[Implant with a mobile or a fixed bearing in unicompartmental knee joint replacemen].
Matziolis, G; Tohtz, S; Gengenbach, B; Perka, C
2007-12-01
Although the goal of anatomical and functional joint reconstruction in unicompartmental knee replacement is well defined, no uniform implant design has become established. In particular, the differential indications for implantation of an implant with a mobile or a fixed bearing are still not clear. The long-term results of mobile and with fixed bearings are comparable, but there are significant differences in resulting knee joint kinematics, tribological properties and implant-associated complications. In unicompartmental knee replacement mobile bearings restore the physiological joint kinematics better than fixed implants, although the differences to total knee arthroplasty seem minor. The decoupling of mobile bearings from the tibia implant allows a high level of congruence with the femoral implant, resulting in larger contact areas than with fixed bearings. This fact in combination with the more physiological joint kinematics leads to less wear and a lower incidence of osteolyses with mobile bearings. Disadvantages of mobile bearings are the higher complication and early revision rates resulting from bearing dislocation and impingement syndromes caused by suboptimal implantation technique or instability. Especially in cases with ligamentous pathology fixed bearings involve a lower complication rate. It seems their use can also be beneficial in patients with a low level of activity, as problems related to wear are of minor importance for this subgroup. The data currently available allow differentiations between various indications for implants with mobile or fixed bearings, so that the implants can be matched to the patient and the joint pathology in unicompartmental knee joint replacement.
Yamamoto, Michiro; Malay, Sunitha; Fujihara, Yuki; Zhong, Lin; Chung, Kevin C.
2016-01-01
Background Outcomes after implant arthroplasty for primary degenerative and posttraumatic osteoarthritis (OA) of proximal interphalangeal (PIP) joint were different according to the implant design and surgical approach. The purpose of this systematic review was to evaluate outcomes of various types of implant arthroplasty for PIP joint OA with emphasis on different surgical approaches. Methods The authors searched all available literature in the PubMed and EMBASE databases for articles reporting on outcomes of implant arthroplasty for PIP joint OA. Data collection included active arc of motion (AOM), extension lag, and complications. We combined the data of various types of surface replacement arthroplasty into one group to compare with silicone arthroplasty. Results A total of 849 articles were screened, yielding 40 studies for final review. The mean postoperative AOM and the mean gain in AOM of silicone implant with volar approach were 58° and 17° respectively which was greater than surface replacement implant with dorsal approach as 51° and 8°, respectively. The mean postoperative extension lag of silicone implant with volar approach and surface replacement with dorsal approach was 5° and 14° respectively. The revision rate of silicone implant with volar approach and surface replacement with dorsal approach was 6% and 18% at the mean follow-up period of 41.2 and 51 months, respectively. Conclusions Silicone implant with volar approach showed the best AOM with less extension lag and fewer complications after surgery among all the implant designs and surgical approaches. PMID:28445369
Yamamoto, Michiro; Malay, Sunitha; Fujihara, Yuki; Zhong, Lin; Chung, Kevin C
2017-05-01
Outcomes after implant arthroplasty for primary degenerative and posttraumatic osteoarthritis of the proximal interphalangeal joint were different according to the implant design and surgical approach. The purpose of this systematic review was to evaluate outcomes of various types of implant arthroplasty for proximal interphalangeal joint osteoarthritis, with an emphasis on different surgical approaches. The authors searched all available literature in the PubMed and EMBASE databases for articles reporting on outcomes of implant arthroplasty for proximal interphalangeal joint osteoarthritis. Data collection included active arc of motion, extension lag, and complications. The authors combined the data of various types of surface replacement arthroplasty into one group for comparison with silicone arthroplasty. A total of 849 articles were screened, yielding 40 studies for final review. The mean postoperative arc of motion and the mean gain in arc of motion of silicone implant with the volar approach were 58 and 17 degrees, respectively, which was greater than surface replacement implant with the dorsal approach at 51 and 8 degrees, respectively. The mean postoperative extension lag of silicone implant with the volar approach and surface replacement with the dorsal approach was 5 and 14 degrees, respectively. The revision rate of silicone implant with the volar approach and surface replacement with the dorsal approach was 6 percent and 18 percent at a mean follow-up of 41.2 and 51 months, respectively. Silicone implant with the volar approach showed the best arc of motion, with less extension lag and fewer complications after surgery among all the implant designs and surgical approaches.
Effect of total shoulder replacements on airport security screening in the post-9/11 era.
Dines, Joshua S; Elkousy, Hussein; Edwards, T Bradley; Gartsman, Gary M; Dines, David M
2007-01-01
There are few reports in the literature on the effect of orthopaedic implants on airport security devices and none on shoulder arthroplasty implants after September 11, 2001. Since 9/11, airport security screening devices have become more sensitive in response to the increasing threat of terrorism. Often, patients with joint implants activate the metal detectors and are subsequently subjected to more intensive screening. We assess the effects of shoulder joint implants on different airport security devices and what effect the results had on passenger travel. In this study, 154 patients who had previously undergone shoulder replacement responded to a questionnaire regarding their travel experiences after 9/11. Of these, 85 had flown during the time period studied (47 men and 38 women; mean age, 67.8 years); 79 had traveled domestically (mean, 7 flights), and 22 had taken international flights (mean, 6.1 flights). The questionnaire addressed each patient's height/weight, the number of flight segments flown (domestic and international), the number of times that a patient activated the doorway alarm/wand alarm, and the effect of a card stating that the patient had joint replacement (when applicable). On average, patients with shoulder replacement traveling domestically activated the security gate 52% of the time. The average for international travel was 42%. Of the patients who flew both domestically and internationally, there was a high correlation of activation (R = 0.54). Twenty-six patients had multiple joint implants (mean, 2.8). Multiple joint implants caused increased alarm activation (P < .001). All patients reported that their travel was delayed during the instances of security activation. There was no statistically significant effect of body mass index, height, weight, age, or sex on security device activation. Of the patients, 71% were told by their doctor that the shoulder replacement may activate security devices. Of these, 46 were given a card by their doctor indicating the presence of a total joint implant. In only 30% of the security encounters of these patients did the card expedite the screening process. This is the largest study on the effects of joint implants, and shoulder implants in particular, on airport security devices and the only one that has analyzed the data of post-9/11 travel. Patients traveling after total shoulder replacement are often delayed and subjected to more rigorous screening when traveling, especially in the post-9/11 environment. Doctors often warn their patients of potential problems and may try to avert this by giving them cards documenting the presence of a joint implant. The acceptance of these cards is sporadic. This study raises the importance of notifying patients of potential security delays, especially those with multiple joint implants, as they may directly affect travel plans. In addition, these patients may benefit from the establishment of an international joint registry.
Goodman, S. B.; Gibon, E.; Pajarinen, J.; Lin, T.-H.; Keeney, M.; Ren, P.-G.; Nich, C.; Yao, Z.; Egashira, K.; Yang, F.; Konttinen, Y. T.
2014-01-01
Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants. PMID:24478281
Medley, John B
2016-05-01
One of the most important mandates of physical joint simulators is to provide test results that allow the implant manufacturer to anticipate and perhaps avoid clinical wear problems with their new products. This is best done before market release. This study gives four steps to follow in conducting such wear simulator testing. Two major examples involving hip wear simulators are discussed in which attempts had been made to predict clinical wear performance prior to market release. The second one, involving the DePuy ASR implant systems, is chosen for more extensive treatment by making it an illustrative example to explore whether wear simulator testing can anticipate clinical wear problems. It is concluded that hip wear simulator testing did provide data in the academic literature that indicated some risk of clinical wear problems prior to market release of the ASR implant systems. This supports the idea that physical joint simulators have an important role in the pre-market testing of new joint replacement implants. © IMechE 2016.
[Minimally invasive approaches to hip and knee joints for total joint replacement].
Rittmeister, M; König, D P; Eysel, P; Kerschbaumer, F
2004-11-01
The manuscript features the different minimally invasive approaches to the hip for joint replacement. These include medial, anterior, anterolateral, and posterior approaches. The concept of minimally invasive hip arthroplasty makes sense if it is an integral part of a larger concept to lower postoperative morbidity. Besides minimal soft tissue trauma, this concept involves preoperative patient education, preemptive analgesia, and postoperative physiotherapy. It is our belief that minimal incision techniques for the hip are not suited for all patients and all surgeons. The different minimally invasive approaches to the knee joint for implantation of a knee arthroplasty are described and discussed. There have been no studies published yet that fulfill EBM criteria. The data so far show that minimally invasive approaches and implantation techniques for total knee replacements lead to quicker rehabilitation of patients.
Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M
2016-04-01
Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.
Birk, Stephanie; Brase, Christoph; Hornung, Joachim
2014-08-01
In the further development of alloplastic prostheses for use in middle ear surgery, the Dresden and Cologne University Hospitals, working together with a company, introduced a new partial ossicular replacement prosthesis in 2011. The ball-and-socket joint between the prosthesis and the shaft mimics the natural articulations between the malleus and incus and between the incus and stapes, allowing reaction to movements of the tympanic membrane graft, particularly during the healing process. Retrospective evaluation To reconstruct sound conduction as part of a type III tympanoplasty, partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft was implanted in 60 patients, with other standard partial ossicular replacement prosthesis implanted in 40 patients and 64 patients. Pure-tone audiometry was carried out, on average, 19 and 213 days after surgery. Results of the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft were compared with those of the standard prostheses. Early measurements showed a mean improvement of 3.3 dB in the air-bone gap (ABG) with the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft, giving similar results than the standard implants (6.6 and 6.0 dB, respectively), but the differences were not statistically significant. Later measurements showed a statistically significant improvement in the mean ABG, 11.5 dB, compared with 4.4 dB for one of the standard partial ossicular replacement prosthesis and a tendency of better results to 6.9 dB of the other standard prosthesis. In our patients, we achieved similarly good audiometric results to those already published for the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft. Intraoperative fixation posed no problems, and the postoperative complication rate was low.
Kolodziej, L; Bohatyrewicz, A; Zietek, P
2013-01-01
The aim of this retrospective study was to assess functional and radiographic results of the first metatarsophalangeal joint replacement with use of unconstrained, modular, three components, porous titanium and hydroxyapatite coated, press-fit METIS® prosthesis. According to author's knowledge, results of that type of prosthesis have never been published before. 25 prosthesis were implanted in 24 patients between February 2009 and May 2011. American Orthopaedic Foot and Ankle Society Hallux Metatarsophalangeal Interphalangeal scoring system (AOFAS-HMI) was used to assess functional results. Patients were also asked if they would undergo procedure again or recommend it to other people. Weight bearing radiographs ware made at final follow up and analyzed for presence of osteolysis and radiolucencies. In 8 patients total joint replacement was introduced as a salvage after failure of previous surgery like Keller resection arthroplasty, failed arthrodesis, avascular necrosis and postoperative arthritis. In 11 patients the reason for prosthetic replacement were hallux rigidus, in 4 cases rheumatoid arthritis and gout in one patient. In two patients additional procedures like Akin phalangeal osteotomy and in one case fifth metatarsal osteotomy, was performed. There were 20 females and 4 males in presented group. The mean age at the operation was 56 years. The average follow up period was 18 months (from 12 to 36 months). The median postoperative value of AOFAS-HMI scores was 88 points (from 75 to 95 points). First metatarsophalangeal joint motion (dorsiflexion plus plantarflexion) was classified according to AOFAS-HMI ranges as: moderately restricted (between 30 to 70 degrees) in 19 patients 80% (20 prosthesis) and severely restricted (less then 30 degrees) in 5 patients (20%). 15 (64%) patients were completely satisfied, 5 (20%) reported moderate satisfaction and (16%) 4 were totally disappointed and would not undergo this procedure again. A limited hallux dorsiflexion was the main dissatisfaction reason. Partial radiolucent line was seen in one patient (4%). Authors noticed two serious complications. In one patient, with rheumatoid arthritis, deep infection occurred 12 months after prosthesis implantation. In second case phalangeal implant was revised due to misalignment. METIS® metatarsophalangeal joint replacement allows alleviate of pain relating to hallux rigidus and partial restoration of joint movement, even in patients after failures of primary metatarsophalangeal joint surgery. AOFAS-HMI results are better than previously reported in the literature in assessment of the first metatarsophalangeal joint replacement. Radiographic results imply satisfactory bone ingrowth into the cementless implants.
Dimitroulis, George; Austin, Stephen; Sin Lee, Peter Vee; Ackland, David
2018-05-16
The aim of this study is to present the preliminary clinical data on the OMX Temporomandibular Joint (TMJ) Prosthetic total joint replacement system. A prospective, cohort, clinical study was undertaken of consecutive adult patients with Category 5 end-stage joint disease who were implanted with the OMX TMJ prosthesis between May 2015 and April 2017. A total of 50 devices were implanted in 38 patients, with 12 patients receiving bilateral prosthetic joints. There were 31 females and 7 males in this cohort, who ranged in age from 20 to 66 years, with a mean of 43.8 years (±14.0 years). Ten of the 50 prosthetic joints (20%) were fully customized, while the remaining were patient matched using virtual planning software. Based on a mean follow-up period of 15.3 months (range 12-24 months) following the TMJ total joint replacement, preliminary results suggest the OMX TMJ prosthesis has made a positive impact on clinical outcomes, with a mean 74.4% reduction in joint pain levels and significant improvements (p < 0.05) in jaw function as measured by the visual analogue scales for mouth opening (30.8%), diet (77.1%), and function (59.2%). No device failures were reported during the study period. This study suggests that the print-on-demand OMX TMJ prosthesis, designed for rapid delivery of both patient-matched and fully customize devices, represents a safe, reliable and versatile implantable joint replacement system for the treatment of category 5 end-stage TMJ disease. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, W.R.
1999-04-22
The project was a joint research effort between the U. S. Department of Energy's (DOE) Kansas City Plant (KCP) and Brandon Research, Inc. to develop ways to improve implants used for orthopedic surgery for joint replacement. The primary product produced by this study is design information, which may be used to develop implants that will improve long-term fixation and durability in the host bone environment.
Atrey, A; Heylen, S; Gosling, O; Porteous, M J L; Haddad, F S
2016-07-01
Joint replacement of the hip and knee remain very satisfactory operations. They are, however, expensive. The actual manufacturing of the implant represents only 30% of the final cost, while sales and marketing represent 40%. Recently, the patents on many well established and successful implants have expired. Companies have started producing and distributing implants that purport to replicate existing implants with good long-term results. The aims of this paper are to assess the legality, the monitoring and cost saving implications of such generic implants. We also assess how this might affect the traditional orthopaedic implant companies. Cite this article: Bone Joint J 2016;98-B:892-900. ©2016 The British Editorial Society of Bone & Joint Surgery.
[Juvenile rheumatoid diseases: Endoprosthetic care of destroyed hip joints].
Rehart, S; Henniger, M
2015-07-01
Patients with juvenile idiopathic arthritis (JIA) often suffer from involvement of the hip joints, with joint destruction and related functional limitations, making hip replacement necessary. To discover what special features are to be expected in patients with JIA and hip arthroplasty and what impact they have on surgical indication, choice of implant, and technique. Selective literature review and evaluation of our patient population. Compared with osteoarthritis patients, JIA patients are on average much younger at the time of hip replacement. Owing to the onset of the disease in childhood or adolescence and the frequent glucocorticoid therapy, growth disorders or abnormal anatomical findings are common in these patients. Bone density is often reduced at an early age. The perioperative management of medication has to be planned. Special implants for patients with rheumatic diseases do not exist, but the above peculiarities of this group of patients should be considered for surgical procedure and choice of implant and material. Overall, the results of hip arthroplasty in juvenile rheumatic diseases, in terms of pain relief and functional improvement, are good. The limited life of the arthroplasty is problematic. By relieving pain, improvement of the range of motion and activity level very high patient satisfaction is usually achieved by hip arthroplasty in JIA patients. In the case of involvement of the contralateral hip or the ipsilateral knee joint it may be useful to perform a simultaneous, single-stage joint replacement of both joints.
Ackland, David; Robinson, Dale; Lee, Peter Vee Sin; Dimitroulis, George
2018-05-11
Stock prosthetic temporomandibular joint replacements come in limited sizes, and do not always encompass the joint anatomy that presents clinically. The aims of this study were twofold. Firstly, to design a personalized prosthetic total joint replacement for the treatment of a patient's end-stage temporomandibular joint osteoarthritis, to implant the prosthesis into the patient, and assess clinical outcome 12-months post-operatively; and secondly, to evaluate the influence of changes in prosthetic condyle geometry on implant load response during mastication. A 48-year-old female patient with Grade-5 osteoarthritis to the left temporomandibular joint was recruited, and a prosthesis developed to match the native temporomandibular joint anatomy. The prosthesis was 3D printed, sterilized and implanted into the patient, and pain and function measured 12-months post-operatively. The prosthesis load response during a chewing-bite and maximum-force bite was evaluated using a personalized multi-body musculoskeletal model. Simulations were performed after perturbing condyle thickness, neck length and head sphericity. Increases in prosthetic condyle neck length malaligned the mandible and perturbed temporomandibular joint force. Changes in condylar component thickness greatly influenced fixation screw stress response, while a more eccentric condylar head increased prosthetic joint-contact loading. Post-operatively, the prosthetic temporomandibular joint surgery reduced patient pain from 7/10 to 1/10 on a visual analog scale, and increased intercisal opening distance from 22 mm to 38 mm. This study demonstrates effectiveness of a personalized prosthesis that may ultimately be adapted to treat a wide-range of end-stage temporomandibular joint conditions, and highlights sensitivity of prosthesis load response to changes in condylar geometry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A
2011-04-01
Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Gibon, Emmanuel; Córdova, Luis A.; Lu, Laura; Lin, Tzu-Hua; Yao, Zhenyu; Hamadouche, Moussa; Goodman, Stuart B.
2017-01-01
Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. PMID:27080740
Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.
Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld
2005-03-01
Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.
Critical bending moment of four implant-abutment interface designs.
Lee, Frank K; Tan, Keson B; Nicholls, Jack I
2010-01-01
Critical bending moment (CBM), defined as the bending moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured for four different implants and their single-tooth replacement abutments. CBM at the implant-abutment screw joint for four implant-abutment test groups was measured in vitro at 80%, 100%, and 120% of the manufacturers' recommended torque levels. Regular-platform implants with their corresponding single-tooth abutments were used. Microstrain was measured while known loads were applied to the abutment at known distances from the implant-abutment interface. Strain instrumentation was used to record the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated five times for the five samples in each group. For the Branemark/CeraOne assemblies, the mean CBMs were 72.14 Ncm, 102.21 Ncm, and 119.13 Ncm, respectively, at 80%, 100%, and 120% of the manufacturer's recommended torque. For the Replace/Easy assemblies, mean CBMs were 86.20 Ncm, 109.92 Ncm, and 120.93 Ncm; for the Biomet 3i/STA assemblies, they were 67.97 Ncm, 83.14 Ncm, and 91.81 Ncm; and for the Lifecore/COC assemblies, they were 58.32 Ncm, 76.79 Ncm, and 78.93 Ncm. Two-way analysis of variance revealed significant effects for the test groups and torque levels. Subsequent tests confirmed that significant differences existed between test groups and torque levels. The results appear to confirm the primary role of the compressive preload imparted by the abutment screw in maintaining screw joint integrity. CBM was found to differ among implant systems and torque levels. Torque levels recommended by the manufacturer should be followed to ensure screw joint integrity.
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...
Development and application of biomimetic electrospun nanofibers in total joint replacement
NASA Astrophysics Data System (ADS)
Song, Wei
Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on joint replacement prosthesis to improve osseointegration and prevent osteomyelitis.
21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...
21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace part...
21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer non-constrained... Shoulder joint metal/polymer non-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer non-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...
Patient and implant survival following joint replacement because of metastatic bone disease
2013-01-01
Background Patients suffering from a pathological fracture or painful bony lesion because of metastatic bone disease often benefit from a total joint replacement. However, these are large operations in patients who are often weak. We examined the patient survival and complication rates after total joint replacement as the treatment for bone metastasis or hematological diseases of the extremities. Patients and methods 130 patients (mean age 64 (30–85) years, 76 females) received 140 joint replacements due to skeletal metastases (n = 114) or hematological disease (n = 16) during the period 2003–2008. 21 replaced joints were located in the upper extremities and 119 in the lower extremities. Clinical and survival data were extracted from patient files and various registers. Results The probability of patient survival was 51% (95% CI: 42–59) after 6 months, 39% (CI: 31–48) after 12 months, and 29% (CI: 21–37) after 24 months. The following surgical complications were seen (8 of which led to additional surgery): 2–5 hip dislocations (n = 8), deep infection (n = 3), peroneal palsy (n = 2), a shoulder prosthesis penetrating the skin (n = 1), and disassembly of an elbow prosthesis (n = 1). The probability of avoiding all kinds of surgery related to the implanted prosthesis was 94% (CI: 89–99) after 1 year and 92% (CI: 85–98) after 2 years. Conclusion Joint replacement operations because of metastatic bone disease do not appear to have given a poorer rate of patient survival than other types of surgical treatment, and the reoperation rate was low. PMID:23530874
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint (hemi-hip) acetabular metal cemented... (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular metal cemented prosthesis is a device intended to be implanted to replace a portion of the hip joint...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/composite semi-constrained cemented prosthesis is a two-part device intended to be implanted to replace a...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...
21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...
Wear analysis and finishing of bioceramic implant surfaces.
Denkena, Berend; Reichstein, Martin; van der Meer, Marijke; Ostermeier, Sven; Hurschler, Christof
2008-01-01
A primary cause for revision operations of joint replacements is the implant loosening, due to immune reactions resulting from the agglomeration of polyethylene wear debris. Motivated by the successful application of bioceramic materials in hip joint prostheses, a trend towards the development of hard implant materials has occurred. Nonetheless in the area of total knee arthroplasty (TKA), modern efforts have still utilized polyethylene as the tibial-inlay joint component. The use of bioceramic hard-hard-pairings for total knee arthroplasty has been prevented by the complex kinematics and geometries required. Ceramics cannot cope with non-uniform loads, which suggests the need for new designs appropriate to the material. Furthermore, biomechanical requirements should be considered. A rolling-gliding wear simulator, which reproduces the movements and stresses of the knee joint on specimens of simplified geometry, has therefore been developed. High-precision machining processes for free formed bioceramic surfaces, with suitable grinding and polishing tools which adjust to constantly changing contact conditions, are essential. The goal is to put automated finishing in one clamping with five simultaneous controlled axes into practice. The developed manufacturing technologies will allow the advantageous bioceramic materials to be applied and accepted for more complex joint replacements such as knee prostheses.
Three-dimensional human femoral strain analysis using ESPI
NASA Astrophysics Data System (ADS)
Tyrer, J. R.; Heras-Palou, C.; Slater, T.
With age, disease or injury the joints in the human body can wear out or bones may even fail catastrophically. In many cases it is possible to replace joints and bones with artificial components (prostheses). However, prosthetic joints can have a very limited life (often less than 10 years) and require replacement or 'revision'. In order to optimise prosthetic life, it is necessary to improve the design of components and implantation techniques, which is clearly also beneficial to both patients and hospitals.
Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review
Toh, Wei Quan; Liu, Erjia; Tor, Shu Beng
2017-01-01
Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants. PMID:29278375
Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review.
Toh, Wei Quan; Tan, Xipeng; Bhowmik, Ayan; Liu, Erjia; Tor, Shu Beng
2017-12-26
Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants.
Do modern total knee replacements offer better value for money? A health economic analysis.
Hamilton, David F; Clement, Nicholas D; Burnett, Richard; Patton, James T; Moran, Mathew; Howie, Colin R; Simpson, A H R W; Gaston, Paul
2013-11-01
Cost effectiveness is an increasingly important factor in today's healthcare environment, and selection of arthroplasty implant is not exempt from such concerns. Quality adjusted life years (QALYs) are the typical tool for this type of evaluation. Using this methodology, joint arthroplasty has been shown to be cost effective; however, studies directly comparing differing prostheses are lacking. Data was gathered in a single-centre prospective double-blind randomised controlled trial comparing the outcome of modern and traditional knee implants, using the Short Form 6 dimensional (SF-6D) score and quality adjusted life year (QALY) methodology. There was significant improvement in the SF-6D score for both groups at one year (p < 0.0001). The calculated overall life expectancy for the study cohort was 15.1 years, resulting in an overall QALY gain of 2.144 (95% CI 1.752-2.507). The modern implant group demonstrated a small improvement in SF-6D score compared to the traditional design at one year (0.141 versus 0.143, p = 0.94). This difference resulted in the modern implant costing £298 less per QALY at one year. This study demonstrates that modern implant technology does not influence the cost-effectiveness of TKA using the SF-6D and QALY methodology. This type of analysis however assesses health status, and is not sensitive to joint specific function. Evolutionary design changes in implant technology are thus unlikely to influence QALY analysis following joint replacement, which has important implications for implant procurement.
Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George
2017-05-01
Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage during placement. The framework presented may be useful for designing and testing customized devices for the treatment of debilitating bone and joint conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gibon, Emmanuel; Córdova, Luis A; Lu, Laura; Lin, Tzu-Hua; Yao, Zhenyu; Hamadouche, Moussa; Goodman, Stuart B
2017-08-01
Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1685-1691, 2017. © 2016 Wiley Periodicals, Inc.
Superelastic Orthopedic Implant Coatings
NASA Astrophysics Data System (ADS)
Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew
2014-07-01
The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.
The Need for an Implant Identification Card at Airport Security Check
Kosuge, Dennis; MacDowell, Andrew
2017-01-01
Background Joint replacement surgery is having an increasing demand as national healthcare systems confront an ever ageing population. Surgical complications associated with lower limb arthroplasty are well known but less investigation has been performed examining its effect on air travel, more specifically, unwanted and significant inconvenience caused to travelers going through airport security. Methods In lower limb arthroplasty clinics, 50 patients who met our selection criteria were given questionnaires. Ten airport security officers from 4 international airports (London Stansted, London Gatwick, London Heathrow, and Amsterdam Schiphol International Airport) were also given a separate questionnaire. The opinion of the Civil Aviation Authority was also sought. Results All 50 patients (mean age, 70.4 years; range, 55 to 84 years) who were presenting in lower limb arthroplasty clinics and who met our selection criteria volunteered to enter the study. Twenty-eight of these patients were female (mean age, 69.1 years; range, 55 to 84 years) and 22 were male (mean age, 71.2 years; range, 58 to 81 years). Of the patients, 14% stated that their joint replacements did not set off the airport security alarm. Responses were received from 10 airport security officers as well. Six airport security officers were male and 4 were female. All of the airport officers were aware of some form of implant identification card with 90% stating that these were useful to them at airport security. Eight-four percent of the patients stated that an implant identification card outlining what joint replacement they possessed and when this had been done would be very useful. Sixteen percent of the patients did not think a card would be beneficial since all of them had set off the airport alarm system only once or less in their lifetime. Conclusions It is the opinion of airport security officers and patients that joint replacement implant identification cards streamline airport security checks and decrease the need for more invasive searches at airport security. PMID:28567216
The Need for an Implant Identification Card at Airport Security Check.
Ali, Erden; Kosuge, Dennis; MacDowell, Andrew
2017-06-01
Joint replacement surgery is having an increasing demand as national healthcare systems confront an ever ageing population. Surgical complications associated with lower limb arthroplasty are well known but less investigation has been performed examining its effect on air travel, more specifically, unwanted and significant inconvenience caused to travelers going through airport security. In lower limb arthroplasty clinics, 50 patients who met our selection criteria were given questionnaires. Ten airport security officers from 4 international airports (London Stansted, London Gatwick, London Heathrow, and Amsterdam Schiphol International Airport) were also given a separate questionnaire. The opinion of the Civil Aviation Authority was also sought. All 50 patients (mean age, 70.4 years; range, 55 to 84 years) who were presenting in lower limb arthroplasty clinics and who met our selection criteria volunteered to enter the study. Twenty-eight of these patients were female (mean age, 69.1 years; range, 55 to 84 years) and 22 were male (mean age, 71.2 years; range, 58 to 81 years). Of the patients, 14% stated that their joint replacements did not set off the airport security alarm. Responses were received from 10 airport security officers as well. Six airport security officers were male and 4 were female. All of the airport officers were aware of some form of implant identification card with 90% stating that these were useful to them at airport security. Eight-four percent of the patients stated that an implant identification card outlining what joint replacement they possessed and when this had been done would be very useful. Sixteen percent of the patients did not think a card would be beneficial since all of them had set off the airport alarm system only once or less in their lifetime. It is the opinion of airport security officers and patients that joint replacement implant identification cards streamline airport security checks and decrease the need for more invasive searches at airport security.
Goreham-Voss, Curtis M.; Hyde, Philip J.; Hall, Richard M.; Fisher, John; Brown, Thomas D.
