifers are discontinuous shallow aquifers with water level ranging from 0 to 30 meters below ground level. The regional aquifer occurs in semi-consolidated sandstone at depths between about 60 and 160 meters below ground level. Water samples were collected from both aquifers in 10 villages and were analysed for major ions and stable isotopes. The results show overlapping hydrochemistry and isotopic compositions of both aquifers in 8 villages which suggest the possibility of perched aquifer water infiltrating into the regional aquifer. In two villages the hydrochemistry and isotopic composition of the aquifers are totally different and this suggests that there is no interaction between this aquifers. Areas where perched aquifers are connected to regional aquifers maybe recharge zones. These finding have important implications for groundwater resource management.

  17. How can hydrological modeling help to understand process dynamics in sparsely gauged tropical regions - case study Mata Âtlantica, Brazil

    NASA Astrophysics Data System (ADS)

    Künne, Annika; Penedo, Santiago; Schuler, Azeneth; Bardy Prado, Rachel; Kralisch, Sven; Flügel, Wolfgang-Albert

    2015-04-01

    To ensure long-term water security for domestic, agricultural and industrial use in the emerging country of Brazil with fast-growing markets and technologies, understanding of catchment hydrology is essential. Yet, hydrological analysis, high resolution temporal and spatial monitoring and reliable meteo-hydrological data are insufficient to fully understand hydrological processes in the region and to predict future trends. Physically based hydrological modeling can help to expose uncertainties of measured data, predict future trends and contribute to physical understanding about the watershed. The Brazilian Atlantic rainforest (Mata Atlântica) is one of the world's biodiversity hotspots. After the Portuguese colonization, its original expansion of 1.5 million km² was reduced to only 7% of the former area. Due to forest fragmentation, overexploitation and soil degradation, pressure on water resources in the region has significantly increased. Climatically, the region possesses distinctive wet and dry periods. While extreme precipitation events in the rainy season cause floods and landslides, dry periods can lead to water shortages, especially in the agricultural and domestic supply sectors. To ensure both, the protection of the remnants of Atlantic rainforest biome as well as water supply, a hydrological understanding of this sparsely gauged region is essential. We will present hydrological models of two meso- to large-scale catchments (Rio Macacu and Rio Dois Rios) within the Mata Âtlantica in the state of Rio de Janeiro. The results show how physically based models can contribute to hydrological system understanding within the region and answer what-if scenarios, supporting regional planners and decision makers in integrated water resources management.

  18. Estimating parameter values of a socio-hydrological flood model

    NASA Astrophysics Data System (ADS)

    Holkje Barendrecht, Marlies; Viglione, Alberto; Kreibich, Heidi; Vorogushyn, Sergiy; Merz, Bruno; Blöschl, Günter

    2018-06-01

    Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model.

  19. 30 CFR 784.14 - Hydrologic information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic information. 784.14 Section 784.14... Hydrologic information. (a) Sampling and analysis. All water quality analyses performed to meet the... at the National Archives and Records Administration (NARA). For information on the availability of...

  20. 30 CFR 784.14 - Hydrologic information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic information. 784.14 Section 784.14... Hydrologic information. (a) Sampling and analysis. All water quality analyses performed to meet the... at the National Archives and Records Administration (NARA). For information on the availability of...

  1. 30 CFR 780.21 - Hydrologic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic information. 780.21 Section 780.21... Hydrologic information. (a) Sampling and analysis methodology. All water-quality analyses performed to meet... Eastern Technical Service Center, U.S. Department of the Interior, Building 10, Parkway Center, Pittsburgh...

  2. 30 CFR 780.21 - Hydrologic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic information. 780.21 Section 780.21... Hydrologic information. (a) Sampling and analysis methodology. All water-quality analyses performed to meet... Eastern Technical Service Center, U.S. Department of the Interior, Building 10, Parkway Center, Pittsburgh...

