Mixture Rasch Models with Joint Maximum Likelihood Estimation
ERIC Educational Resources Information Center
Willse, John T.
2011-01-01
This research provides a demonstration of the utility of mixture Rasch models. Specifically, a model capable of estimating a mixture partial credit model using joint maximum likelihood is presented. Like the partial credit model, the mixture partial credit model has the beneficial feature of being appropriate for analysis of assessment data…
Maximum likelihood estimation of signal-to-noise ratio and combiner weight
NASA Technical Reports Server (NTRS)
Kalson, S.; Dolinar, S. J.
1986-01-01
An algorithm for estimating signal to noise ratio and combiner weight parameters for a discrete time series is presented. The algorithm is based upon the joint maximum likelihood estimate of the signal and noise power. The discrete-time series are the sufficient statistics obtained after matched filtering of a biphase modulated signal in additive white Gaussian noise, before maximum likelihood decoding is performed.
On the Existence and Uniqueness of JML Estimates for the Partial Credit Model
ERIC Educational Resources Information Center
Bertoli-Barsotti, Lucio
2005-01-01
A necessary and sufficient condition is given in this paper for the existence and uniqueness of the maximum likelihood (the so-called joint maximum likelihood) estimate of the parameters of the Partial Credit Model. This condition is stated in terms of a structural property of the pattern of the data matrix that can be easily verified on the basis…
Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L
2005-12-01
Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.
Joint reconstruction of activity and attenuation in Time-of-Flight PET: A Quantitative Analysis.
Rezaei, Ahmadreza; Deroose, Christophe M; Vahle, Thomas; Boada, Fernando; Nuyts, Johan
2018-03-01
Joint activity and attenuation reconstruction methods from time of flight (TOF) positron emission tomography (PET) data provide an effective solution to attenuation correction when no (or incomplete/inaccurate) information on the attenuation is available. One of the main barriers limiting their use in clinical practice is the lack of validation of these methods on a relatively large patient database. In this contribution, we aim at validating the activity reconstructions of the maximum likelihood activity reconstruction and attenuation registration (MLRR) algorithm on a whole-body patient data set. Furthermore, a partial validation (since the scale problem of the algorithm is avoided for now) of the maximum likelihood activity and attenuation reconstruction (MLAA) algorithm is also provided. We present a quantitative comparison of the joint reconstructions to the current clinical gold-standard maximum likelihood expectation maximization (MLEM) reconstruction with CT-based attenuation correction. Methods: The whole-body TOF-PET emission data of each patient data set is processed as a whole to reconstruct an activity volume covering all the acquired bed positions, which helps to reduce the problem of a scale per bed position in MLAA to a global scale for the entire activity volume. Three reconstruction algorithms are used: MLEM, MLRR and MLAA. A maximum likelihood (ML) scaling of the single scatter simulation (SSS) estimate to the emission data is used for scatter correction. The reconstruction results are then analyzed in different regions of interest. Results: The joint reconstructions of the whole-body patient data set provide better quantification in case of PET and CT misalignments caused by patient and organ motion. Our quantitative analysis shows a difference of -4.2% (±2.3%) and -7.5% (±4.6%) between the joint reconstructions of MLRR and MLAA compared to MLEM, averaged over all regions of interest, respectively. Conclusion: Joint activity and attenuation estimation methods provide a useful means to estimate the tracer distribution in cases where CT-based attenuation images are subject to misalignments or are not available. With an accurate estimate of the scatter contribution in the emission measurements, the joint TOF-PET reconstructions are within clinical acceptable accuracy. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-04-06
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.
Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan
2017-01-01
An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503
A Comparative Study of Co-Channel Interference Suppression Techniques
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas
1997-01-01
We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.
Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions
NASA Astrophysics Data System (ADS)
Peacock, Sheila; Douglas, Alan; Bowers, David
2017-08-01
Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.
Elashoff, Robert M.; Li, Gang; Li, Ning
2009-01-01
Summary In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel (Prentice et al., 1978, Biometrics 34, 541-554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease. PMID:18162112
optBINS: Optimal Binning for histograms
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2018-03-01
optBINS (optimal binning) determines the optimal number of bins in a uniform bin-width histogram by deriving the posterior probability for the number of bins in a piecewise-constant density model after assigning a multinomial likelihood and a non-informative prior. The maximum of the posterior probability occurs at a point where the prior probability and the the joint likelihood are balanced. The interplay between these opposing factors effectively implements Occam's razor by selecting the most simple model that best describes the data.
Maximum Likelihood Estimations and EM Algorithms with Length-biased Data
Qin, Jing; Ning, Jing; Liu, Hao; Shen, Yu
2012-01-01
SUMMARY Length-biased sampling has been well recognized in economics, industrial reliability, etiology applications, epidemiological, genetic and cancer screening studies. Length-biased right-censored data have a unique data structure different from traditional survival data. The nonparametric and semiparametric estimations and inference methods for traditional survival data are not directly applicable for length-biased right-censored data. We propose new expectation-maximization algorithms for estimations based on full likelihoods involving infinite dimensional parameters under three settings for length-biased data: estimating nonparametric distribution function, estimating nonparametric hazard function under an increasing failure rate constraint, and jointly estimating baseline hazards function and the covariate coefficients under the Cox proportional hazards model. Extensive empirical simulation studies show that the maximum likelihood estimators perform well with moderate sample sizes and lead to more efficient estimators compared to the estimating equation approaches. The proposed estimates are also more robust to various right-censoring mechanisms. We prove the strong consistency properties of the estimators, and establish the asymptotic normality of the semi-parametric maximum likelihood estimators under the Cox model using modern empirical processes theory. We apply the proposed methods to a prevalent cohort medical study. Supplemental materials are available online. PMID:22323840
Program for Weibull Analysis of Fatigue Data
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
2005-01-01
A Fortran computer program has been written for performing statistical analyses of fatigue-test data that are assumed to be adequately represented by a two-parameter Weibull distribution. This program calculates the following: (1) Maximum-likelihood estimates of the Weibull distribution; (2) Data for contour plots of relative likelihood for two parameters; (3) Data for contour plots of joint confidence regions; (4) Data for the profile likelihood of the Weibull-distribution parameters; (5) Data for the profile likelihood of any percentile of the distribution; and (6) Likelihood-based confidence intervals for parameters and/or percentiles of the distribution. The program can account for tests that are suspended without failure (the statistical term for such suspension of tests is "censoring"). The analytical approach followed in this program for the software is valid for type-I censoring, which is the removal of unfailed units at pre-specified times. Confidence regions and intervals are calculated by use of the likelihood-ratio method.
On the Relation between the Linear Factor Model and the Latent Profile Model
ERIC Educational Resources Information Center
Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul
2011-01-01
The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…
Model-based estimation for dynamic cardiac studies using ECT.
Chiao, P C; Rogers, W L; Clinthorne, N H; Fessler, J A; Hero, A O
1994-01-01
The authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (emission computed tomography). They construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. They also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performance to the Cramer-Rao lower bound. Finally, the authors discuss model assumptions and potential uses of the joint estimation strategy.
Additivity and maximum likelihood estimation of nonlinear component biomass models
David L.R. Affleck
2015-01-01
Since Parresol's (2001) seminal paper on the subject, it has become common practice to develop nonlinear tree biomass equations so as to ensure compatibility among total and component predictions and to fit equations jointly using multi-step least squares (MSLS) methods. In particular, many researchers have specified total tree biomass models by aggregating the...
Model-based estimation for dynamic cardiac studies using ECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiao, P.C.; Rogers, W.L.; Clinthorne, N.H.
1994-06-01
In this paper, the authors develop a strategy for joint estimation of physiological parameters and myocardial boundaries using ECT (Emission Computed Tomography). The authors construct an observation model to relate parameters of interest to the projection data and to account for limited ECT system resolution and measurement noise. The authors then use a maximum likelihood (ML) estimator to jointly estimate all the parameters directly from the projection data without reconstruction of intermediate images. The authors also simulate myocardial perfusion studies based on a simplified heart model to evaluate the performance of the model-based joint ML estimator and compare this performancemore » to the Cramer-Rao lower bound. Finally, model assumptions and potential uses of the joint estimation strategy are discussed.« less
Devesa, V; Rovesti, G L; Urrutia, P G; Sanroman, F; Rodriguez-Quiros, J
2015-06-01
The objective of this study was to evaluate technical feasibility and efficacy of a joint distraction technique by traction stirrup to facilitate shoulder arthroscopy and assess potential soft tissue damage. Twenty shoulders were evaluated radiographically before distraction. Distraction was applied with loads from 40 N up to 200 N, in 40 N increments, and the joint space was recorded at each step by radiographic images. The effects of joint flexion and intra-articular air injection at maximum load were evaluated. Radiographic evaluation was performed after distraction to evaluate ensuing joint laxity. Joint distraction by traction stirrup technique produces a significant increase in the joint space; an increase in joint laxity could not be inferred by standard and stress radiographs. However, further clinical studies are required to evaluate potential neurovascular complications. A wider joint space may be useful to facilitate arthroscopy, reducing the likelihood for iatrogenic damage to intra-articular structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong
2016-01-01
Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
MIXOR: a computer program for mixed-effects ordinal regression analysis.
Hedeker, D; Gibbons, R D
1996-03-01
MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.
Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C
2018-04-01
A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.
Haker, Steven; Wells, William M; Warfield, Simon K; Talos, Ion-Florin; Bhagwat, Jui G; Goldberg-Zimring, Daniel; Mian, Asim; Ohno-Machado, Lucila; Zou, Kelly H
2005-01-01
In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging.
Haker, Steven; Wells, William M.; Warfield, Simon K.; Talos, Ion-Florin; Bhagwat, Jui G.; Goldberg-Zimring, Daniel; Mian, Asim; Ohno-Machado, Lucila; Zou, Kelly H.
2010-01-01
In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging. PMID:16685884
Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements
Wang, Liming; Huang, Jiaji; Yuan, Xin; ...
2015-09-17
The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are establishedmore » based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.« less
Statistical inferences with jointly type-II censored samples from two Pareto distributions
NASA Astrophysics Data System (ADS)
Abu-Zinadah, Hanaa H.
2017-08-01
In the several fields of industries the product comes from more than one production line, which is required to work the comparative life tests. This problem requires sampling of the different production lines, then the joint censoring scheme is appeared. In this article we consider the life time Pareto distribution with jointly type-II censoring scheme. The maximum likelihood estimators (MLE) and the corresponding approximate confidence intervals as well as the bootstrap confidence intervals of the model parameters are obtained. Also Bayesian point and credible intervals of the model parameters are presented. The life time data set is analyzed for illustrative purposes. Monte Carlo results from simulation studies are presented to assess the performance of our proposed method.
Conditional maximum-entropy method for selecting prior distributions in Bayesian statistics
NASA Astrophysics Data System (ADS)
Abe, Sumiyoshi
2014-11-01
The conditional maximum-entropy method (abbreviated here as C-MaxEnt) is formulated for selecting prior probability distributions in Bayesian statistics for parameter estimation. This method is inspired by a statistical-mechanical approach to systems governed by dynamics with largely separated time scales and is based on three key concepts: conjugate pairs of variables, dimensionless integration measures with coarse-graining factors and partial maximization of the joint entropy. The method enables one to calculate a prior purely from a likelihood in a simple way. It is shown, in particular, how it not only yields Jeffreys's rules but also reveals new structures hidden behind them.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
NASA Astrophysics Data System (ADS)
Fusco, Tilde; Petrella, Angelo; Tanda, Mario
2009-12-01
The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
A stochastic Iwan-type model for joint behavior variability modeling
NASA Astrophysics Data System (ADS)
Mignolet, Marc P.; Song, Pengchao; Wang, X. Q.
2015-08-01
This paper focuses overall on the development and validation of a stochastic model to describe the dissipation and stiffness properties of a bolted joint for which experimental data is available and exhibits a large scatter. An extension of the deterministic parallel-series Iwan model for the characterization of the force-displacement behavior of joints is first carried out. This new model involves dynamic and static coefficients of friction differing from each other and a broadly defined distribution of Jenkins elements. Its applicability is next investigated using the experimental data, i.e. stiffness and dissipation measurements obtained in harmonic testing of 9 nominally identical bolted joints. The model is found to provide a very good fit of the experimental data for each bolted joint notwithstanding the significant variability of their behavior. This finding suggests that this variability can be simulated through the randomization of only the parameters of the proposed Iwan-type model. The distribution of these parameters is next selected based on maximum entropy concepts and their corresponding parameters, i.e. the hyperparameters of the model, are identified using a maximum likelihood strategy. Proceeding with a Monte Carlo simulation of this stochastic Iwan model demonstrates that the experimental data fits well within the uncertainty band corresponding to the 5th and 95th percentiles of the model predictions which well supports the adequacy of the modeling effort.
Joint sparsity based heterogeneous data-level fusion for target detection and estimation
NASA Astrophysics Data System (ADS)
Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe
2017-05-01
Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.
Multisite EPR oximetry from multiple quadrature harmonics.
Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C
2012-01-01
Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.
Espin‐Garcia, Osvaldo; Craiu, Radu V.
2017-01-01
ABSTRACT We evaluate two‐phase designs to follow‐up findings from genome‐wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation‐maximization‐based inference under a semiparametric maximum likelihood formulation tailored for post‐GWAS inference. A GWAS‐SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT‐SNP‐dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme‐QT strata yields significant power improvements compared to marginal QT‐ or SNP‐based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. PMID:29239496
NASA Astrophysics Data System (ADS)
Degaudenzi, Riccardo; Vanghi, Vieri
1994-02-01
In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.
Maximum likelihood sequence estimation for optical complex direct modulation.
Che, Di; Yuan, Feng; Shieh, William
2017-04-17
Semiconductor lasers are versatile optical transmitters in nature. Through the direct modulation (DM), the intensity modulation is realized by the linear mapping between the injection current and the light power, while various angle modulations are enabled by the frequency chirp. Limited by the direct detection, DM lasers used to be exploited only as 1-D (intensity or angle) transmitters by suppressing or simply ignoring the other modulation. Nevertheless, through the digital coherent detection, simultaneous intensity and angle modulations (namely, 2-D complex DM, CDM) can be realized by a single laser diode. The crucial technique of CDM is the joint demodulation of intensity and differential phase with the maximum likelihood sequence estimation (MLSE), supported by a closed-form discrete signal approximation of frequency chirp to characterize the MLSE transition probability. This paper proposes a statistical method for the transition probability to significantly enhance the accuracy of the chirp model. Using the statistical estimation, we demonstrate the first single-channel 100-Gb/s PAM-4 transmission over 1600-km fiber with only 10G-class DM lasers.
Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies
Rukhin, Andrew L.
2011-01-01
A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed. PMID:26989583
Maximum Likelihood and Restricted Likelihood Solutions in Multiple-Method Studies.
Rukhin, Andrew L
2011-01-01
A formulation of the problem of combining data from several sources is discussed in terms of random effects models. The unknown measurement precision is assumed not to be the same for all methods. We investigate maximum likelihood solutions in this model. By representing the likelihood equations as simultaneous polynomial equations, the exact form of the Groebner basis for their stationary points is derived when there are two methods. A parametrization of these solutions which allows their comparison is suggested. A numerical method for solving likelihood equations is outlined, and an alternative to the maximum likelihood method, the restricted maximum likelihood, is studied. In the situation when methods variances are considered to be known an upper bound on the between-method variance is obtained. The relationship between likelihood equations and moment-type equations is also discussed.
Assessing compatibility of direct detection data: halo-independent global likelihood analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.
2016-10-18
We present two different halo-independent methods to assess the compatibility of several direct dark matter detection data sets for a given dark matter model using a global likelihood consisting of at least one extended likelihood and an arbitrary number of Gaussian or Poisson likelihoods. In the first method we find the global best fit halo function (we prove that it is a unique piecewise constant function with a number of down steps smaller than or equal to a maximum number that we compute) and construct a two-sided pointwise confidence band at any desired confidence level, which can then be comparedmore » with those derived from the extended likelihood alone to assess the joint compatibility of the data. In the second method we define a “constrained parameter goodness-of-fit” test statistic, whose p-value we then use to define a “plausibility region” (e.g. where p≥10%). For any halo function not entirely contained within the plausibility region, the level of compatibility of the data is very low (e.g. p<10%). We illustrate these methods by applying them to CDMS-II-Si and SuperCDMS data, assuming dark matter particles with elastic spin-independent isospin-conserving interactions or exothermic spin-independent isospin-violating interactions.« less
2010-06-01
GMKPF represents a better and more flexible alternative to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ...accurate results relative to GML and EML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a...to the Gaussian Maximum Likelihood (GML), and Exponential Maximum Likelihood ( EML ) estimators for clock offset estimation in non-Gaussian or non
MXLKID: a maximum likelihood parameter identifier. [In LRLTRAN for CDC 7600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavel, D.T.
MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1976-01-01
Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate were considered. These equations suggest certain successive approximations iterative procedures for obtaining maximum likelihood estimates. The procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer as a special case.
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
Vector quantizer designs for joint compression and terrain categorization of multispectral imagery
NASA Technical Reports Server (NTRS)
Gorman, John D.; Lyons, Daniel F.
1994-01-01
Two vector quantizer designs for compression of multispectral imagery and their impact on terrain categorization performance are evaluated. The mean-squared error (MSE) and classification performance of the two quantizers are compared, and it is shown that a simple two-stage design minimizing MSE subject to a constraint on classification performance has a significantly better classification performance than a standard MSE-based tree-structured vector quantizer followed by maximum likelihood classification. This improvement in classification performance is obtained with minimal loss in MSE performance. The results show that it is advantageous to tailor compression algorithm designs to the required data exploitation tasks. Applications of joint compression/classification include compression for the archival or transmission of Landsat imagery that is later used for land utility surveys and/or radiometric analysis.
Finite mixture model: A maximum likelihood estimation approach on time series data
NASA Astrophysics Data System (ADS)
Yen, Phoong Seuk; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad
2014-09-01
Recently, statistician emphasized on the fitting of finite mixture model by using maximum likelihood estimation as it provides asymptotic properties. In addition, it shows consistency properties as the sample sizes increases to infinity. This illustrated that maximum likelihood estimation is an unbiased estimator. Moreover, the estimate parameters obtained from the application of maximum likelihood estimation have smallest variance as compared to others statistical method as the sample sizes increases. Thus, maximum likelihood estimation is adopted in this paper to fit the two-component mixture model in order to explore the relationship between rubber price and exchange rate for Malaysia, Thailand, Philippines and Indonesia. Results described that there is a negative effect among rubber price and exchange rate for all selected countries.
Determining the accuracy of maximum likelihood parameter estimates with colored residuals
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.; Klein, Vladislav
1994-01-01
An important part of building high fidelity mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of the accuracy of parameter estimates, the estimates themselves have limited value. In this work, an expression based on theoretical analysis was developed to properly compute parameter accuracy measures for maximum likelihood estimates with colored residuals. This result is important because experience from the analysis of measured data reveals that the residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Simulated data runs were used to show that the parameter accuracy measures computed with this technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for analysis of the output residuals in the frequency domain or heuristically determined multiplication factors. The result is general, although the application studied here is maximum likelihood estimation of aerodynamic model parameters from flight test data.
Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer
2015-09-01
We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.
Improvements in Spectrum's fit to program data tool.
Mahiane, Severin G; Marsh, Kimberly; Grantham, Kelsey; Crichlow, Shawna; Caceres, Karen; Stover, John
2017-04-01
The Joint United Nations Program on HIV/AIDS-supported Spectrum software package (Glastonbury, Connecticut, USA) is used by most countries worldwide to monitor the HIV epidemic. In Spectrum, HIV incidence trends among adults (aged 15-49 years) are derived by either fitting to seroprevalence surveillance and survey data or generating curves consistent with program and vital registration data, such as historical trends in the number of newly diagnosed infections or people living with HIV and AIDS related deaths. This article describes development and application of the fit to program data (FPD) tool in Joint United Nations Program on HIV/AIDS' 2016 estimates round. In the FPD tool, HIV incidence trends are described as a simple or double logistic function. Function parameters are estimated from historical program data on newly reported HIV cases, people living with HIV or AIDS-related deaths. Inputs can be adjusted for proportions undiagnosed or misclassified deaths. Maximum likelihood estimation or minimum chi-squared distance methods are used to identify the best fitting curve. Asymptotic properties of the estimators from these fits are used to estimate uncertainty. The FPD tool was used to fit incidence for 62 countries in 2016. Maximum likelihood and minimum chi-squared distance methods gave similar results. A double logistic curve adequately described observed trends in all but four countries where a simple logistic curve performed better. Robust HIV-related program and vital registration data are routinely available in many middle-income and high-income countries, whereas HIV seroprevalence surveillance and survey data may be scarce. In these countries, the FPD tool offers a simpler, improved approach to estimating HIV incidence trends.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.
Estimation After a Group Sequential Trial.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Kenward, Michael G; Tsiatis, Anastasios A; Davidian, Marie; Verbeke, Geert
2015-10-01
Group sequential trials are one important instance of studies for which the sample size is not fixed a priori but rather takes one of a finite set of pre-specified values, dependent on the observed data. Much work has been devoted to the inferential consequences of this design feature. Molenberghs et al (2012) and Milanzi et al (2012) reviewed and extended the existing literature, focusing on a collection of seemingly disparate, but related, settings, namely completely random sample sizes, group sequential studies with deterministic and random stopping rules, incomplete data, and random cluster sizes. They showed that the ordinary sample average is a viable option for estimation following a group sequential trial, for a wide class of stopping rules and for random outcomes with a distribution in the exponential family. Their results are somewhat surprising in the sense that the sample average is not optimal, and further, there does not exist an optimal, or even, unbiased linear estimator. However, the sample average is asymptotically unbiased, both conditionally upon the observed sample size as well as marginalized over it. By exploiting ignorability they showed that the sample average is the conventional maximum likelihood estimator. They also showed that a conditional maximum likelihood estimator is finite sample unbiased, but is less efficient than the sample average and has the larger mean squared error. Asymptotically, the sample average and the conditional maximum likelihood estimator are equivalent. This previous work is restricted, however, to the situation in which the the random sample size can take only two values, N = n or N = 2 n . In this paper, we consider the more practically useful setting of sample sizes in a the finite set { n 1 , n 2 , …, n L }. It is shown that the sample average is then a justifiable estimator , in the sense that it follows from joint likelihood estimation, and it is consistent and asymptotically unbiased. We also show why simulations can give the false impression of bias in the sample average when considered conditional upon the sample size. The consequence is that no corrections need to be made to estimators following sequential trials. When small-sample bias is of concern, the conditional likelihood estimator provides a relatively straightforward modification to the sample average. Finally, it is shown that classical likelihood-based standard errors and confidence intervals can be applied, obviating the need for technical corrections.
Chakraborty, Arindom
2016-12-01
A common objective in longitudinal studies is to characterize the relationship between a longitudinal response process and a time-to-event data. Ordinal nature of the response and possible missing information on covariates add complications to the joint model. In such circumstances, some influential observations often present in the data may upset the analysis. In this paper, a joint model based on ordinal partial mixed model and an accelerated failure time model is used, to account for the repeated ordered response and time-to-event data, respectively. Here, we propose an influence function-based robust estimation method. Monte Carlo expectation maximization method-based algorithm is used for parameter estimation. A detailed simulation study has been done to evaluate the performance of the proposed method. As an application, a data on muscular dystrophy among children is used. Robust estimates are then compared with classical maximum likelihood estimates. © The Author(s) 2014.
Espin-Garcia, Osvaldo; Craiu, Radu V; Bull, Shelley B
2018-02-01
We evaluate two-phase designs to follow-up findings from genome-wide association study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive. We develop novel expectation-maximization-based inference under a semiparametric maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP (where SNP is single nucleotide polymorphism) serves as a surrogate covariate in inferring association between a sequence variant and a normally distributed quantitative trait (QT). We assess test validity and quantify efficiency and power of joint QT-SNP-dependent sampling and analysis under alternative sample allocations by simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields significant power improvements compared to marginal QT- or SNP-based allocations. We illustrate the proposed method and evaluate the sensitivity of sample allocation to sampling variation using data from a sequencing study of systolic blood pressure. © 2017 The Authors. Genetic Epidemiology Published by Wiley Periodicals, Inc.
A Comparison of a Bayesian and a Maximum Likelihood Tailored Testing Procedure.
ERIC Educational Resources Information Center
McKinley, Robert L.; Reckase, Mark D.
A study was conducted to compare tailored testing procedures based on a Bayesian ability estimation technique and on a maximum likelihood ability estimation technique. The Bayesian tailored testing procedure selected items so as to minimize the posterior variance of the ability estimate distribution, while the maximum likelihood tailored testing…
Classification of cassava genotypes based on qualitative and quantitative data.
Oliveira, E J; Oliveira Filho, O S; Santos, V S
2015-02-02
We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.
Estimating unbiased magnitudes for the announced DPRK nuclear tests, 2006-2016
NASA Astrophysics Data System (ADS)
Peacock, Sheila; Bowers, David
2017-04-01
The seismic disturbances generated from the five (2006-2016) announced nuclear test explosions by the Democratic People's Republic of Korea (DPRK) are of moderate magnitude (body-wave magnitude mb 4-5) by global earthquake standards. An upward bias of network mean mb of low- to moderate-magnitude events is long established, and is caused by the censoring of readings from stations where the signal was below noise level at the time of the predicted arrival. This sampling bias can be overcome by maximum-likelihood methods using station thresholds at detecting (and non-detecting) stations. Bias in the mean mb can also be introduced by differences in the network of stations recording each explosion - this bias can reduced by using station corrections. We apply a maximum-likelihood (JML) inversion that jointly estimates station corrections and unbiased network mb for the five DPRK explosions recorded by the CTBTO International Monitoring Network (IMS) of seismic stations. The thresholds can either be directly measured from the noise preceding the observed signal, or determined by statistical analysis of bulletin amplitudes. The network mb of the first and smallest explosion is reduced significantly relative to the mean mb (to < 4.0 mb) by removal of the censoring bias.
Maximum likelihood solution for inclination-only data in paleomagnetism
NASA Astrophysics Data System (ADS)
Arason, P.; Levi, S.
2010-08-01
We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinski, J.M.; Krewski, D.
1992-12-31
In this paper, we describe application of the two-stage clonal expansion model to characterize the joint effect of exposure to two carcinogens. This biologically based model of carcinogenesis provides a useful framework for the quantitative description of carcinogenic risks and for defining agents that act as initiators, promoters, and completers. Depending on the mechanism of action, the agent-specific relative risk following exposure to two carcinogens can be additive, multiplicative, or supramultiplicative, with supra-additive relative risk indicating a synergistic effect between the two agents. Maximum-likelihood methods for fitting the two-stage clonal expansion model with intermittent exposure to two carcinogens are describedmore » and illustrated, using data on lung-cancer mortality among Colorado uranium miners exposed to both radon and tobacco smoke.« less
A study of parameter identification
NASA Technical Reports Server (NTRS)
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
The recursive maximum likelihood proportion estimator: User's guide and test results
NASA Technical Reports Server (NTRS)
Vanrooy, D. L.
1976-01-01
Implementation of the recursive maximum likelihood proportion estimator is described. A user's guide to programs as they currently exist on the IBM 360/67 at LARS, Purdue is included, and test results on LANDSAT data are described. On Hill County data, the algorithm yields results comparable to the standard maximum likelihood proportion estimator.
New applications of maximum likelihood and Bayesian statistics in macromolecular crystallography.
McCoy, Airlie J
2002-10-01
Maximum likelihood methods are well known to macromolecular crystallographers as the methods of choice for isomorphous phasing and structure refinement. Recently, the use of maximum likelihood and Bayesian statistics has extended to the areas of molecular replacement and density modification, placing these methods on a stronger statistical foundation and making them more accurate and effective.
On the existence of maximum likelihood estimates for presence-only data
Hefley, Trevor J.; Hooten, Mevin B.
2015-01-01
It is important to identify conditions for which maximum likelihood estimates are unlikely to be identifiable from presence-only data. In data sets where the maximum likelihood estimates do not exist, penalized likelihood and Bayesian methods will produce coefficient estimates, but these are sensitive to the choice of estimation procedure and prior or penalty term. When sample size is small or it is thought that habitat preferences are strong, we propose a suite of estimation procedures researchers can consider using.
NASA Technical Reports Server (NTRS)
Walker, H. F.
1976-01-01
Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate are considered. These equations, suggest certain successive-approximations iterative procedures for obtaining maximum-likelihood estimates. These are generalized steepest ascent (deflected gradient) procedures. It is shown that, with probability 1 as N sub 0 approaches infinity (regardless of the relative sizes of N sub 0 and N sub 1, i=1,...,m), these procedures converge locally to the strongly consistent maximum-likelihood estimates whenever the step size is between 0 and 2. Furthermore, the value of the step size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2.
Computation of nonparametric convex hazard estimators via profile methods.
Jankowski, Hanna K; Wellner, Jon A
2009-05-01
This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females.
A maximum likelihood map of chromosome 1.
Rao, D C; Keats, B J; Lalouel, J M; Morton, N E; Yee, S
1979-01-01
Thirteen loci are mapped on chromosome 1 from genetic evidence. The maximum likelihood map presented permits confirmation that Scianna (SC) and a fourteenth locus, phenylketonuria (PKU), are on chromosome 1, although the location of the latter on the PGM1-AMY segment is uncertain. Eight other controversial genetic assignments are rejected, providing a practical demonstration of the resolution which maximum likelihood theory brings to mapping. PMID:293128
ERIC Educational Resources Information Center
Mahmud, Jumailiyah; Sutikno, Muzayanah; Naga, Dali S.
2016-01-01
The aim of this study is to determine variance difference between maximum likelihood and expected A posteriori estimation methods viewed from number of test items of aptitude test. The variance presents an accuracy generated by both maximum likelihood and Bayes estimation methods. The test consists of three subtests, each with 40 multiple-choice…
Changren Weng; Thomas L. Kubisiak; C. Dana Nelson; James P. Geaghan; Michael Stine
1999-01-01
Single marker regression and single marker maximum likelihood estimation were tied to detect quantitative trait loci (QTLs) controlling the early height growth of longleaf pine and slash pine using a ((longleaf pine x slash pine) x slash pine) BC, population consisting of 83 progeny. Maximum likelihood estimation was found to be more power than regression and could...
Transponder-aided joint calibration and synchronization compensation for distributed radar systems.
Wang, Wen-Qin
2015-01-01
High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.
Maximum likelihood estimation of finite mixture model for economic data
NASA Astrophysics Data System (ADS)
Phoong, Seuk-Yen; Ismail, Mohd Tahir
2014-06-01
Finite mixture model is a mixture model with finite-dimension. This models are provides a natural representation of heterogeneity in a finite number of latent classes. In addition, finite mixture models also known as latent class models or unsupervised learning models. Recently, maximum likelihood estimation fitted finite mixture models has greatly drawn statistician's attention. The main reason is because maximum likelihood estimation is a powerful statistical method which provides consistent findings as the sample sizes increases to infinity. Thus, the application of maximum likelihood estimation is used to fit finite mixture model in the present paper in order to explore the relationship between nonlinear economic data. In this paper, a two-component normal mixture model is fitted by maximum likelihood estimation in order to investigate the relationship among stock market price and rubber price for sampled countries. Results described that there is a negative effect among rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1975-01-01
New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1994-01-01
Many analysis algorithms for high-dimensional remote sensing data require that the remotely sensed radiance spectra be transformed to approximate reflectance to allow comparison with a library of laboratory reflectance spectra. In maximum likelihood classification, however, the remotely sensed spectra are compared to training samples, thus a transformation to reflectance may or may not be helpful. The effect of several radiance-to-reflectance transformations on maximum likelihood classification accuracy is investigated in this paper. We show that the empirical line approach, LOWTRAN7, flat-field correction, single spectrum method, and internal average reflectance are all non-singular affine transformations, and that non-singular affine transformations have no effect on discriminant analysis feature extraction and maximum likelihood classification accuracy. (An affine transformation is a linear transformation with an optional offset.) Since the Atmosphere Removal Program (ATREM) and the log residue method are not affine transformations, experiments with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were conducted to determine the effect of these transformations on maximum likelihood classification accuracy. The average classification accuracy of the data transformed by ATREM and the log residue method was slightly less than the accuracy of the original radiance data. Since the radiance-to-reflectance transformations allow direct comparison of remotely sensed spectra with laboratory reflectance spectra, they can be quite useful in labeling the training samples required by maximum likelihood classification, but these transformations have only a slight effect or no effect at all on discriminant analysis and maximum likelihood classification accuracy.
Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas
NASA Astrophysics Data System (ADS)
Dodangeh, Esmaeel; Shahedi, Kaka; Shiau, Jenq-Tzong; MirAkbari, Maryam
2017-08-01
Investigation on drought characteristics such as severity, duration, and frequency is crucial for water resources planning and management in a river basin. While the methodology for multivariate drought frequency analysis is well established by applying the copulas, the estimation on the associated parameters by various parameter estimation methods and the effects on the obtained results have not yet been investigated. This research aims at conducting a comparative analysis between the maximum likelihood parametric and non-parametric method of the Kendall τ estimation method for copulas parameter estimation. The methods were employed to study joint severity-duration probability and recurrence intervals in Karkheh River basin (southwest Iran) which is facing severe water-deficit problems. Daily streamflow data at three hydrological gauging stations (Tang Sazbon, Huleilan and Polchehr) near the Karkheh dam were used to draw flow duration curves (FDC) of these three stations. The Q_{75} index extracted from the FDC were set as threshold level to abstract drought characteristics such as drought duration and severity on the basis of the run theory. Drought duration and severity were separately modeled using the univariate probabilistic distributions and gamma-GEV, LN2-exponential, and LN2-gamma were selected as the best paired drought severity-duration inputs for copulas according to the Akaike Information Criteria (AIC), Kolmogorov-Smirnov and chi-square tests. Archimedean Clayton, Frank, and extreme value Gumbel copulas were employed to construct joint cumulative distribution functions (JCDF) of droughts for each station. Frank copula at Tang Sazbon and Gumbel at Huleilan and Polchehr stations were identified as the best copulas based on the performance evaluation criteria including AIC, BIC, log-likelihood and root mean square error (RMSE) values. Based on the RMSE values, nonparametric Kendall-τ is preferred to the parametric maximum likelihood estimation method. The results showed greater drought return periods by the parametric ML method in comparison to the nonparametric Kendall τ estimation method. The results also showed that stations located in tributaries (Huleilan and Polchehr) have close return periods, while the station along the main river (Tang Sazbon) has the smaller return periods for the drought events with identical drought duration and severity.
SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction
Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.
2015-01-01
Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831
Under-reported data analysis with INAR-hidden Markov chains.