2010-01-01
Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely-utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses. PMID:20399432
[Endoprostheses in geriatric traumatology].
Buecking, B; Eschbach, D; Bliemel, C; Knobe, M; Aigner, R; Ruchholtz, S
2017-01-01
Geriatric traumatology is increasing in importance due to the demographic transition. In cases of fractures close to large joints it is questionable whether primary joint replacement is advantageous compared to joint-preserving internal fixation. The aim of this study was to describe the importance of prosthetic joint replacement in the treatment of geriatric patients suffering from frequent periarticular fractures in comparison to osteosynthetic joint reconstruction and conservative methods. A selective search of the literature was carried out to identify studies and recommendations concerned with primary arthroplasty of fractures in the region of the various joints (hip, shoulder, elbow and knee). The importance of primary arthroplasty in geriatric traumatology differs greatly between the various joints. Implantation of a prosthesis has now become the gold standard for displaced fractures of the femoral neck. In addition, reverse shoulder arthroplasty has become an established alternative option to osteosynthesis in the treatment of complex proximal humeral fractures. Due to a lack of large studies definitive recommendations cannot yet be given for fractures around the elbow and the knee. Nowadays, joint replacement for these fractures is recommended only if reconstruction of the joint surface is not possible. The importance of primary joint replacement for geriatric fractures will probably increase in the future. Further studies with larger patient numbers must be conducted to achieve more confidence in decision making between joint replacement and internal fixation especially for shoulder, elbow and knee joints.
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Miyajima, Hiroyuki; Ozer, Fusun; Imazato, Satoshi; Mante, Francis K
2017-09-01
Artificial hip joints are generally expected to fail due to wear after approximately 15years and then have to be replaced by revision surgery. If articular cartilage can be integrated onto the articular surfaces of artificial joints in the same way as osseo-integration of titanium dental implants, the wear of joint implants may be reduced or prevented. However, very few studies have focused on the relationship between Ti surface and cartilage. To explore the possibility of cartilaginous-integration, we fabricated chemically treated Ti surfaces with H 2 O 2 /HCl, collagen type II and SBF, respectively. Then, we evaluated surface characteristics of the prepared Ti samples and assessed the cartilage formation by culturing chondrocytes on the Ti samples. When oxidized Ti was immersed in SBF for 7days, apatite was formed on the Ti surface. The surface characteristics of Ti indicated that the wettability was increased by all chemical treatments compared to untreated Ti, and that H 2 O 2 /HCl treated surface had significantly higher roughness compared to the other three groups. Chondrocytes produced significantly more cartilage matrix on all chemically treated Ti surfaces compared to untreated Ti. Thus, to realize cartilaginous-integration and to prevent wear of the implants in joints, application of bioactive Ti formed by chemical treatment would be a promising and effective strategy to improve durability of joint replacement. Copyright © 2017 Elsevier B.V. All rights reserved.
Cemented total knee replacement in 24 dogs: surgical technique, clinical results, and complications.
Allen, Matthew J; Leone, Kendall A; Lamonte, Kimberly; Townsend, Katy L; Mann, Kenneth A
2009-07-01
To characterize the performance of cemented total knee replacement (TKR) in dogs. Preclinical research study. Skeletally mature, male Hounds (25-30 kg; n=24) with no preexisting joint pathology. Dogs had unilateral cemented TKR and were evaluated at 6, 12, 26, or 52 weeks (6 dogs/time point) by radiography, bone density analysis, visual gait assessment, and direct measurement of thigh circumference and stifle joint range of motion as indicators of functional recovery. At study end, the stability of the cemented tibial component was determined by destructive mechanical testing. Joint stability was excellent in 16 dogs (67%) and good in 8 dogs. None of the tibial components had evidence of migration or periprosthetic osteolysis whereas 1 femoral component was loose at 52 weeks. There was an early and significant decrease in tibial bone density, likely because of disuse of the operated limb. Dogs returned to full activity by 12 weeks. The tibial cement-bone interface maintained its strength over 52 weeks. Cement provides stable fixation of the tibial component in canine TKR. Cemented TKR yields adequate clinical function and stifle joint excursion in the dog. Clinical studies are needed to determine the long-term fate of cemented TKR implants, to assess the influence of implant design on implant fixation and wear, and to obtain objective functional data.
Artificial atlanto-odontoid joint replacement through a transoral approach.
Lu, Bin; He, Xi Jing; Zhao, Chen Guang; Li, Hao Peng; Wang, Dong
2009-01-01
Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1-C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P B 0.021) and NZ (P B 0.002) and a significantly increased stiffness (P \\ 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P C 0.719), NZ (P C 0.580), and stiffness (P C 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and tear after the fatigue test. This artificial atlanto-odontoid joint may be useful in cases of odontoid resection due to malunion or nonunion of odontoid fracture, atraumatic odontoid fracture, irreducible atlas dislocation, posterior atlantoaxial subluxation, or congenital skull base abnormalities.
Artificial atlanto-odontoid joint replacement through a transoral approach
Lu, Bin; Zhao, Chen Guang; Li, Hao Peng; Wang, Dong
2008-01-01
Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1–C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P ≤ 0.021) and NZ (P ≤ 0.002) and a significantly increased stiffness (P < 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P ≥ 0.719), NZ (P ≥ 0.580), and stiffness (P ≥ 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and tear after the fatigue test. This artificial atlanto-odontoid joint may be useful in cases of odontoid resection due to malunion or nonunion of odontoid fracture, atraumatic odontoid fracture, irreducible atlas dislocation, posterior atlantoaxial subluxation, or congenital skull base abnormalities. PMID:19043745
Recent Patents and Designs on Hip Replacement Prostheses
Derar, H; Shahinpoor, M
2015-01-01
Hip replacement surgery has gone through tremendous evolution since the first procedure in 1840. In the past five decades the advances that have been made in technology, advanced and smart materials innovations, surgical techniques, robotic surgery and methods of fixations and sterilization, facilitated hip implants that undergo multiple design revolutions seeking the least problematic implants and a longer survivorship. Hip surgery has become a solution for many in need of hip joint remedy and replacement across the globe. Nevertheless, there are still long-term problems that are essential to search and resolve to find the optimum implant. This paper reviews several recent patents on hip replacement surgery. The patents present various designs of prostheses, different materials as well as methods of fixation. Each of the patents presents a new design as a solution to different issues ranging from the longevity of the hip prostheses to discomfort and inconvenience experienced by patients in the long-term. PMID:25893020
Blömer, Wilhelm; Steinbrück, Arnd; Schröder, Christian; Grothaus, Franz-Josef; Melsheimer, Oliver; Mannel, Henrich; Forkel, Gerhard; Eilers, Thomas; Liebs, Thoralf R; Hassenpflug, Joachim; Jansson, Volkmar
2015-07-01
Every joint registry aims to improve patient care by identifying implants that have an inferior performance. For this reason, each registry records the implant name that has been used in the individual patient. In most registries, a paper-based approach has been utilized for this purpose. However, in addition to being time-consuming, this approach does not account for the fact that failure patterns are not necessarily implant specific but can be associated with design features that are used in a number of implants. Therefore, we aimed to develop and evaluate an implant product library that allows both time saving barcode scanning on site in the hospital for the registration of the implant components and a detailed description of implant specifications. A task force consisting of representatives of the German Arthroplasty Registry, industry, and computer specialists agreed on a solution that allows barcode scanning of implant components and that also uses a detailed standardized classification describing arthroplasty components. The manufacturers classified all their components that are sold in Germany according to this classification. The implant database was analyzed regarding the completeness of components by algorithms and real-time data. The implant library could be set up successfully. At this point, the implant database includes more than 38,000 items, of which all were classified by the manufacturers according to the predefined scheme. Using patient data from the German Arthroplasty Registry, several errors in the database were detected, all of which were corrected by the respective implant manufacturers. The implant library that was developed for the German Arthroplasty Registry allows not only on-site barcode scanning for the registration of the implant components but also its classification tree allows a sophisticated analysis regarding implant characteristics, regardless of brand or manufacturer. The database is maintained by the implant manufacturers, thereby allowing registries to focus their resources on other areas of research. The database might represent a possible global model, which might encourage harmonization between joint replacement registries enabling comparisons between joint replacement registries.
Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings
Zhang, Bill G. X.; Myers, Damian E.; Wallace, Gordon G.; Brandt, Milan; Choong, Peter F. M.
2014-01-01
Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants. PMID:25000263
The role of hinges in primary total knee replacement.
Gehrke, T; Kendoff, D; Haasper, C
2014-11-01
The use of hinged implants in primary total knee replacement (TKR) should be restricted to selected indications and mainly for elderly patients. Potential indications for a rotating hinge or pure hinge implant in primary TKR include: collateral ligament insufficiency, severe varus or valgus deformity (>20°) with necessary relevant soft-tissue release, relevant bone loss including insertions of collateral ligaments, gross flexion-extension gap imbalance, ankylosis, or hyperlaxity. Although data reported in the literature are inconsistent, clinical results depend on implant design, proper technical use, and adequate indications. We present our experience with a specific implant type that we have used for over 30 years and which has given our elderly patients good mid-term results. Because revision of implants with long cemented stems can be very challenging, an effort should be made in the future to use shorter stems in modular versions of hinged implants. ©2014 The British Editorial Society of Bone & Joint Surgery.
Thomas, P; Schuh, A; Ring, J; Thomsen, M
2008-03-01
Materials used in osteosynthesis or artificial joint replacement are usually well tolerated. Complaints after such operations are mostly related to infection or mechanical problems but may also be caused by allergic reactions. The latter encompass skin changes, e.g., eczema, delayed wound/bone healing, recurrent effusion, pain, or implant loosening. In contrast to the high incidence of cutaneous metal contact allergy, allergies associated with implants are a rare condition. However, epidemiological data on the incidence of implant-related allergic reactions are still missing. Typical elicitors are nickel, chromium, cobalt, and constituents of bone cement (acrylates und additives such as gentamicin or benzoyl peroxide). After exclusion of the most common differential diagnoses, allergy diagnostic procedures are primarily based on patch tests including a metal and bone cement component series. Additional analysis of periimplant tissue is recommended. However, further studies are necessary to show the significance of the histologic findings and the role of the lymphocyte transformation test (LTT). Which combinations of factors will induce allergic sensitization to implants or trigger periimplant allergic reactions in the case of preexisting cutaneous metal allergy is still unknown. Titanium-based osteosynthesis materials are recommended for metal allergic patients. In elective hip replacements, a ceramic/polyethylene (PE) articulation should be used, and in knee replacements "alternative materials". If a regular, potentially applicable CoCr/PE articulation is preferred, the patient must be well informed and must give his/her written consent.
[Carbon fiber-reinforced plastics as implant materials].
Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R
2003-01-01
Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.
21 CFR 888.3540 - Knee joint patellofemoral polymer/metal semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices... Medical Devices—Part I: Evaluation and Testing,’ ” (ii) “510(k) Sterility Review Guidance of 2/12/90 (K90... device intended to be implanted to replace part of a knee joint in the treatment of primary...
Prosthetic knee design by simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K; Hollister, A
1999-07-30
Although 150,000 total knee replacement surgeries are performed annually in North America, current designs of knee prostheses have mechanical problems that include a limited range of motion, abnormal gait patterns, patellofemoral joint dysfunction, implant loosening or subsidence, and excessive wear. These problems fall into three categories: failure to reproduce normal joint kinematics, which results in altered limb function; bone-implant interface failure; and material failure. Modern computer technology can be used to design, prototype, and test new total knee implants. The design team uses the full range of CAD-CAM to design and produce implant prototypes for mechanical and clinical testing. Closermore » approximation of natural knee kinematics and kinetics is essential for improved patient function and diminished implant loads. Current knee replacement designs are based on 19th Century theories that the knee moves about a variable axis of rotation. Recent research has shown, however, that knee motion occurs about two fixed, offset axes of rotation. These aces are not perpendicular to the long axes of the bones or to each other, and the axes do not intersect. Bearing surfaces of mechanisms that move about axes of rotation are surfaces of revolution of those axes which advanced CAD technology can produce. Solids with surfaces of revolution for the two axes of rotation for the knee have been made using an HP9000 workstation and Structural Ideas Master Series CAD software at ArthroMotion. The implant's CAD model should closely replicate movements of the normal knee. The knee model will have a range of flexion-extension (FE) from -5 to 120 degrees. Movements include varus, valgus, internal and external rotation, as well as flexion and extension. The patellofemoral joint is aligned perpendicular to the FE axis and replicates the natural joint more closely than those of existing prostheses. The bearing surfaces will be more congruent than current designs and should generate lower stresses in the materials.« less
Experimental and failure analysis of the prosthetic finger joint implants
NASA Astrophysics Data System (ADS)
Naidu, Sanjiv H.
Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.
Trapezium Bone Density-A Comparison of Measurements by DXA and CT.
Breddam Mosegaard, Sebastian; Breddam Mosegaard, Kamille; Bouteldja, Nadia; Bæk Hansen, Torben; Stilling, Maiken
2018-01-18
Bone density may influence the primary fixation of cementless implants, and poor bone density may increase the risk of implant failure. Before deciding on using total joint replacement as treatment in osteoarthritis of the trapeziometacarpal joint, it is valuable to determine the trapezium bone density. The aim of this study was to: (1) determine the correlation between measurements of bone mineral density of the trapezium obtained by dual-energy X-ray absorptiometry (DXA) scans by a circumference method and a new inner-ellipse method; and (2) to compare those to measurements of bone density obtained by computerized tomography (CT)-scans in Hounsfield units (HU). We included 71 hands from 59 patients with a mean age of 59 years (43-77). All patients had Eaton-Glickel stage II-IV trapeziometacarpal (TM) joint osteoarthritis, were under evaluation for trapeziometacarpal total joint replacement, and underwent DXA and CT wrist scans. There was an excellent correlation (r = 0.94) between DXA bone mineral density measures using the circumference and the inner-ellipse method. There was a moderate correlation between bone density measures obtained by DXA- and CT-scans with (r = 0.49) for the circumference method, and (r = 0.55) for the inner-ellipse method. DXA may be used in pre-operative evaluation of the trapezium bone quality, and the simpler DXA inner-ellipse measurement method can replace the DXA circumference method in estimation of bone density of the trapezium.
Fluorescence and UV-vis Spectroscopy of Synovial Fluids
NASA Astrophysics Data System (ADS)
Pinti, Marie J.; Stojilovic, Nenad; Kovacik, Mark W.
2009-10-01
Total joint arthroplasty involves replacing the worn cartilaginous surfaces of the joint with man-made materials that are designed to be biocompatible and to withstand mechanical stresses. Commonly these bearing materials consist of metallic alloys (TiAlV or CoCrMo) and UHMWPE. Following joint arthroplasty, the normal generation of micro-metallic wear debris particles that dislodge from the prosthesis has been shown to cause inflammatory aseptic osteolysis (bone loss) that ultimately results in the failure of the implant. Here we report our results on the novel use of Fluorescence and UV-vis spectroscopy to investigate the metallic content of synovial fluid specimens taken from postoperative total knee arthroplasties. Preliminary finding showed presence of alumina and chromium is some specimens. The ability to detect and monitor the wear rate of these implants could have far reaching implications in the prevention of metallic wear-debris induced osteolysis and impending implant failure.
Microscopical analysis of synovial fluid wear debris from failing CoCr hip prostheses
NASA Astrophysics Data System (ADS)
Ward, M. B.; Brown, A. P.; Cox, A.; Curry, A.; Denton, J.
2010-07-01
Metal on metal hip joint prostheses are now commonly implanted in patients with hip problems. Although hip replacements largely go ahead problem free, some complications can arise such as infection immediately after surgery and aseptic necrosis caused by vascular complications due to surgery. A recent observation that has been made at Manchester is that some Cobalt Chromium (CoCr) implants are causing chronic pain, with the source being as yet unidentified. This form of replacement failure is independent of surgeon or hospital and so some underlying body/implant interface process is thought to be the problem. When the synovial fluid from a failed joint is examined particles of metal (wear debris) can be found. Transmission Electron Microscopy (TEM) has been used to look at fixed and sectioned samples of the synovial fluid and this has identified fine (< 100 nm) metal and metal oxide particles within the fluid. TEM EDX and Electron Energy Loss Spectroscopy (EELS) have been employed to examine the composition of the particles, showing them to be chromium rich. This gives rise to concern that the failure mechanism may be associated with the debris.
Nano-engineered titanium for enhanced bone therapy
NASA Astrophysics Data System (ADS)
Gulati, Karan; Atkins, Gerald J.; Findlay, David M.; Losic, Dusan
2013-09-01
Current treatment of a number of orthopaedic conditions, for example fractures, bone infection, joint replacement and bone cancers, could be improved if mechanical support could be combined with drug delivery. A very challenging example is that of infection following joint replacement, which is very difficult to treat, can require multiple surgeries and compromises both the implant and the patient's wellbeing. An implant capable of providing appropriate biomechanics and releasing drugs/proteins locally might ensure improved healing of the traumatized bone. We propose fabrication of nanoengineered titanium bone implants using bioinert titanium wires in order to achieve this goal. Titanium in the form of flat foils and wires were modified by fabrication of titania nanotubes (TNTs), which are hollow self-ordered cylindrical tubes capable of accommodating substantial drug amounts and releasing them locally. To further control the release of drug to over a period of months, a thin layer of biodegradable polymer PLGA poly(lactic-coglycolic acid) was coated onto the drug loaded TNTs. This delayed release of drug and additionally the polymer enhanced bone cell adhesion and proliferation.
The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines
Landgraeber, Stefan; Jäger, Marcus; Jacobs, Joshua J.; Hallab, Nadim James
2014-01-01
All of the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after 15–25 years of use, due to slow progressive subtle inflammation at the bone implant interface. This inflammatory disease state is caused by implant debris acting, primarily, on innate immune cells, that is, macrophages. This slow progressive pathological bone loss or “aseptic loosening” is a potentially life-threatening condition due to the serious complications in older people (>75 yrs) of total joint replacement revision surgery. In some people implant debris (particles and ions from metals) can influence the adaptive immune system as well, giving rise to the concept of metal sensitivity. However, a consensus of studies agrees that the dominant form of this response is due to innate reactivity by macrophages to implant debris where both danger (DAMP) and pathogen (PAMP) signalling elicit cytokine-based inflammatory responses. This paper discusses implant debris induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and the subsequent formation of osteolysis. Different mechanisms of implant-debris reactivity related to the innate immune system are detailed, for example, danger signalling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, TNF-α, etc.), apoptosis (e.g., caspases 3–9), bone catabolism (e.g., TRAP5b), and hypoxia responses (Hif1-α). Cytokine-based clinical and basic science studies are in progress to provide diagnosis and therapeutic intervention strategies. PMID:24891761
Application of computer graphics in the design of custom orthopedic implants.
Bechtold, J E
1986-10-01
Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.
Ulf Fernström (1915-1985) and his Contributions to the Development of Artificial Disc Replacements.
Fisahn, Christian; Burgess, Brittni; Iwanaga, Joe; Chapman, Jens R; Oskouian, Rod J; Tubbs, R Shane
2017-02-01
Artificial disc replacements, which serve the function of separating vertebrae to allow for proper spinal alignment, can help treat debilitating low back pain in patients who have failed other conservative methods of treatment. A Swedish surgeon, Ulf Fernström, was the pioneer of artificial disc replacement, and his contribution in the form of Fernström balls dramatically altered spinal surgery and technique by showing the proper technique and implant that should be used for areas requiring motion in many planes. Ulf Fernström created his artificial disc inspired by the movement of the hip and knee joints. His implants attempted to restore disc spacing and articulation in patients who had failed conservative measures of treatment. Fernström balls were the first implants of their kind and represent the first attempt at artificial disc replacement. However, many surgeons and researchers questioned Fernström balls, claiming that their lack of elastic properties could damage patients. Of the wide range of implants on the market for the intervertebral disc space, all designs and applications of products stem from the initial discovery made by Fernström, thus making him a pioneer in disc replacement. Copyright © 2016 Elsevier Inc. All rights reserved.
Advances in Patellofemoral Arthroplasty.
Strickland, Sabrina M; Bird, Mackenzie L; Christ, Alexander B
2018-06-01
To describe current indications, implants, economic benefits, comparison to TKA, and functional and patient-reported outcomes of patellofemoral arthroplasty. Modern onlay implants and improved patient selection have allowed for recent improvements in short- and long-term outcomes after patellofemoral joint replacement surgery. Patellofemoral arthroplasty has become an increasingly utilized technique for the successful treatment of isolated patellofemoral arthritis. Advances in patient selection, implant design, and surgical technique have resulted in improved performance and longevity of these implants. Although short- and mid-term data for modern patellofemoral arthroplasties appear promising, further long-term clinical studies are needed to evaluate how new designs and technologies will affect patient outcomes and long-term implant performance.
The effects on bone cells of metal ions released from orthopaedic implants. A review
Sansone, Valerio; Pagani, Davide; Melato, Marco
2013-01-01
Summary The increasing use of orthopedic implants and, in particular, of hip and knee joint replacements for young and active patients, has stimulated interest and concern regarding the chronic, long-term effects of the materials used. This review focuses on the current knowledge of the adverse biologic reactions to metal particles released from orthopaedic implants in vivo and in vitro. More specifically, the purpose of this article is to provide an overview of the current literature about the adverse effects of metal particles on bone cells and peri-implant bone. PMID:23858309
A novel dynamic mechanical testing technique for reverse shoulder replacements.
Dabirrahmani, Danè; Bokor, Desmond; Appleyard, Richard
2014-04-01
In vitro mechanical testing of orthopedic implants provides information regarding their mechanical performance under simulated biomechanical conditions. Current in vitro component stability testing methods for reverse shoulder implants are based on anatomical shoulder designs, which do not capture the dynamic nature of these loads. With glenoid component loosening as one of the most prevalent modes of failure in reverse shoulder replacements, it is important to establish a testing protocol with a more realistic loading regime. This paper introduces a novel method of mechanically testing reverse shoulder implants, using more realistic load magnitudes and vectors, than is currently practiced. Using a custom made jig setup within an Instron mechanical testing system, it is possible to simulate the change in magnitude and direction of the joint load during arm abduction. This method is a step towards a more realistic testing protocol for measuring reverse shoulder implant stability.
Surface Modifications for Improved Wear Performance in Artificial Joints: A Review
NASA Astrophysics Data System (ADS)
Sullivan, Stacey J. L.; Topoleski, L. D. Timmie
2015-11-01
Artificial joint replacement is one of the most successful treatments for arthritis. Excellent wear and corrosion resistance, together with high strength and fracture toughness, are fundamental requirements for implant materials. Wear and/or corrosion of the materials used in artificial joints may lead to implant failure. Therefore, hard and wear-resistant materials, like cobalt-chromium-molybdenum and ceramic, are currently used as bearing surfaces. However, even using such hard materials, wear and/or corrosion related failure of artificial joints remains a central concern. One primary goal in orthopedic biomaterials research is to create more wear-resistant surfaces. Different technologies have been used to create new surfaces, or to modify existing surfaces, to prevent wear. It is the intent of this overview first to provide a summary of materials currently used as bearing surfaces in artificial joints, their functions, and their contributions to device longevity. Then, we will discuss advancements in modifying those bearing surfaces to produce more wear-resistant artificial joints.
Fulín, P; Pokorný, D; Slouf, M; Vacková, T; Dybal, J; Sosna, A
2014-01-01
Each method of sterilisation has some effect on the structure and properties of UHMWPE and thus also on joint replacement longevity. This study was designed to compare, using objective methods of measurement, several kinds of sterilisation and to recommend the one which has the best prospect for making joint replacements last longer. Two groups of UHMWPE samples were tested. Group 1 included virgin GUR 1020 polyethylene, non-modified and non-sterilised (Meditech, Germany). Group 2 comprised of three sets of samples sterilised with formaldehyde, gamma irradiation and ethylene oxide, respectively. In both groups, physicochemical properties were assessed by infrared spectroscopy (IR), and the oxidation (OI) and trans-vinyl (VI) indices, which show the degree of oxidation of a material, were determined. Free-radical concentrations were measured by the method of electron spin resonance (ESR). The mechanical properties of each sample were studied using small punch tests (SPT) and testing microhardness (MH). Any change in mechanical properties can affect, to various degrees, the quality and longevity of a prosthetic joint. The samples sterilised by gamma irradiation showed higher values of both the OI (0.37) and the VI index (0.038) than the other samples (OI, 0.02 to 0.05 and VI, 0). Also, the free-radical concentration was detectable only in the gamma-sterilised sample. Values obtained for mechanical properties were as follows: peak load in the range of 58.48 N (gamma irradiation) to 59.60 N (ethylene oxide); ultimate load in the range of 46.69 N (gamma irradiation) to 57.50 N (ethylene oxide); ultimate displacement in the range of 4.29 mm (gamma irradiation) to 4.58 mm (virgin polyethylene and formaldehyde); and work to failure in the range of 185.18 mJ (gamma irradiation) to 205.89 mJ (virgin polyethylene). Microhardness values were obtained in the following ranges: 41.2 to 44.6 MPa (virgin polyethylene); 40.2 to 44.1 MPa (formaldehyde); 46.1 to 49.3 MPa (gamma irradiation); and 40.3 to 44.2 MPa (ethylene oxide). The samples sterilised with formaldehyde and ethylene oxide have mechanical properties very similar to virgin polyethylene, they are not damaged by oxidation and do not contain free radicals. Owing to these characteristics, the immediate and long-term oxidation stability of the three samples is higher. The sample sterilised by gamma irradiation showed the presence of free radicals and immediate and long-term oxidative degradation. This results in the deterioration of mechanical properties and the growth of crystallinity due to enhanced oxidation and leads to higher polyethylene microhardness. Sterilisation with gamma irradiation results in oxidative degradation and mechanical property deterioration, which is one of the potential risks of a shorter life span of joint replacements. The use of ethylene oxide or formaldehyde does not change polymer properties nor has any effect on oxidation of materials. Therefore, a longer life expectancy of the joint replacements sterilised with ethylene oxide can be expected. The life span of their joint replacements is a key issue for the patients. Prosthetic joint loosening is painful and the patient often requires re-implantation. A higher number of re-implantations is associated with higher costs for the institution involved and, consequently, for the whole health care system. Although this study basically deals with chemical issues, it informs the surgeon of the latest developments leading to the improvement of implanted materials, which can increase the life expectancy of joint replacements and patients' satisfaction.
Margulies, Bryan S; DeBoyace, Sean D; Parsons, Adrienne M; Policastro, Connor G; Ee, Jessica S S; Damron, Timothy S
2015-05-01
We sought to demonstrate whether there is a difference in the local mesenchymal stem cells (MSC) niche obtained from patients undergoing their first total joint replacement surgery versus those patients undergoing a revision surgery for an failing total joint implant. Bone marrow aspirates collected from patients undergoing revision total joint arthroplasty were observed to be less clonal and the expression of PDGFRα, CD51, ALCAM, endoglin, CXCL12, nestin, and nucleostemin were decreased. Revision MSC were also less able to commit to an osteoblast-lineage or an adipocyte-lineage. Further, in revision MSC, OPG, and IL6 expression were increased. Monocytes, derived from revision whole marrow aspirates, were less capable of differentiating into osteoclasts, the cells implicated in the pathologic degradation of bone. Osteoclasts were also not observed in tissue samples collected adjacent to the implants of revision patients; however, the alternatatively activated M2-macrophage phenotype was observed in parallel with pathologic accumulations of amyloid-β, τ-protien and 3-nitrotyrosine. Despite the limited numbers of patients examined, our data suggest that nucleostemin may be a useful functional marker for MSC while the observation of M2-macrophage infiltration around the implant lays the foundation for future investigation into a novel mechanism that we propose is associated with loose total joint implants. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Analyzer-based imaging technique in tomography of cartilage and metal implants: a study at the ESRF
COAN, Paola; MOLLENHAUER, Juergen; WAGNER, Andreas; Muehleman, Carol; BRAVIN, Alberto
2009-01-01
Monitoring the progression of osteoarthritis (OA) and the effects of therapy during clinical trials is still a challenge for present clinical imaging techniques since they present intrinsic limitations and can be sensitive only in case of advanced OA stages. In very severe cases, partial or complete joint replacement surgery is the only solution for reducing pain and restoring the joint functions. Poor imaging quality in practically all medical imaging technologies with respect to joint surfaces and to metal implant imaging calls for the development of new techniques that are sensitive to stages preceding the point of irreversible damage of the cartilage tissue. In this scenario, X-ray phase contrast modalities could play an important role since they can provide improved contrast compared to conventional absorption radiography, with a similar or even reduced tissue radiation dose. In this study, the Analyzer-based imaging (ABI), a technique sensitive to the X-ray refraction and permitting a high scatter rejection, has been successfully applied in-vitro on excised human synovial joints and sheep implants. Pathological and healthy joints as well as metal implants have been imaged in projection and computed tomography ABI mode at high resolution and clinically compatible doses (< 10 mGy). Volume rendering and segmentation permitted visualization of the cartilage from volumetric CT-scans. Results demonstrate that ABI can provide an unequivocal non-invasive diagnosis of the state of disease of the joint and be considered a new tool in orthopaedic research. PMID:18584983
Meniscus tear surgery and meniscus replacement
Vaquero, Javier; Forriol, Francisco
2016-01-01
Summary Objective the menisci are easily injured and difficult to repair. The aim of this study was to analyze the current state of meniscal surgery aimed at preserving morphology and conserving the biomechanics of the knee to prevent joint degeneration. Methodology a search of the electronic medical literature database Medline was conducted, from http://www.ncbi.nlm.nih.gov/pubmed. The search was not limited by language. Candidate articles were identified by searching for those that included the keywords meniscus, surgery, suture, implant, allograft. The limits were included for clinical research and clinical trials. Basic research was not included. The studies selected were evaluated and classified in three different categories: basic science, reconstruction (suture and meniscectomy) and implants (scaffolds and allograft). Results the consequences of meniscectomy performed at a young age can lead to a joint cartilage degeneration twenty years later. There are few surgical options for the repair of meniscal injuries in order both to preserve the meniscus and to ensure the long term survival of the knee joint, meniscectomy, repair, suturing the tear, or reconstruction, when a meniscal allograft or synthetic substitute is used to replace the meniscus, but the biomechanical properties of the native meniscus are not reproduced entirely by the scaffolds that exist today. Conclusion therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay osteoarthritis progression. PMID:27331034
NASA Astrophysics Data System (ADS)
Arirajan, K. A.; Chockalingam, K.; Vignesh, C.