  3. Understanding and seasonal forecasting of hydrological drought in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Zhang, Miao; Wang, Linying; Zhou, Tian

    2017-11-01

    Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961-2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118-262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21-99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982-2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11-26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post

  4. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    NASA Astrophysics Data System (ADS)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  5. Recent developments in hydrologic instrumentation

    USGS Publications Warehouse

    Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.

    1986-01-01

    The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.

  6. Designing Hydrologic Observatories as a Community Resource

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Duncan, J. M.

    2004-12-01

    CUAHSI convened a workshop in August 2004 to explore what makes a successful hydrologic observatory. Because of their high cost, only a small number of observatories will be operated, at least initially. (CUAHSI has recommended a pilot network of 5 observatories to develop operational experience and an eventual network of approximately 15 sites.) Because hydrologic scientists can work "in their backyard" (unlike oceanographers or astronomers), hydrologic observatories must offer significant advantages over current methods of field work to successfully attract researchers. Twenty-four teams of scientists submitted "prospectuses" of potential locations for hydrologic observatories for consideration by network attendees. These documents (available at http://www.cuahsi.org) were marketing documents to the workshop participants, who voted for a hypothetical network of 5 observatories from the 24 proposed sites. This network formed the basis for a day of discussions on necessary attributes of core data and how to form a network of observatories from a collection of sites that are designed and implemented individually. Key findings included: 1) Core data must be balanced among disciplines. Although the hydrologic cycle is an organizing principle for the design of HOs, physical data cannot dominate the core data; chemical and biological data, although more expensive to collect, must be given equal footing. 2) New data collection must strategically leverage existing data. Resources are always limited, so that a successful HO must carefully target gaps in existing data, as determined by an explicitly stated conceptual model, and fill them rather than designing an independent study. 3) Site logistics must support remote researchers. Significant resources will be necessary for on-site staff to handle housing, transportation, permitting and other needs. 4) Network-level hypotheses are required early in the implementation of HOs. A network will only emerge around hypotheses

  7. How reliable are satellite precipitation estimates for driving hydrological models: a verification study over the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Camici, Stefania; Ciabatta, Luca; Massari, Christian; Brocca, Luca

    2017-04-01

    Floods are one of the most common and dangerous natural hazards, causing every year thousands of casualties and damages worldwide. The main tool for assessing flood risk and reducing damages is represented by hydrologic early warning systems that allow to forecast flood events by using real time data obtained through ground monitoring networks (e.g., raingauges and radars). However, the use of such data, mainly rainfall, presents some issues firstly related to the network density and to the limited spatial representativeness of local measurements. A way to overcome these issues may be the use of satellite-based rainfall products (SRPs) that nowadays are available on a global scale at ever increasing spatial/temporal resolution and accuracy. However, despite the large availability and increased accuracy of SRPs (e.g., the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA); the Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF); and the recent Global Precipitation Measurement (GPM) mission), remotely sensed rainfall data are scarcely used in hydrological modeling and only a small number of studies have been carried out to outline some guidelines for using satellite data as input for hydrological modelling. Reasons may be related to: 1) the large bias characterizing satellite precipitation estimates, which is dependent on rainfall intensity and season, 2) the spatial/temporal resolution, 3) the timeliness, which is often insufficient for operational purposes, and 4) a general (often not justified) skepticism of the hydrological community in the use of satellite products for land applications. The objective of this study is to explore the feasibility of using SRPs in a lumped hydrologic model (MISDc, "Modello Idrologico Semi-Distribuito in continuo", Masseroni et al., 2017) over 10 basins in the Mediterranean area with different sizes and physiographic characteristics. Specifically

  8. Hydrologic-information needs for oil-shale development, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O.J.

    1982-01-01

    Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)

  9. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  10. Simulated discharge trends indicate robustness of hydrological models in a changing climate

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Nikolova, Silviya; Seibert, Jan

    2016-04-01

    Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant

  11. A preliminary study on effects of increment of loads to lower extremity joints during kettlebell swing activity

    NASA Astrophysics Data System (ADS)