Fernández-Fontelo, Amanda; Cabaña, Alejandra; Puig, Pedro; Moriña, David
2016-11-20
In this work, we deal with correlated under-reported data through INAR(1)-hidden Markov chain models. These models are very flexible and can be identified through its autocorrelation function, which has a very simple form. A naïve method of parameter estimation is proposed, jointly with the maximum likelihood method based on a revised version of the forward algorithm. The most-probable unobserved time series is reconstructed by means of the Viterbi algorithm. Several examples of application in the field of public health are discussed illustrating the utility of the models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Weak value amplification considered harmful
NASA Astrophysics Data System (ADS)
Ferrie, Christopher; Combes, Joshua
2014-03-01
We show using statistically rigorous arguments that the technique of weak value amplification does not perform better than standard statistical techniques for the tasks of parameter estimation and signal detection. We show that using all data and considering the joint distribution of all measurement outcomes yields the optimal estimator. Moreover, we show estimation using the maximum likelihood technique with weak values as small as possible produces better performance for quantum metrology. In doing so, we identify the optimal experimental arrangement to be the one which reveals the maximal eigenvalue of the square of system observables. We also show these conclusions do not change in the presence of technical noise.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.
1979-01-01
The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.
Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien
2017-01-01
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
NASA Astrophysics Data System (ADS)
Craciunescu, Teddy; Peluso, Emmanuele; Murari, Andrea; Gelfusa, Michela; JET Contributors
2018-05-01
The total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem. A new approach, based on the maximum likelihood, has therefore been developed and implemented to alleviate one of the major weaknesses of traditional tomographic techniques: the difficulty to determine routinely the confidence intervals in the results. The method has been validated by numerical simulations with phantoms to assess the quality of the results and to optimise the configuration of the parameters for the main types of emissivity encountered experimentally. The typical levels of statistical errors, which may significantly influence the quality of the reconstructions, have been identified. The systematic tests with phantoms indicate that the errors in the reconstructions are quite limited and their effect on the total radiated power remains well below 10%. A comparison with other approaches to the inversion and to the regularization has also been performed.
Maximum-Likelihood Detection Of Noncoherent CPM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
Cramer-Rao Bound, MUSIC, and Maximum Likelihood. Effects of Temporal Phase Difference
1990-11-01
Technical Report 1373 November 1990 Cramer-Rao Bound, MUSIC , And Maximum Likelihood Effects of Temporal Phase o Difference C. V. TranI OTIC Approved... MUSIC , and Maximum Likelihood (ML) asymptotic variances corresponding to the two-source direction-of-arrival estimation where sources were modeled as...1pI = 1.00, SNR = 20 dB ..................................... 27 2. MUSIC for two equipowered signals impinging on a 5-element ULA (a) IpI = 0.50, SNR
Stochastic control system parameter identifiability
NASA Technical Reports Server (NTRS)
Lee, C. H.; Herget, C. J.
1975-01-01
The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.
A general methodology for maximum likelihood inference from band-recovery data
Conroy, M.J.; Williams, B.K.
1984-01-01
A numerical procedure is described for obtaining maximum likelihood estimates and associated maximum likelihood inference from band- recovery data. The method is used to illustrate previously developed one-age-class band-recovery models, and is extended to new models, including the analysis with a covariate for survival rates and variable-time-period recovery models. Extensions to R-age-class band- recovery, mark-recapture models, and twice-yearly marking are discussed. A FORTRAN program provides computations for these models.
Gaussianization for fast and accurate inference from cosmological data
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2016-06-01
We present a method to transform multivariate unimodal non-Gaussian posterior probability densities into approximately Gaussian ones via non-linear mappings, such as Box-Cox transformations and generalizations thereof. This permits an analytical reconstruction of the posterior from a point sample, like a Markov chain, and simplifies the subsequent joint analysis with other experiments. This way, a multivariate posterior density can be reported efficiently, by compressing the information contained in Markov Chain Monte Carlo samples. Further, the model evidence integral (I.e. the marginal likelihood) can be computed analytically. This method is analogous to the search for normal parameters in the cosmic microwave background, but is more general. The search for the optimally Gaussianizing transformation is performed computationally through a maximum-likelihood formalism; its quality can be judged by how well the credible regions of the posterior are reproduced. We demonstrate that our method outperforms kernel density estimates in this objective. Further, we select marginal posterior samples from Planck data with several distinct strongly non-Gaussian features, and verify the reproduction of the marginal contours. To demonstrate evidence computation, we Gaussianize the joint distribution of data from weak lensing and baryon acoustic oscillations, for different cosmological models, and find a preference for flat Λcold dark matter. Comparing to values computed with the Savage-Dickey density ratio, and Population Monte Carlo, we find good agreement of our method within the spread of the other two.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1978-01-01
This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.
NASA Technical Reports Server (NTRS)
Peters, B. C., Jr.; Walker, H. F.
1976-01-01
The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.
ERIC Educational Resources Information Center
Wothke, Werner; Burket, George; Chen, Li-Sue; Gao, Furong; Shu, Lianghua; Chia, Mike
2011-01-01
It has been known for some time that item response theory (IRT) models may exhibit a likelihood function of a respondent's ability which may have multiple modes, flat modes, or both. These conditions, often associated with guessing of multiple-choice (MC) questions, can introduce uncertainty and bias to ability estimation by maximum likelihood…
Idealized models of the joint probability distribution of wind speeds
NASA Astrophysics Data System (ADS)
Monahan, Adam H.
2018-05-01
The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.
ERIC Educational Resources Information Center
Jones, Douglas H.
The progress of modern mental test theory depends very much on the techniques of maximum likelihood estimation, and many popular applications make use of likelihoods induced by logistic item response models. While, in reality, item responses are nonreplicate within a single examinee and the logistic models are only ideal, practitioners make…
Bias Correction for the Maximum Likelihood Estimate of Ability. Research Report. ETS RR-05-15
ERIC Educational Resources Information Center
Zhang, Jinming
2005-01-01
Lord's bias function and the weighted likelihood estimation method are effective in reducing the bias of the maximum likelihood estimate of an examinee's ability under the assumption that the true item parameters are known. This paper presents simulation studies to determine the effectiveness of these two methods in reducing the bias when the item…
Estimating parameter of Rayleigh distribution by using Maximum Likelihood method and Bayes method
NASA Astrophysics Data System (ADS)
Ardianti, Fitri; Sutarman
2018-01-01
In this paper, we use Maximum Likelihood estimation and Bayes method under some risk function to estimate parameter of Rayleigh distribution to know the best method. The prior knowledge which used in Bayes method is Jeffrey’s non-informative prior. Maximum likelihood estimation and Bayes method under precautionary loss function, entropy loss function, loss function-L 1 will be compared. We compare these methods by bias and MSE value using R program. After that, the result will be displayed in tables to facilitate the comparisons.
Lu, Jianing; Li, Xiang; Fu, Songnian; Luo, Ming; Xiang, Meng; Zhou, Huibin; Tang, Ming; Liu, Deming
2017-03-06
We present dual-polarization complex-weighted, decision-aided, maximum-likelihood algorithm with superscalar parallelization (SSP-DP-CW-DA-ML) for joint carrier phase and frequency-offset estimation (FOE) in coherent optical receivers. By pre-compensation of the phase offset between signals in dual polarizations, the performance can be substantially improved. Meanwhile, with the help of modified SSP-based parallel implementation, the acquisition time of FO and the required number of training symbols are reduced by transferring the complex weights of the filters between adjacent buffers, where differential coding/decoding is not required. Simulation results show that the laser linewidth tolerance of our proposed algorithm is comparable to traditional blind phase search (BPS), while a complete FOE range of ± symbol rate/2 can be achieved. Finally, performance of our proposed algorithm is experimentally verified under the scenario of back-to-back (B2B) transmission using 10 Gbaud DP-16/32-QAM formats.
Closed-loop carrier phase synchronization techniques motivated by likelihood functions
NASA Technical Reports Server (NTRS)
Tsou, H.; Hinedi, S.; Simon, M.
1994-01-01
This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.
Fast maximum likelihood estimation of mutation rates using a birth-death process.
Wu, Xiaowei; Zhu, Hongxiao
2015-02-07
Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.
Low-complexity approximations to maximum likelihood MPSK modulation classification
NASA Technical Reports Server (NTRS)
Hamkins, Jon
2004-01-01
We present a new approximation to the maximum likelihood classifier to discriminate between M-ary and M'-ary phase-shift-keying transmitted on an additive white Gaussian noise (AWGN) channel and received noncoherentl, partially coherently, or coherently.
Harbert, Robert S; Nixon, Kevin C
2015-08-01
• Plant distributions have long been understood to be correlated with the environmental conditions to which species are adapted. Climate is one of the major components driving species distributions. Therefore, it is expected that the plants coexisting in a community are reflective of the local environment, particularly climate.• Presented here is a method for the estimation of climate from local plant species coexistence data. The method, Climate Reconstruction Analysis using Coexistence Likelihood Estimation (CRACLE), is a likelihood-based method that employs specimen collection data at a global scale for the inference of species climate tolerance. CRACLE calculates the maximum joint likelihood of coexistence given individual species climate tolerance characterization to estimate the expected climate.• Plant distribution data for more than 4000 species were used to show that this method accurately infers expected climate profiles for 165 sites with diverse climatic conditions. Estimates differ from the WorldClim global climate model by less than 1.5°C on average for mean annual temperature and less than ∼250 mm for mean annual precipitation. This is a significant improvement upon other plant-based climate-proxy methods.• CRACLE validates long hypothesized interactions between climate and local associations of plant species. Furthermore, CRACLE successfully estimates climate that is consistent with the widely used WorldClim model and therefore may be applied to the quantitative estimation of paleoclimate in future studies. © 2015 Botanical Society of America, Inc.
Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, A.; Divsalar, D.; Yao, K.
2004-01-01
In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.
NASA Technical Reports Server (NTRS)
Thadani, S. G.
1977-01-01
The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.
Maximum-likelihood block detection of noncoherent continuous phase modulation
NASA Technical Reports Server (NTRS)
Simon, Marvin K.; Divsalar, Dariush
1993-01-01
This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.
Design of simplified maximum-likelihood receivers for multiuser CPM systems.
Bing, Li; Bai, Baoming
2014-01-01
A class of simplified maximum-likelihood receivers designed for continuous phase modulation based multiuser systems is proposed. The presented receiver is built upon a front end employing mismatched filters and a maximum-likelihood detector defined in a low-dimensional signal space. The performance of the proposed receivers is analyzed and compared to some existing receivers. Some schemes are designed to implement the proposed receivers and to reveal the roles of different system parameters. Analysis and numerical results show that the proposed receivers can approach the optimum multiuser receivers with significantly (even exponentially in some cases) reduced complexity and marginal performance degradation.
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
Efficient Exploration of the Space of Reconciled Gene Trees
Szöllősi, Gergely J.; Rosikiewicz, Wojciech; Boussau, Bastien; Tannier, Eric; Daubin, Vincent
2013-01-01
Gene trees record the combination of gene-level events, such as duplication, transfer and loss (DTL), and species-level events, such as speciation and extinction. Gene tree–species tree reconciliation methods model these processes by drawing gene trees into the species tree using a series of gene and species-level events. The reconstruction of gene trees based on sequence alone almost always involves choosing between statistically equivalent or weakly distinguishable relationships that could be much better resolved based on a putative species tree. To exploit this potential for accurate reconstruction of gene trees, the space of reconciled gene trees must be explored according to a joint model of sequence evolution and gene tree–species tree reconciliation. Here we present amalgamated likelihood estimation (ALE), a probabilistic approach to exhaustively explore all reconciled gene trees that can be amalgamated as a combination of clades observed in a sample of gene trees. We implement the ALE approach in the context of a reconciliation model (Szöllősi et al. 2013), which allows for the DTL of genes. We use ALE to efficiently approximate the sum of the joint likelihood over amalgamations and to find the reconciled gene tree that maximizes the joint likelihood among all such trees. We demonstrate using simulations that gene trees reconstructed using the joint likelihood are substantially more accurate than those reconstructed using sequence alone. Using realistic gene tree topologies, branch lengths, and alignment sizes, we demonstrate that ALE produces more accurate gene trees even if the model of sequence evolution is greatly simplified. Finally, examining 1099 gene families from 36 cyanobacterial genomes we find that joint likelihood-based inference results in a striking reduction in apparent phylogenetic discord, with respectively. 24%, 59%, and 46% reductions in the mean numbers of duplications, transfers, and losses per gene family. The open source implementation of ALE is available from https://github.com/ssolo/ALE.git. [amalgamation; gene tree reconciliation; gene tree reconstruction; lateral gene transfer; phylogeny.] PMID:23925510
Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu
2015-12-01
To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.
ERIC Educational Resources Information Center
Magis, David; Raiche, Gilles
2010-01-01
In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…
Cosmic shear measurement with maximum likelihood and maximum a posteriori inference
NASA Astrophysics Data System (ADS)
Hall, Alex; Taylor, Andy
2017-06-01
We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.
Some Small Sample Results for Maximum Likelihood Estimation in Multidimensional Scaling.
ERIC Educational Resources Information Center
Ramsay, J. O.
1980-01-01
Some aspects of the small sample behavior of maximum likelihood estimates in multidimensional scaling are investigated with Monte Carlo techniques. In particular, the chi square test for dimensionality is examined and a correction for bias is proposed and evaluated. (Author/JKS)
ATAC Autocuer Modeling Analysis.
1981-01-01
the analysis of the simple rectangular scrnentation (1) is based on detection and estimation theory (2). This approach uses the concept of maximum ...continuous wave forms. In order to develop the principles of maximum likelihood, it is con- venient to develop the principles for the "classical...the concept of maximum likelihood is significant in that it provides the optimum performance of the detection/estimation problem. With a knowledge of
Campos-Filho, N; Franco, E L
1989-02-01
A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.
The Maximum Likelihood Solution for Inclination-only Data
NASA Astrophysics Data System (ADS)
Arason, P.; Levi, S.
2006-12-01
The arithmetic means of inclination-only data are known to introduce a shallowing bias. Several methods have been proposed to estimate unbiased means of the inclination along with measures of the precision. Most of the inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all these methods require various assumptions and approximations that are inappropriate for many data sets. For some steep and dispersed data sets, the estimates provided by these methods are significantly displaced from the peak of the likelihood function to systematically shallower inclinations. The problem in locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest. This is because some elements of the log-likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study we succeeded in analytically cancelling exponential elements from the likelihood function, and we are now able to calculate its value for any location in the parameter space and for any inclination-only data set, with full accuracy. Furtermore, we can now calculate the partial derivatives of the likelihood function with desired accuracy. Locating the maximum likelihood without the assumptions required by previous methods is now straight forward. The information to separate the mean inclination from the precision parameter will be lost for very steep and dispersed data sets. It is worth noting that the likelihood function always has a maximum value. However, for some dispersed and steep data sets with few samples, the likelihood function takes its highest value on the boundary of the parameter space, i.e. at inclinations of +/- 90 degrees, but with relatively well defined dispersion. Our simulations indicate that this occurs quite frequently for certain data sets, and relatively small perturbations in the data will drive the maxima to the boundary. We interpret this to indicate that, for such data sets, the information needed to separate the mean inclination and the precision parameter is permanently lost. To assess the reliability and accuracy of our method we generated large number of random Fisher-distributed data sets and used seven methods to estimate the mean inclination and precision paramenter. These comparisons are described by Levi and Arason at the 2006 AGU Fall meeting. The results of the various methods is very favourable to our new robust maximum likelihood method, which, on average, is the most reliable, and the mean inclination estimates are the least biased toward shallow values. Further information on our inclination-only analysis can be obtained from: http://www.vedur.is/~arason/paleomag
Multilevel joint competing risk models
NASA Astrophysics Data System (ADS)
Karunarathna, G. H. S.; Sooriyarachchi, M. R.
2017-09-01
Joint modeling approaches are often encountered for different outcomes of competing risk time to event and count in many biomedical and epidemiology studies in the presence of cluster effect. Hospital length of stay (LOS) has been the widely used outcome measure in hospital utilization due to the benchmark measurement for measuring multiple terminations such as discharge, transferred, dead and patients who have not completed the event of interest at the follow up period (censored) during hospitalizations. Competing risk models provide a method of addressing such multiple destinations since classical time to event models yield biased results when there are multiple events. In this study, the concept of joint modeling has been applied to the dengue epidemiology in Sri Lanka, 2006-2008 to assess the relationship between different outcomes of LOS and platelet count of dengue patients with the district cluster effect. Two key approaches have been applied to build up the joint scenario. In the first approach, modeling each competing risk separately using the binary logistic model, treating all other events as censored under the multilevel discrete time to event model, while the platelet counts are assumed to follow a lognormal regression model. The second approach is based on the endogeneity effect in the multilevel competing risks and count model. Model parameters were estimated using maximum likelihood based on the Laplace approximation. Moreover, the study reveals that joint modeling approach yield more precise results compared to fitting two separate univariate models, in terms of AIC (Akaike Information Criterion).
Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood
NASA Astrophysics Data System (ADS)
Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim
2017-04-01
Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models
Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A
2007-01-01
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.
Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.
Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan
2016-04-28
This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
NASA Technical Reports Server (NTRS)
Mccallister, R. D.; Crawford, J. J.
1981-01-01
It is pointed out that the NASA 30/20 GHz program will place in geosynchronous orbit a technically advanced communication satellite which can process time-division multiple access (TDMA) information bursts with a data throughput in excess of 4 GBPS. To guarantee acceptable data quality during periods of signal attenuation it will be necessary to provide a significant forward error correction (FEC) capability. Convolutional decoding (utilizing the maximum-likelihood techniques) was identified as the most attractive FEC strategy. Design trade-offs regarding a maximum-likelihood convolutional decoder (MCD) in a single-chip CMOS implementation are discussed.
PAMLX: a graphical user interface for PAML.
Xu, Bo; Yang, Ziheng
2013-12-01
This note announces pamlX, a graphical user interface/front end for the paml (for Phylogenetic Analysis by Maximum Likelihood) program package (Yang Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 13:555-556; Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586-1591). pamlX is written in C++ using the Qt library and communicates with paml programs through files. It can be used to create, edit, and print control files for paml programs and to launch paml runs. The interface is available for free download at http://abacus.gene.ucl.ac.uk/software/paml.html.
Simultaneous maximum a posteriori longitudinal PET image reconstruction
NASA Astrophysics Data System (ADS)
Ellis, Sam; Reader, Andrew J.
2017-09-01
Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.
Maximum Likelihood Estimation of Nonlinear Structural Equation Models.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Zhu, Hong-Tu
2002-01-01
Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
Maximum likelihood phase-retrieval algorithm: applications.
Nahrstedt, D A; Southwell, W H
1984-12-01
The maximum likelihood estimator approach is shown to be effective in determining the wave front aberration in systems involving laser and flow field diagnostics and optical testing. The robustness of the algorithm enables convergence even in cases of severe wave front error and real, nonsymmetrical, obscured amplitude distributions.
Population Synthesis of Radio and Gamma-ray Pulsars using the Maximum Likelihood Approach
NASA Astrophysics Data System (ADS)
Billman, Caleb; Gonthier, P. L.; Harding, A. K.
2012-01-01
We present the results of a pulsar population synthesis of normal pulsars from the Galactic disk using a maximum likelihood method. We seek to maximize the likelihood of a set of parameters in a Monte Carlo population statistics code to better understand their uncertainties and the confidence region of the model's parameter space. The maximum likelihood method allows for the use of more applicable Poisson statistics in the comparison of distributions of small numbers of detected gamma-ray and radio pulsars. Our code simulates pulsars at birth using Monte Carlo techniques and evolves them to the present assuming initial spatial, kick velocity, magnetic field, and period distributions. Pulsars are spun down to the present and given radio and gamma-ray emission characteristics. We select measured distributions of radio pulsars from the Parkes Multibeam survey and Fermi gamma-ray pulsars to perform a likelihood analysis of the assumed model parameters such as initial period and magnetic field, and radio luminosity. We present the results of a grid search of the parameter space as well as a search for the maximum likelihood using a Markov Chain Monte Carlo method. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), the NASA Astrophysics Theory and Fundamental Program and the NASA Fermi Guest Investigator Program.
Wu, Yufeng
2012-03-01
Incomplete lineage sorting can cause incongruence between the phylogenetic history of genes (the gene tree) and that of the species (the species tree), which can complicate the inference of phylogenies. In this article, I present a new coalescent-based algorithm for species tree inference with maximum likelihood. I first describe an improved method for computing the probability of a gene tree topology given a species tree, which is much faster than an existing algorithm by Degnan and Salter (2005). Based on this method, I develop a practical algorithm that takes a set of gene tree topologies and infers species trees with maximum likelihood. This algorithm searches for the best species tree by starting from initial species trees and performing heuristic search to obtain better trees with higher likelihood. This algorithm, called STELLS (which stands for Species Tree InfErence with Likelihood for Lineage Sorting), has been implemented in a program that is downloadable from the author's web page. The simulation results show that the STELLS algorithm is more accurate than an existing maximum likelihood method for many datasets, especially when there is noise in gene trees. I also show that the STELLS algorithm is efficient and can be applied to real biological datasets. © 2011 The Author. Evolution© 2011 The Society for the Study of Evolution.
Estimating the variance for heterogeneity in arm-based network meta-analysis.
Piepho, Hans-Peter; Madden, Laurence V; Roger, James; Payne, Roger; Williams, Emlyn R
2018-04-19
Network meta-analysis can be implemented by using arm-based or contrast-based models. Here we focus on arm-based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial-by-treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi-likelihood/pseudo-likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi-likelihood/pseudo-likelihood and h-likelihood reduce bias and yield satisfactory coverage rates. Sum-to-zero restriction and baseline contrasts for random trial-by-treatment interaction effects, as well as a residual ML-like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi-likelihood/pseudo-likelihood and h-likelihood are therefore recommended. Copyright © 2018 John Wiley & Sons, Ltd.
On Muthen's Maximum Likelihood for Two-Level Covariance Structure Models
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Hayashi, Kentaro
2005-01-01
Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…
Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.
2003-01-01
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
Consistency of Rasch Model Parameter Estimation: A Simulation Study.
ERIC Educational Resources Information Center
van den Wollenberg, Arnold L.; And Others
1988-01-01
The unconditional--simultaneous--maximum likelihood (UML) estimation procedure for the one-parameter logistic model produces biased estimators. The UML method is inconsistent and is not a good alternative to conditional maximum likelihood method, at least with small numbers of items. The minimum Chi-square estimation procedure produces unbiased…
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood e...
ERIC Educational Resources Information Center
Casabianca, Jodi M.; Lewis, Charles
2015-01-01
Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…
A Study of Item Bias for Attitudinal Measurement Using Maximum Likelihood Factor Analysis.
ERIC Educational Resources Information Center
Mayberry, Paul W.
A technique for detecting item bias that is responsive to attitudinal measurement considerations is a maximum likelihood factor analysis procedure comparing multivariate factor structures across various subpopulations, often referred to as SIFASP. The SIFASP technique allows for factorial model comparisons in the testing of various hypotheses…
The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.
ERIC Educational Resources Information Center
Baldwin, Beatrice
The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program Linear SCIDNT which evaluates rotorcraft stability and control coefficients from flight or wind tunnel test data is described. It implements the maximum likelihood method to maximize the likelihood function of the parameters based on measured input/output time histories. Linear SCIDNT may be applied to systems modeled by linear constant-coefficient differential equations. This restriction in scope allows the application of several analytical results which simplify the computation and improve its efficiency over the general nonlinear case.
A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.
Hu, Y J; Lin, D Y; Sun, W; Zeng, D
2014-10-01
Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
An evaluation of percentile and maximum likelihood estimators of weibull paremeters
Stanley J. Zarnoch; Tommy R. Dell
1985-01-01
Two methods of estimating the three-parameter Weibull distribution were evaluated by computer simulation and field data comparison. Maximum likelihood estimators (MLB) with bias correction were calculated with the computer routine FITTER (Bailey 1974); percentile estimators (PCT) were those proposed by Zanakis (1979). The MLB estimators had superior smaller bias and...
ERIC Educational Resources Information Center
Klein, Andreas G.; Muthen, Bengt O.
2007-01-01
In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Unclassified Publications of Lincoln Laboratory, 1 January - 31 December 1990. Volume 16
1990-12-31
Apr. 1990 ADA223419 Hopped Communication Systems with Nonuniform Hopping Distributions 880 Bistatic Radar Cross Section of a Fenn, A.J. 2 May1990...EXPERIMENT JA-6241 MS-8424 LUNAR PERTURBATION MAXIMUM LIKELIHOOD ALGORITHM JA-6241 JA-6467 LWIR SPECTRAL BAND MAXIMUM LIKELIHOOD ESTIMATOR JA-6476 MS-8466
Expected versus Observed Information in SEM with Incomplete Normal and Nonnormal Data
ERIC Educational Resources Information Center
Savalei, Victoria
2010-01-01
Maximum likelihood is the most common estimation method in structural equation modeling. Standard errors for maximum likelihood estimates are obtained from the associated information matrix, which can be estimated from the sample using either expected or observed information. It is known that, with complete data, estimates based on observed or…
ERIC Educational Resources Information Center
Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.
2006-01-01
The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…
Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods
ERIC Educational Resources Information Center
Zhong, Xiaoling; Yuan, Ke-Hai
2011-01-01
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Five Methods for Estimating Angoff Cut Scores with IRT
ERIC Educational Resources Information Center
Wyse, Adam E.
2017-01-01
This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…
High-Dimensional Exploratory Item Factor Analysis by a Metropolis-Hastings Robbins-Monro Algorithm
ERIC Educational Resources Information Center
Cai, Li
2010-01-01
A Metropolis-Hastings Robbins-Monro (MH-RM) algorithm for high-dimensional maximum marginal likelihood exploratory item factor analysis is proposed. The sequence of estimates from the MH-RM algorithm converges with probability one to the maximum likelihood solution. Details on the computer implementation of this algorithm are provided. The…
John Hogland; Nedret Billor; Nathaniel Anderson
2013-01-01
Discriminant analysis, referred to as maximum likelihood classification within popular remote sensing software packages, is a common supervised technique used by analysts. Polytomous logistic regression (PLR), also referred to as multinomial logistic regression, is an alternative classification approach that is less restrictive, more flexible, and easy to interpret. To...
NASA Technical Reports Server (NTRS)
Grove, R. D.; Bowles, R. L.; Mayhew, S. C.
1972-01-01
A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-06-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions.
Maximum Likelihood Estimation with Emphasis on Aircraft Flight Data
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1985-01-01
Accurate modeling of flexible space structures is an important field that is currently under investigation. Parameter estimation, using methods such as maximum likelihood, is one of the ways that the model can be improved. The maximum likelihood estimator has been used to extract stability and control derivatives from flight data for many years. Most of the literature on aircraft estimation concentrates on new developments and applications, assuming familiarity with basic estimation concepts. Some of these basic concepts are presented. The maximum likelihood estimator and the aircraft equations of motion that the estimator uses are briefly discussed. The basic concepts of minimization and estimation are examined for a simple computed aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to help illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Specific examples of estimation of structural dynamics are included. Some of the major conclusions for the computed example are also developed for the analysis of flight data.
Kim, K; Lee, S K; Kim, Y H
2010-10-01
The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen
2018-07-01
Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper, we use massive asymptotically optimal data compression to reduce the dimensionality of the data space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parametrized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate DELFI with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological data sets.
Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET
NASA Astrophysics Data System (ADS)
Rezaei, Ahmadreza; Michel, Christian; Casey, Michael E.; Nuyts, Johan
2016-02-01
Previously, maximum-likelihood methods have been proposed to jointly estimate the activity image and the attenuation image or the attenuation sinogram from time-of-flight (TOF) positron emission tomography (PET) data. In this contribution, we propose a method that addresses the possible alignment problem of the TOF-PET emission data and the computed tomography (CT) attenuation data, by combining reconstruction and registration. The method, called MLRR, iteratively reconstructs the activity image while registering the available CT-based attenuation image, so that the pair of activity and attenuation images maximise the likelihood of the TOF emission sinogram. The algorithm is slow to converge, but some acceleration could be achieved by using Nesterov’s momentum method and by applying a multi-resolution scheme for the non-rigid displacement estimation. The latter also helps to avoid local optima, although convergence to the global optimum cannot be guaranteed. The results are evaluated on 2D and 3D simulations as well as a respiratory gated clinical scan. Our experiments indicate that the proposed method is able to correct for possible misalignment of the CT-based attenuation image, and is therefore a very promising approach to suppressing attenuation artefacts in clinical PET/CT. When applied to respiratory gated data of a patient scan, it produced deformations that are compatible with breathing motion and which reduced the well known attenuation artefact near the dome of the liver. Since the method makes use of the energy-converted CT attenuation image, the scale problem of joint reconstruction is automatically solved.
Gallo, Jiri; Juranova, Jarmila; Svoboda, Michal; Zapletalova, Jana
2017-09-01
The aim of this study was to evaluate the characteristics of synovial fluid (SF) white cell count (SWCC) and neutrophil/lymphocyte percentage in the diagnosis of prosthetic joint infection (PJI) for particular threshold values. This was a prospective study of 391 patients in whom SF specimens were collected before total joint replacement revisions. SF was aspirated before joint capsule incision. The PJI diagnosis was based only on non-SF data. Receiver operating characteristic plots were constructed for the SWCC and differential counts of leukocytes in aspirated fluid. Logistic binomic regression was used to distinguish infected and non-infected cases in the combined data. PJI was diagnosed in 78 patients, and aseptic revision in 313 patients. The areas (AUC) under the curve for the SWCC, the neutrophil and lymphocyte percentages were 0.974, 0.962, and 0.951, respectively. The optimal cut-off for PJI was 3,450 cells/μL, 74.6% neutrophils, and 14.6% lymphocytes. Positive likelihood ratios for the SWCC, neutrophil and lymphocyte percentages were 19.0, 10.4, and 9.5, respectively. Negative likelihood ratios for the SWCC, neutrophil and lymphocyte percentages were 0.06, 0.076, and 0.092, respectively. Based on AUC, the present study identified cut-off values for the SWCC and differential leukocyte count for the diagnosis of PJI. The likelihood ratio for positive/negative SWCCs can significantly change the pre-test probability of PJI.
Approximated maximum likelihood estimation in multifractal random walks
NASA Astrophysics Data System (ADS)
Løvsletten, O.; Rypdal, M.
2012-04-01
We present an approximated maximum likelihood method for the multifractal random walk processes of [E. Bacry , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.64.026103 64, 026103 (2001)]. The likelihood is computed using a Laplace approximation and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the r computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.
The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates
NASA Technical Reports Server (NTRS)
Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2008-01-01
We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
12-mode OFDM transmission using reduced-complexity maximum likelihood detection.
Lobato, Adriana; Chen, Yingkan; Jung, Yongmin; Chen, Haoshuo; Inan, Beril; Kuschnerov, Maxim; Fontaine, Nicolas K; Ryf, Roland; Spinnler, Bernhard; Lankl, Berthold
2015-02-01
We report the transmission of 163-Gb/s MDM-QPSK-OFDM and 245-Gb/s MDM-8QAM-OFDM transmission over 74 km of few-mode fiber supporting 12 spatial and polarization modes. A low-complexity maximum likelihood detector is employed to enhance the performance of a system impaired by mode-dependent loss.
ERIC Educational Resources Information Center
Han, Kyung T.; Guo, Fanmin
2014-01-01
The full-information maximum likelihood (FIML) method makes it possible to estimate and analyze structural equation models (SEM) even when data are partially missing, enabling incomplete data to contribute to model estimation. The cornerstone of FIML is the missing-at-random (MAR) assumption. In (unidimensional) computerized adaptive testing…
Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models
ERIC Educational Resources Information Center
Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai
2011-01-01
Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…
Maximum Likelihood Item Easiness Models for Test Theory without an Answer Key
ERIC Educational Resources Information Center
France, Stephen L.; Batchelder, William H.
2015-01-01
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce…
ERIC Educational Resources Information Center
Kelderman, Henk
1992-01-01
Describes algorithms used in the computer program LOGIMO for obtaining maximum likelihood estimates of the parameters in loglinear models. These algorithms are also useful for the analysis of loglinear item-response theory models. Presents modified versions of the iterative proportional fitting and Newton-Raphson algorithms. Simulated data…
ERIC Educational Resources Information Center
Penfield, Randall D.; Bergeron, Jennifer M.
2005-01-01
This article applies a weighted maximum likelihood (WML) latent trait estimator to the generalized partial credit model (GPCM). The relevant equations required to obtain the WML estimator using the Newton-Raphson algorithm are presented, and a simulation study is described that compared the properties of the WML estimator to those of the maximum…
ERIC Educational Resources Information Center
Kieftenbeld, Vincent; Natesan, Prathiba
2012-01-01
Markov chain Monte Carlo (MCMC) methods enable a fully Bayesian approach to parameter estimation of item response models. In this simulation study, the authors compared the recovery of graded response model parameters using marginal maximum likelihood (MML) and Gibbs sampling (MCMC) under various latent trait distributions, test lengths, and…
Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM
ERIC Educational Resources Information Center
Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman
2012-01-01
This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…
NASA Technical Reports Server (NTRS)
Kelly, D. A.; Fermelia, A.; Lee, G. K. F.
1990-01-01
An adaptive Kalman filter design that utilizes recursive maximum likelihood parameter identification is discussed. At the center of this design is the Kalman filter itself, which has the responsibility for attitude determination. At the same time, the identification algorithm is continually identifying the system parameters. The approach is applicable to nonlinear, as well as linear systems. This adaptive Kalman filter design has much potential for real time implementation, especially considering the fast clock speeds, cache memory and internal RAM available today. The recursive maximum likelihood algorithm is discussed in detail, with special attention directed towards its unique matrix formulation. The procedure for using the algorithm is described along with comments on how this algorithm interacts with the Kalman filter.
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
NASA Astrophysics Data System (ADS)
Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.
2017-10-01
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ˜21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.
A maximum entropy fracture model for low and high strain-rate fracture in TinSilverCopper alloys
NASA Astrophysics Data System (ADS)
Chan, Dennis K.
SnAgCu solder alloys exhibit significant rate-dependent constitutive behavior. Solder joints made of these alloys exhibit failure modes that are also rate-dependent. Solder joints are an integral part of microelectronic packages and are subjected to a wide variety of loading conditions which range from thermo-mechanical fatigue to impact loading. Consequently, there is a need for non-empirical rate-dependent failure theory that is able to accurately predict fracture in these solder joints. In the present thesis, various failure models are first reviewed. But, these models are typically empirical or are not valid for solder joints due to limiting assumptions such as elastic behavior. Here, the development and validation of a maximum entropy fracture model (MEFM) valid for low strain-rate fracture in SnAgCu solders is presented. To this end, work on characterizing SnAgCu solder behavior at low strain-rates using a specially designed tester to estimate parameters for constitutive models is presented. Next, the maximum entropy fracture model is reviewed. This failure model uses a single damage accumulation parameter and relates the risk of fracture to accumulated inelastic dissipation. A methodology is presented to extract this model parameter through a custom-built microscale mechanical tester for Sn3.8Ag0.7Cu solder. This single parameter is used to numerically simulate fracture in two solder joints with entirely different geometries. The simulations are compared to experimentally observed fracture in these same packages. Following the simulations of fracture at low strain rate, the constitutive behavior of solder alloys across nine decades of strain rates through MTS compression tests and split-Hopkinson bar are presented. Preliminary work on using orthogonal machining as novel technique of material characterization at high strain rates is also presented. The resultant data from the MTS compression and split-Hopkinson bar tester is used to demonstrate the localization of stress to the interface of solder joints at high strain rates. The MEFM is further extended to predict failure in brittle materials. Such an extension allows for fracture prediction within intermetallic compounds (IMCs) in solder joints. It has been experimentally observed that the failure mode shifts from bulk solder to the IMC layer with increasing loading rates. The extension of the MEFM would allow for prediction of the fracture mode within the solder joint under different loading conditions. A fracture model capable of predicting failure modes at higher strain rates is necessary, as mobile electronics are becoming ubiquitous. Mobile devices are prone to being dropped which can induce loading rates within solder joints that are much larger than experienced under thermo-mechanical fatigue. A range of possible damage accumulation parameters for Cu6Sn 5 is determined for the MEFM. A value within the aforementioned range is used to demonstrate the increasing likelihood of IMC fracture in solder joints with larger loading rates. The thesis is concluded with remarks about ongoing work that include determining a more accurate damage accumulation parameter for Cu6Sn 5 IMC, and on using machining as a technique for extracting failure parameters for the MEFM.
