Sample records for joint power generation

  1. The independent effects of speed and propulsive force on joint power generation in walking

    PubMed Central

    Browne, Michael G.; Franz, Jason R.

    2017-01-01

    Walking speed is modulated using propulsive forces (FP) during push-off and both preferred speed and FP decrease with aging. However, even prior to walking slower, reduced FP may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time FP measurements to decouple and investigate the interaction between joint-level coordination, whole-body FP, and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9 – 1.3 m/s). We immediately calculated the average FP from each speed. Subjects then walked at 1.3 m/s while completing a series of biofeedback trials with instructions to match their instantaneous FP to their averaged FP from slower speeds. Walking slower decreased FP and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced FP, not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body FP, and walking speed in our aging population. PMID:28262285

  2. The independent effects of speed and propulsive force on joint power generation in walking.

    PubMed

    Browne, Michael G; Franz, Jason R

    2017-04-11

    Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study.

    PubMed

    Debaere, Sofie; Vanwanseele, Benedicte; Delecluse, Christophe; Aerenhouts, Dirk; Hagman, Friso; Jonkers, Ilse

    2017-11-01

    The aim of this study was to investigate differences in joint power generation between well-trained adult athletes and young sprinters from block clearance to initial contact of second stance. Eleven under 16 (U16) and 18 under 18 (U18) promising sprinters executed an explosive start action. Fourteen well-trained adult sprinters completed the exact same protocol. All athletes were equipped with 74 spherical reflective markers, while an opto-electronic motion analysis system consisting of 12 infrared cameras (250 Hz, MX3, Vicon, Oxford Metrics, UK) and 2 Kistler force plates (1,000 Hz) was used to collect the three-dimensional marker trajectories and ground reaction forces (Nexus, Vicon). Three-dimensional kinematics, kinetics, and power were calculated (Opensim) and time normalised from the first action after gunshot until initial contact of second stance after block clearance. This study showed that adult athletes rely on higher knee power generation during the first stance to induce longer step length and therefore higher velocity. In younger athletes, power generation of hip was more dominant.

  4. The hindlimb in walking horses: 2. Net joint moments and joint powers.

    PubMed

    Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R

    2001-01-01

    The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.

  5. Characterisation of a knee-joint energy harvester powering a wireless communication sensing node

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Zhu, Meiling

    2016-05-01

    Human-based energy harvesters are attractive as sustainable replacements for batteries to power wearable or implantable devices and body sensor networks. In the work presented here, a knee-joint energy harvester (KEH) was introduced to power a customer-built wireless communication sensing node (WCSN). The KEH used a mechanical plucking technique to provide sufficient frequency up-conversion—from a few Hz to the resonant frequency of the KEH—so as to generate the high power required. It was actuated by a knee-joint simulator, which reproduced the knee-joint motion of human gaits at a walking frequency of 0.9 Hz. The energy generated was first stored in a reservoir capacitor and then released to the WCSN in a burst mode with the help of an energy aware interface. The WCSN was deployed with a three-axis accelerometer, a temperature sensor, and a light detector for data sensing. A Jennic microcontroller was utilised to collect and transmit the measured data to a base station placed at a distance of 4 m. The energy generation by the KEH and the energy distribution in the system was characterised in real time by an in-house-built set-up. The results showed that the KEH generated an average power output of 1.76 mW when powering the WCSN. After charging the reservoir capacitor for 28.4 s, the KEH can power the WCSN for a 46 ms period every 1.25 s. The results also clearly illustrated how the energy generated by the KEH was distributed in the system and highlighted the importance of using a high performance power management approach to improve the performance of the whole system.

  6. Deconstructing the power resistance relationship for squats: A joint-level analysis.

    PubMed

    Farris, D J; Lichtwark, G A; Brown, N A T; Cresswell, A G

    2016-07-01

    Generating high leg power outputs is important for executing rapid movements. Squats are commonly used to increase leg strength and power. Therefore, it is useful to understand factors affecting power output in squatting. We aimed to deconstruct the mechanisms behind why power is maximized at certain resistances in squatting. Ten male rowers (age = 20 ± 2.2 years; height = 1.82 ± 0.03 m; mass = 86 ± 11 kg) performed maximal power squats with resistances ranging from body weight to 80% of their one repetition maximum (1RM). Three-dimensional kinematics was combined with ground reaction force (GRF) data in an inverse dynamics analysis to calculate leg joint moments and powers. System center of mass (COM) velocity and power were computed from GRF data. COM power was maximized across a range of resistances from 40% to 60% 1RM. This range was identified because a trade-off in hip and knee joint powers existed across this range, with maximal knee joint power occurring at 40% 1RM and maximal hip joint power at 60% 1RM. A non-linear system force-velocity relationship was observed that dictated large reductions in COM power below 20% 1RM and above 60% 1RM. These reductions were due to constraints on the control of the movement. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Magnetostrictive energy generator for harvesting the rotation of human knee joint

    NASA Astrophysics Data System (ADS)

    Yan, Baiping; Zhang, Chengming; Li, Liyi

    2018-05-01

    This paper presents the design and fabrication of a rotary-impact magnetostrictive energy generator, used to harvest the rotation of human knee joint. The harvester consists of twelve movable Terfenol-D rods, surrounded by the picked up coils respectively, and alternate permanent magnet (PM) array sandwiched in each part of the shell. Rotational electromagnetic power generating effect and impacted magnetostrictive power generating effect are designed in the harvester. Modeling and simulation are used to validate the concept. Then, magnetic field and leakage of the harvester are analyzed, electromagnetic force in the harvester is simulated. A prototype of harvester is fabricated, and subjected to the experimental characterization. It can be concluded that huge induced voltage generated in the short-time impact situation and that induced voltage in the harvester can reach up to 60-80 volts at 0.91Hz low frequency rotation. Also, the presented harvester has good harvesting effects at low frequency human walking and periodic swing crus situation, which are suitable to be used for future researches of wearable knee joint applications.

  8. Behavior of stress generated in semiconductor chips with high-temperature joints: Influence of mechanical properties of joint materials

    NASA Astrophysics Data System (ADS)

    Ito, H.; Kuwahara, M.; Ohta, R.; Usui, M.

    2018-04-01

    High-temperature joint materials are indispensable to realizing next-generation power modules with high-output performance. However, crack initiation resulting from stress concentration in semiconductor chips joined with high-temperature joint materials remains a critical problem in high-temperature operation. Therefore, clarifying the quantitative influence of joint materials on the stress generated in chips is essential. This study investigates the stress behavior of chips joined by Ni-Sn solid-liquid interdiffusion (SLID), which results in a high-temperature joint material likely to generate cracks after joining or when under thermal cycling. The results are compared with those fabricated using three types of solders, Pb-10%Sn, Sn-0.7%Cu, and Sn-10%Sb (mass %), which are conventional joint materials with different melting points and mechanical properties. Using Ni-Sn SLID results in the generation of high compressive stress (500 MPa) without stress relaxation after the joining process in contrast to the case of solders in which the compressive stresses are low (<300 MPa) and decrease to still lower levels (<250 MPa). In addition, no stress relaxation occurs during thermal cycling when using Ni-Sn SLID, whereas stress relaxation is clearly observed during heating to 200 °C using solders. Different stress behaviors between Ni-Sn SLID and other joint materials are illustrated by their mechanical strength and resistance against plastic and creep deformation. These results suggest that stress relaxation in a chip is key in suppressing crack initiation in highly reliable modules during high-temperature operation.

  9. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    PubMed

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocity<0), indicating absorption of mechanical energy, was associated with MTU lengthening, and positive power (generation of mechanical energy) was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In contrast, substantial differences between ankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children

    PubMed Central

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-01-01

    Abstract Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles’ force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (–) r(14) = −0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide

  11. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  12. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P

    2016-06-01

    The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.

  13. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-07-01

    Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight

  14. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  15. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  16. Thermoelectric power generator for variable thermal power source

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  17. Air-Sea Battle through Joint Training: Power Projection Sustainability

    DTIC Science & Technology

    2014-05-15

    9 generate our decisive advantage.” 39 An example of cross-domain operations employed by the USN and USAF was the release of an AGM-154C Joint...and Herzegovina. While employing a USAF GBU -15 “electro-optically guided” bomb within close range of a USN AGM-84 SLAM-ER, “electronic... 39 U.S. Office of the Chairman, Joint Chiefs of Staff. Capstone Concept for Joint Operations: Joint Force 2020

  18. Mildly disabled persons with multiple sclerosis use similar net joint power strategies as healthy controls when walking speed increases.

    PubMed

    Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik

    2018-01-01

    To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.

  19. Subwavelength elastic joints connecting torsional waveguides to maximize the power transmission coefficient

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young

    2017-03-01

    Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.

  20. Future trends in power generation cost by power resource

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The Japan Energy Economy Research Institute has been evaluating power generation cost by each power resource every year focusing on nuclear power generation. The Institute is surveying the cost evaluations by power resources in France, Britain and the U.S.A., the nuclear generation advanced nations. The OECD is making power generation cost estimation using a hypothesis which uniforms basically the conditions varying in different member countries. In model power generation cost calculations conducted by the Ministry of International Trade and Industry of Japan, nuclear power generation is the most economical system in any fiscal year. According to recent calculations performed by the Japan Energy Economy Research Institute, the situation is such that it is difficult to distinguish the economical one from others among the power generation systems in terms of generation costs except for thermal power generation. Economic evaluations are given on estimated power generation costs based on construction costs for nuclear and thermal power plants, nuclear fuel cycling cost, and fuel cost data on petroleum, LNG and coal. With regard to the future trends, scenario analyses are made on generation costs, that assume fluctuations in fuel prices and construction costs, the important factors to give economic influence on power generation.

  1. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2018-01-01

    This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.

  2. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2017-09-22

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  3. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  4. Power Smoothing and MPPT for Grid-connected Wind Power Generation with Doubly Fed Induction Generator

    NASA Astrophysics Data System (ADS)

    Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio

    Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.

  5. Electrical power generating system

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1983-01-01

    A power generating system for adjusting coupling an induction motor, as a generator, to an A.C. power line wherein the motor and power line are connected through a triac is described. The triac is regulated to normally turn on at a relatively late point in each half cycle of its operation, whereby at less than operating speed, and thus when the induction motor functions as a motor rather than as a generator, power consumption from the line is substantially reduced.

  6. Study on development system of increasing gearbox for high-performance wind-power generator

    NASA Astrophysics Data System (ADS)

    Xu, Hongbin; Yan, Kejun; Zhao, Junyu

    2005-12-01

    Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.

  7. Cu-Sn Intermetallic Compound Joints for High-Temperature Power Electronics Applications

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Suk; Yoon, Jeong-Won

    2018-01-01

    Cu-Sn solid-liquid interdiffusion (SLID) bonded joints were fabricated using a Sn-Cu solder paste and Cu for high-temperature power electronics applications. The interfacial reaction behaviors and the mechanical properties of Cu6Sn5 and Cu3Sn SLID-bonded joints were compared. The intermetallic compounds formed at the interfaces in the Cu-Sn SLID-bonded joints significantly affected the die shear strength of the joint. In terms of thermal and mechanical properties, the Cu3Sn SLID-bonded joint was superior to the conventional solder and the Cu6Sn5 SLID-bonded joints.

  8. Power Control of New Wind Power Generation System with Induction Generator Excited by Voltage Source Converter

    NASA Astrophysics Data System (ADS)

    Morizane, Toshimitsu; Kimura, Noriyuki; Taniguchi, Katsunori

    This paper investigates advantages of new combination of the induction generator for wind power and the power electronic equipment. Induction generator is popularly used for the wind power generation. The disadvantage of it is impossible to generate power at the lower rotor speed than the synchronous speed. To compensate this disadvantage, expensive synchronous generator with the permanent magnets is sometimes used. In proposed scheme, the diode rectifier is used to convert the real power from the induction generator to the intermediate dc voltage, while only the reactive power necessary to excite the induction generator is supplied from the voltage source converter (VSC). This means that the rating of the expensive VSC is minimized and total cost of the wind power generation system is decreased compared to the system with synchronous generator. Simulation study to investigate the control strategy of proposed system is performed. The results show the reduction of the VSC rating is prospective.

  9. Chapter 11: Marine and Hydrokinetic Power Generation and Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Yu, Yi-Hsiang

    Marine and hydrokinetic (MHK) power generation is a relatively new type of renewable generation. Predecessors such as wind power generation, hydropower plant generation, geothermal generation, photovoltaic generation, and solar thermal generation have gained a lot of attention because of their successful implementation. The successful integration of renewable generation into the electric power grid has energized the power system global communities to take the lessons learned, innovations, and market structure to focus on the large potential of MHK to also contribute to the pool of renewable energy generation. This chapter covers the broad spectrum of MHK generation. The state-of-the-art power takeoffmore » methods will be discussed. Types of electrical generators will be presented, and the options for implementation will be presented.« less

  10. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-03-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  11. Isolated Power Generation System Using Permanent Magnet Synchronous Generator with Improved Power Quality

    NASA Astrophysics Data System (ADS)

    Arya, Sabha Raj; Patel, Ashish; Giri, Ashutosh

    2018-06-01

    This paper deals wind energy based power generation system using Permanent Magnet Synchronous Generator (PMSG). It is controlled using advanced enhanced phase-lock loop for power quality features using distribution static compensator to eliminate the harmonics and to provide KVAR compensation as well as load balancing. It also manages rated potential at the point of common interface under linear and non-linear loads. In order to have better efficiency and reliable operation of PMSG driven by wind turbine, it is necessary to analyze the governing equation of wind based turbine and PMSG under fixed and variable wind speed. For handling power quality problems, power electronics based shunt connected custom power device is used in three wire system. The simulations in MATLAB/Simulink environment have been carried out in order to demonstrate this model and control approach used for the power quality enhancement. The performance results show the adequate performance of PMSG based power generation system and control algorithm.

  12. Joint Estimation of the Epoch of Reionization Power Spectrum and Foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter; Pober, Jonathan

    2018-01-01

    Bright astrophysical foregrounds present a significant impediment to the detection of redshifted 21-cm emission from the Epoch of Reionization on large spatial scales. In this talk I present a framework for the joint modeling of the power spectral contamination by astrophysical foregrounds and the power spectrum of the Epoch of Reionization. I show how informative priors on the power spectral contamination by astrophysical foregrounds at high redshifts, where emission from both the Epoch of Reionization and its foregrounds is present in the data, can be obtained through analysis of foreground-only emission at lower redshifts. Finally, I demonstrate how, by using such informative foreground priors, joint modeling can be employed to mitigate bias in estimates of the power spectrum of the Epoch of Reionization signal and, in particular, to enable recovery of more robust power spectral estimates on large spatial scales.

  13. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  14. Aircraft Photovoltaic Power-Generating System.

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet -engine design modifications incorporating this concept not only save weight (and thus fuel), but are--in themselves --favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project. This new electrical power-generating system offers solid-state reliability with electrical power-output capability comparable to that of existing aircraft electromechanical power-generating systems (alternators and generators). In addition to improvements in aircraft performance, significant aircraft fuel- and weight-saving advantages are projected.

  15. Effect of kinesio taping on lower limb joint powers in individuals with genu varum.

    PubMed

    Jafarnezhadgero, AmirAli; Shad, Morteza Madadi; Majlesi, Mahdi; Zago, Matteo

    2018-04-01

    Therapeutic lateral knee joint muscle taping potentially offers a low-risk, economical and effective alternative for the clinical treatment of light to moderate knee overload, due to misalignment in patients with genu varum. In this study, we aimed at investigating the immediate effect of lateral knee joint muscular kinesio taping on lower limb joint powers, during the stance phase of walking, in individuals with genu varum. Fifteen male subjects with genu varum misalignment (age: 24.2±3.7 years) participated in the study. Subjects performed three walking trials without, and three with, biceps femoris and vastus lateralis kinesio taping. The three-dimensional position coordinate data of reflective markers were collected at 100 Hz using a six-cameras Vicon system (Motion Analysis Corp., UK). Additionally, two Kistler force plates (Kistler AG, Winterthur, Switzerland) were used to record the Ground Reaction Forces (GRF) components at 1000 Hz during stance phase of walking. A three-way ANOVA with post-hoc testing (using paired samples Student's t-test with Bonferroni correction) was performed to compare the power values of lower limb joints before and after the use of KT. With kinesio taping, we observed that the average negative power increased at the ankle level in dominant limb, (P<0.05, 10-20% of gait cycle, GC), and at the knee level in both limbs (10-20% and 60-80% GC). Further, average negative power of the non-dominant knee joint (80-100% GC) and positive power of the non-dominant hip joint (60-80% GC) significantly reduced (P<0.05) in kinesio taping condition. The biomechanical analysis of joint power during walking using kinesio taping provided essential information about the possible mechanisms involved in gait analysis with this intervention in adults with genu varus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. On the generation of tangential ground motion by underground explosions in jointed rocks

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  17. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.

    PubMed

    Wu, Wen; Fong, Justin; Crocher, Vincent; Lee, Peter V S; Oetomo, Denny; Tan, Ying; Ackland, David C

    2018-04-27

    Robotic-assistive exoskeletons can enable frequent repetitive movements without the presence of a full-time therapist; however, human-machine interaction and the capacity of powered exoskeletons to attenuate shoulder muscle and joint loading is poorly understood. This study aimed to quantify shoulder muscle and joint force during assisted activities of daily living using a powered robotic upper limb exoskeleton (ArmeoPower, Hocoma). Six healthy male subjects performed abduction, flexion, horizontal flexion, reaching and nose touching activities. These tasks were repeated under two conditions: (i) the exoskeleton compensating only for its own weight, and (ii) the exoskeleton providing full upper limb gravity compensation (i.e., weightlessness). Muscle EMG, joint kinematics and joint torques were simultaneously recorded, and shoulder muscle and joint forces calculated using personalized musculoskeletal models of each subject's upper limb. The exoskeleton reduced peak joint torques, muscle forces and joint loading by up to 74.8% (0.113 Nm/kg), 88.8% (5.8%BW) and 68.4% (75.6%BW), respectively, with the degree of load attenuation strongly task dependent. The peak compressive, anterior and superior glenohumeral joint force during assisted nose touching was 36.4% (24.6%BW), 72.4% (13.1%BW) and 85.0% (17.2%BW) lower than that during unassisted nose touching, respectively. The present study showed that upper limb weight compensation using an assistive exoskeleton may increase glenohumeral joint stability, since deltoid muscle force, which is the primary contributor to superior glenohumeral joint shear, is attenuated; however, prominent exoskeleton interaction moments are required to position and control the upper limb in space, even under full gravity compensation conditions. The modeling framework and results may be useful in planning targeted upper limb robotic rehabilitation tasks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Joint Bayesian Component Separation and CMB Power Spectrum Estimation

    NASA Technical Reports Server (NTRS)

    Eriksen, H. K.; Jewell, J. B.; Dickinson, C.; Banday, A. J.; Gorski, K. M.; Lawrence, C. R.

    2008-01-01

    We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground- CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3 deg FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.

  19. Electrical Power Conversion of River and Tidal Power Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less

  20. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  1. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE PAGES

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...

    2017-07-11

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  2. Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators: Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.

    Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less

  3. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  4. Thermoelectric power generator with intermediate loop

    DOEpatents

    Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  5. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.

    PubMed

    Liew, Bernard X W; Morris, Susan; Netto, Kevin

    2016-06-01

    Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 3D abnormal behavior recognition in power generation

    NASA Astrophysics Data System (ADS)

    Wei, Zhenhua; Li, Xuesen; Su, Jie; Lin, Jie

    2011-06-01

    So far most research of human behavior recognition focus on simple individual behavior, such as wave, crouch, jump and bend. This paper will focus on abnormal behavior with objects carrying in power generation. Such as using mobile communication device in main control room, taking helmet off during working and lying down in high place. Taking account of the color and shape are fixed, we adopted edge detecting by color tracking to recognize object in worker. This paper introduces a method, which using geometric character of skeleton and its angle to express sequence of three-dimensional human behavior data. Then adopting Semi-join critical step Hidden Markov Model, weighing probability of critical steps' output to reduce the computational complexity. Training model for every behavior, mean while select some skeleton frames from 3D behavior sample to form a critical step set. This set is a bridge linking 2D observation behavior with 3D human joints feature. The 3D reconstruction is not required during the 2D behavior recognition phase. In the beginning of recognition progress, finding the best match for every frame of 2D observed sample in 3D skeleton set. After that, 2D observed skeleton frames sample will be identified as a specifically 3D behavior by behavior-classifier. The effectiveness of the proposed algorithm is demonstrated with experiments in similar power generation environment.

  7. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    PubMed Central

    Hwang, Seonhong; Kim, Youngeun; Kim, Youngho

    2009-01-01

    Background In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis. Methods Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis. Results There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip

  8. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting.

    PubMed

    Hwang, Seonhong; Kim, Youngeun; Kim, Youngho

    2009-02-02

    In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis. Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis. There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant

  9. Enhancing power generation of floating wave power generators by utilization of nonlinear roll-pitch coupling

    NASA Astrophysics Data System (ADS)

    Yerrapragada, Karthik; Ansari, M. H.; Karami, M. Amin

    2017-09-01

    We propose utilization of the nonlinear coupling between the roll and pitch motions of wave energy harvesting vessels to increase their power generation by orders of magnitude. Unlike linear vessels that exhibit unidirectional motion, our vessel undergoes both pitch and roll motions in response to frontal waves. This significantly magnifies the motion of the vessel and thus improves the power production by several orders of magnitude. The ocean waves result in roll and pitch motions of the vessel, which in turn causes rotation of an onboard pendulum. The pendulum is connected to an electric generator to produce power. The coupled electro-mechanical system is modeled using energy methods. This paper investigates the power generation of the vessel when the ratio between pitch and roll natural frequencies is about 2 to 1. In that case, a nonlinear energy transfer occurs between the roll and pitch motions, causing the vessel to perform coupled pitch and roll motion even though it is only excited in the pitch direction. It is shown that co-existence of pitch and roll motions significantly enhances the pendulum rotation and power generation. A method for tuning the natural frequencies of the vessel is proposed to make the energy generator robust to variations of the frequency of the incident waves. It is shown that the proposed method enhances the power output of the floating wave power generators by multiple orders of magnitude. A small-scale prototype is developed for the proof of concept. The nonlinear energy transfer and the full rotation of the pendulum in the prototype are observed in the experimental tests.

  10. The associations between quadriceps muscle strength, power, and knee joint mechanics in knee osteoarthritis: A cross-sectional study.

    PubMed

    Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A

    2015-12-01

    Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (P<0.05). Quadriceps power at 90% of one repetition maximum accounted for 9% of the variance in peak knee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Gabb, Timothy P.

    2009-01-01

    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed.

  12. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.

    PubMed

    Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi

    2012-06-01

    The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, P<0.01) and gait speed (r=0.66, P<0.05). In contrast, quasi-joint stiffness in controls negatively correlated with maximal ankle power (r=-0.73, P<0.05) and gait speed (r=-0.76, P<0.05). Our findings suggested that ankle power during gait might be generated by increasing quasi-joint stiffness in patients with hemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Power generation systems and methods

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor)

    2011-01-01

    A power generation system includes a plurality of submerged mechanical devices. Each device includes a pump that can be powered, in operation, by mechanical energy to output a pressurized output liquid flow in a conduit. Main output conduits are connected with the device conduits to combine pressurized output flows output from the submerged mechanical devices into a lower number of pressurized flows. These flows are delivered to a location remote of the submerged mechanical devices for power generation.

  14. Upper body contributions to power generation during rapid, overhand throwing in humans.

    PubMed

    Roach, Neil T; Lieberman, Daniel E

    2014-06-15

    High-speed and accurate throwing is a distinctive human behavior. Achieving fast projectile speeds during throwing requires a combination of elastic energy storage at the shoulder, as well as the transfer of kinetic energy from proximal body segments to distal segments. However, the biomechanical bases of these mechanisms are not completely understood. We used inverse dynamics analyses of kinematic data from 20 baseball players fitted with four different braces that inhibit specific motions to test a model of power generation at key joints during the throwing motion. We found that most of the work produced during throwing is generated at the hips, and much of this work (combined with smaller contributions from the pectoralis major) is used to load elastic elements in the shoulder and power the rapid acceleration of the projectile. Despite rapid angular velocities at the elbow and wrist, the restrictions confirm that much of the power generated to produce these distal movements comes from larger proximal segments, such as the shoulder and torso. Wrist hyperextension enhances performance only modestly. Together, our data also suggest that heavy reliance on elastic energy storage may help explain some common throwing injuries and can provide further insight into the evolution of the upper body and when our ancestors first developed the ability to produce high-speed throws. © 2014. Published by The Company of Biologists Ltd.

  15. Local muscle oxygen consumption related to external and joint specific power.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2016-02-01

    The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alex (Inventor); Phillips, Wayne (Inventor); Kolawa, Elizabeth A. (Inventor); Snyder, G. Jeffrey (Inventor); Caillat, Thierry (Inventor); Kascich, Thorsten (Inventor); Mueller, Peter (Inventor)

    2004-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  17. Microfabricated thermoelectric power-generation devices

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Phillips, Wayne (Inventor); Borshchevsky, Alex (Inventor); Kolawa, Elizabeth A. (Inventor); Ryan, Margaret A. (Inventor); Caillat, Thierry (Inventor); Mueller, Peter (Inventor); Snyder, G. Jeffrey (Inventor); Kascich, Thorsten (Inventor)

    2002-01-01

    A device for generating power to run an electronic component. The device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with a high temperature region. During operation, heat flows from the high temperature region into the heat-conducting substrate, from which the heat flows into the electrical power generator. A thermoelectric material (e.g., a BiTe alloy-based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. A low temperature region is located on the side of the thermoelectric material opposite that of the high temperature region. The thermal gradient generates electrical power and drives an electrical component.

  18. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  19. Oscillating fluid power generator

    DOEpatents

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  20. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  1. Electrical Power Conversion of a River and Tidal Power Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Gevorgian, Vahan; Wright, Alan

    As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded to include new types with promising future applications, such as river and tidal generation. Although the utilization of power electronics and electric machines in industry is phenomenal, the emphasis on system design is different for various sectors of industry. In precision control, robotics, and weaponry, the design emphasis is on accuracy and reliability with less concern for the cost of the final product. In energy generation, the cost of energy is the prime concern;more » thus, capital expenditures (CAPEX) and operations and maintenance expenditures (OPEX) are the major design objectives. This paper describes the electrical power conversion aspects of river and tidal generation. Although modern power converter control is available to control the generation side, the design was chosen on the bases of minimizing the CAPEX and OPEX; thus, the architecture is simple and modular for ease of replacement and maintenance. The power conversion is simplified by considering a simple diode bridge and a DC-DC power converter to take advantage of abundant and low-cost photovoltaic inverters that have well-proven grid integration characteristics (i.e., the capability to produce energy with good power quality and control real power and voltage on the grid side).« less

  2. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  3. Novel knee joint mechanism of transfemoral prosthesis for stair ascent.

    PubMed

    Inoue, Koh; Wada, Takahiro; Harada, Ryuchi; Tachiwana, Shinichi

    2013-06-01

    The stability of a transfemoral prosthesis when walking on flat ground has been established by recent advances in knee joint mechanisms and their control methods. It is, however, difficult for users of a transfemoral prosthesis to ascend stairs. This difficulty is mainly due to insufficient generation of extension moment around the knee joint of the prosthesis to lift the body to the next step on the staircase and prevent any unexpected flexion of the knee joint in the stance phase. Only a prosthesis with an actuator has facilitated stair ascent using a step-over-step gait (1 foot is placed per step). However, its use has issues associated with the durability, cost, maintenance, and usage environment. Therefore, the purpose of this research is to develop a novel knee joint mechanism for a prosthesis that generates an extension moment around the knee joint in the stance phase during stair ascent, without the use of any actuators. The proposed mechanism is based on the knowledge that the ground reaction force increases during the stance phase when the knee flexion occurs. Stair ascent experiments with the prosthesis showed that the proposed prosthesis can realize stair ascent without any undesirable knee flexion. In addition, the prosthesis is able to generate a positive knee joint moment power in the stance phase even without any power source.

  4. Integrated engine generator for aircraft secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.

    1972-01-01

    An integrated engine-generator for aircraft secondary power generation is described. The concept consists of an electric generator located inside a turbojet or turbofan engine and both concentric with and driven by one of the main engine shafts. The electric power conversion equipment and generator controls are located in the aircraft. When properly rated, the generator serves as an engine starter as well as a source of electric power. This configuration reduces or eliminates the need for an external gear box on the engine and permits reduction in the nacelle diameter.

  5. Cross-layer Joint Relay Selection and Power Allocation Scheme for Cooperative Relaying System

    NASA Astrophysics Data System (ADS)

    Zhi, Hui; He, Mengmeng; Wang, Feiyue; Huang, Ziju

    2018-03-01

    A novel cross-layer joint relay selection and power allocation (CL-JRSPA) scheme over physical layer and data-link layer is proposed for cooperative relaying system in this paper. Our goal is finding the optimal relay selection and power allocation scheme to maximize system achievable rate when satisfying total transmit power constraint in physical layer and statistical delay quality-of-service (QoS) demand in data-link layer. Using the concept of effective capacity (EC), our goal can be formulated into an optimal joint relay selection and power allocation (JRSPA) problem to maximize the EC when satisfying total transmit power limitation. We first solving optimal power allocation (PA) problem with Lagrange multiplier approach, and then solving optimal relay selection (RS) problem. Simulation results demonstrate that CL-JRSPA scheme gets larger EC than other schemes when satisfying delay QoS demand. In addition, the proposed CL-JRSPA scheme achieves the maximal EC when relay located approximately halfway between source and destination, and EC becomes smaller when the QoS exponent becomes larger.

  6. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  7. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  8. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  9. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  10. 18 CFR 801.12 - Electric power generation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Electric power... COMMISSION GENERAL POLICIES § 801.12 Electric power generation. (a) Significant uses are presently being made of the waters of the basin for the generation of electric power at hydro, pumped storage, and...