    Zin, Muhammad Athif Mat; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    The purpose of the study was to determine the effects of increment of loads to lower extremity joints during the two-hand kettlebell swing (KS) activity with loads of 4 kg, 6 kg and 8 kg. Three male adults participated in this study. Subjects were required to perform a two-hand KS with three different loads which were 4 kg, 6 kg and 8 kg. A Vicon Nexus system (v1.5.2) with three infrared cameras adjusted with 100 Hz speed were used to capture KS motion to produce kinematics data for lower extremity joints which were ankle, knee and hip joints. The results showed that mean maximum flexion angle (MFA) of ankle, knee and hip joints decreased as load increased. Mean MFA of knee joint was the highest while mean MFA of ankle joint was the smallest recorded. Mean MFA of ipsilateral leg was higher than that of contralateral leg for a right-dominant subject.

  12. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  13. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  14. A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis

    NASA Astrophysics Data System (ADS)

    Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.

    2018-02-01

    A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.

  15. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    NASA Astrophysics Data System (ADS)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  16. Hydrology of Mid-Atlantic Freshwater Wetlands

    EPA Science Inventory

    Hydrology is a key variable in the structure and function of a wetland; it is a primary determinant of wetland type, and it drives many of the functions a wetland performs and in turn the services it provides. However, wetland hydrology has been understudied. Efforts by Riparia s...

  17. 30 CFR 784.14 - Hydrologic information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic information. 784.14 Section 784.14... Hydrologic information. (a) Sampling and analysis. All water quality analyses performed to meet the... Center, U.S. Department of the Interior, Building 10, Parkway Center, Pittsburgh, Pa.; at the OSM Western...

  18. 30 CFR 784.14 - Hydrologic information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic information. 784.14 Section 784.14... Hydrologic information. (a) Sampling and analysis. All water quality analyses performed to meet the... Center, U.S. Department of the Interior, Building 10, Parkway Center, Pittsburgh, Pa.; at the OSM Western...

  19. Future directions in forest hydrology

    Treesearch

    T.M. Williams; Devendra Amatya; L. Bren; C. deJong; J.E. Nettles

    2016-01-01

    Forest hydrology is a separate and unique branch of hydrology due to the special conditions caused by trees, and the understorey beneath them, comprising a forest. Understanding the forest, with trees that can grow over 100 m tall, may have crowns up to 20-30 m in diameter with roots 5-10 m deep and spread as widely as the crowns, and have lifespans from 50 to 5000...

  20. Hydrology Section Executive Committee Minutes

    NASA Astrophysics Data System (ADS)

    Mercer, James W.

    The AGU Hydrology Section Executive Committee Meeting was called to order at approximately 4 P.M. on Monday, May 18, 1987, by Hydrology Section President Marshall Moss. In attendance were President-Elect George Pinder, Secretary Jim Mercer, Ron Cummings, Helen Joyce Peters, Peter Eagleson, Stephen Burges, Jim Wallis, Jurate Landwehr, Don Nielson, Ken Bencala, Pete Loucks, Jery Stedinger, Dennis Lettenmaier, Lenny Konikow, Ken Potter, John Wilson, Ivan Johnson, and Judy Holoviak.

  1. The Impact of Microwave-Derived Surface Soil Moisture on Watershed Hydrological Modeling

    NASA Technical Reports Server (NTRS)

    ONeill, P. E.; Hsu, A. Y.; Jackson, T. J.; Wood, E. F.; Zion, M.

    1997-01-01

    The usefulness of incorporating microwave-derived soil moisture information in a semi-distributed hydrological model was demonstrated for the Washita '92 experiment in the Little Washita River watershed in Oklahoma. Initializing the hydrological model with surface soil moisture fields from the ESTAR airborne L-band microwave radiometer on a single wet day at the start of the study period produced more accurate model predictions of soil moisture than a standard hydrological initialization with streamflow data over an eight-day soil moisture drydown.

  2. Shear fracture of jointed steel plates of bolted joints under impact load

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.

    2013-07-01

    The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.