Maximum likelihood estimation for Cox's regression model under nested case-control sampling.
Scheike, Thomas H; Juul, Anders
2004-04-01
Nested case-control sampling is designed to reduce the costs of large cohort studies. It is important to estimate the parameters of interest as efficiently as possible. We present a new maximum likelihood estimator (MLE) for nested case-control sampling in the context of Cox's proportional hazards model. The MLE is computed by the EM-algorithm, which is easy to implement in the proportional hazards setting. Standard errors are estimated by a numerical profile likelihood approach based on EM aided differentiation. The work was motivated by a nested case-control study that hypothesized that insulin-like growth factor I was associated with ischemic heart disease. The study was based on a population of 3784 Danes and 231 cases of ischemic heart disease where controls were matched on age and gender. We illustrate the use of the MLE for these data and show how the maximum likelihood framework can be used to obtain information additional to the relative risk estimates of covariates.
Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2014-01-01
When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…
NASA Technical Reports Server (NTRS)
Benjauthrit, B.; Mulhall, B.; Madsen, B. D.; Alberda, M. E.
1976-01-01
The DSN telemetry system performance with convolutionally coded data using the operational maximum-likelihood convolutional decoder (MCD) being implemented in the Network is described. Data rates from 80 bps to 115.2 kbps and both S- and X-band receivers are reported. The results of both one- and two-way radio losses are included.
ERIC Educational Resources Information Center
Wollack, James A.; Bolt, Daniel M.; Cohen, Allan S.; Lee, Young-Sun
2002-01-01
Compared the quality of item parameter estimates for marginal maximum likelihood (MML) and Markov Chain Monte Carlo (MCMC) with the nominal response model using simulation. The quality of item parameter recovery was nearly identical for MML and MCMC, and both methods tended to produce good estimates. (SLD)
ERIC Educational Resources Information Center
Khattab, Ali-Maher; And Others
1982-01-01
A causal modeling system, using confirmatory maximum likelihood factor analysis with the LISREL IV computer program, evaluated the construct validity underlying the higher order factor structure of a given correlation matrix of 46 structure-of-intellect tests emphasizing the product of transformations. (Author/PN)
NASA Astrophysics Data System (ADS)
Sutawanir
2015-12-01
Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.
Maximum-likelihood methods in wavefront sensing: stochastic models and likelihood functions
Barrett, Harrison H.; Dainty, Christopher; Lara, David
2008-01-01
Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and all factors that influence the sensor data. We present detailed probability density functions for the output of the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estimation can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it can reduce the residual wavefront error when compared with traditional methods. PMID:17206255
On non-parametric maximum likelihood estimation of the bivariate survivor function.
Prentice, R L
The likelihood function for the bivariate survivor function F, under independent censorship, is maximized to obtain a non-parametric maximum likelihood estimator &Fcirc;. &Fcirc; may or may not be unique depending on the configuration of singly- and doubly-censored pairs. The likelihood function can be maximized by placing all mass on the grid formed by the uncensored failure times, or half lines beyond the failure time grid, or in the upper right quadrant beyond the grid. By accumulating the mass along lines (or regions) where the likelihood is flat, one obtains a partially maximized likelihood as a function of parameters that can be uniquely estimated. The score equations corresponding to these point mass parameters are derived, using a Lagrange multiplier technique to ensure unit total mass, and a modified Newton procedure is used to calculate the parameter estimates in some limited simulation studies. Some considerations for the further development of non-parametric bivariate survivor function estimators are briefly described.
Bayesian logistic regression approaches to predict incorrect DRG assignment.
Suleiman, Mani; Demirhan, Haydar; Boyd, Leanne; Girosi, Federico; Aksakalli, Vural
2018-05-07
Episodes of care involving similar diagnoses and treatments and requiring similar levels of resource utilisation are grouped to the same Diagnosis-Related Group (DRG). In jurisdictions which implement DRG based payment systems, DRGs are a major determinant of funding for inpatient care. Hence, service providers often dedicate auditing staff to the task of checking that episodes have been coded to the correct DRG. The use of statistical models to estimate an episode's probability of DRG error can significantly improve the efficiency of clinical coding audits. This study implements Bayesian logistic regression models with weakly informative prior distributions to estimate the likelihood that episodes require a DRG revision, comparing these models with each other and to classical maximum likelihood estimates. All Bayesian approaches had more stable model parameters than maximum likelihood. The best performing Bayesian model improved overall classification per- formance by 6% compared to maximum likelihood, with a 34% gain compared to random classification, respectively. We found that the original DRG, coder and the day of coding all have a significant effect on the likelihood of DRG error. Use of Bayesian approaches has improved model parameter stability and classification accuracy. This method has already lead to improved audit efficiency in an operational capacity.
Exponential series approaches for nonparametric graphical models
NASA Astrophysics Data System (ADS)
Janofsky, Eric
Markov Random Fields (MRFs) or undirected graphical models are parsimonious representations of joint probability distributions. This thesis studies high-dimensional, continuous-valued pairwise Markov Random Fields. We are particularly interested in approximating pairwise densities whose logarithm belongs to a Sobolev space. For this problem we propose the method of exponential series which approximates the log density by a finite-dimensional exponential family with the number of sufficient statistics increasing with the sample size. We consider two approaches to estimating these models. The first is regularized maximum likelihood. This involves optimizing the sum of the log-likelihood of the data and a sparsity-inducing regularizer. We then propose a variational approximation to the likelihood based on tree-reweighted, nonparametric message passing. This approximation allows for upper bounds on risk estimates, leverages parallelization and is scalable to densities on hundreds of nodes. We show how the regularized variational MLE may be estimated using a proximal gradient algorithm. We then consider estimation using regularized score matching. This approach uses an alternative scoring rule to the log-likelihood, which obviates the need to compute the normalizing constant of the distribution. For general continuous-valued exponential families, we provide parameter and edge consistency results. As a special case we detail a new approach to sparse precision matrix estimation which has statistical performance competitive with the graphical lasso and computational performance competitive with the state-of-the-art glasso algorithm. We then describe results for model selection in the nonparametric pairwise model using exponential series. The regularized score matching problem is shown to be a convex program; we provide scalable algorithms based on consensus alternating direction method of multipliers (ADMM) and coordinate-wise descent. We use simulations to compare our method to others in the literature as well as the aforementioned TRW estimator.
Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowell, A. W.; Boggs, S. E; Chiu, C. L.
2017-10-20
Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. Wemore » find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.« less
Functional mapping of quantitative trait loci associated with rice tillering.
Liu, G F; Li, M; Wen, J; Du, Y; Zhang, Y-M
2010-10-01
Several biologically significant parameters that are related to rice tillering are closely associated with rice grain yield. Although identification of the genes that control rice tillering and therefore influence crop yield would be valuable for rice production management and genetic improvement, these genes remain largely unidentified. In this study, we carried out functional mapping of quantitative trait loci (QTLs) for rice tillering in 129 doubled haploid lines, which were derived from a cross between IR64 and Azucena. We measured the average number of tillers in each plot at seven developmental stages and fit the growth trajectory of rice tillering with the Wang-Lan-Ding mathematical model. Four biologically meaningful parameters in this model--the potential maximum for tiller number (K), the optimum tiller time (t(0)), and the increased rate (r), or the reduced rate (c) at the time of deviation from t(0)--were our defined variables for multi-marker joint analysis under the framework of penalized maximum likelihood, as well as composite interval mapping. We detected a total of 27 QTLs that accounted for 2.49-8.54% of the total phenotypic variance. Nine common QTLs across multi-marker joint analysis and composite interval mapping showed high stability, while one QTL was environment-specific and three were epistatic. We also identified several genomic segments that are associated with multiple traits. Our results describe the genetic basis of rice tiller development, enable further marker-assisted selection in rice cultivar development, and provide useful information for rice production management.
Accounting for informatively missing data in logistic regression by means of reassessment sampling.
Lin, Ji; Lyles, Robert H
2015-05-20
We explore the 'reassessment' design in a logistic regression setting, where a second wave of sampling is applied to recover a portion of the missing data on a binary exposure and/or outcome variable. We construct a joint likelihood function based on the original model of interest and a model for the missing data mechanism, with emphasis on non-ignorable missingness. The estimation is carried out by numerical maximization of the joint likelihood function with close approximation of the accompanying Hessian matrix, using sharable programs that take advantage of general optimization routines in standard software. We show how likelihood ratio tests can be used for model selection and how they facilitate direct hypothesis testing for whether missingness is at random. Examples and simulations are presented to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.
Lod scores for gene mapping in the presence of marker map uncertainty.
Stringham, H M; Boehnke, M
2001-07-01
Multipoint lod scores are typically calculated for a grid of locus positions, moving the putative disease locus across a fixed map of genetic markers. Changing the order of a set of markers and/or the distances between the markers can make a substantial difference in the resulting lod score curve and the location and height of its maximum. The typical approach of using the best maximum likelihood marker map is not easily justified if other marker orders are nearly as likely and give substantially different lod score curves. To deal with this problem, we propose three weighted multipoint lod score statistics that make use of information from all plausible marker orders. In each of these statistics, the information conditional on a particular marker order is included in a weighted sum, with weight equal to the posterior probability of that order. We evaluate the type 1 error rate and power of these three statistics on the basis of results from simulated data, and compare these results to those obtained using the best maximum likelihood map and the map with the true marker order. We find that the lod score based on a weighted sum of maximum likelihoods improves on using only the best maximum likelihood map, having a type 1 error rate and power closest to that of using the true marker order in the simulation scenarios we considered. Copyright 2001 Wiley-Liss, Inc.
Improving estimates of genetic maps: a meta-analysis-based approach.
Stewart, William C L
2007-07-01
Inaccurate genetic (or linkage) maps can reduce the power to detect linkage, increase type I error, and distort haplotype and relationship inference. To improve the accuracy of existing maps, I propose a meta-analysis-based method that combines independent map estimates into a single estimate of the linkage map. The method uses the variance of each independent map estimate to combine them efficiently, whether the map estimates use the same set of markers or not. As compared with a joint analysis of the pooled genotype data, the proposed method is attractive for three reasons: (1) it has comparable efficiency to the maximum likelihood map estimate when the pooled data are homogeneous; (2) relative to existing map estimation methods, it can have increased efficiency when the pooled data are heterogeneous; and (3) it avoids the practical difficulties of pooling human subjects data. On the basis of simulated data modeled after two real data sets, the proposed method can reduce the sampling variation of linkage maps commonly used in whole-genome linkage scans. Furthermore, when the independent map estimates are also maximum likelihood estimates, the proposed method performs as well as or better than when they are estimated by the program CRIMAP. Since variance estimates of maps may not always be available, I demonstrate the feasibility of three different variance estimators. Overall, the method should prove useful to investigators who need map positions for markers not contained in publicly available maps, and to those who wish to minimize the negative effects of inaccurate maps. Copyright 2007 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Paek, Insu; Wilson, Mark
2011-01-01
This study elaborates the Rasch differential item functioning (DIF) model formulation under the marginal maximum likelihood estimation context. Also, the Rasch DIF model performance was examined and compared with the Mantel-Haenszel (MH) procedure in small sample and short test length conditions through simulations. The theoretically known…
Bayesian image reconstruction for improving detection performance of muon tomography.
Wang, Guobao; Schultz, Larry J; Qi, Jinyi
2009-05-01
Muon tomography is a novel technology that is being developed for detecting high-Z materials in vehicles or cargo containers. Maximum likelihood methods have been developed for reconstructing the scattering density image from muon measurements. However, the instability of maximum likelihood estimation often results in noisy images and low detectability of high-Z targets. In this paper, we propose using regularization to improve the image quality of muon tomography. We formulate the muon reconstruction problem in a Bayesian framework by introducing a prior distribution on scattering density images. An iterative shrinkage algorithm is derived to maximize the log posterior distribution. At each iteration, the algorithm obtains the maximum a posteriori update by shrinking an unregularized maximum likelihood update. Inverse quadratic shrinkage functions are derived for generalized Laplacian priors and inverse cubic shrinkage functions are derived for generalized Gaussian priors. Receiver operating characteristic studies using simulated data demonstrate that the Bayesian reconstruction can greatly improve the detection performance of muon tomography.
Comparison of wheat classification accuracy using different classifiers of the image-100 system
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.
1981-01-01
Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.
Donato, David I.
2012-01-01
This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.
Nagelkerke, Nico; Fidler, Vaclav
2015-01-01
The problem of discrimination and classification is central to much of epidemiology. Here we consider the estimation of a logistic regression/discrimination function from training samples, when one of the training samples is subject to misclassification or mislabeling, e.g. diseased individuals are incorrectly classified/labeled as healthy controls. We show that this leads to zero-inflated binomial model with a defective logistic regression or discrimination function, whose parameters can be estimated using standard statistical methods such as maximum likelihood. These parameters can be used to estimate the probability of true group membership among those, possibly erroneously, classified as controls. Two examples are analyzed and discussed. A simulation study explores properties of the maximum likelihood parameter estimates and the estimates of the number of mislabeled observations.
NASA Astrophysics Data System (ADS)
Aslan, Serdar; Taylan Cemgil, Ali; Akın, Ata
2016-08-01
Objective. In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. Approach. In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. Main results. Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. Significance. PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton—CKF (TNF-CKF), a recent robust method which works in filtering sense.
Ohm-Laursen, Line; Nielsen, Morten; Larsen, Stine R; Barington, Torben
2006-01-01
Antibody diversity is created by imprecise joining of the variability (V), diversity (D) and joining (J) gene segments of the heavy and light chain loci. Analysis of rearrangements is complicated by somatic hypermutations and uncertainty concerning the sources of gene segments and the precise way in which they recombine. It has been suggested that D genes with irregular recombination signal sequences (DIR) and chromosome 15 open reading frames (OR15) can replace conventional D genes, that two D genes or inverted D genes may be used and that the repertoire can be further diversified by heavy chain V gene (VH) replacement. Safe conclusions require large, well-defined sequence samples and algorithms minimizing stochastic assignment of segments. Two computer programs were developed for analysis of heavy chain joints. JointHMM is a profile hidden Markow model, while JointML is a maximum-likelihood-based method taking the lengths of the joint and the mutational status of the VH gene into account. The programs were applied to a set of 6329 clonally unrelated rearrangements. A conventional D gene was found in 80% of unmutated sequences and 64% of mutated sequences, while D-gene assignment was kept below 5% in artificial (randomly permutated) rearrangements. No evidence for the use of DIR, OR15, multiple D genes or VH replacements was found, while inverted D genes were used in less than 1‰ of the sequences. JointML was shown to have a higher predictive performance for D-gene assignment in mutated and unmutated sequences than four other publicly available programs. An online version 1·0 of JointML is available at http://www.cbs.dtu.dk/services/VDJsolver. PMID:17005006
ERIC Educational Resources Information Center
Molenaar, Peter C. M.; Nesselroade, John R.
1998-01-01
Pseudo-Maximum Likelihood (p-ML) and Asymptotically Distribution Free (ADF) estimation methods for estimating dynamic factor model parameters within a covariance structure framework were compared through a Monte Carlo simulation. Both methods appear to give consistent model parameter estimates, but only ADF gives standard errors and chi-square…
Statistical Bias in Maximum Likelihood Estimators of Item Parameters.
1982-04-01
34 a> E r’r~e r ,C Ie I# ne,..,.rVi rnd Id.,flfv b1 - bindk numb.r) I; ,t-i i-cd I ’ tiie bias in the maximum likelihood ,st i- i;, ’ t iIeiIrs in...NTC, IL 60088 Psychometric Laboratory University of North Carolina I ERIC Facility-Acquisitions Davie Hall 013A 4833 Rugby Avenue Chapel Hill, NC
ERIC Educational Resources Information Center
Beauducel, Andre; Herzberg, Philipp Yorck
2006-01-01
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Zeng, Chan; Newcomer, Sophia R; Glanz, Jason M; Shoup, Jo Ann; Daley, Matthew F; Hambidge, Simon J; Xu, Stanley
2013-12-15
The self-controlled case series (SCCS) method is often used to examine the temporal association between vaccination and adverse events using only data from patients who experienced such events. Conditional Poisson regression models are used to estimate incidence rate ratios, and these models perform well with large or medium-sized case samples. However, in some vaccine safety studies, the adverse events studied are rare and the maximum likelihood estimates may be biased. Several bias correction methods have been examined in case-control studies using conditional logistic regression, but none of these methods have been evaluated in studies using the SCCS design. In this study, we used simulations to evaluate 2 bias correction approaches-the Firth penalized maximum likelihood method and Cordeiro and McCullagh's bias reduction after maximum likelihood estimation-with small sample sizes in studies using the SCCS design. The simulations showed that the bias under the SCCS design with a small number of cases can be large and is also sensitive to a short risk period. The Firth correction method provides finite and less biased estimates than the maximum likelihood method and Cordeiro and McCullagh's method. However, limitations still exist when the risk period in the SCCS design is short relative to the entire observation period.
NASA Astrophysics Data System (ADS)
Krestyannikov, E.; Tohka, J.; Ruotsalainen, U.
2008-06-01
This paper presents a novel statistical approach for joint estimation of regions-of-interest (ROIs) and the corresponding time-activity curves (TACs) from dynamic positron emission tomography (PET) brain projection data. It is based on optimizing the joint objective function that consists of a data log-likelihood term and two penalty terms reflecting the available a priori information about the human brain anatomy. The developed local optimization strategy iteratively updates both the ROI and TAC parameters and is guaranteed to monotonically increase the objective function. The quantitative evaluation of the algorithm is performed with numerically and Monte Carlo-simulated dynamic PET brain data of the 11C-Raclopride and 18F-FDG tracers. The results demonstrate that the method outperforms the existing sequential ROI quantification approaches in terms of accuracy, and can noticeably reduce the errors in TACs arising due to the finite spatial resolution and ROI delineation.
Inference from Samples of DNA Sequences Using a Two-Locus Model
Griffiths, Robert C.
2011-01-01
Abstract Performing inference on contemporary samples of DNA sequence data is an important and challenging task. Computationally intensive methods such as importance sampling (IS) are attractive because they make full use of the available data, but in the presence of recombination the large state space of genealogies can be prohibitive. In this article, we make progress by developing an efficient IS proposal distribution for a two-locus model of sequence data. We show that the proposal developed here leads to much greater efficiency, outperforming existing IS methods that could be adapted to this model. Among several possible applications, the algorithm can be used to find maximum likelihood estimates for mutation and crossover rates, and to perform ancestral inference. We illustrate the method on previously reported sequence data covering two loci either side of the well-studied TAP2 recombination hotspot. The two loci are themselves largely non-recombining, so we obtain a gene tree at each locus and are able to infer in detail the effect of the hotspot on their joint ancestry. We summarize this joint ancestry by introducing the gene graph, a summary of the well-known ancestral recombination graph. PMID:21210733
Huang, Chiung-Yu; Qin, Jing
2013-01-01
The Canadian Study of Health and Aging (CSHA) employed a prevalent cohort design to study survival after onset of dementia, where patients with dementia were sampled and the onset time of dementia was determined retrospectively. The prevalent cohort sampling scheme favors individuals who survive longer. Thus, the observed survival times are subject to length bias. In recent years, there has been a rising interest in developing estimation procedures for prevalent cohort survival data that not only account for length bias but also actually exploit the incidence distribution of the disease to improve efficiency. This article considers semiparametric estimation of the Cox model for the time from dementia onset to death under a stationarity assumption with respect to the disease incidence. Under the stationarity condition, the semiparametric maximum likelihood estimation is expected to be fully efficient yet difficult to perform for statistical practitioners, as the likelihood depends on the baseline hazard function in a complicated way. Moreover, the asymptotic properties of the semiparametric maximum likelihood estimator are not well-studied. Motivated by the composite likelihood method (Besag 1974), we develop a composite partial likelihood method that retains the simplicity of the popular partial likelihood estimator and can be easily performed using standard statistical software. When applied to the CSHA data, the proposed method estimates a significant difference in survival between the vascular dementia group and the possible Alzheimer’s disease group, while the partial likelihood method for left-truncated and right-censored data yields a greater standard error and a 95% confidence interval covering 0, thus highlighting the practical value of employing a more efficient methodology. To check the assumption of stable disease for the CSHA data, we also present new graphical and numerical tests in the article. The R code used to obtain the maximum composite partial likelihood estimator for the CSHA data is available in the online Supplementary Material, posted on the journal web site. PMID:24000265
Chen, Rui; Hyrien, Ollivier
2011-01-01
This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
Lirio, R B; Dondériz, I C; Pérez Abalo, M C
1992-08-01
The methodology of Receiver Operating Characteristic curves based on the signal detection model is extended to evaluate the accuracy of two-stage diagnostic strategies. A computer program is developed for the maximum likelihood estimation of parameters that characterize the sensitivity and specificity of two-stage classifiers according to this extended methodology. Its use is briefly illustrated with data collected in a two-stage screening for auditory defects.
ERIC Educational Resources Information Center
Kelderman, Henk
In this paper, algorithms are described for obtaining the maximum likelihood estimates of the parameters in log-linear models. Modified versions of the iterative proportional fitting and Newton-Raphson algorithms are described that work on the minimal sufficient statistics rather than on the usual counts in the full contingency table. This is…
Maximum Likelihood Item Easiness Models for Test Theory Without an Answer Key
Batchelder, William H.
2014-01-01
Cultural consensus theory (CCT) is a data aggregation technique with many applications in the social and behavioral sciences. We describe the intuition and theory behind a set of CCT models for continuous type data using maximum likelihood inference methodology. We describe how bias parameters can be incorporated into these models. We introduce two extensions to the basic model in order to account for item rating easiness/difficulty. The first extension is a multiplicative model and the second is an additive model. We show how the multiplicative model is related to the Rasch model. We describe several maximum-likelihood estimation procedures for the models and discuss issues of model fit and identifiability. We describe how the CCT models could be used to give alternative consensus-based measures of reliability. We demonstrate the utility of both the basic and extended models on a set of essay rating data and give ideas for future research. PMID:29795812
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
Bayesian structural equation modeling in sport and exercise psychology.
Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus
2015-08-01
Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.
1980-12-01
The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less
A Maximum Likelihood Approach to Functional Mapping of Longitudinal Binary Traits
Wang, Chenguang; Li, Hongying; Wang, Zhong; Wang, Yaqun; Wang, Ningtao; Wang, Zuoheng; Wu, Rongling
2013-01-01
Despite their importance in biology and biomedicine, genetic mapping of binary traits that change over time has not been well explored. In this article, we develop a statistical model for mapping quantitative trait loci (QTLs) that govern longitudinal responses of binary traits. The model is constructed within the maximum likelihood framework by which the association between binary responses is modeled in terms of conditional log odds-ratios. With this parameterization, the maximum likelihood estimates (MLEs) of marginal mean parameters are robust to the misspecification of time dependence. We implement an iterative procedures to obtain the MLEs of QTL genotype-specific parameters that define longitudinal binary responses. The usefulness of the model was validated by analyzing a real example in rice. Simulation studies were performed to investigate the statistical properties of the model, showing that the model has power to identify and map specific QTLs responsible for the temporal pattern of binary traits. PMID:23183762
A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0
Bazinet, Adam L.; Zwickl, Derrick J.; Cummings, Michael P.
2014-01-01
We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.] PMID:24789072
Overcoming Barriers to Firewise Actions by Residents. Final Report to Joint Fire Science Program
James D. Absher; Jerry J. Vaske; Katie M. Lyon
2013-01-01
Encouraging the public to take action (e.g., creating defensible space) that can reduce the likelihood of wildfire damage and decrease the likelihood of injury is a common approach to increasing wildfire safety and damage mitigation. This study was designed to improve our understanding of both individual and community actions that homeowners currently do or might take...
Effect of occlusal appliances and clenching on the internally deranged TMJ space.
Kuboki, T; Takenami, Y; Orsini, M G; Maekawa, K; Yamashita, A; Azuma, Y; Clark, G T
1999-01-01
Stabilization appliances and mandibular anterior repositioning appliances have been used to treat patients with internal derangement of the temporomandibular joint (TMJ) based on the assumption that these appliances work by decompressing the TMJ. The purpose of this study was to indirectly test this assumption. Bilateral TMJ tomograms of 7 subjects with unilateral anterior disc displacement without reduction (ADDwor) were taken during comfortable closure and during maximum clenching in maximum intercuspation; tomograms were also taken with the 2 types of occlusal appliances in use. Outlines of the condyle and the temporal fossa were automatically determined by an edge-detection protocol, and the minimum joint space dimension of the joints with and without ADDwor was automatically measured for each experimental condition as the outcome variable. Upon comfortable closure and maximum clenching, the minimum joint space dimensions of the ipsilateral and contralateral joints with the use of stabilization appliances and mandibular anterior repositioning appliances were not significantly different from those seen in maximum intercuspation. These findings do not indicate that these appliances induce an increase in joint space during closing and clenching in joints with ADDwor.
Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models with Factor Structures
ERIC Educational Resources Information Center
Jeon, Minjeong; Rabe-Hesketh, Sophia
2012-01-01
In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…
Michelsen, Brigitte; Kristianslund, Eirik Klami; Sexton, Joseph; Hammer, Hilde Berner; Fagerli, Karen Minde; Lie, Elisabeth; Wierød, Ada; Kalstad, Synøve; Rødevand, Erik; Krøll, Frode; Haugeberg, Glenn; Kvien, Tore K
2017-11-01
To investigate the predictive value of baseline depression/anxiety on the likelihood of achieving joint remission in rheumatoid arthritis (RA) and psoriatic arthritis (PsA) as well as the associations between baseline depression/anxiety and the components of the remission criteria at follow-up. We included 1326 patients with RA and 728 patients with PsA from the prospective observational NOR-DMARD study starting first-time tumour necrosis factor inhibitors or methotrexate. The predictive value of depression/anxiety on remission was explored in prespecified logistic regression models and the associations between baseline depression/anxiety and the components of the remission criteria in prespecified multiple linear regression models. Baseline depression/anxiety according to EuroQoL-5D-3L, Short Form-36 (SF-36) Mental Health subscale ≤56 and SF-36 Mental Component Summary ≤38 negatively predicted 28-joint Disease Activity Score <2.6, Simplified Disease Activity Index ≤3.3, Clinical Disease Activity Index ≤2.8, ACR/EULAR Boolean and Disease Activity Index for Psoriatic Arthritis ≤4 remission after 3 and 6 months treatment in RA (p≤0.008) and partly in PsA (p from 0.001 to 0.73). Baseline depression/anxiety was associated with increased patient's and evaluator's global assessment, tender joint count and joint pain in RA at follow-up, but not with swollen joint count and acute phase reactants. Depression and anxiety may reduce likelihood of joint remission based on composite scores in RA and PsA and should be taken into account in individual patients when making a shared decision on a treatment target. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers
Hu, Xin-Sheng; Simila, Janika; Platz, Sindey Schueler; Moore, Stephen S.; Plastow, Graham; Meghen, Ciaran N.
2012-01-01
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source. PMID:22479559
Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L
2009-02-01
The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.
Love, Jeffrey J.; Rigler, E. Joshua; Pulkkinen, Antti; Riley, Pete
2015-01-01
An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to −Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, −Dst≥850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42,2.41] times per century; a 100-yr magnetic storm is identified as having a −Dst≥880 nT (greater than Carrington) but a wide 95% confidence interval of [490,1187] nT.
30 CFR 18.31 - Enclosures-joints and fastenings.
Code of Federal Regulations, 2010 CFR
2010-07-01
... covers 2 1/4″ 3 3/8″ 3 1/2″ Minimum width of joint; all in one plane 4 1/2″ 3/4″ 1″ Maximum clearance; joint all in one plane 0.002″ 0.003″ 0.004″ Minimum width of joint, portions of which are in different planes; cylinders or equivalent 4,5 3/8″ 5/8″ 3/4″ Maximum clearances; joint in two or more planes...
Maximum likelihood convolutional decoding (MCD) performance due to system losses
NASA Technical Reports Server (NTRS)
Webster, L.
1976-01-01
A model for predicting the computational performance of a maximum likelihood convolutional decoder (MCD) operating in a noisy carrier reference environment is described. This model is used to develop a subroutine that will be utilized by the Telemetry Analysis Program to compute the MCD bit error rate. When this computational model is averaged over noisy reference phase errors using a high-rate interpolation scheme, the results are found to agree quite favorably with experimental measurements.
Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model
NASA Astrophysics Data System (ADS)
Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel
2011-03-01
This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.
Maximum likelihood estimates, from censored data, for mixed-Weibull distributions
NASA Astrophysics Data System (ADS)
Jiang, Siyuan; Kececioglu, Dimitri
1992-06-01
A new algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of maximum likelihood estimate (MLE) through the expectation and maximization (EM) algorithm, and it is derived for both postmortem and nonpostmortem time-to-failure data. It is concluded that the concept of the EM algorithm is easy to understand and apply (only elementary statistics and calculus are required). The log-likelihood function cannot decrease after an EM sequence; this important feature was observed in all of the numerical calculations. The MLEs of the nonpostmortem data were obtained successfully for mixed-Weibull distributions with up to 14 parameters in a 5-subpopulation, mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore, the algorithm should start at several initial guesses of the parameter set.
NASA Astrophysics Data System (ADS)
Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.
2010-08-01
Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.
NASA Astrophysics Data System (ADS)
Shu, Tong; Li, Yan; Yu, Miao; Zhang, Yifan; Zhou, Honghang; Qiu, Jifang; Guo, Hongxiang; Hong, Xiaobin; Wu, Jian
2018-02-01
Performance of Extended Kalman Filter combined with the Viterbi-Viterbi phase estimation (VVPE-EKF) for joint phase noise mitigation and amplitude noise equalization is experimental demonstrated. Experimental results show that, for 11.2 Gbaud SP-16-QAM, the proposed VVPE-EKF achieves 0.9 dB required OSNR reduction at bit error ratio (BER) of 3.8e-3 compared to the VVPE. The result of maximum likelihood combined with VVPE (VVPE-ML) is only 0.3 dB. For 28 GBaud SP-16-QAM signal, VVPE-EKF achieves 3 dB required OSNR reduction at BER=3.8e-3 (7% HD-FEC threshold) compared to VVPE. And VVPE-ML can reduce the required OSNR for 1.7 dB compared to the VVPE. VVPE-EKF outperforms DD-EKF 3.7 dB and 0.7 dB for 11.2 GBaud and 28 GBaud system, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georges, M.; Nielsen, D.; Mackinnon, M.
1995-02-01
We have exploited {open_quotes}progeny testing{close_quotes} to map quantitative trait loci (QTL) underlying the genetic variation of milk production in a selected dairy cattle population. A total of 1,518 sires, with progeny tests based on the milking performances of >150,000 daughters jointly, was genotyped for 159 autosomal microsatellites bracketing 1645 centimorgan or approximately two thirds of the bovine genome. Using a maximum likelihood multilocus linkage analysis accounting for variance heterogeneity of the phenotypes, we identified five chromosomes giving very strong evidence (LOD score {ge} 3) for the presence of a QTL controlling milk production: chromosomes 1, 6, 9, 10 and 20.more » These findings demonstrate that loci with considerable effects on milk production are still segregating in highly selected populations and pave the way toward marker-assisted selection in dairy cattle breeding. 44 refs., 4 figs., 3 tabs.« less
Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution
NASA Astrophysics Data System (ADS)
Wymeersch, Henk; Moeneclaey, Marc
2005-12-01
As many coded systems operate at very low signal-to-noise ratios, synchronization becomes a very difficult task. In many cases, conventional algorithms will either require long training sequences or result in large BER degradations. By exploiting code properties, these problems can be avoided. In this contribution, we present several iterative maximum-likelihood (ML) algorithms for joint carrier phase estimation and ambiguity resolution. These algorithms operate on coded signals by accepting soft information from the MAP decoder. Issues of convergence and initialization are addressed in detail. Simulation results are presented for turbo codes, and are compared to performance results of conventional algorithms. Performance comparisons are carried out in terms of BER performance and mean square estimation error (MSEE). We show that the proposed algorithm reduces the MSEE and, more importantly, the BER degradation. Additionally, phase ambiguity resolution can be performed without resorting to a pilot sequence, thus improving the spectral efficiency.
Joint Modeling Approach for Semicompeting Risks Data with Missing Nonterminal Event Status
Hu, Chen; Tsodikov, Alex
2014-01-01
Semicompeting risks data, where a subject may experience sequential non-terminal and terminal events, and the terminal event may censor the non-terminal event but not vice versa, are widely available in many biomedical studies. We consider the situation when a proportion of subjects’ non-terminal events is missing, such that the observed data become a mixture of “true” semicompeting risks data and partially observed terminal event only data. An illness-death multistate model with proportional hazards assumptions is proposed to study the relationship between non-terminal and terminal events, and provide covariate-specific global and local association measures. Maximum likelihood estimation based on semiparametric regression analysis is used for statistical inference, and asymptotic properties of proposed estimators are studied using empirical process and martingale arguments. We illustrate the proposed method with simulation studies and data analysis of a follicular cell lymphoma study. PMID:24430204
A family of chaotic pure analog coding schemes based on baker's map function
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Jing; Lu, Xuanxuan; Yuen, Chau; Wu, Jun
2015-12-01
This paper considers a family of pure analog coding schemes constructed from dynamic systems which are governed by chaotic functions—baker's map function and its variants. Various decoding methods, including maximum likelihood (ML), minimum mean square error (MMSE), and mixed ML-MMSE decoding algorithms, have been developed for these novel encoding schemes. The proposed mirrored baker's and single-input baker's analog codes perform a balanced protection against the fold error (large distortion) and weak distortion and outperform the classical chaotic analog coding and analog joint source-channel coding schemes in literature. Compared to the conventional digital communication system, where quantization and digital error correction codes are used, the proposed analog coding system has graceful performance evolution, low decoding latency, and no quantization noise. Numerical results show that under the same bandwidth expansion, the proposed analog system outperforms the digital ones over a wide signal-to-noise (SNR) range.