2018-04-01
Implants are the artificial parts to replace the missing bones or joints in human anatomy to give mechanical support. Hip joint replacement is an important issue in orthopaedic surgery. The main concern limiting the long-run success of the total hip replacement is the limited service life. Hip replacement technique is widely used in replacing the femur head and acetabular cup by materials that are highly biocompatible. The success of the artificial hip replacement depends upon proper material selection, structure, and shape of the hip prosthesis. Many orthopaedic analyses have been tried with different materials, but ended with partial success on the application side. It is a critical task for selecting the best material pair in the hip prosthesis design. This work develops the finite element analysis of an artificial hip implant to study highest von Mises stress, contact pressure and elastic strain occurs for the dissimilar material combination. The different bearing couple considered for the analysis are Metal on Metal, Metal on Plastic, Metal on Ceramic, Ceramic on Plastic, Ceramic on Ceramic combinations. The analysis is carried out at different static positions of a human (i.e) standing, sitting. The results reveals that the combination with metal in contact with plastic (i.e) Titanium femoral head paired with Ultra High Molecular Weight Poly Ethylene acetabular cup reduces maximum von Mises stress and also it gives lowest contact pressure than other combination of bearing couples.
Osseointegrated total knee replacement connected to a lower limb prosthesis: 4 cases
Khemka, Aditya; Frossard, Laurent; Lord, Sarah J; Bosley, Belinda; Al Muderis, Munjed
2015-01-01
Background and purpose — Osseointegrated implants are an alternative for prosthetic attachment in individuals with amputation who are unable to wear a socket. However, the load transmitted through the osseointegrated fixation to the residual tibia and knee joint can be unbearable for those with transtibial amputation and knee arthritis. We report on the feasibility of combining total knee replacement (TKR) with an osseointegrated implant for prosthetic attachment. Patients and methods — We retrospectively reviewed all 4 cases (aged 38–77 years) of transtibial amputations managed with osseointegration and TKR in 2012–2014. The below-the-knee prosthesis was connected to the tibial base plate of a TKR, enabling the tibial residuum and knee joint to act as weight-sharing structures. A 2-stage procedure involved connecting a standard hinged TKR to custom-made implants and creation of a skin-implant interface. Clinical outcomes were assessed at baseline and after 1–3 years of follow-up using standard measures of health-related quality of life, ambulation, and activity level including the questionnaire for transfemoral amputees (Q-TFA) and the 6-minute walk test. Results — There were no major complications, and there was 1 case of superficial infection. All patients showed improved clinical outcomes, with a Q-TFA improvement range of 29–52 and a 6-minute walk test improvement range of 37–84 meters. Interpretation — It is possible to combine TKR with osseointegrated implants. PMID:26145721
Manzotti, A.; Montironi, F.; Pullen, C.
2008-01-01
Recently mini-invasive joint replacement has become one of the hottest topics in the orthopaedic world. However, these terms have been improperly misunderstood as a “key-hole” surgery where traditional components are implanted with shorter surgical approaches, with few benefits and several possible dangers. Small implants as unicompartmental knee prostheses, patellofemoral prostheses and bi-unicompartmental knee prostheses might represent real less invasive procedures: Tissue sparing surgery, the Italian way to minimally invasive surgery (MIS). According to their experience the authors go through this real tissue sparing surgery not limited only to a small incision, but where the surgeons can respect the physiological joint biomechanics. PMID:19384616
Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D
2014-08-01
Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.
Wegmann, Kilian; Hain, Moritz K; Ries, Christian; Neiss, Wolfram F; Müller, Lars P; Burkhart, Klaus J
2015-09-01
The fitting accuracy of radial head components has been investigated in the capitulo-radial joint, and reduced contact after prosthetic replacement of the radial head has been observed. The kinematics of the proximal radioulnar joint (PRUJ) are affected by radial head arthroplasty as well, but have not yet been investigated in this regard. The elbow joints of 60 upper extremities of formalin-fixed body donors were disarticulated to obtain a good view of the PRUJ. Each specimen was mounted on the examining table and radial head position in the native PRUJ was assessed in neutral position, full pronation, and full supination. Measurements were repeated after implantation of mono- and bi-polar prostheses. Analysis of the distribution of the joint contacts in the compartments showed significant differences after radial head replacement. In comparison to the native joint, after bipolar and monopolar radial head replacement, the physiological shift of the proximal radius was altered. The physiological shift of the joint contact of the radial head from anterior to posterior during forearm rotation that was found in the native joint in our cadaver model was not observed after prosthetic replacement. With higher conformity and physiological kinematic of radial head prostheses, possibly lower shear forces and lower contact pressures would be generated. The tested radial head prostheses do not replicate the physiological kinematics of the radial head. Further development in the prosthesis design has to be made. The meticulous reconstruction of the annular ligament seems to be of importance to increase joint contact.
Raphel, Jordan; Holodniy, Mark; Goodman, Stuart B.; Heilshorn, Sarah C.
2016-01-01
The two leading causes of failure for joint arthroplasty prostheses are aseptic loosening and periprosthetic joint infection. With the number of primary and revision joint replacement surgeries on the rise, strategies to mitigate these failure modes have become increasingly important. Much of the recent work in this field has focused on the design of coatings either to prevent infection while ignoring bone mineralization or vice versa, to promote osseointegration while ignoring microbial susceptibility. However, both coating functions are required to achieve long-term success of the implant; therefore, these two modalities must be evaluated in parallel during the development of new orthopaedic coating strategies. In this review, we discuss recent progress and future directions for the design of multifunctional orthopaedic coatings that can inhibit microbial cells while still promoting osseointegration. PMID:26851394
Vavrík, P; Landor, I; Denk, F
2008-12-01
The study evaluates mid-term results of total knee replacement with a zirconia ceramic (ZrO2) femoral component. The evaluated group comprised 20 knees in 19 patients (4 men and 15 women). In one patient the replacement was performed bilaterally. Two patients had in the contralateral knee the same type of prosthesis with a femoral chrome-cobalt component.The mean age at the time of operation was 65.2 years (range, 38-81 years).The primary indication was 14 times osteoarthritis and 5 times rheumatoid arthritis. The average follow-up period was 6.5 years (range, 2.1-8.5 years). Patients included in the study regardless of age, body mass and the basic diagnosis, agreed with the use of the ceramic femoral component. The evaluation covered a range of motion, mechanical axis, joint stability, pain, swelling, ability to walk on level ground and on stairs, subjective satisfaction (EULAR Knee Chart). Radiograph were assessed at one year intervals in two projections to identify the incidence of radiolucency around the implant. The Kaplan-Meier survival curve was used and compared with the survival curve in identical chrome-cobalt implants. At he final follow-up, 14 knees were evaluated, because 3 patients died without any connection with the implant, in one case the tibial component migrated due to necrosis of the tibial condyle in a patient with RA and two implants had to be revised and replaced due to polyethylene wear. No infection or negative tissue reaction was recorded in the evaluated group. The average flexion range was 109 degrees. All knees were stable and without swelling, in two cases there occurred slight femoropatellar pain. Twelve patients were fully satisfied, 2 patients were satisfied with a certain reservation. The differences in the course of the survival curves of chrome-cobalt and ceramic implants were statistically insignificant. Although the use of zirconia ceramics in vitro reduces the amount of polyethylene wear, the clinical outcomes of total knee replacements as compared to the hip are not convincing. One of the causes may be the substantially different and more complex biomechanics of the knee. Tribology improvement of the femoral ceramic component cannot compensate the deficiencies in the joint balancing in flexion and extension. The economically and technologically demanding production of these implants may be justified in patients with allergies caused by chrome-cobalt components. The results of mid-term follow-up of the use of zirconia ceramic femoral components proved no impact on the improvement of the period of survival of the knee implant. No adverse response to the material or mechanical failure of the ceramic components was encountered. Key words: total knee replacement, zirconia ceramic femoral component, TKR mid-term results, ceramic knee survival curve.
Antibacterial Surface Treatment for Orthopaedic Implants
Gallo, Jiri; Holinka, Martin; Moucha, Calin S.
2014-01-01
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic. PMID:25116685
Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W; Sedrakyan, A
2014-09-09
To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. After assessment of 10,557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15,384 implants in 13,164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for revision occurrence related to more than 200,000 of these implants. Reported comparative data with well established alternative devices (over 1,200,000 implants) did not show improved device survival. Moreover, we found higher revision occurrence associated with modular femoral necks (hazard ratio 1.9) and ceramic-on-ceramic bearings (hazard ratio 1.0-1.6) in hip replacement and with high flexion knee implants (hazard ratio 1.0-1.8). We did not find convincing high quality evidence supporting the use of five substantial, well known, and already implemented device innovations in orthopaedics. Moreover, existing devices may be safer to use in total hip or knee replacement. Improved regulation and professional society oversight are necessary to prevent patients from being further exposed to these and future innovations introduced without proper evidence of improved clinical efficacy and safety. © Nieuwenhuijse et al 2014.
Nieuwenhuijse, Marc J; Nelissen, R G H H; Schoones, J W
2014-01-01
Objective To determine the evidence of effectiveness and safety for introduction of five recent and ostensibly high value implantable devices in major joint replacement to illustrate the need for change and inform guidance on evidence based introduction of new implants into healthcare. Design Systematic review of clinical trials, comparative observational studies, and registries for comparative effectiveness and safety of five implantable device innovations. Data sources PubMed (Medline), Embase, Web of Science, Cochrane, CINAHL, reference lists of articles, annual reports of major registries, summaries of safety and effectiveness for pre-market application and mandated post-market studies at the US Food and Drug Administration. Study selection The five selected innovations comprised three in total hip replacement (ceramic-on-ceramic bearings, modular femoral necks, and uncemented monoblock cups) and two in total knee replacement (high flexion knee replacement and gender specific knee replacement). All clinical studies of primary total hip or knee replacement for symptomatic osteoarthritis in adults that compared at least one of the clinical outcomes of interest (patient centred outcomes or complications, or both) in the new implant group and control implant group were considered. Data searching, abstraction, and analysis were independently performed and confirmed by at least two authors. Quantitative data syntheses were performed when feasible. Results After assessment of 10 557 search hits, 118 studies (94 unique study cohorts) met the inclusion criteria and reported data related to 15 384 implants in 13 164 patients. Comparative evidence per device innovation varied from four low to moderate quality retrospective studies (modular femoral necks) to 56 studies of varying quality including seven high quality (randomised) studies (high flexion knee replacement). None of the five device innovations was found to improve functional or patient reported outcomes. National registries reported two to 12 year follow-up for revision occurrence related to more than 200 000 of these implants. Reported comparative data with well established alternative devices (over 1 200 000 implants) did not show improved device survival. Moreover, we found higher revision occurrence associated with modular femoral necks (hazard ratio 1.9) and ceramic-on-ceramic bearings (hazard ratio 1.0-1.6) in hip replacement and with high flexion knee implants (hazard ratio 1.0-1.8). Conclusion We did not find convincing high quality evidence supporting the use of five substantial, well known, and already implemented device innovations in orthopaedics. Moreover, existing devices may be safer to use in total hip or knee replacement. Improved regulation and professional society oversight are necessary to prevent patients from being further exposed to these and future innovations introduced without proper evidence of improved clinical efficacy and safety. PMID:25208953
Nanostructured diamond coatings for orthopaedic applications
CATLEDGE, S.A.; THOMAS, V.; VOHRA, Y.K.
2013-01-01
With increasing numbers of orthopaedic devices being implanted, greater emphasis is being placed on ceramic coating technology to reduce friction and wear in mating total joint replacement components, in order to improve implant function and increase device lifespan. In this chapter, we consider ultra-hard carbon coatings, with emphasis on nanostructured diamond, as alternative bearing surfaces for metallic components. Such coatings have great potential for use in biomedical implants as a result of their extreme hardness, wear resistance, low friction and biocompatibility. These ultra-hard carbon coatings can be deposited by several techniques resulting in a wide variety of structures and properties. PMID:25285213
21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3660... device are: (1) FDA's: (i) “Use of International Standard ISO 10993 ‘Biological Evaluation of Medical... metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a...
21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3650... are: (1) FDA's: (i) “Use of International Standard ISO 10993 ‘Biological Evaluation of Medical Devices... metal/polymer non-constrained cemented prosthesis is a device intended to be implanted to replace a...
Schliephake, H; Schmelzeisen, R; Maschek, H; Haese, M
1999-10-01
The aim of the present study was to evaluate the long-term results of a group of patients who had the disk of the temporomandibular joint (TMJ) removed and permanently replaced by a silicone sheet. The study group comprised 48 patients, treated in the period from 1983 to 1993. In eight patients, the implants had to be removed after an average interval of 5.6 years and they were submitted for histopathological examination. Twenty-five of the 40 patients with silastic implants in place, and five of the 8 patients who had their implants removed, were available for long-term follow-up (mean interval of 7.0 years, SD 2.8 years). Clinical function was rated according to the Helkimo Dysfunction Index and compared to the preoperative findings. Results showed decreased tenderness of muscles and joints to palpation and increased mouth opening, but no statistically significant improvement in joint function. In 4 patients, a decrease in condylar width was found, while another 4 patients presented with thickening of the condyle by appositional bone formation. Histopathology of the failed implants showed scattered fragments of silastic material and dacron fibers with accumulation of histiocytes in immediate contact with the silicone particles and phagocytozed intracellular material. T-lymphocytes were also present in the vicinity of the silicone particles.
Total Hip Joint Replacement Biotelemetry System
NASA Technical Reports Server (NTRS)
Boreham, J. F.; Postal, R. B.; Luntz, R. A.
1981-01-01
The development of a biotelemetry system that is hermetically sealed within a total hip replacement implant is reported. The telemetry system transmits six channels of stress data to reconstruct the major forces acting on the neck of the prosthesis and uses an induction power coupling technique to eliminate the need for internal batteries. The activities associated with the telemetry microminiaturization, data recovery console, hardware fabrications, power induction systems, electrical and mechanical testing and hermetic sealing test results are discussed.
The Measurement Of Total Joint Loosening By X-Ray Photogrammetry
NASA Astrophysics Data System (ADS)
Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.
1980-07-01
Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.
HiL simulation in biomechanics: a new approach for testing total joint replacements.
Herrmann, Sven; Kaehler, Michael; Souffrant, Robert; Rachholz, Roman; Zierath, János; Kluess, Daniel; Mittelmeier, Wolfram; Woernle, Christoph; Bader, Rainer
2012-02-01
Instability of artificial joints is still one of the most prevalent reasons for revision surgery caused by various influencing factors. In order to investigate instability mechanisms such as dislocation under reproducible, physiologically realistic boundary conditions, a novel test approach is introduced by means of a hardware-in-the-loop (HiL) simulation involving a highly flexible mechatronic test system. In this work, the underlying concept and implementation of all required units is presented enabling comparable investigations of different total hip and knee replacements, respectively. The HiL joint simulator consists of two units: a physical setup composed of a six-axes industrial robot and a numerical multibody model running in real-time. Within the multibody model, the anatomical environment of the considered joint is represented such that the soft tissue response is accounted for during an instability event. Hence, the robot loads and moves the real implant components according to the information provided by the multibody model while transferring back the position and resisting moment recorded. Functionality of the simulator is proved by testing the underlying control principles, and verified by reproducing the dislocation process of a standard total hip replacement. HiL simulations provide a new biomechanical testing tool for analyzing different joint replacement systems with respect to their instability behavior under realistic movements and physiological load conditions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Metal-on-metal hip joint tribology.
Dowson, D; Jin, Z M
2006-02-01
The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.
Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Filgueira, Luis
2009-12-15
Metal implants are essential therapeutic tools for the treatment of bone fractures and joint replacements. The metals and metal alloys used in contemporary orthopedic and trauma surgery are well tolerated by the majority of patients. However, complications resulting from inflammatory and immune reactions to metal implants have been well documented. This review briefly discusses the different mechanisms of metal implant corrosion in the human body, which lead to the release of significant levels of metal ions into the peri-implant tissues and the systemic blood circulation. Additionally, this article reviews the effects of the released ions on bone metabolism and the immune system and discusses their involvement in the pathophysiological mechanisms of aseptic loosening and metal hypersensitivity in patients with metal implants.
Metallic Biomaterials: Current Challenges and Opportunities
Prasad, Karthika; Bazaka, Olha; Chua, Ming; Rochford, Madison; Fedrick, Liam; Spoor, Jordan; Symes, Richard; Tieppo, Marcus; Collins, Cameron; Cao, Alex; Ostrikov, Kostya (Ken); Bazaka, Kateryna
2017-01-01
Metallic biomaterials are engineered systems designed to provide internal support to biological tissues and they are being used largely in joint replacements, dental implants, orthopaedic fixations and stents. Higher biomaterial usage is associated with an increased incidence of implant-related complications due to poor implant integration, inflammation, mechanical instability, necrosis and infections, and associated prolonged patient care, pain and loss of function. In this review, we will briefly explore major representatives of metallic biomaterials along with the key existing and emerging strategies for surface and bulk modification used to improve biointegration, mechanical strength and flexibility of biometals, and discuss their compatibility with the concept of 3D printing. PMID:28773240
Development and fabrication of patient-specific knee implant using additive manufacturing techniques
NASA Astrophysics Data System (ADS)
Zammit, Robert; Rochman, Arif
2017-10-01
Total knee replacement is the most effective treatment to relief pain and restore normal function in a diseased knee joint. The aim of this research was to develop a patient-specific knee implant which can be fabricated using additive manufacturing techniques and has reduced wear rates using a highly wear resistant materials. The proposed design was chosen based on implant requirements, such as reduction in wear rates as well as strong fixation. The patient-specific knee implant improves on conventional knee implants by modifying the articulating surfaces and bone-implant interfaces. Moreover, tribological tests of different polymeric wear couples were carried out to determine the optimal materials to use for the articulating surfaces. Finite element analysis was utilized to evaluate the stresses sustained by the proposed design. Finally, the patient-specific knee implant was successfully built using additive manufacturing techniques.
The economics of new age arthroplasty: can we afford it?
Sculco, Thomas P
2010-09-07
New technology in joint replacement design and materials adds cost that must be documented by improved outcomes. This is not always the case as the recent metal/metal data has shown. The current economics of arthroplasty have put increasing financial pressure on hospitals and will progress under new health care legislation. New technology must be cost-effective and this will be increasingly difficult in an era of outstanding long-term results with current designs. Cost may necessitate less expensive alternatives, eg, generic implants, in arthroplasty patients. Joint replacement surgery has evolved over the past 4 decades into a highly successful surgical procedure. Earlier designs and materials that demonstrated inferior functional and long-term results have disappeared in a Darwinian fashion. Through this evolutionary process many of the current designs have proven efficacy and durability. Current outcome data indicates that hip and knee designs demonstrate 90% to 95% success rates at 15-year follow-up. Technologic advances are necessary to improve implant design and materials, however, only in an environment of reduced reimbursement to hospitals can the increase cost be justified. Copyright 2010, SLACK Incorporated.
Jakobsen, Thomas; Bechtold, Joan E; Søballe, Kjeld; Jensen, Thomas; Greiner, Stefan; Vestermark, Marianne T; Baas, Jørgen
2016-01-01
Early secure fixation of total joint replacements is crucial for long-term survival. Antiresorptive agents such as bisphosphonates have been shown to increase implant fixation. We investigated whether local delivery of zoledronate from poly-D, L-lactide (PDLLA)-coated implants could improve implant fixation and osseointegration. Experimental titanium implants were bilaterally inserted press-fit into the proximal tibiae of 10 dogs. On one side the implant was coated with PDLLA containing zoledronate. The contralateral implant was uncoated and used as control. Observation period was 12 weeks. Implant fixation was evaluated with histomorphometry and biomechanical push-out test. We found an approximately twofold increase in all biomechanical parameters when comparing data from the zoledronate group with their respective controls. Histomorphometry showed increased amount of preserved bone and increased bone formation around the zoledronate implants. This study indicates that local delivery of zoledronate from a PDDLA coating has the potential to increase implant fixation. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Acinetobacter Prosthetic Joint Infection Treated with Debridement and High-Dose Tigecycline.
Vila, Andrea; Pagella, Hugo; Amadio, Claudio; Leiva, Alejandro
2016-12-01
Prosthesis retention is not recommended for multidrug-resistant Acinetobacter prosthetic joint infection due to its high failure rate. Nevertheless, replacing the prosthesis implies high morbidity and prolonged hospitalization. Although tigecycline is not approved for the treatment of prosthetic joint infection due to multidrug resistant Acinetobacter baumannii, its appropriate use may preclude prosthesis exchange. Since the area under the curve divided by the minimum inhibitory concentration is the best pharmacodynamic predictor of its efficacy, we used tigecycline at high dose, in order to optimize its efficacy and achieve implant retention in 3 patients who refused prosthesis exchange. All patients with prosthetic joint infections treated at our Institution are prospectively registered in a database. Three patients with early prosthetic joint infection of total hip arthroplasty due to multidrug resistant A. baumannii were treated with debridement, antibiotics and implant retention, using a high maintenance dose of tigecycline (100 mg every 12 hours). The cases were retrospectively reviewed. All patients signed informed consent for receiving off-label use of tigecycline. Tigecycline was well tolerated, allowing its administration at high maintenance dose for a median of 40 days (range 30-60). Two patients were then switched to minocycline at standard doses for a median of 3.3 months in order to complete treatment. Currently, none of the patients showed relapse. Increasing the dose of tigecycline could be considered as a means to better attain pharmacodynamic targets in patients with severe or difficult-to-treat infections. Tigecycline at high maintenance dose might be useful when retention of the implant is attempted for treatment for prosthetic joint infections due to multidrug resistant Acinetobacter. Although this approach might be promising, off-label use of tigecycline should be interpreted cautiously until prospective data are available. Tigecycline is probably under-dosed for the treatment of implant and biofilm associated infections.
Becker, B S; Bolton, J D
1997-12-01
Artificial hip joints have an average lifetime of 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 year for a longer lasting joint of 25 years or more. Compliant layers incorporated into the acetabular cup generate elastohydrodynamic lubrication conditions between the bearing surfaces, reduce joint friction coefficients and wear debris production and could increase the average life of total hip replacements, and other human load-bearing joint replacements, i.e. total knee replacements. Poor adhesion between a fully dense substrate and the compliant layer has so far prevented any further exploitation. This work investigated the possibility of producing porous metallic, functionally gradient type acetabular cups using powder metallurgy techniques - where a porous surface was supported by a denser core - into which the compliant layers could be incorporated. The corrosion behaviour and mechanical properties of three biomedically approved alloys containing two levels of total porosity (>30% and <10%) were established, resulting in Ti-6Al-4V being identified as the most promising biocompatible functionally graded material, not only for this application but for other hard-tissue implants.
Guillier, D; Moris, V; See, L-A; Girodon, M; Wajszczak, B-L; Zwetyenga, N
2017-02-01
Total prosthetic replacement of the temporo-mandibular joint (TMJ) has become a common procedure, but it is usually limited to the TMJ itself. We report about one case of complex prosthetic joint reconstruction extending to the neighbouring bony structures. A 57-year-old patient, operated several times for a cranio-facial fibrous dysplasia, presented with a recurring TMJ ankylosis and a complexe latero-facial bone loss on the right side. We performed a reconstruction procedure including the TMJ, the zygomatic arch and the malar bone by mean of custom made composite prosthesis (chrome-cobalt-molybdenum-titanium and polyethylene). Five years postoperatively, mouth opening, nutrition, pain and oral hygiene were significantly improved. Nowadays technical possibilities allow for complex facial alloplastic reconstructions with good medium term results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Dong; Bai, Pengxiang; Zhu, Feipeng
2018-01-01
Nowadays, acetabulum prosthesis replacement is widely used in clinical medicine. However, there is no efficient way to evaluate the implantation effect of the prosthesis. Based on a modern photomechanics technique called digital image correlation (DIC), the evaluation method of the installation effect of the acetabulum was established during a prosthetic replacement of a hip joint. The DIC method determines strain field by comparing the speckle images between the undeformed sample and the deformed counterpart. Three groups of experiments were carried out to verify the feasibility of the DIC method on the acetabulum installation deformation test. Experimental results indicate that the installation deformation of acetabulum generally includes elastic deformation (corresponding to the principal strain of about 1.2%) and plastic deformation. When the installation angle is ideal, the plastic deformation can be effectively reduced, which could prolong the service life of acetabulum prostheses.
MEMS-based power generation techniques for implantable biosensing applications.
Lueke, Jonathan; Moussa, Walied A
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.
Revision total hip arthoplasty: factors associated with re-revision surgery.
Khatod, Monti; Cafri, Guy; Inacio, Maria C S; Schepps, Alan L; Paxton, Elizabeth W; Bini, Stefano A
2015-03-04
The survivorship of implants after revision total hip arthroplasty and risk factors associated with re-revision are not well defined. We evaluated the re-revision rate with use of the institutional total joint replacement registry. The purpose of this study was to determine patient, implant, and surgeon factors associated with re-revision total hip arthroplasty. A retrospective cohort study was conducted. The total joint replacement registry was used to identify patients who had undergone revision total hip arthroplasty for aseptic reasons from April 1, 2001, to December 31, 2010. The end point of interest was re-revision total hip arthroplasty. Risk factors evaluated for re-revision total hip arthroplasty included: patient risk factors (age, sex, body mass index, race, and general health status), implant risk factors (fixation type, bearing surface, femoral head size, and component replacement), and surgeon risk factors (volume and experience). A multivariable Cox proportional hazards model was used. Six hundred and twenty-nine revision total hip arthroplasties with sixty-three (10%) re-revisions were evaluated. The mean cohort age (and standard deviation) was 57.0 ± 12.4 years, the mean body mass index (and standard deviation) was 29.5 ± 6.1 kg/m(2), and most of the patients were women (64.5%) and white (81.9%) and had an American Society of Anesthesiologists score of <3 (52.9%). The five-year implant survival after revision total hip arthroplasty was 86.8% (95% confidence interval, 83.57% to 90.25%). In adjusted models, age, total number of revision surgical procedures performed by the surgeon, fixation, and bearing surface were associated with the risk of re-revision. For every ten-year increase in patient age, the hazard ratio for re-revision decreases by a factor of 0.72 (95% confidence interval, 0.58 to 0.90). For every five revision surgical procedures performed by a surgeon, the risk of revision decreases by a factor of 0.93 (95% confidence interval, 0.86 to 0.99). At the time of revision, a new or retained cemented femoral implant or all-cemented hip implant increases the risk of revision by a factor of 3.19 (95% confidence interval, 1.22 to 8.38) relative to a retained or new uncemented hip implant. A ceramic on a highly cross-linked polyethylene bearing articulation decreases the hazard relative to metal on highly cross-linked polyethylene by a factor of 0.32 (95% confidence interval, 0.11 to 0.95). Metal on constrained bearing increases the hazard relative to metal on highly cross-linked polyethylene by a factor of 3.32 (95% confidence interval, 1.16 to 9.48). When evaluating patient, implant, and surgical factors at the time of revision total hip arthroplasty, age, surgeon experience, implant fixation, and bearing surfaces had significant impacts on the risk of re-revision. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Maus, U; Roth, A; Tingart, M; Rader, C; Jäger, M; Nöth, U; Reppenhagen, S; Heiss, C; Beckmann, J
2015-10-01
The present article describes the guidelines for the surgical treatment of atraumatic avascular necrosis (aFKN). These include joint preserving and joint replacement procedures. As part of the targeted literature, 43 publications were included and evaluated to assess the surgical treatment. According to the GRADE and SIGN criteria level of evidence (LoE), grade of recommendation (EC) and expert consensus (EK) were listed for each statement and question. The analysed studies have shown that up to ARCO stage III, joint-preserving surgery can be performed. A particular joint-preserving surgery currently cannot be recommended as preferred method. The selection of the method depends on the extent of necrosis. Core decompression performed in stage ARCO I (reversible early stage) or stage ARCO II (irreversible early stage) with medial or central necrosis with an area of less than 30 % of the femoral head shows better results than conservative therapy. In ARCO stage III with infraction of the femoral head, the core decompression can be used for a short-term pain relief. For ARCO stage IIIC or stage IV core decompression should not be performed. In these cases, the indication for implantation of a total hip replacement should be checked. Additional therapeutic procedures (e.g., osteotomies) and innovative treatment options (advanced core decompression, autologous bone marrow, bone grafting, etc.) can be discussed in the individual case. In elective hip replacement complications and revision rates have been clearly declining for decades. In the case of an underlying aFKN, however, previous joint-preserving surgery (osteotomies and grafts in particular) can complicate the implantation of a THA significantly. However, the implant life seems to be dependent on the aetiology. Higher revision rates for avascular necrosis are particularly expected in sickle cell disease, Gaucher disease, or kidney transplantation patients. Furthermore, the relatively young age of the patient with avascular necrosis should be seen as the main risk factor for higher revision rate. The results after resurfacing (today with known restricted indications) and cemented as well as cementless THA in aFKN are comparable for the appropriate indication to those in coxarthrosis or other diagnoses. Regardless of the underlying disease endoprosthetic treatment in aFKN leads to good results. Both cemented and cementless fixation techniques can be recommended. Georg Thieme Verlag KG Stuttgart · New York.