  3. Teaching hydrological modelling as a subsidiary subject

    NASA Astrophysics Data System (ADS)

    Hörmann, G.; Schmalz, B.; Fohrer, N.

    2009-04-01

    The department of hydrology and water resources management is part of the Ecology Center of Kiel University, an interdisciplinary research organization. We teach hydrology for geographers, biologists, agricultural engineers and ecologists. Hydrological modeling is part of the curriculum since 1988. It has moved from the subject for specialists to a basic component of all hydrological courses. During the first year, we focussed on in-depth teaching of theory and practice of one big model, but the students found it hard to follow and beyond practical problems. During the last years we switched to a broader, but more shallow policy. Modeling is now part of nearly all courses, but remains limited to mostly 2-4 days of teaching. We now present only very basic theory and leave it to the students to discover the details during the practical work with pre-installed data sets. The poster shows how the models SWAT, Hydrus, Coupmodel, SIMPEL and PC-Raster are embedded in the hydrological curriculum and what kind of problems we experienced in teaching.

  4. From Engineering Hydrology to Earth System Science: Milestones in the Transformation of Hydrologic Science (Alfred Wegener Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2017-04-01

    Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.

  5. Testing the structure of a hydrological model using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  6. Evaluation of ERTS-1 data for certain hydrological uses

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Mcmillan, M. C.

    1974-01-01

    The author has identified the following significant results. ERTS-1 MSS data have been used in a variety of hydrologic research including snow-extent mapping; studies of snowmelt, snowmelt runoff, spectral reflectance of snow for assessing snowpack conditions, and snow albedo; lake ice formation, breakup, and migration; lake current measurements; multispectral studies of lake ice; and flood studies. MSS sensing of soil moisture over a well-vegetated test site was unsuccessfully attempted. Although a powerful research tool, ERTS-1 has very limited use as an operational system for hydrologic communities because of its 18-day revisit cycle and its lack of a quick look capability.

  7. Green roof hydrologic performance and modeling: a review.

    PubMed

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  8. Efficacy of Dorsoradial Capsulodesis for Trapeziometacarpal Joint Instability: A Cadaver Study.

    PubMed

    Chenoweth, Brian A; O'Mahony, Gavin D; Fitzgerald, Casey; Stoner, Julie A; O'Donoghue, Daniel L; Rayan, Ghazi M

    2017-01-01

    To test the biomechanical properties of the dorsoradial capsulodesis procedure. Six cadaveric hands were used. After exposing the trapeziometacarpal (TMC) joint, we placed Kirschner wires in the distal radius and thumb metacarpal. The rotation shear test was then performed to test the joint axial laxity, and angular measurements using Kirschner wires as reference points were documented. The dorsoradial (DR) ligament and capsule were released, followed by the intermetacarpal (IM) ligament; angular measurements were obtained. Finally, the DR capsulodesis procedure was performed, and final measurements were obtained. Comparisons were made among the various stages of ligament integrity to determine the amount of stability provided by DR capsulodesis. All cadavers demonstrated axial laxity with transection of the DR ligament; an increase in stability was obtained after DR capsulodesis. Transection of the capsule and IM ligament caused increased laxity relative to the native joint (median, 24° and 35°, respectively, on rotational testing). After we performed DR capsulodesis, rotational stability improved by a median of 41° compared with DR ligament transection, 49° compared with DR and IM ligament transection, and 18° relative to the native joint. Dorsoradial capsulodesis restores rotational stability for TMC joint after division of the DR and IM ligaments. The stability achieved was statistically significant compared with both an intact native TMC joint and induced laxity of the TMC joint. The DR capsulodesis procedure may improve rotational stability to the TMC joint. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Detecting the effects of forest harvesting on streamflow using hydrologic model change detection

    Treesearch

    Nicolas P. Zegre; Nicholas A. Som

    2011-01-01

    Knowledge of the effects of forest management on hydrology primarily comes from paired-catchment study experiments. This approach has contributed fundamental knowledge of the effects of forest management on hydrology, but results from these studies lack insight into catchment processes. Outlined in this study is an alternative method of change detection that uses a...