NASA Astrophysics Data System (ADS)
Makrakis, Dimitrios; Mathiopoulos, P. Takis
A maximum likelihood sequential decoder for the reception of digitally modulated signals with single or multiamplitude constellations transmitted over a multiplicative, nonselective fading channel is derived. It is shown that its structure consists of a combination of envelope, multiple differential, and coherent detectors. The outputs of each of these detectors are jointly processed by means of an algorithm. This algorithm is presented in a recursive form. The derivation of the new receiver is general enough to accommodate uncoded as well as coded (e.g., trellis-coded) schemes. Performance evaluation results for a reduced-complexity trellis-coded QPSK system have demonstrated that the proposed receiver dramatically reduces the error floors caused by fading. At Eb/N0 = 20 dB the new receiver structure results in bit-error-rate reductions of more than three orders of magnitude compared to a conventional Viterbi receiver, while being reasonably simple to implement.
NASA Technical Reports Server (NTRS)
Reese, E. D.; Mohr, J. J.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Holzapfel, W. L.; Hughes, J. P.; Patel, S. K.
2000-01-01
We determine the distances to the z approximately equal to 0.55 galaxy clusters MS 0451.6-0305 and CL 0016+16 from a maximum likelihood joint fit to interferometric Sunyaev-Zel'dovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta-model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an OmegaM = 0.3, OmegaL = 0.7 cosmology, these distances imply a Hubble constant of 63(exp 12)(sub -9)(exp +21)(sub -21) km/s/Mpc, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best fit H(sub o) is 57 km/sec/Mpc for an open OmegaM = 0.3 universe and 52 km/s/Mpc for a flat Omega = 1 universe.
Sunyaev-Zeldovich Effect-Derived Distances to the High-Redshift Clusters
NASA Technical Reports Server (NTRS)
Reese, Erik D.; Mohr, Joseph J.; Carlstrom, John E.; Joy, Marshall; Grego, Laura; Holder, Gilbert P.; Holzapfel, William L.; Hughes, John P.; Patel, Sandeep K.; Donahue, Megan
2000-01-01
We determine the distances to the z approximately equals 0.55 galaxy clusters MS 0451.6 - 0305 and Cl 0016 + 16 from a maximum-likelihood joint fit to interferometric Sunyaev-Zeldovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an Omega(sub M) = 0.3, Omega(sub lambda) = 0.7 cosmology, these distances imply a Hubble constant of 63(sup +12) (sub -9) (sup + 21) (sub -21) km/s Mp/c, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best-fit H(sub 0) is 57 km/s Mp/c for an open (Omega(sub M) = 0.3) universe and 52 km/s Mp/c for a flat (Omega(sub M) = 1) universe.
Killiches, Matthias; Czado, Claudia
2018-03-22
We propose a model for unbalanced longitudinal data, where the univariate margins can be selected arbitrarily and the dependence structure is described with the help of a D-vine copula. We show that our approach is an extremely flexible extension of the widely used linear mixed model if the correlation is homogeneous over the considered individuals. As an alternative to joint maximum-likelihood a sequential estimation approach for the D-vine copula is provided and validated in a simulation study. The model can handle missing values without being forced to discard data. Since conditional distributions are known analytically, we easily make predictions for future events. For model selection, we adjust the Bayesian information criterion to our situation. In an application to heart surgery data our model performs clearly better than competing linear mixed models. © 2018, The International Biometric Society.
Effects of load proportioning on the capacity of multiple-hole composite joints
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Chastain, P. A.
1985-01-01
This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.
Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation
Meyer, Karin
2016-01-01
Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty—derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated—rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined. PMID:27317681
Hip Implant Modified To Increase Probability Of Retention
NASA Technical Reports Server (NTRS)
Canabal, Francisco, III
1995-01-01
Modification in design of hip implant proposed to increase likelihood of retention of implant in femur after hip-repair surgery. Decreases likelihood of patient distress and expense associated with repetition of surgery after failed implant procedure. Intended to provide more favorable flow of cement used to bind implant in proximal extreme end of femur, reducing structural flaws causing early failure of implant/femur joint.
Models and analysis for multivariate failure time data
NASA Astrophysics Data System (ADS)
Shih, Joanna Huang
The goal of this research is to develop and investigate models and analytic methods for multivariate failure time data. We compare models in terms of direct modeling of the margins, flexibility of dependency structure, local vs. global measures of association, and ease of implementation. In particular, we study copula models, and models produced by right neutral cumulative hazard functions and right neutral hazard functions. We examine the changes of association over time for families of bivariate distributions induced from these models by displaying their density contour plots, conditional density plots, correlation curves of Doksum et al, and local cross ratios of Oakes. We know that bivariate distributions with same margins might exhibit quite different dependency structures. In addition to modeling, we study estimation procedures. For copula models, we investigate three estimation procedures. the first procedure is full maximum likelihood. The second procedure is two-stage maximum likelihood. At stage 1, we estimate the parameters in the margins by maximizing the marginal likelihood. At stage 2, we estimate the dependency structure by fixing the margins at the estimated ones. The third procedure is two-stage partially parametric maximum likelihood. It is similar to the second procedure, but we estimate the margins by the Kaplan-Meier estimate. We derive asymptotic properties for these three estimation procedures and compare their efficiency by Monte-Carlo simulations and direct computations. For models produced by right neutral cumulative hazards and right neutral hazards, we derive the likelihood and investigate the properties of the maximum likelihood estimates. Finally, we develop goodness of fit tests for the dependency structure in the copula models. We derive a test statistic and its asymptotic properties based on the test of homogeneity of Zelterman and Chen (1988), and a graphical diagnostic procedure based on the empirical Bayes approach. We study the performance of these two methods using actual and computer generated data.
Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.
Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl
2009-12-01
Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.
NASA Astrophysics Data System (ADS)
Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.
2014-09-01
Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.
Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy
2016-03-05
Maximum Likelihood Imaging for Radio Astronomy Mary Knapp1, Frank Robey2, Ryan Volz3, Frank Lind3, Alan Fenn2, Alex Morris2, Mark Silver2, Sarah Klein2...haystack.mit.edu Abstract1— Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets...observational astronomy . Ground-based observatories including LOFAR [1], LWA [2], [3], MWA [4], and the proposed SKA-Low [5], [6] are improving access to
A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling
Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.
2012-01-01
This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659
The effect of lossy image compression on image classification
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.
Tian, Guo-Liang; Li, Hui-Qiong
2017-08-01
Some existing confidence interval methods and hypothesis testing methods in the analysis of a contingency table with incomplete observations in both margins entirely depend on an underlying assumption that the sampling distribution of the observed counts is a product of independent multinomial/binomial distributions for complete and incomplete counts. However, it can be shown that this independency assumption is incorrect and can result in unreliable conclusions because of the under-estimation of the uncertainty. Therefore, the first objective of this paper is to derive the valid joint sampling distribution of the observed counts in a contingency table with incomplete observations in both margins. The second objective is to provide a new framework for analyzing incomplete contingency tables based on the derived joint sampling distribution of the observed counts by developing a Fisher scoring algorithm to calculate maximum likelihood estimates of parameters of interest, the bootstrap confidence interval methods, and the bootstrap testing hypothesis methods. We compare the differences between the valid sampling distribution and the sampling distribution under the independency assumption. Simulation studies showed that average/expected confidence-interval widths of parameters based on the sampling distribution under the independency assumption are shorter than those based on the new sampling distribution, yielding unrealistic results. A real data set is analyzed to illustrate the application of the new sampling distribution for incomplete contingency tables and the analysis results again confirm the conclusions obtained from the simulation studies.
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures
Theobald, Douglas L.; Wuttke, Deborah S.
2008-01-01
Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907
NASA Astrophysics Data System (ADS)
Eggers, G. L.; Lewis, K. W.; Simons, F. J.; Olhede, S.
2013-12-01
Venus does not possess a plate-tectonic system like that observed on Earth, and many surface features--such as tesserae and coronae--lack terrestrial equivalents. To understand Venus' tectonics is to understand its lithosphere, requiring a study of topography and gravity, and how they relate. Past studies of topography dealt with mapping and classification of visually observed features, and studies of gravity dealt with inverting the relation between topography and gravity anomalies to recover surface density and elastic thickness in either the space (correlation) or the spectral (admittance, coherence) domain. In the former case, geological features could be delineated but not classified quantitatively. In the latter case, rectangular or circular data windows were used, lacking geological definition. While the estimates of lithospheric strength on this basis were quantitative, they lacked robust error estimates. Here, we remapped the surface into 77 regions visually and qualitatively defined from a combination of Magellan topography, gravity, and radar images. We parameterize the spectral covariance of the observed topography, treating it as a Gaussian process assumed to be stationary over the mapped regions, using a three-parameter isotropic Matern model, and perform maximum-likelihood based inversions for the parameters. We discuss the parameter distribution across the Venusian surface and across terrain types such as coronoae, dorsae, tesserae, and their relation with mean elevation and latitudinal position. We find that the three-parameter model, while mathematically established and applicable to Venus topography, is overparameterized, and thus reduce the results to a two-parameter description of the peak spectral variance and the range-to-half-peak variance (in function of the wavenumber). With the reduction the clustering of geological region types in two-parameter space becomes promising. Finally, we perform inversions for the JOINT spectral variance of topography and gravity, in which the INITIAL loading by topography retains the Matern form but the FINAL topography and gravity are the result of flexural compensation. In our modeling, we pay explicit attention to finite-field spectral estimation effects (and their remedy via tapering), and to the implementation of statistical tests (for anisotropy, for initial-loading process correlation, to ascertain the proper density contrasts and interface depth in a two-layer model), robustness assessment and uncertainty quantification, as well as to algorithmic intricacies related to low-dimensional but poorly scaled maximum-likelihood inversions. We conclude that Venusian geomorphic terrains are well described by their 2-D topographic and gravity (cross-)power spectra, and the spectral properties of distinct geologic provinces on Venus are worth quantifying via maximum-likelihood-based methods under idealized three-parameter Matern distributions. Analysis of fitted parameters and the fitted-data residuals reveals natural variability in the (sub)surface properties on Venus, as well as some directional anisotropy. Geologic regions tend to cluster according to terrain type in our parameter space, which we analyze to confirm their shared geologic histories and utilize for guidance in ongoing mapping efforts of Venus and other terrestrial bodies.
Maximum Likelihood Analysis in the PEN Experiment
NASA Astrophysics Data System (ADS)
Lehman, Martin
2013-10-01
The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.
The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation
NASA Technical Reports Server (NTRS)
Tsou, Haiping; Yan, Tsun-Yee
2000-01-01
This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.
Reyes-Valdés, M H; Stelly, D M
1995-01-01
Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes. Images Fig. 1 PMID:7568226
Comparisons of neural networks to standard techniques for image classification and correlation
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1994-01-01
Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.
Schminkey, Donna L; von Oertzen, Timo; Bullock, Linda
2016-08-01
With increasing access to population-based data and electronic health records for secondary analysis, missing data are common. In the social and behavioral sciences, missing data frequently are handled with multiple imputation methods or full information maximum likelihood (FIML) techniques, but healthcare researchers have not embraced these methodologies to the same extent and more often use either traditional imputation techniques or complete case analysis, which can compromise power and introduce unintended bias. This article is a review of options for handling missing data, concluding with a case study demonstrating the utility of multilevel structural equation modeling using full information maximum likelihood (MSEM with FIML) to handle large amounts of missing data. MSEM with FIML is a parsimonious and hypothesis-driven strategy to cope with large amounts of missing data without compromising power or introducing bias. This technique is relevant for nurse researchers faced with ever-increasing amounts of electronic data and decreasing research budgets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Methods for estimating drought streamflow probabilities for Virginia streams
Austin, Samuel H.
2014-01-01
Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.
DECONV-TOOL: An IDL based deconvolution software package
NASA Technical Reports Server (NTRS)
Varosi, F.; Landsman, W. B.
1992-01-01
There are a variety of algorithms for deconvolution of blurred images, each having its own criteria or statistic to be optimized in order to estimate the original image data. Using the Interactive Data Language (IDL), we have implemented the Maximum Likelihood, Maximum Entropy, Maximum Residual Likelihood, and sigma-CLEAN algorithms in a unified environment called DeConv_Tool. Most of the algorithms have as their goal the optimization of statistics such as standard deviation and mean of residuals. Shannon entropy, log-likelihood, and chi-square of the residual auto-correlation are computed by DeConv_Tool for the purpose of determining the performance and convergence of any particular method and comparisons between methods. DeConv_Tool allows interactive monitoring of the statistics and the deconvolved image during computation. The final results, and optionally, the intermediate results, are stored in a structure convenient for comparison between methods and review of the deconvolution computation. The routines comprising DeConv_Tool are available via anonymous FTP through the IDL Astronomy User's Library.
F-8C adaptive flight control laws
NASA Technical Reports Server (NTRS)
Hartmann, G. L.; Harvey, C. A.; Stein, G.; Carlson, D. N.; Hendrick, R. C.
1977-01-01
Three candidate digital adaptive control laws were designed for NASA's F-8C digital flyby wire aircraft. Each design used the same control laws but adjusted the gains with a different adaptative algorithm. The three adaptive concepts were: high-gain limit cycle, Liapunov-stable model tracking, and maximum likelihood estimation. Sensors were restricted to conventional inertial instruments (rate gyros and accelerometers) without use of air-data measurements. Performance, growth potential, and computer requirements were used as criteria for selecting the most promising of these candidates for further refinement. The maximum likelihood concept was selected primarily because it offers the greatest potential for identifying several aircraft parameters and hence for improved control performance in future aircraft application. In terms of identification and gain adjustment accuracy, the MLE design is slightly superior to the other two, but this has no significant effects on the control performance achievable with the F-8C aircraft. The maximum likelihood design is recommended for flight test, and several refinements to that design are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washeleski, Robert L.; Meyer, Edmond J. IV; King, Lyon B.
2013-10-15
Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. Themore » key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.« less
Washeleski, Robert L; Meyer, Edmond J; King, Lyon B
2013-10-01
Laser Thomson scattering (LTS) is an established plasma diagnostic technique that has seen recent application to low density plasmas. It is difficult to perform LTS measurements when the scattered signal is weak as a result of low electron number density, poor optical access to the plasma, or both. Photon counting methods are often implemented in order to perform measurements in these low signal conditions. However, photon counting measurements performed with photo-multiplier tubes are time consuming and multi-photon arrivals are incorrectly recorded. In order to overcome these shortcomings a new data analysis method based on maximum likelihood estimation was developed. The key feature of this new data processing method is the inclusion of non-arrival events in determining the scattered Thomson signal. Maximum likelihood estimation and its application to Thomson scattering at low signal levels is presented and application of the new processing method to LTS measurements performed in the plume of a 2-kW Hall-effect thruster is discussed.
Chiao, P C; Rogers, W L; Fessler, J A; Clinthorne, N H; Hero, A O
1994-01-01
The authors have previously developed a model-based strategy for joint estimation of myocardial perfusion and boundaries using ECT (emission computed tomography). They have also reported difficulties with boundary estimation in low contrast and low count rate situations. Here they propose using boundary side information (obtainable from high resolution MRI and CT images) or boundary regularization to improve both perfusion and boundary estimation in these situations. To fuse boundary side information into the emission measurements, the authors formulate a joint log-likelihood function to include auxiliary boundary measurements as well as ECT projection measurements. In addition, they introduce registration parameters to align auxiliary boundary measurements with ECT measurements and jointly estimate these parameters with other parameters of interest from the composite measurements. In simulated PET O-15 water myocardial perfusion studies using a simplified model, the authors show that the joint estimation improves perfusion estimation performance and gives boundary alignment accuracy of <0.5 mm even at 0.2 million counts. They implement boundary regularization through formulating a penalized log-likelihood function. They also demonstrate in simulations that simultaneous regularization of the epicardial boundary and myocardial thickness gives comparable perfusion estimation accuracy with the use of boundary side information.
Zavaleta-Muñiz, S A; Gonzalez-Lopez, L; Murillo-Vazquez, J D; Saldaña-Cruz, A M; Vazquez-Villegas, M L; Martín-Márquez, B T; Vasquez-Jimenez, J C; Sandoval-Garcia, F; Ruiz-Padilla, A J; Fajardo-Robledo, N S; Ponce-Guarneros, J M; Rocha-Muñoz, A D; Alcaraz-Lopez, M F; Cardona-Müller, D; Totsuka-Sutto, S E; Rubio-Arellano, E D; Gamez-Nava, J I
2016-12-19
Several interleukin 6 gene (IL6) polymorphisms are implicated in susceptibility to rheumatoid arthritis (RA). It has not yet been established with certainty if these polymorphisms are associated with the severe radiographic damage observed in some RA patients, particularly those with the development of joint bone ankylosis (JBA). The objective of the present study was to evaluate the association between severe radiographic damage in hands and the -174G/C and -572G/C IL6 polymorphisms in Mexican Mestizo people with RA. Mestizo adults with RA and long disease duration (>5 years) were classified into two groups according to the radiographic damage in their hands: a) severe radiographic damage (JBA and/or joint bone subluxations) and b) mild or moderate radiographic damage. We compared the differences in genotype and allele frequencies of -174G/C and -572G/C IL6 polymorphisms (genotyped using polymerase chain reaction-restriction fragment length polymorphism) between these two groups. Our findings indicated that the -174G/C polymorphism of IL6 is associated with severe joint radiographic damage [maximum likelihood odds ratios (MLE_OR): 8.03; 95%CI 1.22-187.06; P = 0.03], whereas the -572G/C polymorphism of IL6 exhibited no such association (MLE_OR: 1.5; 95%CI 0.52-4.5; P = 0.44). Higher anti-cyclic citrullinated peptide antibody levels were associated with more severe joint radiographic damage (P = 0.04). We conclude that there is a relevant association between the -174G/C IL6 polymorphism and severe radiographic damage. Future studies in other populations are required to confirm our findings.
NASA Technical Reports Server (NTRS)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Inferring Phylogenetic Networks Using PhyloNet.
Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay
2018-07-01
PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.
Regression estimators for generic health-related quality of life and quality-adjusted life years.
Basu, Anirban; Manca, Andrea
2012-01-01
To develop regression models for outcomes with truncated supports, such as health-related quality of life (HRQoL) data, and account for features typical of such data such as a skewed distribution, spikes at 1 or 0, and heteroskedasticity. Regression estimators based on features of the Beta distribution. First, both a single equation and a 2-part model are presented, along with estimation algorithms based on maximum-likelihood, quasi-likelihood, and Bayesian Markov-chain Monte Carlo methods. A novel Bayesian quasi-likelihood estimator is proposed. Second, a simulation exercise is presented to assess the performance of the proposed estimators against ordinary least squares (OLS) regression for a variety of HRQoL distributions that are encountered in practice. Finally, the performance of the proposed estimators is assessed by using them to quantify the treatment effect on QALYs in the EVALUATE hysterectomy trial. Overall model fit is studied using several goodness-of-fit tests such as Pearson's correlation test, link and reset tests, and a modified Hosmer-Lemeshow test. The simulation results indicate that the proposed methods are more robust in estimating covariate effects than OLS, especially when the effects are large or the HRQoL distribution has a large spike at 1. Quasi-likelihood techniques are more robust than maximum likelihood estimators. When applied to the EVALUATE trial, all but the maximum likelihood estimators produce unbiased estimates of the treatment effect. One and 2-part Beta regression models provide flexible approaches to regress the outcomes with truncated supports, such as HRQoL, on covariates, after accounting for many idiosyncratic features of the outcomes distribution. This work will provide applied researchers with a practical set of tools to model outcomes in cost-effectiveness analysis.
Dong, Yi; Mihalas, Stefan; Russell, Alexander; Etienne-Cummings, Ralph; Niebur, Ernst
2012-01-01
When a neuronal spike train is observed, what can we say about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then to choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate and fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that its unique global minimum can thus be found by gradient descent techniques. The global minimum property requires independence of spike time intervals. Lack of history dependence is, however, an important constraint that is not fulfilled in many biological neurons which are known to generate a rich repertoire of spiking behaviors that are incompatible with history independence. Therefore, we expanded the integrate and fire model by including one additional variable, a variable threshold (Mihalas & Niebur, 2009) allowing for history-dependent firing patterns. This neuronal model produces a large number of spiking behaviors while still being linear. Linearity is important as it maintains the distribution of the random variables and still allows for maximum likelihood methods to be used. In this study we show that, although convexity of the negative log-likelihood is not guaranteed for this model, the minimum of the negative log-likelihood function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) frequently reaches the global minimum. PMID:21851282
Igniter adapter-to-igniter chamber deflection test
NASA Technical Reports Server (NTRS)
Cook, M.
1990-01-01
Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.
Assessment of articular disc displacement of temporomandibular joint with ultrasound.
Razek, Ahmed Abdel Khalek Abdel; Al Mahdy Al Belasy, Fouad; Ahmed, Wael Mohamed Said; Haggag, Mai Ahmed
2015-06-01
To assess pattern of articular disc displacement in patients with internal derangement (ID) of temporomandibular joint (TMJ) with ultrasound. Prospective study was conducted upon 40 TMJ of 20 patients (3 male, 17 female with mean age of 26.1 years) with ID of TMJ. They underwent high-resolution ultrasound and MR imaging of TMJ. The MR images were used as the gold standard for calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) of ultrasound for diagnosis of anterior or sideway displacement of the disc. The anterior displaced disc was seen in 26 joints at MR and 22 joints at ultrasound. The diagnostic efficacy of ultrasound for anterior displacement has sensitivity of 79.3 %, specificity of 72.7 %, accuracy of 77.5 %, PPV of 88.5 %, NPV of 57.1 %, PLR of 2.9 and NLR of 0.34. The sideway displacement of disc was seen in four joints at MR and three joints at ultrasound. The diagnostic efficacy of ultrasound for sideway displacement has a sensitivity of 75 %, specificity of 63.6 %, accuracy of 66.7 %, PPV of 42.8, NPV of 87.5 %, PLR of 2.06, and NLR of 0.39. We concluded that ultrasound is a non-invasive imaging modality used for assessment of anterior and sideway displacement of the articular disc in patients with ID of TMJ.
Accurate Structural Correlations from Maximum Likelihood Superpositions
Theobald, Douglas L; Wuttke, Deborah S
2008-01-01
The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091
Digital Detection and Processing of Multiple Quadrature Harmonics for EPR Spectroscopy
Ahmad, R.; Som, S.; Kesselring, E.; Kuppusamy, P.; Zweier, J.L.; Potter, L.C.
2010-01-01
A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. PMID:20971667
Parameter Estimation of Multiple Frequency-Hopping Signals with Two Sensors
Pan, Jin; Ma, Boyuan
2018-01-01
This paper essentially focuses on parameter estimation of multiple wideband emitting sources with time-varying frequencies, such as two-dimensional (2-D) direction of arrival (DOA) and signal sorting, with a low-cost circular synthetic array (CSA) consisting of only two rotating sensors. Our basic idea is to decompose the received data, which is a superimposition of phase measurements from multiple sources into separated groups and separately estimate the DOA associated with each source. Motivated by joint parameter estimation, we propose to adopt the expectation maximization (EM) algorithm in this paper; our method involves two steps, namely, the expectation-step (E-step) and the maximization (M-step). In the E-step, the correspondence of each signal with its emitting source is found. Then, in the M-step, the maximum-likelihood (ML) estimates of the DOA parameters are obtained. These two steps are iteratively and alternatively executed to jointly determine the DOAs and sort multiple signals. Closed-form DOA estimation formulae are developed by ML estimation based on phase data, which also realize an optimal estimation. Directional ambiguity is also addressed by another ML estimation method based on received complex responses. The Cramer-Rao lower bound is derived for understanding the estimation accuracy and performance comparison. The verification of the proposed method is demonstrated with simulations. PMID:29617323
Digital detection and processing of multiple quadrature harmonics for EPR spectroscopy.
Ahmad, R; Som, S; Kesselring, E; Kuppusamy, P; Zweier, J L; Potter, L C
2010-12-01
A quadrature digital receiver and associated signal estimation procedure are reported for L-band electron paramagnetic resonance (EPR) spectroscopy. The approach provides simultaneous acquisition and joint processing of multiple harmonics in both in-phase and out-of-phase channels. The digital receiver, based on a high-speed dual-channel analog-to-digital converter, allows direct digital down-conversion with heterodyne processing using digital capture of the microwave reference signal. Thus, the receiver avoids noise and nonlinearity associated with analog mixers. Also, the architecture allows for low-Q anti-alias filtering and does not require the sampling frequency to be time-locked to the microwave reference. A noise model applicable for arbitrary contributions of oscillator phase noise is presented, and a corresponding maximum-likelihood estimator of unknown parameters is also reported. The signal processing is applicable for Lorentzian lineshape under nonsaturating conditions. The estimation is carried out using a convergent iterative algorithm capable of jointly processing the in-phase and out-of-phase data in the presence of phase noise and unknown microwave phase. Cramér-Rao bound analysis and simulation results demonstrate a significant reduction in linewidth estimation error using quadrature detection, for both low and high values of phase noise. EPR spectroscopic data are also reported for illustration. Copyright © 2010 Elsevier Inc. All rights reserved.
Joint image registration and fusion method with a gradient strength regularization
NASA Astrophysics Data System (ADS)
Lidong, Huang; Wei, Zhao; Jun, Wang
2015-05-01
Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.
Maximum-Likelihood Methods for Processing Signals From Gamma-Ray Detectors
Barrett, Harrison H.; Hunter, William C. J.; Miller, Brian William; Moore, Stephen K.; Chen, Yichun; Furenlid, Lars R.
2009-01-01
In any gamma-ray detector, each event produces electrical signals on one or more circuit elements. From these signals, we may wish to determine the presence of an interaction; whether multiple interactions occurred; the spatial coordinates in two or three dimensions of at least the primary interaction; or the total energy deposited in that interaction. We may also want to compute listmode probabilities for tomographic reconstruction. Maximum-likelihood methods provide a rigorous and in some senses optimal approach to extracting this information, and the associated Fisher information matrix provides a way of quantifying and optimizing the information conveyed by the detector. This paper will review the principles of likelihood methods as applied to gamma-ray detectors and illustrate their power with recent results from the Center for Gamma-ray Imaging. PMID:20107527
Shen, Yi; Dai, Wei; Richards, Virginia M
2015-03-01
A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given.
A maximum likelihood convolutional decoder model vs experimental data comparison
NASA Technical Reports Server (NTRS)
Chen, R. Y.
1979-01-01
This article describes the comparison of a maximum likelihood convolutional decoder (MCD) prediction model and the actual performance of the MCD at the Madrid Deep Space Station. The MCD prediction model is used to develop a subroutine that has been utilized by the Telemetry Analysis Program (TAP) to compute the MCD bit error rate for a given signal-to-noise ratio. The results indicate that that the TAP can predict quite well compared to the experimental measurements. An optimal modulation index also can be found through TAP.
Salje, Ekhard K H; Planes, Antoni; Vives, Eduard
2017-10-01
Crackling noise can be initiated by competing or coexisting mechanisms. These mechanisms can combine to generate an approximate scale invariant distribution that contains two or more contributions. The overall distribution function can be analyzed, to a good approximation, using maximum-likelihood methods and assuming that it follows a power law although with nonuniversal exponents depending on a varying lower cutoff. We propose that such distributions are rather common and originate from a simple superposition of crackling noise distributions or exponential damping.
Krill, Michael K; Rosas, Samuel; Kwon, KiHyun; Dakkak, Andrew; Nwachukwu, Benedict U; McCormick, Frank
2018-02-01
The clinical examination of the shoulder joint is an undervalued diagnostic tool for evaluating acromioclavicular (AC) joint pathology. Applying evidence-based clinical tests enables providers to make an accurate diagnosis and minimize costly imaging procedures and potential delays in care. The purpose of this study was to create a decision tree analysis enabling simple and accurate diagnosis of AC joint pathology. A systematic review of the Medline, Ovid and Cochrane Review databases was performed to identify level one and two diagnostic studies evaluating clinical tests for AC joint pathology. Individual test characteristics were combined in series and in parallel to improve sensitivities and specificities. A secondary analysis utilized subjective pre-test probabilities to create a clinical decision tree algorithm with post-test probabilities. The optimal special test combination to screen and confirm AC joint pathology combined Paxinos sign and O'Brien's Test, with a specificity of 95.8% when performed in series; whereas, Paxinos sign and Hawkins-Kennedy Test demonstrated a sensitivity of 93.7% when performed in parallel. Paxinos sign and O'Brien's Test demonstrated the greatest positive likelihood ratio (2.71); whereas, Paxinos sign and Hawkins-Kennedy Test reported the lowest negative likelihood ratio (0.35). No combination of special tests performed in series or in parallel creates more than a small impact on post-test probabilities to screen or confirm AC joint pathology. Paxinos sign and O'Brien's Test is the only special test combination that has a small and sometimes important impact when used both in series and in parallel. Physical examination testing is not beneficial for diagnosis of AC joint pathology when pretest probability is unequivocal. In these instances, it is of benefit to proceed with procedural tests to evaluate AC joint pathology. Ultrasound-guided corticosteroid injections are diagnostic and therapeutic. An ultrasound-guided AC joint corticosteroid injection may be an appropriate new standard for treatment and surgical decision-making. II - Systematic Review.
Likelihood-based modification of experimental crystal structure electron density maps
Terwilliger, Thomas C [Sante Fe, NM
2005-04-16
A maximum-likelihood method for improves an electron density map of an experimental crystal structure. A likelihood of a set of structure factors {F.sub.h } is formed for the experimental crystal structure as (1) the likelihood of having obtained an observed set of structure factors {F.sub.h.sup.OBS } if structure factor set {F.sub.h } was correct, and (2) the likelihood that an electron density map resulting from {F.sub.h } is consistent with selected prior knowledge about the experimental crystal structure. The set of structure factors {F.sub.h } is then adjusted to maximize the likelihood of {F.sub.h } for the experimental crystal structure. An improved electron density map is constructed with the maximized structure factors.
Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl
2016-10-01
The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.
Planning and conducting medical support to joint operations.
Hughes, A S
2000-01-01
Operations are core business for all of us and the PJHQ medical cell is at the heart of this process. With the likelihood of a continuing UK presence in the Balkans for some time to come, the challenge of meeting this and any other new operational commitments will continue to demand a flexible and innovative approach from all concerned. These challenges together with the Joint and multinational aspects of the job make the PJHQ medical cell a demanding but rewarding place to work and provide a valuable Joint staff training opportunity for the RNMS.
Computational Modelling and Movement Analysis of Hip Joint with Muscles
NASA Astrophysics Data System (ADS)
Siswanto, W. A.; Yoon, C. C.; Salleh, S. Md.; Ngali, M. Z.; Yusup, Eliza M.
2017-01-01
In this study, the model of hip joint and the main muscles are modelled by finite elements. The parts included in the model are hip joint, hemi pelvis, gluteus maximus, quadratus femoris and gamellus inferior. The materials that used in these model are isotropic elastic, Mooney Rivlin and Neo-hookean. The hip resultant force of the normal gait and stair climbing are applied on the model of hip joint. The responses of displacement, stress and strain of the muscles are then recorded. FEBio non-linear solver for biomechanics is employed to conduct the simulation of the model of hip joint with muscles. The contact interfaces that used in this model are sliding contact and tied contact. From the analysis results, the gluteus maximus has the maximum displacement, stress and strain in the stair climbing. Quadratus femoris and gamellus inferior has the maximum displacement and strain in the normal gait however the maximum stress in the stair climbing. Besides that, the computational model of hip joint with muscles is produced for research and investigation platform. The model can be used as a visualization platform of hip joint.
Ng, S K; McLachlan, G J
2003-04-15
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright 2003 John Wiley & Sons, Ltd.
Do patients with diabetic neuropathy use a higher proportion of their maximum strength when walking?
Brown, Steven J; Handsaker, Joseph C; Bowling, Frank L; Maganaris, Costantinos N; Boulton, Andrew J M; Reeves, Neil D
2014-11-28
Diabetic patients have an altered gait strategy during walking and are known to be at high risk of falling, especially when diabetic peripheral neuropathy is present. This study investigated alterations to lower limb joint torques during walking and related these torques to maximum strength in an attempt to elucidate why diabetic patients are more likely to fall. 20 diabetic patients with moderate/severe peripheral neuropathy (DPN), 33 diabetic patients without peripheral neuropathy (DM), and 27 non-diabetic controls (Ctrl) underwent gait analysis using a motion analysis system and force plates to measure kinetic parameters. Lower limb peak joint torques and joint work done (energy expenditure) were calculated during walking. The ratio of peak joint torques and individual maximum joint strengths (measured on a dynamometer) was then calculated for 59 of the 80 participants to yield the ‘operating strength’ for those participants. During walking DM and DPN patients showed significantly reduced peak torques at the ankle and knee. Maximum joint strengths at the knee were significantly less in both DM and DPN groups than Ctrls, and for the DPN group at the ankle. Operating strengths were significantly higher at the ankle in the DPN group compared to the Ctrls. These findings show that diabetic patients walk with reduced lower limb joint torques; however due to a decrement in their maximum ability at the ankle and knee, their operating strengths are higher. This allows less reserve strength if responding to a perturbation in balance, potentially increasing their risk of falling.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
Interpreting DNA mixtures with the presence of relatives.
Hu, Yue-Qing; Fung, Wing K
2003-02-01
The assessment of DNA mixtures with the presence of relatives is discussed in this paper. The kinship coefficients are incorporated into the evaluation of the likelihood ratio and we first derive a unified expression of joint genotypic probabilities. A general formula and seven types of detailed expressions for calculating likelihood ratios are then developed for the case that a relative of the tested suspect is an unknown contributor to the mixed stain. These results can also be applied to the case of a non-tested suspect with one tested relative. Moreover, the formula for calculating the likelihood ratio when there are two related unknown contributors is given. Data for a real situation are given for illustration, and the effect of kinship on the likelihood ratio is shown therein. Some interesting findings are obtained.
Cao, Y; Adachi, J; Yano, T; Hasegawa, M
1994-07-01
Graur et al.'s (1991) hypothesis that the guinea pig-like rodents have an evolutionary origin within mammals that is separate from that of other rodents (the rodent-polyphyly hypothesis) was reexamined by the maximum-likelihood method for protein phylogeny, as well as by the maximum-parsimony and neighbor-joining methods. The overall evidence does not support Graur et al.'s hypothesis, which radically contradicts the traditional view of rodent monophyly. This work demonstrates that we must be careful in choosing a proper method for phylogenetic inference and that an argument based on a small data set (with respect to the length of the sequence and especially the number of species) may be unstable.