Dapunt, Ulrike; Giese, Thomas; Maurer, Susanne; Stegmaier, Sabine; Prior, Birgit; Hänsch, G Maria; Gaida, Matthias M
2015-10-01
Bone infections of patients with joint replacement by endoprosthesis (so called "periprosthetic joint infection") pose a severe problem in the field of orthopedic surgery. The diagnosis is often difficult, and treatment is, in most cases, complicated and prolonged. Patients often require an implant exchange surgery, as the persistent infection and the accompanying inflammation lead to tissue damage with bone degradation and consequently, to a loosening of the implant. To gain insight into the local inflammatory process, expression of the proinflammatory cytokine MRP-14, a major content of neutrophils, and its link to subsequent bone degradation was evaluated. We found MRP-14 prominently expressed in the affected tissue of patients with implant-associated infection, in close association with the chemokine CXCL8 and a dense infiltrate of neutrophils and macrophages. In addition, the number of MRP-14-positive cells correlated with the presence of bone-resorbing osteoclasts. MRP-14 plasma concentrations were significantly higher in patients with implant-associated infection compared with patients with sterile inflammation or healthy individuals, advocating MRP-14 as a novel diagnostic marker. A further biologic activity of MRP-14 was detected: rMRP-14 directly induced the differentiation of monocytes to osteoclasts, thus linking the inflammatory response in implant infections with osteoclast generation, bone degradation, and implant loosening. © Society for Leukocyte Biology.
Zollinger, Paul E; Unal, Halil; Ellis, Maarten L; Tuinebreijer, Wim E
2010-02-17
Complex regional pain syndrome (CRPS) type I may occur as complication after any type of surgery for basal joint arthritis of the thumb. We investigated prospectively in an ongoing study our results after a fully standardized treatment with a total joint prosthesis under vitamin C prophylaxis.Patients with trapeziometacarpal arthritis stage II or III according to Dell, and no benefit from conservative treatment, were selected to undergo joint replacement with a semi-constrained hydroxyapatite coated prosthesis.First web opening and visual analogue scale (VAS) scores for pain, activities of daily living (ADL) and satisfaction were taken pre and postoperatively. Vitamin C 500 mg daily was started two days prior to surgery during 50 days as prevention for CRPS. Post-operative treatment was functional.We performed 40 implantations for trapeziometacarpal arthritis in 34 patients (mean age 60.8 years; 27 females, 7 males) with a mean follow-up of 44 months. Operations were performed in day care under regional (or general) anesthesia.First web opening increased with 15.4 degrees and there was a significant improvement for pain, ADL and satisfaction as well (p = 0.000). Patient satisfaction was strongly associated with the amount of pain reduction. According to the Veldman and IASP criteria, there were no cases of CRPS.The overall complication rate for this procedure is high. Literature reports 5 cases of CRPS after 38 operations with the same implant (13%). We advise vitamin C as prophylaxis against CRPS in trapeziometacarpal joint replacement.
Gonzalez-Perez-Somarriba, Borja; Centeno, Gabriel; Vallellano, Carpóforo; Montes-Carmona, Jose-Francisco
2016-01-01
Background Temporo-Mandibular Joint (TMJ) replacement has been used clinically for years. The objective of this study was to evaluate outcomes achieved in patients with two different categories of TMJ prostheses. Material and Methods All patients who had a TMJ replacement (TMJR) implanted during the study period from 2006 through 2012 were included in this 3-year prospective study. All procedures were performed using the Biomet Microfixation TMJ Replacement System, and all involved replacing both the skull base component (glenoid fossa) and the mandibular condyle. Results Fifty-seven patients (38 females and 19 males), involving 75 TMJs with severe disease requiring reconstruction (39 unilateral, 18 bilateral) were operated on consecutively, and 68 stock prostheses and 7 custom-made prostheses were implanted. The mean age at surgery was 52.6±11.5 years in the stock group and 51.8±11.7 years in the custom-made group. In the stock group, after three years of TMJR, results showed a reduction in pain intensity from 6.4±1.4 to 1.6±1.2 (p<0.001), and an improvement in jaw opening from 2.7±0.9 cm to 4.2±0.7 cm (p<0.001). In the custom-made group, after three years of TMJR, results showed a reduction in pain intensity from 6.0±1.6 to 2.2±0.4 (p<0.001), and an improvement in jaw opening from 1.5±0.5 cm to 4.3±0.6 cm (p<0.001). No statistically significant differences between two groups were detected. Conclusions The results of this three-year prospective study support the surgical placement of TMJ prostheses (stock prosthetic, and custom-made systems), and show that the approach is efficacious and safe, reduces pain, and improves maximum mouth opening movement, with few complications. As such, TMJR represents a viable technique and a stable long-term solution for cranio-mandibular reconstruction in patients with irreversible end-stage TMJ disease. Comparing stock and custom-made groups, no statistically significant differences were detected with respect to pain intensity reduction and maximum mouth opening improvement. Key words:Temporo-mandibular joint, temporo-mandibular joint replacement, prosthesis, biomaterials, biomedical engineering, computer-aided design and manufacturing. PMID:27475697
Robinson, James C; Brown, Timothy T
2014-09-01
To quantify the potential reduction in hospital costs from adoption of best local practices in supply chain management and discharge planning. We performed multivariate statistical analyses of the association between total variable cost per procedure and medical device price and length of stay, controlling for patient and hospital characteristics. Ten hospitals in 1 major metropolitan area supplied patient-level administrative data on 9778 patients undergoing joint replacement, spine fusion, or cardiac rhythm management (CRM) procedures in 2008 and 2010. The impact on each hospital of matching lowest local market device prices and lowest patient length of stay (LOS) was calculated using multivariate regression analysis controlling for patient demographics, diagnoses, comorbidities, and implications. Average variable costs ranged from $11,315 for joint replacement to $16,087 for CRM and $18,413 for spine fusion. Implantable medical devices accounted for a large share of each procedure's variable costs: 44% for joint replacement, 39% for spine fusion, and 59% for CRM. Device prices and patient length-of-stay exhibited wide variation across hospitals. Total potential hospital cost savings from achieving best local practices in device prices and patient length of stay are 14.5% for joint replacement, 18.8% for spine fusion;,and 29.1% for CRM. Hospitals have opportunities for cost reduction from adoption of best local practices in supply chain management and discharge planning.
Kinematic analysis of total knee prosthesis designed for Asian population.
Low, F H; Khoo, L P; Chua, C K; Lo, N N
2000-01-01
In designing a total knee replacement (TKR) prosthesis catering for the Asian population, 62 sets of femur were harvested and analyzed. The morphometrical data obtained were found to be in good agreement with dimensions typical of the Asian knee and has reaffirmed the fact that Caucasian knees are generally larger than Asian knees. Subsequently, these data when treated using a multivariate statistical technique resulted in the establishment of major design parameters for six different sizes of femoral implants. An extra-small implant size with established dimensions and geometrical shape has surfaced from the study. The differences between the Asian knees and the Caucasian knees are discussed. Employing the established femoral dimensions and motion path of the knee joint, the articulating tibia profile was generated. All the sizes of implants were modeled using a computer-aided software package. Thereupon, these models that accurately fits the local Asian knee were transported into a dynamic and kinematic analysis software package. The tibiofemoral joint was modeled successfully as a slide curve joint to study intuitively the motion of the femur when articulating on the tibia surface. An optimal tibia profile could be synthesized to mimic the natural knee path motion. Details of the analysis are presented and discussed.
Bechtold, Joan E.; Swider, Pascal; Goreham-Voss, Curtis; Soballe, Kjeld
2016-01-01
This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical, material, and surgical features to influence implant–bone healing, using a selection of results from two decades of coordinated experimental and numerical work and (b) discuss limitations of such models and the implications for research reproducibility. Focusing model conditions toward the clinical scenario to be studied, and limiting conclusions to the conditions of a particular model can increase clinical relevance and research reproducibility. PMID:26720312
Bah, Mamadou T; Nair, Prasanth B; Browne, Martin
2009-12-01
Finite element (FE) analysis of the effect of implant positioning on the performance of cementless total hip replacements (THRs) requires the generation of multiple meshes to account for positioning variability. This process can be labour intensive and time consuming as CAD operations are needed each time a specific orientation is to be analysed. In the present work, a mesh morphing technique is developed to automate the model generation process. The volume mesh of a baseline femur with the implant in a nominal position is deformed as the prosthesis location is varied. A virtual deformation field, obtained by solving a linear elasticity problem with appropriate boundary conditions, is applied. The effectiveness of the technique is evaluated using two metrics: the percentages of morphed elements exceeding an aspect ratio of 20 and an angle of 165 degrees between the adjacent edges of each tetrahedron. Results show that for 100 different implant positions, the first and second metrics never exceed 3% and 3.5%, respectively. To further validate the proposed technique, FE contact analyses are conducted using three selected morphed models to predict the strain distribution in the bone and the implant micromotion under joint and muscle loading. The entire bone strain distribution is well captured and both percentages of bone volume with strain exceeding 0.7% and bone average strains are accurately computed. The results generated from the morphed mesh models correlate well with those for models generated from scratch, increasing confidence in the methodology. This morphing technique forms an accurate and efficient basis for FE based implant orientation and stability analysis of cementless hip replacements.
Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.
Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian
2018-05-09
Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.
Bayliss, Lee E; Culliford, David; Monk, A Paul; Glyn-Jones, Sion; Prieto-Alhambra, Daniel; Judge, Andrew; Cooper, Cyrus; Carr, Andrew J; Arden, Nigel K; Beard, David J; Price, Andrew J
2017-04-08
Total joint replacements for end-stage osteoarthritis of the hip and knee are cost-effective and demonstrate significant clinical improvement. However, robust population based lifetime-risk data for implant revision are not available to aid patient decision making, which is a particular problem in young patient groups deciding on best-timing for surgery. We did implant survival analysis on all patients within the Clinical Practice Research Datalink who had undergone total hip replacement or total knee replacement. These data were adjusted for all-cause mortality with data from the Office for National Statistics and used to generate lifetime risks of revision surgery based on increasing age at the time of primary surgery. We identified 63 158 patients who had undergone total hip replacement and 54 276 who had total knee replacement between Jan 1, 1991, and Aug 10, 2011, and followed up these patients to a maximum of 20 years. For total hip replacement, 10-year implant survival rate was 95·6% (95% CI 95·3-95·9) and 20-year rate was 85·0% (83·2-86·6). For total knee replacement, 10-year implant survival rate was 96·1% (95·8-96·4), and 20-year implant survival rate was 89·7% (87·5-91·5). The lifetime risk of requiring revision surgery in patients who had total hip replacement or total knee replacement over the age of 70 years was about 5% with no difference between sexes. For those who had surgery younger than 70 years, however, the lifetime risk of revision increased for younger patients, up to 35% (95% CI 30·9-39·1) for men in their early 50s, with large differences seen between male and female patients (15% lower for women in same age group). The median time to revision for patients who had surgery younger than age 60 was 4·4 years. Our study used novel methodology to investigate and offer new insight into the importance of young age and risk of revision after total hip or knee replacement. Our evidence challenges the increasing trend for more total hip replacements and total knee replacements to be done in the younger patient group, and these data should be offered to patients as part of the shared decision making process. Oxford Musculoskeletal Biomedical Research Unit, National Institute for Health Research. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
Two different techniques of manufacturing TMJ replacements - A technical report.
Kozakiewicz, Marcin; Wach, Tomasz; Szymor, Piotr; Zieliński, Rafał
2017-09-01
Presently, during the surgical treatment of the patients in maxillofacial surgery, one can use various medical implants. Moreover custom made implants are being used. Replacements may be fitted to the structure and shape of the human skull owing to CAD/CAM (custom aided design/manufacture) called customized implants. This study was aimed to report for the first time clinical material from which custom implants, using two different techniques, were manufactured to reconstruct the temporomandibular joint (TMJ). In this study, eleven patients with an average age of 54 years were included. All of the patients underwent TMJ reconstruction using direct metal laser sintering (DMLS) or computer numerical control milling (CNC) techniques for implant manufacture. Four of the eleven patients had a malignancy diagnosis, and seven had a benign diagnosis. Patients complained of hypomobility of the TMJ, facial asymmetry, pain and swelling of the preauricular region. Treatment included 7 CNC milled implants and 4 implants in DMLS. More metallic implant parts with a rough surface were associated with the DMLS technique. Post operational, uneventful healing was observed in all clinical cases during an average of 26.8 months of follow-up. Three months post-operation, facial nerve palsy, swallowing disturbances and pain were not observed. Infections, allergic reactions to materials and re-ankylosis were also not observed. Replacements received correct forms and functions owing to the CAM techniques. Post-operational maximal interincisal opening improved (p < 0.01) and was not significantly related to preoperational opening, age, sex, diagnosis or adjuvant radiotherapy. Considering both methods, the feature that differentiates the manufacture technique is the more subtractive surface finishing required for the DMLS implant than the CNC implant. Both techniques resulted the same clinical outcomes and can be used successfully in patients with neoplastic lesions and other TMJ disorders. Unfortunately, DMLS is more vulnerable to fracture. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Mayr, Hermann O; Dietrich, Markwart; Fraedrich, Franz; Hube, Robert; Nerlich, Andreas; von Eisenhart-Rothe, Rüdiger; Hein, Werner; Bernstein, Anke
2009-09-01
A sheep study was conducted to test a press-fit technique using microporous pure beta-tricalcium phosphate (beta-TCP) dowels for fixation of the anterior cruciate ligament (ACL) graft. Microporous (5 mum) cylindrical plugs of beta-TCP (diameter, 7 mm; length, 25 mm) with interconnecting pores were used. The material featured a novel configuration of structure and surface geometry. Implants were tested by use of press-fit fixation of ACL grafts with and without bone blocks in 42 sheep over a period of 24 weeks. Biomechanical, radiologic, histologic, and immunohistochemical evaluations were performed. In load-to-failure tests at 6, 12, and 24 weeks after surgery, the intra-articular graft always failed, not the fixation. Grafts showed bony fixation in the tunnel at 6 weeks and primary healing at the junction of the tunnel and joint after 24 weeks. Tricalcium phosphate was resorbed and simultaneously replaced by bone. Remodeling was still incomplete at 24 weeks. In the sheep model microporous beta-TCP implants used with press-fit fixation of ACL grafts permit early functional rehabilitation. After 6 weeks, the graft is fixed by woven bone or bony integration. Implanted microporous tricalcium phosphate is resorbed and replaced by bone. In a sheep model we showed that primary healing of ACL grafts with resorption and bony replacement of the fixating implant can be achieved by means of press-fit fixation with pure beta-TCP.
Amirtharajah, Mohana; Fufa, Duretti; Lightdale, Nina; Weiland, Andew
2011-01-01
The purpose of this study was to evaluate the one-year clinical, radiologic and patient-reported results of surface-replacing proximal interphalangeal joint arthroplasty (SR-PIP) of the hand. Fifteen patients with 18 joints underwent the procedure, and nine patients with 11 joints had follow-up of at least one year's duration. Of these joints, six had a diagnosis of osteoarthritis with no history of trauma, three had post-traumatic arthritis, one had psoriatic arthritis, and one had erosive arthritis. The mean clinical follow-up was at 3.3 years, and the mean radiographic follow-up was at 3.1 years. The average post-operative gain in range of motion at the PIP joint was 28 degrees and was statistically significant. Six patients completed self-reported questionnaires at a mean of 4.8 years post-operatively. The mean Disabilities of the Arm, Shoulder and Hand (DASH) score post-operatively was 17, and the Michigan Hand Questionnaire (MHQ) score for overall satisfaction was 70. There were three complications but only one reoperation. Seven of 11 joints showed some evidence of subsidence on follow-up radiographic examination. However, no joints were revised sec-ondary to loosening. Longer follow-up is needed to determine if this observable radiologic subsidence leads to symptomatic loosening of the implant PMID:22096433
Haenle, Maximilian; Lindner, Tobias; Ellenrieder, Martin; Willfahrt, Manfred; Schell, Hanna; Mittelmeier, Wolfram; Bader, Rainer
2012-10-01
Nowadays total joint replacement is an indispensable component of modern medicine. The surfaces characteristics of cementless prostheses may be altered to achieve an accelerated and enduring bony integration. Classic surface coatings bear the risk of loosening or flaking from the implant body. This risk is excluded by the chemical conversion of the naturally existing TiO(2) surface layer into calcium titanate. The aim of this experimental animal study was to investigate the bony integration of implants with a new calcium titanate surface (Ca(4)Ti(3)O(10)) compared with a conventional standard Ti6Al4V surface. Cylindrical implants, made of titanium alloy (Ti6Al4V) were implanted in both lateral femoral condyles of New Zealand white rabbits. In each animal, an implant with and without surface treatment was inserted in a blinded manner. Animals were sacrificed after 4, 12, and 36 weeks, respectively. The axial pull-off forces were determined for 25 animals using a universal testing machine (Zwick Z010, Ulm, Germany). Furthermore, a histological analysis of the bony integration of the implants was performed in 12 specimens. In general, the pull-off forces for untreated and treated implants increased with longer survival times of the rabbits. No significant difference could be shown after 4 weeks between treated and untreated implants. After 12 weeks, the treated implants revealed a statistical significant higher pull-off force. After 36 weeks, the pull-off forces for treated and untreated implants aligned again. Titanium implants treated with calcium titanate, may offer an interesting and promising implant surface modification for endoprosthetic implants. They might lead to an accelerated osseointegration of total hip and knee replacements. Copyright © 2012 Wiley Periodicals, Inc.
The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement.
Stokes, Michael D; Greene, Brendan C; Pietrykowski, Luke W; Gambon, Taylor M; Bales, Caroline E; DesJardins, John D
2018-03-01
Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.
[Intraoperative virtual implant planning for volar plate osteosynthesis of distal radius fractures].
Franke, J; Vetter, S Y; Reising, K; Herrmann, S; Südkamp, N P; Grützner, P A; von Recum, J
2016-01-01
Digital planning of implants is in most cases conducted prior to surgery. The virtual implant planning system (VIPS) is an application developed for mobile C-arms, which assists the virtual planning of screws close to the joint line during surgery for treatment of distal radius fractures with volar plate osteosynthesis. The aim of this prospective randomized study was to acquire initial clinical experiences and to compare the VIPS method with the conventional technique. The study included 10 patients for primary testing and 30 patients with distal radius fractures of types A3, C1 and C2, divided in 2 groups. In the VIPS group, after placement of the plate and fracture reduction, a virtual 3D model of the plate was matched with the image of the plate from the fluoroscopic acquisition. Next, the length and position of the screws close to the joint line were planned on the virtual plate. The control group was treated with the same implant in the conventional way. Data were collected regarding screw replacement, fluoroscopy and operating room (OR) times. The VIPS group included six A3, one C1 and eight C2 fractures, while the control group consisted of six A3 and nine C2 fractures. Three screws were replaced in the VIPS group and two in the control group (p = 0.24). The mean intraoperative fluoroscopy time of the VIPS group amounted to 2.58 ± 1.38 min, whereas it was 2.12 ± 0.73 min in the control group (p = 0.26). The mean OR time in the VIPS group was 53.3 ± 34.5 minutes and 42.3 ± 8.8 min (p = 0.23) in the control group. The VIPS enables a precise positioning of screws close to joint line in the treatment of distal radius fractures; however, for routine use, further development of the system is necessary.
Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Pankaj, P; Evans, S L
2013-10-01
As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves ('hits') produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.
Ramos, A; Duarte, R J; Relvas, C; Completo, A; Simões, J A
2013-07-01
The press-fit hip acetabular prosthesis implantation can cause crack formation in the thin regions surrounding the acetabular. As a consequence the presence of cracks in this region can lead to poor fixation and fibrous tissue formation. Numerical and experimental models of commercial press-fit hip replacements were developed to compare the behavior between the intact and implanted joints. Numerical models with an artificial crack and without crack were considered. The iliac and the femur were created through 3D geometry acquisition based on composite human replicas and 3D-Finite Element models were generated. The mechanical behavior was assessed numerically and experimentally considering the principal strains. The comparison between Finite Element model predictions and experimental measurements revealed a maximum difference of 9%. Similar distribution of the principal strains around the acetabular cavity was obtained for the intact and implanted models. When comparing the Von Mises stresses, it is possible to observe that the intact model is the one that presents the highest stress values in the entire acetabular cavity surface. The crack in the posterior side changes significantly the principal strain distribution, suggesting bone loss after hip replacement. Relatively to micromotions, these were higher on the superior side of the acetabular cavity and can change the implant stability and bone ingrowth. Copyright © 2013 Elsevier Ltd. All rights reserved.
Early revisions of the Femoro-Patella Vialla joint replacement.
Williams, D P; Pandit, H G; Athanasou, N A; Murray, D W; Gibbons, C L M H
2013-06-01
The aim of this study was to review the early outcome of the Femoro-Patella Vialla (FPV) joint replacement. A total of 48 consecutive FPVs were implanted between December 2007 and June 2011. Case-note analysis was performed to evaluate the indications, operative histology, operative findings, post-operative complications and reasons for revision. The mean age of the patients was 63.3 years (48.2 to 81.0) and the mean follow-up was 25.0 months (6.1 to 48.9). Revision was performed in seven (14.6%) at a mean of 21.7 months, and there was one re-revision. Persistent pain was observed in three further patients who remain unrevised. The reasons for revision were pain due to progressive tibiofemoral disease in five, inflammatory arthritis in one, and patellar fracture following trauma in one. No failures were related to the implant or the technique. Trochlear dysplasia was associated with a significantly lower rate of revision (5.9% vs 35.7%, p = 0.017) and a lower incidence of revision or persistent pain (11.8% vs 42.9%, p = 0.045). Focal patellofemoral osteoarthritis secondary to trochlear dysplasia should be considered the best indication for patellofemoral replacement. Standardised radiological imaging, with MRI to exclude overt tibiofemoral disease should be part of the pre-operative assessment, especially for the non-dysplastic knee.
[The spectrum of histomorphological findings related to joint endoprosthetics].
Morawietz, L; Krenn, V
2014-11-01
Approximately 230,000 total hip and 170,000 knee joint endoprostheses are implanted in Germany annually of which approximately 10% (i.e. 40,000 interventions per year) are cases of revision surgery. These interventions involve removal of a previously implanted prosthesis which has resulted in complaints and replacement with a new prosthesis. There are manifold reasons for revision surgery, the most common indication being so-called endoprosthesis loosening, which is subdivided into septic and aseptic loosening. Histomorphological studies revealed that periprosthetic tissue from endoprosthesis loosening can be classified into four types (I) wear-particle induced type, (II) infectious type, (III) combined type and (IV) fibrous type. Types I and IV represent aseptic loosening and types II and III septic loosening. Recently, the topic of implant allergy has emerged. The detection of cellular, mostly perivascular lymphocytic infiltrates is discussed as being a sign of an allergic tissue reaction. It has most frequently been observed in type I periprosthetic membranes with a dense load of metal wear, which occurs with metal-on-metal bearings. Apart from endoprosthesis loosening, arthrofibrosis is another complication of joint endoprosthetics and can cause pain and impaired function. Histopathologically, arthrofibrosis can be evaluated by a three-tiered grading system. Furthermore, bone pathologies, such as ossification, osteopenia or osteomyelitis can occur as complications of joint endoprosthetics. This review gives an overview of the whole spectrum of pathological findings in joint endoprosthetics and offers a comprehensive and standardized classification system for routine histopathological diagnostics.
MEMS-Based Power Generation Techniques for Implantable Biosensing Applications
Lueke, Jonathan; Moussa, Walied A.
2011-01-01
Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362
ERIC Educational Resources Information Center
Canavan, Heather E.; Stanton, Michael; Lopez, Kaori; Grubin, Catherine; Graham, Daniel J.
2008-01-01
This article describes a hands-on activity and demonstration developed at the University of Washington and further reined at the University of New Mexico. In this activity, the authors present a real-world problem to the student: Someone has an injured finger joint, and the students in the class need to design an implant to replace it. After…
Jakobsen, Thomas; Baas, Jørgen; Kold, Søren; Bechtold, Joan E.; Elmengaard, Brian; Søballe, Kjeld
2013-01-01
It has been shown that fixation of primary cementless joint replacement can independently be enhanced by either: (1) use of hydroxyapatite (HA) coated implants, (2) compaction of the peri-implant bone, or (3) local application of bisphosphonate. We investigated whether the combined effect ofHAcoating and bone compaction can be further enhanced with the use of local bisphosphonate treatment .HA-coated implants were bilaterally inserted into the proximal tibiae of 10 dogs. On one side local bisphosphonate was applied prior to bone compaction. Saline was used as control on the contralateral side. Implants were evaluated with histomorphometry and biomechanical pushout test. We found that bisphosphonate increased the peri-implant bone volume fraction (1.3-fold), maximum shear strength (2.1-fold), and maximum shear stiffness (2.7-fold). No significant difference was found in bone-to-implant contact or total energy absorption. This study indicates that local alendronate treatment can further improve the fixation of porous-coated implants that have also undergone HA-surface coating and peri-implant bone compaction. PMID:18752278
De Coninck, Tineke; Elsner, Jonathan J; Linder-Ganz, Eran; Cromheecke, Michiel; Shemesh, Maoz; Huysse, Wouter; Verdonk, René; Verstraete, Koenraad; Verdonk, Peter
2014-09-01
In this pilot study we wanted to evaluate the kinematics of a knee implanted with an artificial polycarbonate-urethane meniscus device, designed for medial meniscus replacement. The static kinematic behavior of the implant was compared to the natural medial meniscus of the non-operated knee. A second goal was to evaluate the motion pattern, the radial displacement and the deformation of the meniscal implant. Three patients with a polycarbonate-urethane implant were included in this prospective study. An open-MRI was used to track the location of the implant during static weight-bearing conditions, within a range of motion of 0° to 120° knee flexion. Knee kinematics were evaluated by measuring the tibiofemoral contact points and femoral roll-back. Meniscus measurements (both natural and artificial) included anterior-posterior meniscal movement, radial displacement, and meniscal height. No difference (P>0.05) was demonstrated in femoral roll-back and tibiofemoral contact points during knee flexion between the implanted and the non-operated knees. Meniscal measurements showed no significant difference in radial displacement and meniscal height (P>0.05) at all flexion angles, in both the implanted and non-operated knees. A significant difference (P ≤ 0.05) in anterior-posterior movement during flexion was observed between the two groups. In this pilot study, the artificial polycarbonate-urethane implant, indicated for medial meniscus replacement, had no influence on femoral roll-back and tibiofemoral contact points, thus suggesting that the joint maintains its static kinematic properties after implantation. Radial displacement and meniscal height were not different, but anterior-posterior movement was slightly different between the implant and the normal meniscus. Copyright © 2014 Elsevier Ltd. All rights reserved.