  10. Emerging Technologies for Integrating Multi-Scale Observations of the Hydrologic Cycle

    NASA Astrophysics Data System (ADS)

    Logan, W. S.; Potter, K. W.; Wood, E. F.

    2007-12-01

    The results are presented of a recent National Research Council study on examining the potential for integrating spaceborne observations with complementary airborne and ground-based observations to gain holistic understanding of hydrologic and related biogeochemical and ecological processes and to help support water and related land-resource management. The study was motivated by the interrelated challenges of population growth, global climate change, and regional changes in land use and land management that will increasingly stress water resources around the world. Meeting these challenges will require significant improvement in our management of water resources, which in turn will require improvements in our capacity to understand and quantify the hydrologic cycle and its interactions with the natural and built environment. Recent and potential future technological innovations in sensors (in-situ, airborne, and space-borne) and sensor networks, cyber-infrastructure, data assimilation, modeling, and decision-support tools offer unprecedented opportunities to improve our capacity to observe, understand, and manage hydrologic systems. The committee investigated a number of aspects to turning this potential into a reality. These included development and field deployment of land-based chemical and biological sensors; the role of airborne remote sensing; interagency gaps between the steps of sensor development, demonstration, and operational deployment; the coordination of federal responsibilities for measurement, monitoring and modeling; and getting the new information to those who can use it. A variety of case studies were used to illustrate the needs and opportunities for new measurement capacity, including hydrologic monitoring in the Everglades, water quantity and quality in the Southern High Plains, malaria in Sub-Saharan Africa, hydroclimatic research in the Arctic, hydrologic extremes and water quality in the Neuse River watershed, and mountain hydrology in the

  11. Software Carpentry In The Hydrological Sciences

    NASA Astrophysics Data System (ADS)

    Ahmadia, A. J.; Kees, C. E.

    2014-12-01

    Scientists are spending an increasing amount of time building and using hydrology software. However, most scientists are never taught how to do this efficiently. As a result, many are unaware of tools and practices that would allow them to write more reliable and maintainable code with less effort. As hydrology models increase in capability and enter use by a growing number of scientists and their communities, it is important that the scientific software development practices scale up to meet the challenges posed by increasing software complexity, lengthening software lifecycles, a growing number of stakeholders and contributers, and a broadened developer base that extends from application domains to high performance computing centers. Many of these challenges in complexity, lifecycles, and developer base have been successfully met by the open source community, and there are many lessons to be learned from their experiences and practices. Additionally, there is much wisdom to be found in the results of research studies conducted on software engineering itself. Software Carpentry aims to bridge the gap between the current state of software development and these known best practices for scientific software development, with a focus on hands-on exercises and practical advice. In 2014, Software Carpentry workshops targeting earth/environmental sciences and hydrological modeling have been organized and run at the Massachusetts Institute of Technology, the US Army Corps of Engineers, the Community Surface Dynamics Modeling System Annual Meeting, and the Earth Science Information Partners Summer Meeting. In this presentation, we will share some of the successes in teaching this material, as well as discuss and present instructional material specific to hydrological modeling.

  12. Selected hydrologic data, through water year 1994, Black Hills Hydrology Study, South Dakota

    USGS Publications Warehouse

    Driscoll, D.G.; Bradford, W.L.; Neitzert, K.M.