  11. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.

    PubMed

    Honert, Eric C; Zelik, Karl E

    2016-01-01

    Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%. During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented

  12. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  13. Controlling the joint local false discovery rate is more powerful than meta-analysis methods in joint analysis of summary statistics from multiple genome-wide association studies.

    PubMed

    Jiang, Wei; Yu, Weichuan

    2017-02-15

    In genome-wide association studies (GWASs) of common diseases/traits, we often analyze multiple GWASs with the same phenotype together to discover associated genetic variants with higher power. Since it is difficult to access data with detailed individual measurements, summary-statistics-based meta-analysis methods have become popular to jointly analyze datasets from multiple GWASs. In this paper, we propose a novel summary-statistics-based joint analysis method based on controlling the joint local false discovery rate (Jlfdr). We prove that our method is the most powerful summary-statistics-based joint analysis method when controlling the false discovery rate at a certain level. In particular, the Jlfdr-based method achieves higher power than commonly used meta-analysis methods when analyzing heterogeneous datasets from multiple GWASs. Simulation experiments demonstrate the superior power of our method over meta-analysis methods. Also, our method discovers more associations than meta-analysis methods from empirical datasets of four phenotypes. The R-package is available at: http://bioinformatics.ust.hk/Jlfdr.html . eeyu@ust.hk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. Coal and Coal/Biomass-Based Power Generation

    EPA Science Inventory

    For Frank Princiotta's book, Global Climate Change--The Technology Challenge Coal is a key, growing component in power generation globally. It generates 50% of U.S. electricity, and criteria emissions from coal-based power generation are being reduced. However, CO2 emissions m...

  15. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  16. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  17. Power generator driven by Maxwell's demon

    NASA Astrophysics Data System (ADS)

    Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira

    2017-05-01

    Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.

  18. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  19. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  20. Forecasting Electric Power Generation of Photovoltaic Power System for Energy Network

    NASA Astrophysics Data System (ADS)

    Kudo, Mitsuru; Takeuchi, Akira; Nozaki, Yousuke; Endo, Hisahito; Sumita, Jiro

    Recently, there has been an increase in concern about the global environment. Interest is growing in developing an energy network by which new energy systems such as photovoltaic and fuel cells generate power locally and electric power and heat are controlled with a communications network. We developed the power generation forecast method for photovoltaic power systems in an energy network. The method makes use of weather information and regression analysis. We carried out forecasting power output of the photovoltaic power system installed in Expo 2005, Aichi Japan. As a result of comparing measurements with a prediction values, the average prediction error per day was about 26% of the measured power.

  1. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  2. The steps to forming a joint venture IPP in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Z.; Colligan, M.J.

    Poland represents the largest market in Central Europe with 38 million people and an installed electrical generating capacity of about 32 gigawatts. Since 1989, when the process of governmental restructuring along free market principals began, the allure to IPP developers has been evident, but is of yet unrealized. The natural model for IPP development in Poland would seem to be joint ventures with Polish generating companies. These enterprises already have sites, franchises, and a going business to contribute to a joint company. There are a number of reasons why so few deals have been concluded in Poland to date, andmore » a number of barriers still exist that tend to hamper the realization of project finance funded power joint ventures. But, these barriers are not insurmountable. Overcoming them in the context of a joint venture relationship with a domestic partner requires patience, work, and an ability to bridge the gaps between the realities of working in a post-Communist environment and the practicalities of structuring projects that can be financed in the international capital markets. The new Energy Law in Poland establishes a framework for a viable private sector power generation business. But the enabling regulations are yet to be published or approved. There is still effective political risk on account of the uncertainty this creates. Pressure is mounting on the Polish Government, especially due to its expressed interest in joining the EU, to get the power sector to operate on private sector terms, if not in private hands. The trends are pointing in the direction of increased market driven policies and practices. The conclusion is that, despite the delays of the past, independent power projects will start to happen in Poland on a joint venture basis, with increasing frequency in the next years.« less

  3. Evaluation Of Different Power Conditioning Options For Stirling Generators

    NASA Astrophysics Data System (ADS)

    Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Maset, E.; Montalban, G.; Ejea, J.; Ferreres, A.; Sanchis, E.

    2011-10-01

    Free-piston Stirling engines are an interesting alternative for electrical power systems, especially in deep space missions where photovoltaic systems are not feasible. This kind of power generators contains two main parts, the Stirling machine and the linear alternator that converts the mechanical energy from the piston movement to electrical energy. Since the generated power is in AC form, several aspects should be assessed to use such kind of generators in a spacecraft power system: AC/DC topologies, power factor correction, power regulation techniques, integration into the power system, etc. This paper details power generator operation and explores different power conversion approaches.

  4. Piezoelectric power generation using friction-induced vibration

    NASA Astrophysics Data System (ADS)

    Tadokoro, Chiharu; Matsumoto, Aya; Nagamine, Takuo; Sasaki, Shinya

    2017-06-01

    In order to examine the feasibility of power generation by using friction-induced vibration with a piezoelectric element, we performed experiments and numerical analysis. In the experiments, the generated power in the piezoelectric element and the displacement of an oscillator were measured by a newly developed apparatus that embodied a single-degree-of-freedom (1-DOF) system with friction. In the numerical analysis, an analytical model of a 1-DOF system with friction and piezoelectric element was proposed to simulate the experiments. The experimental results demonstrated that the power of a few microwatts was generated by sliding between a steel ball and a steel plate lubricated with glycerol. In this study, a maximum power of approximately 10 μW was generated at a driving velocity of 40 mm s-1 and a normal load of 15 N. The numerical results demonstrated good qualitative agreement with the experimental results. This implies that this analytical model can be applied to optimize the oscillator design in piezoelectric power generation using friction-induced vibration.

  5. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model

    PubMed Central

    2016-01-01

    Introduction Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)–multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. Methods We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. Results The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2–7%. Conclusions During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving

  6. Joint optimization of regional water-power systems

    NASA Astrophysics Data System (ADS)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  7. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  8. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  9. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  10. Ocean Current Power Generator. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Sullivan, G. A.

    2002-07-26

    The Ocean Power Generator is both technically and economically suitable for deployment in the Gulf Stream from the US Navy facility in Dania, Florida. Yet to be completed is the calibration test in the Chesapeake Bay with the prototype dual hydroturbine Underwater Electric Kite. For the production units a revised design includes two ballast tanks mounted as pontoons to provide buoyancy and depth control. The power rating of the Ocean Power Generator has been doubled to 200 kW ready for insertion into the utility grid. The projected cost for a 10 MW installation is $3.38 per watt, a cost thatmore » is consistent with wind power pricing when it was in its deployment infancy, and a cost that is far better than photovoltaics after 25 years of research and development. The Gulf Stream flows 24 hours per day, and water flow is both environmentally and ecologically perfect as a renewable energy source. No real estate purchases are necessary, and you cannot see, hear, smell, or touch an Ocean Power Generator.« less

  11. Combined fuel and air staged power generation system

    DOEpatents

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  12. Performance simulation of a plasma magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Huang, Hulin; Li, Linyong; Zhu, Guiping

    2018-05-01

    The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.

  13. Electricity generation and transmission planning in deregulated power markets

    NASA Astrophysics Data System (ADS)

    He, Yang

    This dissertation addresses the long-term planning of power generation and transmission facilities in a deregulated power market. Three models with increasing complexities are developed, primarily for investment decisions in generation and transmission capacity. The models are presented in a two-stage decision context where generation and transmission capacity expansion decisions are made in the first stage, while power generation and transmission service fees are decided in the second stage. Uncertainties that exist in the second stage affect the capacity expansion decisions in the first stage. The first model assumes that the electric power market is not constrained by transmission capacity limit. The second model, which includes transmission constraints, considers the interactions between generation firms and the transmission network operator. The third model assumes that the generation and transmission sectors make capacity investment decisions separately. These models result in Nash-Cournot equilibrium among the unregulated generation firms, while the regulated transmission network operator supports the competition among generation firms. Several issues in the deregulated electric power market can be studied with these models such as market powers of generation firms and transmission network operator, uncertainties of the future market, and interactions between the generation and transmission sectors. Results deduced from the developed models include (a) regulated transmission network operator will not reserve transmission capacity to gain extra profits; instead, it will make capacity expansion decisions to support the competition in the generation sector; (b) generation firms will provide more power supplies when there is more demand; (c) in the presence of future uncertainties, the generation firms will add more generation capacity if the demand in the future power market is expected to be higher; and (d) the transmission capacity invested by the

  14. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  15. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2010-10-01 2010-10-01 false Power requirements, generating sources. 111.10-4 Section...

  16. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a... generators which supply both ship's service and propulsion power do not need additional ship's service... 46 Shipping 4 2011-10-01 2011-10-01 false Power requirements, generating sources. 111.10-4 Section...

  17. Modelling knee flexion effects on joint power absorption and adduction moment.

    PubMed

    Nagano, Hanatsu; Tatsumi, Ichiroh; Sarashina, Eri; Sparrow, W A; Begg, Rezaul K

    2015-12-01

    Knee osteoarthritis is commonly associated with ageing and long-term walking. In this study the effects of flexing motions on knee kinetics during stance were simulated. Extended knees do not facilitate efficient loading. It was therefore, hypothesised that knee flexion would promote power absorption and negative work, while possibly reducing knee adduction moment. Three-dimensional (3D) position and ground reaction forces were collected from the right lower limb stance phase of one healthy young male subject. 3D position was sampled at 100 Hz using three Optotrak Certus (Northern Digital Inc.) motion analysis camera units, set up around an eight metre walkway. Force plates (AMTI) recorded ground reaction forces for inverse dynamics calculations. The Visual 3D (C-motion) 'Landmark' function was used to change knee joint positions to simulate three knee flexion angles during static standing. Effects of the flexion angles on joint kinetics during the stance phase were then modelled. The static modelling showed that each 2.7° increment in knee flexion angle produced 2.74°-2.76° increments in knee flexion during stance. Increased peak extension moment was 6.61 Nm per 2.7° of increased knee flexion. Knee flexion enhanced peak power absorption and negative work, while decreasing adduction moment. Excessive knee extension impairs quadriceps' power absorption and reduces eccentric muscle activity, potentially leading to knee osteoarthritis. A more flexed knee is accompanied by reduced adduction moment. Research is required to determine the optimum knee flexion to prevent further damage to knee-joint structures affected by osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  19. Power generation method including membrane separation

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  20. Thermoelectric fabrics: toward power generating clothing.

    PubMed

    Du, Yong; Cai, Kefeng; Chen, Song; Wang, Hongxia; Shen, Shirley Z; Donelson, Richard; Lin, Tong

    2015-03-23

    Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

  1. Nuclear power generation and fuel cycle report 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to themore » uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.« less

  2. Dual-loop self-optimizing robust control of wind power generation with Doubly-Fed Induction Generator.

    PubMed

    Chen, Quan; Li, Yaoyu; Seem, John E

    2015-09-01

    This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Power Generation for River and Tidal Generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan

    Renewable energy sources are the second largest contributor to global electricity production, after fossil fuels. The integration of renewable energy continued to grow in 2014 against a backdrop of increasing global energy consumption and a dramatic decline in oil prices during the second half of the year. As renewable generation has become less expensive during recent decades, and it becomes more accepted by the global population, the focus on renewable generation has expanded from primarily wind and solar to include new types with promising future applications, such as hydropower generation, including river and tidal generation. Today, hydropower is considered onemore » of the most important renewable energy sources. In river and tidal generation, the input resource flow is slower but also steadier than it is in wind or solar generation, yet the level of water turbulent flow may vary from one place to another. This report focuses on hydrokinetic power conversion.« less

  4. Aircraft photovoltaic power-generating system

    NASA Astrophysics Data System (ADS)

    Doellner, Oscar Leonard

    Photovoltaic cells, appropriately cooled and operating in the combustion-created high radiant-intensity environment of gas-turbine and jet engines, may replace the conventional (gearbox-driven) electrical power generators aboard jet aircraft. This study projects significant improvements not only in aircraft electrical power-generating-system performance, but also in overall aircraft performance. Jet-engine design modifications incorporating this concept not only save weight (and thus fuel), but are - in themselves - favorable to jet-engine performance. The dissertation concentrates on operational, constructional, structural, thermal, optical, radiometrical, thin-film, and solid-state theoretical aspects of the overall project.

  5. Concentrated solar power generation using solar receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  6. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  7. Joint DoD versus Navy Specific Lead Generation Advertising: Comparison of Conversion Rates to Quality Enlistments and Marginal Costs.

    DTIC Science & Technology

    1984-09-01

    7D-Rt46 982 JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION j/j ADVERTISING : COMPARISON OF..(U) J B FUGUR SCHOOL OF N BUSINESS DURHAM NC R C MOREY...REPORT I PEPIO0 COV9cO JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION Technical Report ADVERTISING : Comparison of Conversion Rates to (0 Quality...block number) . Upper-Mental, High School Degree, enlistment contracts, national leads, Z Joint DOD advertising , Service Specific Advertising , conversion

  8. Game-theoretic approach to joint transmitter adaptation and power control in wireless systems.

    PubMed

    Popescu, Dimitrie C; Rawat, Danda B; Popescu, Otilia; Saquib, Mohamad

    2010-06-01

    Game theory has emerged as a new mathematical tool in the analysis and design of wireless communication systems, being particularly useful in studying the interactions among adaptive transmitters that attempt to achieve specific objectives without cooperation. In this paper, we present a game-theoretic approach to the problem of joint transmitter adaptation and power control in wireless systems, where users' transmissions are subject to quality-of-service requirements specified in terms of target signal-to-interference-plus-noise ratios (SINRs) and nonideal vector channels between transmitters and receivers are explicitly considered. Our approach is based on application of separable games, which are a specific class of noncooperative games where the players' cost is a separable function of their strategic choices. We formally state a joint codeword and power adaptation game, which is separable, and we study its properties in terms of its subgames, namely, the codeword adaptation subgame and the power adaptation subgame. We investigate the necessary conditions for an optimal Nash equilibrium and show that this corresponds to an ensemble of user codewords and powers, which maximizes the sum capacity of the corresponding multiaccess vector channel model, and for which the specified target SINRs are achieved with minimum transmitted power.

  9. Selenide isotope generators for the Galileo Mission: SIG hermetic bimetal weld transition joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, W.J.

    1979-08-01

    The successful development of the commercial 6061-T651/Silver/304L explosive clad plate material as a bimetal weld transition joint material, as described herein, satisfies all SIG Galileo design requirements for hermetic weld attachment of stainless steel subassemblies to aluminum alloy generator housing or end cover structures. The application of this type weld transition joint to the hermetic attachment of stainless steel shell connectors is well-developed and tested. Based on on-going life tests of stainless steel receptacle/bimetal ring attachment assemblies and metallurgical characterization studies of this transition joint material, it appears evident that this transition joint material has more than adequate capability tomore » meet the 250 to 300/sup 0/F and 50,000 hr. design life of the SIG/Galileo mission. Its extended life temperture capability may well approach 350 to 400/sup 0/F.« less

  10. Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zhang, Y.; Su, C. Q.

    2015-06-01

    In this paper, an automobile exhaust thermoelectric power generation system is packaged into a model with its own operating principles. The inputs are the engine speed and power, and the output is the power generated by the system. The model is divided into two submodels. One is the inlet temperature submodel, and the other is the power generation submodel. An experimental data modeling method is adopted to construct the inlet temperature submodel, and a theoretical modeling method is adopted to construct the power generation submodel. After modeling, simulation is conducted under various engine operating conditions to determine the variation of the power generated by the system. Finally, the model is embedded into a Honda Insight vehicle model to explore the energy-saving effect of the system on the vehicle under Economic Commission for Europe and cyc-constant_60 driving cycles.

  11. Optimal Output of Distributed Generation Based On Complex Power Increment

    NASA Astrophysics Data System (ADS)

    Wu, D.; Bao, H.

    2017-12-01

    In order to meet the growing demand for electricity and improve the cleanliness of power generation, new energy generation, represented by wind power generation, photovoltaic power generation, etc has been widely used. The new energy power generation access to distribution network in the form of distributed generation, consumed by local load. However, with the increase of the scale of distribution generation access to the network, the optimization of its power output is becoming more and more prominent, which needs further study. Classical optimization methods often use extended sensitivity method to obtain the relationship between different power generators, but ignore the coupling parameter between nodes makes the results are not accurate; heuristic algorithm also has defects such as slow calculation speed, uncertain outcomes. This article proposes a method called complex power increment, the essence of this method is the analysis of the power grid under steady power flow. After analyzing the results we can obtain the complex scaling function equation between the power supplies, the coefficient of the equation is based on the impedance parameter of the network, so the description of the relation of variables to the coefficients is more precise Thus, the method can accurately describe the power increment relationship, and can obtain the power optimization scheme more accurately and quickly than the extended sensitivity method and heuristic method.

  12. Integrated engine-generator concept for aircraft electric secondary power

    NASA Technical Reports Server (NTRS)

    Secunde, R. R.; Macosko, R. P.; Repas, D. S.

    1972-01-01

    The integrated engine-generator concept of locating an electric generator inside an aircraft turbojet or turbofan engine concentric with, and driven by, one of the main engine shafts is discussed. When properly rated, the generator can serve as an engine starter as well as a generator of electric power. The electric power conversion equipment and generator controls are conveniently located in the aircraft. Preliminary layouts of generators in a large engine together with their physical sizes and weights indicate that this concept is a technically feasible approach to aircraft secondary power.

  13. Multiple joint muscle function with ageing: the force-velocity and power-velocity relationships in young and older men.

    PubMed

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan P

    2013-05-01

    Whilst extensive research has detailed the loss of muscle strength with ageing for isolated single joint actions, there has been little attention to power production during more functionally relevant multiple joint movements. The extent to which force or velocity are responsible for the loss in power with ageing is also equivocal. The aim of this study was to evaluate the contribution of force and velocity to the differences in power with age by comparing the force-velocity and power-velocity relationships in young and older men during a multiple joint leg press movement. Twenty-one older men (66 ± 3 years) and twenty-three young men (24 ± 2 years) completed a series of isometric (maximum and explosive) and dynamic contractions on a leg press dynamometer instrumented to record force and displacement. The force-velocity relationship was lower for the older men as reflected by their 19 % lower maximum isometric strength (p < 0.001). Explosive isometric strength (peak rate of force development) was 21 % lower for the older men (p < 0.05) but was similar between groups when normalised to maximum strength (p = 0.58). The power-velocity relationship was lower for the older men as shown by reduced maximum power (-28 %, p < 0.001) and lower force (-20 %, p < 0.001) and velocity (-11 %, p < 0.05). Whilst force and velocity were lower in older men, the decrement in force was greater and therefore the major explanation for the attenuation of power during a functionally relevant multiple joint movement.

  14. Robust Power Management Control for Stand-Alone Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Kamal, Elkhatib; Adouane, Lounis; Aitouche, Abdel; Mohammed, Walaa

    2017-01-01

    This paper presents a new robust fuzzy control of energy management strategy for the stand-alone hybrid power systems. It consists of two levels named centralized fuzzy supervisory control which generates the power references for each decentralized robust fuzzy control. Hybrid power systems comprises: a photovoltaic panel and wind turbine as renewable sources, a micro turbine generator and a battery storage system. The proposed control strategy is able to satisfy the load requirements based on a fuzzy supervisor controller and manage power flows between the different energy sources and the storage unit by respecting the state of charge and the variation of wind speed and irradiance. Centralized controller is designed based on If-Then fuzzy rules to manage and optimize the hybrid power system production by generating the reference power for photovoltaic panel and wind turbine. Decentralized controller is based on the Takagi-Sugeno fuzzy model and permits us to stabilize each photovoltaic panel and wind turbine in presence of disturbances and parametric uncertainties and to optimize the tracking reference which is given by the centralized controller level. The sufficient conditions stability are formulated in the format of linear matrix inequalities using the Lyapunov stability theory. The effectiveness of the proposed Strategy is finally demonstrated through a SAHPS (stand-alone hybrid power systems) to illustrate the effectiveness of the overall proposed method.

  15. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  16. Green Power Partnership Top 30 On-site Generation

    EPA Pesticide Factsheets

    EPA's Green Power Partnership is a voluntary program designed to reduce the environmental impact of electricity generation by promoting renewable energy. These partners are generating and consuming the most green power on-site within the GPP.

  17. Joint subchannel pairing and power control for cognitive radio networks with amplify-and-forward relaying.

    PubMed

    Shen, Yanyan; Wang, Shuqiang; Wei, Zhiming

    2014-01-01

    Dynamic spectrum sharing has drawn intensive attention in cognitive radio networks. The secondary users are allowed to use the available spectrum to transmit data if the interference to the primary users is maintained at a low level. Cooperative transmission for secondary users can reduce the transmission power and thus improve the performance further. We study the joint subchannel pairing and power allocation problem in relay-based cognitive radio networks. The objective is to maximize the sum rate of the secondary user that is helped by an amplify-and-forward relay. The individual power constraints at the source and the relay, the subchannel pairing constraints, and the interference power constraints are considered. The problem under consideration is formulated as a mixed integer programming problem. By the dual decomposition method, a joint optimal subchannel pairing and power allocation algorithm is proposed. To reduce the computational complexity, two suboptimal algorithms are developed. Simulations have been conducted to verify the performance of the proposed algorithms in terms of sum rate and average running time under different conditions.

  18. COMPREHENSIVE STANDARDS: THE POWER GENERATION CASE

    EPA Science Inventory

    This study presents an illustrative data base of material quantities and environmental effluents in the fuel cycles for alternative technologies of thermally generated power. The entire fuel cycle for each of the alternative ten technologies is outlined for a representative power...

  19. Capacity expansion model of wind power generation based on ELCC

    NASA Astrophysics Data System (ADS)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  20. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  1. Secondary electric power generation with minimum engine bleed

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.

    1983-01-01

    Secondary electric power generation with minimum engine bleed is discussed. Present and future jet engine systems are compared. The role of auxiliary power units is evaluated. Details of secondary electric power generation systems with and without auxiliary power units are given. Advanced bleed systems are compared with minimum bleed systems. A cost model of ownership is given. The difference in the cost of ownership between a minimum bleed system and an advanced bleed system is given.

  2. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  3. A Non-condensing Thermal Compression Power Generation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B. P.; Jenks, J. J.; Abrams, W. P.

    Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less

  4. A Non-condensing Thermal Compression Power Generation System

    DOE PAGES

    McGrail, B. P.; Jenks, J. J.; Abrams, W. P.; ...

    2017-09-12

    Organic Rankine cycle (ORC) systems have attracted interest for more than three decades due to advantages in operation at lower working temperature, low maintenance requirements, and relative simplicity (fewer components). In theory, these advantages should make ORC technology more economically attractive for the small and medium power scales (10 kW to 10 MW). Unfortunately, the theoretical promise of ORC systems for power generation has been realized at only a relatively small fraction of the potential market. Although there are a number of reasons for the low utilization of ORC technology, the root cause is directly tied to the relatively lowmore » heat-to-power conversion efficiency (2 to 7% typically) and high cost of specially designed expander–generator equipment that is up to 60% of total system cost. The resulting high cost of the power produced just does not make economic sense except in very specialized situations where on-site power is needed but unavailable (at any cost) or where local generation costs are well above regional averages. The overarching objective of the work presented here is to break this paradigm by developing and demonstrating a new harmonic adsorption recuperative power cycle (HARP) system that offers 40% more efficient power generation as compared with a standard ORC system and estimated electric power production costs at very competitive rates below $0.10/kWh.« less

  5. Thermal energy storage for power generation applications

    NASA Astrophysics Data System (ADS)

    Drost, M. K.; Antoniak, Zen I.; Brown, D. R.

    1990-03-01

    Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.

  6. Wind power generation and dispatch in competitive power markets

    NASA Astrophysics Data System (ADS)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  7. A powered prosthetic ankle joint for walking and running.

    PubMed

    Grimmer, Martin; Holgate, Matthew; Holgate, Robert; Boehler, Alexander; Ward, Jeffrey; Hollander, Kevin; Sugar, Thomas; Seyfarth, André

    2016-12-19

    Current prosthetic ankle joints are designed either for walking or for running. In order to mimic the capabilities of an able-bodied, a powered prosthetic ankle for walking and running was designed. A powered system has the potential to reduce the limitations in range of motion and positive work output of passive walking and running feet. To perform the experiments a controller capable of transitions between standing, walking, and running with speed adaptations was developed. In the first case study the system was mounted on an ankle bypass in parallel with the foot of a non-amputee subject. By this method the functionality of hardware and controller was proven. The Walk-Run ankle was capable of mimicking desired torque and angle trajectories in walking and running up to 2.6 m/s. At 4 m/s running, ankle angle could be matched while ankle torque could not. Limited ankle output power resulting from a suboptimal spring stiffness value was identified as a main reason. Further studies have to show to what extent the findings can be transferred to amputees.

  8. Feasibility Study on a Low Power Vertical Axis Wind-Powered Generator

    DTIC Science & Technology

    1980-09-01

    E A S I B I L I T Y STUDY ON A LOW POWER VERTICAL A X I S WIND -POWERED GENERATOR W.R. Crook, T. Puust, M.L. Robinson and L . J . Vencel S U M M...A R Y This paper describes inves t igat ions ca r r i ed out t o es tab l i sh a design concept fo r a 1 kW wind -powered generator s u i t a b...a b l e configurat ion using a Darrieus S t ra igh t blade r o t o r with a microprocessor based control system and provides information on t

  9. Miniature Gas-Turbine Power Generator

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Vargo, Stephen; White, Victor; Shcheglov, Kirill

    2003-01-01

    A proposed microelectromechanical system (MEMS) containing a closed- Brayton-cycle turbine would serve as a prototype of electric-power generators for special applications in which high energy densities are required and in which, heretofore, batteries have been used. The system would have a volume of about 6 cm3 and would operate with a thermal efficiency >30 percent, generating up to 50 W of electrical power. The energy density of the proposed system would be about 10 times that of the best battery-based systems now available, and, as such, would be comparable to that of a fuel cell. The working gas for the turbine would be Xe containing small quantities of CO2, O2, and H2O as gaseous lubricants. The gas would be contained in an enclosed circulation system, within which the pressure would typically range between 5 and 50 atm (between 0.5 and 5 MPa). The heat for the Brayton cycle could be supplied by any of a number of sources, including a solar concentrator or a combustor burning a hydrocarbon or other fuel. The system would include novel heat-transfer and heat-management components. The turbine would be connected to an electric power generator/starter motor. The system would include a main rotor shaft with gas bearings; the bearing surfaces would be made of a ceramic material coated with nanocrystalline diamond. The shaft could withstand speed of 400,000 rpm or perhaps more, with bearing-wear rates less than 10(exp -)4 those of silicon bearings and 0.05 to 0.1 those of SiC bearings, and with a coefficient of friction about 0.1 that of Si or SiC bearings. The components of the system would be fabricated by a combination of (1) three-dimensional xray lithography and (2) highly precise injection molding of diamond-compatible metals and ceramic materials. The materials and fabrication techniques would be suitable for mass production. The disadvantages of the proposed system are that unlike a battery-based system, it could generate a perceptible amount of sound, and

  10. Optimal generator bidding strategies for power and ancillary services

    NASA Astrophysics Data System (ADS)

    Morinec, Allen G.

    As the electric power industry transitions to a deregulated market, power transactions are made upon price rather than cost. Generator companies are interested in maximizing their profits rather than overall system efficiency. A method to equitably compensate generation providers for real power, and ancillary services such as reactive power and spinning reserve, will ensure a competitive market with an adequate number of suppliers. Optimizing the generation product mix during bidding is necessary to maximize a generator company's profits. The objective of this research work is to determine and formulate appropriate optimal bidding strategies for a generation company in both the energy and ancillary services markets. These strategies should incorporate the capability curves of their generators as constraints to define the optimal product mix and price offered in the day-ahead and real time spot markets. In order to achieve such a goal, a two-player model was composed to simulate market auctions for power generation. A dynamic game methodology was developed to identify Nash Equilibria and Mixed-Strategy Nash Equilibria solutions as optimal generation bidding strategies for two-player non-cooperative variable-sum matrix games with incomplete information. These games integrated the generation product mix of real power, reactive power, and spinning reserve with the generators's capability curves as constraints. The research includes simulations of market auctions, where strategies were tested for generators with different unit constraints, costs, types of competitors, strategies, and demand levels. Studies on the capability of large hydrogen cooled synchronous generators were utilized to derive useful equations that define the exact shape of the capability curve from the intersections of the arcs defined by the centers and radial vectors of the rotor, stator, and steady-state stability limits. The available reactive reserve and spinning reserve were calculated given a

  11. Taming power: Generative historical consciousness.

    PubMed

    Winter, David G

    2016-04-01

    Power is a necessary dimension of all human enterprises. It can inspire and illuminate, but it can also corrupt, oppress, and destroy. Therefore, taming power has been a central moral and political question for most of human history. Writers, theorists, and researchers have suggested many methods and mechanisms for taming power: through affiliation and love, intellect and reason, responsibility, religion and values, democratic political structures, and separation of powers. Historical examples and social science research suggest that each has some success, but also that each is vulnerable to being hijacked by power itself. I therefore introduce generative historical consciousness (GHC) as a concept and measure that might help to secure the benefits of power while protecting against its outrages and excesses. I conclude by discussing the role that GHC may have played in the peaceful resolution of the Cuban Missile Crisis of 1962. (c) 2016 APA, all rights reserved).

  12. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  13. Generation, absorption, and transfer of mechanical energy during walking in children.