Preoperative Planning of Orthopedic Procedures using Digitalized Software Systems.
Steinberg, Ely L; Segev, Eitan; Drexler, Michael; Ben-Tov, Tomer; Nimrod, Snir
2016-06-01
The progression from standard celluloid films to digitalized technology led to the development of new software programs to fulfill the needs of preoperative planning. We describe here preoperative digitalized programs and the variety of conditions for which those programs can be used to facilitate preparation for surgery. A PubMed search using the keywords "digitalized software programs," "preoperative planning" and "total joint arthroplasty" was performed for all studies regarding preoperative planning of orthopedic procedures that were published from 1989 to 2014 in English. Digitalized software programs are enabled to import and export all picture archiving communication system (PACS) files (i.e., X-rays, computerized tomograms, magnetic resonance images) from either the local working station or from any remote PACS. Two-dimension (2D) and 3D CT scans were found to be reliable tools with a high preoperative predicting accuracy for implants. The short learning curve, user-friendly features, accurate prediction of implant size, decreased implant stocks and low-cost maintenance makes digitalized software programs an attractive tool in preoperative planning of total joint replacement, fracture fixation, limb deformity repair and pediatric skeletal disorders.
Biotribology of artificial hip joints
Di Puccio, Francesca; Mattei, Lorenza
2015-01-01
Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion. PMID:25621213
Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum
2016-02-01
Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.
EFFECT OF MECHANICAL STIMULI ON SKELETAL REGENERATION AROUND IMPLANTS
Leucht, Philipp; Kim, Jae-Beom; Wazen, Rima; Currey, Jennifer A.; Nanci, Antonio; Brunski, John B.; Helms, Jill A.
2007-01-01
Due to the aging population and the increasing need for total joint replacements, osseointegration is of a great interest for various clinical disciplines. Our objective was to investigate the molecular and cellular foundation that underlies this process. Here, we used an in vivo mouse model to study the cellular and molecular response in three distinct areas of unloaded implants: the periosteum, the gap between implant and cortical bone, and the marrow space. Our analyses began with the early phases of healing, and continued until the implants were completely osseointegrated. We investigated aspects of osseointegration ranging from vascularization, cell proliferation, differentiation, and bone remodeling. In doing so, we gained an understanding of the healing mechanisms of different skeletal tissues during unloaded implant osseointegration. To continue our analysis, we used a micromotion device to apply a defined physical stimulus to the implants, and in doing so, we dramatically enhanced bone formation in the peri-implant tissue. By comparing strain measurements with cellular and molecular analyses, we developed an understanding of the correlation between strain magnitudes and fate decisions of cells shaping the skeletal regenerate. PMID:17175211
The Effect of Ag and Ag+N Ion Implantation on Cell Attachment Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urkac, Emel Sokullu; Oztarhan, Ahmet; Gurhan, Ismet Deliloglu
2009-03-10
Implanted biomedical prosthetic devices are intended to perform safely, reliably and effectively in the human body thus the materials used for orthopedic devices should have good biocompatibility. Ultra High Molecular Weight Poly Ethylene (UHMWPE) has been commonly used for total hip joint replacement because of its very good properties. In this work, UHMWPE samples were Ag and Ag+N ion implanted by using the Metal-Vapor Vacuum Arc (MEVVA) ion implantation technique. Samples were implanted with a fluency of 1017 ion/cm2 and extraction voltage of 30 kV. Rutherford Backscattering Spectrometry (RBS) was used for surface studies. RBS showed the presence of Agmore » and N on the surface. Cell attachment properties investigated with model cell lines (L929 mouse fibroblasts) to demonstrate that the effect of Ag and Ag+N ion implantation can favorably influence the surface of UHMWPE for biomedical applications. Scanning electron microscopy (SEM) was used to demonstrate the cell attachment on the surface. Study has shown that Ag+N ion implantation represents more effective cell attachment properties on the UHMWPE surfaces.« less
Panzram, Benjamin; Bertlich, Ines; Reiner, Tobias; Walker, Tilman; Hagmann, Sébastien; Gotterbarm, Tobias
2017-07-01
Cemented unicompartmental knee replacement (UKR) has proven excellent long-term survival rates and functional scores in Price et al. (Clin Orthop Relat Res 435:171-180, 2005), Price and Svard (Clin Orthop Relat Res 469(1):174-179, 2011) and Murray et al. (Bone Joint Surg Br 80(6):983-989, 1998). The main causes for revision, aseptic loosening and pain of unknown origin might be addressed by cementless UKR in Liddle et al. (Bone Joint J 95-B(2):181-187, 2013), Pandit et al. (J Bone Joint Surg Am 95(15):1365-1372, 2013), National Joint Registry for England, Wales and Northern Ireland: 10th Annual Report 2013 ( http://www.njrcentre.org.uk/njrcentre/Portals/0/Documents/England/Reports/10th_annual_report/NJR%2010th%20Annual%20Report%202013%20B.pdf , 2013), Swedish Knee Arthroplasty Register: Annual Report 2013 ( http://www.myknee.se/pdf/SKAR2013_Eng.pdf , 2013). This single-centre retrospective cohort study reports the 5-year follow-up results of our first 30 consecutively implanted cementless Oxford UKR (OUKR). Clinical outcome was measured using the OKS, AKSS, range of movement and level of pain (visual analogue scale). The results were compared to cemented OUKR in a matched-pair analysis. Implant survival was 89.7%. One revision each was performed due to tibial fracture, progression of osteoarthritis (OA) and inlay dislocation. The 5-year survival rate of the cementless group was 89.7% and of the cemented group 94.1%. Both groups showed excellent postoperative clinical scores. Cementless fixation shows good survival rates and clinical outcome compared to cemented fixation.
Tan, H L; Lin, W T; Tang, T T
2012-10-01
Despite improvements in intraoperative antimicrobial procedures, in surgical techniques and in implant design for joint replacement, periprosthetic infection after arthroplasty is still one of the most challenging problems encountered by orthopedic surgeons. Systemic antibiotics are not sufficiently effective to eradicate such deep infections because of the impaired blood circulation and low antibiotic concentration at the implantation site. As a local drug delivery system, antibiotic-impregnated PMMA (polymethylmethacrylate) bone cements have been widely used for prophylaxis or treatment of deep infections after total joint replacement. However, the effectiveness of antibiotic-loaded PMMA in preventing infections after arthroplasty is still controversial. Furthermore, the outcomes of established deep infections treated with this technique are not consistent. The local use of antibiotics has led to the emergence of antibiotic-resistant bacterial strains and has adverse effects on the function of osteogenic cells. Recently, many efforts have been made to identify new antibacterial agents that can be loaded into PMMA. These antimicrobial agents should exhibit good antibacterial activity against antibiotic-resistant strains and should simultaneously enhance osteointegration between the PMMA and the bone tissue. PMMA loaded with chitosan or chitosan derivatives has been demonstrated to induce improved osteogenic activity and to exhibit antibacterial activity in a preclinical study.
Macrophages – Key Cells in the Response to Wear Debris from Joint Replacements
Nich, Christophe; Takakubo, Yuya; Pajarinen, Jukka; Ainola, Mari; Salem, Abdelhakim; Sillat, Tarvo; Rao, Allison J.; Raska, Milan; Tamaki, Yasunobu; Takagi, Michiaki; Konttinen, Yrjö T.; Goodman, Stuart B.; Gallo, Jiri
2013-01-01
The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of pro-inflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented. PMID:23568608
Klára, Tamás; Csönge, Lajos; Janositz, Gábor; Pap, Károly; Lacza, Zsombor
2015-01-11
The authors report the history of a 74-year-old patient who underwent surgical treatment for segmental knee-joint periprosthetic bone loss using structural proximal tibial allografts coated with serum albumin. Successful treatment of late complications which occurred in the postoperative period is also described. The authors emphasize that bone replacement with allografts is a physiological process that enables the stable positioning of the implant and the reconstruction of the soft tissues, the replacement of extensive bone loss, and also it is a less expensive operation. It has been already confirmed that treatment of lyophilised allografts with albumin improves the ability of bone marrow-derived mesenchymal stem cells to adhere and proliferate the surface of the allografts, penetrate the pores and reach deeper layers of the graft. Earlier studies have shown osteoblast activity on the surface and interior of the graft.
A computational method for comparing the behavior and possible failure of prosthetic implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, C.; Hollerbach, K.; Perfect, S.
1995-05-01
Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less
Hip joint replacement using monofilament polypropylene surgical mesh: an animal model.
Białecki, Jacek; Majchrzycki, Marian; Szymczak, Antoni; Klimowicz-Bodys, Małgorzata Dorota; Wierzchoś, Edward; Kołomecki, Krzysztof
2014-01-01
Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur) leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS), triple pelvic osteotomy (TPO), total hip replacement (THR), and femoral head and neck resection (FHNE). The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform.
A preliminary evaluation of limb salvage surgery for osteosarcoma around knee joint.
Wu, Xing; Cai, Zheng-Dong; Chen, Zheng-Rong; Yao, Zhen-Jun; Zhang, Guang-Jian
2012-01-01
To evaluate the effectiveness and drawbacks of diversified procedures of limb salvage surgery (LSS), providing a reference of rational surgical criterion of LSS. Fifty eight patients with stage IIB extremity osteosarcoma around knee joint area between 1992 and 2002 were studied retrospectively. Among them, 43 patients were treated by LSS followed by reconstruction. Reconstruction approaches included re-implantation of irradiation-devitalized tumor bone (n = 12), autoclaving-devitalized tumor bone (n = 8), prosthetic replacement (n = 11), allograft transplantation (n = 8) and vascularized fibula autograft implantation (n = 4). Amputations were performed in 15 patients. Patients were followed up for 6-16 years. There were no significant difference between LSS and amputation groups regarding disease free survival and local recurrence rates. The actuarial 5-year continuous disease free survival and local recurrence rate were 30.0% and 25.0% in patients of devitalized LSS group, whereas those were 56.5% and 8.7% in patients of non-devitalized reconstruction group. The complication rate was significantly higher in LSS group compared to amputation group (P = 0.003). LSS with non-devitalized procedures is the optimal treatment for osteosarcoma around knee joint area. Prosthesis implantation is the preferred option for bone reconstruction following LSS. Prevention and treatment of post-operative complications should be paid more attention to get good long-term outcomes of surgery.
3D printed liner for treatment of periprosthetic joint infections.
Kim, Tae Won B; Lopez, Osvaldo J; Sharkey, Jillian P; Marden, Kyle R; Murshed, Muhammad Ridwan; Ranganathan, Shivakumar I
2017-05-01
In the United States, long standing deep infections of joint arthroplasty, such as total knee and total hip replacements, are treated with two-stage exchange. This requires the removal of the prior implant, placement of an antibiotic eluting spacer block made of polymethylmethacrylate (PMMA), followed by re-implantation of a new implant after treatment with intravenous antibiotics for six to eight weeks. Unfortunately, the use of PMMA as a spacer material has limitations in terms of mechanical and drug-eluting properties. PMMA is brittle and elutes most of the antibiotics within the first few days. Furthermore, the polymerization reaction for PMMA is highly exothermic, thereby limiting the use to heat-stable antibiotics. We hypothesize that the use of a 3D printed polymeric liner made of polylactic acid (PLA) would overcome the limitations of PMMA because it is a stronger and a less brittle material than PMMA. Furthermore, the liner can also act as a controlled drug delivery vehicle by using built in reservoirs and a network of micro-channels as well as by incorporating antibiotics directly into the polymer during manufacturing stage. Finally, the liner can be 3D printed according to the anatomy of the patient and thereby has the potential to transform the manner in which periprosthetic joint infections are currently treated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Haq, Jahrad; Patel, Nishma; Weimer, Katherine; Matthews, N Shaun
2014-04-01
Ankylosis of the temporomandibular joint (TMJ) is a debilitating condition that can result in pain, trismus, and a poor quality of life. It can be caused by injury, infection, and rheumatoid disease. Current management includes gap arthroplasty, interpositional arthroplasty, and reconstruction. Traditionally, joints are reconstructed using stock implants, or the procedure is done in two stages with an additional computed tomography (CT) scan between the resective and reconstructive procedures and use of stereolithographic models to aid the design of the definitive prostheses. We describe a technique for the resection of ankylosis and reconstruction of the joint in a single operation using virtually designed custom-made implants. Five patients with ankylosis of the TMJ had a single stage operation with reconstruction between 2010 and 2012. All had preoperative high-resolution CT with contrast angiography. During an international web-based teleconference between the surgeon and the engineer a virtual resection of the ankylosis was done using the reconstructed CT images. The bespoke cutting guides and implants were designed virtually at the same time and were then manufactured precisely using computer-aided design and manufacture (CAD-CAM) over 6 weeks. After release of the ankylosis and reconstruction, the patients underwent an exercise regimen to improve mouth opening. Follow-up was for a minimum of 6 months. Four patients had one operation, and one patient had two. Median/Mean maximum incisal opening increased from 0.6mm before operation to 25 mm afterwards (range 23-27), and there was minimal surgical morbidity. This new method effectively treats ankylosis of the TMJ in a single stage procedure. Fewer operations and hospital stays, and the maintenance of overall clinical outcome are obvious advantages. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Architectural design of diamond-like carbon coatings for long-lasting joint replacements.
Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan
2013-07-01
Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.
Wear Behavior of an Unstable Knee: Stabilization via Implant Design?
Reinders, Jörn; Kretzer, Jan Philippe
2014-01-01
Background. Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. Methods. Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. Results. Significantly higher wear rates (P ≤ 0.001) were observed for the unstable knee (14.58 ± 0.56 mg/106 cycles) compared to the stable knee (7.97 ± 0.87 mg/106 cycles). A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P ≤ 0.01). This increase was mainly attributed to higher tibial posterior translation and internal rotations. Conclusion. Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study. PMID:25276820
NASA Astrophysics Data System (ADS)
Slane, Joshua A.
Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly increase the cumulative antibiotic release from acrylic cement, and (3) silver nanoparticles are a potential alternative to traditional antibiotics in cement, such as gentamicin.
Orthopaedic management of haemophilia arthropathy of the ankle.
Pasta, G; Forsyth, A; Merchan, C R; Mortazavi, S M J; Silva, M; Mulder, K; Mancuso, E; Perfetto, O; Heim, M; Caviglia, H; Solimeno, L
2008-07-01
Joint bleeding, or haemarthrosis, is the most common type of bleeding episode experienced by individuals with haemophilia A and B. This leads to changes within the joints, including synovial proliferation, which results in further bleeding and chronic synovitis. Blood in the joint can also directly damage the cartilage, and with repeated bleeding, there is progressive destruction of both cartilage and bone. The end result is known as haemophilic arthropathy. The joints most commonly affected are the knees, elbows and ankles, although any synovial joint may be involved. In the ankle, both the tibiotalar and subtalar joints may be affected and joint bleeding and arthropathy can lead to a number of deformities. Haemophilic arthropathy can be prevented through regular factor replacement prophylaxis and implementing physiotherapy. However, when necessary, there are multiple surgical and non-surgical options available. In early ankle arthropathy with absent or minimal joint changes, both radioisotopic and chemical synoviorthesis can be used to reduce the hypertrophied synovium. These procedures can decrease the frequency of bleeding episodes, minimizing the risk of articular cartilage damage. Achilles tendon lengthening can be performed, in isolation or in combination with other surgical measures, to correct Achilles tendon contractures. Both arthroscopic and open synovectomies are available as a means to remove the friable villous layer of the synovium and are often indicated when bleeding episodes cannot be properly controlled by factor replacement therapy or synoviorthesis. In the later stages of ankle arthropathy, other surgical options may be considered. Debridement may be indicated when there are loose pieces of cartilage or anterior osteophytes, and can help to improve the joint function, even in the presence of articular cartilage damage. Supramalleolar tibial osteotomy may be indicated in patients with a valgus deformity of the hindfoot without degenerative radiographic findings. Joint fusion, or arthrodesis, is the treatment of choice in the advanced stages of ankle arthropathy although total ankle replacement is currently available. Early ankle replacement components were associated with a poor outcome, but as implant designs have improved, there have been successful outcomes achieved. As the ankle is a commonly affected joint in many individuals with haemophilia, it is important to add to the knowledge base to validate indications and timing of surgical and non-surgical interventions in ankle arthropathy.
Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K
2018-03-18
To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System ® ). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.
Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K
2018-01-01
AIM To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. METHODS An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System®). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. CONCLUSION Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results. PMID:29564210
Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C
2014-09-01
To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.
Wang, Henry; Foster, Jonathan; Franksen, Natasha; Estes, Jill; Rolston, Lindsey
2018-04-01
Newer TKR designs have been introduced to the market with the aim of overcoming common sizing problems with older TKR designs. Furthermore, since a sizable percentage of patients with OA present with disease limited to the medial/lateral knee compartment in addition to the patellofemoral joint, for whom, a customized bi-compartmental knee replacement (BKR) is available as a treatment option. To date, there is very little information regarding knee strength and mechanics during gait for patients implanted with these modern TKR and BKR designs. The purpose of the study was to evaluate knee strength and mechanics during walking for patients with either a modern off the shelf TKR or a customized BKR and compare these findings to a cohort of healthy controls. Twelve healthy controls, eight BKR, and nine TKR patients participated in the study. Maximal isometric knee strength was evaluated. 3D kinematic and kinetic analyses were conducted for level walking. The TKR knee exhibited less peak extensor torque when compared to, both the BKR and control limbs (p < 0.05). The TKR knee had less extensor moment at stance than both the BKR and control knees (p < 0.05). Both the BKR and control knees displayed larger internal rotation at stance than that of the TKR knee (p < 0.05). This study suggests that, for patients that exhibit isolated OA of the tibiofemoral joint, using a customized BKR implant is a viable treatment option and may contribute to superior mechanical advantages.
A contact mechanics model for ankle implants with inclusion of surface roughness effects
NASA Astrophysics Data System (ADS)
Hodaei, M.; Farhang, K.; Maani, N.
2014-02-01
Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.
[Patellar bone deficiency in revision total knee arthroplasty].
Kloiber, J; Goldenitsch, E; Ritschl, P
2016-05-01
Patellar bone deficiency in revision total knee arthroplasty (TKA) determines the surgical procedure. Different reconstructive and ablative techniques, dependent on the remaining bone stock, are described. The primary patella implant can be retained in up to 50 % of revision situations. Reasons for replacement are aseptic and septic loosening, implant failure, expanding osteolysis, maltracking of the patella and "metal-backed" prosthesis. The aim of the reconstruction is the stable fixation and proper tracking of the implant by restoring the extensor mechanism. Dependent on the extent of bone loss and the availability of a patellar rim, the following surgical procedures are recommended. When the remaining bone thickness is 10 mm or more: implantation of a polyethylene "onlay-type" patella; when it is between 6-9 mm and there is an intact patellar rim: reconstruction with a biconvex "inlay-type" patella implant, where the biconvex shape replaces the bone defect partially. When there is deficient bone stock (less than 6 mm) or no cortical patellar rim then augmenting procedures with autologous spongiosa and procedures such as "impaction bone grafting", "trabecular metal" prosthesis, where the trabecular part of the implant serves as the base for the cemented polyethylene button, "gull-wing" osteotomy, which is an adapting and configuring technique of osteotomy; and in exceptional cases patelloplasty or patellectomy are used. Regarding the importance of the patellar component in biomechanics of the joint and function of the extensor mechanism, the reconstruction of the patella should be the primary aim. Patelloplasty or patellectomy should be avoided.
Hip replacement in femoral head osteonecrosis: current concepts
Scaglione, Michelangelo; Fabbri, Luca; Celli, Fabio; Casella, Francesco; Guido, Giulio
2015-01-01
Summary Osteonecrosis of the femoral head is a destructive disease that usually affects young adults with high functional demands and can have devastating effects on hip joint. The treatment depends on extent and location of the necrosis lesion and on patient’s factors, that suggest disease progression, collapse probability and also implants survival. Non-idiopathic osteonecrosis patients had the worst outcome. There is not a gold standard treatment and frequently it is necessary a multidisciplinary approach. Preservation procedures of the femoral head are the first choice and can be attempted in younger patients without head collapse. Replacement procedure remains the main treatment after failure of preserving procedures and in the late-stage ONFH, involving collapse of the femoral head and degenerative changes to the acetabulum. Resurfacing procedure still has good results but the patient selection is a critical factor. Total hip arthroplasties had historically poor results in patients with osteonecrosis. More recently, reports have shown excellent results, but implant longevity and following revisions are still outstanding problems. PMID:27134633
RSA and registries: the quest for phased introduction of new implants.
Nelissen, Rob G H H; Pijls, Bart G; Kärrholm, Johan; Malchau, Henrik; Nieuwenhuijse, Marc J; Valstar, Edward R
2011-12-21
Although the overall survival of knee and hip prostheses at ten years averages 90%, recent problems with several hip and knee prostheses have illustrated that the orthopaedic community, industry, and regulators can still further improve patient safety. Given the early predictive properties of roentgen stereophotogrammetric analysis (RSA) and the meticulous follow-up of national joint registries, these two methods are ideal tools for such a phased clinical introduction. In this paper, we elaborate on the predictive power of RSA within a two-year follow-up after arthroplasty and its relationship to national joint registries. The association between RSA prosthesis-migration data and registry data is evaluated. The five-year rate of revision of RSA-tested total knee replacements was compared with that of non-RSA-tested total knee replacements. Data were extracted from the published results of the national joint registries of Sweden, Australia, and New Zealand. There was a 22% to 35% reduction in the number of revisions of RSA-tested total knee replacements as compared with non-RSA-tested total knee replacements in the national joint registries. Assuming that the total cost of total knee arthroplasty is $37,000 in the United States, a 22% to 35% reduction in the number of revisions (currently close to 55,000 annually) could lead to an estimated annual savings of over $400 million to the health-care system. The phased clinical introduction of new prostheses with two-year RSA results as a qualitative tool could lead to better patient care and could reduce the costs associated with revision total knee arthroplasty. Follow-up in registries is necessary to substantiate these results and to improve post-market surveillance.
Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop.
Augustine, Scott D
2017-06-23
Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.
Forced-Air Warming Discontinued: Periprosthetic Joint Infection Rates Drop
Augustine, Scott D.
2017-01-01
Several studies have shown that the waste heat from forced-air warming (FAW) escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI) following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW) at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002). The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs. PMID:28713524
A Strategic Management Plan to Adopt a New Methodology for Treating Total Joint Replacement Patients
2007-06-28
approaches. Market penetration will be accomplished by community seminars, increased advertisement and word of mouth by highly satisfied patients. The...External Environment pg. 13 Service Area Competitor Analysis pg. 15 Internal Analysis pg. 21 Directional Strategies pg. 25 Adaptive pg. 27 Market Entry...making them unable to pursue a low or set price marketing strategy . Most suppliers do not dictate which brand implant a physician may use. This flexibility
Dreischarf, Marcel; Schmidt, Hendrik; Putzier, Michael; Zander, Thomas
2015-09-18
Total disc replacement has been introduced to overcome negative side effects of spinal fusion. The amount of iatrogenic distraction, preoperative disc height and implant positioning have been considered important for surgical success. However, their effect on the postoperative range of motion (RoM) and loading of the facets merits further discussion. A validated osteoligamentous finite element model of the lumbosacral spine was employed and extended with four additional models to account for different disc heights. An artificial disc with a fixed center of rotation (CoR) was implemented in L5-S1. In 4000 simulations, the influence of distraction and the CoR's location on the RoM, facet joint forces (FJFs) and facet capsule ligament forces (FCLFs) was investigated. Distraction substantially altered segmental kinematics in the sagittal plane by decreasing range of flexion (0.5° per 1mm of distraction), increasing range of extension (0.7°/mm) and slightly affecting complete sagittal RoM (0.2°/mm). The distraction already strongly increased the FCLFs during surgery (up to 230N) and in flexion (~12N/mm), with higher values in models with larger preoperative disc heights, and increased FJFs in extension. A more anterior implant location decreased the RoM in all planes. In most loading cases, a more posterior location of the implant's CoR increased the FJFs and FCLFs, whereas a more caudal location increased the FCLFs but decreased the FJFs. The results of this study may explain the worse clinical results in patients with overdistraction after TDR. The complete RoM in the sagittal plane appears to be insensitive to detecting surgery-related biomechanical changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
Kurtz, S. M.; Devine, J. N.
2007-01-01
Since the 1980s, polyaryletherketones (PAEKs) have been increasingly employed as biomaterials for trauma, orthopedic, and spinal implants. We have synthesized the extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials. With this foundation, one can more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible. Due to its relative inertness, PEEK biomaterials are an attractive platform upon which to develop novel bioactive materials, and some steps have already been taken in that direction, with the blending of HA and TCP into sintered PEEK. However, to date, blended HA-PEEK composites have involved a trade-off in mechanical properties in exchange for their increased bioactivity. PEEK has had the greatest clinical impact in the field of spine implant design, and PEEK is now broadly accepted as a radiolucent alternative to metallic biomaterials in the spine community. For mature fields, such as total joint replacements and fracture fixation implants, radiolucency is an attractive but not necessarily critical material feature. PMID:17686513
Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.
2016-01-01
Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086
Hip Joint Replacement Using Monofilament Polypropylene Surgical Mesh: An Animal Model
Białecki, Jacek; Klimowicz-Bodys, Małgorzata Dorota; Wierzchoś, Edward; Kołomecki, Krzysztof
2014-01-01
Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur) leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS), triple pelvic osteotomy (TPO), total hip replacement (THR), and femoral head and neck resection (FHNE). The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform. PMID:24987672
Lee, Jin-Hwa; Choo, Hyeran; Kim, Seong-Hun; Chung, Kyu-Rhim; Giannuzzi, Lucille A; Ngan, Peter
2011-06-01
When mini-implants fail during orthodontic treatment, there is a need to have a backup plan to either replace the failed implant in the adjacent interradicular area or wait for the bone to heal before replacing the mini-implant. We propose a novel way to overcome this problem by replacement with a miniplate so as not to interrupt treatment or prolong treatment time. The indications, advantages, efficacy, and procedures for switching from a mini-implant to a miniplate are discussed. Two patients who required replacement of failed mini-implants are presented. In the first patient, because of the proximity of the buccal vestibule to the mini-implant, it was decided to replace the failed mini-implant by an I-shaped C-tube miniplate. In the second patient, radiolucencies were found around the failed mini-implants, making the adjacent alveolar bone unavailable for immediate placement of another mini-implant. In addition, the maxillary sinus pneumatization was expanded deeply into the interradicular spaces; this further mandated an alternative placement site. One failed mini-implant was examined under a scanning electron microscope for bone attachment. Treatment was completed in both patients after replacement with miniplates without interrupting the treatment mechanics or prolonging the treatments. Examination under the scanning electron microscope showed partial bone growth into the coating pores and titanium substrate interface even after thorough cleaning and sterilization. Replacement with a miniplate is a viable solution for failed mini-implants during orthodontic treatment. The results from microscopic evaluation of the failed mini-implant suggest that stringent guidelines are needed for recycling used mini-implants. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
The Influence Of Component Alignment On The Life Of Total Knee Prostheses
NASA Astrophysics Data System (ADS)
Bugariu, Delia; Bereteu, Liviu
2012-12-01
An arthritic knee affects the patient's life by causing pain and limiting movement. If the cartilage and the bone surfaces are severely affected, the natural joint is replaced with an artificial joint. The procedure is called total knee arthroplasty (TKA). Lately, the numbers of implanted total knee prostheses grow steadily. An important factor in TKA is the perfect alignment of the total knee prosthesis (TKP) components. Component misalignment can lead to the prosthesis loss by producing wear particles. The paper proposes a study on mechanical behaviors of a TKP based on numerical analysis, using ANSYS software. The numerical analysis is based on both the normal and the changed angle of the components alignment.
Aoyama, Shigeru; Kino, Koji; Shibuya, Toshihisa; Sato, Fumiaki; Kobayashi, Akiko; Yoshitake, Hiroyuki; Haketa, Tadasu; Amamori, Yoko; Ishikawa, Takayuki; Yoshida, Nahoko; Amagasa, Teruo
2003-09-01
We have carried out temporary silicone implants after diskectomies or arthroplasties in temporomandibular joint surgeries to avoid postoperative adhesion and to maintain articular space. We evaluated 19 joints in 15 patients who had received dacron-reinforced silicone implant after silicone sheet removal through follow-up for at least 6 months. The cases included temporomandibular joint disorder (10 joints in 9 patients), psoriatic arthritis (2 joints in 1 patient), ankylosis (4 joints in 3 patients) and synovial chondromatosis (2 joints in 2 patients). On the basis of the criteria of temporomandibular dysfunction for the results, they were classified as bad (4 patients). It is thought that factors other than the implant are related to the bad results in the postoperative evaluation. In this study, lymphadenopathy induced by exfoliated silicone debris could not be confirmed. The temporary silicone implant in the temporomandibular joint was thought to be useful.