    1996-01-01

    This report presents water-level, water-quality, and spring data that have been collected or compiled, through water year 1994, for the Black Hills Hydrology Study. This study is a long-term cooperative effort between the U.S. Geological Survey, the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District (which represents various local and county cooperators). This report is the second in a series of biennial project data reports produced for the study. Daily water-level data are presented for 39 observation wells and 2 cave sites in the Black Hills area of western South Dakota. The wells are part of a network of observation wells maintained by the Department of Environment and Natural Resources and are completed in various bedrock formations that are utilized as aquifers in the Black Hills area. Both cave sites are located within outcrops of the Madison Limestone. Data presented include site descriptions, hydrographs, and tables of daily water levels. Annual measurements of water levels collected during water years 1993-94 from a network of 20 additional, miscellaneous wells are presented. These wells are part of a Statewide network of wells completed in bedrock aquifers that was operated from 1959 through 1989 in cooperation with the Department of Environment and Natural Resources. Site descriptions and hydrographs for the entire period of record for each site also are presented. Drawdown and recovery data are presented for five wells that were pumped (or flowed) for collection of water-quality samples. These wells are part of the network of observation wells for which daily water-level records are compiled. Water-quality data are presented for 20 surface-water sites and 22 ground-water sites. Data presented include field parameters, bacteria counts, and concentrations of common ions, solids, nutrients, trace elements, radiometrics and isotopes, cyanide, phenols, and suspended sediment. Spring data are

  13. Status of hydrology examined by NRC

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    “The central role of water in the evolution and operation of the Earth system provides a rationale for seeing hydrologic science as a geoscience of stature equal to that of the atmospheric ocean, and solid Earth sciences.” This is the theme of the recently released National Research Council's report, Opportunities in the Hydrologic Sciences.The report was prepared for NRC by the Committee on Opportunities in the Hydrologic Sciences. Frank Press, chairman of NRC, said the report is “intended to help guide science and educational policy decisions and to provide a scientific framework and educational policy for scientists, educators, and students making career plans.”

  14. Reconstructing the duty of water: a study of emergent norms in socio-hydrology

    NASA Astrophysics Data System (ADS)

    Wescoat, J. L., Jr.

    2013-12-01

    This paper assesses the changing norms of water use known as the duty of water. It is a case study in historical socio-hydrology, or more precisely the history of socio-hydrologic ideas, a line of research that is useful for interpreting and anticipating changing social values with respect to water. The duty of water is currently defined as the amount of water reasonably required to irrigate a substantial crop with careful management and without waste on a given tract of land. The historical section of the paper traces this concept back to late 18th century analysis of steam engine efficiencies for mine dewatering in Britain. A half-century later, British irrigation engineers fundamentally altered the concept of duty to plan large-scale canal irrigation systems in northern India at an average duty of 218 acres per cubic foot per second (cfs). They justified this extensive irrigation standard (i.e., low water application rate over large areas) with a suite of social values that linked famine prevention with revenue generation and territorial control. The duty of water concept in this context articulated a form of political power, as did related irrigation engineering concepts such as "command" and "regime". Several decades later irrigation engineers in the western US adapted the duty of water concept to a different socio-hydrologic system and norms, using it to establish minimum standards for private water rights appropriation (e.g., only 40 to 80 acres per cfs). While both concepts of duty addressed socio-economic values associated with irrigation, the western US linked duty with justifications for, and limits of, water ownership. The final sections show that while the duty of water concept has been eclipsed in practice by other measures, standards, and values of water use efficiency, it has continuing relevance for examining ethical duties and for anticipating, if not predicting, emerging social values with respect to water.

  15. Hydrologic controls on the development of equilibrium soil depths

    NASA Astrophysics Data System (ADS)

    Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2010-12-01

    The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment

  16. Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes

    Treesearch

    C. Rhett Jackson; Catherine M. Pringle

    2010-01-01

    A broad perspective on hydrologic connectivity is necessary when managing stream ecosystems and establishing conservation priorities. Hydrologic connectivity refers to the water-mediated transport of matter, energy, or organisms within or between elements of the hydrologic cycle. The potential negative consequences of enhancing hydrologic connectivity warrant careful...

  17. A physically-based Distributed Hydrologic Model for Tropical Catchments

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2010-12-01

    Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.

  18. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  19. Hydrological model uncertainty due to spatial evapotranspiration estimation methods

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub

    2016-05-01

    Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.

  20. NWS Hydrologic Information Center: Flood Impact Information

    Science.gov Websites

    The Hydrologic Information Center Web pages have been modified to provide an interface consistent and navigation modified to make it easier to find information provided by the Hydrologic Information