    PubMed

    Umberger, Brian R; Augsburger, Sam; Resig, JoAnne; Oeffinger, Donna; Shapiro, Robert; Tylkowski, Chester

    2013-05-01

    The purpose of this study was to characterize the manner in which net joint moments and non-muscular forces generate, absorb, and transfer mechanical energy during walking in able-bodied children. Standard gait data from seven healthy subjects between 6 and 17 years of age were combined with a dynamic model of the whole body to perform a power analysis based on induced acceleration techniques. These data were used to determine how each moment and force generates energy to, absorbs energy from, and transfers energy among the major body segments. The joint moments were found to induce transfers of mechanical energy between body segments that generally exceeded the magnitudes of energy generation and absorption. The amount of energy transferred by gravitational and velocity-dependent forces was considerably less than for the joint moments. The hip and ankle joint moments had relatively simple power patterns that tended to oppose each other, particularly over the stance phase. The knee joint moment had a more complex power pattern that appeared distinct from the hip and ankle moments. The general patterns of mechanical energy flow were similar to previous reports in adults. The approach described in this paper should provide a useful complement to standard clinical gait analysis procedures. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. A self-sensing magnetorheological damper with power generation

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Liao, Wei-Hsin

    2012-02-01

    Magnetorheological (MR) dampers are promising for semi-active vibration control of various dynamic systems. In the current MR damper systems, a separate power supply and dynamic sensor are required. To enable the MR damper to be self-powered and self-sensing in the future, in this paper we propose and investigate a self-sensing MR damper with power generation, which integrates energy harvesting, dynamic sensing and MR damping technologies into one device. This MR damper has self-contained power generation and velocity sensing capabilities, and is applicable to various dynamic systems. It combines the advantages of energy harvesting—reusing wasted energy, MR damping—controllable damping force, and sensing—providing dynamic information for controlling system dynamics. This multifunctional integration would bring great benefits such as energy saving, size and weight reduction, lower cost, high reliability, and less maintenance for the MR damper systems. In this paper, a prototype of the self-sensing MR damper with power generation was designed, fabricated, and tested. Theoretical analyses and experimental studies on power generation were performed. A velocity-sensing method was proposed and experimentally validated. The magnetic-field interference among three functions was prevented by a combined magnetic-field isolation method. Modeling, analysis, and experimental results on damping forces are also presented.

  15. Joint sparse learning for 3-D facial expression generation.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Bu, Jiajun

    2013-08-01

    3-D facial expression generation, including synthesis and retargeting, has received intensive attentions in recent years, because it is important to produce realistic 3-D faces with specific expressions in modern film production and computer games. In this paper, we present joint sparse learning (JSL) to learn mapping functions and their respective inverses to model the relationship between the high-dimensional 3-D faces (of different expressions and identities) and their corresponding low-dimensional representations. Based on JSL, we can effectively and efficiently generate various expressions of a 3-D face by either synthesizing or retargeting. Furthermore, JSL is able to restore 3-D faces with holes by learning a mapping function between incomplete and intact data. Experimental results on a wide range of 3-D faces demonstrate the effectiveness of the proposed approach by comparing with representative ones in terms of quality, time cost, and robustness.

  16. Joint-level energetics differentiate isoinertial from speed-power resistance training-a Bayesian analysis.

    PubMed

    Liew, Bernard X W; Drovandi, Christopher C; Clifford, Samuel; Keogh, Justin W L; Morris, Susan; Netto, Kevin

    2018-01-01

    There is convincing evidence for the benefits of resistance training on vertical jump improvements, but little evidence to guide optimal training prescription. The inability to detect small between modality effects may partially reflect the use of ANOVA statistics. This study represents the results of a sub-study from a larger project investigating the effects of two resistance training methods on load carriage running energetics. Bayesian statistics were used to compare the effectiveness of isoinertial resistance against speed-power training to change countermovement jump (CMJ) and squat jump (SJ) height, and joint energetics. Active adults were randomly allocated to either a six-week isoinertial ( n  = 16; calf raises, leg press, and lunge), or a speed-power training program ( n  = 14; countermovement jumps, hopping, with hip flexor training to target pre-swing running energetics). Primary outcome variables included jump height and joint power. Bayesian mixed modelling and Functional Data Analysis were used, where significance was determined by a non-zero crossing of the 95% Bayesian Credible Interval (CrI). The gain in CMJ height after isoinertial training was 1.95 cm (95% CrI [0.85-3.04] cm) greater than the gain after speed-power training, but the gain in SJ height was similar between groups. In the CMJ, isoinertial training produced a larger increase in power absorption at the hip by a mean 0.018% (equivalent to 35 W) (95% CrI [0.007-0.03]), knee by 0.014% (equivalent to 27 W) (95% CrI [0.006-0.02]) and foot by 0.011% (equivalent to 21 W) (95% CrI [0.005-0.02]) compared to speed-power training. Short-term isoinertial training improved CMJ height more than speed-power training. The principle adaptive difference between training modalities was at the level of hip, knee and foot power absorption.

  17. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  18. Nuclear power generation and fuel cycle report 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  19. Generation of sonic power during welding

    NASA Technical Reports Server (NTRS)

    Mc Campbell, W. M.

    1969-01-01

    Generation of intense sonic and ultrasonic power in the weld zone, close to the puddle, reduces the porosity and refinement of the grain. The ac induction brazing power supply is modified with long cables for deliberate addition of resistance to that circuit. The concept is extensible to the molding of metals and plastics.

  20. Electrical power generation by mechanically modulating electrical double layers.

    PubMed

    Moon, Jong Kyun; Jeong, Jaeki; Lee, Dongyun; Pak, Hyuk Kyu

    2013-01-01

    Since Michael Faraday and Joseph Henry made their great discovery of electromagnetic induction, there have been continuous developments in electrical power generation. Most people today get electricity from thermal, hydroelectric, or nuclear power generation systems, which use this electromagnetic induction phenomenon. Here we propose a new method for electrical power generation, without using electromagnetic induction, by mechanically modulating the electrical double layers at the interfacial areas of a water bridge between two conducting plates. We find that when the height of the water bridge is mechanically modulated, the electrical double layer capacitors formed on the two interfacial areas are continuously charged and discharged at different phases from each other, thus generating an AC electric current across the plates. We use a resistor-capacitor circuit model to explain the results of this experiment. This observation could be useful for constructing a micro-fluidic power generation system in the near future.

  1. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade

    PubMed Central

    Arnold, Allison S.; Lee, David V.; Biewener, Andrew A.

    2013-01-01

    SUMMARY Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and −15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg−1 body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the

  2. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  3. Perspectives of the electric power industry amid the transforming global power generation markets

    NASA Astrophysics Data System (ADS)

    Makarov, A. A.; Mitrova, T. A.; Veselov, F. V.; Galkina, A. A.; Kulagin, V. A.

    2017-10-01

    A scenario-based prognosis of the evolution of global power generation markets until 2040, which was developed using the Scaner model-and-information complex, was given. The perspective development of fuel markets, vital for the power generation industry, was considered, and an attempt to predict the demand, production, and prices of oil, gas, coal, and noncarbon resources across various regions of the world was made. The anticipated decline in the growth of the global demand for fossil fuels and their sufficiency with relatively low extraction expenses will maintain the fuel prices (the data hereinafter are given as per 2014 prices) lower than their peak values in 2012. The outrunning growth of demand for electric power is shown in comparison with other power resources by regions and large countries in the world. The conditions of interfuel competition in the electric power industry considering the changes in anticipated fuel prices and cost indicators for various power generation technologies were studied. For this purpose, the ratios of discounted costs of electric power production by new gas and coal TPPs and wind and solar power plants were estimated. It was proven that accounting the system effects (operation modes, necessary duplicating and reserving the power of electric power plants using renewable energy sources) notably reduces the competitiveness of the renewable power industry and is not always compensated by the expected lowering of its capital intensity and growth of fuel for TPPs. However, even with a moderate (in relation to other prognoses) growth of the role of power plants using renewable energy sources, they will triple electric power production. In this context, thermal power plants will preserve their leadership covering up to 60% of the global electric power production, approximately half using gas.

  4. Geothermal resource development for electric power generation in Indonesia: results and future promises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumitramihardja, A.; Robert, D.; Ibrahim, K.

    1986-07-01

    Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less

  5. The validity of the first and second generation Microsoft Kinect™ for identifying joint center locations during static postures.

    PubMed

    Xu, Xu; McGorry, Raymond W

    2015-07-01

    The Kinect™ sensor released by Microsoft is a low-cost, portable, and marker-less motion tracking system for the video game industry. Since the first generation Kinect sensor was released in 2010, many studies have been conducted to examine the validity of this sensor when used to measure body movement in different research areas. In 2014, Microsoft released the computer-used second generation Kinect sensor with a better resolution for the depth sensor. However, very few studies have performed a direct comparison between all the Kinect sensor-identified joint center locations and their corresponding motion tracking system-identified counterparts, the result of which may provide some insight into the error of the Kinect-identified segment length, joint angles, as well as the feasibility of adapting inverse dynamics to Kinect-identified joint centers. The purpose of the current study is to first propose a method to align the coordinate system of the Kinect sensor with respect to the global coordinate system of a motion tracking system, and then to examine the accuracy of the Kinect sensor-identified coordinates of joint locations during 8 standing and 8 sitting postures of daily activities. The results indicate the proposed alignment method can effectively align the Kinect sensor with respect to the motion tracking system. The accuracy level of the Kinect-identified joint center location is posture-dependent and joint-dependent. For upright standing posture, the average error across all the participants and all Kinect-identified joint centers is 76 mm and 87 mm for the first and second generation Kinect sensor, respectively. In general, standing postures can be identified with better accuracy than sitting postures, and the identification accuracy of the joints of the upper extremities is better than for the lower extremities. This result may provide some information regarding the feasibility of using the Kinect sensor in future studies. Copyright © 2015 Elsevier

  6. Pulse Power Applications of Flux Compression Generators

    DTIC Science & Technology

    1981-06-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources.

  7. Probabilistic Density Function Method for Stochastic ODEs of Power Systems with Uncertain Power Input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil

    Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.

  8. Mini Solar and Sea Current Power Generation System

    NASA Astrophysics Data System (ADS)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  9. Coherence-generating power of quantum dephasing processes

    NASA Astrophysics Data System (ADS)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  10. Nuclear Power as a Basis for Future Electricity Generation

    NASA Astrophysics Data System (ADS)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  11. A numerical investigation of a thermodielectric power generation system

    NASA Astrophysics Data System (ADS)

    Sklar, Akiva A.

    The performance of a novel micro-thermodielectric power generation system was investigated in order to determine if thermodielectric power generation can be practically employed and if its performance can compete with current portable power generation technologies. Thermodielectric power generation is a direct energy conversion technology that converts heat directly into high voltage direct current. It requires dielectric (i.e., capacitive) materials whose charge storing capabilities are a function of temperature. This property can be exploited by heating these materials after they are charged; as their temperature increases, their charge storage capability decreases, forcing them to eject a portion of their surface charge. This ejected charge can then be supplied to an appropriate electronic storage device. There are several advantages associated with thermodielectric energy conversion; first, it requires heat addition at relatively low conventional power generation temperatures, i.e., less than 600 °K, and second, devices that utilize it have the potential for excellent power density and device reliability. The predominant disadvantage of using this power generation technique is that the device must operate in an unsteady manner; this can lead to substantial heat transfer losses that limit the device's thermal efficiency. The studied power generation system was designed so that the power generating components of the system (i.e., the thermodielectric materials) are integrated within a micro-scale heat exchange apparatus designed specifically to provide the thermodielectric materials with the unsteady heating and cooling necessary for efficient power generation. This apparatus is designed to utilize a liquid as a working fluid in order to maximize its heat transfer capabilities, minimize the size of the heat exchanger, and maximize the power density of the power generation system. The thermodielectric materials are operated through a power generation cycle that

  12. Assess and Predict Automatic Generation Control Performances for Thermal Power Generation Units Based on Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yang, Zijiang; Gao, Song; Liu, Jinbiao

    2018-02-01

    Automatic generation control(AGC) is a key technology to maintain real time power generation and load balance, and to ensure the quality of power supply. Power grids require each power generation unit to have a satisfactory AGC performance, being specified in two detailed rules. The two rules provide a set of indices to measure the AGC performance of power generation unit. However, the commonly-used method to calculate these indices is based on particular data samples from AGC responses and will lead to incorrect results in practice. This paper proposes a new method to estimate the AGC performance indices via system identification techniques. In addition, a nonlinear regression model between performance indices and load command is built in order to predict the AGC performance indices. The effectiveness of the proposed method is validated through industrial case studies.

  13. Laser-powered thermoelectric generators operating at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Harutyunyan, S. R.; Vardanyan, V. H.; Kuzanyan, A. S.; Nikoghosyan, V. R.; Kunii, S.; Winzer, K.; Wood, K. S.; Gulian, A. M.

    2005-11-01

    A thermoelectric generator, operating in a cryostat at liquid helium temperatures, is described. Energy to the generator is supplied via an external laser beam. For this prototype device the associated heat load at permanent operation is comparable with the heat load associated with power delivery via metallic wires. Estimates indicate that still better performance can be enabled with existing thermoelectric materials, thereby far exceeding efficiency of traditional cryostat wiring. We used a prototype generator to produce electric power for measuring critical currents in Nb3Sn-films at 4K.

  14. Evaluation on the Efficiency of Biomass Power Generation Industry in China

    PubMed Central

    Sun, Dong; Guo, Sen

    2014-01-01

    As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209

  15. A modular optically powered floating high voltage generator.

    PubMed

    Antonini, P; Borsato, E; Carugno, G; Pegoraro, M; Zotto, P

    2013-02-01

    The feasibility of fully floating high voltage (HV) generation was demonstrated producing a prototype of a modular HV system. The primary power source is provided by a high efficiency semiconductor power cell illuminated by a laser system ensuring the floating nature of each module. The HV is then generated by dc-dc conversion and a HV multiplier. The possibility of series connection among modules was verified.

  16. Quantitative evaluation of toothbrush and arm-joint motion during tooth brushing.

    PubMed

    Inada, Emi; Saitoh, Issei; Yu, Yong; Tomiyama, Daisuke; Murakami, Daisuke; Takemoto, Yoshihiko; Morizono, Ken; Iwasaki, Tomonori; Iwase, Yoko; Yamasaki, Youichi

    2015-07-01

    It is very difficult for dental professionals to objectively assess tooth brushing skill of patients, because an obvious index to assess the brushing motion of patients has not been established. The purpose of this study was to quantitatively evaluate toothbrush and arm-joint motion during tooth brushing. Tooth brushing motion, performed by dental hygienists for 15 s, was captured using a motion-capture system that continuously calculates the three-dimensional coordinates of object's motion relative to the floor. The dental hygienists performed the tooth brushing on the buccal and palatal sides of their right and left upper molars. The frequencies and power spectra of toothbrush motion and joint angles of the shoulder, elbow, and wrist were calculated and analyzed statistically. The frequency of toothbrush motion was higher on the left side (both buccal and palatal areas) than on the right side. There were no significant differences among joint angle frequencies within each brushing area. The inter- and intra-individual variations of the power spectrum of the elbow flexion angle when brushing were smaller than for any of the other angles. This study quantitatively confirmed that dental hygienists have individual distinctive rhythms during tooth brushing. All arm joints moved synchronously during brushing, and tooth brushing motion was controlled by coordinated movement of the joints. The elbow generated an individual's frequency through a stabilizing movement. The shoulder and wrist control the hand motion, and the elbow generates the cyclic rhythm during tooth brushing.

  17. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    PubMed

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  18. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  19. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  20. 46 CFR 111.10-4 - Power requirements, generating sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 111.10-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Power Supply § 111.10-4 Power requirements, generating sources. (a) The aggregate capacity of the electric ship's service generating sources required in § 111.10-3 must...

  1. Wind power. [electricity generation

    NASA Technical Reports Server (NTRS)

    Savino, J. M.

    1975-01-01

    A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.

  2. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks

    PubMed Central

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-01-01

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200

  3. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.

    PubMed

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-10-09

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.

  4. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.

    PubMed

    Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2003-02-01

    To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.

  5. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  6. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  7. Fiber optic signal amplifier using thermoelectric power generation

    DOEpatents

    Hart, Mark M.

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  8. Apparatus and method for thermal power generation

    DOEpatents

    Cohen, Paul; Redding, Arnold H.

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  9. [Power generation and ecology: socio-economic collision].

    PubMed

    Belonogova, M V; Davydov, B I

    1999-01-01

    The authors make analysis of the socio-economic collision between power generation and ecology. Russia enters the world market in the period of global and local ecological ill-being. The following eight dimensions of the problem have been reviewed: uncontrolled growth of population, limited earth resources, life standards and ecological crisis, national/ecological interests and power safety, eco- and power regionalism, religion and ethnoses (demography and energy reserves), eco-sitting of power installations, sanitary guidelines and standards and the reality.

  10. Remote-site power generation opportunities for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power,more » reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  11. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation.

    PubMed

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal-oxide-semiconductor-compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm 2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance.

  12. Miniaturized planar Si-nanowire micro-thermoelectric generator using exuded thermal field for power generation

    PubMed Central

    Zhan, Tianzhuo; Yamato, Ryo; Hashimoto, Shuichiro; Tomita, Motohiro; Oba, Shunsuke; Himeda, Yuya; Mesaki, Kohei; Takezawa, Hiroki; Yokogawa, Ryo; Xu, Yibin; Matsukawa, Takashi; Ogura, Atsushi; Kamakura, Yoshinari; Watanabe, Takanobu

    2018-01-01

    Abstract For harvesting energy from waste heat, the power generation densities and fabrication costs of thermoelectric generators (TEGs) are considered more important than their conversion efficiency because waste heat energy is essentially obtained free of charge. In this study, we propose a miniaturized planar Si-nanowire micro-thermoelectric generator (SiNW-μTEG) architecture, which could be simply fabricated using the complementary metal–oxide–semiconductor–compatible process. Compared with the conventional nanowire μTEGs, this SiNW-μTEG features the use of an exuded thermal field for power generation. Thus, there is no need to etch away the substrate to form suspended SiNWs, which leads to a low fabrication cost and well-protected SiNWs. We experimentally demonstrate that the power generation density of the SiNW-μTEGs was enhanced by four orders of magnitude when the SiNWs were shortened from 280 to 8 μm. Furthermore, we reduced the parasitic thermal resistance, which becomes significant in the shortened SiNW-μTEGs, by optimizing the fabrication process of AlN films as a thermally conductive layer. As a result, the power generation density of the SiNW-μTEGs was enhanced by an order of magnitude for reactive sputtering as compared to non-reactive sputtering process. A power density of 27.9 nW/cm2 has been achieved. By measuring the thermal conductivities of the two AlN films, we found that the reduction in the parasitic thermal resistance was caused by an increase in the thermal conductivity of the AlN film and a decrease in the thermal boundary resistance. PMID:29868148

  13. 2007 Joint Service Power Expo - Power and Energy Independence for Warfighters. Volume 1

    DTIC Science & Technology

    2007-04-26

    Equipment, Major David C. Morris Integrated Trailer -ECU-Generator (ITEG), Major David C. Morris Solving power supply obsolescence, reliability, and power...4805) 6:00 p.m. - 8:00 p.m. Conference Reception in Exhibit Hall Wednesday, April 25, 2007 7:00 a.m. - 5:30 p.m. Exhibit Hall Open 7:00 a.m. - 8:00 a.m...4689) Moving Forward with Fuel Cells: Army CERDEC Development & Demonstration Progress - US Army, CERDEC, Elizabeth Bostic (#4684) Integrated Trailer

  14. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips.

    PubMed

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-07-12

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30-35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future.

  15. Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips

    PubMed Central

    Feng, Shuang-Tao; Mei, Yun-Hui; Chen, Gang; Li, Xin; Lu, Guo-Quan

    2016-01-01

    Sintering of nanosilver paste has been extensively studied as a lead-free die-attach solution for bonding semiconductor power chips, such as the power insulated gated bipolar transistor (IGBT). However, for the traditional method of bonding IGBT chips, an external pressure of a few MPa is reported necessary for the sintering time of ~1 h. In order to shorten the processing duration time, we developed a rapid way to sinter nanosilver paste for bonding IGBT chips in less than 5 min using pulsed current. In this way, we firstly dried as-printed paste at about 100 °C to get rid of many volatile solvents because they may result in defects or voids during the out-gassing from the paste. Then, the pre-dried paste was further heated by pulse current ranging from 1.2 kA to 2.4 kA for several seconds. The whole procedure was less than 3 min and did not require any gas protection. We could obtain robust sintered joint with shear strength of 30–35 MPa for bonding 1200-V, 25-A IGBT and superior thermal properties. Static and dynamic electrical performance of the as-bonded IGBT assemblies was also characterized to verify the feasibility of this rapid sintering method. The results indicate that the electrical performance is comparable or even partially better than that of commercial IGBT modules. The microstructure evolution of the rapid sintered joints was also studied by scanning electron microscopy (SEM). This work may benefit the wide usage of nanosilver paste for rapid bonding IGBT chips in the future. PMID:28773686

  16. Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines

    NASA Astrophysics Data System (ADS)

    Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman

    2017-10-01

    Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.

  17. Joint Development of a Fourth Generation Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Walston, S.; Cetel, A.; MacKay, R.; OHara, K.; Duhl, D.; Dreshfield, R.

    2004-01-01

    A new, fourth generation, single crystal superalloy has been jointly developed by GE Aircraft Engines, Pratt & Whitney, and NASA. The focus of the effort was to develop a turbine airfoil alloy with long-term durability for use in the High Speed Civil Transport. In order to achieve adequate long-time strength improvements at moderate temperatures and retain good microstructural stability, it was necessary to make significant composition changes from 2nd and 3rd generation single crystal superalloys. These included lower chromium levels, higher cobalt and rhenium levels and the inclusion of a new alloying element, ruthenium. It was found that higher Co levels were beneficial to reducing both TCP precipitation and SRZ formation. Ruthenium caused the refractory elements to partition more strongly to the ' phase, which resulted in better overall alloy stability. The final alloy, EPM 102, had significant creep rupture and fatigue improvements over the baseline production alloys and had acceptable microstructural stability. The alloy is currently being engine tested and evaluated for advanced engine applications.

  18. Research of PV Power Generation MPPT based on GABP Neural Network

    NASA Astrophysics Data System (ADS)

    Su, Yu; Lin, Xianfu

    2018-05-01

    Photovoltaic power generation has become the main research direction of new energy power generation. But high investment and low efficiency of photovoltaic industry arouse concern in some extent. So maximum power point tracking of photovoltaic power generation has been a popular study point. Due to slow response, oscillation at maximum power point and low precision, the algorithm based on genetic algorithm combined with BP neural network are designed detailedly in this paper. And the modeling and simulation are completed by use of MATLAB/SIMULINK. The results show that the algorithm is effective and the maximum power point can be tracked accurately and quickly.

  19. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.

    PubMed

    Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel

    2006-04-01

    This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

  20. Competition and Cooperation of Distributed Generation and Power System

    NASA Astrophysics Data System (ADS)

    Miyake, Masatoshi; Nanahara, Toshiya

    Advances in distributed generation technologies together with the deregulation of an electric power industry can lead to a massive introduction of distributed generation. Since most of distributed generation will be interconnected to a power system, coordination and competition between distributed generators and large-scale power sources would be a vital issue in realizing a more desirable energy system in the future. This paper analyzes competitions between electric utilities and cogenerators from the viewpoints of economic and energy efficiency based on the simulation results on an energy system including a cogeneration system. First, we examine best response correspondence of an electric utility and a cogenerator with a noncooperative game approach: we obtain a Nash equilibrium point. Secondly, we examine the optimum strategy that attains the highest social surplus and the highest energy efficiency through global optimization.

  1. Green Power Partnership Eligible Generation Dates

    EPA Pesticide Factsheets

    The U.S. EPA's Green Power Partnership is a voluntary partnership program designed to reduce the environmental impact of electricity generation by promoting renewable energy. EPA requires that Partners meet GPP's vintage requirement.

  2. Pulsed corona generation using a diode-based pulsed power generator

    NASA Astrophysics Data System (ADS)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  3. Power generation by flagella-propelled Serratia Marcescens

    NASA Astrophysics Data System (ADS)

    Tran, Trung-Hieu; Kim, Min Jun; Byun, Doyoung

    2010-11-01

    In this study, we present electrical power generation by using swimming Serratia marcescens which is a rod shaped bacterium species and has about 10 um long and about 20 nm thin helical filaments. Flow in micro channel is driven by bacteria attached on the wall, which is around 25 to 50 μm/sec. The driven electrolyte solution flow (buffer solution containing high concentration of S. marcescens) may be considered as movement of conductor. If we place permanent magnets on the top and bottom of the micro channel and electrodes on side walls in the micro channel, electrical current could be generated by the principle of Lorentz force acting on the moving charges. The potential between the two electrodes was measured to be up to 10mV and the electrical current was about 10pA with external load 50 Ohm. Even if the energy generated by bacteria swimming is small, it demonstrated the possible generation of power, which requires in-depth further research.

  4. Power Generator with Thermo-Differential Modules

    NASA Technical Reports Server (NTRS)

    Saiz, John R.; Nguyen, James

    2010-01-01

    A thermoelectric power generator consists of an oven box and a solar cooker/solar reflector unit. The solar reflector concentrates sunlight into heat and transfers the heat into the oven box via a heat pipe. The oven box unit is surrounded by five thermoelectric modules and is located at the bottom end of the solar reflector. When the heat is pumped into one side of the thermoelectric module and ejected from the opposite side at ambient temperatures, an electrical current is produced. Typical temperature accumulation in the solar reflector is approximately 200 C (392 F). The heat pipe then transfers heat into the oven box with a loss of about 40 percent. At the ambient temperature of about 20 C (68 F), the temperature differential is about 100 C (180 F) apart. Each thermoelectric module, generates about 6 watts of power. One oven box with five thermoelectric modules produces about 30 watts. The system provides power for unattended instruments in remote areas, such as space colonies and space vehicles, and in polar and other remote regions on Earth.

  5. Power Generation by Harvesting Ambient Energy with a Micro-Electromagnetic Generator

    DTIC Science & Technology

    2009-03-01

    more applicable at the micro scale are also being investigated including piezoelectric and electrostatics. Solar energy harvesting is a proven method. It...with IC circuitry. 6.2.7 Piezoelectric Research. In Chapter 2, energy harvesting through the use of piezoelectric materials was briefly discussed. A... piezoelectric harvesters require minimal movement for power generation, whereas an electromagnet generator generally requires significant mechanical motion in

  6. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  7. Global analysis of a renewable micro hydro power generation plant

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul

    2017-12-01

    Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.

  8. Solar Power Generation in Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Elliott, Frederick W.; Piszczor, Michael F.

    2016-01-01

    The exploration of space requires power for guidance, navigation, and control; instrumentation; thermal control; communications and data handling; and many subsystems and activities. Generating sufficient and reliable power in deep space through the use of solar arrays becomes even more challenging as solar intensity decreases and high radiation levels begin to degrade the performance of photovoltaic devices. The Extreme Environments Solar Power (EESP) project goal is to develop advanced photovoltaic technology to address these challenges.

  9. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  10. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  11. Model for Increasing the Power Obtained from a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Huang, Gia-Yeh; Hsu, Cheng-Ting; Yao, Da-Jeng

    2014-06-01

    We have developed a model for finding the most efficient way of increasing the power obtained from a thermoelectric generator (TEG) module with a variety of operating conditions and limitations. The model is based on both thermoelectric principles and thermal resistance circuits, because a TEG converts heat into electricity consistent with these two theories. It is essential to take into account thermal contact resistance when estimating power generation. Thermal contact resistance causes overestimation of the measured temperature difference between the hot and cold sides of a TEG in calculation of the theoretical power generated, i.e. the theoretical power is larger than the experimental power. The ratio of the experimental open-loop voltage to the measured temperature difference, the effective Seebeck coefficient, can be used to estimate the thermal contact resistance in the model. The ratio of the effective Seebeck coefficient to the theoretical Seebeck coefficient, the Seebeck coefficient ratio, represents the contact conditions. From this ratio, a relationship between performance and different variables can be developed. The measured power generated by a TEG module (TMH400302055; Wise Life Technology, Taiwan) is consistent with the result obtained by use of the model; the relative deviation is 10%. Use of this model to evaluate the most efficient means of increasing the generated power reveals that the TEG module generates 0.14 W when the temperature difference is 25°C and the Seebeck coefficient ratio is 0.4. Several methods can be used triple the amount of power generated. For example, increasing the temperature difference to 43°C generates 0.41 W power; improving the Seebeck coefficient ratio to 0.65 increases the power to 0.39 W; simultaneously increasing the temperature difference to 34°C and improving the Seebeck coefficient ratio to 0.5 increases the power to 0.41 W. Choice of the appropriate method depends on the limitations of system, the cost, and

  12. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  13. High power microwave generator

    DOEpatents

    Ekdahl, Carl A.

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  14. High power microwave generator

    DOEpatents

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  15. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  16. Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet

    NASA Astrophysics Data System (ADS)

    Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.

    2014-12-01

    The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.

  17. Experience in connecting the power generating units of thermal power plants to automatic secondary frequency regulation within the united power system of Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.

    The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less

  18. Microelectromechanical power generator and vibration sensor

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  19. The Meteosat Second Generation (MSG) power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, J.E.; Levins, D.; Robben, A.

    1997-12-31

    Under the direction of the European Meteorological Satellite Organization (EUMETSAT) and the European Space Agency (ESA), space industries within Europe are in the process of developing a new series of larger and more performant geostationary weather satellites. The initial three spacecraft within this new series, which are known by the name of Meteosat Second Generation (MSG), are due to be progressively launched from the year 2000 onwards. The major objective of this mission is the continuation of the European weather watch and space borne atmospheric sensing services provided by the present series of Meteosat spacecraft. To satisfy this mission requirement,more » the payload compliment to be supported by MSG will consist of a comprehensive earth viewing instrument capable of operating in both the infra-red and visible spectrum, an earth radiation measurement system and a search and rescue facility. In furnishing the power needs for these payloads, the power generating element on the spin stabilized MSG spacecraft consists of a body mounted solar array, capable of providing 628 watts of electrical power at the end of seven years of geosynchronous orbital lifetime. The energy storage elements for the spacecraft consists of two, 29 ampere-hour batteries, while centralized power management is achieved by the Power Control Unit (PCU), which satisfies the payload and battery re-charge demands by controlling the available solar array power. Power distribution for the spacecraft electrical loads and heaters is achieved by the Power Distribution Unit (PDU) and for the pyrotechnic devices by the Pyrotechnic Release Unit.« less

  20. In Vivo Demonstration of a Self-Sustaining, Implantable, Stimulated-Muscle-Powered Piezoelectric Generator Prototype

    PubMed Central

    Lewandowski, B. E.; Kilgore, K. L.; Gustafson, K. J.