Task Performance with List-Mode Data
NASA Astrophysics Data System (ADS)
Caucci, Luca
This dissertation investigates the application of list-mode data to detection, estimation, and image reconstruction problems, with an emphasis on emission tomography in medical imaging. We begin by introducing a theoretical framework for list-mode data and we use it to define two observers that operate on list-mode data. These observers are applied to the problem of detecting a signal (known in shape and location) buried in a random lumpy background. We then consider maximum-likelihood methods for the estimation of numerical parameters from list-mode data, and we characterize the performance of these estimators via the so-called Fisher information matrix. Reconstruction from PET list-mode data is then considered. In a process we called "double maximum-likelihood" reconstruction, we consider a simple PET imaging system and we use maximum-likelihood methods to first estimate a parameter vector for each pair of gamma-ray photons that is detected by the hardware. The collection of these parameter vectors forms a list, which is then fed to another maximum-likelihood algorithm for volumetric reconstruction over a grid of voxels. Efficient parallel implementation of the algorithms discussed above is then presented. In this work, we take advantage of two low-cost, mass-produced computing platforms that have recently appeared on the market, and we provide some details on implementing our algorithms on these devices. We conclude this dissertation work by elaborating on a possible application of list-mode data to X-ray digital mammography. We argue that today's CMOS detectors and computing platforms have become fast enough to make X-ray digital mammography list-mode data acquisition and processing feasible.
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Webb, Virgil H.; Bradley, Scott R.; Hansen, Christopher A.
1998-07-01
An advanced detection and tracking system is being developed for the U.S. Navy's Relocatable Over-the-Horizon Radar (ROTHR) to provide improved tracking performance against small aircraft typically used in drug-smuggling activities. The development is based on the Maximum Likelihood Adaptive Neural System (MLANS), a model-based neural network that combines advantages of neural network and model-based algorithmic approaches. The objective of the MLANS tracker development effort is to address user requirements for increased detection and tracking capability in clutter and improved track position, heading, and speed accuracy. The MLANS tracker is expected to outperform other approaches to detection and tracking for the following reasons. It incorporates adaptive internal models of target return signals, target tracks and maneuvers, and clutter signals, which leads to concurrent clutter suppression, detection, and tracking (track-before-detect). It is not combinatorial and thus does not require any thresholding or peak picking and can track in low signal-to-noise conditions. It incorporates superresolution spectrum estimation techniques exceeding the performance of conventional maximum likelihood and maximum entropy methods. The unique spectrum estimation method is based on the Einsteinian interpretation of the ROTHR received energy spectrum as a probability density of signal frequency. The MLANS neural architecture and learning mechanism are founded on spectrum models and maximization of the "Einsteinian" likelihood, allowing knowledge of the physical behavior of both targets and clutter to be injected into the tracker algorithms. The paper describes the addressed requirements and expected improvements, theoretical foundations, engineering methodology, and results of the development effort to date.
Upper limb joint motion of two different user groups during manual wheelchair propulsion
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho
2013-02-01
Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...
2016-02-05
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less
Bivariate categorical data analysis using normal linear conditional multinomial probability model.
Sun, Bingrui; Sutradhar, Brajendra
2015-02-10
Bivariate multinomial data such as the left and right eyes retinopathy status data are analyzed either by using a joint bivariate probability model or by exploiting certain odds ratio-based association models. However, the joint bivariate probability model yields marginal probabilities, which are complicated functions of marginal and association parameters for both variables, and the odds ratio-based association model treats the odds ratios involved in the joint probabilities as 'working' parameters, which are consequently estimated through certain arbitrary 'working' regression models. Also, this later odds ratio-based model does not provide any easy interpretations of the correlations between two categorical variables. On the basis of pre-specified marginal probabilities, in this paper, we develop a bivariate normal type linear conditional multinomial probability model to understand the correlations between two categorical variables. The parameters involved in the model are consistently estimated using the optimal likelihood and generalized quasi-likelihood approaches. The proposed model and the inferences are illustrated through an intensive simulation study as well as an analysis of the well-known Wisconsin Diabetic Retinopathy status data. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Lin, Shu; Fossorier, Marc
1998-01-01
The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.
Testing students' e-learning via Facebook through Bayesian structural equation modeling.
Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.
Maximum-likelihood fitting of data dominated by Poisson statistical uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoneking, M.R.; Den Hartog, D.J.
1996-06-01
The fitting of data by {chi}{sup 2}-minimization is valid only when the uncertainties in the data are normally distributed. When analyzing spectroscopic or particle counting data at very low signal level (e.g., a Thomson scattering diagnostic), the uncertainties are distributed with a Poisson distribution. The authors have developed a maximum-likelihood method for fitting data that correctly treats the Poisson statistical character of the uncertainties. This method maximizes the total probability that the observed data are drawn from the assumed fit function using the Poisson probability function to determine the probability for each data point. The algorithm also returns uncertainty estimatesmore » for the fit parameters. They compare this method with a {chi}{sup 2}-minimization routine applied to both simulated and real data. Differences in the returned fits are greater at low signal level (less than {approximately}20 counts per measurement). the maximum-likelihood method is found to be more accurate and robust, returning a narrower distribution of values for the fit parameters with fewer outliers.« less
Land cover mapping after the tsunami event over Nanggroe Aceh Darussalam (NAD) province, Indonesia
NASA Astrophysics Data System (ADS)
Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Alias, A. N.; Mohd. Saleh, N.; Wong, C. J.; Surbakti, M. S.
2008-03-01
Remote sensing offers an important means of detecting and analyzing temporal changes occurring in our landscape. This research used remote sensing to quantify land use/land cover changes at the Nanggroe Aceh Darussalam (Nad) province, Indonesia on a regional scale. The objective of this paper is to assess the changed produced from the analysis of Landsat TM data. A Landsat TM image was used to develop land cover classification map for the 27 March 2005. Four supervised classifications techniques (Maximum Likelihood, Minimum Distance-to- Mean, Parallelepiped and Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier) were performed to the satellite image. Training sites and accuracy assessment were needed for supervised classification techniques. The training sites were established using polygons based on the colour image. High detection accuracy (>80%) and overall Kappa (>0.80) were achieved by the Parallelepiped with Maximum Likelihood Classifier Tiebreaker classifier in this study. This preliminary study has produced a promising result. This indicates that land cover mapping can be carried out using remote sensing classification method of the satellite digital imagery.
Lehmann, A; Scheffler, Ch; Hermanussen, M
2010-02-01
Recent progress in modelling individual growth has been achieved by combining the principal component analysis and the maximum likelihood principle. This combination models growth even in incomplete sets of data and in data obtained at irregular intervals. We re-analysed late 18th century longitudinal growth of German boys from the boarding school Carlsschule in Stuttgart. The boys, aged 6-23 years, were measured at irregular 3-12 monthly intervals during the period 1771-1793. At the age of 18 years, mean height was 1652 mm, but height variation was large. The shortest boy reached 1474 mm, the tallest 1826 mm. Measured height closely paralleled modelled height, with mean difference of 4 mm, SD 7 mm. Seasonal height variation was found. Low growth rates occurred in spring and high growth rates in summer and autumn. The present study demonstrates that combining the principal component analysis and the maximum likelihood principle enables growth modelling in historic height data also. Copyright (c) 2009 Elsevier GmbH. All rights reserved.
Collinear Latent Variables in Multilevel Confirmatory Factor Analysis
van de Schoot, Rens; Hox, Joop
2014-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation coefficient (ICC) and estimation method; maximum likelihood estimation with robust chi-squares and standard errors and Bayesian estimation, on the convergence rate are investigated. The other variables of interest were rate of inadmissible solutions and the relative parameter and standard error bias on the between level. The results showed that inadmissible solutions were obtained when there was between level collinearity and the estimation method was maximum likelihood. In the within level multicollinearity condition, all of the solutions were admissible but the bias values were higher compared with the between level collinearity condition. Bayesian estimation appeared to be robust in obtaining admissible parameters but the relative bias was higher than for maximum likelihood estimation. Finally, as expected, high ICC produced less biased results compared to medium ICC conditions. PMID:29795827
Testing students’ e-learning via Facebook through Bayesian structural equation modeling
Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad
2017-01-01
Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019
Gatt, Alfred; Chockalingam, Nachiappan
2012-06-01
Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fuzzy multinomial logistic regression analysis: A multi-objective programming approach
NASA Astrophysics Data System (ADS)
Abdalla, Hesham A.; El-Sayed, Amany A.; Hamed, Ramadan
2017-05-01
Parameter estimation for multinomial logistic regression is usually based on maximizing the likelihood function. For large well-balanced datasets, Maximum Likelihood (ML) estimation is a satisfactory approach. Unfortunately, ML can fail completely or at least produce poor results in terms of estimated probabilities and confidence intervals of parameters, specially for small datasets. In this study, a new approach based on fuzzy concepts is proposed to estimate parameters of the multinomial logistic regression. The study assumes that the parameters of multinomial logistic regression are fuzzy. Based on the extension principle stated by Zadeh and Bárdossy's proposition, a multi-objective programming approach is suggested to estimate these fuzzy parameters. A simulation study is used to evaluate the performance of the new approach versus Maximum likelihood (ML) approach. Results show that the new proposed model outperforms ML in cases of small datasets.
NASA Astrophysics Data System (ADS)
Love, J. J.; Rigler, E. J.; Pulkkinen, A. A.; Riley, P.
2015-12-01
An examination is made of the hypothesis that the statistics of magnetic-storm-maximum intensities are the realization of a log-normal stochastic process. Weighted least-squares and maximum-likelihood methods are used to fit log-normal functions to -Dst storm-time maxima for years 1957-2012; bootstrap analysis is used to established confidence limits on forecasts. Both methods provide fits that are reasonably consistent with the data; both methods also provide fits that are superior to those that can be made with a power-law function. In general, the maximum-likelihood method provides forecasts having tighter confidence intervals than those provided by weighted least-squares. From extrapolation of maximum-likelihood fits: a magnetic storm with intensity exceeding that of the 1859 Carrington event, -Dst > 850 nT, occurs about 1.13 times per century and a wide 95% confidence interval of [0.42, 2.41] times per century; a 100-yr magnetic storm is identified as having a -Dst > 880 nT (greater than Carrington) but a wide 95% confidence interval of [490, 1187] nT. This work is partially motivated by United States National Science and Technology Council and Committee on Space Research and International Living with a Star priorities and strategic plans for the assessment and mitigation of space-weather hazards.
Interdependency of the maximum range of flexion-extension of hand metacarpophalangeal joints.
Gracia-Ibáñez, V; Vergara, M; Sancho-Bru, J-L
2016-12-01
Mobility of the fingers metacarpophalangeal (MCP) joints depends on the posture of the adjacent ones. Current Biomechanical hand models consider fixed ranges of movement at joints, regardless of the posture, thus allowing for non-realistic postures, generating wrong results in reach studies and forward dynamic analyses. This study provides data for more realistic hand models. The maximum voluntary extension (MVE) and flexion (MVF) of different combinations of MCP joints were measured covering their range of motion. Dependency of the MVF and MVE on the posture of the adjacent MCP joints was confirmed and mathematical models obtained through regression analyses (RMSE 7.7°).
Jeon, Jihyoun; Hsu, Li; Gorfine, Malka
2012-07-01
Frailty models are useful for measuring unobserved heterogeneity in risk of failures across clusters, providing cluster-specific risk prediction. In a frailty model, the latent frailties shared by members within a cluster are assumed to act multiplicatively on the hazard function. In order to obtain parameter and frailty variate estimates, we consider the hierarchical likelihood (H-likelihood) approach (Ha, Lee and Song, 2001. Hierarchical-likelihood approach for frailty models. Biometrika 88, 233-243) in which the latent frailties are treated as "parameters" and estimated jointly with other parameters of interest. We find that the H-likelihood estimators perform well when the censoring rate is low, however, they are substantially biased when the censoring rate is moderate to high. In this paper, we propose a simple and easy-to-implement bias correction method for the H-likelihood estimators under a shared frailty model. We also extend the method to a multivariate frailty model, which incorporates complex dependence structure within clusters. We conduct an extensive simulation study and show that the proposed approach performs very well for censoring rates as high as 80%. We also illustrate the method with a breast cancer data set. Since the H-likelihood is the same as the penalized likelihood function, the proposed bias correction method is also applicable to the penalized likelihood estimators.
Mixture model based joint-MAP reconstruction of attenuation and activity maps in TOF-PET
NASA Astrophysics Data System (ADS)
Hemmati, H.; Kamali-Asl, A.; Ghafarian, P.; Ay, M. R.
2018-06-01
A challenge to have quantitative positron emission tomography (PET) images is to provide an accurate and patient-specific photon attenuation correction. In PET/MR scanners, the nature of MR signals and hardware limitations have led to a real challenge on the attenuation map extraction. Except for a constant factor, the activity and attenuation maps from emission data on TOF-PET system can be determined by the maximum likelihood reconstruction of attenuation and activity approach (MLAA) from emission data. The aim of the present study is to constrain the joint estimations of activity and attenuation approach for PET system using a mixture model prior based on the attenuation map histogram. This novel prior enforces non-negativity and its hyperparameters can be estimated using a mixture decomposition step from the current estimation of the attenuation map. The proposed method can also be helpful on the solving of scaling problem and is capable to assign the predefined regional attenuation coefficients with some degree of confidence to the attenuation map similar to segmentation-based attenuation correction approaches. The performance of the algorithm is studied with numerical and Monte Carlo simulations and a phantom experiment and was compared with MLAA algorithm with and without the smoothing prior. The results demonstrate that the proposed algorithm is capable of producing the cross-talk free activity and attenuation images from emission data. The proposed approach has potential to be a practical and competitive method for joint reconstruction of activity and attenuation maps from emission data on PET/MR and can be integrated on the other methods.
NASA Technical Reports Server (NTRS)
Clark, R. T.; Mccallister, R. D.
1982-01-01
The particular coding option identified as providing the best level of coding gain performance in an LSI-efficient implementation was the optimal constraint length five, rate one-half convolutional code. To determine the specific set of design parameters which optimally matches this decoder to the LSI constraints, a breadboard MCD (maximum-likelihood convolutional decoder) was fabricated and used to generate detailed performance trade-off data. The extensive performance testing data gathered during this design tradeoff study are summarized, and the functional and physical MCD chip characteristics are presented.
Gyro-based Maximum-Likelihood Thruster Fault Detection and Identification
NASA Technical Reports Server (NTRS)
Wilson, Edward; Lages, Chris; Mah, Robert; Clancy, Daniel (Technical Monitor)
2002-01-01
When building smaller, less expensive spacecraft, there is a need for intelligent fault tolerance vs. increased hardware redundancy. If fault tolerance can be achieved using existing navigation sensors, cost and vehicle complexity can be reduced. A maximum likelihood-based approach to thruster fault detection and identification (FDI) for spacecraft is developed here and applied in simulation to the X-38 space vehicle. The system uses only gyro signals to detect and identify hard, abrupt, single and multiple jet on- and off-failures. Faults are detected within one second and identified within one to five accords,
Maximum likelihood estimation for life distributions with competing failure modes
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1979-01-01
Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.
Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement.
McCoy, Airlie J; Oeffner, Robert D; Millán, Claudia; Sammito, Massimo; Usón, Isabel; Read, Randy J
2018-04-01
Descriptions are given of the maximum-likelihood gyre method implemented in Phaser for optimizing the orientation and relative position of rigid-body fragments of a model after the orientation of the model has been identified, but before the model has been positioned in the unit cell, and also the related gimble method for the refinement of rigid-body fragments of the model after positioning. Gyre refinement helps to lower the root-mean-square atomic displacements between model and target molecular-replacement solutions for the test case of antibody Fab(26-10) and improves structure solution with ARCIMBOLDO_SHREDDER.
Richards, V. M.; Dai, W.
2014-01-01
A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given. PMID:24671826
Khairuzzaman, Md; Zhang, Chao; Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro
2010-03-01
We describe a successful introduction of maximum-likelihood-sequence estimation (MLSE) into digital coherent receivers together with finite-impulse response (FIR) filters in order to equalize both linear and nonlinear fiber impairments. The MLSE equalizer based on the Viterbi algorithm is implemented in the offline digital signal processing (DSP) core. We transmit 20-Gbit/s quadrature phase-shift keying (QPSK) signals through a 200-km-long standard single-mode fiber. The bit-error rate performance shows that the MLSE equalizer outperforms the conventional adaptive FIR filter, especially when nonlinear impairments are predominant.
F-8C adaptive flight control extensions. [for maximum likelihood estimation
NASA Technical Reports Server (NTRS)
Stein, G.; Hartmann, G. L.
1977-01-01
An adaptive concept which combines gain-scheduled control laws with explicit maximum likelihood estimation (MLE) identification to provide the scheduling values is described. The MLE algorithm was improved by incorporating attitude data, estimating gust statistics for setting filter gains, and improving parameter tracking during changing flight conditions. A lateral MLE algorithm was designed to improve true air speed and angle of attack estimates during lateral maneuvers. Relationships between the pitch axis sensors inherent in the MLE design were examined and used for sensor failure detection. Design details and simulation performance are presented for each of the three areas investigated.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
A 3D approximate maximum likelihood localization solver
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-09-23
A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with acoustic transmitters and vocalizing marine mammals to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives and support Marine Renewable Energy. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.
Eisenhauer, Philipp; Heckman, James J.; Mosso, Stefano
2015-01-01
We compare the performance of maximum likelihood (ML) and simulated method of moments (SMM) estimation for dynamic discrete choice models. We construct and estimate a simplified dynamic structural model of education that captures some basic features of educational choices in the United States in the 1980s and early 1990s. We use estimates from our model to simulate a synthetic dataset and assess the ability of ML and SMM to recover the model parameters on this sample. We investigate the performance of alternative tuning parameters for SMM. PMID:26494926
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; Ben-Zvi, S. Y.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Farrar, G. R.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.
2005-04-01
We present the results of a search for cosmic-ray point sources at energies in excess of 4.0×1019 eV in the combined data sets recorded by the Akeno Giant Air Shower Array and High Resolution Fly's Eye stereo experiments. The analysis is based on a maximum likelihood ratio test using the probability density function for each event rather than requiring an a priori choice of a fixed angular bin size. No statistically significant clustering of events consistent with a point source is found.
Hey, Jody; Nielsen, Rasmus
2007-01-01
In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. PMID:17301231
The Equivalence of Two Methods of Parameter Estimation for the Rasch Model.
ERIC Educational Resources Information Center
Blackwood, Larry G.; Bradley, Edwin L.
1989-01-01
Two methods of estimating parameters in the Rasch model are compared. The equivalence of likelihood estimations from the model of G. J. Mellenbergh and P. Vijn (1981) and from usual unconditional maximum likelihood (UML) estimation is demonstrated. Mellenbergh and Vijn's model is a convenient method of calculating UML estimates. (SLD)
Using the β-binomial distribution to characterize forest health
S.J. Zarnoch; R.L. Anderson; R.M. Sheffield
1995-01-01
The β-binomial distribution is suggested as a model for describing and analyzing the dichotomous data obtained from programs monitoring the health of forests in the United States. Maximum likelihood estimation of the parameters is given as well as asymptotic likelihood ratio tests. The procedure is illustrated with data on dogwood anthracnose infection (caused...
Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning
ERIC Educational Resources Information Center
Li, Zhushan
2014-01-01
Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…
A Note on Three Statistical Tests in the Logistic Regression DIF Procedure
ERIC Educational Resources Information Center
Paek, Insu
2012-01-01
Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…
Contributions to the Underlying Bivariate Normal Method for Factor Analyzing Ordinal Data
ERIC Educational Resources Information Center
Xi, Nuo; Browne, Michael W.
2014-01-01
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Investigating the Impact of Uncertainty about Item Parameters on Ability Estimation
ERIC Educational Resources Information Center
Zhang, Jinming; Xie, Minge; Song, Xiaolan; Lu, Ting
2011-01-01
Asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of an examinee's ability are derived while item parameter estimators are treated as covariates measured with error. The asymptotic formulae present the amount of bias of the ability estimators due to the uncertainty of item parameter estimators.…
Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth
ERIC Educational Resources Information Center
Jeon, Minjeong
2012-01-01
Maximum likelihood (ML) estimation of generalized linear mixed models (GLMMs) is technically challenging because of the intractable likelihoods that involve high dimensional integrations over random effects. The problem is magnified when the random effects have a crossed design and thus the data cannot be reduced to small independent clusters. A…
A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...
A small cohort of Island Southeast Asian women founded Madagascar.
Cox, Murray P; Nelson, Michael G; Tumonggor, Meryanne K; Ricaut, François-X; Sudoyo, Herawati
2012-07-22
The settlement of Madagascar is one of the most unusual, and least understood, episodes in human prehistory. Madagascar was one of the last landmasses to be reached by people, and despite the island's location just off the east coast of Africa, evidence from genetics, language and culture all attests that it was settled jointly by Africans, and more surprisingly, Indonesians. Nevertheless, extremely little is known about the settlement process itself. Here, we report broad geographical screening of Malagasy and Indonesian genetic variation, from which we infer a statistically robust coalescent model of the island's initial settlement. Maximum-likelihood estimates favour a scenario in which Madagascar was settled approximately 1200 years ago by a very small group of women (approx. 30), most of Indonesian descent (approx. 93%). This highly restricted founding population raises the possibility that Madagascar was settled not as a large-scale planned colonization event from Indonesia, but rather through a small, perhaps even unintended, transoceanic crossing.
Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields
NASA Astrophysics Data System (ADS)
Meyer, Manuel; Conrad, Jan; Dickinson, Hugh
2016-08-01
Very high energy (VHE; energy E ≳ 100 GeV) γ-rays originating from extragalactic sources undergo pair production with low-energy photons of background radiation fields. These pairs can inverse-Compton-scatter background photons, initiating an electromagnetic cascade. The spatial and temporal structure of this secondary γ-ray signal is altered as the {e}+{e}- pairs are deflected in an intergalactic magnetic field (IGMF). We investigate how VHE observations with the future Cherenkov Telescope Array, with its high angular resolution and broad energy range, can potentially probe the IGMF. We identify promising sources and simulate γ-ray spectra over a wide range of values of the IGMF strength and coherence length using the publicly available ELMAG Monte Carlo code. Combining simulated observations in a joint likelihood approach, we find that current limits on the IGMF can be significantly improved. The projected sensitivity depends strongly on the time a source has been γ-ray active and on the emitted maximum γ-ray energy.
Back to Normal! Gaussianizing posterior distributions for cosmological probes
NASA Astrophysics Data System (ADS)
Schuhmann, Robert L.; Joachimi, Benjamin; Peiris, Hiranya V.
2014-05-01
We present a method to map multivariate non-Gaussian posterior probability densities into Gaussian ones via nonlinear Box-Cox transformations, and generalizations thereof. This is analogous to the search for normal parameters in the CMB, but can in principle be applied to any probability density that is continuous and unimodal. The search for the optimally Gaussianizing transformation amongst the Box-Cox family is performed via a maximum likelihood formalism. We can judge the quality of the found transformation a posteriori: qualitatively via statistical tests of Gaussianity, and more illustratively by how well it reproduces the credible regions. The method permits an analytical reconstruction of the posterior from a sample, e.g. a Markov chain, and simplifies the subsequent joint analysis with other experiments. Furthermore, it permits the characterization of a non-Gaussian posterior in a compact and efficient way. The expression for the non-Gaussian posterior can be employed to find analytic formulae for the Bayesian evidence, and consequently be used for model comparison.
A small cohort of Island Southeast Asian women founded Madagascar
Cox, Murray P.; Nelson, Michael G.; Tumonggor, Meryanne K.; Ricaut, François-X.; Sudoyo, Herawati
2012-01-01
The settlement of Madagascar is one of the most unusual, and least understood, episodes in human prehistory. Madagascar was one of the last landmasses to be reached by people, and despite the island's location just off the east coast of Africa, evidence from genetics, language and culture all attests that it was settled jointly by Africans, and more surprisingly, Indonesians. Nevertheless, extremely little is known about the settlement process itself. Here, we report broad geographical screening of Malagasy and Indonesian genetic variation, from which we infer a statistically robust coalescent model of the island's initial settlement. Maximum-likelihood estimates favour a scenario in which Madagascar was settled approximately 1200 years ago by a very small group of women (approx. 30), most of Indonesian descent (approx. 93%). This highly restricted founding population raises the possibility that Madagascar was settled not as a large-scale planned colonization event from Indonesia, but rather through a small, perhaps even unintended, transoceanic crossing. PMID:22438500
Multivariate longitudinal data analysis with censored and intermittent missing responses.
Lin, Tsung-I; Lachos, Victor H; Wang, Wan-Lun
2018-05-08
The multivariate linear mixed model (MLMM) has emerged as an important analytical tool for longitudinal data with multiple outcomes. However, the analysis of multivariate longitudinal data could be complicated by the presence of censored measurements because of a detection limit of the assay in combination with unavoidable missing values arising when subjects miss some of their scheduled visits intermittently. This paper presents a generalization of the MLMM approach, called the MLMM-CM, for a joint analysis of the multivariate longitudinal data with censored and intermittent missing responses. A computationally feasible expectation maximization-based procedure is developed to carry out maximum likelihood estimation within the MLMM-CM framework. Moreover, the asymptotic standard errors of fixed effects are explicitly obtained via the information-based method. We illustrate our methodology by using simulated data and a case study from an AIDS clinical trial. Experimental results reveal that the proposed method is able to provide more satisfactory performance as compared with the traditional MLMM approach. Copyright © 2018 John Wiley & Sons, Ltd.
Schmitter, Marc; Kress, Bodo; Leckel, Michael; Henschel, Volkmar; Ohlmann, Brigitte; Rammelsberg, Peter
2008-06-01
This hypothesis-generating study was performed to determine which items in the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) and additional diagnostic tests have the best predictive accuracy for joint-related diagnoses. One hundred forty-nine TMD patients and 43 symptom-free subjects were examined in clinical examinations and with magnetic resonance imaging (MRI). The importance of each variable of the clinical examination for correct joint-related diagnosis was assessed by using MRI diagnoses. For this purpose, "random forest" statistical software (based on classification trees) was used. Maximum unassisted jaw opening, maximum assisted jaw opening, history of locked jaw, joint sound with and without compression, joint pain, facial pain, pain on palpation of the lateral pterygoid area, and overjet proved suitable for distinguishing between subtypes of joint-related TMD. Measurement of excursion, protrusion, and midline deviation were less important. The validity of clinical TMD examination procedures can be enhanced by using the 16 variables of greatest importance identified in this study. In addition to other variables, maximum unassisted and assisted opening and a history of locked jaw were important when assessing the status of the TMJ.
Structural analysis of three space crane articulated-truss joint concepts
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Sutter, Thomas R.
1992-01-01
Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pražnikar, Jure; University of Primorska,; Turk, Dušan, E-mail: dusan.turk@ijs.si
2014-12-01
The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. Theymore » utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.« less
Marginal Maximum A Posteriori Item Parameter Estimation for the Generalized Graded Unfolding Model
ERIC Educational Resources Information Center
Roberts, James S.; Thompson, Vanessa M.
2011-01-01
A marginal maximum a posteriori (MMAP) procedure was implemented to estimate item parameters in the generalized graded unfolding model (GGUM). Estimates from the MMAP method were compared with those derived from marginal maximum likelihood (MML) and Markov chain Monte Carlo (MCMC) procedures in a recovery simulation that varied sample size,…
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures.
Theobald, Douglas L; Wuttke, Deborah S
2006-09-01
THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. ANSI C source code and selected binaries for various computing platforms are available under the GNU open source license from http://monkshood.colorado.edu/theseus/ or http://www.theseus3d.org.
Kamneva, Olga K; Rosenberg, Noah A
2017-01-01
Hybridization events generate reticulate species relationships, giving rise to species networks rather than species trees. We report a comparative study of consensus, maximum parsimony, and maximum likelihood methods of species network reconstruction using gene trees simulated assuming a known species history. We evaluate the role of the divergence time between species involved in a hybridization event, the relative contributions of the hybridizing species, and the error in gene tree estimation. When gene tree discordance is mostly due to hybridization and not due to incomplete lineage sorting (ILS), most of the methods can detect even highly skewed hybridization events between highly divergent species. For recent divergences between hybridizing species, when the influence of ILS is sufficiently high, likelihood methods outperform parsimony and consensus methods, which erroneously identify extra hybridizations. The more sophisticated likelihood methods, however, are affected by gene tree errors to a greater extent than are consensus and parsimony. PMID:28469378
Free energy reconstruction from steered dynamics without post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin
2010-09-20
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less
Master teachers' responses to twenty literacy and science/mathematics practices in deaf education.
Easterbrooks, Susan R; Stephenson, Brenda; Mertens, Donna
2006-01-01
Under a grant to improve outcomes for students who are deaf or hard of hearing awarded to the Association of College Educators--Deaf/Hard of Hearing, a team identified content that all teachers of students who are deaf and hard of hearing must understand and be able to teach. Also identified were 20 practices associated with content standards (10 each, literacy and science/mathematics). Thirty-seven master teachers identified by grant agents rated the practices on a Likert-type scale indicating the maximum benefit of each practice and maximum likelihood that they would use the practice, yielding a likelihood-impact analysis. The teachers showed strong agreement on the benefits and likelihood of use of the rated practices. Concerns about implementation of many of the practices related to time constraints and mixed-ability classrooms were themes of the reviews. Actions for teacher preparation programs were recommended.
Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent; Anisimova, Maria; Hordijk, Wim; Gascuel, Olivier
2010-05-01
PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
Education and black-white interracial marriage.
Gullickson, Aaron
2006-11-01
This article examines competing theoretical claims regarding how an individual's education will affect his or her likelihood of interracial marriage. I demonstrate that prior models of interracial marriage have failed to adequately distinguish the joint and marginal effects of education on interracial marriage and present a model capable of distinguishing these effects. I test this model on black-white interracial marriages using 1980, 1990, and 2000 U.S. census data. The results reveal partial support for status exchange theory within black male-white female unions and strong isolation of lower-class blacks from the interracial marriage market. Structural assimilation theory is not supported because the educational attainment of whites is not related in any consistent fashion to the likelihood of interracial marriage. The strong isolation of lower-class blacks from the interracial marriage market has gone unnoticed in prior research because of the failure of prior methods to distinguish joint and marginal effects.
Maximum-likelihood estimation of parameterized wavefronts from multifocal data
Sakamoto, Julia A.; Barrett, Harrison H.
2012-01-01
A method for determining the pupil phase distribution of an optical system is demonstrated. Coefficients in a wavefront expansion were estimated using likelihood methods, where the data consisted of multiple irradiance patterns near focus. Proof-of-principle results were obtained in both simulation and experiment. Large-aberration wavefronts were handled in the numerical study. Experimentally, we discuss the handling of nuisance parameters. Fisher information matrices, Cramér-Rao bounds, and likelihood surfaces are examined. ML estimates were obtained by simulated annealing to deal with numerous local extrema in the likelihood function. Rapid processing techniques were employed to reduce the computational time. PMID:22772282
Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower
NASA Astrophysics Data System (ADS)
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.
2016-03-01
Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.
NASA Astrophysics Data System (ADS)
Bargaoui, Zoubeida Kebaili; Bardossy, Andràs
2015-10-01
The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989-July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler-Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.
Wang, Chaolong; Schroeder, Kari B.; Rosenberg, Noah A.
2012-01-01
Allelic dropout is a commonly observed source of missing data in microsatellite genotypes, in which one or both allelic copies at a locus fail to be amplified by the polymerase chain reaction. Especially for samples with poor DNA quality, this problem causes a downward bias in estimates of observed heterozygosity and an upward bias in estimates of inbreeding, owing to mistaken classifications of heterozygotes as homozygotes when one of the two copies drops out. One general approach for avoiding allelic dropout involves repeated genotyping of homozygous loci to minimize the effects of experimental error. Existing computational alternatives often require replicate genotyping as well. These approaches, however, are costly and are suitable only when enough DNA is available for repeated genotyping. In this study, we propose a maximum-likelihood approach together with an expectation-maximization algorithm to jointly estimate allelic dropout rates and allele frequencies when only one set of nonreplicated genotypes is available. Our method considers estimates of allelic dropout caused by both sample-specific factors and locus-specific factors, and it allows for deviation from Hardy–Weinberg equilibrium owing to inbreeding. Using the estimated parameters, we correct the bias in the estimation of observed heterozygosity through the use of multiple imputations of alleles in cases where dropout might have occurred. With simulated data, we show that our method can (1) effectively reproduce patterns of missing data and heterozygosity observed in real data; (2) correctly estimate model parameters, including sample-specific dropout rates, locus-specific dropout rates, and the inbreeding coefficient; and (3) successfully correct the downward bias in estimating the observed heterozygosity. We find that our method is fairly robust to violations of model assumptions caused by population structure and by genotyping errors from sources other than allelic dropout. Because the data sets imputed under our model can be investigated in additional subsequent analyses, our method will be useful for preparing data for applications in diverse contexts in population genetics and molecular ecology. PMID:22851645
Johnson, Rebecca N; Agapow, Paul-Michael; Crozier, Ross H
2003-11-01
The ant subfamily Formicinae is a large assemblage (2458 species (J. Nat. Hist. 29 (1995) 1037), including species that weave leaf nests together with larval silk and in which the metapleural gland-the ancestrally defining ant character-has been secondarily lost. We used sequences from two mitochondrial genes (cytochrome b and cytochrome oxidase 2) from 18 formicine and 4 outgroup taxa to derive a robust phylogeny, employing a search for tree islands using 10000 randomly constructed trees as starting points and deriving a maximum likelihood consensus tree from the ML tree and those not significantly different from it. Non-parametric bootstrapping showed that the ML consensus tree fit the data significantly better than three scenarios based on morphology, with that of Bolton (Identification Guide to the Ant Genera of the World, Harvard University Press, Cambridge, MA) being the best among these alternative trees. Trait mapping showed that weaving had arisen at least four times and possibly been lost once. A maximum likelihood analysis showed that loss of the metapleural gland is significantly associated with the weaver life-pattern. The graph of the frequencies with which trees were discovered versus their likelihood indicates that trees with high likelihoods have much larger basins of attraction than those with lower likelihoods. While this result indicates that single searches are more likely to find high- than low-likelihood tree islands, it also indicates that searching only for the single best tree may lose important information.
Occupancy Modeling Species-Environment Relationships with Non-ignorable Survey Designs.