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
Finite element analysis on a medical implant.
Semenescu, Augustin; Radu-Ioniță, Florentina; Mateș, Ileana Mariana; Bădică, Petre; Batalu, Nicolae Dan; Negoita, Olivia Doina; Purcarea, Victor Lorin
2016-01-01
Several studies have shown a tight connection between several ocular pathologies and an increased risk of hip fractures due to falling, especially among elderly patients. The total replacement of the hip joint is a major surgical intervention that aims to restore the function of the affected hip by various factors, such as arthritis, injures, and others. A corkscrew-like femoral stem was designed in order to preserve the bone stock and to prevent the occurrence of iatrogenic fractures during the hammering of the implant. In this paper, the finite element analysis for the proposed design was applied, considering different loads and three types of materials. A finite element analysis is a powerful tool to simulate, optimize, design, and select suitable materials for new medical implants. The results showed that the best scenario was for Ti6Al4V alloy, although Ti and 316L stainless steel had a reasonable high safety factor.
Management of an infected cementless cup with prosthetic retention and antibiotic therapy in a dog.
Dan, B J; Kim, S E; Pozzi, A
2014-11-01
A two-year-old Rottweiler presented for acute onset of a right hindlimb lameness 20 weeks after a cementless total hip replacement (THR) and 16 weeks after open reduction to address luxation of the THR. Radiographs revealed periosteal proliferation of the medial acetabulum and a stable implant. Synovial fluid cytology was consistent with inflammatory joint fluid. Treatment consisted of surgical debridement and intravenous and oral antibiotics. THR implants were not removed. Culture of tissue removed from the THR site yielded growth of Pseudomonas and Staphylococcus species. Lameness resolved 2 months after surgery. Twenty months after surgery, the dog was exercising normally with no clinical lameness and pelvic radiographs revealed no evidence of implant loosening and markedly decreased periosteal reaction. To the authors' knowledge, this is the first report of an infected THR site successfully treated without prosthesis explantation in the dog. © 2014 British Small Animal Veterinary Association.
Tribology and total hip joint replacement: current concepts in mechanical simulation.
Affatato, S; Spinelli, M; Zavalloni, M; Mazzega-Fabbro, C; Viceconti, M
2008-12-01
Interest in the rheology and effects of interacting surfaces is as ancient as man. This subject can be represented by a recently coined word: tribology. This term is derived from the Greek word "tribos" and means the "science of rubbing". Friction, lubrication, and wear mechanism in the common English language means the precise field of interest of tribology. Wear of total hip prosthesis is a significant clinical problem that involves, nowadays, a too high a number of patients. In order to acquire further knowledge on the tribological phenomena that involve hip prosthesis wear tests are conducted on employed materials to extend lifetime of orthopaedic implants. The most basic type of test device is the material wear machine, however, a more advanced one may more accurately reproduce some of the in vivo conditions. Typically, these apparatus are called simulators, and, while there is no absolute definition of a joint simulator, its description as a mechanical rig used to test a joint replacement, under conditions approximating those occurring in the human body, is acceptable. Simulator tests, moreover, can be used to conduct accelerated protocols that replicate/simulate particularly extreme conditions, thus establishing the limits of performance for the material. Simulators vary in their level of sophistication and the international literature reveals many interpretations of the design of machines used for joint replacement testing. This paper aims to review the current state of the art of the hip joint simulators worldwide. This is specified through a schematic overview by describing, in particular, constructive solutions adopted to reproduce in vivo conditions. An exhaustive commentary on the evolution and actually existing simulation standards is proposed by the authors. The need of a shared protocol among research laboratories all over the world could lead to a consensus conference.
Pelvic position and movement during hip replacement.
Grammatopoulos, G; Pandit, H G; da Assunção, R; Taylor, A; McLardy-Smith, P; De Smet, K A; Murray, D W; Gill, H S
2014-07-01
The orientation of the acetabular component is influenced not only by the orientation at which the surgeon implants the component, but also the orientation of the pelvis at the time of implantation. Hence, the orientation of the pelvis at set-up and its movement during the operation, are important. During 67 hip replacements, using a validated photogrammetric technique, we measured how three surgeons orientated the patient's pelvis, how much the pelvis moved during surgery, and what effect these had on the final orientation of the acetabular component. Pelvic orientation at set-up, varied widely (mean (± 2, standard deviation (sd))): tilt 8° (2sd ± 32), obliquity -4° (2sd ± 12), rotation -8° (2sd ± 14). Significant differences in pelvic positioning were detected between surgeons (p < 0.001). The mean angular movement of the pelvis between set-up and component implantation was 9° (sd 6). Factors influencing pelvic movement included surgeon, approach (posterior > lateral), procedure (hip resurfacing > total hip replacement) and type of support (p < 0.001). Although, on average, surgeons achieved their desired acetabular component orientation, there was considerable variability (2sd ± 16) in component orientation. We conclude that inconsistency in positioning the patient at set-up and movement of the pelvis during the operation account for much of the variation in acetabular component orientation. Improved methods of positioning and holding the pelvis are required. ©2014 The British Editorial Society of Bone & Joint Surgery.
Hoerth, Rebecca M; Katunar, María R; Gomez Sanchez, Andrea; Orellano, Juan C; Ceré, Silvia M; Wagermaier, Wolfgang; Ballarre, Josefina
2014-02-01
Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.
Physicochemical and microscopic characterization of implant-abutment joints.
Lopes, Patricia A; Carreiro, Adriana F P; Nascimento, Rubens M; Vahey, Brendan R; Henriques, Bruno; Souza, Júlio C M
2018-01-01
The purpose of this study was to investigate Morse taper implant-abutment joints by chemical, mechanical, and microscopic analysis. Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant-abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant-abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant-abutment joints. Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant-abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant-abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication.
Nečas, D; Vrbka, M; Urban, F; Gallo, J; Křupka, I; Hartl, M
2017-05-01
The aim of the present study is to provide an analysis of protein film formation in hip joint replacements considering real conformity based on in situ observation of the contact zone. The main attention is focused on the effect of implant nominal diameter, diametric clearance and material. For this purpose, a pendulum hip joint simulator equipped with electromagnetic motors enabling to apply continuous swinging flexion-extension motion was employed. The experimental configuration consists of femoral component (CoCrMo, BIOLOX®forte, BIOLOX®delta) and acetabular cup from optical glass fabricated according to the dimensions of real cups. Two nominal diameters were studied, 28 and 36mm, respectively, while different diametric clearances were considered. Initially, a static test focused on the protein adsorption onto rubbing surfaces was performed with 36mm implants. It was found that the development of adsorbed layer is much more stable in the case of metal head, indicating that the adsorption forces are stronger compared to ceramic. A consequential swinging test revealed that the fundamental parameter influencing the protein film formation is diametric clearance. Independently of implant diameter, film was much thicker when a smaller clearance was considered. An increase of implant size from 28mm to 36mm did not cause a substantial difference in film formation; however, the total film thickness was higher for smaller implant. In terms of material, metal heads formed a thicker film, while this fact can be, among others, also attributed to clearance, which is more than two times higher in the case of ceramic implant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Phil; Lyons, Matt; O'Sullivan, Michael
2018-02-01
Despite the well-documented decline in the use of metal-on-metal (MoM) implants over the last decade, there are still controversies regarding whether all MoM implants are created equally. Complications such as elevated serum metal ion levels, aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) and pseudotumours have all been well documented, but recent studies suggest increased risk of infection with MoM bearing surfaces. Most of these studies however have small patient numbers. The purpose of this study was to examine the cumulative incidence of revision for infection of MoM bearing surfaces in primary hip arthroplasty at a national and single-surgeon level. Data was collected from the Australian Orthopaedic Association National Joint Replacement Registry, which contains over 98% of all arthroplasties performed in Australia since 2001. The cumulative incidence of revision for infection was extracted at a national level and single-surgeon level. Two hundred seventy-six thousand eight hundred seventy-eight subjects were documented in the Australian registry. The 10-year cumulative percent revision for infection of MoM bearing surfaces in primary total hip replacement (THR) was 2.5% at a national level, compared to 0.8% for other bearing surfaces. The senior author contributed 1755 subjects with 7-year follow-up and a cumulative percent revision for infection of MoM bearing surfaces in primary THR of 36.9%, compared to 2.0% for other bearing surfaces. The cumulative percent of revision of MoM bearing surfaces is higher compared to other bearing surfaces; this is especially pronounced in cumulative percent of revision for infection. There was a higher cumulative percent of revision for infection in MoM bearings surfaces (in particular, large-head MoM) compared to other bearing surfaces at both the national and individual-surgeon level.
Importance of preclinical evaluation of wear in hip implant designs using simulator machines.
Trommer, Rafael Mello; Maru, Márcia Marie
2017-01-01
Total hip arthroplasty (THA) is a surgical procedure that involves the replacement of the damaged joint of the hip by an artificial device. Despite the recognized clinical success of hip implants, wear of the articulating surfaces remains as one of the critical issues influencing performance. Common material combinations used in hip designs comprise metal-on-polymer (MoP), ceramic-on-polymer (CoP), metal-on-metal (MoM), and ceramic-on-ceramic (CoC). However, when the design of the hip implant is concerned besides the materials used, several parameters can influence its wear performance. In this scenario, where the safety and efficacy for the patient are the main issues, it is fundamental to evaluate and predict the wear rate of the hip implant design before its use in THA. This is one of the issues that should be taken into account in the preclinical evaluation step of the product, in which simulated laboratory tests are necessary. However, it is fundamental that the applied motions and loads can reproduce the wear mechanisms physiologically observed in the patient. To replicate the in vivo angular displacements and loadings, special machines known as joint simulators are employed. This article focuses on the main characteristics related to the wear simulation of hip implants using mechanical simulators, giving information to surgeons, researchers, regulatory bodies, etc., about the importance of preclinical wear evaluation. A critical analysis is performed on the differences in the principles of operation of simulators and their effects on the final results, and about future trends in wear simulation.
Nicoll, Roxanna J; Sun, Albert; Haney, Stephan; Turkyilmaz, Ilser
2013-01-01
The fabrication of an accurately fitting implant-supported fixed prosthesis requires multiple steps, the first of which is assembling the impression coping on the implant. An imprecise fit of the impression coping on the implant will cause errors that will be magnified in subsequent steps of prosthesis fabrication. The purpose of this study was to characterize the 3-dimensional (3D) precision of fit between impression coping and implant replica pairs for 3 implant systems. The selected implant systems represent the 3 main joint types used in implant dentistry: external hexagonal, internal trilobe, and internal conical. Ten impression copings and 10 implant replicas from each of the 3 systems, B (Brånemark System), R (NobelReplace Select), and A (NobelActive) were paired. A standardized aluminum test body was luted to each impression coping, and the corresponding implant replica was embedded in a stone base. A coordinate measuring machine was used to quantify the maximum range of displacement in a vertical direction as a function of the tightening force applied to the guide pin. Maximum angular displacement in a horizontal plane was measured as a function of manual clockwise or counterclockwise rotation. Vertical and rotational positioning was analyzed by using 1-way analysis of variance (ANOVA). The Fisher protected least significant difference (PLSD) multiple comparisons test of the means was applied when the F-test in the ANOVA was significant (α=.05). The mean and standard deviation for change in the vertical positioning of impression copings was 4.3 ±2.1 μm for implant system B, 2.8 ±4.2 μm for implant system R, and 20.6 ±8.8 μm for implant system A. The mean and standard deviation for rotational positioning was 3.21 ±0.98 degrees for system B, 2.58 ±1.03 degrees for system R, and 5.30 ±0.79 degrees for system A. The P-value for vertical positioning between groups A and B and between groups A and R was <.001. No significant differences were found for vertical positioning between groups B and R. The P-value for rotational positioning between groups A and B and between groups A and R was <.001. No significant differences were found for rotational positioning between groups B and R. The results of the study confirmed that implant systems differ in precision of fit. Vertical precision between paired implant components is a function of joint type and the tightening force applied to the guide pin. The magnitude of vertical displacement with applied torque is greater for conical connections than for butt joint connections. The rotational freedom between paired components is unique to the implant system and is presumably related to the machining tolerances specified by the manufacturer. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Manor, Yifat; Chaushu, Gavriel; Lorean, Adi; Mijiritzky, Eithan
2015-01-01
To evaluate the survival rate of dental implants replacing failed implants in grafted maxillary sinuses using the lateral approach vs nongrafted posterior maxillae. A retrospective analysis was conducted to study the survival of secondary dental implants inserted in the posterior maxilla in previously failed implant sites between the years 2000 and 2010. The study group consisted of patients who had also undergone maxillary sinus augmentation, and the control group consisted of patients in whom implants in the posterior maxilla had failed. Clinical and demographic data were analyzed using a structured form. Seventy-five patients with a total of 75 replaced implants were included in the study. The study group comprised 40 patients and the control group, 35 patients. None of the replaced implants in the study group failed, resulting in an overall survival of 100%; three replaced implants in the control group failed (92% survival). The main reason for the primary implant removal was lack of osseointegration (35 [87.5%] of 40 study group implants and 23 [65.7%] of 35 control group implants [P = .027]). The difference between the groups with regard to the timing of primary implant failure was statistically significant. The study group had more early failures of the primary implant than did the control group (77% vs 62%; P = .038). Dental implants replaced in the posterior maxilla had a high survival rate. A higher rate of survival was found in augmented maxillary sinus sites. Within the limits of the present study, it can be concluded that previous implant failures in the grafted maxillary sinus should not discourage practitioners from a second attempt.
Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S
2015-11-01
Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p < 0.05). Bone with high stress was also correlated with both glenoid width and implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Zhang, Yan; Wang, Yang; Anderson, Kirsten; Novikov, Andrey; Liu, Zikou; Pacheco, Karin; Dai, Shaodong
2017-09-15
T cell mediated hypersensitivity to nickel (Ni 2+ ) is one of the most common causes of allergic contact dermatitis. Ni 2+ sensitization may also contribute to the failure of Ni 2+ containing joint implants, and revision to non-Ni 2+ containing hardware can be costly and debilitating. Previously, we identified Ni 2+ mimotope peptides, which are reactive to a CD4 + T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni 2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni 2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni 2+ induced contact dermatitis. Here, we generated DR52c/Ni 2+ mimotope tetramers, and used them to test if the same Ni 2+ T cell activation mechanism could be generalized to Ni 2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3T cell transfectomas. The DR52c/Ni 2+ mimotope tetramer detected Ni 2+ reactive CD4 + T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni 2+ sensitized by patch testing and a positive Ni 2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni 2+ stimulation induced the expansion of Vβ17 positive CD4 + T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni 2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni 2+ independent mimotope tetramers may be a useful tool to identify the Ni 2+ reactive CD4 + T cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Sendi, Parham; Borens, Olivier; Wahl, Peter; Clauss, Martin; Uçkay, Ilker
2017-01-01
In this position paper, we review definitions related to this subject and the corresponding literature. Our recommendations include the following statements. Asymptomatic bacteriuria, asymptomatic leukocyturia, urine discolouration, odd smell or positive nitrite sediments are not an indication for antimicrobial treatment. Antimicrobial treatment of asymptomatic bacteriuria does not prevent periprosthetic joint infection, but is associated with adverse events, costs and antibiotic resistance development. Urine analyses or urine cultures in asymptomatic patients undergoing orthopaedic implants should be avoided. Indwelling urinary catheters are the most frequent reason for healthcare-associated urinary tract infections and should be avoided or removed as soon as possible. PMID:28894690
Propionibacterium Acnes Infection of a Metacarpophalangeal Joint Arthroplasty.
Bacle, Guillaume; Sikora, Sheena K; Ek, Eugene T H
2017-05-01
Neglected and underestimated in the past, Propionibacterium acnes is currently the most prevalent organism associated with deep prosthetic infections around the shoulder. Surprisingly, it has never been reported as a cause of infection in the hand. Here we report a case of a late presentation of a P. acnes infection in a metacarpophalangeal joint replacement, resulting in chronic low-grade pain with movement. The patient underwent a 2-stage revision, with initial removal of the prosthesis. Positive cultures for P. acnes required 15 days of extended incubation. The patient subsequently had 6 weeks of oral antibiotics followed by a second-stage revision with a Silastic implant. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Gonzalez-Perez, L-M; Gonzalez-Perez-Somarriba, B; Centeno, G; Vallellano, C; Montes-Carmona, J-F
2016-11-01
Temporo-Mandibular Joint (TMJ) replacement has been used clinically for years. The objective of this study was to evaluate outcomes achieved in patients with two different categories of TMJ prostheses. All patients who had a TMJ replacement (TMJR) implanted during the study period from 2006 through 2012 were included in this 3-year prospective study. All procedures were performed using the Biomet Microfixation TMJ Replacement System, and all involved replacing both the skull base component (glenoid fossa) and the mandibular condyle. Fifty-seven patients (38 females and 19 males), involving 75 TMJs with severe disease requiring reconstruction (39 unilateral, 18 bilateral) were operated on consecutively, and 68 stock prostheses and 7 custom-made prostheses were implanted. The mean age at surgery was 52.6±11.5 years in the stock group and 51.8±11.7 years in the custom-made group. In the stock group, after three years of TMJR, results showed a reduction in pain intensity from 6.4±1.4 to 1.6±1.2 (p<0.001), and an improvement in jaw opening from 2.7±0.9 cm to 4.2±0.7 cm (p<0.001). In the custom-made group, after three years of TMJR, results showed a reduction in pain intensity from 6.0±1.6 to 2.2±0.4 (p<0.001), and an improvement in jaw opening from 1.5±0.5 cm to 4.3±0.6 cm (p<0.001). No statistically significant differences between two groups were detected. The results of this three-year prospective study support the surgical placement of TMJ prostheses (stock prosthetic, and custom-made systems), and show that the approach is efficacious and safe, reduces pain, and improves maximum mouth opening movement, with few complications. As such, TMJR represents a viable technique and a stable long-term solution for cranio-mandibular reconstruction in patients with irreversible end-stage TMJ disease. Comparing stock and custom-made groups, no statistically significant differences were detected with respect to pain intensity reduction and maximum mouth opening improvement.
The fundamentals of biotribology and its application to spine arthroplasty
Harper, Megan L.; Dooris, Andrew; Paré, Philippe E.
2009-01-01
The biological effect of wear of articulating surfaces is a continued concern with large joint replacements and, likewise, of interest for total disc replacements. There are a number of important biotribological testing parameters that can greatly affect the outcome of a wear study in addition to the implant design and material selection. The current ASTM and ISO wear testing standards/guides for spine arthroplasty leave many choices as testing parameters. These factors include but are not limited to the sequence of kinematics and load, phasing, type of lubricant, and specimen preparation (sterilization and artificial aging). The spinal community should critically assess wear studies and be cognizant of the influence of the selected parameters on the test results. PMID:25802638
Wear Characteristics of Metallic Biomaterials: A Review
Hussein, Mohamed A.; Mohammed, Abdul Samad; Al-Aqeeli, Naser
2015-01-01
Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.
Biomechanical study of the tibia in knee replacement revision.
Quílez, M P; Pérez, M A; Seral-García, B
2015-01-01
The best management of severe bone defects following total knee replacement is still controversial. Metal augments, tantalum cones and porous tibial sleeves could help the surgeon to manage any type of bone loss, providing a stable and durable knee joint reconstruction. Five different types of prostheses have been analysed: one prosthesis with straight stem; two prostheses with offset stem, with and without supplement, and two prostheses with sleeves, with and without stem. The purpose of this study is to report a finite element study of revision knee tibial implants. The main objective was to analyse the tibial bone density changes and Von Misses tension changes following different tibial implant designs. In all cases, the bone density decreases in the proximal epiphysis and medullary channels, with a bone density increase also being predicted in the diaphysis and at the bone around the stems tips. The highest value of Von Misses stress has been obtained for the straight tibial stem, and the lowest for the stemless metaphyseal sleeves prosthesis. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Survival of dental implants placed in sites of previously failed implants.
Chrcanovic, Bruno R; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann
2017-11-01
To assess the survival of dental implants placed in sites of previously failed implants and to explore the possible factors that might affect the outcome of this reimplantation procedure. Patients that had failed dental implants, which were replaced with the same implant type at the same site, were included. Descriptive statistics were used to describe the patients and implants; survival analysis was also performed. The effect of systemic, environmental, and local factors on the survival of the reoperated implants was evaluated. 175 of 10,096 implants in 98 patients were replaced by another implant at the same location (159, 14, and 2 implants at second, third, and fourth surgeries, respectively). Newly replaced implants were generally of similar diameter but of shorter length compared to the previously placed fixtures. A statistically significant greater percentage of lost implants were placed in sites with low bone quantity. There was a statistically significant difference (P = 0.032) in the survival rates between implants that were inserted for the first time (94%) and implants that replaced the ones lost (73%). There was a statistically higher failure rate of the reoperated implants for patients taking antidepressants and antithrombotic agents. Dental implants replacing failed implants had lower survival rates than the rates reported for the previous attempts of implant placement. It is suggested that a site-specific negative effect may possibly be associated with this phenomenon, as well as the intake of antidepressants and antithrombotic agents. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The design and development of a triaxial wear-testing joint simulator.
Green, A S; O'Connell, M K; Lyons, A S; James, S P
1999-01-01
Most of the existing wear testers created to wear test total hip replacements, specifically the acetabular component, are designed to exert only an axial force and provide rotation in a close approximation of the actual femoral movement. The Rocky Mountain Joint Simulator was designed to exert three orthogonal forces and provide rotations about the X-, Y- and Z-axes to more closely simulate the physiological forces and motions found in the human gait cycle. The RMJS was also designed with adaptability for other joints, such as knees or canine hips, through the use of hydraulics and a computer-programmable control system. Such adaptability and functionality allows the researcher to more closely model a gait cycle, thereby obtaining wear patterns that resemble those found in retrieved implants more closely than existing simulators. Research is ongoing into the tuning and evaluation of the machine and preliminary acetabular component wear test results will be presented at the conference.
Hussein, A I; Stranart, J C; Meguid, S A; Bogoch, E R
2011-02-01
Silicone implants are used for prosthetic arthroplasty of metacarpophalangeal (MCP) joints severely damaged by rheumatoid arthritis. Different silicone elastomer MCP implant designs have been developed, including the Swanson and the NeuFlex implants. The goal of this study was to compare the in vitro mechanical behavior of Swanson and NeuFlex MCP joint implants. Three-dimensional (3D) finite element (FE) models of the silicone implants were modeled using the commercial software ANSYS and subjected to angular displacement from 0 deg to 90 deg. FE models were validated using mechanical tests of implants incrementally bent from 0 deg to 90 deg in a joint simulator. Swanson size 2 and 4 implants were compared with NeuFlex size 10 and 30 implants, respectively. Good agreement was observed throughout the range of motion for the flexion bending moment derived from 3D FE models and mechanical tests. From 30 deg to 90 deg, the Swanson 2 demonstrated a greater resistance to deformation than the NeuFlex 10 and required a greater bending moment for joint flexion. For larger implant sizes, the NeuFlex 30 had a steeper moment-displacement curve, but required a lower moment than the Swanson 4, due to implant preflexion. On average, the stress generated at the implant hinge from 30 deg to 90 deg was lower in the NeuFlex than in the Swanson. On average, starting from the neutral position of 30 deg for the preflexed NeuFlex implant, higher moments were required to extend the NeuFlex implants to 0 deg compared with the Swanson implants, which returned spontaneously to resting position. Implant toggling within the medullary canals was less in the NeuFlex than in the Swanson. The differential performance of these implants may be useful in implant selection based on the preoperative condition(s) of the joint and specific patient functional needs.
Fryzek, J P; Mellemkjaer, L; McLaughlin, J K; Blot, W J; Olsen, J H
1999-05-31
The use of artificial joint implants has risen greatly over the past years. However, few investigations of the cancer risk associated with implants have been performed. We investigated cancer risk in patients with finger and hand joint and temporo-mandibular (TMJ) joint implants. A nationwide cohort in Denmark of patients with finger and hand joint prostheses (n = 858) or TMJ implants (n = 389) was followed from January 1, 1977, to December 31, 1995, to evaluate any potential cancer risks subsequent to receiving these implants. Standardized incidence ratios (SIRs) for all cancers were 1.0 (95% CI = 0.8-1.2) for the finger and hand joint cohort and 1.1 (95% CI = 0.8-1.7) for the TMJ cohort. A significant risk for non-Hodgkin's lymphoma was found in the finger and hand joint cohort (SIR = 3.8, 95% CI = 1.5-7.8). When the finger and hand joint cohort was stratified by diagnosis of rheumatoid arthritis, the excess risk was seen only in the group with rheumatoid arthritis. This is consistent with past studies, which have found an association between rheumatoid arthritis and non-Hodgkin's lymphoma. Our results provide evidence that the cancer risk for patients with finger and hand joint prostheses and TMJ implants is similar to that for the general population.
Hereditary hemochromatosis as a risk factor for joint replacement surgery.
Sahinbegovic, Enijad; Dallos, Tomás; Aigner, Elmar; Axmann, Roland; Engelbrecht, Matthias; Schöniger-Hekele, Maximilian; Karonitsch, Thomas; Farkas, Martin; Karger, Thomas; Willeit, Johann; Stölzel, Ulrich; Keysser, Gernot; Datz, Christian; Kiechl, Stefan; Schett, Georg; Zwerina, Jochen
2010-07-01
Hemochromatosis is an inherited disease with iron overload and joint involvement resembling osteoarthritis. To determine the rate of joint replacement surgery in patients with hemochromatosis, we performed a cross-sectional cohort study. A total of 199 individuals with hereditary hemochromatosis were included. The prevalence of joint replacement surgery in hip, knee, and ankle joints because of secondary osteoarthritis was assessed. Data were compared with 917 healthy subjects from the population-based Bruneck study. A total of 32 of 199 individuals with hemochromatosis received joint replacement surgery with a total number of 52 joints replaced. Compared with expected rates in healthy individuals, patients with hemochromatosis had a significantly higher risk for joint replacement surgery (odds ratio 9.0; confidence interval, 4.6-17.4). Joint replacement occurred significantly earlier in life in patients with hemochromatosis; 21.9% of the patients with hemochromatosis and 1.7% of healthy individuals required joint replacement before the age of 50 years (P=.0027). Moreover, patients with hemochromatosis were more likely to require multiple joint replacements (8.5%) than the control group (expected rate 0.3%; P=.0001). Hemochromatosis is a risk factor for joint replacement surgery because of severe secondary osteoarthritis. Copyright 2010 Elsevier Inc. All rights reserved.
Gajski, Goran; Jelčić, Zelimir; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Garaj-Vrhovac, Vera
2014-01-01
The main objective of the present study was to investigate chemical composition and possible cyto/genotoxic potential of several medical implant materials commonly used in total hip joint replacement. Medical implant metal alloy (Ti6Al4V and CoCrMo) and high density polyethylene particles were analyzed by energy dispersive X-ray spectrometry while toxicological characterization was done on human lymphocytes using multi-biomarker approach. Energy dispersive X-ray spectrometry showed that none of the elements identified deviate from the chemical composition defined by appropriate ISO standard. Toxicological characterization showed that the tested materials were non-cyto/genotoxic as determined by the comet and cytokinesis-block micronucleus (CBMN) assay. Particle morphology was found (by using scanning electron and optical microscope) as flat, sharp-edged, irregularly shaped fiber-like grains with the mean particle size less than 10µm; this corresponds to the so-called "submicron wear". The very large surface area per wear volume enables high reactivity with surrounding media and cellular elements. Although orthopedic implants proved to be non-cyto/genotoxic, in tested concentration (10μg/ml) there is a constant need for monitoring of patients that have implanted artificial hips or other joints, to minimize the risks of any unwanted health effects. The fractal and multifractal analyses, performed in order to evaluate the degree of particle shape effect, showed that the fractal and multifractal terms are related to the "remnant" level of the particles' toxicity especially with the cell viability (trypan blue method) and total number of nucleoplasmic bridges and nuclear buds as CBMN assay parameters. © 2013.
Osseointegration into a Novel Titanium Foam Implant in the Distal Femur of a Rabbit
Willie, Bettina M.; Yang, Xu; Kelly, Natalie H.; Merkow, Justin; Gagne, Shawn; Ware, Robin; Wright, Timothy M.; Bostrom, Mathias P.G.