    2010-01-01

    An implantable, stimulated-muscle-powered piezoelectric active energy harvesting generator was previously designed to exploit the fact that the mechanical output power of muscle is substantially greater than the electrical power necessary to stimulate the muscle’s motor nerve. We reduced to practice the concept by building a prototype generator and stimulator. We demonstrated its feasibility in vivo, using rabbit quadriceps to drive the generator. The generated power was sufficient for self-sustaining operation of the stimulator and additional harnessed power was dissipated through a load resistor. The prototype generator was developed and the power generating capabilities were tested with a mechanical muscle analog. In vivo generated power matched the mechanical muscle analog, verifying its usefulness as a test-bed for generator development. Generator output power was dependent on the muscle stimulation parameters. Simulations and in vivo testing demonstrated that for a fixed number of stimuli/minute, two stimuli applied at a high frequency generated greater power than single stimuli or tetanic contractions. Larger muscles and circuitry improvements are expected to increase available power. An implanted, self-replenishing power source has the potential to augment implanted battery or transcutaneously powered electronic medical devices. PMID:19657742

  1. Open circuit V-I characteristics of a coreless ironless electric generator for low density wind power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Azlan, Syaiful; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The concept is then fabricated and experimentally validated to qualify its no-load characteristics. The rotational torque and power output are measured and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 416VAC at rotational speed of 1762 RPM. Torque required to rotate the generator was at 2Nm for various rotational speed. The generator has shown 30% lesser rotational torque compared to the conventional ironcore type generator due to the absent of cogging torque in the system. Lesser rotational torque required to rotate has made this type of generator has a potential to be used for low wind density wind turbine application.

  2. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    PubMed

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  3. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices. © IMechE 2016.

  4. Estimation of foot joint kinetics in three and four segment foot models using an existing proportionality scheme: Application in paediatric barefoot walking.

    PubMed

    Deschamps, Kevin; Eerdekens, Maarten; Desmet, Dirk; Matricali, Giovanni Arnoldo; Wuite, Sander; Staes, Filip

    2017-08-16

    Recent studies which estimated foot segment kinetic patterns were found to have inconclusive data on one hand, and did not dissociate the kinetics of the chopart and lisfranc joint. The current study aimed therefore at reproducing independent, recently published three-segment foot kinetic data (Study 1) and in a second stage expand the estimation towards a four-segment model (Study 2). Concerning the reproducibility study, two recently published three segment foot models (Bruening et al., 2014; Saraswat et al., 2014) were reproduced and kinetic parameters were incorporated in order to calculate joint moments and powers of paediatric cohorts during gait. Ground reaction forces were measured with an integrated force/pressure plate measurement set-up and a recently published proportionality scheme was applied to determine subarea total ground reaction forces. Regarding Study 2, moments and powers were estimated with respect to the Instituto Ortopedico Rizzoli four-segment model. The proportionality scheme was expanded in this study and the impact of joint centre location on kinetic data was evaluated. Findings related to Study 1 showed in general good agreement with the kinetic data published by Bruening et al. (2014). Contrarily, the peak ankle, midfoot and hallux powers published by Saraswat et al. (2014) are disputed. Findings of Study 2 revealed that the chopart joint encompasses both power absorption and generation, whereas the Lisfranc joint mainly contributes to power generation. The results highlights the necessity for further studies in the field of foot kinetic models and provides a first estimation of the kinetic behaviour of the Lisfranc joint. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  6. A power autonomous monopedal robot

    NASA Astrophysics Data System (ADS)

    Krupp, Benjamin T.; Pratt, Jerry E.

    2006-05-01

    We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all

  7. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.

    2010-09-01

    The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less

  8. 78 FR 32385 - Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-64-000] Exelon Generation Company, LLC; CER Generation II, LLC; Constellation Mystic Power, LLC; Constellation NewEnergy...) Rules of Practice and Procedure, 18 CFR 385.207, Exelon Generation Company, LLC, CER Generation II, LLC...

  9. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  10. Technology survey of electrical power generation and distribution for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  11. Medical aspects of power generation, present and future.

    PubMed

    Linnemann, R E

    1979-01-01

    It can be seen that the radiation emissions of nuclear power plants are small indeed, compared to natural background radiation and other man-made sources of radiation. For example, the poulation is exposed to 100 times more radiation from television sets than from nuclear power reactors. The assumed risks to the people in this country from nuclear power reactors are also small compared to the normal risks which are tolerated in this society. The complete elimination of all hazards is a most difficult if not impossible task. If we need and desire a certain level of electrical energy, if we must choose between alternative sourves of the energy, then it is apparent that the total impact on our health from nuclear power generation of electricity, under normal operations and in consideration of catastrophic accident probabilities, is significantly less than that of continuing or increasing use of fossil fuels to generate electricity.

  12. Stationary diesel engines for use with generators to supply electric power

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  13. Heat Management in Thermoelectric Power Generators

    PubMed Central

    Zebarjadi, M.

    2016-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show cooling from sidewalls increases the efficiency for Bi values less than one, and decreases the efficiency for Bi values larger than one. PMID:27033717

  14. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  15. Electric energy production by particle thermionic-thermoelectric power generators

    NASA Technical Reports Server (NTRS)

    Oettinger, P. E.

    1980-01-01

    Thermionic-thermoelectric power generators, composed of a thin layer of porous, low work function material separating a heated emitter electrode and a cooler collector electrode, have extremely large Seebeck coefficients of over 2 mV/K and can provide significant output power. Preliminary experiments with 20-micron thick (Ba Sr Ca)O coatings, limited by evaporative loss to temperatures below 1400 K, have yielded short circuit current densities of 500 mA/sq cm and power densities of 60 mW/ sq cm. Substantially more output is expected with cesium-coated refractory oxide particle coatings operating at higher temperatures. Practical generators will have thermal-to-electrical efficiencies of 10 to 20%. Further increases can be gained by cascading these high-temperature devices with lower temperature conventional thermoelectric generators.

  16. How large customer direct power transaction mode give consideration to power generation cleaning and power saving

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zeng, Ming; Liu, Wei; Li, Ran

    2017-05-01

    The so-called Large Customers' Direct Power Transaction, refers to the mode that the users on high voltage level, or being seized of hold the large power or independent power distribution, have the qualification of purchasing electricity directly from the generation companies and pay reasonable electricity transmission and distribution fee to the power network enterprises because the transaction is through its transmission channel. The Direct Purchase promotes the marketization level of electricity trading, but there are some problems in its developing process, especially whether promotes the green optimal allocation of power resources, this paper aims to explore the solution.

  17. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less

  18. Development of large wind energy power generation system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The background and development of an experimental 100 kW wind-energy generation system are described, and the results of current field tests are presented. The experimental wind turbine is a two-bladed down-wind horizontal axis propeller type with a 29.4 m diameter rotor and a tower 28 m in height. The plant was completed in March, 1983, and has been undergoing trouble-free tests since then. The present program calls for field tests during two years from fiscal 1983 to 1984. The development of technologies relating to the linkage and operation of wind-energy power generation system networks is planned along with the acquisition of basic data for the development of a large-scale wind energy power generation system.

  19. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and

  20. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  1. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  2. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  3. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  4. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power generation,...

  5. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching

    PubMed Central

    2018-01-01

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K-user multicell MIMO scheduling and K-user L-cell CEUs partial cooperation algorithms elaborate the generalisation of K-user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes. PMID:29382100

  6. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching.

    PubMed

    Selvaprabhu, Poongundran; Chinnadurai, Sunil; Sarker, Md Abdul Latif; Lee, Moon Ho

    2018-01-28

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K -user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K -user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K -user multicell MIMO scheduling and K -user L -cell CEUs partial cooperation algorithms elaborate the generalisation of K -user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes.

  7. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept

    PubMed Central

    Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-01-01

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme. PMID:29186850

  8. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept.

    PubMed

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-11-25

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.

  9. Binary vapor cycle method of electrical power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humiston, G.F.

    1982-04-13

    A binary vapor cycle method of electrical power generation is disclosed wherein two refrigerant fluids can be used to operate an apparatus for the generation of mechanical power as well as electrical power generation. This method, which is essentially a dual heat pump system, offers an approach to utilizing the advantages of two different refrigerants within a single apparatus. This advantage is particularly advantageous in the ulitization of low specific energy sources, such as two water sources which exist in close proximity to each other, but at different temperatures. Thus, water, which itself is a heat pump fluid, can bemore » used as a means of transmitting heat energy to a second heat pump fluid, or refrigerant, without incurring the disadvantages of water, or water vapors, as a means to produce power, because of its high specific volume and low saturation pressures at low temperatures. Additionally, since the warm water source of energy most commonly available is in the form of reservoirs, such as the ocean waters, and the utilization of barometric legs to bring the warm water into contact with the process, eliminates the use of expensive heat exchangers, which is the case of ocean water, are subject to fouling and loss of efficiency due to clinging microorganisms.« less

  10. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  11. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the

  12. Maturing Technologies for Stirling Space Power Generation

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  13. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Deangelis; Rich Depuy; Debashis Dey

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale upmore » strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.« less

  14. Power Doppler Ultrasound Evaluation of Peripheral Joint, Entheses, Tendon, and Bursa Abnormalities in Psoriatic Patients: A Clinical Study.

    PubMed

    Tang, Yuanjiao; Yang, Yujia; Xiang, Xi; Wang, Liyun; Zhang, Lingyan; Qiu, Li

    2018-06-01

    To evaluate the prevalence rates of peripheral joint, enthesis, tendon, and bursa abnormalities by power Doppler (PD) ultrasonic examination in patients with psoriatic arthritis (PsA), psoriatic patients without clinical signs of arthritis (non-PsA psoriasis group), and healthy individuals, to detect subclinical PsA. A total of 253 healthy volunteers, 242 non-PsA psoriatic patients, and 86 patients with PsA were assessed by 2-dimensional and power Doppler (PD) ultrasound. Peripheral joint, enthesis, tendon, and bursa abnormalities were observed, characterizing abnormal PD. The affected patients and sites with abnormalities in various ages were compared among groups; PD signal grades for the abnormalities were also compared. In the PsA group, significantly higher percentages of sites showing joint effusion/synovitis, enthesitis, and tenosynovitis in all age groups, and markedly higher rates of sites with bursitis were found in young and middle age groups, compared with the non-PsA and control groups (all p < 0.01). Meanwhile, the non-PsA group showed significantly higher rates of joint effusion/synovitis and enthesitis sites, and elevated PD signal grades of synovitis, enthesitis, and tenosynovitis in comparison with the control group, both in young and middle age groups (all p < 0.01). Patients with PsA have high percentages and PD signal grades of peripheral joint, tendon, enthesis, and bursa involvement. Young and middle-aged non-PsA patients have high synovitis and enthesitis percentages, and elevated PD signal grades of synovitis, enthesitis, and tenosynovitis.

  15. Power processing and control requirements of dispersed solar thermal electric generation systems

    NASA Technical Reports Server (NTRS)

    Das, R. L.

    1980-01-01

    Power Processing and Control requirements of Dispersed Receiver Solar Thermal Electric Generation Systems are presented. Kinematic Stirling Engines, Brayton Engines and Rankine Engines are considered as prime movers. Various types of generators are considered for ac and dc link generations. It is found that ac-ac Power Conversion is not suitable for implementation at this time. It is also found that ac-dc-ac Power Conversion with a large central inverter is more efficient than ac-dc-ac Power Conversion using small dispersed inverters. Ac-link solar thermal electric plants face potential stability and synchronization problems. Research and development efforts are needed in improving component performance characteristics and generation efficiency to make Solar Thermal Electric Generation economically attractive.

  16. Wind wheel electric power generator

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W. (Inventor)

    1980-01-01

    Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.

  17. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  18. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  19. An ITPA joint experiment to study runaway electron generation and suppression

    DOE PAGES

    Granetz, Robert S.; Esposito, B.; Kim, J. H.; ...

    2014-07-11

    Recent results from an ITPA joint experiment to study the onset, growth, and decay of relativistic electrons (REs) indicate that loss mechanisms other than collisional damping may play a dominant role in the dynamics of the RE population, even during the quiescent Ip flattop. Understanding the physics of RE growth and mitigation is motivated by the theoretical prediction that disruptions of full-current (15 MA) ITER discharges could generate up to 10 MA of REs with 10-20 MeV energies. The ITPA MHD group is conducting a joint experiment to measure the RE detection threshold conditions on a number of tokamaks undermore » quasi-steady-state conditions in which V loop, n e, and REs can be well-diagnosed and compared to collisional theory. Data from DIII-D, C-Mod, FTU, KSTAR, and TEXTOR have been obtained so far, and the consensus to date is that the threshold E-field is significantly higher than predicted by relativistic collisional theory, or conversely, the density required to damp REs is significantly less than predicted, which could have significant implications for RE mitigation on ITER.« less

  20. Electrodynamic Tethers. 1: Power Generator in LEO. 2: Thrust for Propulsion and Power Storage

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1984-01-01

    An electrodynamic tether consists of a long insulated wire in space whose orbital motion cuts across lines of magnetic flux to produce an induce voltage that in typical low orbits averages about 200 v/km. Such a system should be capable of generating substantial electrical power, at the expense of IXB drag acting on its orbital energy. If a reverse current is driven against the induced voltage, the system should act as a motor producing IXB thrust. A reference system was designed, capable of generating 20 KW of power into an electrical load located anywhere along the wire at the expense of 2.6N (20,000 J/sec) drag on the wire. In an ideal system, the conversion between mechanical and electrical energy would reach 100% efficiency. In the actual system part of the 20 KW is lost to internal resistance of the wire, plasma and ionosphere, while the drag force is increased by residual air drag. The 20 KW PMG system as designed is estimated to provide 18.7 KW net power to the load at total drag loss of 20.4 KJ/sec, or an overall efficiency of 92%. Similar systems using heavier wire appear capable of producing power levels in excess of 1 Megawatt at voltages of 2-4 KV, with conversion efficiency between mechanical and electrical power better than 95%. The hollow cathode based system should be readily reversible from generator to motor operation by driving a reverse current using onboard power.

  1. The Satellite Nuclear Power Station - An option for future power generation.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.

    1973-01-01

    A new concept in nuclear power generation is being explored which essentially eliminates major objections to nuclear power. The Satellite Nuclear Power Station, remotely operated in synchronous orbit, would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space and no radioactive materials would ever be returned to earth. Even the worst possible accident to such a plant should have negligible effect on the earth. An exploratory study of a satellite nuclear power station to provide 10,000 MWe to the earth has shown that the system could weigh about 20 million pounds and cost less than $1000/KWe. An advanced breeder reactor operating with an MHD power cycle could achieve an efficiency of about 50% with a 1100 K radiator temperature. If a hydrogen moderated gas core reactor is used, its breeding ratio of 1.10 would result in a fuel doubling time of a few years. A rotating fluidized bed or NERVA type reactor might also be used. The efficiency of power transmission from synchronous orbit would range from 70% to 80%.

  2. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.

    PubMed

    Li, Zhijun; Wang, Baocheng; Sun, Fuchun; Yang, Chenguang; Xie, Qing; Zhang, Weidong

    2014-05-01

    This paper investigates two surface electromyogram (sEMG)-based control strategies developed for a power-assist exoskeleton arm. Different from most of the existing position control approaches, this paper develops force control methods to make the exoskeleton robot behave like humans in order to provide better assistance. The exoskeleton robot is directly attached to a user's body and activated by the sEMG signals of the user's muscles, which reflect the user's motion intention. In the first proposed control method, the forces of agonist and antagonist muscles pair are estimated, and their difference is used to produce the torque of the corresponding joints. In the second method, linear discriminant analysis-based classifiers are introduced as the indicator of the motion type of the joints. Then, the classifier's outputs together with the estimated force of corresponding active muscle determine the torque control signals. Different from the conventional approaches, one classifier is assigned to each joint, which decreases the training time and largely simplifies the recognition process. Finally, the extensive experiments are conducted to illustrate the effectiveness of the proposed approaches.

  3. Power generation using sugar cane bagasse: A heat recovery analysis

    NASA Astrophysics Data System (ADS)

    Seguro, Jean Vittorio

    The sugar industry is facing the need to improve its performance by increasing efficiency and developing profitable by-products. An important possibility is the production of electrical power for sale. Co-generation has been practiced in the sugar industry for a long time in a very inefficient way with the main purpose of getting rid of the bagasse. The goal of this research was to develop a software tool that could be used to improve the way that bagasse is used to generate power. Special focus was given to the heat recovery components of the co-generation plant (economizer, air pre-heater and bagasse dryer) to determine if one, or a combination, of them led to a more efficient co-generation cycle. An extensive review of the state of the art of power generation in the sugar industry was conducted and is summarized in this dissertation. Based on this models were developed. After testing the models and comparing the results with the data collected from the literature, a software application that integrated all these models was developed to simulate the complete co-generation plant. Seven different cycles, three different pressures, and sixty-eight distributions of the flue gas through the heat recovery components can be simulated. The software includes an economic analysis tool that can help the designer determine the economic feasibility of different options. Results from running the simulation are presented that demonstrate its effectiveness in evaluating and comparing the different heat recovery components and power generation cycles. These results indicate that the economizer is the most beneficial option for heat recovery and that the use of waste heat in a bagasse dryer is the least desirable option. Quantitative comparisons of several possible cycle options with the widely-used traditional back-pressure turbine cycle are given. These indicate that a double extraction condensing cycle is best for co-generation purposes. Power generation gains between 40 and

  4. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  5. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    NASA Technical Reports Server (NTRS)

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  6. Solid-State Thermionic Power Generators: An Analytical Analysis in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2017-07-01

    Solid-state thermionic power generators are an alternative to thermoelectric modules. In this paper, we develop an analytical model to investigate the performance of these generators in the nonlinear regime. We identify dimensionless parameters determining their performance and provide measures to estimate an acceptable range of thermal and electrical resistances of thermionic generators. We find the relation between the optimum load resistance and the internal resistance and suggest guidelines for the design of thermionic power generators. Finally, we show that in the nonlinear regime, thermionic power generators can have efficiency values higher than the state-of-the-art thermoelectric modules.

  7. An Exploratory Study of Thermoelectrostatic Power Generation for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Beam, Benjamin H.

    1960-01-01

    A study has been made of a process in which a solar heating cycle is combined with an electrostatic cycle for generating electrical power for space vehicle applications. The power unit, referred to as a thermoelectrostatic generator, is a thin film, solid dielectric capacitor alternately heated by solar radiation and cooled by radiant emission. The theory of operation to extract electrical power is presented. Results of an experiment to illustrate the principle are described. Estimates of the performance of this type of device in space in the vicinity of earth are included. Values of specific power of several kilowatts per kilogram of generator weight are calculated for such a device employing polyethylene terephthalate dielectric.

  8. Thermoelectrical generator powered by human body

    NASA Astrophysics Data System (ADS)

    Almasyova, Zuzana; Vala, David; Slanina, Zdenek; Idzkowski, Adam

    2017-08-01

    This article deals with the possibility of using alternative energy sources for power of biomedical sensors with low power consumption, especially using the Peltier effect sources. Energy for powering of the target device has been used from the available renewable photovoltaic effect. The work is using of "energy harvesting" or "harvest energy" produced by autonomous generator harvesting accumulate energy. It allows to start working from 0.25 V. Measuring chain consists of further circuit which is a digital monitoring device for monitoring a voltage, current and power with I2C bus interface. Using the Peltier effect was first tested in a thermocontainer with water when the water heating occurred on the basis of different temperature differential between the cold and hot side of the Peltier element result in the production of energy. Realized prototype was also experimentally tested on human skin, specifically on the back, both in idle mode and under load.

  9. Assembly and Testing of a Compact, Lightweight Homopolar Generator Power Supply

    DTIC Science & Technology

    1983-06-01

    ASSEMBLY AND TESTING OF A COMPACT, LIGHTWEIGHT HOMOPOLAR GENERATOR POWER SUPPLY J. H. Gully Center for Electromechanics The University of Texas...portable systems. The initial step in developing the power supply was to design, fabricate and test a prototype homopolar generator, attempting to...levels. SUPPORT STRUCTURE HYDRAULIC Fig. 1. Section through compact homopolar generator ~1 l-oot!:__ __ 63.80 ----~ (25. 12) ~------ 85.88

  10. Maximizing photovoltaic power generation of a space-dart configured satellite

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.

    2015-06-01

    Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.

  11. Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler

    NASA Astrophysics Data System (ADS)

    Brazdil, Marian; Pospisil, Jiri

    2013-07-01

    The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.

  12. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two...18 * 12 Annual Mean Wind Power Density 21 5 FIGURES (Cont’d) Number Page 13 Wind - Turbine /Generator Types Currently Being Tested on Utility Sites 22 14

  13. Synthesis of power plant outage schedules. Final technical report, April 1995-January 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.R.

    This document provides a report on the creation of domain theories in the power plant outage domain. These were developed in conjunction with the creation of a demonstration system of advanced scheduling technology for the outage problem. In 1994 personnel from Rome Laboratory (RL), Kaman Science (KS), Kestrel Institute, and the Electric Power Research Institute (EPRI) began a joint project to develop scheduling tools for power plant outage activities. This report describes our support for this joint effort. The project uses KIDS (Kestrel Interactive Development System) to generate schedulers from formal specifications of the power plant domain outage activities.

  14. An ultrasonically powered implantable micro-oxygen generator (IMOG).

    PubMed

    Maleki, Teimour; Cao, Ning; Song, Seung Hyun; Kao, Chinghai; Ko, Song-Chu Arthur; Ziaie, Babak

    2011-11-01

    In this paper, we present an ultrasonically powered implantable micro-oxygen generator (IMOG) that is capable of in situ tumor oxygenation through water electrolysis. Such active mode of oxygen generation is not affected by increased interstitial pressure or abnormal blood vessels that typically limit the systemic delivery of oxygen to hypoxic regions of solid tumors. Wireless ultrasonic powering (2.15 MHz) was employed to increase the penetration depth and eliminate the directional sensitivity associated with magnetic methods. In addition, ultrasonic powering allowed for further reduction in the total size of the implant by eliminating the need for a large area inductor. IMOG has an overall dimension of 1.2 mm × 1.3 mm × 8 mm, small enough to be implanted using a hypodermic needle or a trocar. In vitro and ex vivo experiments showed that IMOG is capable of generating more than 150 μA which, in turn, can create 0.525 μL/min of oxygen through electrolytic disassociation. In vivo experiments in a well-known hypoxic pancreatic tumor models (1 cm (3) in size) also verified adequate in situ tumor oxygenation in less than 10 min.

  15. Electric Power Generation Systems for Use in Space

    DTIC Science & Technology

    1960-07-20

    source of power . It is available from two sources, namely, nuclear fission and radioisotope decay. In both cases, the energy is available in...limitations on inventory size as well as spe- cific weight considerations will restrict radioisotope systems to power levels below about 1 kilowatt. It is... POWER GENERATION SYSTEMS FOR USE IN SPA TIC By Henry 0. Slone and Seymour Lieblein -y 6, "IN 13 pLewis Research Center G 0 3 1994 Nation Aeronautics

  16. Rotary-Atomizer Electric Power Generator

    NASA Astrophysics Data System (ADS)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  17. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    PubMed

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  18. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  19. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    NASA Astrophysics Data System (ADS)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  20. Feedback power control strategies in wireless sensor networks with joint channel decoding.

    PubMed

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as "balanced SNR" and "unbalanced SNR," respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm.

  1. Feedback Power Control Strategies in Wireless Sensor Networks with Joint Channel Decoding

    PubMed Central

    Abrardo, Andrea; Ferrari, Gianluigi; Martalò, Marco; Perna, Fabio

    2009-01-01

    In this paper, we derive feedback power control strategies for block-faded multiple access schemes with correlated sources and joint channel decoding (JCD). In particular, upon the derivation of the feasible signal-to-noise ratio (SNR) region for the considered multiple access schemes, i.e., the multidimensional SNR region where error-free communications are, in principle, possible, two feedback power control strategies are proposed: (i) a classical feedback power control strategy, which aims at equalizing all link SNRs at the access point (AP), and (ii) an innovative optimized feedback power control strategy, which tries to make the network operational point fall in the feasible SNR region at the lowest overall transmit energy consumption. These strategies will be referred to as “balanced SNR” and “unbalanced SNR,” respectively. While they require, in principle, an unlimited power control range at the sources, we also propose practical versions with a limited power control range. We preliminary consider a scenario with orthogonal links and ideal feedback. Then, we analyze the robustness of the proposed power control strategies to possible non-idealities, in terms of residual multiple access interference and noisy feedback channels. Finally, we successfully apply the proposed feedback power control strategies to a limiting case of the class of considered multiple access schemes, namely a central estimating officer (CEO) scenario, where the sensors observe noisy versions of a common binary information sequence and the AP's goal is to estimate this sequence by properly fusing the soft-output information output by the JCD algorithm. PMID:22291536

  2. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  3. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  4. Modeling Imperfect Generator Behavior in Power System Operation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krad, Ibrahim

    A key component in power system operations is the use of computer models to quickly study and analyze different operating conditions and futures in an efficient manner. The output of these models are sensitive to the data used in them as well as the assumptions made during their execution. One typical assumption is that generators and load assets perfectly follow operator control signals. While this is a valid simulation assumption, generators may not always accurately follow control signals. This imperfect response of generators could impact cost and reliability metrics. This paper proposes a generator model that capture this imperfect behaviormore » and examines its impact on production costs and reliability metrics using a steady-state power system operations model. Preliminary analysis shows that while costs remain relatively unchanged, there could be significant impacts on reliability metrics.« less

  5. FEM Simulation of Small Wind Power Generating System Using PMSG

    NASA Astrophysics Data System (ADS)

    Kesamaru, Katsumi; Ohno, Yoshihiro; Sonoda, Daisuke

    The paper describes a new approach to simulate the small wind power generating systems using PMSG, in which the output is connected to constant resistive load, such as heaters, through the rectifier and the dc chopper. The dynamics of the wind power generating system is presented, and it is shown by simulation results that this approach is useful for system dynamics, such as starting phenomena.

  6. High-power Broadband Organic THz Generator

    PubMed Central

    Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil

    2013-01-01

    The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234

  7. High-power broadband organic THz generator.

    PubMed

    Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil

    2013-11-13

    The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.

  8. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.

    PubMed

    Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D

    2008-02-08

    We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.

  9. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Joint facilities. 154.307 Section 154.307 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment...

  10. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Joint facilities. 154.307 Section 154.307 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment...

  11. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Joint facilities. 154.307 Section 154.307 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment...

  12. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Joint facilities. 154.307 Section 154.307 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment...

  13. 18 CFR 154.307 - Joint facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Joint facilities. 154.307 Section 154.307 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Changes § 154.307 Joint facilities. The Statements required by § 154.312 must show all costs (investment...

  14. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    PubMed Central

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-01-01

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204

  15. Effect of material constants on power output in piezoelectric vibration-based generators.

    PubMed

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  16. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet typesmore » in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.« less

  17. Power control for direct-driven permanent magnet wind generator system with battery storage.

    PubMed

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient.

  18. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    PubMed Central

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  19. New Generation Power System for Space Applications

    NASA Technical Reports Server (NTRS)

    Jones, Loren; Carr, Greg; Deligiannis, Frank; Lam, Barbara; Nelson, Ron; Pantaleon, Jose; Ruiz, Ian; Treicler, John; Wester, Gene; Sauers, Jim; hide

    2004-01-01

    The Deep Space Avionics (DSA) Project is developing a new generation of power system building blocks. Using application specific integrated circuits (ASICs) and power switching modules a scalable power system can be constructed for use on multiple deep space missions including future missions to Mars, comets, Jupiter and its moons. The key developments of the DSA power system effort are five power ASICs and a mod ule for power switching. These components enable a modular and scalab le design approach, which can result in a wide variety of power syste m architectures to meet diverse mission requirements and environments . Each component is radiation hardened to one megarad) total dose. The power switching module can be used for power distribution to regular spacecraft loads, to propulsion valves and actuation of pyrotechnic devices. The number of switching elements per load, pyrotechnic firin gs and valve drivers can be scaled depending on mission needs. Teleme try data is available from the switch module via an I2C data bus. The DSA power system components enable power management and distribution for a variety of power buses and power system architectures employing different types of energy storage and power sources. This paper will describe each power ASIC#s key performance characteristics as well a s recent prototype test results. The power switching module test results will be discussed and will demonstrate its versatility as a multip urpose switch. Finally, the combination of these components will illu strate some of the possible power system architectures achievable fro m small single string systems to large fully redundant systems.

  20. Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation.

    PubMed

    Kim, Kwon-Ho; Kumar, Brijesh; Lee, Keun Young; Park, Hyun-Kyu; Lee, Ju-Hyuck; Lee, Hyun Hwi; Jun, Hoin; Lee, Dongyun; Kim, Sang-Woo

    2013-01-01

    Direct current (DC) piezoelectric power generator is promising for the miniaturization of a power package and self-powering of nanorobots and body-implanted devices. Hence, we report the first use of two-dimensional (2D) zinc oxide (ZnO) nanostructure and an anionic nanoclay layer to generate piezoelectric DC output power. The device, made from 2D nanosheets and an anionic nanoclay layer heterojunction, has potential to be the smallest size power package, and could be used to charge wireless nano/micro scale systems without the use of rectifier circuits to convert alternating current into DC to store the generated power. The combined effect of buckling behaviour of the ZnO nanosheets, a self-formed anionic nanoclay layer, and coupled semiconducting and piezoelectric properties of ZnO nanosheets contributes to efficient DC power generation. The networked ZnO nanosheets proved to be structurally stable under huge external mechanical loads.