Irvine, Kathryn M; Rodhouse, Thomas J; Wright, Wilson J; Olsen, Anthony R
2018-05-26
Statistical models supporting inferences about species occurrence patterns in relation to environmental gradients are fundamental to ecology and conservation biology. A common implicit assumption is that the sampling design is ignorable and does not need to be formally accounted for in analyses. The analyst assumes data are representative of the desired population and statistical modeling proceeds. However, if datasets from probability and non-probability surveys are combined or unequal selection probabilities are used, the design may be non ignorable. We outline the use of pseudo-maximum likelihood estimation for site-occupancy models to account for such non-ignorable survey designs. This estimation method accounts for the survey design by properly weighting the pseudo-likelihood equation. In our empirical example, legacy and newer randomly selected locations were surveyed for bats to bridge a historic statewide effort with an ongoing nationwide program. We provide a worked example using bat acoustic detection/non-detection data and show how analysts can diagnose whether their design is ignorable. Using simulations we assessed whether our approach is viable for modeling datasets composed of sites contributed outside of a probability design Pseudo-maximum likelihood estimates differed from the usual maximum likelihood occu31 pancy estimates for some bat species. Using simulations we show the maximum likelihood estimator of species-environment relationships with non-ignorable sampling designs was biased, whereas the pseudo-likelihood estimator was design-unbiased. However, in our simulation study the designs composed of a large proportion of legacy or non-probability sites resulted in estimation issues for standard errors. These issues were likely a result of highly variable weights confounded by small sample sizes (5% or 10% sampling intensity and 4 revisits). Aggregating datasets from multiple sources logically supports larger sample sizes and potentially increases spatial extents for statistical inferences. Our results suggest that ignoring the mechanism for how locations were selected for data collection (e.g., the sampling design) could result in erroneous model-based conclusions. Therefore, in order to ensure robust and defensible recommendations for evidence-based conservation decision-making, the survey design information in addition to the data themselves must be available for analysts. Details for constructing the weights used in estimation and code for implementation are provided. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, Jiahui; Yu, Qiqing
2016-01-01
Dinse (Biometrics, 38:417-431, 1982) provides a special type of right-censored and masked competing risks data and proposes a non-parametric maximum likelihood estimator (NPMLE) and a pseudo MLE of the joint distribution function [Formula: see text] with such data. However, their asymptotic properties have not been studied so far. Under the extention of either the conditional masking probability (CMP) model or the random partition masking (RPM) model (Yu and Li, J Nonparametr Stat 24:753-764, 2012), we show that (1) Dinse's estimators are consistent if [Formula: see text] takes on finitely many values and each point in the support set of [Formula: see text] can be observed; (2) if the failure time is continuous, the NPMLE is not uniquely determined, and the standard approach (which puts weights only on one element in each observed set) leads to an inconsistent NPMLE; (3) in general, Dinse's estimators are not consistent even under the discrete assumption; (4) we construct a consistent NPMLE. The consistency is given under a new model called dependent masking and right-censoring model. The CMP model and the RPM model are indeed special cases of the new model. We compare our estimator to Dinse's estimators through simulation and real data. Simulation study indicates that the consistent NPMLE is a good approximation to the underlying distribution for moderate sample sizes.
Blind Compensation of I/Q Impairments in Wireless Transceivers
Aziz, Mohsin; Ghannouchi, Fadhel M.; Helaoui, Mohamed
2017-01-01
The majority of techniques that deal with the mitigation of in-phase and quadrature-phase (I/Q) imbalance at the transmitter (pre-compensation) require long training sequences, reducing the throughput of the system. These techniques also require a feedback path, which adds more complexity and cost to the transmitter architecture. Blind estimation techniques are attractive for avoiding the use of long training sequences. In this paper, we propose a blind frequency-independent I/Q imbalance compensation method based on the maximum likelihood (ML) estimation of the imbalance parameters of a transceiver. A closed-form joint probability density function (PDF) for the imbalanced I and Q signals is derived and validated. ML estimation is then used to estimate the imbalance parameters using the derived joint PDF of the output I and Q signals. Various figures of merit have been used to evaluate the efficacy of the proposed approach using extensive computer simulations and measurements. Additionally, the bit error rate curves show the effectiveness of the proposed method in the presence of the wireless channel and Additive White Gaussian Noise. Real-world experimental results show an image rejection of greater than 30 dB as compared to the uncompensated system. This method has also been found to be robust in the presence of practical system impairments, such as time and phase delay mismatches. PMID:29257081
DSN telemetry system performance using a maximum likelihood convolutional decoder
NASA Technical Reports Server (NTRS)
Benjauthrit, B.; Kemp, R. P.
1977-01-01
Results are described of telemetry system performance testing using DSN equipment and a Maximum Likelihood Convolutional Decoder (MCD) for code rates 1/2 and 1/3, constraint length 7 and special test software. The test results confirm the superiority of the rate 1/3 over that of the rate 1/2. The overall system performance losses determined at the output of the Symbol Synchronizer Assembly are less than 0.5 db for both code rates. Comparison of the performance is also made with existing mathematical models. Error statistics of the decoded data are examined. The MCD operational threshold is found to be about 1.96 db.
Pascazio, Vito; Schirinzi, Gilda
2002-01-01
In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.
Soft decoding a self-dual (48, 24; 12) code
NASA Technical Reports Server (NTRS)
Solomon, G.
1993-01-01
A self-dual (48,24;12) code comes from restricting a binary cyclic (63,18;36) code to a 6 x 7 matrix, adding an eighth all-zero column, and then adjoining six dimensions to this extended 6 x 8 matrix. These six dimensions are generated by linear combinations of row permutations of a 6 x 8 matrix of weight 12, whose sums of rows and columns add to one. A soft decoding using these properties and approximating maximum likelihood is presented here. This is preliminary to a possible soft decoding of the box (72,36;15) code that promises a 7.7-dB theoretical coding under maximum likelihood.
Effects of time-shifted data on flight determined stability and control derivatives
NASA Technical Reports Server (NTRS)
Steers, S. T.; Iliff, K. W.
1975-01-01
Flight data were shifted in time by various increments to assess the effects of time shifts on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there was a considerable time shift in the data. Time shifts degraded the estimates of the derivatives, but the degradation was in a consistent rather than a random pattern. Time shifts in the control variables caused the most degradation, and the lateral-directional rotary derivatives were affected the most by time shifts in any variable.
Minimum distance classification in remote sensing
NASA Technical Reports Server (NTRS)
Wacker, A. G.; Landgrebe, D. A.
1972-01-01
The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.
Maximum likelihood conjoint measurement of lightness and chroma.
Rogers, Marie; Knoblauch, Kenneth; Franklin, Anna
2016-03-01
Color varies along dimensions of lightness, hue, and chroma. We used maximum likelihood conjoint measurement to investigate how lightness and chroma influence color judgments. Observers judged lightness and chroma of stimuli that varied in both dimensions in a paired-comparison task. We modeled how changes in one dimension influenced judgment of the other. An additive model best fit the data in all conditions except for judgment of red chroma where there was a small but significant interaction. Lightness negatively contributed to perception of chroma for red, blue, and green hues but not for yellow. The method permits quantification of lightness and chroma contributions to color appearance.
Mendoza, Maria C.B.; Burns, Trudy L.; Jones, Michael P.
2009-01-01
Objectives Case-deletion diagnostic methods are tools that allow identification of influential observations that may affect parameter estimates and model fitting conclusions. The goal of this paper was to develop two case-deletion diagnostics, the exact case deletion (ECD) and the empirical influence function (EIF), for detecting outliers that can affect results of sib-pair maximum likelihood quantitative trait locus (QTL) linkage analysis. Methods Subroutines to compute the ECD and EIF were incorporated into the maximum likelihood QTL variance estimation components of the linkage analysis program MAPMAKER/SIBS. Performance of the diagnostics was compared in simulation studies that evaluated the proportion of outliers correctly identified (sensitivity), and the proportion of non-outliers correctly identified (specificity). Results Simulations involving nuclear family data sets with one outlier showed EIF sensitivities approximated ECD sensitivities well for outlier-affected parameters. Sensitivities were high, indicating the outlier was identified a high proportion of the time. Simulations also showed the enormous computational time advantage of the EIF. Diagnostics applied to body mass index in nuclear families detected observations influential on the lod score and model parameter estimates. Conclusions The EIF is a practical diagnostic tool that has the advantages of high sensitivity and quick computation. PMID:19172086
Williams, M S; Ebel, E D; Cao, Y
2013-01-01
The fitting of statistical distributions to microbial sampling data is a common application in quantitative microbiology and risk assessment applications. An underlying assumption of most fitting techniques is that data are collected with simple random sampling, which is often times not the case. This study develops a weighted maximum likelihood estimation framework that is appropriate for microbiological samples that are collected with unequal probabilities of selection. A weighted maximum likelihood estimation framework is proposed for microbiological samples that are collected with unequal probabilities of selection. Two examples, based on the collection of food samples during processing, are provided to demonstrate the method and highlight the magnitude of biases in the maximum likelihood estimator when data are inappropriately treated as a simple random sample. Failure to properly weight samples to account for how data are collected can introduce substantial biases into inferences drawn from the data. The proposed methodology will reduce or eliminate an important source of bias in inferences drawn from the analysis of microbial data. This will also make comparisons between studies and the combination of results from different studies more reliable, which is important for risk assessment applications. © 2012 No claim to US Government works.
Stamatakis, Alexandros
2006-11-01
RAxML-VI-HPC (randomized axelerated maximum likelihood for high performance computing) is a sequential and parallel program for inference of large phylogenies with maximum likelihood (ML). Low-level technical optimizations, a modification of the search algorithm, and the use of the GTR+CAT approximation as replacement for GTR+Gamma yield a program that is between 2.7 and 52 times faster than the previous version of RAxML. A large-scale performance comparison with GARLI, PHYML, IQPNNI and MrBayes on real data containing 1000 up to 6722 taxa shows that RAxML requires at least 5.6 times less main memory and yields better trees in similar times than the best competing program (GARLI) on datasets up to 2500 taxa. On datasets > or =4000 taxa it also runs 2-3 times faster than GARLI. RAxML has been parallelized with MPI to conduct parallel multiple bootstraps and inferences on distinct starting trees. The program has been used to compute ML trees on two of the largest alignments to date containing 25,057 (1463 bp) and 2182 (51,089 bp) taxa, respectively. icwww.epfl.ch/~stamatak
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level
Savalei, Victoria; Rhemtulla, Mijke
2017-01-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data—that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study. PMID:29276371
NASA Technical Reports Server (NTRS)
Zhuang, Xin
1990-01-01
LANDSAT Thematic Mapper (TM) data for March 23, 1987 with accompanying ground truth data for the study area in Miami County, IN were used to determine crop residue type and class. Principle components and spectral ratioing transformations were applied to the LANDSAT TM data. One graphic information system (GIS) layer of land ownership was added to each original image as the eighth band of data in an attempt to improve classification. Maximum likelihood, minimum distance, and neural networks were used to classify the original, transformed, and GIS-enhanced remotely sensed data. Crop residues could be separated from one another and from bare soil and other biomass. Two types of crop residue and four classes were identified from each LANDSAT TM image. The maximum likelihood classifier performed the best classification for each original image without need of any transformation. The neural network classifier was able to improve the classification by incorporating a GIS-layer of land ownership as an eighth band of data. The maximum likelihood classifier was unable to consider this eighth band of data and thus, its results could not be improved by its consideration.
Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.
Savalei, Victoria; Rhemtulla, Mijke
2017-08-01
In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S; Warren, Charles David; ERDMAN III, DONALD L
Due to its increased use in the automotive and aerospace industries, joining of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) to metals demands enhanced surface preparation and control of surface morphology prior to joining. In this study, surfaces of both composite and aluminum were prepared for joining using a new laser based technique, in which the laser interference power profile was created by splitting the beam and guiding those beams to the sample surface by overlapping each other with defined angles to each other. Results were presented for the overlap shear testing of single-lap joints made with Al 5182 and CFPCmore » specimens whose surfaces prepared by (a) surface abrasion and solvent cleaning; and (b) laser-interference structured surfaces by rastering with a 4 mm laser beam at approximately 3.5 W power. CFPC specimens of T700S carbon fiber, Prepreg T70 epoxy, 4 or 5 ply thick, 0/90o plaques were used. Adhesive DP810 was used to bond Al and CFPC. The bondline was 0.25mm and the bond length was consistent among all joints produced. First, the effect of the laser speed on the joint performance was evaluated by laser-interference structure Al and CFPC surfaces with a beam angle of 3o and laser beam speeds of 3, 5, and 10 mm/s. For this sensitivity study, 3 joint specimens were used per each joint type. Based on the results for minimum, maximum, and mean values for the shear lap strength and maximum load for all the 9 joint types, two joint types were selected for further evaluations. Six additional joint specimens were prepared for these two joint types in order to obtain better statistics and the shear test data was presented for the range, mean, and standard deviation. The results for the single-lap shear tests obtained for six joint specimens, indicate that the shear lap strength, maximum load, and displacement at maximum load for those joints made with laser-interference structured surfaces were increased by approximately 14.8%, 16%, and 100%, respectively over those measured for the baseline joints.« less
DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K
2012-04-05
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.
Maximum-Entropy Inference with a Programmable Annealer
Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.
2016-01-01
Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311
Phylogenetically marking the limits of the genus Fusarium for post-Article 59 usage
USDA-ARS?s Scientific Manuscript database
Fusarium (Hypocreales, Nectriaceae) is one of the most important and systematically challenging groups of mycotoxigenic, plant pathogenic, and human pathogenic fungi. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial nucleotide sequences of genes encod...
Hühn, M
1995-05-01
Some approaches to molecular marker-assisted linkage detection for a dominant disease-resistance trait based on a segregating F2 population are discussed. Analysis of two-point linkage is carried out by the traditional measure of maximum lod score. It depends on (1) the maximum-likelihood estimate of the recombination fraction between the marker and the disease-resistance gene locus, (2) the observed absolute frequencies, and (3) the unknown number of tested individuals. If one replaces the absolute frequencies by expressions depending on the unknown sample size and the maximum-likelihood estimate of recombination value, the conventional rule for significant linkage (maximum lod score exceeds a given linkage threshold) can be resolved for the sample size. For each sub-population used for linkage analysis [susceptible (= recessive) individuals, resistant (= dominant) individuals, complete F2] this approach gives a lower bound for the necessary number of individuals required for the detection of significant two-point linkage by the lod-score method.
Balzer, Laura; Staples, Patrick; Onnela, Jukka-Pekka; DeGruttola, Victor
2017-04-01
Several cluster-randomized trials are underway to investigate the implementation and effectiveness of a universal test-and-treat strategy on the HIV epidemic in sub-Saharan Africa. We consider nesting studies of pre-exposure prophylaxis within these trials. Pre-exposure prophylaxis is a general strategy where high-risk HIV- persons take antiretrovirals daily to reduce their risk of infection from exposure to HIV. We address how to target pre-exposure prophylaxis to high-risk groups and how to maximize power to detect the individual and combined effects of universal test-and-treat and pre-exposure prophylaxis strategies. We simulated 1000 trials, each consisting of 32 villages with 200 individuals per village. At baseline, we randomized the universal test-and-treat strategy. Then, after 3 years of follow-up, we considered four strategies for targeting pre-exposure prophylaxis: (1) all HIV- individuals who self-identify as high risk, (2) all HIV- individuals who are identified by their HIV+ partner (serodiscordant couples), (3) highly connected HIV- individuals, and (4) the HIV- contacts of a newly diagnosed HIV+ individual (a ring-based strategy). We explored two possible trial designs, and all villages were followed for a total of 7 years. For each village in a trial, we used a stochastic block model to generate bipartite (male-female) networks and simulated an agent-based epidemic process on these networks. We estimated the individual and combined intervention effects with a novel targeted maximum likelihood estimator, which used cross-validation to data-adaptively select from a pre-specified library the candidate estimator that maximized the efficiency of the analysis. The universal test-and-treat strategy reduced the 3-year cumulative HIV incidence by 4.0% on average. The impact of each pre-exposure prophylaxis strategy on the 4-year cumulative HIV incidence varied by the coverage of the universal test-and-treat strategy with lower coverage resulting in a larger impact of pre-exposure prophylaxis. Offering pre-exposure prophylaxis to serodiscordant couples resulted in the largest reductions in HIV incidence (2% reduction), and the ring-based strategy had little impact (0% reduction). The joint effect was larger than either individual effect with reductions in the 7-year incidence ranging from 4.5% to 8.8%. Targeted maximum likelihood estimation, data-adaptively adjusting for baseline covariates, substantially improved power over the unadjusted analysis, while maintaining nominal confidence interval coverage. Our simulation study suggests that nesting a pre-exposure prophylaxis study within an ongoing trial can lead to combined intervention effects greater than those of universal test-and-treat alone and can provide information about the efficacy of pre-exposure prophylaxis in the presence of high coverage of treatment for HIV+ persons.
Liu, Yali; Hong, Yuezhen; Ji, Linhong
2018-01-01
Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.
2018-01-01
Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654
Exact likelihood evaluations and foreground marginalization in low resolution WMAP data
NASA Astrophysics Data System (ADS)
Slosar, Anže; Seljak, Uroš; Makarov, Alexey
2004-06-01
The large scale anisotropies of Wilkinson Microwave Anisotropy Probe (WMAP) data have attracted a lot of attention and have been a source of controversy, with many favorite cosmological models being apparently disfavored by the power spectrum estimates at low l. All the existing analyses of theoretical models are based on approximations for the likelihood function, which are likely to be inaccurate on large scales. Here we present exact evaluations of the likelihood of the low multipoles by direct inversion of the theoretical covariance matrix for low resolution WMAP maps. We project out the unwanted galactic contaminants using the WMAP derived maps of these foregrounds. This improves over the template based foreground subtraction used in the original analysis, which can remove some of the cosmological signal and may lead to a suppression of power. As a result we find an increase in power at low multipoles. For the quadrupole the maximum likelihood values are rather uncertain and vary between 140 and 220 μK2. On the other hand, the probability distribution away from the peak is robust and, assuming a uniform prior between 0 and 2000 μK2, the probability of having the true value above 1200 μK2 (as predicted by the simplest cold dark matter model with a cosmological constant) is 10%, a factor of 2.5 higher than predicted by the WMAP likelihood code. We do not find the correlation function to be unusual beyond the low quadrupole value. We develop a fast likelihood evaluation routine that can be used instead of WMAP routines for low l values. We apply it to the Markov chain Monte Carlo analysis to compare the cosmological parameters between the two cases. The new analysis of WMAP either alone or jointly with the Sloan Digital Sky Survey (SDSS) and the Very Small Array (VSA) data reduces the evidence for running to less than 1σ, giving αs=-0.022±0.033 for the combined case. The new analysis prefers about a 1σ lower value of Ωm, a consequence of an increased integrated Sachs-Wolfe (ISW) effect contribution required by the increase in the spectrum at low l. These results suggest that the details of foreground removal and full likelihood analysis are important for parameter estimation from the WMAP data. They are robust in the sense that they do not change significantly with frequency, mask, or details of foreground template marginalization. The marginalization approach presented here is the most conservative method to remove the foregrounds and should be particularly useful in the analysis of polarization, where foreground contamination may be much more severe.
Analyzing Planck and low redshift data sets with advanced statistical methods
NASA Astrophysics Data System (ADS)
Eifler, Tim
The recent ESA/NASA Planck mission has provided a key data set to constrain cosmology that is most sensitive to physics of the early Universe, such as inflation and primordial NonGaussianity (Planck 2015 results XIII). In combination with cosmological probes of the LargeScale Structure (LSS), the Planck data set is a powerful source of information to investigate late time phenomena (Planck 2015 results XIV), e.g. the accelerated expansion of the Universe, the impact of baryonic physics on the growth of structure, and the alignment of galaxies in their dark matter halos. It is the main objective of this proposal to re-analyze the archival Planck data, 1) with different, more recently developed statistical methods for cosmological parameter inference, and 2) to combine Planck and ground-based observations in an innovative way. We will make the corresponding analysis framework publicly available and believe that it will set a new standard for future CMB-LSS analyses. Advanced statistical methods, such as the Gibbs sampler (Jewell et al 2004, Wandelt et al 2004) have been critical in the analysis of Planck data. More recently, Approximate Bayesian Computation (ABC, see Weyant et al 2012, Akeret et al 2015, Ishida et al 2015, for cosmological applications) has matured to an interesting tool in cosmological likelihood analyses. It circumvents several assumptions that enter the standard Planck (and most LSS) likelihood analyses, most importantly, the assumption that the functional form of the likelihood of the CMB observables is a multivariate Gaussian. Beyond applying new statistical methods to Planck data in order to cross-check and validate existing constraints, we plan to combine Planck and DES data in a new and innovative way and run multi-probe likelihood analyses of CMB and LSS observables. The complexity of multiprobe likelihood analyses scale (non-linearly) with the level of correlations amongst the individual probes that are included. For the multi-probe analysis proposed here we will use the existing CosmoLike software, a computationally efficient analysis framework that is unique in its integrated ansatz of jointly analyzing probes of large-scale structure (LSS) of the Universe. We plan to combine CosmoLike with publicly available CMB analysis software (Camb, CLASS) to include modeling capabilities of CMB temperature, polarization, and lensing measurements. The resulting analysis framework will be capable to independently and jointly analyze data from the CMB and from various probes of the LSS of the Universe. After completion we will utilize this framework to check for consistency amongst the individual probes and subsequently run a joint likelihood analysis of probes that are not in tension. The inclusion of Planck information in a joint likelihood analysis substantially reduces DES uncertainties in cosmological parameters, and allows for unprecedented constraints on parameters that describe astrophysics. In their recent review Observational Probes of Cosmic Acceleration (Weinberg et al 2013) the authors emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. The work we propose follows exactly this idea: 1) cross-checking existing Planck results with alternative methods in the data analysis, 2) checking for consistency of Planck and DES data, and 3) running a joint analysis to constrain cosmology and astrophysics. It is now expedient to develop and refine multi-probe analysis strategies that allow the comparison and inclusion of information from disparate probes to optimally obtain cosmology and astrophysics. Analyzing Planck and DES data poses an ideal opportunity for this purpose and corresponding lessons will be of great value for the science preparation of Euclid and WFIRST.
Poisson point process modeling for polyphonic music transcription.
Peeling, Paul; Li, Chung-fai; Godsill, Simon
2007-04-01
Peaks detected in the frequency domain spectrum of a musical chord are modeled as realizations of a nonhomogeneous Poisson point process. When several notes are superimposed to make a chord, the processes for individual notes combine to give another Poisson process, whose likelihood is easily computable. This avoids a data association step linking individual harmonics explicitly with detected peaks in the spectrum. The likelihood function is ideal for Bayesian inference about the unknown note frequencies in a chord. Here, maximum likelihood estimation of fundamental frequencies shows very promising performance on real polyphonic piano music recordings.
NASA Astrophysics Data System (ADS)
De Santis, Alberto; Dellepiane, Umberto; Lucidi, Stefano
2012-11-01
In this paper we investigate the estimation problem for a model of the commodity prices. This model is a stochastic state space dynamical model and the problem unknowns are the state variables and the system parameters. Data are represented by the commodity spot prices, very seldom time series of Futures contracts are available for free. Both the system joint likelihood function (state variables and parameters) and the system marginal likelihood (the state variables are eliminated) function are addressed.
NASA Astrophysics Data System (ADS)
Wéber, Zoltán
2018-06-01
Estimating the mechanisms of small (M < 4) earthquakes is quite challenging. A common scenario is that neither the available polarity data alone nor the well predictable near-station seismograms alone are sufficient to obtain reliable focal mechanism solutions for weak events. To handle this situation we introduce here a new method that jointly inverts waveforms and polarity data following a probabilistic approach. The procedure called joint waveform and polarity (JOWAPO) inversion maps the posterior probability density of the model parameters and estimates the maximum likelihood double-couple mechanism, the optimal source depth and the scalar seismic moment of the investigated event. The uncertainties of the solution are described by confidence regions. We have validated the method on two earthquakes for which well-determined focal mechanisms are available. The validation tests show that including waveforms in the inversion considerably reduces the uncertainties of the usually poorly constrained polarity solutions. The JOWAPO method performs best when it applies waveforms from at least two seismic stations. If the number of the polarity data is large enough, even single-station JOWAPO inversion can produce usable solutions. When only a few polarities are available, however, single-station inversion may result in biased mechanisms. In this case some caution must be taken when interpreting the results. We have successfully applied the JOWAPO method to an earthquake in North Hungary, whose mechanism could not be estimated by long-period waveform inversion. Using 17 P-wave polarities and waveforms at two nearby stations, the JOWAPO method produced a well-constrained focal mechanism. The solution is very similar to those obtained previously for four other events that occurred in the same earthquake sequence. The analysed event has a strike-slip mechanism with a P axis oriented approximately along an NE-SW direction.
Cosmological parameters from a re-analysis of the WMAP 7 year low-resolution maps
NASA Astrophysics Data System (ADS)
Finelli, F.; De Rosa, A.; Gruppuso, A.; Paoletti, D.
2013-06-01
Cosmological parameters from Wilkinson Microwave Anisotropy Probe (WMAP) 7 year data are re-analysed by substituting a pixel-based likelihood estimator to the one delivered publicly by the WMAP team. Our pixel-based estimator handles exactly intensity and polarization in a joint manner, allowing us to use low-resolution maps and noise covariance matrices in T, Q, U at the same resolution, which in this work is 3.6°. We describe the features and the performances of the code implementing our pixel-based likelihood estimator. We perform a battery of tests on the application of our pixel-based likelihood routine to WMAP publicly available low-resolution foreground-cleaned products, in combination with the WMAP high-ℓ likelihood, reporting the differences on cosmological parameters evaluated by the full WMAP likelihood public package. The differences are not only due to the treatment of polarization, but also to the marginalization over monopole and dipole uncertainties present in the WMAP pixel likelihood code for temperature. The credible central value for the cosmological parameters change below the 1σ level with respect to the evaluation by the full WMAP 7 year likelihood code, with the largest difference in a shift to smaller values of the scalar spectral index nS.
DeVore, Matthew S.; Gull, Stephen F.; Johnson, Carey K.
2012-01-01
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions. PMID:22338694
Exploiting Non-sequence Data in Dynamic Model Learning
2013-10-01
For our experiments here and in Section 3.5, we implement the proposed algorithms in MATLAB and use the maximum directed spanning tree solver...embarrassingly parallelizable, whereas PM’s maximum directed spanning tree procedure is harder to parallelize. In this experiment, our MATLAB ...some estimation problems, this approach is able to give unique and consistent estimates while the maximum- likelihood method gets entangled in
Effect of Sacroiliac Joint Manipulation on Selected Gait Parameters in Healthy Subjects.
Wójtowicz, Sebastian; Sajko, Igor; Hadamus, Anna; Mosiołek, Anna; Białoszewski, Dariusz
2017-08-31
The sacroiliac joints have complicated biomechanics. While the movements in the joints are small, they exert a significant effect on gait. This study aimed to assess how sacroiliac joint manipulation influences selected gait parameters. The study enrolled 57 healthy subjects. The experimental group consisted of 26 participants diagnosed with dysfunction of one sacroiliac joint. The control group was composed of 31 persons. All subjects from the experimental group underwent sacroiliac joint manipulation. The experimental group showed significant lengthening of the step on both sides and the stride length in this group increased as well. Moreover, the duration of the stride increased (p=0.000826). The maximum midfoot pressure was higher and maximum heel pressure decreased. The differences were statistically significant. 1. Subclinical dysfunctions of the sacroiliac joints may cause functional gait disturbance. 2. Manipulation of the iliosacral joint exerts a significant effect on gait parameters, which may lead to improved gait economy and effec-tiveness. 3. Following manipulation of one iliosacral joint, altered gait parameters are noted on both the manipulated side and the contralateral side, which may translate into improved quality of locomotion.
Schoenfeld, Elizabeth A.; Loving, Timothy J.
2012-01-01
We examined how daters’ levels of relationship dependence interact with men’s and women’s degree of accommodation during a likelihood of marriage discussion to predict cortisol levels at the conclusion of the discussion. Upon arriving at the laboratory, couple members were separated and asked to graph their perceived likelihood of one day marrying each other. Couples were reunited and instructed to create a joint graph depicting their agreed-upon chance of marriage. For the majority of couples, negotiating their likelihood of marriage required one or both partners to accommodate each other’s presumed likelihood of marriage. Multilevel analyses revealed a significant Dependence x Accommodation x Sex interaction. For women who increased their likelihood of marriage, feelings of dependence predicted heightened levels of cortisol relative to baseline; we suggest such a response is indicative of eustress. Among men, those who accommodated by decreasing their likelihood of marriage experienced significantly lower levels of cortisol to the extent they were less dependent on their partners. Discussion focuses on why men and women show different physiological reactions in response to seemingly favorable outcomes from a relationship discussion. PMID:22801249
Schoenfeld, Elizabeth A; Loving, Timothy J
2013-06-01
We examined how daters' levels of relationship dependence interact with men's and women's degree of accommodation during a likelihood of marriage discussion to predict cortisol levels at the conclusion of the discussion. Upon arriving at the laboratory, couple members were separated and asked to graph their perceived likelihood of one day marrying each other. Couples were reunited and instructed to create a joint graph depicting their agreed-upon chance of marriage. For the majority of couples, negotiating their likelihood of marriage required one or both partners to accommodate each other's presumed likelihood of marriage. Multilevel analyses revealed a significant Dependence×Accommodation×Sex interaction. For women who increased their likelihood of marriage, feelings of dependence predicted heightened levels of cortisol relative to baseline; we suggest such a response is indicative of eustress. Among men, those who accommodated by decreasing their likelihood of marriage experienced significantly lower levels of cortisol to the extent that they were less dependent on their partners. Discussion focuses on why men and women show different physiological reactions in response to seemingly favorable outcomes from a relationship discussion. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi
2016-10-07
Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide.
Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi
2016-01-01
Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide. PMID:27713530
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Steinmetz, G. G.
1972-01-01
A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data.
Effect of sampling rate and record length on the determination of stability and control derivatives
NASA Technical Reports Server (NTRS)
Brenner, M. J.; Iliff, K. W.; Whitman, R. K.
1978-01-01
Flight data from five aircraft were used to assess the effects of sampling rate and record length reductions on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there were considerable reductions in sampling rate and/or record length. Small amplitude pulse maneuvers showed greater degradation of the derivative maneuvers than large amplitude pulse maneuvers when these reductions were made. Reducing the sampling rate was found to be more desirable than reducing the record length as a method of lessening the total computation time required without greatly degrading the quantity of the estimates.
Nonparametric probability density estimation by optimization theoretic techniques
NASA Technical Reports Server (NTRS)
Scott, D. W.
1976-01-01
Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.
Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence
NASA Technical Reports Server (NTRS)
Mark, W. D.
1981-01-01
A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.
Deterministic quantum annealing expectation-maximization algorithm
NASA Astrophysics Data System (ADS)
Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki
2017-11-01
Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.
NASA Astrophysics Data System (ADS)
Li, Yan; Wu, Mingwei; Du, Xinwei; Xu, Zhuoran; Gurusamy, Mohan; Yu, Changyuan; Kam, Pooi-Yuen
2018-02-01
A novel soft-decision-aided maximum likelihood (SDA-ML) carrier phase estimation method and its simplified version, the decision-aided and soft-decision-aided maximum likelihood (DA-SDA-ML) methods are tested in a nonlinear phase noise-dominant channel. The numerical performance results show that both the SDA-ML and DA-SDA-ML methods outperform the conventional DA-ML in systems with constant-amplitude modulation formats. In addition, modified algorithms based on constellation partitioning are proposed. With partitioning, the modified SDA-ML and DA-SDA-ML are shown to be useful for compensating the nonlinear phase noise in multi-level modulation systems.
User's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1980-01-01
A user's manual for the FORTRAN IV computer program MMLE3 is described. It is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The theory and use of the program is described. The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program.
Approximate maximum likelihood decoding of block codes
NASA Technical Reports Server (NTRS)
Greenberger, H. J.
1979-01-01
Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.
NASA Technical Reports Server (NTRS)
Ganga, Ken; Page, Lyman; Cheng, Edward; Meyer, Stephan
1994-01-01
In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.
Unweaving the joints in Entrada Sandstone, Arches National Park, Utah, U.S.A.
NASA Astrophysics Data System (ADS)
Cruikshank, Kenneth M.; Aydin, Atilla
1995-03-01
On the southwest limb of Salt Valley Anticline, Arches National Park, Utah three sets of joints are developed in the Entrada Sandstone covering an area of about 6 km 2. Within the 20 m thick Moab Member, a single joint set is is found in three distinct areas, separated by a second set of joints at a 35° angle to the first set. Joint interaction features show that the second set is younger than the first. This illustrates that joints of a single set do not have to fill the entire area across which the stresses that formed the joints were acting. The underlying Slickrock Member contains a third set of joints, which is at an angle of 5°-35° to joints in the Moab Member. The Slickrock set nucleated from the lower edges of joints of all orientations in the overlying Moab Member. Thus, the fracture pattern evolved both horizontally, within the same unit, and vertically between units. The sequence of jointing is determined by establishing the relative ages of each joint set. Each joint orientation is best interpreted as representing a direction of maximum compression, ruling out the possibility that the joints are a conjugate set. The joints, and an earlier set of deformation bands, record a 95° counterclockwise rotation of the direction of maximum compression.
Song, Hui; Peng, Yingwei; Tu, Dongsheng
2017-04-01
Motivated by the joint analysis of longitudinal quality of life data and recurrence free survival times from a cancer clinical trial, we present in this paper two approaches to jointly model the longitudinal proportional measurements, which are confined in a finite interval, and survival data. Both approaches assume a proportional hazards model for the survival times. For the longitudinal component, the first approach applies the classical linear mixed model to logit transformed responses, while the second approach directly models the responses using a simplex distribution. A semiparametric method based on a penalized joint likelihood generated by the Laplace approximation is derived to fit the joint model defined by the second approach. The proposed procedures are evaluated in a simulation study and applied to the analysis of breast cancer data motivated this research.
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopich, Irina V.
2015-01-21
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when themore » FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.« less
Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET
Gopich, Irina V.
2015-01-01
Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated. PMID:25612692
Correlation and prediction of dynamic human isolated joint strength from lean body mass
NASA Technical Reports Server (NTRS)
Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.
1992-01-01
A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.
Localized cervical facet joint kinematics under physiological and whiplash loading.
Stemper, Brian D; Yoganandan, Narayan; Gennarelli, Thomas A; Pintar, Frank A
2005-12-01
Although facet joints have been implicated in the whiplash injury mechanism, no investigators have determined the degree to which joint motions in whiplash are nonphysiological. The purpose of this investigation was to quantify the correlation between facet joint and segmental motions under physiological and whiplash loading. Human cadaveric cervical spine specimens were exercise tested under physiological extension loading, and intact human head-neck complexes were exercise tested under whiplash loading to correlate the localized component motions of the C4-5 facet joint with segmental extension. Facet joint shear and distraction kinematics demonstrated a linear correlation with segmental extension under both loading modes. Facet joints responded differently to whiplash and physiological loading, with significantly increased kinematics for the same-segmental angulation. The limitations of this study include removal of superficial musculature and the limited sample size for physiological testing. The presence of increased facet joint motions indicated that synovial joint soft-tissue components (that is, synovial membrane and capsular ligament) sustain increased distortion that may subject these tissues to a greater likelihood of injury. This finding is supported by clinical investigations in which lower cervical facet joint injury resulted in similar pain patterns due to the most commonly reported whiplash symptoms.
ERIC Educational Resources Information Center
Andersen, Erling B.