2010-01-01
A novel porous titanium foam implant has recently been developed to enhance biological fixation of orthopaedic implants to bone. The aim of this study was to examine the mechanical and histological characteristics of bone apposition into two different pore sizes of this titanium foam (565 and 464 micron mean void intercept length) and to compare these characteristics to those obtained with a fully porous conventionally sintered titanium bead implant. Cylindrical implants were studied in a rabbit distal femoral intramedullary osseointegration model at time zero and at 3, 6, and 12 weeks. The amount of bone ingrowth, amount of periprosthetic bone, and mineral apposition rate of periprosthetic bone measured did not differ among the three implant designs at 3, 6, or 12 weeks. By 12 weeks, the interface stiffness and maximum load of the beaded implant was significantly greater than either foam implant. No significant difference was found in the interface stiffness or maximum load between the two foam implant designs at 3, 6, or 12 weeks. The lower compressive modulus of the foam compared to the more dense sintered beaded implants likely contributed to the difference in failure mode. However, the foam implants have a similar compressive modulus to other clinically successful coatings, suggesting they are nonetheless clinically adequate. Additional studies are required to confirm this in weight-bearing models. Histological data suggest that these novel titanium foam implants are a promising alternative to current porous coatings and should be further investigated for clinical application in cementless joint replacement. PMID:20024964
Patellofemoral Arthroplasty: Current Concepts and Review of the Literature
Pisanu, Gabriele; Rosso, Federica; Bertolo, Corrado; Dettoni, Federico; Blonna, Davide; Bonasia, Davide Edoardo; Rossi, Roberto
2017-01-01
Patellofemoral osteoarthritis (PFOA) can be associated with anterior knee pain, stiffness, and functional impairment. Some authors report that PFOA affects approximately 9% of patients older than 40 years with a greater prevalence in females. Etiology of PFOA is multifactorial and is related to the presence of abnormal stresses at the PF joint due to knee- and patient-related factors. The need for a joint preserving treatment by isolated replacement of the injured compartment of the knee led to the development of PF arthroplasty (PFA). When a correct PF replacement is performed, PFA preserves physiologic tibiofemoral joint, thus allowing patients for a rapid recovery with a high satisfaction. The outcomes for PFA are quite variable with a trend toward good to excellent results, mainly owing to the improvement in surgical techniques, patient selection, and implant design. The development of the second generation of PFA improved the outcomes, which is attributed to the different trochlear designs. Recently, encouraging results have been provided by the association of PFA and unicompartmental knee arthroplasty (UKA). In many studies, the main cause of PFA failure is progression of tibiofemoral OA. The aim of this brief review of literature is to summarize the clinical features, indications and contraindications, surgical techniques, complications, and outcomes of PFA. PMID:29270562
Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E
2003-06-01
We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting.
Søballe, Kjeld; Mouzin, Olivier R G; Kidder, Louis A; Overgaard, Søren; Bechtold, Joan E
2015-01-01
We used our established experimental model of revision joint replacement to examine the roles of hydroxyapatite coating and bone graft in improving the fixation of revision implants. The revision protocol uses the Søballe micromotion device in a preliminary 8-week period of implant instability for the presence of particulate polyethylene. During this procedure, a sclerotic endosteal bone rim forms, and a dense fibrous membrane is engendered, having macrophages with ingested polyethylene and high levels of inflammatory cytokines. At the time of revision after 8 weeks, the cavity is revised with either a titanium alloy (Ti) or a hydroxyapatite (HA) 6.0 mm plasma-sprayed implant, in the presence or absence of allograft packed into the initial 0.75 mm peri-implant gap. The contralateral limb is subjected to primary surgery with the same implant configuration, and serves as control. 8 implants were included in each of the 8 treatment groups (total 64 implants in 32 dogs). The observation period was 4 weeks after revision. Outcome measures are based on histomorphometry and mechanical pushout properties. The revision setting was always inferior to its primary counterpart. Bone graft improved the revision fixation in all treatment groups, as also did the HA coating. The sole exception was revision-grafted HA implants, which reached the same fixation as primary Ti and HA grafted implants. The revision, which was less active in general, seems to need the dual stimulation of bone graft and HA implant surface, to obtain the same level of fixation associated with primary implants. Our findings suggest that the combination of HA implant and bone graft may be of benefit in the clinical revision implant setting. PMID:12899541
Pitkin, Mark
2011-01-01
Direct transcutaneous prosthetic attachment (osseointegration) consists of implanting directly into the residuum bone a metal pylon whose external fraction connects the residuum to the external prosthesis. Since the introduction of osseointegration about 20 years ago, the obvious challenge associated with this technology has been the skin-pylon interface as a source of infections. In comparison, the bone-device interface was considered less problematic because of the knowledge and experience inherited from dental implantology and total joint replacement (arthroplasty). Current methods of pylon fixation in osseointegration follow arthroplasty’s paradigm of positioning the pylon’s shaft inside the bone’s medullary canal. However, adopting the medullary canal as a holding compartment for the pylon’s shaft creates the problem of shaft loosening, which has not yet been solved in arthroplasty. PMID:18712634
Perioperative mortality after hemiarthroplasty related to fixation method.
Costain, Darren J; Whitehouse, Sarah L; Pratt, Nicole L; Graves, Stephen E; Ryan, Philip; Crawford, Ross W
2011-06-01
The appropriate fixation method for hemiarthroplasty of the hip as it relates to implant survivorship and patient mortality is a matter of ongoing debate. We examined the influence of fixation method on revision rate and mortality. We analyzed approximately 25,000 hemiarthroplasty cases from the AOA National Joint Replacement Registry. Deaths at 1 day, 1 week, 1 month, and 1 year were compared for all patients and among subgroups based on implant type. Patients treated with cemented monoblock hemiarthroplasty had a 1.7-times higher day-1 mortality compared to uncemented monoblock components (p < 0.001). This finding was reversed by 1 week, 1 month, and 1 year after surgery (p < 0.001). Modular hemiarthroplasties did not reveal a difference in mortality between fixation methods at any time point. This study shows lower (or similar) overall mortality with cemented hemiarthroplasty of the hip.
Long-Term Mortality Effect of Early Pacemaker Implantation After Surgical Aortic Valve Replacement.
Greason, Kevin L; Lahr, Brian D; Stulak, John M; Cha, Yong-Mei; Rea, Robert F; Schaff, Hartzell V; Dearani, Joseph A
2017-10-01
The need for pacemaker implantation is a well-described complication of aortic valve replacement. Not so well described is the effect such an event has on long-term outcome. This study reviewed a 21-year experience at the Mayo Clinic (Rochester, Minnesota) with aortic valve replacement to understand the influence of early postoperative pacemaker implantation on long-term mortality rates more clearly. This study retrospectively reviewed the records of 5,842 patients without previous pacemaker implantation who underwent surgical aortic valve replacement from January 1993 through June 2014. The median age of these patients was 73 years (range, 65 to 79 years), the median ejection fraction was 62% (range, 53% to 68%), 3,853 patients were male (66%), and coronary artery bypass graft operation was performed in 2,553 (44%) of the patients studied. Early pacemaker implantation occurred in 146 patients (2.5%) within 30 days of surgical aortic valve replacement. The median follow-up of patients was 11.1 years (range, 5.8 to 16.5 years), and all-cause mortality rates were 2.4% at 30 days, 6.4% at 1 year, 23.1% at 5 years, 48.3% at 10 years, and 67.9% at 15 years postoperatively. Early pacemaker implantation was associated with an increased risk of death after multivariable adjustment for baseline patients' characteristics (hazard ratio, 1.49; 95% confidence interval, 1.20, 1.84; p < 0.001). Early pacemaker implantation as a complication of surgical aortic valve replacement is associated with an increased risk of long-term death. Valve replacement-related pacemaker implantation rates should be important considerations with respect to new valve replacement paradigms, especially in younger and lower-risk patients. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
The influence of resting periods on friction in the artificial hip.
Nassutt, Roman; Wimmer, Markus A; Schneider, Erich; Morlock, Michael M
2003-02-01
Insufficient tribologic performance of total joint components is a major cause of prostheses failure. Wear has been studied intensively using testing machines that apply continuous motions. Human locomotion, however, is not well represented by continuous motions alone. Singular events and resting periods are a substantial part of daily activities. Resting does influence adhesion in the artificial joint with possible effects on friction, wear, and loosening. The current study evaluated the effects of resting on the frictional properties of hip prosthesis components. The activity measurements of 32 patients with artificial hip replacements were analyzed for resting durations of the hip. A pin-on-ball screening device was used to determine friction after characteristic resting periods and during continuous oscillating motion. All common articulation pairings were investigated. Prolonged and frequent resting periods of the hip were found for the patients. Initial friction increased with increasing resting duration for all tested materials (between 41% and 191%). The metal-on-metal articulations showed the highest friction level (0.098 for sliding) and the highest increase (191%) in friction with resting duration (0.285 after resting periods of 60 seconds). A high static frictional moment after resting periods might present a risk for aseptic implant loosening. Therefore, large head diameters of metal-on-metal joints should be used with caution, especially when additional unfavorable risk factors such as obesity, weak bone-implant interface, or high activity level are present.
Heyberger, Clémence; Auberger, Guillaume; Babinet, Antoine; Anract, Philippe; Biau, David J
2017-12-21
We asked whether there would be any difference between primary and revision modern cemented fixed hinge megaprosthesis of the distal femur in function and activity-related outcomes following treatment of a bone tumor. An identical custom-made fixed hinge cemented megaprosthesis with a hydroxyapatite collar was used in all cases. The main outcomes were joint-specific function, disease-specific activity, and health-related quality of life. Implant survival was also evaluated. Patients in the revision group performed slightly better than patients in the primary group on disease-specific (Toronto Extremity Salvage Score, p = 0.033; Musculoskeletal Tumor Society, p = 0.072) and health-related outcomes (Short Form 36 [SF-36] physical component, p = 0.085; SF-36 mental component, p = 0.069) but not on joint-specific outcomes (Knee Society Score, p = 0.94). The cumulative probabilities of revision for any reason were 14.5% (7-25%) at 5 years with no statistically significant difference between primary and revision procedures ( p = 0.77). In conclusion, patients undergoing a revision have similar joint-specific functional outcome but improved disease-specific and health-related outcomes. Implant survival are similar between groups. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Frontal plane stability following UKA in a biomechanical study.
Heyse, Thomas J; Tucker, Scott M; Rajak, Yogesh; Kia, Mohammad; Lipman, Joseph D; Imhauser, Carl W; Westrich, Geoffrey H
2015-06-01
Function and kinematics following unicondylar knee arthroplasty (UKA) have been reported to be close to the native knee. Gait, stair climbing and activities of daily living expose the knee joint to a combination of varus and valgus moments. Replacement of the medial compartment via UKA is likely to change the physiologic knee stability and its ability to respond to varus and valgus moments. It was hypothesized that UKA implantation would stiffen the knee and decrease range of motion in the frontal plane. Six fresh frozen cadaver knees were prepared and mounted in a six-degrees-of-freedom robot. An axial load of 200 N was applied with the knee in 15°, 45° and 90° of flexion. Varus and valgus moments were added, respectively, before and after implantation of medial UKA. Tests were than redone with a thicker polyethylene inlay to simulate overstuffing of the medial compartment. Range of motion in the frontal plane and the tibial response to moments were recorded via the industrial robot. The range of motion in the frontal plane was decreased with both, balanced and overstuffed UKA and shifted towards valgus. When exposed to valgus moments, knees following UKA were stiffer in comparison with the native knee. The effect was even more pronounced with medial overstuffing. In UKA, the compressive anatomy is replaced by much stiffer components. This lack of medial compression and relative overstuffing leads to a tighter medial collateral ligament. This drives the trend towards a stiffer joint as documented by a decrease in frontal plane range of motion. Overstuffing should strictly be avoided when performing UKA.
Late complications in patients with Björk-Shiley and St. Jude Medical heart valve replacement.
Horstkotte, D; Körfer, R; Seipel, L; Bircks, W; Loogen, F
1983-09-01
Valve-related complications after Björk-Shiley mitral valve implantation (n = 475), aortic valve implantation (n = 424), or mitral-aortic valve implantation (n = 119) were compared with those after St. Jude Medical mitral valve replacement (n = 173), aortic valve replacement (n = 152), or mitral-aortic valve replacement (n = 69). All patients were placed on anticoagulant therapy with phenprocoumon early after operation. All patients had a comparable follow-up time of approximately 23 months, which showed that cumulative thromboembolic rates were significantly higher after St. Jude valve implantation than after Björk-Shiley valve implantation. Reoperations were necessary because of valve thrombosis (0.46%), perivalvular leakage (2.2%), or prosthetic valve endocarditis with perivalvular regurgitation (0.46%). One Björk-Shiley mitral valve prosthesis had to be replaced because of fracture of the outlet strut. Without significant intergroup differences, hemorrhage due to anticoagulant treatment was the most frequent complication. Thromboembolic complications were significantly more frequent after Björk-Shiley mitral, aortic, and double valve replacements than after St. Jude valve implantation. This may lead to consideration of changes in the prophylaxis of thrombus formations in the St. Jude valve, especially in aortic valve replacements, in patients with sinus rhythm.
Scandinavian Total Ankle Replacement: 15-Year Follow-up.
Palanca, Ariel; Mann, Roger A; Mann, Jeffrey A; Haskell, Andrew
2018-02-01
Over the past decade, total ankle arthroplasty (TAA) has become a mainstay in the treatment of end-stage ankle arthritis. Currently in its fourth generation, the Scandanavian Total Ankle Replacement (STAR) is the only 3-piece mobile bearing ankle prosthesis available in the United States. Our current study reports implant survivorship at 15 years and patient outcomes for a subset of these survivors available for study. Eighty-four TAAs were performed between 1998 and 2000. Metal component survivorship at 15 years was calculated with a Kaplan-Meier curve. Twenty-four (29%) of 84 patients were available for participation with a minimum 15-year follow-up. Any radiographic changes were documented. All additional procedures and complications were recorded. Clinical findings, self-reported performance and pain evaluations, and AOFAS ankle/hindfoot scores were noted. Metal implant survival was 73% at 15 years. Of the 24 patients available for clinical evaluation, 18 of 24 patients (70.7%) had no change in prosthetic alignment from the immediate postoperative radiograph. Only 1 subtalar fusion was required for symptomatic adjacent joint arthritis. Three patients sustained a broken polyethylene component. AOFAS scores improved from an average of 39.6 points preoperatively, to an average of 71.6. More than half (52.4%) of patients with retained implants required an additional surgical procedure; 3 required 2 additional procedures. The average time to subsequent procedure was 10.2 years. Our small cohort demonstrated STAR ankles with retention at 9 years were highly likely to survive to 15 years, and patients continued to have significant improvement in pain relief and minimal decrease in function. At 15 years from TAA, metal survivorship was 73%. As with all ankle replacements, supplementary procedures were common. Level IV, case series.
Ho, David M; Huo, Michael H
2007-07-01
Total knee replacement (TKR) operation is one of the most effective procedures, both clinically and in terms of cost. Because of increased volume and cost for this procedure during the past 3 decades, TKRs are often targeted for cost reduction. The purpose of this study was to evaluate the efficacy of two cost reducing methodologies, establishment of critical clinical pathways, and standardization of implant costs. Ninety patients (90 knees) were randomly selected from a population undergoing primary TKR during a 2-year period at a tertiary teaching hospital. Patients were assigned to three groups that corresponded to different strategies implemented during the evolution of the joint-replacement program. Medical records were reviewed for type of anesthesia, operative time, length of stay, and any perioperative complications. Financial information for each patient was compared among the three groups. Data analysis demonstrated that the institution of a critical pathway significantly shortened length of hospital stay and was effective in reducing the hospital costs by 18% (p < 0.05). In addition, standardization of surgical techniques under the care of a single surgeon substantially reduced the operative time. Selection of implants from a single vendor did not have any substantial effect in additionally reducing the costs. Standardized postoperative management protocols and critical clinical pathways can reduce costs and operative time. Future efforts must focus on lowering the costs of the prostheses, particularly with competitive bidding or capitation of prostheses costs. Although a single-vendor approach was not effective in this study, it is possible that a cost reduction could have been realized if more TKRs were performed, because the pricing contract was based on projected volume of TKRs to be done by the hospital.
Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114
Friction in total hip joint prosthesis measured in vivo during walking.
Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg
2013-01-01
Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.
Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus
2018-01-01
Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235
Young, Tony; Dowsey, Michelle M.; Pandy, Marcus; Choong, Peter F.
2018-01-01
Background Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. Purpose To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. Methods The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. Results In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: −0.27; 95% CI: −0.47 to −0.07; p = 0.009). Moderate to high values (I2) of heterogeneity were observed during the statistical comparison of these functional outcomes. Conclusion Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level of Evidence Level II PMID:29696144
Young, Tony; Dowsey, Michelle M; Pandy, Marcus; Choong, Peter F
2018-01-01
Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: -0.27; 95% CI: -0.47 to -0.07; p = 0.009). Moderate to high values ( I 2 ) of heterogeneity were observed during the statistical comparison of these functional outcomes. Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level II.
Taylor, Mark; Bryan, Rebecca; Galloway, Francis
2013-02-01
It is becoming increasingly difficult to differentiate the performance of new joint replacement designs using available preclinical test methods. Finite element analysis is commonly used and the majority of published studies are performed on representative anatomy, assuming optimal implant placement, subjected to idealised loading conditions. There are significant differences between patients and accounting for this variability will lead to better assessment of the risk of failure. This review paper provides a comprehensive overview of the techniques available to account for patient variability. There is a brief overview of patient-specific model generation techniques, followed by a review of multisubject patient-specific studies performed on the intact and implanted femur and tibia. In particular, the challenges and limitations of manually generating models for such studies are discussed. To efficiently account for patient variability, the application of statistical shape and intensity models (SSIM) are being developed. Such models have the potential to synthetically generate thousands of representative models generated from a much smaller training set. Combined with the automation of the prosthesis implantation process, SSIM provides a potentially powerful tool for assessing the next generation of implant designs. The potential application of SSIM are discussed along with their limitations. Copyright © 2012 John Wiley & Sons, Ltd.
Utility of Intraoperative Neuromonitoring during Minimally Invasive Fusion of the Sacroiliac Joint.
Woods, Michael; Birkholz, Denise; MacBarb, Regina; Capobianco, Robyn; Woods, Adam
2014-01-01
Study Design. Retrospective case series. Objective. To document the clinical utility of intraoperative neuromonitoring during minimally invasive surgical sacroiliac joint fusion for patients diagnosed with sacroiliac joint dysfunction (as a direct result of sacroiliac joint disruptions or degenerative sacroiliitis) and determine stimulated electromyography thresholds reflective of favorable implant position. Summary of Background Data. Intraoperative neuromonitoring is a well-accepted adjunct to minimally invasive pedicle screw placement. The utility of intraoperative neuromonitoring during minimally invasive surgical sacroiliac joint fusion using a series of triangular, titanium porous plasma coated implants has not been evaluated. Methods. A medical chart review of consecutive patients treated with minimally invasive surgical sacroiliac joint fusion was undertaken at a single center. Baseline patient demographics and medical history, intraoperative electromyography thresholds, and perioperative adverse events were collected after obtaining IRB approval. Results. 111 implants were placed in 37 patients. Sensitivity of EMG was 80% and specificity was 97%. Intraoperative neuromonitoring potentially avoided neurologic sequelae as a result of improper positioning in 7% of implants. Conclusions. The results of this study suggest that intraoperative neuromonitoring may be a useful adjunct to minimally invasive surgical sacroiliac joint fusion in avoiding nerve injury during implant placement.
Palsis, John A; Brehmer, Thomas S; Pellegrini, Vincent D; Drew, Jacob M; Sachs, Barton L
2018-02-21
In an era of mandatory bundled payments for total joint replacement, accurate analysis of the cost of procedures is essential for orthopaedic surgeons and their institutions to maintain viable practices. The purpose of this study was to compare traditional accounting and time-driven activity-based costing (TDABC) methods for estimating the total costs of total hip and knee arthroplasty care cycles. We calculated the overall costs of elective primary total hip and total knee replacement care cycles at our academic medical center using traditional and TDABC accounting methods. We compared the methods with respect to the overall costs of hip and knee replacement and the costs for each major cost category. The traditional accounting method resulted in higher cost estimates. The total cost per hip replacement was $22,076 (2014 USD) using traditional accounting and was $12,957 using TDABC. The total cost per knee replacement was $29,488 using traditional accounting and was $16,981 using TDABC. With respect to cost categories, estimates using traditional accounting were greater for hip and knee replacement, respectively, by $3,432 and $5,486 for personnel, by $3,398 and $3,664 for space and equipment, and by $2,289 and $3,357 for indirect costs. Implants and consumables were derived from the actual hospital purchase price; accordingly, both methods produced equivalent results. Substantial cost differences exist between accounting methods. The focus of TDABC only on resources used directly by the patient contrasts with the allocation of all operating costs, including all indirect costs and unused capacity, with traditional accounting. We expect that the true costs of hip and knee replacement care cycles are likely somewhere between estimates derived from traditional accounting methods and TDABC. TDABC offers patient-level granular cost information that better serves in the redesign of care pathways and may lead to more strategic resource-allocation decisions to optimize actual operating margins.
Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.
2016-01-01
Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208
Elmengaard, Brian; Bechtold, Joan E.; Chen, Xinqian; Søballe, Kjeld
2013-01-01
Revision joint replacement has poorer outcomes that have been associated with poorer mechanical fixation. We investigate a new bone-sparing surgical technique that locally cracks the sclerotic bone rim formed during aseptic loosening. We inserted 16 hydroxyapatite-coated implants bilaterally in the distal femur of eight dogs, using a controlled weight-bearing experimental model that replicates important features of a typical revision setting. At 8 weeks, a control revision procedure and a crack revision procedure were performed on contralateral implants. The crack procedure used a splined tool to perform a systematic local perforation of the sclerotic bone rim of the revision cavity. After 4 weeks, the hydroxyapatite-coated implants were evaluated for mechanical fixation by a push-out test and for tissue distribution by histomorphometry. The cracking revision procedure resulted in significantly improved mechanical fixation, significantly more bone ongrowth and bone volume in the gap, and reduced fibrous tissue compared to the control revision procedure. The study demonstrates that the sclerotic bone rim prevents bone ingrowth and promotes fixation by fibrous tissue. The effect of the cracking technique may be due to improved access to the vascular compartment of the bone. The cracking technique is a simple surgical method that potentially can improve the fixation of revision implants in sclerotic regions important for obtaining the fixation critical for overall implant stability. PMID:19148940
Bauer, T; Biau, D; Colmar, M; Poux, X; Hardy, P; Lortat-Jacob, A
2010-12-01
The range of motion of the knee joint after Total Knee Replacement (TKR) is a factor of great importance that determines the postoperative function of patients. Much enthusiasm has been recently directed towards the posterior condylar offset with some authors reporting increasing postoperative knee flexion with increasing posterior condylar offset and others who did not report any significant association. Patients undergoing primary total knee replacement were included in a prospective multicentre study and the effect of the posterior condylar offset on the postoperative knee flexion was assessed after adjusting for known influential factors. All knees were implanted by three senior orthopedist surgeons with the same cemented cruciate-sacrificing mobile-bearing implant and with identical surgical technique. Clinical data, active knee flexion and posterior condylar offset were recorded preoperatively and postoperatively at a minimal one year follow-up for all patients. Univariate and multivariate linear models were fitted to select independent predictors of the postoperative knee flexion. Four hundred and ten consecutive total knee replacements (379 patients) were included in the study. The mean preoperative knee flexion was 112°. The mean condylar offset was 28.3mm preoperatively and 29.4mm postoperatively. The mean postoperative knee flexion was 108°. No correlation was found between the posterior condylar offset or the tibial slope and the postoperative knee flexion. The most significant predictive factor for postoperative flexion after posterior-stabilized TKR without PCL retention was the preoperative range of flexion, with a linear effect. Copyright © 2009 Elsevier B.V. All rights reserved.
Ramos, António; Mesnard, Michel
2016-10-01
The purpose of this article is to present and evaluate an innovative intramedullary implant concept developed for total alloplastic reconstruction in bone resorption cases. The main goal of this innovative concept is to avoid the main problems experienced with temporomandibular (TMJ) devices on the market, associated with bone fixation and changes in kinematics. A three-dimensional finite element model was developed based on computed tomography (CT) scan images, before and after implantation of the innovative implant concept. To validate the numerical model, a clean cadaveric condyle was instrumented with four rosettes and loaded before and after implantation with the innovative concept TMJ implant. The experimental results validate the numerical models comparing the intact and implanted condyles, as they present good correlation. They show that the most critical region is around rosette #1, with an increase in strains in the proximal region of the condyle of 140%. The maximum principal strain and stress generated with the implant is less than 2200 με and 75 MPa in the posterior region of the cortical bone. Shortly after insertion of this press-fit implant, stress and strain results appear to be within the normal limits and show some similarities with the intact condyle. If these responses do not change over time, the screw fixation used at present could be avoided or replaced. This solution reduces bone resection and lessens surgical damage to the muscles. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Roukis, Thomas S
2012-01-01
Revision of failed total ankle replacement remains a challenge with limited information available to guide treatment options. I undertook a systematic review of electronic databases and other relevant sources to identify material relating to the incidence of revision after primary implantation of the Agility™ Total Ankle Replacement System. In an effort to procure the highest quality studies available, studies were eligible for inclusion only if they involved patients undergoing primary Agility™ Total Ankle Replacement; had evaluated patients at a mean follow-up of 12 months or longer; included details of the revision performed; and included revision etiologies of aseptic loosening, ballooning osteolysis, cystic changes, malalignment, or instability. A total of 14 studies involving 2312 ankles, with a weighted mean follow-up of 22.8 months, were included. Of the 2312 ankles, 224 (9.7%) underwent revision, of which 182 (81.3%) underwent implant component replacement, 34 (15.2%) underwent arthrodesis, and 8 (3.6%) underwent below-knee amputation. No significant effect from the surgeon's learning curve on the incidence of revision or the type of revision surgery performed was identified. However, excluding the inventor increased the incidence of revision twofold, from 6.6% to 12.2%, and skewed the type of revision away from arthrodesis and toward implant component replacement or below-knee amputation. Regardless, the incidence of revision after primary implantation of the Agility™ Total Ankle Replacement System was less than historically reported and amenable to implant component revision more than 80% of the time. However, methodologically sound cohort studies are needed that include the outcomes after revision surgery, specifically focusing on what implant component replacement techniques are effective in enhancing survivorship of these revised implants and the role of custom-stemmed talar and tibial components have in revision of the Agility™ Total Ankle Replacement System. A direct comparison of the incidence of revision between the various contemporary total ankle replacement systems in common use is also warranted. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Costantini, Oren; Choi, Daniel S; Kontaxis, Andreas; Gulotta, Lawrence V
2015-07-01
There has been a renewed interest in lateralizing the center of rotation (CoR) in implants used in reverse shoulder arthroplasty. The aim of this study was to determine the sensitivity of lateralization of the CoR on the glenohumeral joint contact forces, muscle moment arms, torque across the bone-implant interface, and the stability of the implant. A 3-dimensional virtual model was used to investigate how lateralization affects deltoid muscle moment arm and glenohumeral joint contact forces. This model was virtually implanted with 5 progressively lateralized reverse shoulder prostheses. The joint contact loads and deltoid moment arms were calculated for each lateralization over the course of 3 simulated standard humerothoracic motions. Lateralization of the CoR leads to an increase in the overall joint contact forces across the glenosphere. Most of this increased loading occurred through compression, although increases in anterior/posterior and superior/inferior shear were also observed. Moment arms of the deltoid consistently decreased with lateralization. Bending moments at the implant interface increased with lateralization. Progressive lateralization resulted in improved stability ratios. Lateralization results in increased joint loading. Most of that loading occurs through compression, although there were also increases in shear forces. Anterior/posterior shear is currently not accounted for in implant fixation studies, leaving its effect on implant fixation unknown. Future studies should incorporate shear forces into their models to more accurately assess fixation methods. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.
Diomidis, N; Mischler, S; More, N S; Roy, Manish
2012-02-01
Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Decoronation followed by dental implants placement: fundamentals, applications and explanations
Consolaro, Alberto; Ribeiro, Paulo Domingos; Cardoso, Maurício A.; Miranda, Dario A. Oliveira; Salfatis, Monica
2018-01-01
ABSTRACT Dental arches areas with teeth presenting dentoalveolar ankylosis and replacement root resorption can be considered as presenting normal bone, in full physiological remodeling process; and osseointegrated implants can be successfully placed. Bone remodeling will promote osseointegration, regardless of presenting ankylosis and/or replacement root resorption. After 1 to 10 years, all dental tissues will have been replaced by bone. The site, angulation and ideal positioning in the space to place the implant should be dictated exclusively by the clinical convenience, associated with previous planning. One of the advantages of decoronation followed by dental implants placement in ankylosed teeth with replacement resorption is the maintenance of bone volume in the region, both vertical and horizontal. If possible, the buccal part of the root, even if thin, should be preserved in the preparation of the cavity for the implant, as this will maintain gingival tissues looking fully normal for long periods. In the selection of cases for decoronation, the absence of microbial contamination in the region - represented by chronic periapical lesions, presence of fistula, old unconsolidated root fractures and active advanced periodontal disease - is important. Such situations are contraindications to decoronation. However, the occurrence of dentoalveolar ankylosis and replacement resorption without contamination should neither change the planning for implant installation, nor the criteria for choosing the type and brand of dental implant to be used. Failure to decoronate and use dental implants has never been reported. PMID:29791693
Studies of chondrogenesis in rotating systems
NASA Technical Reports Server (NTRS)
Duke, P. J.; Daane, E. L.; Montufar-Solis, D.