  1. Underwater thrust and power generation using flexible piezoelectric composites: an experimental investigation toward self-powered swimmer-sensor platforms

    NASA Astrophysics Data System (ADS)

    Erturk, Alper; Delporte, Ghislain

    2011-12-01

    Fiber-based flexible piezoelectric composites offer several advantages to use in energy harvesting and biomimetic locomotion. These advantages include ease of application, high power density, effective bending actuation, silent operation over a range of frequencies, and light weight. Piezoelectric materials exhibit the well-known direct and converse piezoelectric effects. The direct piezoelectric effect has received growing attention for low-power generation to use in wireless electronic applications while the converse piezoelectric effect constitutes an alternative to replace the conventional actuators used in biomimetic locomotion. In this paper, underwater thrust and electricity generation are investigated experimentally by focusing on biomimetic structures with macro-fiber composite piezoelectrics. Fish-like bimorph configurations with and without a passive caudal fin (tail) are fabricated and compared. The favorable effect of having a passive caudal fin on the frequency bandwidth is reported. The presence of a passive caudal fin is observed to bring the second bending mode close to the first one, yielding a wideband behavior in thrust generation. The same smart fish configuration is tested for underwater piezoelectric power generation in response to harmonic excitation from its head. Resonant piezohydroelastic actuation is reported to generate milli-newton level hydrodynamic thrust using milli-watt level actuation power input. The average actuation power requirement for generating a mean thrust of 19 mN at 6 Hz using a 10 g piezoelastic fish with a caudal fin is measured as 120 mW. This work also discusses the feasibility of thrust generation using the harvested energy toward enabling self-powered swimmer-sensor platforms with comparisons based on the capacity levels of structural thin-film battery layers as well as harvested solar and vibrational energy.

  2. A variable-speed, constant-frequency wind power generation scheme using a slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.

    This paper investigates a variable-speed, constant-frequency double output induction generator which is capable of absorbing the mechanical energy from a fixed pitch wind turbine and converting it into electrical energy at constant grid voltage and frequency. Rotor power at varying voltage and frequency is either fed to electronically controlled resistances and used as heat energy or is rectified, inverted by a controllable line-commutated inverter and returned to the grid. Optimal power tracking is by means of an adaptive controller which controls the developed torque of the generator by monitoring the shaft speed.

  3. Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Maksuwan, A.

    2018-05-01

    The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.

  4. Geothermal Power Generation Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Coolingmore » water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.« less

  5. The P3 Power Generation System for Advanced Missile Defense Applications

    DTIC Science & Technology

    2008-11-01

    circuit. This increased the output power to the load resistor . The inductor couples with the piezo element to form an electrical LC tuned circuit and...of RMS power was generated with an efficiency of 40 % when an inductor of 250 mH was connected in series to a 100 ohm resistor . From power density...per cycle for generating electrical energy in a piezo -crystal membrane. Steady-state heat transfer measurements have been made previously with a

  6. Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation.

    PubMed

    Shen, Daozhi; Xiao, Ming; Zou, Guisheng; Liu, Lei; Duley, Walter W; Zhou, Y Norman

    2018-05-01

    Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO 2 ) nanowire networks, can yield an output power density of up to 4 µW cm -2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Alteration of swing leg work and power during human accelerated sprinting

    PubMed Central

    Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji

    2017-01-01

    ABSTRACT This study investigated changes in lower-extremity joint work and power during the swing phase in a maximal accelerated sprinting. Twelve male sprinters performed 60 m maximal sprints while motion data was recorded. Lower-extremity joint work and power during the swing phase of each stride for both legs were calculated. Positive hip and negative knee work (≈4.3 and ≈−2.9 J kg−1) and mean power (≈13.4 and ≈−8.7 W kg−1) during the entire swing phase stabilized or decreased after the 26.2±1.1 (9.69±0.25 m s−1) or 34.3±1.5 m mark (9.97±0.26 m s−1) during the acceleration phase. In contrast, the hip negative work and mean power during the early swing phase (≈7-fold and ≈3.7-fold increase in total), as well as the knee negative work and power during the terminal swing phase (≈1.85-fold and ≈2-fold increase in total), increased until maximal speed. Moreover, only the magnitudes of increases in negative work and mean power at hip and knee joints during the swing phase were positively associated with the increment of running speed from the middle of acceleration phase. These findings indicate that the roles of energy generation and absorption at the hip and knee joints shift around the middle of the acceleration phase as energy generation and absorption at the hip during the late swing phase and at the knee during early swing phase are generally maintained or decreased, and negative work and power at hip during the early swing phase and at knee during the terminal swing phase may be responsible for increasing running speed when approaching maximal speed. PMID:28396485

  8. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  9. Contributions from space technology to central power generation

    NASA Technical Reports Server (NTRS)

    Dicks, J. B., Jr.

    1972-01-01

    The central power crisis, and the present and relatively near-time contributions that aerospace technology is making to help solve this crisis are discussed. The principal emphasis is placed on the prospects of aerospace derived magnetohydrodynamic (MHD) large scale power generation. The strides that the Soviet Union is making in this field with the startup of the new U-25 plant near Moscow, having a total power capability of 75 MW, are reviewed. A much smaller program in the U.S. is outlined, and prospects of future benefits are discussed.

  10. V-I characteristics of a coreless ironless electric generator in a closed-circuit mode for low wind density power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. The generator was fabricated and experimentally validated to qualify its loaded characteristics. The rotational torque and power output are measured and efficiency is then analyzed. At 100Ω load, the generator power output increased with the increased of rotational speed. Nearly 78% of efficiency was achieved when the generator was rotated at 250rpm. At this speed, the generator produced RMS voltage of 81VAC. Torque required to rotate the generator was found to be 3.2Nm. The slight increment of mechanical torque to spin the generator was due to the counter electromotive force (CEMF) existed in the copper windings. However, the torque required is still lower by nearly 30% than conventional AFPM generator. It is there concluded that this generator is suitable to be used for low wind density power generation application.

  11. Comment on "Effect of coal-fired power generation on visibility in a nearby National Park (Terhorst and Berkman, 2010)"

    NASA Astrophysics Data System (ADS)

    White, W. H.; Farber, R. J.; Malm, W. C.; Nuttall, M.; Pitchford, M. L.; Schichtel, B. A.

    2012-08-01

    Few electricity generating stations received more environmental scrutiny during the last quarter of the twentieth century than did the Mohave Power Project (MPP), a coal-fired facility near Grand Canyon National Park. Terhorst and Berkman (2010) examine regional aerosol monitoring data collected before and after the plant's 2006 retirement for retrospective evidence of MPP's impact on visibility in the Park. The authors' technical analysis is thoughtfully conceived and executed, but is misleadingly presented as discrediting previous studies and their interpretation by regulators. In reality the Terhorst-Berkman analysis validates a consensus on MPP's visibility impact that was established years before its closure, in a collaborative assessment undertaken jointly by Federal regulators and MPP's owners.

  12. Maximum power point tracking analysis of a coreless ironless electric generator for renewable energy application

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    The magnetism attraction between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator is often known as cogging. Cogging requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator to see its performance characteristic. In the maximum power point tracking test, the fabricated ironless coreless electricity generator was tested by applying the load on the ironless coreless electricity generator optimization to maximize the power generated, voltage and the current produced by the ironless coreless electricity generator when the rotational speed of the rotor increased throughout the test. The rotational torque and power output are measured, and efficiency is then analyzed. Results indicated that the generator produced RMS voltage of 200VAC at rotational speed of 318 RPM. Torque required to rotate the generator was at 10.8Nm. The generator had working efficiency of 77.73% and the power generated was at 280W.

  13. 89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Photocopied August 1978. POWER HOUSE, GENERATOR ROOM, VIEW LOOKING EAST FROM ABOUT THE CENTER, FEBRUARY 26, 1918, AFTER MICHIGAN NORTHERN HAD BROUGHT THE GENERATOR INSTALLATION UP TO FULL CAPACITY. THE NARROW PANEL WESTINGHOUSE SWITCHBOARD INSTALLED IN 1916-17 IS AT THE UPPER RIGHT. THE NEW GENERAL ELECTRIC GENERATORS ARE BELOW THE GALLERY. NOTE THE D.C. EXCITER UNIT ON EXTENDED SHAFT ON THE UNIT IN THE FOREGROUND. A SIMILAR TYPE OF INSTALLATION WAS FOUND AT PENSTOCKS 45 THROUGH 48 AND 62 THROUGH 73. WHAT SEEM TO BE EXTENDED SHAFT UNITS IN THE BACKGROUND ARE MERELY THE OLD STANLEY ALTERNATORS BEFORE THEY HAD BEEN REMOVED FROM THE GENERATOR ROOM. (878) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  14. Cost-efficiency trade-off and the design of thermoelectric power generators.

    PubMed

    Yazawa, Kazuaki; Shakouri, Ali

    2011-09-01

    The energy conversion efficiency of today's thermoelectric generators is significantly lower than that of conventional mechanical engines. Almost all of the existing research is focused on materials to improve the conversion efficiency. Here we propose a general framework to study the cost-efficiency trade-off for thermoelectric power generation. A key factor is the optimization of thermoelectric modules together with their heat source and heat sinks. Full electrical and thermal co-optimization yield a simple analytical expression for optimum design. Based on this model, power output per unit mass can be maximized. We show that the fractional area coverage of thermoelectric elements in a module could play a significant role in reducing the cost of power generation systems.

  15. Report on a mission to the Philippines regarding the opportunities for private investment in geothermal power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Philippines has a rich potential for geothermal energy development, according to the assessment of opportunities for U.S. private investment in the sector. Areas covered in detail are the Philippines' geothermal resources, the legal structure of the geothermal industry, conditions acting as stimuli to geothermal power generation, and interest in private geothermal investment. Major finding are as follows. (1) The Philippine geothermal power industry is the world's second largest. (2) Geothermal resources are owned by the Government of the Philippines and a complex legal structure governs their exploitation. (3) Since the Philippines is poor in most energy resources (e.g., coal,more » oil, and gas), use of geothermal energy is necessary. (4) Despite legal and structural obstacles, various foreign private enterprises are interested in participating in geothermal development. Two possible options for U.S. investors are presented: a joint venture with the National Oil Company, and negotiation of a service contract, either alone or with a Philippine partner, for a concession on land administered by the Office of Energy Affairs.« less

  16. Autologous temporomandibular joint reconstruction independent of exogenous additives: a proof-of-concept study for guided self-generation.

    PubMed

    Wei, Jiao; Herrler, Tanja; Han, Dong; Liu, Kai; Huang, Rulin; Guba, Markus; Dai, Chuanchang; Li, Qingfeng

    2016-11-28

    Joint defects are complex and difficult to reconstruct. By exploiting the body's own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach.

  17. An Operating Method Using Prediction of Photovoltaic Power for a Photovoltaic-Diesel Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigehiro; Sumi, Kazuyoshi; Nishikawa, Eiichi; Hashimoto, Takeshi

    This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic-diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bi-directional inverter and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low-load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The amount of fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for one year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG.

  18. GHG PSD Permit: Cheyenne Light, Fuel & Power / Black Hills Power, Inc. – Cheyenne Prairie Generating Station

    EPA Pesticide Factsheets

    This page contains the final PSD permit for the Cheyenne Light, Fuel & Power / Black Hills Power, Inc. Cheyenne Prairie Generating Station, located in Laramie, Wyoming, and operated by Black Hills Service Company.

  19. Generation of electrical power

    DOEpatents

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  20. 2. Credit PEM. View of Martinsburg Power Company steam generating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  1. A Tesla-pulse forming line-plasma opening switch pulsed power generator.

    PubMed

    Novac, B M; Kumar, R; Smith, I R

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF(6)), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  2. Economic contribution of 'artificial upwelling' mariculture to sea-thermal power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roels, O.A.

    1976-07-01

    Deep-sea water has two valuable properties: it is uniformly cold and, compared to surface water, it is rich in nutrients such as nitrate and phosphate which are necessary for plant growth. In tropical and subtropical areas, the temperature difference between the warm surface water and the cold deep water can be used for sea-thermal power generation or other cooling applications such as air-conditioning, ice-making, desalination, and cooling of refineries, power plants, etc. Once the deep water is brought to the surface, utilization of both the cold temperature and the nutrient content is likely to be more advantageous than the usemore » of only one of them. Claude demonstrated the technical feasibility of sea-thermal power generation in Cuba in 1930. The technical feasibility of artificial upwelling mariculture in the St. Croix installation has been demonstrated. Results to date demonstrate that the gross sales value of the potential mariculture yield from a given volume of deep-sea water is many times that of the sales value of the power which can be generated by the Claude process from the same volume of deep water. Utilizing both the nutrient content and the cold temperature of the deep water may therefore make sea-thermal power generation economically feasible.« less

  3. Experimental study of camel powered electricity generation unit

    NASA Astrophysics Data System (ADS)

    Jakhar, O. P.; Choudhary, Rahul Raj; Budaniya, Mukesh; Kumar, Ashish

    2018-05-01

    Developing nations are facing a huge gap in generation and demand of electricity across the world. In present scenario the demand of electricity is increasing day by day and the shortfall of electricity has become one of the major obstructions in the development of rural areas. There is a big gap between electricity supply and demand. In India it is very difficult that to give twenty four hours electric supply in rural areas. The traditional use of camel as draught animal, for the purpose of transport of goods and agricultural work, has been drastically reduced during last few decades, due to advancements and cheaper availability of mechanical machineries. In this research paper we experimentally studied the camel powered electricity generation system at National Research Centre on Camels (NRCC) Bikaner. Camel Energy in form of high torque low speed can be converted into low torque high speed through motion converting system i.e. gear and pulley mechanism for high RPM output. This high RPM (more than 3000) output is used for electricity generation. The electricity generated can be used directly or stored in the battery and later may be used whenever it is required either for DC light or AC light using inverter. According to experimental study a camel can comfortably generate electricity up to 1KW by rotating shaft. The complete set up for electricity generation using camel power has been designed, developed and physically commissioned at National Research Centre on Camels (NRCC) Bikaner.

  4. EDITORIAL: The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Toriyama, Toshiyuki

    2005-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was

  5. Calcium and stretch activation modulate power generation in Drosophila flight muscle.

    PubMed

    Wang, Qian; Zhao, Cuiping; Swank, Douglas M

    2011-11-02

    Many animals regulate power generation for locomotion by varying the number of muscle fibers used for movement. However, insects with asynchronous flight muscles may regulate the power required for flight by varying the calcium concentration ([Ca(2+)]). In vivo myoplasmic calcium levels in Drosophila flight muscle have been found to vary twofold during flight and to correlate with aerodynamic power generation and wing beat frequency. This mechanism can only be possible if [Ca(2+)] also modulates the flight muscle power output and muscle kinetics to match the aerodynamic requirements. We found that the in vitro power produced by skinned Drosophila asynchronous flight muscle fibers increased with increasing [Ca(2+)]. Positive muscle power generation started at pCa = 5.8 and reached its maximum at pCa = 5.25. A twofold variation in [Ca(2+)] over the steepest portion of this curve resulted in a two- to threefold variation in power generation and a 1.2-fold variation in speed, matching the aerodynamic requirements. To determine the mechanism behind the variation in power, we analyzed the tension response to muscle fiber-lengthening steps at varying levels of [Ca(2+)]. Both calcium-activated and stretch-activated tensions increased with increasing [Ca(2+)]. However, calcium tension saturated at slightly lower [Ca(2+)] than stretch-activated tension, such that as [Ca(2+)] increased from pCa = 5.7 to pCa = 5.4 (the range likely used during flight), stretch- and calcium-activated tension contributed 80% and 20%, respectively, to the total tension increase. This suggests that the response of stretch activation to [Ca(2+)] is the main mechanism by which power is varied during flight. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Standby power generation under utility curtailment contract agreements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, G.J.; Puccio, V.J.; Calhoun, C.W.

    1995-12-31

    Many utilities in the US offer large industrial and commercial customers power sales contracts which have attractive rates under a curtailment requirement. This curtailment requirement allows the utility to require the customer to reduce its power demand to a predetermined level within a specific time period. If the required curtailment is not achieved by the customer within the allocated time period, stiff financial penalties are usually enforced by the utility. The attractiveness of the contract rates usually is proportional to the amount of curtailment required. To take advantage of these attractive rates, a customer must be able to withstand themore » curtailment without supplemental generation or must add standby generation to meet its needs. Obviously, the cost of the curtailments to the customer should not exceed the economic benefits of reduced rates. This paper reviews the alternatives faced by a curtailment contract customer together with potential load shedding and standby generation system designs. An example of implementing a curtailment contract at an existing industrial facility is presented. The example facility, Boeing Helicopters of Philadelphia, Pennsylvania required both load shedding and standby generation. The load shedding scheme is fairly complex and is controlled by a programmable logic controller (PLC). The standby generation and load shedding systems for the example facility are examined in detail. Also, lessons learned from implementing the required modifications to the example facility are discussed.« less

  7. Power in the loop real time simulation platform for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing

    2018-02-01

    Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.

  8. Recent Trends in Variable Generation Forecasting and Its Value to the Power System

    DOE PAGES

    Orwig, Kirsten D.; Ahlstrom, Mark L.; Banunarayanan, Venkat; ...

    2014-12-23

    We report that the rapid deployment of wind and solar energy generation systems has resulted in a need to better understand, predict, and manage variable generation. The uncertainty around wind and solar power forecasts is still viewed by the power industry as being quite high, and many barriers to forecast adoption by power system operators still remain. In response, the U.S. Department of Energy has sponsored, in partnership with the National Oceanic and Atmospheric Administration, public, private, and academic organizations, two projects to advance wind and solar power forecasts. Additionally, several utilities and grid operators have recognized the value ofmore » adopting variable generation forecasting and have taken great strides to enhance their usage of forecasting. In parallel, power system markets and operations are evolving to integrate greater amounts of variable generation. This paper will discuss the recent trends in wind and solar power forecasting technologies in the U.S., the role of forecasting in an evolving power system framework, and the benefits to intended forecast users.« less

  9. Prototype Combined Heater/Thermoelectric Power Generator for Remote Applications

    NASA Astrophysics Data System (ADS)

    Champier, D.; Favarel, C.; Bédécarrats, J. P.; Kousksou, T.; Rozis, J. F.

    2013-07-01

    This study presents a prototype thermoelectric generator (TEG) developed for remote applications in villages that are not connected to the electrical power grid. For ecological and economic reasons, there is growing interest in harvesting waste heat from biomass stoves to produce some electricity. Because regular maintenance is not required, TEGs are an attractive choice for small-scale power generation in inaccessible areas. The prototype developed in our laboratory is especially designed to be implemented in stoves that are also used for domestic hot water heating. The aim of this system is to provide a few watts to householders, so they have the ability to charge cellular phones and radios, and to get some light at night. A complete prototype TEG using commercial (bismuth telluride) thermoelectric modules has been built, including system integration with an electric DC/DC converter. The DC/DC converter has a maximum power point tracker (MPPT) driven by an MC9SO8 microcontroller, which optimizes the electrical energy stored in a valve-regulated lead-acid battery. Physical models were used to study the behavior of the thermoelectric system and to optimize the performance of the MPPT. Experiments using a hot gas generator to simulate the exhaust of the combustion chamber of a stove are used to evaluate the system. Additionally, potential uses of such generators are presented.

  10. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  11. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    PubMed

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.

  12. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    NASA Astrophysics Data System (ADS)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  13. Wind-assist irrigation and electrical-power generation

    NASA Astrophysics Data System (ADS)

    Nelson, V.; Starcher, K.

    1982-07-01

    A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.

  14. Foundations for the Fourth Generation of Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lake, James Alan

    2000-11-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world’s population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developingmore » nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20–25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world’s electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to

  15. How joint characteristics between a piezoelectric beam and the main structure affect the performance of an energy harvester

    NASA Astrophysics Data System (ADS)

    Jahani, K.; Rafiei, M. M.; Aghazadeh, P.

    2017-09-01

    In this paper, the influence of the joint region between a piezoelectric energy harvesting beam and the vibratory main structure is studied. The investigations are conducted in two separate sections, namely numerical and experimental studies. In numerical studies, the effects of nonlinear parameters on generated power are investigated while the joint characteristics the between vibrating base and a piezoelectric energy harvester are taken into consideration. A unimorph beam with a tip mass and a nonlinear piezoelectric layer that undergoes a large-amplitude deflection is considered as an energy harvester. By applying the Euler-Lagrange equation and Gauss’s law the mechanical and electrical equations of motion are obtained, respectively. The excitation frequency is assumed to be close to the first natural frequency. Thus, a unimodal response is considered to be like that of a system with a single degree of freedom (SDOF). The joint between the vibrating main structure and the cantilevered beam is then added to the SDOF model. The joint characteristics are simulated with a light mass, mj , linear spring stiffness, kj , and equivalent viscous damper, cj . In two scenarios, i.e. with a rigid joint and with a flexible one, a numerical approach is followed to investigate the effects of each nonlinear parameter of the harvester (stiffness, damping and piezoelectric coefficient) on the harvested power. In experimental studies, the influence of a bolted joining technique and a flexible adhesive bonding method on the harvested power is investigated. The results achieved experimentally confirm those obtained numerically, i.e. a stiffer joint leads to a greater power produced by the harvester. In other words, neglecting the joint characteristics will cause the performance (maximum output power and the range of excitation frequency) of the harvester to be overestimated in numerical simulations.

  16. 76 FR 36914 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-42-000] Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC Ravenswood, LLC, v. New York Independent System Operator, Inc. Notice of Revised...

  17. 76 FR 34692 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-42-000] Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC Ravenswood, LLC; v. New York Independent System Operator, Inc.; Notice of Complaint...

  18. 76 FR 36910 - Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-42-000] Astoria Generating Company, L.P., NRG Power Marketing LLC, Arthur Kill Power LLC, Astoria Gas Turbine Power LLC, Dunkirk Power LLC, Huntley Power LLC, Oswego Harbor Power LLC, TC Ravenswood, LLC. v. New York Independent System Operator, Inc.; Notice of Amendment t...

  19. New generation of compact high power disk lasers

    NASA Astrophysics Data System (ADS)

    Feuchtenbeiner, Stefanie; Zaske, Sebastian; Schad, Sven-Silvius; Gottwald, Tina; Kuhn, Vincent; Kumkar, Sören; Metzger, Bernd; Killi, Alexander; Haug, Patrick; Speker, Nicolai

    2018-02-01

    New technological developments in high power disk lasers emitting at 1030 nm are presented. These include the latest generation of TRUMPF's TruDisk product line offering high power disk lasers with up to 6 kW output power and beam qualities of up to 4 mm*mrad. With these compact devices a footprint reduction of 50% compared to the previous model could be achieved while at the same time improving robustness and increasing system efficiency. In the context of Industry 4.0, the new generation of TruDisk lasers features a synchronized data recording of all sensors, offering high-quality data for virtual analyses. The lasers therefore provide optimal hardware requirements for services like Condition Monitoring and Predictive Maintenance. We will also discuss its innovative and space-saving cooling architecture. It allows operation of the laser under very critical ambient conditions. Furthermore, an outlook on extending the new disk laser platform to higher power levels will be given. We will present a disk laser with 8 kW laser power out of a single disk with a beam quality of 5 mm*mrad using a 125 μm fiber, which makes it ideally suited for cutting and welding applications. The flexibility of the disk laser platform also enables the realization of a wide variety of beam guiding setups. As an example a new scheme called BrightLine Weld will be discussed. This technology allows for an almost spatter free laser welding process, even at high feed rates.

  20. Global Climate Change - The Power Generation Challenge

    EPA Science Inventory

    The planet continues to warm; O.5 C from the 1970’s to the 2000’s. Also, worldwide CO2 emissions have increased at a 3% annual growth rate from 2000 to 2010. Such emissions are driven by fossil fuel combustion, especially in the power generation sector, & especial...

  1. Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less

  2. Experimental and analytical investigation of a fluidic power generator

    NASA Technical Reports Server (NTRS)

    Sarohia, V.; Bernal, L.; Beauchamp, R. B.

    1981-01-01

    A combined experimental and analytical investigation was performed to understand the various fluid processes associated with the conversion of flow energy into electric power in a fluidic generator. Experiments were performed under flight-simulated laboratory conditions and results were compared with those obtained in the free-flight conditions. It is concluded that the mean mass flow critically controlled the output of the fluidic generator. Cross-correlation of the outputs of transducer data indicate the presence of a standing wave in the tube; the mechanism of oscillation is an acoustic resonance tube phenomenon. A linearized model was constructed coupling the flow behavior of the jet, the jet-layer, the tube, the cavity, and the holes of the fluidic generator. The analytical results also show that the mode of the fluidic power generator is an acoustical resonance phenomenon with the frequency of operation given by f approx = a/4L, where f is the frequency of jet swallowing, a is the average speed of sound in the tube, and L is the length of the tube. Analytical results further indicated that oscillations in the fluidic generator are always damped and consequently there is a forcing of the system in operation.

  3. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  4. New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick J.; Trivedi, Sudhir B.; Kutcher, Susan

    2012-01-01

    Thermoelectric (TE) power generation is an increasingly important power generation technology. Major advantages include: no moving parts, low-weight, modularity, covertness/silence, high power density, low amortized cost, and long service life with minimum or no required maintenance. Despite low efficiency of power generation, there are many specialized needs for electrical power that TE technologies can uniquely and successfully address. Recent advances in thermoelectric materials technology have rekindled acute interest in thermoelectric power generation. We have developed single crystalline n- and p- type PbTe crystals and are also, developing PbTe bulk nanocomposites using PbTe nano powders and emerging filed assisted sintering technology (FAST). We will discuss the materials requirements for efficient thermoelectric power generation using waste heat at intermediate temperature range (6500 to 8500 K). We will present our recent results on production of n- and p- type PbTe crystals and their thermoelectric characterization. Relative characteristics and performance of PbTe bulk single crystals and nano composites for thermoelectric power generation will be discussed.

  5. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  6. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    NASA Technical Reports Server (NTRS)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  7. Investigation of miniaturized radioisotope thermionic power generation for general use

    NASA Astrophysics Data System (ADS)

    Duzik, Adam J.; Choi, Sang H.

    2016-04-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only ~7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  8. A robust approach to chance constrained optimal power flow with renewable generation

    DOE PAGES

    Lubin, Miles; Dvorkin, Yury; Backhaus, Scott N.

    2016-09-01

    Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved usingmore » a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. In conclusion, deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance.« less

  9. Influence of Laser Power on the Microstructure and Mechanical Properties of a Laser Welded-Brazed Mg Alloy/Ni-Coated Steel Dissimilar Joint

    NASA Astrophysics Data System (ADS)

    Tan, Caiwang; Xiao, Liyuan; Liu, Fuyun; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai

    2017-05-01

    In this work, we describe a method to improve the bonding of an immiscible Mg/steel system using Ni as an interlayer by coating it on the steel surface. Laser welding-brazing of AZ31B Mg alloy to Ni-coated Q235 steel using Mg-based filler was performed in a lap configuration. The influence of laser power on the weld characteristics, including joint appearance, formation of interfacial reaction layers and mechanical properties was investigated. The results indicated that the presence of the Ni-coating promoted the wetting of the liquid filler metal on the steel surface. A thermal gradient along the interface led to the formation of heterogeneous interfacial reaction layers. When using a low laser power of 1600 W, the reaction products were an FeAl phase in the direct laser irradiation zone, an AlNi phase close to the intermediate zone and mixtures of AlNi phase and an (α-Mg + Mg2Ni) eutectic structure near the interface at the seam head zone. For high powers of more than 2000 W, the FeAl phase grew thicker in the direct laser irradiation zone and a new Fe(Ni) transition layer formed at the interface of the intermediate zone and the seam head zone. However, the AlNi phase and (α-Mg + Mg2Ni) eutectic structure were scattered at the Mg seam. All the joints fractured at the fusion zone, indicating that the improved interface was not the weakest joint region. The maximum tensile-shear strength of the Mg/Ni-coated steel joint reached 190 N/mm, and the joint efficiency was 70% with respect to the Mg alloy base metal.

  10. The effects of load on system and lower-body joint kinetics during jump squats.

    PubMed

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  11. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Gao, Yi

    development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.

  12. Change in the temporal coordination of the finger joints with ulnar nerve block during different power grips analyzed with a sensor glove.

    PubMed

    Wachter, N J; Mentzel, M; Häderer, C; Krischak, G D; Gülke, J

    2018-02-01

    Ulnar nerve injuries can cause deficient hand movement patterns. Their assessment is important for diagnosis and rehabilitation in hand surgery cases. The purpose of this study was to quantify the changes in temporal coordination of the finger joints during different power grips with an ulnar nerve block by means of a sensor glove. In 21 healthy subjects, the onset and end of the active flexion of the 14 finger joints when gripping objects of different diameters was recorded by a sensor glove. The measurement was repeated after an ulnar nerve block was applied in a standardized setting. The change in the temporal coordination of the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints with and without the nerve block was calculated within the same subject. In healthy subjects, the MCP joints started their movement prior to the PIP joints in the middle and ring finger, whereas this occurred in the reverse order at the index and little finger. The DIP joint onset was significantly delayed (P<0.01). With the ulnar nerve block, this coordination shifted towards simultaneous onset of all joints, independent of the grip diameter. The thumb and index finger were affected the least. With an ulnar nerve block, the PIP joints completed their movement prior to the MCP joints when gripping small objects (G1 and G2), whereas the order was reversed with larger objects (G3 and G4). The alterations with ulnar nerve block affected mainly the little finger when gripping small objects. With larger diameter objects, all fingers had a significant delay at the end of the PIP joint movement relative to the MCP and DIP joints, and the PIP and DIP joint sequence was reversed (P<0.01). Based on the significant changes in temporal coordination of finger flexion during different power grips, there are biomechanical effects of loss of function of the intrinsic muscles caused by an ulnar nerve block on the fine motor skills of the hand. This can be

  13. Method and apparatus for lead-unity-lag electric power generation system

    NASA Technical Reports Server (NTRS)

    Ganev, Evgeni (Inventor); Warr, William (Inventor); Salam, Mohamed (Arif) (Inventor)

    2013-01-01

    A method employing a lead-unity-lag adjustment on a power generation system is disclosed. The method may include calculating a unity power factor point and adjusting system parameters to shift a power factor angle to substantially match an operating power angle creating a new unity power factor point. The method may then define operation parameters for a high reactance permanent magnet machine based on the adjusted power level.