A computer program for solving the conditional likelihood equations arising in the Rasch model for questionnaires is described. The estimation method and the computational problems involved are described in a previous research report by Andersen, but a summary of those results are given in two sections of this paper. A working example is also…
Oldenburg, J; Zimmermann, R; Katsarou, O; Theodossiades, G; Zanon, E; Niemann, B; Kellermann, E; Lundin, B
2015-01-01
In patients with haemophilia A, factor VIII (FVIII) prophylaxis reduces bleeding frequency and joint damage compared with on-demand therapy. To assess the effect of prophylaxis initiation age, magnetic resonance imaging (MRI) was used to evaluate bone and cartilage damage in patients with severe haemophilia A. In this cross-sectional, multinational investigation, patients aged 12–35 years were assigned to 1 of 5 groups: primary prophylaxis started at age <2 years (group 1); secondary prophylaxis started at age 2 to <6 years (group 2), 6 to <12 years (group 3), or 12−18 years (group 4); or on-demand treatment (group 5). Joint status at ankles and knees was assessed using Compatible Additive MRI scoring (maximum and mean ankle; maximum and mean of all 4 joints) and Gilbert scores in the per-protocol population (n = 118). All prophylaxis groups had better MRI joint scores than the on-demand group. MRI scores generally increased with current patient age and later start of prophylaxis. Ankles were the most affected joints. In group 1 patients currently aged 27−35 years, the median of maximum ankle scores was 0.0; corresponding values in groups 4 and 5 were 17.0 and 18.0, respectively [medians of mean index joint scores: 0.0 (group 1), 8.1 (group 2) and 13.8 (group 4)]. Gilbert scores revealed outcomes less pronounced than MRI scores. MRI scores identified pathologic joint status with high sensitivity. Prophylaxis groups had lower annualized joint bleeds and MRI scores vs. the on-demand group. Primary prophylaxis demonstrated protective effects against joint deterioration compared with secondary prophylaxis. PMID:25470205
PET image reconstruction using multi-parametric anato-functional priors
NASA Astrophysics Data System (ADS)
Mehranian, Abolfazl; Belzunce, Martin A.; Niccolini, Flavia; Politis, Marios; Prieto, Claudia; Turkheimer, Federico; Hammers, Alexander; Reader, Andrew J.
2017-08-01
In this study, we investigate the application of multi-parametric anato-functional (MR-PET) priors for the maximum a posteriori (MAP) reconstruction of brain PET data in order to address the limitations of the conventional anatomical priors in the presence of PET-MR mismatches. In addition to partial volume correction benefits, the suitability of these priors for reconstruction of low-count PET data is also introduced and demonstrated, comparing to standard maximum-likelihood (ML) reconstruction of high-count data. The conventional local Tikhonov and total variation (TV) priors and current state-of-the-art anatomical priors including the Kaipio, non-local Tikhonov prior with Bowsher and Gaussian similarity kernels are investigated and presented in a unified framework. The Gaussian kernels are calculated using both voxel- and patch-based feature vectors. To cope with PET and MR mismatches, the Bowsher and Gaussian priors are extended to multi-parametric priors. In addition, we propose a modified joint Burg entropy prior that by definition exploits all parametric information in the MAP reconstruction of PET data. The performance of the priors was extensively evaluated using 3D simulations and two clinical brain datasets of [18F]florbetaben and [18F]FDG radiotracers. For simulations, several anato-functional mismatches were intentionally introduced between the PET and MR images, and furthermore, for the FDG clinical dataset, two PET-unique active tumours were embedded in the PET data. Our simulation results showed that the joint Burg entropy prior far outperformed the conventional anatomical priors in terms of preserving PET unique lesions, while still reconstructing functional boundaries with corresponding MR boundaries. In addition, the multi-parametric extension of the Gaussian and Bowsher priors led to enhanced preservation of edge and PET unique features and also an improved bias-variance performance. In agreement with the simulation results, the clinical results also showed that the Gaussian prior with voxel-based feature vectors, the Bowsher and the joint Burg entropy priors were the best performing priors. However, for the FDG dataset with simulated tumours, the TV and proposed priors were capable of preserving the PET-unique tumours. Finally, an important outcome was the demonstration that the MAP reconstruction of a low-count FDG PET dataset using the proposed joint entropy prior can lead to comparable image quality to a conventional ML reconstruction with up to 5 times more counts. In conclusion, multi-parametric anato-functional priors provide a solution to address the pitfalls of the conventional priors and are therefore likely to increase the diagnostic confidence in MR-guided PET image reconstructions.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... need to submit a photo for a child who is already a U.S. citizen or a Legal Permanent Resident. Group... Joint Photographic Experts Group (JPEG) format; it must have a maximum image file size of two hundred... (dpi); the image file format in Joint Photographic Experts Group (JPEG) format; the maximum image file...
Bayesian image reconstruction - The pixon and optimal image modeling
NASA Technical Reports Server (NTRS)
Pina, R. K.; Puetter, R. C.
1993-01-01
In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.
NASA Technical Reports Server (NTRS)
Pierson, W. J.
1982-01-01
The scatterometer on the National Oceanic Satellite System (NOSS) is studied by means of Monte Carlo techniques so as to determine the effect of two additional antennas for alias (or ambiguity) removal by means of an objective criteria technique and a normalized maximum likelihood estimator. Cells nominally 10 km by 10 km, 10 km by 50 km, and 50 km by 50 km are simulated for winds of 4, 8, 12 and 24 m/s and incidence angles of 29, 39, 47, and 53.5 deg for 15 deg changes in direction. The normalized maximum likelihood estimate (MLE) is correct a large part of the time, but the objective criterion technique is recommended as a reserve, and more quickly computed, procedure. Both methods for alias removal depend on the differences in the present model function at upwind and downwind. For 10 km by 10 km cells, it is found that the MLE method introduces a correlation between wind speed errors and aspect angle (wind direction) errors that can be as high as 0.8 or 0.9 and that the wind direction errors are unacceptably large, compared to those obtained for the SASS for similar assumptions.
Variational Bayesian Parameter Estimation Techniques for the General Linear Model
Starke, Ludger; Ostwald, Dirk
2017-01-01
Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572
Al-Atiyat, R M; Aljumaah, R S
2014-08-27
This study aimed to estimate evolutionary distances and to reconstruct phylogeny trees between different Awassi sheep populations. Thirty-two sheep individuals from three different geographical areas of Jordan and the Kingdom of Saudi Arabia (KSA) were randomly sampled. DNA was extracted from the tissue samples and sequenced using the T7 promoter universal primer. Different phylogenetic trees were reconstructed from 0.64-kb DNA sequences using the MEGA software with the best general time reverse distance model. Three methods of distance estimation were then used. The maximum composite likelihood test was considered for reconstructing maximum likelihood, neighbor-joining and UPGMA trees. The maximum likelihood tree indicated three major clusters separated by cytosine (C) and thymine (T). The greatest distance was shown between the South sheep and North sheep. On the other hand, the KSA sheep as an outgroup showed shorter evolutionary distance to the North sheep population than to the others. The neighbor-joining and UPGMA trees showed quite reliable clusters of evolutionary differentiation of Jordan sheep populations from the Saudi population. The overall results support geographical information and ecological types of the sheep populations studied. Summing up, the resulting phylogeny trees may contribute to the limited information about the genetic relatedness and phylogeny of Awassi sheep in nearby Arab countries.
NASA Astrophysics Data System (ADS)
Aminah, Agustin Siti; Pawitan, Gandhi; Tantular, Bertho
2017-03-01
So far, most of the data published by Statistics Indonesia (BPS) as data providers for national statistics are still limited to the district level. Less sufficient sample size for smaller area levels to make the measurement of poverty indicators with direct estimation produced high standard error. Therefore, the analysis based on it is unreliable. To solve this problem, the estimation method which can provide a better accuracy by combining survey data and other auxiliary data is required. One method often used for the estimation is the Small Area Estimation (SAE). There are many methods used in SAE, one of them is Empirical Best Linear Unbiased Prediction (EBLUP). EBLUP method of maximum likelihood (ML) procedures does not consider the loss of degrees of freedom due to estimating β with β ^. This drawback motivates the use of the restricted maximum likelihood (REML) procedure. This paper proposed EBLUP with REML procedure for estimating poverty indicators by modeling the average of household expenditures per capita and implemented bootstrap procedure to calculate MSE (Mean Square Error) to compare the accuracy EBLUP method with the direct estimation method. Results show that EBLUP method reduced MSE in small area estimation.
Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier
2011-10-01
Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/
Superfast maximum-likelihood reconstruction for quantum tomography
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmittroth, F.
1978-01-01
Applications of a new data-adjustment code are given. The method is based on a maximum-likelihood extension of generalized least-squares methods that allow complete covariance descriptions for the input data and the final adjusted data evaluations. The maximum-likelihood approach is used with a generalized log-normal distribution that provides a way to treat problems with large uncertainties and that circumvents the problem of negative values that can occur for physically positive quantities. The computer code, FERRET, is written to enable the user to apply it to a large variety of problems by modifying only the input subroutine. The following applications are discussed:more » A 75-group a priori damage function is adjusted by as much as a factor of two by use of 14 integral measurements in different reactor spectra. Reactor spectra and dosimeter cross sections are simultaneously adjusted on the basis of both integral measurements and experimental proton-recoil spectra. The simultaneous use of measured reaction rates, measured worths, microscopic measurements, and theoretical models are used to evaluate dosimeter and fission-product cross sections. Applications in the data reduction of neutron cross section measurements and in the evaluation of reactor after-heat are also considered. 6 figures.« less
Holmes, T J; Liu, Y H
1989-11-15
A maximum likelihood based iterative algorithm adapted from nuclear medicine imaging for noncoherent optical imaging was presented in a previous publication with some initial computer-simulation testing. This algorithm is identical in form to that previously derived in a different way by W. H. Richardson "Bayesian-Based Iterative Method of Image Restoration," J. Opt. Soc. Am. 62, 55-59 (1972) and L. B. Lucy "An Iterative Technique for the Rectification of Observed Distributions," Astron. J. 79, 745-765 (1974). Foreseen applications include superresolution and 3-D fluorescence microscopy. This paper presents further simulation testing of this algorithm and a preliminary experiment with a defocused camera. The simulations show quantified resolution improvement as a function of iteration number, and they show qualitatively the trend in limitations on restored resolution when noise is present in the data. Also shown are results of a simulation in restoring missing-cone information for 3-D imaging. Conclusions are in support of the feasibility of using these methods with real systems, while computational cost and timing estimates indicate that it should be realistic to implement these methods. Itis suggested in the Appendix that future extensions to the maximum likelihood based derivation of this algorithm will address some of the limitations that are experienced with the nonextended form of the algorithm presented here.
On the quirks of maximum parsimony and likelihood on phylogenetic networks.
Bryant, Christopher; Fischer, Mareike; Linz, Simone; Semple, Charles
2017-03-21
Maximum parsimony is one of the most frequently-discussed tree reconstruction methods in phylogenetic estimation. However, in recent years it has become more and more apparent that phylogenetic trees are often not sufficient to describe evolution accurately. For instance, processes like hybridization or lateral gene transfer that are commonplace in many groups of organisms and result in mosaic patterns of relationships cannot be represented by a single phylogenetic tree. This is why phylogenetic networks, which can display such events, are becoming of more and more interest in phylogenetic research. It is therefore necessary to extend concepts like maximum parsimony from phylogenetic trees to networks. Several suggestions for possible extensions can be found in recent literature, for instance the softwired and the hardwired parsimony concepts. In this paper, we analyze the so-called big parsimony problem under these two concepts, i.e. we investigate maximum parsimonious networks and analyze their properties. In particular, we show that finding a softwired maximum parsimony network is possible in polynomial time. We also show that the set of maximum parsimony networks for the hardwired definition always contains at least one phylogenetic tree. Lastly, we investigate some parallels of parsimony to different likelihood concepts on phylogenetic networks. Copyright © 2017 Elsevier Ltd. All rights reserved.
SMURC: High-Dimension Small-Sample Multivariate Regression With Covariance Estimation.
Bayar, Belhassen; Bouaynaya, Nidhal; Shterenberg, Roman
2017-03-01
We consider a high-dimension low sample-size multivariate regression problem that accounts for correlation of the response variables. The system is underdetermined as there are more parameters than samples. We show that the maximum likelihood approach with covariance estimation is senseless because the likelihood diverges. We subsequently propose a normalization of the likelihood function that guarantees convergence. We call this method small-sample multivariate regression with covariance (SMURC) estimation. We derive an optimization problem and its convex approximation to compute SMURC. Simulation results show that the proposed algorithm outperforms the regularized likelihood estimator with known covariance matrix and the sparse conditional Gaussian graphical model. We also apply SMURC to the inference of the wing-muscle gene network of the Drosophila melanogaster (fruit fly).
Estimation of brood and nest survival: Comparative methods in the presence of heterogeneity
Manly, Bryan F.J.; Schmutz, Joel A.
2001-01-01
The Mayfield method has been widely used for estimating survival of nests and young animals, especially when data are collected at irregular observation intervals. However, this method assumes survival is constant throughout the study period, which often ignores biologically relevant variation and may lead to biased survival estimates. We examined the bias and accuracy of 1 modification to the Mayfield method that allows for temporal variation in survival, and we developed and similarly tested 2 additional methods. One of these 2 new methods is simply an iterative extension of Klett and Johnson's method, which we refer to as the Iterative Mayfield method and bears similarity to Kaplan-Meier methods. The other method uses maximum likelihood techniques for estimation and is best applied to survival of animals in groups or families, rather than as independent individuals. We also examined how robust these estimators are to heterogeneity in the data, which can arise from such sources as dependent survival probabilities among siblings, inherent differences among families, and adoption. Testing of estimator performance with respect to bias, accuracy, and heterogeneity was done using simulations that mimicked a study of survival of emperor goose (Chen canagica) goslings. Assuming constant survival for inappropriately long periods of time or use of Klett and Johnson's methods resulted in large bias or poor accuracy (often >5% bias or root mean square error) compared to our Iterative Mayfield or maximum likelihood methods. Overall, estimator performance was slightly better with our Iterative Mayfield than our maximum likelihood method, but the maximum likelihood method provides a more rigorous framework for testing covariates and explicity models a heterogeneity factor. We demonstrated use of all estimators with data from emperor goose goslings. We advocate that future studies use the new methods outlined here rather than the traditional Mayfield method or its previous modifications.
Peyre, Hugo; Leplège, Alain; Coste, Joël
2011-03-01
Missing items are common in quality of life (QoL) questionnaires and present a challenge for research in this field. It remains unclear which of the various methods proposed to deal with missing data performs best in this context. We compared personal mean score, full information maximum likelihood, multiple imputation, and hot deck techniques using various realistic simulation scenarios of item missingness in QoL questionnaires constructed within the framework of classical test theory. Samples of 300 and 1,000 subjects were randomly drawn from the 2003 INSEE Decennial Health Survey (of 23,018 subjects representative of the French population and having completed the SF-36) and various patterns of missing data were generated according to three different item non-response rates (3, 6, and 9%) and three types of missing data (Little and Rubin's "missing completely at random," "missing at random," and "missing not at random"). The missing data methods were evaluated in terms of accuracy and precision for the analysis of one descriptive and one association parameter for three different scales of the SF-36. For all item non-response rates and types of missing data, multiple imputation and full information maximum likelihood appeared superior to the personal mean score and especially to hot deck in terms of accuracy and precision; however, the use of personal mean score was associated with insignificant bias (relative bias <2%) in all studied situations. Whereas multiple imputation and full information maximum likelihood are confirmed as reference methods, the personal mean score appears nonetheless appropriate for dealing with items missing from completed SF-36 questionnaires in most situations of routine use. These results can reasonably be extended to other questionnaires constructed according to classical test theory.
Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong
2017-12-18
Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.
NASA Technical Reports Server (NTRS)
Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara
1993-01-01
As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.
Tests for detecting overdispersion in models with measurement error in covariates.
Yang, Yingsi; Wong, Man Yu
2015-11-30
Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.
Comparison of image deconvolution algorithms on simulated and laboratory infrared images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, D.
1994-11-15
We compare Maximum Likelihood, Maximum Entropy, Accelerated Lucy-Richardson, Weighted Goodness of Fit, and Pixon reconstructions of simple scenes as a function of signal-to-noise ratio for simulated images with randomly generated noise. Reconstruction results of infrared images taken with the TAISIR (Temperature and Imaging System InfraRed) are also discussed.
USDA-ARS?s Scientific Manuscript database
The phylogeny of Amaryllidaceae tribe Hippeastreae was inferred using chloroplast (3’ycf1, ndhF, trnL-F) and nuclear (ITS rDNA) sequence data under maximum parsimony and maximum likelihood frameworks. Network analyses were applied to resolve conflicting signals among data sets and putative scenarios...
USDA-ARS?s Scientific Manuscript database
Fusarium (Hypocreales, Nectriaceae) is one of the most economically important and systematically challenging groups of mycotoxigenic phytopathogens and emergent human pathogens. We conducted maximum likelihood (ML), maximum parsimony (MP) and Bayesian (B) analyses on partial RNA polymerase largest (...
Balliu, Brunilda; Tsonaka, Roula; Boehringer, Stefan; Houwing-Duistermaat, Jeanine
2015-03-01
Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data. © 2015 Wiley Periodicals, Inc.
Top-quark mass measurement from dilepton events at CDF II.
Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; Dituro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-04-21
We report a measurement of the top-quark mass using events collected by the CDF II detector from pp collisions at square root of s = 1.96 TeV at the Fermilab Tevatron. We calculate a likelihood function for the top-quark mass in events that are consistent with tt --> bl(-)nu(l)bl'+ nu'(l) decays. The likelihood is formed as the convolution of the leading-order matrix element and detector resolution functions. The joint likelihood is the product of likelihoods for each of 33 events collected in 340 pb(-1) of integrated luminosity, yielding a top-quark mass M(t) = 165.2 +/- 6.1(stat) +/- 3.4(syst) GeV/c2. This first application of a matrix-element technique to tt --> bl+ nu(l)bl'- nu(l') decays gives the most precise single measurement of M(t) in dilepton events. Combined with other CDF run II measurements using dilepton events, we measure M(t) = 167.9 +/- 5.2(stat) +/- 3.7(syst) GeV/c2.
NASA Technical Reports Server (NTRS)
Switzer, Eric Ryan; Watts, Duncan J.
2016-01-01
The B-mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B-modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.
Multiple-hit parameter estimation in monolithic detectors.
Hunter, William C J; Barrett, Harrison H; Lewellen, Tom K; Miyaoka, Robert S
2013-02-01
We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%-12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied.
Quantum-state reconstruction by maximizing likelihood and entropy.
Teo, Yong Siah; Zhu, Huangjun; Englert, Berthold-Georg; Řeháček, Jaroslav; Hradil, Zdeněk
2011-07-08
Quantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored.
Maximum aposteriori joint source/channel coding
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Gibson, Jerry D.
1991-01-01
A maximum aposteriori probability (MAP) approach to joint source/channel coder design is presented in this paper. This method attempts to explore a technique for designing joint source/channel codes, rather than ways of distributing bits between source coders and channel coders. For a nonideal source coder, MAP arguments are used to design a decoder which takes advantage of redundancy in the source coder output to perform error correction. Once the decoder is obtained, it is analyzed with the purpose of obtaining 'desirable properties' of the channel input sequence for improving overall system performance. Finally, an encoder design which incorporates these properties is proposed.
NASA Technical Reports Server (NTRS)
Iliff, K. W.; Maine, R. E.
1976-01-01
A maximum likelihood estimation method was applied to flight data and procedures to facilitate the routine analysis of a large amount of flight data were described. Techniques that can be used to obtain stability and control derivatives from aircraft maneuvers that are less than ideal for this purpose are described. The techniques involve detecting and correcting the effects of dependent or nearly dependent variables, structural vibration, data drift, inadequate instrumentation, and difficulties with the data acquisition system and the mathematical model. The use of uncertainty levels and multiple maneuver analysis also proved to be useful in improving the quality of the estimated coefficients. The procedures used for editing the data and for overall analysis are also discussed.
Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei
2015-01-21
Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated.
A maximum likelihood analysis of the CoGeNT public dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelso, Chris, E-mail: ckelso@unf.edu
The CoGeNT detector, located in the Soudan Underground Laboratory in Northern Minnesota, consists of a 475 grams (fiducial mass of 330 grams) target mass of p-type point contact germanium detector that measures the ionization charge created by nuclear recoils. This detector has searched for recoils created by dark matter since December of 2009. We analyze the public dataset from the CoGeNT experiment to search for evidence of dark matter interactions with the detector. We perform an unbinned maximum likelihood fit to the data and compare the significance of different WIMP hypotheses relative to each other and the null hypothesis ofmore » no WIMP interactions. This work presents the current status of the analysis.« less
NASA Astrophysics Data System (ADS)
Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.
BOREAS TE-18 Landsat TM Maximum Likelihood Classification Image of the NSA
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Knapp, David
2000-01-01
The BOREAS TE-18 team focused its efforts on using remotely sensed data to characterize the successional and disturbance dynamics of the boreal forest for use in carbon modeling. The objective of this classification is to provide the BOREAS investigators with a data product that characterizes the land cover of the NSA. A Landsat-5 TM image from 20-Aug-1988 was used to derive this classification. A standard supervised maximum likelihood classification approach was used to produce this classification. The data are provided in a binary image format file. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).
NASA Technical Reports Server (NTRS)
Grove, R. D.; Mayhew, S. C.
1973-01-01
A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.
Lee, Soohyun; Seo, Chae Hwa; Alver, Burak Han; Lee, Sanghyuk; Park, Peter J
2015-09-03
RNA-seq has been widely used for genome-wide expression profiling. RNA-seq data typically consists of tens of millions of short sequenced reads from different transcripts. However, due to sequence similarity among genes and among isoforms, the source of a given read is often ambiguous. Existing approaches for estimating expression levels from RNA-seq reads tend to compromise between accuracy and computational cost. We introduce a new approach for quantifying transcript abundance from RNA-seq data. EMSAR (Estimation by Mappability-based Segmentation And Reclustering) groups reads according to the set of transcripts to which they are mapped and finds maximum likelihood estimates using a joint Poisson model for each optimal set of segments of transcripts. The method uses nearly all mapped reads, including those mapped to multiple genes. With an efficient transcriptome indexing based on modified suffix arrays, EMSAR minimizes the use of CPU time and memory while achieving accuracy comparable to the best existing methods. EMSAR is a method for quantifying transcripts from RNA-seq data with high accuracy and low computational cost. EMSAR is available at https://github.com/parklab/emsar.
Dai, James Y.; Hughes, James P.
2012-01-01
The meta-analytic approach to evaluating surrogate end points assesses the predictiveness of treatment effect on the surrogate toward treatment effect on the clinical end point based on multiple clinical trials. Definition and estimation of the correlation of treatment effects were developed in linear mixed models and later extended to binary or failure time outcomes on a case-by-case basis. In a general regression setting that covers nonnormal outcomes, we discuss in this paper several metrics that are useful in the meta-analytic evaluation of surrogacy. We propose a unified 3-step procedure to assess these metrics in settings with binary end points, time-to-event outcomes, or repeated measures. First, the joint distribution of estimated treatment effects is ascertained by an estimating equation approach; second, the restricted maximum likelihood method is used to estimate the means and the variance components of the random treatment effects; finally, confidence intervals are constructed by a parametric bootstrap procedure. The proposed method is evaluated by simulations and applications to 2 clinical trials. PMID:22394448
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M.G.; et al.
2015-11-06
We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with valuesmore » $$3^\\circ$$, $$6^\\circ$$ and $$9^\\circ$$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.« less
MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.
Hedeker, D; Gibbons, R D
1996-05-01
MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.
Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A
2015-12-01
Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (P<0.05). Quadriceps power at 90% of one repetition maximum accounted for 9% of the variance in peak knee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Discrete and continuous joint coupling relationships in uninjured recreational runners.
Dierks, Tracy A; Davis, Irene
2007-06-01
Abnormal joint coupling is thought to be related to overuse injuries in runners. However, researchers do not yet know what constitutes normal joint coupling during running, which makes abnormal coupling difficult to define. Lower extremity kinematics were collected from 40 recreational runners during stance. Joint coupling methods were applied and, for each method, means and both within- and between-subject variability were calculated. The 95% confidence interval was used to compare differences across coupling relationships and periods of stance. Timing between rearfoot eversion, tibial internal rotation, and knee flexion were relatively synchronous while relationships involving knee internal rotation were more asynchronous. The excursion ratios showed that every 2 degrees of rearfoot eversion was coupled with 1 degrees of both tibial internal rotation and knee internal rotation. Vector coding results showed that just beyond maximum loading, all joint coupling relationships resulted in relatively equal amounts of motion, while the within-subject variability was similar throughout stance. The continuous relative phase results showed that the most out-of-phase coupling occurred in the periods around heel-strike and toe-off while the most in-phase coupling occurred in the period just beyond maximum loading of the leg. The continuous relative phase within-subject variability was greatest at the periods around heel-strike and toe-off and smallest just beyond maximum loading. With a better understanding of joint coupling in uninjured runners, these data will help to serve as a reference for future studies investigating the relationship between running injuries and abnormal joint coupling.
Cossich, Victor; Mallrich, Frédéric; Titonelli, Victor; de Sousa, Eduardo Branco; Velasques, Bruna; Salles, José Inácio
2014-01-01
To ascertain whether the proprioceptive deficit in the sense of joint position continues to be present when patients with a limb presenting a deficient anterior cruciate ligament (ACL) are assessed by testing their active reproduction of joint position, in comparison with the contralateral limb. Twenty patients with unilateral ACL tearing participated in the study. Their active reproduction of joint position in the limb with the deficient ACL and in the healthy contralateral limb was tested. Meta-positions of 20% and 50% of the maximum joint range of motion were used. Proprioceptive performance was determined through the values of the absolute error, variable error and constant error. Significant differences in absolute error were found at both of the positions evaluated, and in constant error at 50% of the maximum joint range of motion. When evaluated in terms of absolute error, the proprioceptive deficit continues to be present even when an active evaluation of the sense of joint position is made. Consequently, this sense involves activity of both intramuscular and tendon receptors.
NASA Astrophysics Data System (ADS)
Zou, Zhihuan; Zeng, Fanhao; Wu, Haobo; Liu, Jian; Li, Yi; Gu, Yi; Yuan, Tiechui; Zhang, Fuqin
2017-05-01
In this paper, Ti-25Cu-15Ni (mass ratio) braze alloys were prepared by vacuum arc melting. Additionally, the TA0 pure titanium and TC4 titanium alloy were brazed with the Ti-25Cu-15Ni braze alloy at 960, 980, 1000, 1020, and 1040 °C. The effects of the braze temperature on the tensile strength of the TA0 and TC4 joints and their fracture mechanisms were studied. The maximum tensile strength of the TA0 joints of 219.9 ± 0.1 MPa was achieved at a brazing temperature of 980 °C, and the maximum tensile strength of the TC4 joints of 832.9 ± 0.1 MPa was achieved at the same brazing temperature. These results indicate that their ideal joint strength is comparable. According to the fractography results of the TA0 joints, a mixed fracture morphology is indicated. The TA0 fracture surface is dominated by cleavage fracture with a small contribution from ductile fracture. The TC4 joint fracture arises from cleavage.
Vegetables- and antioxidant-related nutrients, genetic susceptibility, and non-Hodgkin lymphoma risk
Kelemen, Linda E.; Wang, Sophia S.; Lim, Unhee; Cozen, Wendy; Schenk, Maryjean; Hartge, Patricia; Li, Yan; Rothman, Nathaniel; Davis, Scott; Chanock, Stephen J.; Ward, Mary H.
2009-01-01
Genetic susceptibility to DNA oxidation, carcinogen metabolism, and altered DNA repair may increase non-Hodgkin lymphoma (NHL) risk, whereas vegetables-and antioxidant-related nutrients may decrease risk. We evaluated the interaction of a priori-defined dietary factors with 28 polymorphisms in these metabolic pathways. Incident cases (n = 1,141) were identified during 1998–2000 from four cancer registries and frequency-matched to population-based controls (n = 949). We estimated diet-gene joint effects using two-phase semi-parametric maximum-likelihood methods, which utilized genotype data from all subjects as well as 371 cases and 311 controls with available diet information. Adjusted odds ratios (95% confidence intervals) were lower among common allele carriers with higher dietary intakes. For the GSTM3 3-base insertion and higher total vegetable intake, the risk was 0.56 (0.35–0.92, p interaction = 0.03); for GSTP1 A114V and higher cruciferous vegetable intake, the risk was 0.52 (0.34–0.81, p interaction = 0.02); for OGG1 S326C and higher daily zinc intake, the risk was 0.71 (0.47–1.08, p interaction = 0.04) and for XRCC3 T241M and higher green leafy vegetable intake, the risk was 0.63 (0.41–0.97, p interaction = 0.03). Calculation of the false positive report probability determined a high likelihood of falsely positive associations. Although most associations have not been examined previously with NHL, our results suggest the examined polymorphisms are not modifiers of the association between vegetable and zinc intakes and NHL risk. PMID:18204928
Morales, Leonardo Fabio; Gordon-Larsen, Penny; Guilkey, David
2016-12-01
We estimate a structural dynamic model of the determinants of obesity. In addition to including many of the well-recognized endogenous factors mentioned in the literature as obesity determinants, we also model the individual's residential location as a choice variable, which is the main contribution of this paper to the literature. This allows us to control for an individual's self-selection into communities that possess the types of amenities in the built environment, which in turn affect their obesity-related behaviors such as physical activity (PA) and fast food consumption. We specify reduced form equations for a set of endogenous demand decisions, together with an obesity structural equation. The whole system of equations is jointly estimated by a semi-parametric full information log-likelihood method that allows for a general pattern of correlation in the errors across equations. Our model predicts a reduction in adult obesity of 7 percentage points as a result of a continued high level PA from adolescence into adulthood; a reduction of 0.7 (3) percentage points in adult obesity as a result of one standard deviation reduction in weekly fast food consumption for women (men); and a reduction of 0.02 (0.05) in adult obesity as a result of one standard deviation change in several neighborhood amenities for women (men). Another key finding is that controlling for residential self-selection has substantive implications. To our knowledge, this has not been yet documented within a full information maximum likelihood framework. Copyright © 2016 Elsevier B.V. All rights reserved.
Morales, Leonardo Fabio; Gordon-Larsen, Penny; Guilkey, David
2017-01-01
We estimate a structural dynamic model of the determinants of obesity. In addition to including many of the well-recognized endogenous factors mentioned in the literature as obesity determinants, we also model the individual’s residential location as a choice variable, which is the main contribution of this paper to the literature. This allows us to control for an individual's self-selection into communities that possess the types of amenities in the built environment, which in turn affect their obesity-related behaviors such as physical activity (PA) and fast food consumption. We specify reduced form equations for a set of endogenous demand decisions, together with an obesity structural equation. The whole system of equations is jointly estimated by a semi-parametric full information log-likelihood method that allows for a general pattern of correlation in the errors across equations. Our model predicts a reduction in adult obesity of 7 percentage points as a result of a continued high level PA from adolescence into adulthood; a reduction of 0.7 (3) percentage points in adult obesity as a result of one standard deviation reduction in weekly fast food consumption for women (men); and a reduction of 0.02 (0.05) in adult obesity as a result of one standard deviation change in several neighborhood amenities for women (men). Another key finding is that controlling for residential self-selection has substantive implications. To our knowledge, this has not been yet documented within a full information maximum likelihood framework. PMID:27459276
Dahabreh, Issa J; Trikalinos, Thomas A; Lau, Joseph; Schmid, Christopher H
2017-03-01
To compare statistical methods for meta-analysis of sensitivity and specificity of medical tests (e.g., diagnostic or screening tests). We constructed a database of PubMed-indexed meta-analyses of test performance from which 2 × 2 tables for each included study could be extracted. We reanalyzed the data using univariate and bivariate random effects models fit with inverse variance and maximum likelihood methods. Analyses were performed using both normal and binomial likelihoods to describe within-study variability. The bivariate model using the binomial likelihood was also fit using a fully Bayesian approach. We use two worked examples-thoracic computerized tomography to detect aortic injury and rapid prescreening of Papanicolaou smears to detect cytological abnormalities-to highlight that different meta-analysis approaches can produce different results. We also present results from reanalysis of 308 meta-analyses of sensitivity and specificity. Models using the normal approximation produced sensitivity and specificity estimates closer to 50% and smaller standard errors compared to models using the binomial likelihood; absolute differences of 5% or greater were observed in 12% and 5% of meta-analyses for sensitivity and specificity, respectively. Results from univariate and bivariate random effects models were similar, regardless of estimation method. Maximum likelihood and Bayesian methods produced almost identical summary estimates under the bivariate model; however, Bayesian analyses indicated greater uncertainty around those estimates. Bivariate models produced imprecise estimates of the between-study correlation of sensitivity and specificity. Differences between methods were larger with increasing proportion of studies that were small or required a continuity correction. The binomial likelihood should be used to model within-study variability. Univariate and bivariate models give similar estimates of the marginal distributions for sensitivity and specificity. Bayesian methods fully quantify uncertainty and their ability to incorporate external evidence may be useful for imprecisely estimated parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Cusimano, Natalie; Sousa, Aretuza; Renner, Susanne S.
2012-01-01
Background and Aims For 84 years, botanists have relied on calculating the highest common factor for series of haploid chromosome numbers to arrive at a so-called basic number, x. This was done without consistent (reproducible) reference to species relationships and frequencies of different numbers in a clade. Likelihood models that treat polyploidy, chromosome fusion and fission as events with particular probabilities now allow reconstruction of ancestral chromosome numbers in an explicit framework. We have used a modelling approach to reconstruct chromosome number change in the large monocot family Araceae and to test earlier hypotheses about basic numbers in the family. Methods Using a maximum likelihood approach and chromosome counts for 26 % of the 3300 species of Araceae and representative numbers for each of the other 13 families of Alismatales, polyploidization events and single chromosome changes were inferred on a genus-level phylogenetic tree for 113 of the 117 genera of Araceae. Key Results The previously inferred basic numbers x = 14 and x = 7 are rejected. Instead, maximum likelihood optimization revealed an ancestral haploid chromosome number of n = 16, Bayesian inference of n = 18. Chromosome fusion (loss) is the predominant inferred event, whereas polyploidization events occurred less frequently and mainly towards the tips of the tree. Conclusions The bias towards low basic numbers (x) introduced by the algebraic approach to inferring chromosome number changes, prevalent among botanists, may have contributed to an unrealistic picture of ancestral chromosome numbers in many plant clades. The availability of robust quantitative methods for reconstructing ancestral chromosome numbers on molecular phylogenetic trees (with or without branch length information), with confidence statistics, makes the calculation of x an obsolete approach, at least when applied to large clades. PMID:22210850
Jaisson, Maxime; Lestriez, Philippe; Taiar, Redha; Debray, Karl
2011-01-01
The proposed biodynamic model of the articular disc joint has the ability to affect directly the complete chewing mechanism process and its related muscles defining its kinematics. When subjected to stresses from the mastication muscles, the disc absorbs one part and redistributes the other to become completely distorted. To develop a realistic model of this intricate joint a CT scan and MRI images from a patient were obtained to create sections (layers) and MRI images to create an anatomical joint CAD model, and its corresponding mesh element using a finite element method. The boundary conditions are described by the external forces applied to the joint model through a decomposition of the maximum muscular force developed by the same individual. In this study, the maximum force was operating at frequencies close to the actual chewing frequency measured through a cyclic loading condition. The reaction force at the glenoid fossa was found to be around 1035 N and is directly related to the frequency of indentation. It is also shown that over the years the areas of maximum stresses are located at the lateral portion of the disc and on its posterior rim. These forces can reach 13.2 MPa after a period of 32 seconds (s) at a frequency of 0.5 Hz. An important part of this study is to highlight resilience and the areas where stresses are at their maximum. This study provides a novel approach to improve the understanding of this complex joint, as well as to assess the different pathologies associated with the disc disease that would be difficult to study otherwise.
Seismic performance of the typical RC beam-column joint subjected to repeated earthquakes
NASA Astrophysics Data System (ADS)
Hassanshahi, Omid; Majid, Taksiah A.; Lau, Tze Liang; Yousefi, Ali; Tahara, R. M. K.
2017-10-01
It is common that a building experience repeated earthquakes throughout its lifetime. Such earthquake is capable of creating severe damage in primary elements of the building due to accumulation of inelastic displacement from repetition. The present study focuses on the influence of repeated earthquakes on a typical Reinforced Concrete (RC) beam-column joint, especially on the maximum inelastic displacement demand and maximum residual displacement. For this purpose, the capability of nonlinear modelling in simulating the hysteretic behaviour of the prototype experimental specimen is first determined using RUAUMOKO. A nonlinear Incremental Dynamic Analysis (IDA) on the verified model is then carried out in order to estimate with maximum accuracy the ultimate load bearing capacity to progressive collapse of the RC joint under investigation. Twenty ground motions are selected, and single (C1), double (C2), and triple (C3) event of synthetic repeated earthquakes are then considered. The results show that the repeated earthquakes significantly increase the inelastic demand of the RC joint. On average, relative increment of maximum inelastic displacement demand is experienced about 28.9% and 39.4% when C2 and C3 events of repeated earthquakes are induced, respectively. Residual displacements for repeated earthquakes are also significantly higher than that for single earthquakes.
An Investigation of the Standard Errors of Expected A Posteriori Ability Estimates.
ERIC Educational Resources Information Center
De Ayala, R. J.; And Others
Expected a posteriori has a number of advantages over maximum likelihood estimation or maximum a posteriori (MAP) estimation methods. These include ability estimates (thetas) for all response patterns, less regression towards the mean than MAP ability estimates, and a lower average squared error. R. D. Bock and R. J. Mislevy (1982) state that the…
Joint moments and contact forces in the foot during walking.
Kim, Yongcheol; Lee, Kyoung Min; Koo, Seungbum
2018-06-06
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart's, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Position of the prosthesis and the incidence of dislocation following total hip replacement.
He, Rong-xin; Yan, Shi-gui; Wu, Li-dong; Wang, Xiang-hua; Dai, Xue-song
2007-07-05
Dislocation is the second most common complication of hip replacement surgery, and impact of the prosthesis is believed to be the fundamental reason. The present study employed Solidworks 2003 and MSC-Nastran software to analyze the three dimensional variables in order to investigate how to prevent dislocation following hip replacement surgery. Computed tomography (CT) imaging was used to collect femoral outline data and Solidworks 2003 software was used to construct the cup model with variabilities. Nastran software was used to evaluate dislocation at different prosthesis positions and different geometrical shapes. Three dimensional movement and results from finite element method were analyzed and the values of dislocation resistance index (DRI), range of motion to impingement (ROM-I), range of motion to dislocation (ROM-D) and peak resisting moment (PRM) were determined. Computer simulation was used to evaluate the range of motion of the hip joint at different prosthesis positions. Finite element analysis showed: (1) Increasing the ratio of head/neck increased the ROM-I values and moderately increased ROM-D and PRM values. Increasing the head size significantly increased PRM and to some extent ROM-I and ROM-D values, which suggested that there would be a greater likelihood of dislocation. (2) Increasing the anteversion angle increased the ROM-I, ROM-D, PRM, energy required for dislocation (ENERGY-D) and DRI values, which would increase the stability of the joint. (3) As the chamber angle was increased, ROM-I, ROM-D, PRM, Energy-D and DRI values were increased, resulting in improved joint stability. Chamber angles exceeding 55 degrees resulted in increases in ROM-I and ROM-D values, but decreases in PRM, Energy-D, and DRI values, which, in turn, increased the likelihood of dislocation. (4) The cup, which was reduced posteriorly, reduced ROM-I values (2.1 -- 5.3 degrees ) and increased the DRI value (0.073). This suggested that the posterior high side had the effect of 10 degrees anteversion angle. Increasing the head/neck ratio increases joint stability. Posterior high side reduced the range of motion of the joint but increased joint stability; Increasing the anteversion angle increases DRI values and thus improve joint stability; Increasing the chamber angle increases DRI values and improves joint stability. However, at angles exceeding 55 degrees , further increases in the chamber angle result in decreased DRI values and reduce the stability of the joint.
Maximum likelihood decoding of Reed Solomon Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudan, M.
We present a randomized algorithm which takes as input n distinct points ((x{sub i}, y{sub i})){sup n}{sub i=1} from F x F (where F is a field) and integer parameters t and d and returns a list of all univariate polynomials f over F in the variable x of degree at most d which agree with the given set of points in at least t places (i.e., y{sub i} = f (x{sub i}) for at least t values of i), provided t = {Omega}({radical}nd). The running time is bounded by a polynomial in n. This immediately provides a maximum likelihoodmore » decoding algorithm for Reed Solomon Codes, which works in a setting with a larger number of errors than any previously known algorithm. To the best of our knowledge, this is the first efficient (i.e., polynomial time bounded) algorithm which provides some maximum likelihood decoding for any efficient (i.e., constant or even polynomial rate) code.« less
Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables
NASA Astrophysics Data System (ADS)
Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan
2007-06-01
Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).
Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.
Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E
2017-12-11
Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.
Chaudhuri, Shomesh E; Merfeld, Daniel M
2013-03-01
Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
West, R. Derek; Gunther, Jacob H.; Moon, Todd K.
2016-12-01
In this study, we derive a comprehensive forward model for the data collected by stripmap synthetic aperture radar (SAR) that is linear in the ground reflectivity parameters. It is also shown that if the noise model is additive, then the forward model fits into the linear statistical model framework, and the ground reflectivity parameters can be estimated by statistical methods. We derive the maximum likelihood (ML) estimates for the ground reflectivity parameters in the case of additive white Gaussian noise. Furthermore, we show that obtaining the ML estimates of the ground reflectivity requires two steps. The first step amounts tomore » a cross-correlation of the data with a model of the data acquisition parameters, and it is shown that this step has essentially the same processing as the so-called convolution back-projection algorithm. The second step is a complete system inversion that is capable of mitigating the sidelobes of the spatially variant impulse responses remaining after the correlation processing. We also state the Cramer-Rao lower bound (CRLB) for the ML ground reflectivity estimates.We show that the CRLB is linked to the SAR system parameters, the flight path of the SAR sensor, and the image reconstruction grid.We demonstrate the ML image formation and the CRLB bound for synthetically generated data.« less
Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers
Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.
2004-01-01
LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.
MultiPhyl: a high-throughput phylogenomics webserver using distributed computing
Keane, Thomas M.; Naughton, Thomas J.; McInerney, James O.
2007-01-01
With the number of fully sequenced genomes increasing steadily, there is greater interest in performing large-scale phylogenomic analyses from large numbers of individual gene families. Maximum likelihood (ML) has been shown repeatedly to be one of the most accurate methods for phylogenetic construction. Recently, there have been a number of algorithmic improvements in maximum-likelihood-based tree search methods. However, it can still take a long time to analyse the evolutionary history of many gene families using a single computer. Distributed computing refers to a method of combining the computing power of multiple computers in order to perform some larger overall calculation. In this article, we present the first high-throughput implementation of a distributed phylogenetics platform, MultiPhyl, capable of using the idle computational resources of many heterogeneous non-dedicated machines to form a phylogenetics supercomputer. MultiPhyl allows a user to upload hundreds or thousands of amino acid or nucleotide alignments simultaneously and perform computationally intensive tasks such as model selection, tree searching and bootstrapping of each of the alignments using many desktop machines. The program implements a set of 88 amino acid models and 56 nucleotide maximum likelihood models and a variety of statistical methods for choosing between alternative models. A MultiPhyl webserver is available for public use at: http://www.cs.nuim.ie/distributed/multiphyl.php. PMID:17553837
Joint Stability in Total Knee Arthroplasty: What Is the Target for a Stable Knee?
Wright, Timothy M
2017-02-01
Instability remains a common cause of failure in total knee arthroplasty. Although approaches for surgical treatment of instability exist, the target for initial stability remains elusive, increasing the likelihood that failures will persist because adequate stability is not restored when performing the primary arthroplasty. Although the mechanisms that stabilize the knee joint-contact between the articular surfaces, ligamentous constraints, and muscle forces-are well-defined, their relative importance and the interplay among them throughout functions of daily living are poorly understood. The problem is exacerbated by the complex multiplanar motions that occur across the joint and the large variations in these motions across the population, suggesting that stability targets may need to be patient-specific.
Multiple-Hit Parameter Estimation in Monolithic Detectors
Barrett, Harrison H.; Lewellen, Tom K.; Miyaoka, Robert S.
2014-01-01
We examine a maximum-a-posteriori method for estimating the primary interaction position of gamma rays with multiple interaction sites (hits) in a monolithic detector. In assessing the performance of a multiple-hit estimator over that of a conventional one-hit estimator, we consider a few different detector and readout configurations of a 50-mm-wide square cerium-doped lutetium oxyorthosilicate block. For this study, we use simulated data from SCOUT, a Monte-Carlo tool for photon tracking and modeling scintillation- camera output. With this tool, we determine estimate bias and variance for a multiple-hit estimator and compare these with similar metrics for a one-hit maximum-likelihood estimator, which assumes full energy deposition in one hit. We also examine the effect of event filtering on these metrics; for this purpose, we use a likelihood threshold to reject signals that are not likely to have been produced under the assumed likelihood model. Depending on detector design, we observe a 1%–12% improvement of intrinsic resolution for a 1-or-2-hit estimator as compared with a 1-hit estimator. We also observe improved differentiation of photopeak events using a 1-or-2-hit estimator as compared with the 1-hit estimator; more than 6% of photopeak events that were rejected by likelihood filtering for the 1-hit estimator were accurately identified as photopeak events and positioned without loss of resolution by a 1-or-2-hit estimator; for PET, this equates to at least a 12% improvement in coincidence-detection efficiency with likelihood filtering applied. PMID:23193231
Proportion estimation using prior cluster purities
NASA Technical Reports Server (NTRS)
Terrell, G. R. (Principal Investigator)
1980-01-01
The prior distribution of CLASSY component purities is studied, and this information incorporated into maximum likelihood crop proportion estimators. The method is tested on Transition Year spring small grain segments.
Bates, S E; Sansom, M S; Ball, F G; Ramsey, R L; Usherwood, P N
1990-01-01
Gigaohm recordings have been made from glutamate receptor channels in excised, outside-out patches of collagenase-treated locust muscle membrane. The channels in the excised patches exhibit the kinetic state switching first seen in megaohm recordings from intact muscle fibers. Analysis of channel dwell time distributions reveals that the gating mechanism contains at least four open states and at least four closed states. Dwell time autocorrelation function analysis shows that there are at least three gateways linking the open states of the channel with the closed states. A maximum likelihood procedure has been used to fit six different gating models to the single channel data. Of these models, a cooperative model yields the best fit, and accurately predicts most features of the observed channel gating kinetics. PMID:1696510
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Systems identification using a modified Newton-Raphson method: A FORTRAN program
NASA Technical Reports Server (NTRS)
Taylor, L. W., Jr.; Iliff, K. W.
1972-01-01
A FORTRAN program is offered which computes a maximum likelihood estimate of the parameters of any linear, constant coefficient, state space model. For the case considered, the maximum likelihood estimate can be identical to that which minimizes simultaneously the weighted mean square difference between the computed and measured response of a system and the weighted square of the difference between the estimated and a priori parameter values. A modified Newton-Raphson or quasilinearization method is used to perform the minimization which typically requires several iterations. A starting technique is used which insures convergence for any initial values of the unknown parameters. The program and its operation are described in sufficient detail to enable the user to apply the program to his particular problem with a minimum of difficulty.
Jackson, Dan; White, Ian R; Riley, Richard D
2013-01-01
Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation and multivariate generalisations of the standard univariate method of moments. Here, we provide a new multivariate method of moments for estimating the between-study covariance matrix with the properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates through meta-regression. Further, for complete data, it is invariant to linear transformations. Our method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird, in a single dimension. We illustrate our method and compare it with some of the alternatives using a simulation study and a real example. PMID:23401213
Development of advanced techniques for rotorcraft state estimation and parameter identification
NASA Technical Reports Server (NTRS)
Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.
1980-01-01
An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.
NASA Technical Reports Server (NTRS)
Batterson, James G.; Omara, Thomas M.
1989-01-01
The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.
NASA Astrophysics Data System (ADS)
Simons, F. J.; Eggers, G. L.; Lewis, K. W.; Olhede, S. C.
2015-12-01
What numbers "capture" topography? If stationary, white, and Gaussian: mean and variance. But "whiteness" is strong; we are led to a "baseline" over which to compute means and variances. We then have subscribed to topography as a correlated process, and to the estimation (noisy, afftected by edge effects) of the parameters of a spatial or spectral covariance function. What if the covariance function or the point process itself aren't Gaussian? What if the region under study isn't regularly shaped or sampled? How can results from differently sized patches be compared robustly? We present a spectral-domain "Whittle" maximum-likelihood procedure that circumvents these difficulties and answers the above questions. The key is the Matern form, whose parameters (variance, range, differentiability) define the shape of the covariance function (Gaussian, exponential, ..., are all special cases). We treat edge effects in simulation and in estimation. Data tapering allows for the irregular regions. We determine the estimation variance of all parameters. And the "best" estimate may not be "good enough": we test whether the "model" itself warrants rejection. We illustrate our methodology on geologically mapped patches of Venus. Surprisingly few numbers capture planetary topography. We derive them, with uncertainty bounds, we simulate "new" realizations of patches that look to the geologists exactly as if they were derived from similar processes. Our approach holds in 1, 2, and 3 spatial dimensions, and generalizes to multiple variables, e.g. when topography and gravity are being considered jointly (perhaps linked by flexural rigidity, erosion, or other surface and sub-surface modifying processes). Our results have widespread implications for the study of planetary topography in the Solar System, and are interpreted in the light of trying to derive "process" from "parameters", the end goal to assign likely formation histories for the patches under consideration. Our results should also be relevant for whomever needed to perform spatial interpolation or out-of-sample extension (e.g. kriging), machine learning and feature detection, on geological data. We present procedural details but focus on high-level results that have real-world implications for the study of Venus, Earth, other planets, and moons.
COSMIC MICROWAVE BACKGROUND LIKELIHOOD APPROXIMATION FOR BANDED PROBABILITY DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gjerløw, E.; Mikkelsen, K.; Eriksen, H. K.
We investigate sets of random variables that can be arranged sequentially such that a given variable only depends conditionally on its immediate predecessor. For such sets, we show that the full joint probability distribution may be expressed exclusively in terms of uni- and bivariate marginals. Under the assumption that the cosmic microwave background (CMB) power spectrum likelihood only exhibits correlations within a banded multipole range, Δl{sub C}, we apply this expression to two outstanding problems in CMB likelihood analysis. First, we derive a statistically well-defined hybrid likelihood estimator, merging two independent (e.g., low- and high-l) likelihoods into a single expressionmore » that properly accounts for correlations between the two. Applying this expression to the Wilkinson Microwave Anisotropy Probe (WMAP) likelihood, we verify that the effect of correlations on cosmological parameters in the transition region is negligible in terms of cosmological parameters for WMAP; the largest relative shift seen for any parameter is 0.06σ. However, because this may not hold for other experimental setups (e.g., for different instrumental noise properties or analysis masks), but must rather be verified on a case-by-case basis, we recommend our new hybridization scheme for future experiments for statistical self-consistency reasons. Second, we use the same expression to improve the convergence rate of the Blackwell-Rao likelihood estimator, reducing the required number of Monte Carlo samples by several orders of magnitude, and thereby extend it to high-l applications.« less
Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P
2013-05-01
Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p < 0.001). Explosive isometric strength (peak rate of force development) was 21 % lower for the older men (p < 0.05) but was similar between groups when normalised to maximum strength (p = 0.58). The power-velocity relationship was lower for the older men as shown by reduced maximum power (-28 %, p < 0.001) and lower force (-20 %, p < 0.001) and velocity (-11 %, p < 0.05). Whilst force and velocity were lower in older men, the decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.
1990-11-01
1 = Q- 1 - 1 QlaaQ- 1.1 + a’Q-1a This is a simple case of a general formula called Woodbury’s formula by some authors; see, for example, Phadke and...1 2. The First-Order Moving Average Model ..... .................. 3. Some Approaches to the Iterative...the approximate likelihood function in some time series models. Useful suggestions have been the Cholesky decomposition of the covariance matrix and
Nantel-Vivier, Amélie; Pihl, Robert O; Côté, Sylvana; Tremblay, Richard E
2014-10-01
Research on associations between children's prosocial behaviour and mental health has provided mixed evidence. The present study sought to describe and predict the joint development of prosocial behaviour with externalizing and internalizing problems (physical aggression, anxiety and depression) from 2 to 11 years of age. Data were drawn from the National Longitudinal Survey of Children and Youth (NLSCY). Biennial prosocial behaviour, physical aggression, anxiety and depression maternal ratings were sought for 10,700 children aged 0 to 9 years at the first assessment point. While a negative association was observed between prosociality and physical aggression, more complex associations emerged with internalizing problems. Being a boy decreased the likelihood of membership in the high prosocial trajectory. Maternal depression increased the likelihood of moderate aggression, but also of joint high prosociality/low aggression. Low family income predicted the joint development of high prosociality with high physical aggression and high depression. Individual differences exist in the association of prosocial behaviour with mental health. While high prosociality tends to co-occur with low levels of mental health problems, high prosociality and internalizing/externalizing problems can co-occur in subgroups of children. Child, mother and family characteristics are predictive of individual differences in prosocial behaviour and mental health development. Mechanisms underlying these associations warrant future investigations. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.
NASA Astrophysics Data System (ADS)
Giridhar, K.
The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.
A composite likelihood approach for spatially correlated survival data
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450
A composite likelihood approach for spatially correlated survival data.
Paik, Jane; Ying, Zhiliang
2013-01-01
The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.
Women's Inheritance Rights and Intergenerational Transmission of Resources in India
ERIC Educational Resources Information Center
Deininger, Klaus; Goyal, Aparajita; Nagarajan, Hari
2013-01-01
We use inheritance patterns over three generations of individuals to assess the impact of changes in the Hindu Succession Act that grant daughters equal coparcenary birth rights in joint family property that were denied to daughters in the past. We show that the amendment significantly increased daughters' likelihood to inherit land, but that…
Further Iterations on Using the Problem-Analysis Framework
ERIC Educational Resources Information Center
Annan, Michael; Chua, Jocelyn; Cole, Rachel; Kennedy, Emma; James, Robert; Markusdottir, Ingibjorg; Monsen, Jeremy; Robertson, Lucy; Shah, Sonia
2013-01-01
A core component of applied educational and child psychology practice is the skilfulness with which practitioners are able to rigorously structure and conceptualise complex real world human problems. This is done in such a way that when they (with others) jointly work on them, there is an increased likelihood of positive outcomes being achieved…
Indirect detection constraints on s- and t-channel simplified models of dark matter
NASA Astrophysics Data System (ADS)
Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica; Linden, Tim
2016-09-01
Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as b b ¯ or τ+τ- . In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final-state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of effective field theory contact interactions in the high-mass limit.
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
46 CFR 56.30-20 - Threaded joints.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., inches Maximum pressure, p.s.i.g. Above 2″ (Not permitted in Class I piping service.) Above 1″ up to 2... joints appear in the low temperature piping section. 2 Threaded joints in hydraulic systems are permitted above the pressures indicated for the nominal sizes shown when commercially available components such as...
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.
Yeadon, Maurice R; King, Mark A; Wilson, Cassie
2006-01-01
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.
Applications of non-standard maximum likelihood techniques in energy and resource economics
NASA Astrophysics Data System (ADS)
Moeltner, Klaus
Two important types of non-standard maximum likelihood techniques, Simulated Maximum Likelihood (SML) and Pseudo-Maximum Likelihood (PML), have only recently found consideration in the applied economic literature. The objective of this thesis is to demonstrate how these methods can be successfully employed in the analysis of energy and resource models. Chapter I focuses on SML. It constitutes the first application of this technique in the field of energy economics. The framework is as follows: Surveys on the cost of power outages to commercial and industrial customers usually capture multiple observations on the dependent variable for a given firm. The resulting pooled data set is censored and exhibits cross-sectional heterogeneity. We propose a model that addresses these issues by allowing regression coefficients to vary randomly across respondents and by using the Geweke-Hajivassiliou-Keane simulator and Halton sequences to estimate high-order cumulative distribution terms. This adjustment requires the use of SML in the estimation process. Our framework allows for a more comprehensive analysis of outage costs than existing models, which rely on the assumptions of parameter constancy and cross-sectional homogeneity. Our results strongly reject both of these restrictions. The central topic of the second Chapter is the use of PML, a robust estimation technique, in count data analysis of visitor demand for a system of recreation sites. PML has been popular with researchers in this context, since it guards against many types of mis-specification errors. We demonstrate, however, that estimation results will generally be biased even if derived through PML if the recreation model is based on aggregate, or zonal data. To countervail this problem, we propose a zonal model of recreation that captures some of the underlying heterogeneity of individual visitors by incorporating distributional information on per-capita income into the aggregate demand function. This adjustment eliminates the unrealistic constraint of constant income across zonal residents, and thus reduces the risk of aggregation bias in estimated macro-parameters. The corrected aggregate specification reinstates the applicability of PML. It also increases model efficiency, and allows-for the generation of welfare estimates for population subgroups.
Assessing performance and validating finite element simulations using probabilistic knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolin, Ronald M.; Rodriguez, E. A.
Two probabilistic approaches for assessing performance are presented. The first approach assesses probability of failure by simultaneously modeling all likely events. The probability each event causes failure along with the event's likelihood of occurrence contribute to the overall probability of failure. The second assessment method is based on stochastic sampling using an influence diagram. Latin-hypercube sampling is used to stochastically assess events. The overall probability of failure is taken as the maximum probability of failure of all the events. The Likelihood of Occurrence simulation suggests failure does not occur while the Stochastic Sampling approach predicts failure. The Likelihood of Occurrencemore » results are used to validate finite element predictions.« less
Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
Ashkani, O; Maleki, A; Jamshidi, N
2017-03-01
Exoskeleton is a walking assistance device that improves human gait cycle through providing auxiliary force and transferring physical load to the stronger muscles. This device takes the natural state of organ and follows its natural movement. Exoskeleton functions as an auxiliary device to help those with disabilities in hip and knee such as devotees, elderly farmers and agricultural machinery operators who suffer from knee complications. In this research, an exoskeleton designed with two screw jacks at knee and hip joints. To simulate extension and flexion movements of the leg joints, bearings were used at the end of hip and knee joints. The generated torque and motion angles of these joints obtained as well as the displacement curves of screw jacks in the gait cycle. Then, the human gait cycle was simulated in stance and swing phases and the obtained torque curves were compared. The results indicated that they followed the natural circle of the generated torque in joints with a little difference from each other. The maximum displacement obtained 4 and 6 cm in hip and knee joints jack respectively. The maximum torques in hip and knee joints were generated in foot contact phase. Also the minimum torques in hip and knee joints were generated in toe off and heel off phases respectively.
Interim Scientific Report: AFOSR-81-0122.
1983-05-05
Maximum likelihood. 2 Periton Lane, Mine-head, TA24 8AQ , England .... ...• .r- . ’ ’ "fl’ ’ ’ " .. ...... ’ ’"’ ’ - ’: , t i .a....,: Attachment 5
Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549
Integrated Efforts for Analysis of Geophysical Measurements and Models.
1997-09-26
12b. DISTRIBUTION CODE 13. ABSTRACT ( Maximum 200 words) This contract supported investigations of integrated applications of physics, ephemerides...REGIONS AND GPS DATA VALIDATIONS 20 2.5 PL-SCINDA: VISUALIZATION AND ANALYSIS TECHNIQUES 22 2.5.1 View Controls 23 2.5.2 Map Selection...and IR data, about cloudy pixels. Clustering and maximum likelihood classification algorithms categorize up to four cloud layers into stratiform or
Emura, Takeshi; Konno, Yoshihiko; Michimae, Hirofumi
2015-07-01
Doubly truncated data consist of samples whose observed values fall between the right- and left- truncation limits. With such samples, the distribution function of interest is estimated using the nonparametric maximum likelihood estimator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the complicated asymptotic distribution of the NPMLE, the bootstrap method has been suggested for statistical inference. This paper proposes a closed-form estimator for the asymptotic covariance function of the NPMLE, which is computationally attractive alternative to bootstrapping. Furthermore, we develop various statistical inference procedures, such as confidence interval, goodness-of-fit tests, and confidence bands to demonstrate the usefulness of the proposed covariance estimator. Simulations are performed to compare the proposed method with both the bootstrap and jackknife methods. The methods are illustrated using the childhood cancer dataset.
NASA Technical Reports Server (NTRS)
1979-01-01
A nonlinear, maximum likelihood, parameter identification computer program (NLSCIDNT) is described which evaluates rotorcraft stability and control coefficients from flight test data. The optimal estimates of the parameters (stability and control coefficients) are determined (identified) by minimizing the negative log likelihood cost function. The minimization technique is the Levenberg-Marquardt method, which behaves like the steepest descent method when it is far from the minimum and behaves like the modified Newton-Raphson method when it is nearer the minimum. Twenty-one states and 40 measurement variables are modeled, and any subset may be selected. States which are not integrated may be fixed at an input value, or time history data may be substituted for the state in the equations of motion. Any aerodynamic coefficient may be expressed as a nonlinear polynomial function of selected 'expansion variables'.
Maximum likelihood: Extracting unbiased information from complex networks
NASA Astrophysics Data System (ADS)
Garlaschelli, Diego; Loffredo, Maria I.
2008-07-01
The choice of free parameters in network models is subjective, since it depends on what topological properties are being monitored. However, we show that the maximum likelihood (ML) principle indicates a unique, statistically rigorous parameter choice, associated with a well-defined topological feature. We then find that, if the ML condition is incompatible with the built-in parameter choice, network models turn out to be intrinsically ill defined or biased. To overcome this problem, we construct a class of safely unbiased models. We also propose an extension of these results that leads to the fascinating possibility to extract, only from topological data, the “hidden variables” underlying network organization, making them “no longer hidden.” We test our method on World Trade Web data, where we recover the empirical gross domestic product using only topological information.
Galili, Tal; Meilijson, Isaac
2016-01-02
The Rao-Blackwell theorem offers a procedure for converting a crude unbiased estimator of a parameter θ into a "better" one, in fact unique and optimal if the improvement is based on a minimal sufficient statistic that is complete. In contrast, behind every minimal sufficient statistic that is not complete, there is an improvable Rao-Blackwell improvement. This is illustrated via a simple example based on the uniform distribution, in which a rather natural Rao-Blackwell improvement is uniformly improvable. Furthermore, in this example the maximum likelihood estimator is inefficient, and an unbiased generalized Bayes estimator performs exceptionally well. Counterexamples of this sort can be useful didactic tools for explaining the true nature of a methodology and possible consequences when some of the assumptions are violated. [Received December 2014. Revised September 2015.].
On the error probability of general tree and trellis codes with applications to sequential decoding
NASA Technical Reports Server (NTRS)
Johannesson, R.
1973-01-01
An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.
Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.
Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar
2017-03-01
This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8 × 800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.
Image classification at low light levels
NASA Astrophysics Data System (ADS)
Wernick, Miles N.; Morris, G. Michael
1986-12-01
An imaging photon-counting detector is used to achieve automatic sorting of two image classes. The classification decision is formed on the basis of the cross correlation between a photon-limited input image and a reference function stored in computer memory. Expressions for the statistical parameters of the low-light-level correlation signal are given and are verified experimentally. To obtain a correlation-based system for two-class sorting, it is necessary to construct a reference function that produces useful information for class discrimination. An expression for such a reference function is derived using maximum-likelihood decision theory. Theoretically predicted results are used to compare on the basis of performance the maximum-likelihood reference function with Fukunaga-Koontz basis vectors and average filters. For each method, good class discrimination is found to result in milliseconds from a sparse sampling of the input image.
Pointwise nonparametric maximum likelihood estimator of stochastically ordered survivor functions
Park, Yongseok; Taylor, Jeremy M. G.; Kalbfleisch, John D.
2012-01-01
In this paper, we consider estimation of survivor functions from groups of observations with right-censored data when the groups are subject to a stochastic ordering constraint. Many methods and algorithms have been proposed to estimate distribution functions under such restrictions, but none have completely satisfactory properties when the observations are censored. We propose a pointwise constrained nonparametric maximum likelihood estimator, which is defined at each time t by the estimates of the survivor functions subject to constraints applied at time t only. We also propose an efficient method to obtain the estimator. The estimator of each constrained survivor function is shown to be nonincreasing in t, and its consistency and asymptotic distribution are established. A simulation study suggests better small and large sample properties than for alternative estimators. An example using prostate cancer data illustrates the method. PMID:23843661
NASA Astrophysics Data System (ADS)
Ariffin, Syaiba Balqish; Midi, Habshah
2014-06-01
This article is concerned with the performance of logistic ridge regression estimation technique in the presence of multicollinearity and high leverage points. In logistic regression, multicollinearity exists among predictors and in the information matrix. The maximum likelihood estimator suffers a huge setback in the presence of multicollinearity which cause regression estimates to have unduly large standard errors. To remedy this problem, a logistic ridge regression estimator is put forward. It is evident that the logistic ridge regression estimator outperforms the maximum likelihood approach for handling multicollinearity. The effect of high leverage points are then investigated on the performance of the logistic ridge regression estimator through real data set and simulation study. The findings signify that logistic ridge regression estimator fails to provide better parameter estimates in the presence of both high leverage points and multicollinearity.
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1990-01-01
A real-time digital signal combining system for use with Ka-band feed arrays is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed samples by using a sliding-window implementation of a vector maximum-likelihood parameter estimator. It is shown that with averaging times of about 0.1 second, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the feed array, even in the presence of severe wind gusts and similar disturbances.
Fast automated analysis of strong gravitational lenses with convolutional neural networks.
Hezaveh, Yashar D; Levasseur, Laurence Perreault; Marshall, Philip J
2017-08-30
Quantifying image distortions caused by strong gravitational lensing-the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures-and estimating the corresponding matter distribution of these structures (the 'gravitational lens') has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the 'singular isothermal ellipsoid' density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.
NASA Astrophysics Data System (ADS)
Hasan, Husna; Radi, Noor Fadhilah Ahmad; Kassim, Suraiya
2012-05-01
Extreme share return in Malaysia is studied. The monthly, quarterly, half yearly and yearly maximum returns are fitted to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are performed to test for stationarity, while Mann-Kendall (MK) test is for the presence of monotonic trend. Maximum Likelihood Estimation (MLE) is used to estimate the parameter while L-moments estimate (LMOM) is used to initialize the MLE optimization routine for the stationary model. Likelihood ratio test is performed to determine the best model. Sherman's goodness of fit test is used to assess the quality of convergence of the GEV distribution by these monthly, quarterly, half yearly and yearly maximum. Returns levels are then estimated for prediction and planning purposes. The results show all maximum returns for all selection periods are stationary. The Mann-Kendall test indicates the existence of trend. Thus, we ought to model for non-stationary model too. Model 2, where the location parameter is increasing with time is the best for all selection intervals. Sherman's goodness of fit test shows that monthly, quarterly, half yearly and yearly maximum converge to the GEV distribution. From the results, it seems reasonable to conclude that yearly maximum is better for the convergence to the GEV distribution especially if longer records are available. Return level estimates, which is the return level (in this study return amount) that is expected to be exceeded, an average, once every t time periods starts to appear in the confidence interval of T = 50 for quarterly, half yearly and yearly maximum.
Profile-likelihood Confidence Intervals in Item Response Theory Models.
Chalmers, R Philip; Pek, Jolynn; Liu, Yang
2017-01-01
Confidence intervals (CIs) are fundamental inferential devices which quantify the sampling variability of parameter estimates. In item response theory, CIs have been primarily obtained from large-sample Wald-type approaches based on standard error estimates, derived from the observed or expected information matrix, after parameters have been estimated via maximum likelihood. An alternative approach to constructing CIs is to quantify sampling variability directly from the likelihood function with a technique known as profile-likelihood confidence intervals (PL CIs). In this article, we introduce PL CIs for item response theory models, compare PL CIs to classical large-sample Wald-type CIs, and demonstrate important distinctions among these CIs. CIs are then constructed for parameters directly estimated in the specified model and for transformed parameters which are often obtained post-estimation. Monte Carlo simulation results suggest that PL CIs perform consistently better than Wald-type CIs for both non-transformed and transformed parameters.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.
2018-03-01
Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.
A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets
NASA Astrophysics Data System (ADS)
JafarGandomi, Arash; Binley, Andrew
2013-09-01
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.
NASA Astrophysics Data System (ADS)
Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz
2015-02-01
In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.
Zhou, Xiaofan; Shen, Xing-Xing; Hittinger, Chris Todd
2018-01-01
Abstract The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses. PMID:29177474
Ye, Xin; Garikapati, Venu M.; You, Daehyun; ...
2017-11-08
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xin; Garikapati, Venu M.; You, Daehyun
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basismore » of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.« less
Cupiennius salei: biomechanical properties of the tibia-metatarsus joint and its flexing muscles.
Siebert, Tobias; Weihmann, Tom; Rode, Christian; Blickhan, Reinhard
2010-02-01
Hunting spiders are well adapted to fast locomotion. Space saving hydraulic leg extension enables leg segments, which consist almost soley of flexor muscles. As a result, the muscle cross sectional area is high despite slender legs. Considering these morphological features in context with the spider's segmented C-shaped legs, these specifics might influence the spider's muscle properties. Moreover, these properties have to be known for modeling of spider locomotion. Cupiennius salei (n = 5) were fixed in a metal frame allowing exclusive flexion of the tibia-metatarsus joint of the second leg (counted from anterior). Its flexing muscles were stimulated supramaximally using needle electrodes. Accounting for the joint geometry, the force-length and the force-velocity relationships were determined. The spider muscles produce 0.07 N cm maximum isometric moment (corresponding to 25 N/cm(2) maximum stress) at 160 degrees tibia-metatarsus joint angle. When overextended to the dorsal limit at approximately 200 degrees , the maximum isometric moments decrease to 72%, and, when flexed to the ventral hinge stop at 85 degrees , they drop to 11%. The force-velocity relation shows the typical hyperbolic shape. The mean maximum shortening velocity is 5.7 optimum muscle lengths per second and the mean curvature (a/F (iso)) of the Hill-function is 0.34. The spider muscle's properties which were determined are similar to those of other species acting as motors during locomotion (working range, curvature of Hill hyperbola, peak power at the preferred speeds), but they are relatively slow. In conjunction with the low mechanical advantage (muscle lever/load arm), the arrangement of three considerably actuated joints in series may nonetheless enable high locomotion velocities.