  14. Solar Stirling power generation - Systems analysis and preliminary tests

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  15. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  16. A Survey on Next-generation Power Grid Data Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Shutang; Zhu, Dr. Lin; Liu, Yong

    2015-01-01

    The operation and control of power grids will increasingly rely on data. A high-speed, reliable, flexible and secure data architecture is the prerequisite of the next-generation power grid. This paper summarizes the challenges in collecting and utilizing power grid data, and then provides reference data architecture for future power grids. Based on the data architecture deployment, related research on data architecture is reviewed and summarized in several categories including data measurement/actuation, data transmission, data service layer, data utilization, as well as two cross-cutting issues, interoperability and cyber security. Research gaps and future work are also presented.

  17. Rotary Joints With Electrical Connections

    NASA Technical Reports Server (NTRS)

    Osborn, F. W.

    1986-01-01

    Power and data transmitted on many channels. Two different rotary joints equipped with electrical connections between rotating and stationary parts. One joint transmits axial thrust and serves as interface between spinning and nonspinning parts of Galileo spacecraft. Other is scanning (limitedrotation) joint that aims scientific instruments from nonspinning part. Selected features of both useful to designers of robots, advanced production equipment, and remotely controlled instruments.

  18. Financing future power generation in Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, P.

    1998-07-01

    Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

  19. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE PAGES

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; ...

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  20. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks

    PubMed Central

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-01-01

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement. PMID:28677636

  2. Joint Transmit Power Allocation and Splitting for SWIPT Aided OFDM-IDMA in Wireless Sensor Networks.

    PubMed

    Li, Shanshan; Zhou, Xiaotian; Wang, Cheng-Xiang; Yuan, Dongfeng; Zhang, Wensheng

    2017-07-04

    In this paper, we propose to combine Orthogonal Frequency Division Multiplexing-Interleave Division Multiple Access (OFDM-IDMA) with Simultaneous Wireless Information and Power Transfer (SWIPT), resulting in SWIPT aided OFDM-IDMA scheme for power-limited sensor networks. In the proposed system, the Receive Node (RN) applies Power Splitting (PS) to coordinate the Energy Harvesting (EH) and Information Decoding (ID) process, where the harvested energy is utilized to guarantee the iterative Multi-User Detection (MUD) of IDMA to work under sufficient number of iterations. Our objective is to minimize the total transmit power of Source Node (SN), while satisfying the requirements of both minimum harvested energy and Bit Error Rate (BER) performance from individual receive nodes. We formulate such a problem as a joint power allocation and splitting one, where the iteration number of MUD is also taken into consideration as the key parameter to affect both EH and ID constraints. To solve it, a sub-optimal algorithm is proposed to determine the power profile, PS ratio and iteration number of MUD in an iterative manner. Simulation results verify that the proposed algorithm can provide significant performance improvement.

  3. Power Delivery from an Actual Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke

    2014-06-01

    Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.

  4. Design and analysis of solar thermoelectric power generation system

    NASA Astrophysics Data System (ADS)

    Vatcharasathien, Narong; Hirunlabh, Jongjit; Khedari, Joseph; Daguenet, Michel

    2005-09-01

    This article reports on the design and performance analysis of a solar thermoelectric power generation plant (STEPG). The system considers both truncated compound parabolic collectors (CPCs) with a flat receiver and conventional flat-plate collectors, thermoelectric (TE) cooling and power generator modules and appropriate connecting pipes and control devices. The design tool uses TRNSYS IIsibat-15 program with a new component we developed for the TE modules. The main input data of the system are the specifications of TE module, the maximum hot side temperature of TE modules, and the desired power output. Examples of the design using truncated CPC and flat-plate collectors are reported and discussed for various slope angle and half-acceptance angle of CPC. To minimize system cost, seasonal adjustment of the slope angle between 0° and 30° was considered, which could give relatively high power output under Bangkok ambient condition. Two small-scale STEPGs were built. One of them uses electrical heater, whereas the other used a CPC with locally made aluminum foil reflector. Measured data showed reasonable agreement with the model outputs. TE cooling modules were found to be more appropriate. Therefore, the TRNSYS software and the developed TE component offer an extremely powerful tool for the design and performance analysis of STEPG plant.

  5. Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee

    2010-01-01

    Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.

  6. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  7. Climate change impacts on thermoelectric-power generation in the United States

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2015-12-01

    Thermoelectric-power generation accounts for more than 70% of the total electricity generation in the United States, which requires large amounts of water for cooling purposes. Water withdrawals for thermoelectric-power generation accounted for 45% of total water use in the United States in 2010. Across the country, water demand from power plants is increasing due to pressures from growing populations and other needs, and is straining existing water resources. Moreover, temperature exceedance in receiving waters has increasingly caused power plants shut downs across parts of the country. Thermoelectric power is vulnerable to climate change owing to the combined effects of lower summer river flows and higher receiving water temperatures. In addition, the efficiency of production is reduced as air temperature rises, which propagates to more unfulfilled power demand during peak seasons. Therefore, a holistic modeling framework of water-energy-climate for the contiguous U.S. is presented here to quantify thermal output from power plants and estimate water use and energy production fluctuations due to ambient climate as well as environmental regulations. The model is calibrated on a plant-by-plant basis for year 2010 and 2011 using the available power plant inventory from the Energy Information Administration (EIA). Simulations were carried out for years 2012 and 2013, and results show moderate improvements in capturing thermal output variabilities after calibration. Future power plant operations under scenarios featuring different climate and regulatory settings were investigated. Results demonstrate the interplay among water, energy and climate, and that future changes in climate and socioeconomics significantly affect power plant operations, which may provide insights to climate change mitigation considerations and energy decisions.

  8. Oxygen transport membrane reactor based method and system for generating electric power

    DOEpatents

    Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan

    2017-02-07

    A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.

  9. Joint Transmitter and Receiver Power Allocation under Minimax MSE Criterion with Perfect and Imperfect CSI for MC-CDMA Transmissions

    NASA Astrophysics Data System (ADS)

    Kotchasarn, Chirawat; Saengudomlert, Poompat

    We investigate the problem of joint transmitter and receiver power allocation with the minimax mean square error (MSE) criterion for uplink transmissions in a multi-carrier code division multiple access (MC-CDMA) system. The objective of power allocation is to minimize the maximum MSE among all users each of which has limited transmit power. This problem is a nonlinear optimization problem. Using the Lagrange multiplier method, we derive the Karush-Kuhn-Tucker (KKT) conditions which are necessary for a power allocation to be optimal. Numerical results indicate that, compared to the minimum total MSE criterion, the minimax MSE criterion yields a higher total MSE but provides a fairer treatment across the users. The advantages of the minimax MSE criterion are more evident when we consider the bit error rate (BER) estimates. Numerical results show that the minimax MSE criterion yields a lower maximum BER and a lower average BER. We also observe that, with the minimax MSE criterion, some users do not transmit at full power. For comparison, with the minimum total MSE criterion, all users transmit at full power. In addition, we investigate robust joint transmitter and receiver power allocation where the channel state information (CSI) is not perfect. The CSI error is assumed to be unknown but bounded by a deterministic value. This problem is formulated as a semidefinite programming (SDP) problem with bilinear matrix inequality (BMI) constraints. Numerical results show that, with imperfect CSI, the minimax MSE criterion also outperforms the minimum total MSE criterion in terms of the maximum and average BERs.

  10. High-power 266 nm ultraviolet generation in yttrium aluminum borate.

    PubMed

    Liu, Qiang; Yan, Xingpeng; Gong, Mali; Liu, Hua; Zhang, Ge; Ye, Ning

    2011-07-15

    A yttrium aluminum borate [YAl(3)(BO(3))(4)] (YAB) crystal with UV cutoff wavelength of 165 nm is used as the nonlinear optical crystal for fourth harmonic generation. The fundamental frequency laser at 1064 nm from an Nd:YVO(4) master oscillator power amplifier laser was frequency doubled to 532 nm. Using the type I phase-matching YAB crystal, a 5.05 W average power 266 nm UV laser was obtained at the pulse repetition frequency of 65 kHz, corresponding to the conversion efficiency of 12.3% from 532 to 266 nm. The experimental results show great potential for the application of using YAB as a nonlinear optical crystal to get high-power fourth harmonic generation. © 2011 Optical Society of America

  11. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    PubMed Central

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  12. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    McGrail, Pete

    2017-12-27

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  13. Investigating the water consumption for electricity generation at Turkish power plants

    NASA Astrophysics Data System (ADS)

    El-Khozondar, Balkess; Aydinalp Koksal, Merih

    2017-11-01

    The water-energy intertwined relationship has recently gained more importance due to the high water consumption in the energy sector and to the limited availability of the water resources. The energy and electricity demand of Turkey is increasing rapidly in the last two decades. More thermal power plants are expected to be built in the near future to supply the rapidly increasing demand in Turkey which will put pressure on water availability. In this study, the water consumption for electricity generation at Turkish power plants is investigated. The main objectives of this study are to identify the amount of water consumed to generate 1 kWh of electricity for each generation technology currently used in Turkey and to investigate ways to reduce the water consumption at power plants expected to be built in the near future to supply the increasing demand. The various electricity generation technology mixture scenarios are analyzed to determine the future total and per generation water consumption, and water savings based on changes of cooling systems used for each technology. The Long-range Energy Alternatives Planning (LEAP) program is used to determine the minimum water consuming electricity generation technology mixtures using optimization approaches between 2017 and 2035.

  14. Increasing power generation in horizontal axis wind turbines using optimized flow control

    NASA Astrophysics Data System (ADS)

    Cooney, John A., Jr.

    In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a

  15. Autologous temporomandibular joint reconstruction independent of exogenous additives: a proof-of-concept study for guided self-generation

    PubMed Central

    Wei, Jiao; Herrler, Tanja; Han, Dong; Liu, Kai; Huang, Rulin; Guba, Markus; Dai, Chuanchang; Li, Qingfeng

    2016-01-01

    Joint defects are complex and difficult to reconstruct. By exploiting the body’s own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach. PMID:27892493

  16. Analysis and discussion on anti-thunder scheme of wind power generation system

    NASA Astrophysics Data System (ADS)

    Sun, Shuguang

    2017-01-01

    Anti-thunder scheme of wind power generation system is discussed in this paper. Through the research and analysis on the harm of the thunder, division of lightning protection zone and lightning protection measures are put forward, which has a certain practical significance on the design and application of wind power generation system.

  17. A carbon-air battery for high power generation.

    PubMed

    Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping

    2015-03-16

    We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Method and apparatus for thermal power generation

    DOEpatents

    Mangus, James D.

    1979-01-01

    A method and apparatus for power generation from a recirculating superheat-reheat circuit with multiple expansion stages which alleviates complex control systems and minimizes thermal cycling of system components, particularly the reheater. The invention includes preheating cold reheat fluid from the first expansion stage prior to its entering the reheater with fluid from the evaporator or drum component.

  19. Analysis of Even Harmonics Generation in an Isolated Electric Power System

    NASA Astrophysics Data System (ADS)

    Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya

    Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.

  20. Integration of permanent magnet synchronous generator wind turbines into power grid

    NASA Astrophysics Data System (ADS)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent

  1. Multi-Megawatt Space Nuclear Power Generation

    DTIC Science & Technology

    1993-06-28

    electric generation, both for open- and closed-cycle opera- tion. These reactors use the particulate fuel of the type developed for HTGR reactors. What...commercial HTGR power reactors, the particles are held in place and directly cooled. Figure 2.7 shows the two types of fuel particles developed for...of MW(e), for pulsed energy devices. The FBR would use HTGR -type particle fuel , contained in a annular bed be- tween two porous frits. Helium would

  2. Large-scale terrestrial solar cell power generation cost: A preliminary assessment

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Shure, L. I.

    1972-01-01

    A cost study was made to assess the potential of the large-scale use of solar cell power for terrestrial applications. The incentive is the attraction of a zero-pollution source of power for wide-scale use. Unlike many other concepts for low-pollution power generation, even thermal pollution is avoided since only the incident solar flux is utilized. To provide a basis for comparison and a perspective for evaluation, the pertinent technology was treated in two categories: current and optimistic. Factors considered were solar cells, array assembly, power conditioning, site preparation, buildings, maintenance, and operation. The capital investment was assumed to be amortized over 30 years. The useful life of the solar cell array was assumed to be 10 years, and the cases of zero and 50-percent performance deg-radation were considered. Land costs, taxes, and profits were not included in this study because it was found too difficult to provide good generalized estimates of these items. On the basis of the factors considered, it is shown that even for optimistic projections of technology, electric power from large-sclae terrestrial use of solar cells is approximately two to three orders of magnitude more costly than current electric power generation from either fossil or nuclear fuel powerplants. For solar cell power generation to be a viable competitor on a cost basis, technological breakthroughs would be required in both solar cell and array fabrication and in site preparation.

  3. The salinity gradient power generating system integrated into the seawater desalination system

    NASA Astrophysics Data System (ADS)

    Zhu, Yongqiang; Wang, Wanjun; Cai, Bingqian; Hao, Jiacheng; Xia, Ruihua

    2017-01-01

    Seawater desalination is an important way to solve the problem of fresh water shortage. Low energy efficiency and high cost are disadvantages existing in seawater desalination. With huge reserve and the highest energy density among different types of marine energy, salinity gradient energy has a bright application prospect. The promotion of traditional salinity gradient power generating systems is hindered by its low efficiency and specific requirements on site selection. This paper proposes a salinity gradient power generating system integrated into the seawater desalination system which combines the salinity gradient power generating system and the seawater desalination system aiming to remedy the aforementioned deficiency and could serve as references for future seawater desalination and salinity gradient energy exploitation. The paper elaborates on the operating principles of the system, analyzes the detailed working process, and estimates the energy output and consumption of the system. It is proved that with appropriate design, the energy output of the salinity gradient power generating system can satisfy the demand of the seawater desalination system.

  4. Wearable Triboelectric Generator for Powering the Portable Electronic Devices.

    PubMed

    Cui, Nuanyang; Liu, Jinmei; Gu, Long; Bai, Suo; Chen, Xiaobo; Qin, Yong

    2015-08-26

    A cloth-base wearable triboelectric nanogenerator made of nylon and Dacron fabric was fabricated for harvesting body motion energy. Through the friction between forearm and human body, the generator can turn the mechanical energy of an arm swing into electric energy and power an electroluminescent tubelike lamp easily. The maximum output current and voltage of the generator reach up to 0.2 mA and 2 kV. Furthermore, this generator can be easily folded, kneaded, and cleaned like a common garment.

  5. Insulation co-ordination aspects for power stations with generator circuit-breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, M.; Koeppl, G.; Kreuzer, J.

    1995-07-01

    The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerningmore » expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer.« less

  6. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based onmore » carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC

  7. POLLUTION CONTROL FOR UTILITY POWER GENERATION, 1990-2020

    EPA Science Inventory

    The paper discusses pollution control for utility power generation between the years 1990 and 2020, when the major anticipated environmental challenges facing the utility industry will be acid deposition control in the near term and global warming mitigation in the longer term. T...

  8. Modeling and Optimization of Coordinative Operation of Hydro-wind-photovoltaic Considering Power Generation and Output Fluctuation

    NASA Astrophysics Data System (ADS)

    Wang, Xianxun; Mei, Yadong

    2017-04-01

    Coordinative operation of hydro-wind-photovoltaic is the solution of mitigating the conflict of power generation and output fluctuation of new energy and conquering the bottleneck of new energy development. Due to the deficiencies of characterizing output fluctuation, depicting grid construction and disposal of power abandon, the research of coordinative mechanism is influenced. In this paper, the multi-object and multi-hierarchy model of coordinative operation of hydro-wind-photovoltaic is built with the aim of maximizing power generation and minimizing output fluctuation and the constraints of topotaxy of power grid and balanced disposal of power abandon. In the case study, the comparison of uncoordinative and coordinative operation is carried out with the perspectives of power generation, power abandon and output fluctuation. By comparison from power generation, power abandon and output fluctuation between separate operation and coordinative operation of multi-power, the coordinative mechanism is studied. Compared with running solely, coordinative operation of hydro-wind-photovoltaic can gain the compensation benefits. Peak-alternation operation reduces the power abandon significantly and maximizes resource utilization effectively by compensating regulation of hydropower. The Pareto frontier of power generation and output fluctuation is obtained through multiple-objective optimization. It clarifies the relationship of mutual influence between these two objects. When coordinative operation is taken, output fluctuation can be markedly reduced at the cost of a slight decline of power generation. The power abandon also drops sharply compared with operating separately. Applying multi-objective optimization method to optimize the coordinate operation, Pareto optimal solution set of power generation and output fluctuation is achieved.

  9. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  10. On the impact of CO{sub 2} emission-trading on power generation emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chappin, E.J.L.; Dijkema, G.P.J.

    2009-03-15

    In Europe one of the main policy instruments to meet the Kyoto reduction targets is CO{sub 2} emission-trading (CET), which was implemented as of January 2005. In this system, companies active in specific sectors must be in the possession of CO{sub 2} emission rights to an amount equal to their CO{sub 2} emission. In Europe, electricity generation accounts for one-third of CO{sub 2} emissions. Since the power generation sector has been liberalized, reregulated and privatized in the last decade, around Europe autonomous companies determine the sectors' CO{sub 2} emission. Short-term they adjust their operation, long-term they decide on (dis) investmentmore » in power generation facilities and technology selection. An agent-based model is presented to elucidate the effect of CET on the decisions of power companies in an oligopolistic market. Simulations over an extensive scenario-space show that there CET does have an impact. A long-term portfolio shift towards less-CO{sub 2} intensive power generation is observed. However, the effect of CET is relatively small and materializes late. The absolute emissions from power generation rise under most scenarios. This corresponds to the dominant character of current capacity expansion planned in the Netherlands (50%) and in Germany (68%), where companies have announced many new coal based power plants. Coal is the most CO{sub 2} intensive option available and it seems surprising that even after the introduction of CET these capacity expansion plans indicate a preference for coal. Apparently in power generation the economic effect of CO{sub 2} emission-trading is not sufficient to outweigh the economic incentives to choose for coal.« less

  11. Next Generation Integrated Power System: NGIPS Technology Development Roadmap

    DTIC Science & Technology

    2007-11-30

    under transient conditions ( regenerative braking for example). A Power Load may exchange control and information signals with System Control...Ship applications for NGIPS requirement categories 3 Table 2: Power Architectures for NGIPS Requirement Categories 5 Table 3: MVAC Largest Generator...different ship types that comprise the U.S. Navy fall into the different NGIPS requirement categories . Figure 3 shows the NGIPS insertion timelines for the

  12. Efficient Generation and Use of Power Series for Broad Application.

    NASA Astrophysics Data System (ADS)

    Rudmin, Joseph; Sochacki, James

    2017-01-01

    A brief history and overview of the Parker-Sockacki Method of Power Series generation is presented. This method generates power series to order n in time n2 for any system of differential equations that has a power series solution. The method is simple enough that novices to differential equations can easily learn it and immediately apply it. Maximal absolute error estimates allow one to determine the number of terms needed to reach desired accuracy. Ratios of coefficients in a solution with global convergence differ signficantly from that for a solution with only local convergence. Divergence of the series prevents one from overlooking poles. The method can always be cast in polynomial form, which allows separation of variables in almost all physical systems, facilitating exploration of hidden symmetries, and is implicitly symplectic.

  13. Joint Ventures: The Promise, Power and Performance of Partnering.

    ERIC Educational Resources Information Center

    Francisco, Grace; Hannah, Kathryn Covier; Keller, Shelly G.; Waters, Joan; Wong, Patricia M. Y.

    This document provides case studies that represent a sampling of successful public library joint ventures in California and other U.S. cities and counties. Chapter 1 defines what a partnership is and how a joint venture differs from a partnership. It also describes the benefits of partnering, the knowledge, attitude, and skills required, and how…

  14. Improved decryption quality and security of a joint transform correlator-based encryption system

    NASA Astrophysics Data System (ADS)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2013-02-01

    Some image encryption systems based on modified double random phase encoding and joint transform correlator architecture produce low quality decrypted images and are vulnerable to a variety of attacks. In this work, we analyse the algorithm of some reported methods that optically implement the double random phase encryption in a joint transform correlator. We show that it is possible to significantly improve the quality of the decrypted image by introducing a simple nonlinear operation in the encrypted function that contains the joint power spectrum. This nonlinearity also makes the system more resistant to chosen-plaintext attacks. We additionally explore the system resistance against this type of attack when a variety of probability density functions are used to generate the two random phase masks of the encryption-decryption process. Numerical results are presented and discussed.

  15. New Development of Power Distribution System Resulting from Dispersed Generations and Current Interruption

    NASA Astrophysics Data System (ADS)

    Yokomizu, Yasunobu

    Dispersed generation systems, such as micro gas-turbines and fuel cells, have been installed on some of commercial facilities. Smaller dispersed generators like solar photovoltaics have been also located on the several of individual homes. The trends in the introduction of the these generation systems seem to continue in the future and to cause the power system to have the enormous number of the dispersed generation systems. The present report discusses the near-future power distribution systems.

  16. High-power microwave production by gyroharmonic conversion and co-generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaPointe, M.A.; Yoder, R.B.; Wang, M.

    1997-03-01

    An rf accelerator that adds significant gyration energy to a relativistic electron beam, and mechanisms for extracting coherent radiation from the beam, are described. The accelerator is a cyclotron autoresonance accelerator (CARA), underlying theory and experimental tests of which are reviewed. The measurements illustrate the utility of CARA in preparing beams for high harmonic gyro interactions. Examples of preparation of gyrating axis-encircling beams of {approximately}400kV, 25 A with 1{lt}a{lt}2 using a 2.856 GHz CARA are discussed. Generation of MW-level harmonic power emanating from a beam prepared in CARA into an output cavity structure is predicted by theory. First measurements ofmore » intense superradiant 2nd through 6th harmonic emission from a CARA beam are described. Gyroharmonic conversion (GHC) at MW power levels into an appropriate resonator can be anticipated, in view of the results described here. Another radiation mechanism, closely related to GHC, is also described. This mechanism, dubbed {open_quotes}co-generation,{close_quotes} is based on the fact that the lowest TE{sub sm} mode in a cylindrical waveguide at frequency sw with group velocity nearly identical to group velocity for the TE{sub 11} mode at frequency w is that with s=7, m=2. This allows coherent radiation to be generated at the 7th harmonic co-existent with CARA and in the self-same rf structure. Conditions are found where co-generation of 7th harmonic power at 20 GHz is possible with overall efficiency greater than 80{percent}. It is shown that operation of a cw co-generator can take place without need of a power supply for the gun. Efficiency for a multi-MW 20 GHz co-generator is predicted to be high enough to compete with other sources, even after taking into account the finite efficiency of the rf driver required for CARA. {copyright} {ital 1997 American Institute of Physics.}« less

  17. Connecticut Biodiesel Power Generation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grannis, Lee; York, Carla R.

    Sabre will continue support of the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection to become more automated. Final project reports for data collection and system performance to be generated. Sabre continued to support the emissions equipment and VARS issues to ensure all are resolved and the system is functioning as expected. The remote data collection became more automated. Final project reports for data collection and system performance were generated and are part of this final report. Some Systems Sensors were replaced due to a lightning strike.more » Sample data charts are shown at the end of the report. During the project, Sabre Engineering provided support to the project team with regarding to troubleshooting technical issues and system integration with the local power utility company. The resulting lessons learned through Sabre’s participation in the project have been valuable to the integrity of the data collected as well as in providing BioPur Light & Power valuable insights into future operations and planning for possible expansion. The system monitoring and data collection system has been operating as designed and continues to provide relevant information to the system operators. The information routinely gathered automatically by the system also contributes to the REN and REC validations which are required to secure credit for these items. During the quarter, the remaining work on the operations and safety manual were completed and released for publication after screen shots were verified. The goal of this effort to provide an accurate set of precautions and procedures for the technology system that can be replicated to other similar system.« less

  18. Modular high-voltage bias generator powered by dual-looped self-adaptive wireless power transmission.

    PubMed

    Xie, Kai; Huang, An-Feng; Li, Xiao-Ping; Guo, Shi-Zhong; Zhang, Han-Lu

    2015-04-01

    We proposed a modular high-voltage (HV) bias generator powered by a novel transmitter-sharing inductive coupled wireless power transmission technology, aimed to extend the generator's flexibility and configurability. To solve the problems caused through an uncertain number of modules, a dual-looped self-adaptive control method is proposed that is capable of tracking resonance frequency while maintaining a relatively stable induction voltage for each HV module. The method combines a phase-locked loop and a current feedback loop, which ensures an accurate resonance state and a relatively constant boost ratio for each module, simplifying the architecture of the boost stage and improving the total efficiency. The prototype was built and tested. The input voltage drop of each module is less than 14% if the module number varies from 3 to 10; resonance tracking is completed within 60 ms. The efficiency of the coupling structure reaches up to 95%, whereas the total efficiency approaches 73% for a rated output. Furthermore, this technology can be used in various multi-load wireless power supply applications.

  19. Focal vibration of quadriceps muscle enhances leg power and decreases knee joint laxity in female volleyball players.

    PubMed

    Brunetti, O; Botti, F M; Roscini, M; Brunetti, A; Panichi, R; Filippi, G M; Biscarini, A; Pettorossi, V E

    2012-12-01

    This double-blind randomized controlled study aims at determining the effect of repeated muscle vibration (rMV) on explosive and reactive leg power and on knee laxity of female volleyball players. Eighteen voluntary volleyball athletes, belonging to the same senior regional level team (age=22.7 ± 3 years, height=180.3 ± 5 cm, mass= 64 ± 4 kg) were assigned to three groups (N.=6) for vibration on contracted quadriceps (VC), vibration on relaxed muscle (VR), and sham vibration (NV), respectively. Intervention consisted in 3 rMV sessions performed in 3 consecutive days. In each session, 100 Hz, 300-500 μm amplitude vibratory stimuli were bilaterally delivered to the quadriceps in three consecutive 10-minutes applications. Explosive and reactive leg power and knee joint laxity were evaluated 1 day before, and 1, 30, and 240 days after intervention. In VC group, explosive and reactive leg power increased respectively by ~16% and ~9% at 1 day, by ~19% and ~11% at 30 days and by ~26% and ~13% at 240 days, concomitantly knee laxity decreased by ~6%, ~15% and ~18% at the same times. These changes were significantly larger than in the other groups, in which leg power increment and knee joint laxity reduction remained close to ~3%, ~5% and ~10% at 1, 30 and 240 days, respectively. Combined bilateral voluntary contraction and rMV of the quadriceps muscles is a short-lasting, non-invasive technique that can significantly and persistently improve muscle performance and knee laxity in volleyball women players.

  20. High-power microwave generation using optically activated semiconductor switches

    NASA Astrophysics Data System (ADS)

    Nunnally, William C.

    1990-12-01

    The two prominent types of optically controlled switches, the optically controlled linear (OCL) switch and the optically initiated avalanche (OIA) switch, are described, and their operating parameters are characterized. Two transmission line approaches, one using a frozen-wave generator and the other using an injected-wave generator, for generation of multiple cycles of high-power microwave energy using optically controlled switches are discussed. The point design performances of the series-switch, frozen-wave generator and the parallel-switch, injected-wave generator are compared. The operating and performance limitations of the optically controlled switch types are discussed, and additional research needed to advance the development of the optically controlled, bulk, semiconductor switches is indicated.

  1. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  2. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways.

    PubMed

    Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia

    2013-05-01

    Various 'omics' technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.

  3. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways

    PubMed Central

    Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia

    2013-01-01

    Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways. PMID:23482392

  4. Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Emmanuel

    Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents

  5. EDITORIAL: The 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS 2007)

    NASA Astrophysics Data System (ADS)

    Hebling, C.; Woias, P.

    2008-10-01

    This special issue of Journal of Micromechanics and Microengineering (JMM) contains a selection of papers from the 7th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion (PowerMEMS 2007). The workshop was held in Freiburg, Germany on 27-29 November 2007 under the joint organization of the Fraunhofer Institute for Solar Energy Systems (FhG-ISE), Freiburg and the Department of Microsystems Engineering (IMTEK) of the Albert-Ludwig-University of Freiburg. PowerMEMS 2007 continues a series of workshops initiated in 2000 in Japan to create an annual discussion forum in the emerging field of micro energy technology. With a single exception in 2001, the workshop has continued as an annual meeting ever since, with a continuous increase in the number of presentations and participants. The program of PowerMEMS 2007 was composed of 2 invited talks, 25 oral talks and 61 poster presentations. From these 88 presentations 16 have been selected for this special issue. It was at the end of 1959 when the Caltech physicist Richard Feynman gave his famous lecture entitled 'There Is Plenty of Room at the Bottom' in which he discussed the possibilities of miniaturization for both storage capacity ('Encyclopaedia Britannica on the head of a pin') as well as micro machining ('rearranging the atoms'), although there were absolutely no technological possibilities in sight for an adequate realization of such ideas. Now, nearly 50 years later, we not only have incredible knowledge about the nanoworld, but even more we are now able to generate microelectromechanical devices which, next to their electronic properties, can integrate physical and analytical functions. Today, Feynman might easily have added a second lecture entitled 'There is Plenty of Energy at the Bottom'. Micro energy technology has seen a tremendous rise in MEMS and material sciences and is regarded today as one of their hot topics. Also, there are more and more companies in this

  6. Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generatingmore » systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)« less

  7. Preliminary assessment of power-generating tethers in space and of propulsion for their orbit maintenance

    NASA Technical Reports Server (NTRS)

    English, R. E.; Finnegan, P. M.

    1985-01-01

    The concept of generating power in space by means of a conducting tether deployed from a spacecraft was studied. Using hydrogen and oxygen as the rocket propellant to overcome the drag of such a power-generating tether would yield more benefit than if used in a fuel cell. The mass consumption would be 25 percent less than the reactant consumption of fuel cells. Residual hydrogen and oxygen in the external tank and in the orbiter could be used very effectively for this purpose. Many other materials (such as waste from life support) could be used as the propellant. Electrical propulsion using tether generated power can compensate for the drag of a power-generating tether, half the power going to the useful load and the rest for electric propulsion. In addition, the spacecraft's orbital energy is a large energy reservoir that permits load leveling and a ratio of peak to average power equal to 2. Critical technologies to be explored before a power-generating tether can be used in space are delineated.

  8. Achieving more reliable operation of turbine generators at nuclear power plants by improving the water chemistry of the generator stator cooling system

    NASA Astrophysics Data System (ADS)

    Tyapkov, V. F.; Chudakova, I. Yu.; Alekseenko, O. A.

    2011-08-01

    Ways of improving the water chemistry used in the turbine generator stator's cooling systems at Russian nuclear power plants are considered. Data obtained from operational chemical monitoring of indicators characterizing the quality of cooling water in the turbine generator stator cooling systems of operating power units at nuclear power plants are presented.

  9. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  10. Power Generation from a Radiative Thermal Source Using a Large-Area Infrared Rectenna

    NASA Astrophysics Data System (ADS)

    Shank, Joshua; Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Howell, Stephen; Peters, David W.; Davids, Paul S.

    2018-05-01

    Electrical power generation from a moderate-temperature thermal source by means of direct conversion of infrared radiation is important and highly desirable for energy harvesting from waste heat and micropower applications. Here, we demonstrate direct rectified power generation from an unbiased large-area nanoantenna-coupled tunnel diode rectifier called a rectenna. Using a vacuum radiometric measurement technique with irradiation from a temperature-stabilized thermal source, a generated power density of 8 nW /cm2 is observed at a source temperature of 450 °C for the unbiased rectenna across an optimized load resistance. The optimized load resistance for the peak power generation for each temperature coincides with the tunnel diode resistance at zero bias and corresponds to the impedance matching condition for a rectifying antenna. Current-voltage measurements of a thermally illuminated large-area rectenna show current zero crossing shifts into the second quadrant indicating rectification. Photon-assisted tunneling in the unbiased rectenna is modeled as the mechanism for the large short-circuit photocurrents observed where the photon energy serves as an effective bias across the tunnel junction. The measured current and voltage across the load resistor as a function of the thermal source temperature represents direct current electrical power generation.

  11. Optimized Power Generation and Distribution Unit for Mobile Applications

    DTIC Science & Technology

    2006-09-01

    reference commands to the overall system. This would be consistent with exoskeleton usage . Power Generation (prime mover) Power Distribution...technologies i.e. technologies that as of yet have not been used in the same field. • Produce list(s) in order of ranking for different properties ...developments have come through material science and bearing technology – it is the material properties of a flywheel that determine the maximum energy that can

  12. Out-of-Plane Continuous Electrostatic Micro-Power Generators

    PubMed Central

    Mahmoud, M. A. E.; Abdel-Rahman, E. M.; Mansour, R. R.; El-Saadany, E. F.

    2017-01-01

    This paper presents an out-of-plane electrostatic micro-power generator (MPG). Electret-based continuous MPGs with different gaps and masses are fabricated to demonstrate the merits of this topology. Experimental results of the MPG demonstrate output power of 1 mW for a base acceleration amplitude and frequency of 0.08 g and 86 Hz. The MPGs also demonstrate a wideband harvesting bandwidth reaching up to 9 Hz. A free-flight and an impact mode model of electrostatic MPGs are also derived and validated by comparison to experimental results. PMID:28420151

  13. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  14. EDITORIAL: The Fifth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2005)

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuji

    2006-09-01

    This special issue of Journal of Micromechanics and Microengineering contains a selection of papers from the Fifth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2005). The meeting was held on 28-30 November 2005 in Tokyo, Japan, and was supported by the 21COE Program 'Mechanical Systems Innovation' at the University of Tokyo. Power MEMS is one of the newest categories of MEMS, encompassing microdevices and microsystems for power generation, energy conversion and propulsion. The series of PowerMEMS workshops started in 2000 in Sendai, Japan and then moved to Tsukuba, Makuhari, Kyoto and Tokyo. At the 2005 meeting there were four invited, 25 oral and 26 poster presentations from 14 different countries. From the 55 papers in the proceedings, 18 papers have been selected for this special issue. The papers were chosen on the basis of their quality, scientific impact and relevance to the scope of the journal. The authors of the selected papers were invited to expand their manuscripts beyond the workshop page limitation and to revise the papers to meet the criteria of archival journal publication. All papers have been subjected to the journal's standard peer review process. The papers included herein are ordered according to four areas: energy harvesting, micro combustors and fuel processors, micro fuel cells, and micro engines and generators. It is my pleasure to present these selected papers from PowerMEMS 2005, and I hope that this special issue provides a valuable overview of the latest research in micro and nanotechnology for power generation and energy conversion.

  15. Study on the measures to promote the use of photovoltaic power generating system overseas

    NASA Astrophysics Data System (ADS)

    1989-03-01

    In order to understand the state of the utilizing photovoltaic power generating system, the present situation to promote its development, the actual status of the assistance for developing countries by each country or by each international organization, research was done for USA, principal western countries, UN and EC. First, development conditions of the solar cell utilizing technique were classified by each country at the standpoint of developing and promoting systems. Second, the projects and policies in each country or international organization were arranged to promote research, development and introduction. Next, the present situation of the photovoltaic power generation projects by civilian parties and the problems to assist the projects by each country were arranged. While, the present sutuation of the photovoltaic power generation projects assisted by the governments and international organizations were classified by each country and each international organizations. Finally, in view of importance in the photovoltaic power generation project, it was concluded that not only developed country governments and international organizations but also private enterprises in developed countries were required to expand the understanding about the photovoltaic power generation system.

  16. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  17. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint.

    PubMed

    Bellmann, Malte; Schmalz, Thomas; Ludwigs, Eva; Blumentritt, Siegmar

    2012-12-01

    Climbing stairs can pose a major challenge for above-knee amputees as a result of compromised motor performance and limitations to prosthetic design. A new, innovative microprocessor-controlled prosthetic knee joint, the Genium, incorporates a function that allows an above-knee amputee to climb stairs step over step. To execute this function, a number of different sensors and complex switching algorithms were integrated into the prosthetic knee joint. The function is intuitive for the user. A biomechanical study was conducted to assess objective gait measurements and calculate joint kinematics and kinetics as subjects ascended stairs. Results demonstrated that climbing stairs step over step is more biomechanically efficient for an amputee using the Genium prosthetic knee than the previously possible conventional method where the extended prosthesis is trailed as the amputee executes one or two steps at a time. There is a natural amount of stress on the residual musculoskeletal system, and it has been shown that the healthy contralateral side supports the movements of the amputated side. The mechanical power that the healthy contralateral knee joint needs to generate during the extension phase is also reduced. Similarly, there is near normal loading of the hip joint on the amputated side.

  18. Supplementary steam - A viable hydrogen power generation concept

    NASA Technical Reports Server (NTRS)

    Wright, D. E.; Lee, J. C.

    1979-01-01

    Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.

  19. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    NASA Astrophysics Data System (ADS)

    McLinko, Ryan M.; Sagar, Basant V.

    2009-12-01

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages

  20. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/electrical power generation subsystem

    NASA Technical Reports Server (NTRS)

    Patton, Jeff A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  1. A reliable, compact, and repetitive-rate high power microwave generation system.

    PubMed

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun

    2015-11-01

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  2. Design of pulsed guiding magnetic field for high power microwave generators.

    PubMed

    Ju, J-C; Zhang, H; Zhang, J; Shu, T; Zhong, H-H

    2014-09-01

    In this paper, we present a comprehensive study on designing solenoid together with the corresponding power supply system to excite pulsed magnetic field required for high power microwave generators. Particularly, a solenoid is designed and the excited magnetic field is applied to a Ku-band overmoded Cerenkov generator. It is found in experiment that the electron beam is properly guided by the magnetic field and a 1.1 GW high power microwave is achieved at a central frequency of 13.76 GHz. Pulsed solenoid system has the advantages of compactness and low energy consumption, which are of great interest for repetitive operation. The reported studies and results can be generalized to other applications which require magnetic fields.

  3. Microscale air quality impacts of distributed power generation facilities.

    PubMed

    Olaguer, Eduardo P; Knipping, Eladio; Shaw, Stephanie; Ravindran, Satish

    2016-08-01

    The electric system is experiencing rapid growth in the adoption of a mix of distributed renewable and fossil fuel sources, along with increasing amounts of off-grid generation. New operational regimes may have unforeseen consequences for air quality. A three-dimensional microscale chemical transport model (CTM) driven by an urban wind model was used to assess gaseous air pollutant and particulate matter (PM) impacts within ~10 km of fossil-fueled distributed power generation (DG) facilities during the early afternoon of a typical summer day in Houston, TX. Three types of DG scenarios were considered in the presence of motor vehicle emissions and a realistic urban canopy: (1) a 25-MW natural gas turbine operating at steady state in either simple cycle or combined heating and power (CHP) mode; (2) a 25-MW simple cycle gas turbine undergoing a cold startup with either moderate or enhanced formaldehyde emissions; and (3) a data center generating 10 MW of emergency power with either diesel or natural gas-fired backup generators (BUGs) without pollution controls. Simulations of criteria pollutants (NO2, CO, O3, PM) and the toxic pollutant, formaldehyde (HCHO), were conducted assuming a 2-hr operational time period. In all cases, NOx titration dominated ozone production near the source. The turbine scenarios did not result in ambient concentration enhancements significantly exceeding 1 ppbv for gaseous pollutants or over 1 µg/m(3) for PM after 2 hr of emission, assuming realistic plume rise. In the case of the datacenter with diesel BUGs, ambient NO2 concentrations were enhanced by 10-50 ppbv within 2 km downwind of the source, while maximum PM impacts in the immediate vicinity of the datacenter were less than 5 µg/m(3). Plausible scenarios of distributed fossil generation consistent with the electricity grid's transformation to a more flexible and modernized system suggest that a substantial amount of deployment would be required to significantly affect air quality on

  4. Automatic Generation Control Study in Two Area Reheat Thermal Power System

    NASA Astrophysics Data System (ADS)

    Pritam, Anita; Sahu, Sibakanta; Rout, Sushil Dev; Ganthia, Sibani; Prasad Ganthia, Bibhu

    2017-08-01

    Due to industrial pollution our living environment destroyed. An electric grid system has may vital equipment like generator, motor, transformers and loads. There is always be an imbalance between sending end and receiving end system which cause system unstable. So this error and fault causing problem should be solved and corrected as soon as possible else it creates faults and system error and fall of efficiency of the whole power system. The main problem developed from this fault is deviation of frequency cause instability to the power system and may cause permanent damage to the system. Therefore this mechanism studied in this paper make the system stable and balance by regulating frequency at both sending and receiving end power system using automatic generation control using various controllers taking a two area reheat thermal power system into account.

  5. Analysis of a combined refrigerator-generator space power system

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1973-01-01

    Description of a single-shaft and a two-shaft rotating machinery arrangements using neon for application in a combined refrigerator-generator power system for space missions. The arrangements consist of combined assemblies of a power turbine, alternator, compressor, and cry-turbine with a single-stage radial-flow design. A computer program was prepared to study the thermodynamics of the dual system in the evaluation of its cryocooling/electric capacity and appropriate weight. A preliminary analysis showed that a two-shaft arrangement of the power- and refrigeration-loop rotating machinery provided better output capacities than a single-shaft arrangement, without prohibitive operating compromises.

  6. 77 FR 69619 - Draft Recommendations of Joint Outreach Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Team AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Availability of draft recommendations of Western/DOE Joint Outreach Team. SUMMARY: The Western Area Power Administration (Western), a... recommendations of the Western/DOE Joint Outreach Team (JOT) for review and comment by Western's customers, Tribes...

  7. A novel HTS SMES application in combination with a permanent magnet synchronous generator type wind power generation system

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Kim, A. R.; Kim, S.; Park, M.; Yu, I. K.; Seong, K. C.; Won, Y. J.

    2011-11-01

    Superconducting magnetic energy storage (SMES) system is a DC current driven device and can be utilized to improve power quality particularly in connection with renewable energy sources due to higher efficiency and faster response than other devices. This paper suggests a novel connection topology of SMES which can smoothen the output power flow of the wind power generation system (WPGS). The structure of the proposed system is cost-effective because it reduces a power converter in comparison with a conventional application of SMES. One more advantage of SMES in the proposed system is to improve the capability of low voltage ride through (LVRT) for the permanent magnet synchronous generator (PMSG) type WPGS. The proposed system including a SMES has been modeled and analyzed by a PSCAD/EMTDC. The simulation results show the effectiveness of the novel SMES application strategy to not only mitigate the output power of the PMSG but also improve the capability of LVRT for PMSG type WPGS.

  8. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  9. Recovery of condensate water quality in power generator's surface condenser

    NASA Astrophysics Data System (ADS)

    Kurniawan, Lilik Adib

    2017-03-01

    In PT Badak NGL Plant, steam turbines are used to drive major power generators, compressors, and pumps. Steam exiting the turbines is condensed in surface condensers to be returned to boilers. Therefore, surface condenser performance and quality of condensate water are very important. One of the recent problem was caused by the leak of a surface condenser of Steam Turbine Power Generator. Thesteam turbine was overhauled, leaving the surface condenser idle and exposed to air for more than 1.5 years. Sea water ingress due to tube leaks worsens the corrosionof the condenser shell. The combination of mineral scale and corrosion product resulting high conductivity condensate at outlet condenser when we restarted up, beyond the acceptable limit. After assessing several options, chemical cleaning was the best way to overcome the problem according to condenser configuration. An 8 hour circulation of 5%wt citric acid had succeed reducing water conductivity from 50 μmhos/cm to below 5 μmhos/cm. The condensate water, then meets the required quality, i.e. pH 8.3 - 9.0; conductivity ≤ 5 μmhos/cm, therefore the power generator can be operated normally without any concern until now.

  10. Cycle analysis of planar SOFC power generation with serial connection of low and high temperature SOFCs

    NASA Astrophysics Data System (ADS)

    Araki, Takuto; Ohba, Takahiro; Takezawa, Shinya; Onda, Kazuo; Sakaki, Yoshinori

    Solid oxide fuel cells (SOFCs) can be composed of solid components for stable operation, and high power generation efficiency is obtained by using high temperature exhaust heat for fuel reforming and bottoming power generation by a gas turbine. Recently, low-temperature SOFCs, which run in the temperature range of around 600 °C or above and give high power generation efficiency, have been developed. On the other hand, a power generation system with multi-staged fuel cells has been proposed by the United States DOE to obtain high efficiency. In our present study, a power generation system consisting of two-staged SOFCs with serial connection of low and high temperature SOFCs was investigated. Overpotential data for the low-temperature SOFC used in this study are based on recently published data, while data for high-temperature SOFC are based on our previous study. The numerical results show that the power generation efficiency of the two-staged SOFCs is 50.3% and the total efficiency of power generation with gas turbine is 56.1% under standard operating conditions. These efficiencies are a little higher than those by high-temperature SOFC only.

  11. Power Quality Improvement Utilizing Photovoltaic Generation Connected to a Weak Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Tumbelaka, Hanny H.; Gao, Wenzhong

    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turnsmore » the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtained.« less

  12. Energy Optimization for a Weak Hybrid Power System of an Automobile Exhaust Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Quan, Shuhai; Xie, Changjun; Tang, Xinfeng; Ran, Bin; Jiao, Yatian

    2017-11-01

    An integrated starter generator (ISG)-type hybrid electric vehicle (HEV) scheme is proposed based on the automobile exhaust thermoelectric generator (AETEG). An eddy current dynamometer is used to simulate the vehicle's dynamic cycle. A weak ISG hybrid bench test system is constructed to test the 48 V output from the power supply system, which is based on engine exhaust-based heat power generation. The thermoelectric power generation-based system must ultimately be tested when integrated into the ISG weak hybrid mixed power system. The test process is divided into two steps: comprehensive simulation and vehicle-based testing. The system's dynamic process is simulated for both conventional and thermoelectric powers, and the dynamic running process comprises four stages: starting, acceleration, cruising and braking. The quantity of fuel available and battery pack energy, which are used as target vehicle energy functions for comparison with conventional systems, are simplified into a single energy target function, and the battery pack's output current is used as the control variable in the thermoelectric hybrid energy optimization model. The system's optimal battery pack output current function is resolved when its dynamic operating process is considered as part of the hybrid thermoelectric power generation system. In the experiments, the system bench is tested using conventional power and hybrid thermoelectric power for the four dynamic operation stages. The optimal battery pack curve is calculated by functional analysis. In the vehicle, a power control unit is used to control the battery pack's output current and minimize energy consumption. Data analysis shows that the fuel economy of the hybrid power system under European Driving Cycle conditions is improved by 14.7% when compared with conventional systems.

  13. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by

  14. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  15. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  16. 30 CFR 72.501 - Emission limits for nonpermissible heavy-duty diesel-powered equipment, generators and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel-powered equipment, generators and compressors. 72.501 Section 72.501 Mineral Resources MINE SAFETY... nonpermissible heavy-duty diesel-powered equipment, generators and compressors. (a) Each piece of nonpermissible heavy-duty diesel-powered equipment (as defined by § 75.1908(a) of this part), generator or compressor...

  17. Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2015-07-21

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  18. Reactive power generation in high speed induction machines by continuously occurring space-transients

    NASA Astrophysics Data System (ADS)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  19. Quantitative power Doppler ultrasound measures of peripheral joint synovitis in poor prognosis early rheumatoid arthritis predict radiographic progression.

    PubMed

    Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C

    2016-01-01

    To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of <3 years duration had clinical, laboratory and imaging assessments at 0 and 12 months. Imaging assessments consisted of radiographs of the hands and feet, two-dimensional (2D) high-frequency and PDUS imaging of 10 MCP joints that were scored for erosions and vascularity and three-dimensional (3D) PDUS of MCP joints and wrists that were scored for vascularity. Severe deterioration on radiographs and ultrasonography was seen in 45 and 28% of patients, respectively. The 3D power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  1. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photo-voltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  2. Mission Applicability and Benefits of Thin-Film Integrated Power Generation and Energy Storage

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Raffaelle, Ryne P.; Landis, Geoffrey A.; Hepp, Aloysius F.

    2001-01-01

    This paper discusses the space mission applicability and benefits of a thin-film integrated power generation and energy storage device, i.e., an "Integrated Power Source" or IPS. The characteristics of an IPS that combines thin-film photovoltaic power generation with thin-film energy storage are described. Mission concepts for a thin-film IPS as a spacecraft main electrical power system, as a decentralized or distributed power source and as an uninterruptible power supply are discussed. For two specific missions, preliminary sizing of an IPS as a main power system is performed and benefits are assessed. IPS developmental challenges that need to be overcome in order to realize the benefits of an IPS are examined. Based on this preliminary assessment, it is concluded that the most likely and beneficial application of an IPS will be as the main power system on a very small "nanosatellite," or in specialized applications serving as a decentralized or distributed power source or uninterruptible power supply.

  3. QM-8 field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Hale, Elgie

    1989-01-01

    The pre-launch functioning data of the Field Joint Protection System (JPS) used on QM-8 are presented. Also included is the post fire condition of the JPS components following the test firing of the motor. The JPS components are: field joint heaters; field joint sensors; field joint moisture seal; moisture seal kevlar retaining straps; field joint external extruded cork insulation; vent valve; power cables; and igniter heater.

  4. Discussion on joint operation of wind farm and pumped-storage hydroplant

    NASA Astrophysics Data System (ADS)

    Li, Caifang; Wu, Yichun; Liang, Hao; Li, Miao

    2017-12-01

    Due to the random fluctuations in wind power, large amounts of grid integration will have a negative impact on grid operation and the consumers. The joint operation with pumped-storage hydroplant with good peak shaving performance can effectively reduce the negative impact on the safety and economic operation of power grid, and improve the utilization of wind power. In addition, joint operation can achieve the optimization of green power and improve the comprehensive economic benefits. Actually, the rational profit distribution of joint operation is the premise of sustainable and stable cooperation. This paper focuses on the profit distribution of joint operation, and applies improved shapely value method, which taking the investments and the contributions of each participant in the cooperation into account, to determine the profit distribution. Moreover, the distribution scheme can provide an effective reference for the actual joint operation of wind farm and pumped-storage hydroplant.

  5. Gasification of torrefied fuel at power generation for decentralized consumers

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Khakimzyanov, I. F.; Galyavetdinov, N. R.; Mukhametzyanov, S. R.

    2017-10-01

    The increasing need of satisfaction of the existing needs of the population and the industry for electric energy, especially in the areas remote from the centralized energy supply, results in need of development of “small-scale energy generation”. At the same time, the basis in these regions is made by the energy stations, using imported fuel, which involve a problem of increase in cost and transportation of fuel to the place of consumption. The solution of this task is the use of the torrefied waste of woodworking and agricultural industry as fuel. The influence of temperature of torrefaction of wood fuel on the developed electric generator power is considered in the article. As a result of the experiments, it is revealed that at gasification of torrefied fuel from vegetable raw material, the generating gas with the increased content of hydrogen and carbon oxide, in comparison with gasification of the raw materials, is produced. Owing to this, the engine capacity increases that exerts direct impact on power generation by the electric generator.

  6. Modeling Power Plant Cooling Water Requirements: A Regional Analysis of the Energy-Water Nexus Considering Renewable Sources within the Power Generation Mix

    NASA Astrophysics Data System (ADS)

    Peck, Jaron Joshua

    Water is used in power generation for cooling processes in thermoelectric power. plants and currently withdraws more water than any other sector in the U.S. Reducing water. use from power generation will help to alleviate water stress in at risk areas, where droughts. have the potential to strain water resources. The amount of water used for power varies. depending on many climatic aspects as well as plant operation factors. This work presents. a model that quantifies the water use for power generation for two regions representing. different generation fuel portfolios, California and Utah. The analysis of the California Independent System Operator introduces the methods. of water energy modeling by creating an overall water use factor in volume of water per. unit of energy produced based on the fuel generation mix of the area. The idea of water. monitoring based on energy used by a building or region is explored based on live fuel mix. data. This is for the purposes of increasing public awareness of the water associated with. personal energy use and helping to promote greater energy efficiency. The Utah case study explores the effects more renewable, and less water-intensive, forms of energy will have on the overall water use from power generation for the state. Using a similar model to that of the California case study, total water savings are quantified. based on power reduction scenarios involving increased use of renewable energy. The. plausibility of implementing more renewable energy into Utah’s power grid is also. discussed. Data resolution, as well as dispatch methods, economics, and solar variability, introduces some uncertainty into the analysis.

  7. Utility interconnection issues for wind power generation

    NASA Technical Reports Server (NTRS)

    Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.

    1986-01-01

    This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.

  8. A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates.

    PubMed

    Barbour, P S; Stone, M H; Fisher, J

    1999-01-01

    In some designs of hip joint simulator the cost of building a highly complex machine has been offset with the requirement for a large number of test stations. The application of the wear results generated by these machines depends on their ability to reproduce physiological wear rates and processes. In this study a hip joint simulator has been shown to reproduce physiological wear using only one load vector and two degrees of motion with simplified input cycles. The actual path of points on the femoral head relative to the acetabular cup were calculated and compared for physiological and simplified input cycles. The in vitro wear rates were found to be highly dependent on the shape of these paths and similarities could be drawn between the shape of the physiological paths and the simplified elliptical paths.

  9. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    NASA Technical Reports Server (NTRS)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  10. A reliable, compact, and repetitive-rate high power microwave generation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang

    2015-11-15

    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both timemore » and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.« less

  11. Valuing natural gas power generation assets in the new competitive marketplace

    NASA Astrophysics Data System (ADS)

    Hsu, Michael Chun-Wei

    1999-10-01

    The profitability of natural gas fired power plants depends critically on the spread between electricity and natural gas prices. The price levels of these two energy commodities are the key uncertain variables in determining the operating margin and therefore the value of a power plant. The owner of a generation unit has the decision of dispatching the plant only when profit margins are positive. This operating flexibility is a real option with real value. In this dissertation I introduce the spark spread call options and illustrate how such paper contracts replicate the uncertain payoff space facing power asset owners and, therefore, how the financial options framework can be applied in estimating the value of natural gas generation plants. The intrinsic value of gas power plants is approximated as the sum of a series of spark spread call options with succeeding maturity dates. The Black-Scholes spread option pricing model, with volatility and correlation term structure adjustments, is utilized to price the spark spread options. Sensitivity analysis is also performed on the BS spread option formulation to compare different asset types. In addition I explore the potential of using compound and compound-exchange option concepts to evaluate, respectively, the benefits of delaying investment in new generation and in repowering existing antiquated units. The compound option designates an option on top of another option. In this case the series of spark spread call options is the 'underlying' option while the option to delay new investments is the 'overlying.' The compound-exchange option characterizes the opportunity to 'exchange' the old power plant, with its series of spark spread call options, for a set of new spark spread call options that comes with the new generation unit. The strike price of the compound-exchange option is the repowering capital investment and typically includes the purchase of new steam generators and combustion turbines, as well as other

  12. Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin; Florita, Anthony R; Krishnan, Venkat K

    Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less

  13. Biomass & Natural Gas Based Hydrogen Fuel For Gas Turbine (Power Generation)

    EPA Science Inventory

    Significant progress has been made by major power generation equipment manufacturers in the development of market applications for hydrogen fuel use in gas turbines in recent years. Development of a new application using gas turbines for significant reduction of power plant CO2 e...

  14. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  15. Distributed Electrical Power Generation: Summary of Alternative Available Technologies

    DTIC Science & Technology

    2003-09-01

    standby charges, among others. Federal law (Public Utilities Regulatory Policy Act [ PURPA ] Section 210) prohibits utilities from assessing...a customer-generator. PURPA . The PURPA of 1978 requires electric utilities to purchase electricity produced from any qualifying power producers

  16. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    EIA Publications

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  17. Current status and future prospects of power generators using dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2011-12-01

    Electroactive polymer artificial muscle (EPAM), known collectively as dielectric elastomers in the literature, has been shown to offer unique capabilities as an actuator and is now being developed for a wide variety of generator applications. EPAM has several characteristics that make it potentially well suited for wave, water current, wind, human motion, and other environmental energy harvesting systems including a high energy density allowing for minimal EPAM material quantities, high energy conversion efficiency independent of frequency of operation and non-toxic and low-cost materials not susceptible to corrosion. Experiments have been performed on push-button and heel-mounted generator devices powered by human motion, ocean wave power harvesters mounted on buoys and water turbines. While the power output levels of such demonstration devices is small, the performance of these devices has supported the potential benefits of EPAM. For example, an electrical energy conversion efficiency of over 70% was achieved with small wave heights. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely independent of size and it should eventually be possible to scale up EPAM generators to the megawatt level to address a variety of electrical power needs.

  18. Quantitative Evaluation Method of Each Generation Margin for Power System Planning

    NASA Astrophysics Data System (ADS)

    Su, Su; Tanaka, Kazuyuki

    As the power system deregulation advances, the competition among the power companies becomes heated, and they seek more efficient system planning using existing facilities. Therefore, an efficient system planning method has been expected. This paper proposes a quantitative evaluation method for the (N-1) generation margin considering the overload and the voltage stability restriction. Concerning the generation margin related with the overload, a fast solution method without the recalculation of the (N-1) Y-matrix is proposed. Referred to the voltage stability, this paper proposes an efficient method to search the stability limit. The IEEE30 model system which is composed of 6 generators and 14 load nodes is employed to validate the proposed method. According to the results, the proposed method can reduce the computational cost for the generation margin related with the overload under the (N-1) condition, and specify the value quantitatively.

  19. Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation

    NASA Astrophysics Data System (ADS)

    Singh, B.; Shahani, D. T.; Verma, A. K.

    2015-03-01

    This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.

  20. The generation of pollution-free electrical power from solar energy.

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1971-01-01

    Projections of the U.S. electrical power demands over the next 30 years indicate that the U.S. could be in grave danger from power shortages, undesirable effluence, and thermal pollution. An appraisal of nonconventional methods of producing electrical power is conducted, giving particular attention to the conversion of solar energy into commercial quantities of electrical power by solar cells. It is found that 1% of the land area of the 48 states could provide the total electrical power requirements of the U.S. in the year 1990. The ultimate method of generating vast quantities of electrical power would be from a series of synchronous satellites which beam microwave power back to earth to be used wherever needed. Present high manufacturing costs of solar cells could be substantially reduced by using massive automated techniques employing abundant low cost materials.

  1. Multi-objective evolutionary optimization for the joint operation of reservoirs of water supply under water-food-energy nexus management

    NASA Astrophysics Data System (ADS)

    Uen, T. S.; Tsai, W. P.; Chang, F. J.; Huang, A.

    2016-12-01

    In recent years, urbanization had a great effect on the growth of population and the resource management scheme of water, food and energy nexus (WFE nexus) in Taiwan. Resource shortages of WFE become a long-term and thorny issue due to the complex interactions of WFE nexus. In consideration of rapid socio-economic development, it is imperative to explore an efficient and practical approach for WFE resources management. This study aims to search the optimal solution to WFE nexus and construct a stable water supply system for multiple stakeholders. The Shimen Reservoir and Feitsui Reservoir in northern Taiwan are chosen to conduct the joint operation of the two reservoirs for water supply. This study intends to achieve water resource allocation from the two reservoirs subject to different operating rules and restrictions of resource allocation. The multi-objectives of the joint operation aim at maximizing hydro-power synergistic gains while minimizing water supply deficiency as well as food shortages. We propose to build a multi-objective evolutionary optimization model for analyzing the hydro-power synergistic gains to suggest the most favorable solutions in terms of tradeoffs between WFE. First, this study collected data from two reservoirs and Taiwan power company. Next, we built a WFE nexus model based on system dynamics. Finally, this study optimized the joint operation of the two reservoirs and calculated the synergy of hydro-power generation. The proposed methodology can tackle the complex joint reservoir operation problems. Results can suggest a reliable policy for joint reservoir operation for creating a green economic city under the lowest risks of water supply.

  2. Distributed plug-and-play optimal generator and load control for power system frequency regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Changhong; Mallada, Enrique; Low, Steven H.

    A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less

  3. Distributed plug-and-play optimal generator and load control for power system frequency regulation

    DOE PAGES

    Zhao, Changhong; Mallada, Enrique; Low, Steven H.; ...

    2018-03-14

    A distributed control scheme, which can be implemented on generators and controllable loads in a plug-and-play manner, is proposed for power system frequency regulation. The proposed scheme is based on local measurements, local computation, and neighborhood information exchanges over a communication network with an arbitrary (but connected) topology. In the event of a sudden change in generation or load, the proposed scheme can restore the nominal frequency and the reference inter-area power flows, while minimizing the total cost of control for participating generators and loads. Power network stability under the proposed control is proved with a relatively realistic model whichmore » includes nonlinear power flow and a generic (potentially nonlinear or high-order) turbine-governor model, and further with first- and second-order turbine-governor models as special cases. Finally, in simulations, the proposed control scheme shows a comparable performance to the existing automatic generation control (AGC) when implemented only on the generator side, and demonstrates better dynamic characteristics than AGC when each scheme is implemented on both generators and controllable loads. Simulation results also show robustness of the proposed scheme to communication link failure.« less

  4. Power Generation Evaluated on a Bismuth Telluride Unicouple Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Nagase, Kazuo; Jood, Priyanka; Ohta, Michihiro; Yamamoto, Atsushi

    2015-06-01

    The power generated by a thermoelectric unicouple module made of Bi2Te3 alloy was evaluated by use of a newly developed instrument. An electrical load was connected to the module, and the terminal voltage and output power of the module were obtained by altering electric current. Water flow was used to cool the cold side of the module and for heat flow measurement, by monitoring inlet and outlet temperatures. When the electric current was increased, heat flow was enhanced as a result of the Peltier effect and Joule heating. Voltage, power, heat flow, and efficiency as functions of current were determined for hot-side temperatures from 50 to 220°C. Maximum power output and peak conversion efficiency could thus be easily derived for each temperature.

  5. Major design issues of molten carbonate fuel cell power generation unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less

  6. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    NASA Technical Reports Server (NTRS)

    Muller, Norbert (Inventor); Lee, Changgu (Inventor); Frechette, Luc (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  7. Microcombustor-thermoelectric power generator for 10-50 watt applications

    NASA Astrophysics Data System (ADS)

    Marshall, Daniel S.; Cho, Steve T.

    2010-04-01

    Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.

  8. Concept for power scaling second harmonic generation using a cascade of nonlinear crystals.

    PubMed

    Hansen, A K; Tawfieq, M; Jensen, O B; Andersen, P E; Sumpf, B; Erbert, G; Petersen, P M

    2015-06-15

    Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient single-pass concept, we generate 3.7 W of continuous-wave diffraction-limited (M(2)=1.25) light at 532 nm from 9.5 W of non-diffraction-limited (M(2)=7.7) light from a tapered laser diode, while avoiding significant thermal effects. Besides constituting the highest SH power yet achieved using a laser diode, this demonstrates that the concept successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other wavelengths.

  9. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  10. Feasibility Investigation for a Solar Power Generation Facility

    NASA Technical Reports Server (NTRS)

    Nathan, Lakshmi

    2010-01-01

    The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.

  11. Joint terminals and relay optimization for two-way power line information exchange systems with QoS constraints

    NASA Astrophysics Data System (ADS)

    Wu, Xiaolin; Rong, Yue

    2015-12-01

    The quality-of-service (QoS) criteria (measured in terms of the minimum capacity requirement in this paper) are very important to practical indoor power line communication (PLC) applications as they greatly affect the user experience. With a two-way multicarrier relay configuration, in this paper we investigate the joint terminals and relay power optimization for the indoor broadband PLC environment, where the relay node works in the amplify-and-forward (AF) mode. As the QoS-constrained power allocation problem is highly non-convex, the globally optimal solution is computationally intractable to obtain. To overcome this challenge, we propose an alternating optimization (AO) method to decompose this problem into three convex/quasi-convex sub-problems. Simulation results demonstrate the fast convergence of the proposed algorithm under practical PLC channel conditions. Compared with the conventional bidirectional direct transmission (BDT) system, the relay-assisted two-way information exchange (R2WX) scheme can meet the same QoS requirement with less total power consumption.

  12. Self-powered electrospinning apparatus based on a hand-operated Wimshurst generator

    NASA Astrophysics Data System (ADS)

    Han, Wen-Peng; Huang, Yuan-Yuan; Yu, Miao; Zhang, Jun-Cheng; Yan, Xu; Yu, Gui-Feng; Zhang, Hong-Di; Yan, Shi-Ying; Long, Yun-Ze

    2015-03-01

    A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc.A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator

  13. Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.

    2017-05-01

    Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.

  14. Grey Comprehensive Evaluation of Biomass Power Generation Project Based on Group Judgement

    NASA Astrophysics Data System (ADS)

    Xia, Huicong; Niu, Dongxiao

    2017-06-01

    The comprehensive evaluation of benefit is an important task needed to be carried out at all stages of biomass power generation projects. This paper proposed an improved grey comprehensive evaluation method based on triangle whiten function. To improve the objectivity of weight calculation result of only reference comparison judgment method, this paper introduced group judgment to the weighting process. In the process of grey comprehensive evaluation, this paper invited a number of experts to estimate the benefit level of projects, and optimized the basic estimations based on the minimum variance principle to improve the accuracy of evaluation result. Taking a biomass power generation project as an example, the grey comprehensive evaluation result showed that the benefit level of this project was good. This example demonstrates the feasibility of grey comprehensive evaluation method based on group judgment for benefit evaluation of biomass power generation project.

  15. Message passing for integrating and assessing renewable generation in a redundant power grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zdeborova, Lenka; Backhaus, Scott; Chertkov, Michael

    2009-01-01

    A simplified model of a redundant power grid is used to study integration of fluctuating renewable generation. The grid consists of large number of generator and consumer nodes. The net power consumption is determined by the difference between the gross consumption and the level of renewable generation. The gross consumption is drawn from a narrow distribution representing the predictability of aggregated loads, and we consider two different distributions representing wind and solar resources. Each generator is connected to D consumers, and redundancy is built in by connecting R {le} D of these consumers to other generators. The lines are switchablemore » so that at any instance each consumer is connected to a single generator. We explore the capacity of the renewable generation by determining the level of 'firm' generation capacity that can be displaced for different levels of redundancy R. We also develop message-passing control algorithm for finding switch sellings where no generator is overloaded.« less

  16. Estimates of Optimal Operating Conditions for Hydrogen-Oxygen Cesium-Seeded Magnetohydrodynamic Power Generator

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Nichols, L. D.

    1977-01-01

    The value of percent seed, oxygen to fuel ratio, combustion pressure, Mach number, and magnetic field strength which maximize either the electrical conductivity or power density at the entrance of an MHD power generator was obtained. The working fluid is the combustion product of H2 and O2 seeded with CsOH. The ideal theoretical segmented Faraday generator along with an empirical form found from correlating the data of many experimenters working with generators of different sizes, electrode configurations, and working fluids, are investigated. The conductivity and power densities optimize at a seed fraction of 3.5 mole percent and an oxygen to hydrogen weight ratio of 7.5. The optimum values of combustion pressure and Mach number depend on the operating magnetic field strength.

  17. Performance and optimum characteristics by finite element analysis of a coreless ironless electric generator for low wind density power generation

    NASA Astrophysics Data System (ADS)

    Razali, Akhtar; Rahman, Fadhlur; Leong, Yap Wee; Razali Hanipah, Mohd; Azri Hizami, Mohd

    2018-04-01

    Cogging is an attraction of magnetism between permanent magnets and soft ironcore lamination in a conventional electric ironcore generator. The presence of cog in the generator is seen somehow restricted the application of the generator in an application where low rotational torque is required. Cog torque requires an additional input power to overcome, hence became one of the power loss sources. With the increasing of power output, the cogging is also proportionally increased. This leads to the increasing of the supplied power of the driver motor to overcome the cog. Therefore, this research is embarked to study fundamentally about the possibility of removing ironcore lamination in an electric generator. This research deals with removal of ironcore lamination in electric generator to eliminate cog torque. A confinement technique is proposed to confine and focus magnetic flux by introducing opposing permanent magnets arrangement. There were several parameters analysed using the JMAG Designer. Transient response analysis was used in the JMAG Designer. The parameters analysed were the number of coil turns per phase, gap distance between the magnet pairs as well as the magnet grade used. These few parameters were analysed under the open circuit condition. Results showed with the increasing of gap distance, output voltage produced decreased. The increment of number of turns in the coils and higher magnet grades used, these increased the output voltage of the generator. With the help of these results, a reference point is established to get optimum design parameter for fabrication of working prototype.

  18. A Framework for Assessing the Commercialization of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Yaqub, Mahdi

    An effective framework does not currently exist with which to assess the viability of commercializing photovoltaic (PV) power generation in the US energy market. Adopting a new technology, such as utility-scale PV power generation, requires a commercialization assessment framework. The framework developed here assesses the economic viability of a set of alternatives of identified factors. Economic viability focuses on simulating the levelized cost of electricity (LCOE) as a key performance measure to realize `grid parity', or the equivalence between the PV electricity prices and grid electricity prices for established energy technologies. Simulation results confirm that `grid parity' could be achieved without the current federal 30% investment tax credit (ITC) via a combination of three strategies: 1) using economies of scale to reduce the LCOE by 30% from its current value of 3.6 cents/kWh to 2.5 cents/kWh, 2) employing a longer power purchase agreement (PPA) over 30 years at a 4% interest rate, and 3) improving by 15% the "capacity factor", which is the ratio of the total annual generated energy to the full potential annual generation when the utility is continuously operating at its rated output. The lower than commercial-market interest rate of 4% that is needed to realize `grid parity' is intended to replace the current federal 30% ITC subsidy, which does not have a cash inflow to offset the outflow of subsidy payments. The 4% interest rate can be realized through two proposed finance plans: The first plan involves the implementation of carbon fees on polluting power plants to produce the capital needed to lower the utility PPA loan term interest rate from its current 7% to the necessary 4% rate. The second plan entails a proposed public debt finance plan. Under this plan, the US Government leverages its guarantee power to issue bonds and uses the proceeds to finance the construction and operation of PV power plants with PPA loan with a 4% interest rate for a

  19. Clinical tests of ankle plantarflexor strength do not predict ankle power generation during walking.

    PubMed

    Kahn, Michelle; Williams, Gavin

    2015-02-01

    The aim of this study was to investigate the relationship between a clinical test of ankle plantarflexor strength and ankle power generation (APG) at push-off during walking. This is a prospective cross-sectional study of 102 patients with traumatic brain injury. Handheld dynamometry was used to measure ankle plantarflexor strength. Three-dimensional gait analysis was performed to quantify ankle power generation at push-off during walking. Ankle plantarflexor strength was only moderately correlated with ankle power generation at push-off (r = 0.43, P < 0.001; 95% confidence interval, 0.26-0.58). There was also a moderate correlation between ankle plantarflexor strength and self-selected walking velocity (r = 0.32, P = 0.002; 95% confidence interval, 0.13-0.48). Handheld dynamometry measures of ankle plantarflexor strength are only moderately correlated with ankle power generation during walking. This clinical test of ankle plantarflexor strength is a poor predictor of calf muscle function during gait in people with traumatic brain injury.

  20. Lead telluride as a thermoelectric material for thermoelectric power generation

    NASA Astrophysics Data System (ADS)

    Dughaish, Z. H.

    2002-09-01

    The specialized applications of thermoelectric generators are very successful and have motivated a search for materials with an improved figure of merit Z, and also for materials which operate at elevated temperatures. Lead telluride, PbTe, is an intermediate thermoelectric power generator. Its maximum operating temperature is 900 K. PbTe has a high melting point, good chemical stability, low vapor pressure and good chemical strength in addition to high figure of merit Z. Recently, research in thermoelectricity aims to obtain new improved materials for autonomous sources of electrical power in specialized medical, terrestial and space applications and to obtain an unconventional energy source after the oil crises of 1974. Although the efficiency of thermoelectric generators is rather low, typically ∼5%, the other advantages, such as compactness, silent, reliability, long life, and long period of operation without attention, led to a wide range of applications. PbTe thermoelectric generators have been widely used by the US army, in space crafts to provide onboard power, and in pacemakers batteries. The general physical properties of lead telluride and factors affecting the figure of merit have been reviewed. Various possibilities of improving the figure of merit of the material have been given, including effect of grain size on reducing the lattice thermal conductivity λL. Comparison of some transport properties of lead telluride with other thermoelectric materials and procedures of preparing compacts with transport properties very close to the single crystal values from PbTe powder by cold and hot-pressing techniques are discussed.

  1. Cycle Analysis of Two-stage Planar SOFC Power Generation by Series Connection of Low and High Temperature SOFCs

    NASA Astrophysics Data System (ADS)

    Ohba, Takahiro; Takezawa, Shinya; Araki, Takuto; Onda, Kazuo; Sakaki, Yoshinori

    Solid Oxide Fuel Cell (SOFC) can be composed by solid components, and high power generation efficiency of a whole cycle is obtained by using high temperature exhaust heat for fuel reforming and bottoming power generation. Recently, the low temperature SOFC, which runs in the temperature range of around 600°C or above, has been developed with the high efficiency of power generation. On the other hand, multi-stage power generation system has been proposed by the United States DOE. In this study, a power generation system of two-stage SOFC by series connection of low and high temperature SOFCs has been studied. Overpotential data for low-temperature SOFC used in this study are based on recent published data, and those for high temperature SOFC arhaihe based on our previous study. The analytical results show the two-stage SOFC power generation efficiency of 50.3% and the total power generation efficiency of 56.1% under a standard operating condition.

  2. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Tao; Li, Cheng; Huang, Can

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  3. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DOE PAGES

    Ding, Tao; Li, Cheng; Huang, Can; ...

    2017-01-09

    Here, in order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost function of the slave model for the master model, which reflects the impacts of each slave model. Second,more » the transmission and distribution networks are decoupled at feeder buses, and all the distribution networks are coordinated by the master reactive power optimization model to achieve the global optimality. Finally, numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods.« less

  4. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  5. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  6. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  7. EDITORIAL: Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    2009-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.

  8. Application of clustering analysis in the prediction of photovoltaic power generation based on neural network

    NASA Astrophysics Data System (ADS)

    Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.

    2017-11-01

    In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.

  9. Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc

    2015-01-01

    The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.

  10. Effect of distributed generation installation on power loss using genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Hasibuan, A.; Masri, S.; Othman, W. A. F. W. B.

    2018-02-01

    Injection of the generator distributed in the distribution network can affect the power system significantly. The effect that occurs depends on the allocation of DG on each part of the distribution network. Implementation of this approach has been made to the IEEE 30 bus standard and shows the optimum location and size of the DG which shows a decrease in power losses in the system. This paper aims to show the impact of distributed generation on the distribution system losses. The main purpose of installing DG on a distribution system is to reduce power losses on the power system.Some problems in power systems that can be solved with the installation of DG, one of which will be explored in the use of DG in this study is to reduce the power loss in the transmission line. Simulation results from case studies on the IEEE 30 bus standard system show that the system power loss decreased from 5.7781 MW to 1,5757 MW or just 27,27%. The simulated DG is injected to the bus with the lowest voltage drop on the bus number 8.

  11. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    EPA Science Inventory

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  12. Coal-fired high performance power generating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less

  13. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    DOEpatents

    Wroblewski, David [Mentor, OH; Katrompas, Alexander M [Concord, OH; Parikh, Neel J [Richmond Heights, OH

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  14. Mapping the impacts of thermoelectric power generation: a global, spatially explicit database

    NASA Astrophysics Data System (ADS)

    Raptis, Catherine; Pfister, Stephan

    2017-04-01

    Thermoelectric power generation is associated with environmental pressures resulting from emissions to air and water, as well as water consumption. The need to achieve global coverage in related studies has become pressing in view of climate change. At the same time, the ability to quantify impacts from power production on a high resolution remains pertinent, given their highly regionalized nature, particularly when it comes to water-related impacts. Efforts towards global coverage have increased in recent years, but most work on the impacts of global electricity production presents a coarse geographical differentiation. Over the past few years we have begun a concerted effort to create and make available a global georeferenced inventory of thermoelectric power plant operational characteristics and emissions, by modelling the relevant processes on the highest possible level: that of a generating unit. Our work extends and enhances a commercially available global power plant database, and so far includes: - Georeferencing the generating units and populating the gaps in their steam properties. - Identifying the cooling system for 92% of the global installed thermoelectric power capacity. - Using the completed steam property data, along with local environmental temperature data, to systematically solve the Rankine cycle for each generating unit, involving: i) distinguishing between simple, reheat, and cogenerative cycles, and accounting for particularities in nuclear power cycles; ii) accounting for the effect of different cooling systems (once-through, recirculating (wet tower), dry cooling) on the thermodynamic cycle. One of the direct outcomes of solving the Rankine cycle is the cycle efficiency, an indispensable parameter in any study related to power production, including the quantification of air emissions and water consumption. Another direct output, for those units employing once-through cooling, is the rate of heat rejection to water, which can lead to

  15. Drought Resilience of Water Supplies for Shale Gas Extraction and Related Power Generation in Texas

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Nicot, J. P.; Uhlman, K.

    2014-12-01

    There is considerable concern about water availability to support energy production in Texas, particularly considering that many of the shale plays are in semiarid areas of Texas and the state experienced the most extreme drought on record in 2011. The Eagle Ford shale play provides an excellent case study. Hydraulic fracturing water use for shale gas extraction in the play totaled ~ 12 billion gallons (bgal) in 2012, representing ~7 - 10% of total water use in the 16 county play area. The dominant source of water is groundwater which is not highly vulnerable to drought from a recharge perspective because water is primarily stored in the confined portion of aquifers that were recharged thousands of years ago. Water supply drought vulnerability results primarily from increased water use for irrigation. Irrigation water use in the Eagle Ford play was 30 billion gallons higher in the 2011 drought year relative to 2010. Recent trends toward increased use of brackish groundwater for shale gas extraction in the Eagle Ford also reduce pressure on fresh water resources. Evaluating the impacts of natural gas development on water resources should consider the use of natural gas in power generation, which now represents 50% of power generation in Texas. Water consumed in extracting the natural gas required for power generation is equivalent to ~7% of the water consumed in cooling these power plants in the state. However, natural gas production from shale plays can be overall beneficial in terms of water resources in the state because natural gas combined cycle power generation decreases water consumption by ~60% relative to traditional coal, nuclear, and natural gas plants that use steam turbine generation. This reduced water consumption enhances drought resilience of power generation in the state. In addition, natural gas combined cycle plants provide peaking capacity that complements increasing renewable wind generation which has no cooling water requirement. However, water

  16. Research on DC Micro-grid system of photovoltaic power generation

    NASA Astrophysics Data System (ADS)

    Zheng, Yiming; Wang, Xiaohui

    2018-01-01

    The use of energy has become a topic of concern, the demand of people for power grows in number or quantity with the development of economy. It is necessary to consider using new forms of power supply-microgrid system for distributed power supply. The power supply mode can not only effectively solve the problem of excessive line loss in the large power grid, but also can increase the reliability of the power supply, and is economical and environmental friendly. With the increasing of DC loads, in order to improve the utilization efficiency, the DC microgrid power supply problems are begin to be researched and integrated with the renewable energy sources. This paper researched the development of microgrid, compared AC microgrid with DC microgrid, summarized the distribution of DC bus voltage level, the DC microgrid network form, the control mode and the main power electronics elements of DC microgrid of photovoltaic power generation system. Today, the DC microgrid system is still in the development stage without uniform voltage level standard, however, it will come into service in the future.

  17. Power consumption analysis DBD plasma ozone generator

    NASA Astrophysics Data System (ADS)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  18. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  19. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater.

    PubMed

    Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E

    2017-12-01

    Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m 2 before power generation failed, while the other reactor produced 257mW/m 2 , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preliminary design of a 100 kW turbine generator

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.; Sirocky, P. J.

    1974-01-01

    The National Science Foundation and the Lewis Research Center have engaged jointly in a Wind Energy Program which includes the design and erection of a 100 kW wind turbine generator. The machine consists primarily of a rotor turbine, transmission, shaft, alternator, and tower. The rotor, measuring 125 feet in diameter and consisting of two variable pitch blades operates at 40 rpm and generates 100 kW of electrical power at 18 mph wind velocity. The entire assembly is placed on top of a tower 100 feet above ground level.

  1. Coordinated control of wind generation and energy storage for power system frequency regulation

    NASA Astrophysics Data System (ADS)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  2. Energy Storage Applications in Power Systems with Renewable Energy Generation

    NASA Astrophysics Data System (ADS)

    Ghofrani, Mahmoud

    In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to

  3. Results of closed cycle MHD power generation test with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.

  4. No mixing of granulocytes and other lymphocytes in the inflamed joints of parabiosis mice with collagen-induced arthritis: possible in situ generation

    PubMed Central

    Nishizawa, Tetsuro; Kawamura, Toshihiko; Izumi, Nakao; Kawamura, Hiroki; Fujii, Katsuyuki; Abo, Toru

    2005-01-01

    Collagen-induced arthritis was evoked by an injection of lipopolysaccharide and anti-type II collagen antibody in mice. In parallel with the onset of arthritis, granulocytes with large light scatter and a Mac-1+ Gr-1+ phenotype expanded in the joints of these mice. Lymphocytes with a CD3− B220+ phenotype (i.e. B220+ B cells) were the major population among lymphocyte subsets in the joints, irrespective of disease. To determine the origin of these leucocyte populations in the joints and other organs, parabiotic experiments using CBF1Ly5.1 and CBF1Ly5.2 mice were conducted in mice with and without collagen-induced arthritis. As expected, leucocyte populations in the liver and spleen became a half-and-half mixture of their own cells and partner cells (e.g. ∼45% of Ly5.1+ cells in Ly5.2+ partner mice). However, such a mixture was extremely delayed in the joints and bone marrow, even in mice with arthritis. These results suggest that, because circulatory blood is not exchanged in the joints, granulocytes and other lymphocytes are generated in situ in the inflamed joints of mice with collagen-induced arthritis or are possibly supplied by the bone marrow. It is of interest that granulocytes in the joints expanded, even without a supply from another site, namely, the synovium. PMID:15606803

  5. 2000 Worldwide Joint Lessons Learned Conference. Forging a Future Joint Lessons Learned System. (Joint Center for Lessons Learned Special Bulletin. Volume 3, Special Issue 1, January 2001)

    DTIC Science & Technology

    2001-01-01

    Management System (JTIMS) followed, and generated spirited discussion regarding the respective roles of JTIMS and the JLLP. The discussion concluded...waiting for the Director, Joint Staff�s signature and should be in official distribution by January 2001. An update on the Joint Training Information

  6. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2017-01-03

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  7. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2015-06-09

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  8. Nanodevices for generating power from molecules and batteryless sensing

    DOEpatents

    Wang, Yinmin; Wang, Xianying; Hamza, Alex V.

    2014-07-15

    A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are dipole containing organic species in a molecule interaction zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or randomly-aligned on a substrate. Epoxy or other nonconductive polymers are used to seal portions of the nanowires or nanotubes to create molecule noninteraction zones. By correlating certain molecule species to voltages generated, a nanosensor may quickly identify which species is detected. Nanoconverters in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries. In some cases breath, from human or other life forms, contain sufficient molecules to power a nanoconverter. A membrane permeable to certain molecules around the molecule interaction zone increases specific molecule nanosensor selectivity response.

  9. Electrodynamic Tether Propulsion and Power Generation at Jupiter

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.

    1998-01-01

    The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.

  10. Power generation by thermally assisted electroluminescence: like optical cooling, but different

    NASA Astrophysics Data System (ADS)

    Buckner, Benjamin D.; Heeg, Bauke

    2008-02-01

    Thermally assisted electro-luminescence may provide a means to convert heat into electricity. In this process, radiation from a hot light-emitting diode (LED) is converted to electricity by a photovoltaic (PV) cell, which is termed thermophotonics. Novel analytical solutions to the equations governing such a system show that this system combines physical characteristics of thermophotovoltaics (TPV) and the inverse process of laser cooling. The flexibility of having both adjustable bias and load parameters may allow an optimized power generation system based on this concept to exceed the power throughput and efficiency of TPV systems. Such devices could function as efficient solar thermal, waste heat, and fuel-based generators.

  11. Next generation information communication infrastructure and case studies for future power systems

    NASA Astrophysics Data System (ADS)

    Qiu, Bin

    As power industry enters the new century, powerful driving forces, uncertainties and new functions are compelling electric utilities to make dramatic changes in their information communication infrastructure. Expanding network services such as real time measurement and monitoring are also driving the need for more bandwidth in the communication network. These needs will grow further as new remote real-time protection and control applications become more feasible and pervasive. This dissertation addresses two main issues for the future power system information infrastructure: communication network infrastructure and associated power system applications. Optical networks no doubt will become the predominant data transmission media for next generation power system communication. The rapid development of fiber optic network technology poses new challenges in the areas of topology design, network management and real time applications. Based on advanced fiber optic technologies, an all-fiber network is investigated and proposed. The study will cover the system architecture and data exchange protocol aspects. High bandwidth, robust optical networks could provide great opportunities to the power system for better service and efficient operation. In the dissertation, different applications are investigated. One of the typical applications is the SCADA information accessing system. An Internet-based application for the substation automation system will be presented. VLSI (Very Large Scale Integration) technology is also used for one-line diagrams auto-generation. High transition rate and low latency optical network is especially suitable for power system real time control. In the dissertation, a new local area network based Load Shedding Controller (LSC) for isolated power system will be presented. By using PMU (Phasor Measurement Unit) and fiber optic network, an AGE (Area Generation Error) based accurate wide area load shedding scheme will also be proposed. The objective

  12. Mid and long-term optimize scheduling of cascade hydro-power stations based on modified GA-POA method

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Yang, Xiong

    2018-06-01

    In this paper, to explore the efficiency and rationality of the cascade combined generation, a cascade combined optimal model with the maximum generating capacity is established, and solving the model by the modified GA-POA method. It provides a useful reference for the joint development of cascade hydro-power stations in large river basins. The typical annual runoff data are selected to calculate the difference between the calculated results under different representative years. The results show that the cascade operation of cascaded hydro-power stations can significantly increase the overall power generation of cascade and ease the flood risk caused by concentration of flood season.

  13. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  14. Optimization of Industrial Ozone Generation with Pulsed Power

    NASA Astrophysics Data System (ADS)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  15. Self-cooling mono-container fuel cell generators and power plants using an array of such generators

    DOEpatents

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.

    1998-05-12

    A mono-container fuel cell generator contains a layer of interior insulation, a layer of exterior insulation and a single housing between the insulation layers, where fuel cells, containing electrodes and electrolyte, are surrounded by the interior insulation in the interior of the generator, and the generator is capable of operating at temperatures over about 650 C, where the combination of interior and exterior insulation layers have the ability to control the temperature in the housing below the degradation temperature of the housing material. The housing can also contain integral cooling ducts, and a plurality of these generators can be positioned next to each other to provide a power block array with interior cooling. 7 figs.

  16. Evaluation of joint effusion in rabbits by color Doppler, power Doppler, and contrast-enhanced power Doppler ultrasonography.

    PubMed

    Lim, Gye-Yeon; Im, Soo Ah; Jung, Won Sang; Lee, Jae Mun; Lee, Ah Won

    2005-09-01

    The aim of this prospective study was to evaluate the diagnostic value of power Doppler ultrasonography (PDUS) and contrast-enhanced PDUS (CEPDUS) in the depiction and characterization of experimentally induced arthritis in the rabbit. Thirty rabbits were divided into three groups consisting of one control group (saline injection group) and two experimental groups: a suppurative arthritis group and a chemically induced synovitis group. The same amount (1 ml) of each agent was directly injected into the right hip joint. Serial color Doppler ultrasound (CDUS), PDUS, and CEPDUS images were obtained before and after injection. We observed that all of the infected knees in the suppurative arthritis group with Staphylococcus aureus demonstrated an increased signal on PDUS after inoculation. A minimal power Doppler signal was presented in the chemically induced synovitis group with talc injection, but none of the control knees demonstrated any increased signals. CEPDUS was the most sensitive imaging modality for evaluating the increase of blood flows in suppurative arthritis and was subsequently followed by PDUS and CDUS. The increased signals obtained with PDUS represent increased local blood flows; therefore, this technique can be used for evaluating the degree of inflammation. Furthermore, using the contrast agent enhances the sensitivity of PDUS, and it can even be useful for differentiating borderline cases. Copyright 2005 Wiley Periodicals, Inc

  17. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  18. Design and Development of Micro-Power Generating Device for Biomedical Applications of Lab-on-a-Disc

    PubMed Central

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman; Thio, Tzer Hwai Gilbert; Al-Faqheri, Wisam; Madou, Marc

    2015-01-01

    The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc’s rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film’s vibration during the disc’s rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62°C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms. PMID:26422249

  19. Structural integrity of power generating speed bumps made of concrete foam composite

    NASA Astrophysics Data System (ADS)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2018-02-01

    In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.

  20. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Englebretson, Steven; Ouyang, Wen; Tschida, Colin

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability ofmore » the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.« less