1993-01-01
A great deal of energy has been exerted over the years researching methods for regenerating and repairing bone and cartilage. Several techniques, especially bone implants and grafts, show great promise for providing a remedy for many skeletal disorders and chondrodystrophies. The bioreactor (rotating-wall vessel, RWV) is a cell culture system that creates a nurturing environment conducive to cell aggregation. Chondrocyte cultures have been studied as implants for repair and replacement of damaged and missing bone and cartilage since 1965 [Chesterman and Smith, J Bone Joint Surg 50B:184-197, 1965]. The ability to use large, tissue-like cartilage aggregates grown in the RWV would be of great clinical significance in treating skeletal disorders. In addition, the RWV may provide a superior method for studying chondrogenesis and chondrogenic mutations. Because the RWV is also reported to simulate many of the conditions of microgravity it is a very useful ground-based tool for studying how cell systems will react to microgravity.
Effect of radial head implant shape on joint contact area and location during static loading.
Shannon, Hannah L; Deluce, Simon R; Lalone, Emily A; Willing, Ryan; King, Graham J W; Johnson, James A
2015-04-01
To examine the effect of implant shape on radiocapitellar joint contact area and location in vitro. We used 8 fresh-frozen cadaveric upper extremities. An elbow loading simulator examined joint contact in pronation, neutral rotation, and supination with the elbow at 90° flexion. Muscle tendons were attached to pneumatic actuators to allow for computer-controlled loading to achieve the desired forearm rotation. We performed testing with the native radial head, an axisymmetric implant, a reverse-engineered patient-specific implant, and a population-based quasi-anatomic implant. Implants were inserted using computer navigation. Contact area and location were quantified using a casting technique. We found no significant difference between contact locations for the native radial head and the 3 implants. All of the implants had a contact area lower than the native radial head; however, only the axisymmetric implant was significantly different. There was no significant difference in contact area between implant shapes. The similar contact areas and locations of the 3 implant designs suggest that the shape of the implant may not be important with respect to radiocapitellar joint contact mechanics when placed optimally using computer navigation. Further work is needed to explore the sensitivity of radial head implant malpositioning on articular contact. The lower contact area of the radial head implants relative to the native radial head is similar to previous benchtop studies and is likely the result of the greater stiffness of the implant. Radial head implant shape does not appear to have a pronounced influence on articular contact, and both axisymmetric and anatomic metal designs result in elevated cartilage stress relative to the intact state. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Pastor, Marc-Frederic; Kraemer, Manuel; Wellmann, Mathias; Hurschler, Christof; Smith, Tomas
2016-11-01
The aim of this study was to investigate the stabilizing influence of the rotator cuff as well as the importance of glenosphere and onlay configuration on the anterior stability of the reverse total shoulder replacement (RTSR). A reverse total shoulder replacement was implanted into eight human cadaveric shoulders, and biomechanical testing was performed under three conditions: after implantation of the RTSR, after additional dissection of the subscapularis tendon, and after additional dissection of the infraspinatus and teres minor tendon. Testing was performed in 30° of abduction and three rotational positions: 30° internal rotation, neutral rotation, and 30° external rotation. Furthermore, the 38-mm and 42-mm glenospheres were tested in combination with a standard and a high-mobility humeral onlay. A gradually increased force was applied to the glenohumeral joint in anterior direction until the RTSR dislocated. The 42-mm glenosphere showed superior stability compared with the 38-mm glenosphere. The standard humeral onlay required significantly higher anterior dislocation forces than the more shallow high-mobility onlay. External rotation was the most stable position. Furthermore, isolated detachment of the subscapularis and combined dissection of the infraspinatus, teres minor, and subscapularis tendon increased anterior instability. This study showed superior stability with the 42-mm glenosphere and the more conforming standard onlay. External rotation was the most stable position. Detachment of the subscapularis as well as dissection of the complete rotator cuff decreased anterior stability.
Allergies in orthopaedic and trauma surgery.
Lohmann, C H; Hameister, R; Singh, G
2017-02-01
Hypersensitivity reactions to implants in orthopaedic and trauma surgery are a rare but devastating complication. They are considered as a delayed-type of hypersensitivity reaction (type IV), characterized by an antigen activation of sensitized T-lymphocytes releasing various cytokines and may result in osteoclast activation and bone resorption. Potential haptens are originated from metal alloys or bone-cement. A meta-analysis has confirmed a higher probability of developing a metal hypersensitivity postoperatively and noted a greater risk of failed replacements compared to stable implants. Hypersensitivity to implants may present with a variety of symptoms such as pain, joint effusion, delayed wound/bone healing, persistent secretion, allergic dermatitis (localized or systemic), clicking noises, loss of joint function, instability and failure of the implant. Various diagnostic options have been offered, including patch testing, metal alloy patch testing, histology, lymphocyte transformation test (LTT), memory lymphocyte immunostimulation assay (MELISA), leukocyte migration inhibition test (LIF) and lymphocyte activation test (LAT). No significant differences between in vivo and in vitro methods have been found. Due to unconvincing evidence for screening methods, predictive tests are not recommended for routine performance. Infectious aetiology always needs to be excluded. As there is a lack of evidence on large-scale studies with regards to the optimal treatment option, management currently relies on individual case-by-case decisions. Several options for patients with (suspected) metal-related hypersensitivity exist and may include materials based on ceramic, titanium or oxinium or modified surfaces. Promising results have been reported, but long-term experience is lacking. More large-scaled studies are needed in this context. In patients with bone-cement hypersensitivity, the component suspected for hypersensitivity should be avoided. The development of (predictive) biomarkers is considered as a major contribution for the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto
2013-08-01
In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.
Li, Junyan; McWilliams, Anthony B; Jin, Zhongmin; Fisher, John; Stone, Martin H; Redmond, Anthony C; Stewart, Todd D
2015-06-01
Symptomatic leg length inequality accounts for 8.7% of total hip replacement related claims made against the UK National Health Service Litigation authority. It has not been established whether symptomatic leg length inequality patients following total hip replacement have abnormal hip kinetics during gait. Hip kinetics in 15 unilateral total hip replacement patients with symptomatic leg length inequality during gait was determined through multibody dynamics and compared to 15 native hip healthy controls and 15 'successful' asymptomatic unilateral total hip replacement patients. More significant differences from normal were found in symptomatic leg length inequality patients than in asymptomatic total hip replacement patients. The leg length inequality patients had altered functions defined by lower gait velocity, reduced stride length, reduced ground reaction force, decreased hip range of motion, reduced hip moment and less dynamic hip force with a 24% lower heel-strike peak, 66% higher mid-stance trough and 37% lower toe-off peak. Greater asymmetry in hip contact force was also observed in leg length inequality patients. These gait adaptions may affect the function of the implant and other healthy joints in symptomatic leg length inequality patients. This study provides important information for the musculoskeletal function and rehabilitation of symptomatic leg length inequality patients. Copyright © 2015. Published by Elsevier Ltd.
Morse taper dental implants and platform switching: The new paradigm in oral implantology
Macedo, José Paulo; Pereira, Jorge; Vahey, Brendan R.; Henriques, Bruno; Benfatti, Cesar A. M.; Magini, Ricardo S.; López-López, José; Souza, Júlio C. M.
2016-01-01
The aim of this study was to conduct a literature review on the potential benefits with the use of Morse taper dental implant connections associated with small diameter platform switching abutments. A Medline bibliographical search (from 1961 to 2014) was carried out. The following search items were explored: “Bone loss and platform switching,” “bone loss and implant-abutment joint,” “bone resorption and platform switching,” “bone resorption and implant-abutment joint,” “Morse taper and platform switching.” “Morse taper and implant-abutment joint,” Morse taper and bone resorption,” “crestal bone remodeling and implant-abutment joint,” “crestal bone remodeling and platform switching.” The selection criteria used for the article were: meta-analysis; randomized controlled trials; prospective cohort studies; as well as reviews written in English, Portuguese, or Spanish languages. Within the 287 studies identified, 81 relevant and recent studies were selected. Results indicated a reduced occurrence of peri-implantitis and bone loss at the abutment/implant level associated with Morse taper implants and a reduced-diameter platform switching abutment. Extrapolation of data from previous studies indicates that Morse taper connections associated with platform switching have shown less inflammation and possible bone loss with the peri-implant soft tissues. However, more long-term studies are needed to confirm these trends. PMID:27011755
Ruth, Veikko; Kolditz, Daniel; Steiding, Christian; Kalender, Willi A
2017-06-01
The performance of metal artifact reduction (MAR) methods in x-ray computed tomography (CT) suffers from incorrect identification of metallic implants in the artifact-affected volumetric images. The aim of this study was to investigate potential improvements of state-of-the-art MAR methods by using prior information on geometry and material of the implant. The influence of a novel prior knowledge-based segmentation (PS) compared with threshold-based segmentation (TS) on 2 MAR methods (linear interpolation [LI] and normalized-MAR [NORMAR]) was investigated. The segmentation is the initial step of both MAR methods. Prior knowledge-based segmentation uses 3-dimensional registered computer-aided design (CAD) data as prior knowledge to estimate the correct position and orientation of the metallic objects. Threshold-based segmentation uses an adaptive threshold to identify metal. Subsequently, for LI and NORMAR, the selected voxels are projected into the raw data domain to mark metal areas. Attenuation values in these areas are replaced by different interpolation schemes followed by a second reconstruction. Finally, the previously selected metal voxels are replaced by the metal voxels determined by PS or TS in the initial reconstruction. First, we investigated in an elaborate phantom study if the knowledge of the exact implant shape extracted from the CAD data provided by the manufacturer of the implant can improve the MAR result. Second, the leg of a human cadaver was scanned using a clinical CT system before and after the implantation of an artificial knee joint. The results were compared regarding segmentation accuracy, CT number accuracy, and the restoration of distorted structures. The use of PS improved the efficacy of LI and NORMAR compared with TS. Artifacts caused by insufficient segmentation were reduced, and additional information was made available within the projection data. The estimation of the implant shape was more exact and not dependent on a threshold value. Consequently, the visibility of structures was improved when comparing the new approach to the standard method. This was further confirmed by improved CT value accuracy and reduced image noise. The PS approach based on prior implant information provides image quality which is superior to TS-based MAR, especially when the shape of the metallic implant is complex. The new approach can be useful for improving MAR methods and dose calculations within radiation therapy based on the MAR corrected CT images.
Tan, Ban Fui; Tan, Keson B; Nicholls, Jack I
2004-01-01
Critical bending moment (CBM), the moment at which the external nonaxial load applied overcomes screw joint preload and causes loss of contact between the mating surfaces of the implant screw joint components, was measured with 2 types of implants and 2 types of abutments. Using 4 test groups of 5 implant-abutment pairs, CBM at the implant-abutment screw joint was measured at 25%, 50%, 75%, and 100% of the manufacturer's recommended torque levels. Regular Platform (RP) Nobel Biocare implants (3.75 mm diameter), Wide Platform (WP) Nobel Biocare implants (5.0 mm diameter), CeraOne abutments, and Multiunit abutments were used. Microstrain was measured as loads were applied to the abutment at various distances from the implant-abutment interface. Strain instrumentation logged the strain data dynamically to determine the point of gap opening. All torque applications and strain measurements were repeated 5 times. For the CeraOne-RP group, the mean CBMs were 17.09 Ncm, 35.35 Ncm, 45.63 Ncm, and 62.64 Ncm at 25%, 50%, 75%, and 100% of the recommended torque level, respectively. For the CeraOne-WP group, mean CBMs were 28.29 Ncm, 62.97 Ncm, 92.20 Ncm, and 127.41 Ncm; for the Multiunit-RP group, 16.08 Ncm, 21.55 Ncm, 34.12 Ncm, and 39.46 Ncm; and for the Multiunit-WP group, 15.90 Ncm, 32.86 Ncm, 43.29 Ncm, and 61.55 Ncm at the 4 different torque levels. Two-way analysis of variance (ANOVA) (P < .001) revealed significant effects for the test groups (F = 2738.2) and torque levels (F = 2969.0). The methodology developed in this study allows confirmation of the gap opening of the screw joint for the test groups and determination of CBM at different torque levels. CBM was found to differ among abutment systems, implant diameters, and torque levels. The torque levels recommended by the manufacturer should followed to ensure screw joint integrity.
Min, Jouha; Choi, Ki Young; Dreaden, Erik C; Padera, Robert F; Braatz, Richard D; Spector, Myron; Hammond, Paula T
2016-04-26
Infections associated with orthopedic implants cause increased morbidity and significant healthcare cost. A prolonged and expensive two-stage procedure requiring two surgical steps and a 6-8 week period of joint immobilization exists as today's gold standard for the revision arthroplasty of an infected prosthesis. Because infection is much more common in implant replacement surgeries, these issues greatly impact long-term patient care for a continually growing part of the population. Here, we demonstrate that a single-stage revision using prostheses coated with self-assembled, hydrolytically degradable multilayers that sequentially deliver the antibiotic (gentamicin) and the osteoinductive growth factor (BMP-2) in a time-staggered manner enables both eradication of established biofilms and complete and rapid bone tissue repair around the implant in rats with induced osteomyelitis. The nanolayered construct allows precise independent control of release kinetics and loading for each therapeutic agent in an infected implant environment. Antibiotics contained in top layers can be tuned to provide a rapid release at early times sufficient to eliminate infection, followed by sustained release for several weeks, and the underlying BMP-2 component enables a long-term sustained release of BMP-2, which induced more significant and mechanically competent bone formation than a short-term burst release. The successful growth factor-mediated osteointegration of the multilayered implants with the host tissue improved bone-implant interfacial strength 15-fold when compared with the uncoated one. These findings demonstrate the potential of this layered release strategy to introduce a durable next-generation implant solution, ultimately an important step forward to future large animal models toward the clinic.
Rice, Devyn; Shaat, Mohamed
2017-10-01
In this study, the fatigue characteristics of femoral and tibial locking compression plate (LCP) implants are determined accounting for the knee biomechanics during the gait. A biomechanical model for the kinematics and kinetics of the knee joint during the complete gait cycle is proposed. The rotations of the femur, tibia, and patella about the knee joint during the gait are determined. Moreover, the patellar-tendon force (PT), quadriceps-tendon force (QT), the tibiofemoral joint force (TFJ), and the patellofemoral joint force (PFJ) through the standard gait cycle are obtained as functions of the body weight (BW). On the basis of the derived biomechanics of the knee joint, the fatigue factors of safety along with the fatigue life of 316L stainless steel femoral and tibial LCP implants are reported as functions of the BW and bone fracture location, for the first time. The reported results reveal that 316L stainless steel LCP implants for femoral surgeries are preferred for conditions in which the bone fracture is close to the knee joint and the BW is less than 80 kg. For tibial surgeries, 316L stainless steel LCP implants can be used for conditions in which the bone fracture is close to the knee joint and the BW is less than 100 kg. This study presents a critical guide for the determination of the fatigue characteristics of LCP implants. The obtained results reveal that the fatigue analyses should be performed on the basis of the body biomechanics to guarantee accurate designs of LCP implants for femoral and tibial orthopedic surgeries.
J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.
Gomoll, A; Wanich, T; Bellare, A
2002-11-01
Radiation and chemical cross-linking of medical grade ultrahigh molecular weight polyethylene (UHMWPE) has recently been utilized in an effort to improve wear performance of total joint replacement components. However, reductions in mechanical properties with cross-linking are cause for concern regarding the use of cross-linked UHMWPE for high-stress applications such as in total knee replacement prostheses. In this study, the fracture behavior of radiation cross-linked UHMWPE was compared to that of uncross-linked UHMWPE. The Rice and Sorensen model that utilizes mechanical parameters obtained from uniaxial tensile and compact tension tests was used to calculate the steady state J-integral fracture toughness, Jss, for radiation cross-linked UHMWPE. Jss decreased monotonically with increase in radiation dose. UHMWPE exhibited tough, ductile tearing behavior with stable crack growth when it was cross-linked using a gamma radiation dose of 0-50 kGy. However, in cross-linked UHMWPE irradiated to a dose of 100 and 200 kGy, unstable fracture occurred spontaneously upon attaining the initial crack driving force, J1c. This indicates that a high degree of cross-linking is less desirable for high-stress applications in orthopaedic implants. However, a substantial increase in J1c, even at a low degree of cross-linking, suggests that a low degree of cross-linking may be beneficial for resistance to delamination and catastrophic failure, both of which require an initiation step for the fracture to propagate in the material. This mechanical test should, however, be considered along with fatigue tests and joint simulator testing before determination of an appropriate amount of cross-linking for total joint replacement prostheses that experience high stresses.
Erdil, Mehmet; Elmadağ, Nuh Mehmet; Polat, Gökhan; Tunçer, Nejat; Bilsel, Kerem; Uçan, Vahdet; Erkoçak, Omer Faruk; Sen, Cengiz
2013-01-01
The purpose of the present study was to compare the functional results of arthrodesis, resurfacing hemiarthroplasty, and total joint replacement in hallux rigidus. The data from patients treated from 2006 to 2010 for advanced stage hallux rigidus were retrospectively reviewed. A total of 38 patients who had at least 2 years (range 24 to 66 months, mean 31.1) of follow-up were included in the present study. Of the 38 patients, 12 were included in the total joint replacement group (group A), 14 in the resurfacing hemiarthroplasty group (group B), and 12 in the arthrodesis group (group C). At the last follow-up visit, the functional outcomes were evaluated using the American Orthopaedic Foot and Ankle Society-Hallux Metatarsophalangeal Interphalangeal (AOFAS-HMI) scale, visual analog scale (VAS), and metatarsophalangeal range of motion. Significant improvements were seen in the AOFAS-HMI score, with a decrease in the VAS score in all 3 groups. According to the AOFAS-HMI score, no significant difference was found between groups A and B. However, in group C, the AOFAS-HMI scores were significantly lower than in the other groups owing to the lack of motion. According to the final VAS scores, no significant difference was found between groups A and B; however, the VAS score had decreased significantly more in group C than in the other groups. No major complications occurred in any of the 3 groups. After 2 years of follow-up, all the groups had good functional outcomes. Although arthrodesis is still the most reliable procedure, implant arthroplasty is also a good alternative for advanced stage hallux rigidus. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
The gap technique does not rotate the femur parallel to the epicondylar axis.
Matziolis, Georg; Boenicke, Hinrich; Pfiel, Sascha; Wassilew, Georgi; Perka, Carsten
2011-02-01
In the analysis of painful total knee replacements, the surgical epicondylar axis (SEA) has become established as a standard in the diagnosis of femoral component rotation. It remains unclear whether the gap technique widely used to determine femoral rotation, when applied correctly, results in a rotation parallel to the SEA. In this prospective study, 69 patients (69 joints) were included who received a navigated bicondylar surface replacement due to primary arthritis of the knee joint. In 67 cases in which a perfect soft-tissue balancing of the extension gap (<1° asymmetry) was achieved, the flexion gap and the rotation of the femoral component necessary for its symmetry was determined and documented. The femoral component was implanted additionally taking into account the posterior condylar axis and the Whiteside's line. Postoperatively, the rotation of the femoral component to the SEA was determined and this was used to calculate the angle between a femur implanted according to the gap technique and the SEA. If the gap technique had been used consistently, it would have resulted in a deviation of the femoral components by -0.6° ± 2.9° (-7.4°-5.9°) from the SEA. The absolute deviation would have been 2.4° ± 1.8°, with a range between 0.2° and 7.4°. Even if the extension gap is perfectly balanced, the gap technique does not lead to a parallel alignment of the femoral component to the SEA. Since the clinical results of this technique are equivalent to those of the femur first technique in the literature, an evaluation of this deviation as a malalignment must be considered critically.
Alidousti, Hamidreza; Taylor, Mark; Bressloff, Neil W
2014-04-01
In total hip replacement (THR), wear particles play a significant role in osteolysis and have been observed in locations as remote as the tip of femoral stem. However, there is no clear understanding of the factors and mechanisms causing, or contributing to particle migration to the periprosthetic tissue. Interfacial gaps provide a route for particle laden joint fluid to transport wear particles to the periprosthetic tissue and cause osteolysis. It is likely that capsular pressure, gap dimensions and micromotion of the gap during cyclic loading of an implant, play defining roles to facilitate particle migration. In order to obtain a better understanding of the above mechanisms and factors, transient two-dimensional computational fluid dynamic simulations have been performed for the flow in the lateral side of a cementless stem-femur system including the joint capsule, a gap in communication with the capsule and the surrounding bone. A discrete phase model to describe particle motion has been employed. Key findings from these simulations include: (1) Particles were shown to enter the periprosthetic tissue along the entire length of the gap but with higher concentrations at both proximal and distal ends of the gap and a maximum rate of particle accumulation in the distal regions. (2) High capsular pressure, rather than gap micromotion, has been shown to be the main driving force for particle migration to periprosthetic tissue. (3) Implant micromotion was shown to pump out rather than draw in particles to the interfacial gaps. (4) Particle concentrations are consistent with known distributions of (i) focal osteolysis at the distal end of the gap and (ii) linear osteolysis along the entire gap length. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tribolayer Formation in a Metal-on-Metal (MoM) Hip Joint: An Electrochemical Investigation
Mathew, MT; Nagelli, C; Pourzal, R; Fischer, A; Laurent, MP; Jacobs, JJ; Wimmer, MA
2013-01-01
The demand for total hip replacement (THR) surgery is increasing in the younger population due to faster rehabilitation and more complete restoration of function. Up to 2009, metal-on-metal (MoM) hip joint bearings were a popular choice due to their design flexibility, post-operative stability and relatively low wear rates. The main wear mechanisms that occur along the bearing surface of MoM joints are tribochemical reactions that deposit a mixture of wear debris, metal ions and organic matrix of decomposed proteins known as a tribolayer. No in-depth electrochemical studies have been reported on the structure and characteristics of this tribolayer or about the parameters involved in its formation. In this study, we conducted an electrochemical investigation of different surfaces (bulk-like: control, nano-crystalline: new implant and tribolayer surface: retrieved implant) made out of two commonly used hip CoCrMo alloys (high-carbon and low-carbon). As per ASTM standard, cyclic polarization tests and electrochemical impedance spectroscopy tests were conducted. The results obtained from electrochemical parameters for different surfaces clearly indicated a reduction in corrosion for the tribolayer surface (Icorr: 0.76 μA/cm2). Further, polarization resistance (Rp:2.39±0.60MΩ/cm2) and capacitance (Cdl:15.20±0.75 μF/cm2) indicated variation in corrosion kinetics for the tribolayer surface, that attributed to its structure and stability in a simulated body environment. PMID:24099949
Zarei, Maryam; Jahangirnezhad, Mahmoud; Yousefimanesh, Hojatollah; Robati, Maryam; Robati, Hossein
2018-01-01
Dental implant is a method to replacement of missing teeth. It is important for replacing the missed anterior teeth. In vitro method is a safe method for evaluation of stress distribution. Finite element analysis as an in vitro method evaluated stress distribution around replacement of six maxillary anterior teeth implants in three models of maxillary arch. In this in vitro study, using ABAQUS software (Simulia Corporation, Vélizy-Villacoublay, France), implant simulation was performed for reconstruction of six maxillary anterior teeth in three models. Two implants were placed on both sides of the canine tooth region (A model); two implants on both sides of the canine tooth region and another on one side of the central incisor region (B model); and two implants on both sides of the canine tooth region and two implants in the central incisor area (C model). All implants evaluated in three arch forms (tapered, ovoid, and square). Data were analyzed by finite analysis software. Von Mises stress by increasing of implant number was reduced. In a comparison of A model in each maxillary arch, the stress created in the cortical and cancellous bones in the square arch was less than ovoid and tapered arches. The stress created in implants and cortical and cancellous bones in C model was less than A and B models. The C model (four-implant) reduced the stress distribution in cortical and cancellous bones, but this pattern must be evaluated according to arch form and cost benefit of patients.
Mason, James; Baker, Paul; Gregg, Paul J; Porter, Martyn; Deehan, David J; Reed, Mike R
2015-01-01
Background and purpose The optimal hip replacement for young patients remains unknown. We compared patient-reported outcome measures (PROMs), revision risk, and implant costs over a range of hip replacements. Methods We included hip replacements for osteoarthritis in patients under 60 years of age performed between 2003 and 2010 using the commonest brand of cemented, cementless, hybrid, or resurfacing prosthesis (11,622 women and 13,087 men). The reference implant comprised a cemented stem with a conventional polyethylene cemented cup and a standard-sized head (28- or 32-mm). Differences in implant survival were assessed using competing-risks models, adjusted for known prognostic influences. Analysis of covariance was used to assess improvement in PROMs (Oxford hip score (OHS) and EQ5D index) in 2014 linked procedures. Results In males, PROMs and implant survival were similar across all types of implants. In females, revision was statistically significantly higher in hard-bearing and/or small-stem cementless implants (hazard ratio (HR) = 4) and resurfacings (small head sizes (< 48 mm): HR = 6; large head sizes (≥ 48 mm): HR = 5) when compared to the reference cemented implant. In component combinations with equivalent survival, women reported significantly greater improvements in OHS with hybrid implants (22, p = 0.006) and cementless implants (21, p = 0.03) (reference, 18), but similar EQ5D index. For men and women, National Health Service (NHS) costs were lowest with the reference implant and highest with a hard-bearing cementless replacement. Interpretation In young women, hybrids offer a balance of good early functional improvement and low revision risk. Fully cementless and resurfacing components are more costly and do not provide any additional benefit for younger patients. PMID:25285617
Ding, Ming; Henriksen, Susan S; Martinetti, Roberta; Overgaard, Søren
2017-11-01
Early fixation of total joint arthroplasties is crucial for ensuring implant survival. An alternative bone graft material in revision surgery is needed to replace the current gold standard, allograft, seeing that the latter is associated with several disadvantages. The incubation of such a construct in a perfusion bioreactor has been shown to produce viable bone graft materials. This study aimed at producing larger amounts of viable bone graft material (hydroxyapatite 70% and β-tricalcium-phosphate 30%) in a novel perfusion bioreactor. The abilities of the bioreactor-activated graft material to induce early implant fixation were tested in a bilateral implant defect model in sheep, with allograft as the control group. Defects were bilaterally created in the distal femurs of the animals, and titanium implants were inserted. The concentric gaps around the implants were randomly filled with either allograft, granules, granules with bone marrow aspirate or bioreactor-activated graft material. Following an observation time of 6 weeks, early implant fixation and bone formation were assessed by micro-CT scanning, mechanical testing, and histomorphometry. Bone formations were seen in all groups, while no significant differences between groups were found regarding early implant fixation. The microarchitecture of the bone formed by the synthetic graft materials resembled that of allograft. Histomorphometry revealed that allograft induced significantly more bone and less fibrous tissue (p < 0.05). In conclusion, bone formation was observed in all groups, while the bioreactor-activated graft material did not reveal additional effects on early implant fixation comparable to allograft in this model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2465-2476, 2017. © 2016 Wiley Periodicals, Inc.
Metal-on-Metal Hip Resurfacing Arthroplasty
Sehatzadeh, S; Kaulback, K; Levin, L
2012-01-01
Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the teratogenicity of MOM implants in humans. Conclusions Metal-on-metal HRA can be beneficial for appropriately selected patients, provided the surgeon has the surgical skills required for performing this procedure. Plain Language Summary There are many young patients with hip diseases who need to have hip replacement surgery. Although a traditional hip replacement is an acceptable procedure for these patients, some surgeons prefer using a newer technique in young patients called hip resurfacing. In this technique, instead of removing the head of the femoral bone, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the hip socket, similar to the cups used in traditional hip replacement. The analysis of the revision rates (i.e., how soon and in how many patients the surgery needs to be redone) and safety of resurfacing implants showed that generally these implants can last 10 years or more for the majority of young people. Good outcomes can be expected when skilled surgeons perform the surgery in properly selected patients. However, since these implants are made of metal (cobalt and chromium alloy), there is concern about excess metal debris production due to friction between the 2 metal components leading to high levels of metal ions in the blood and urine of patients. The production of metal debris may result in inflammation in the joint or development of a benign soft tissue mass leading to implant failure. However, it has been shown that this risk can be reduced by proper positioning of the implant and the careful selection of patients for this procedure. Little is known about the long-term biological effects of high levels of metal ions in the blood and urine of patients who have received metal implants. There is concern about potential increases in the risk of cancer and the risk of fetal abnormalities, but these effects have not been established yet. However, since cobalt and chromium can pass the placental barrier, implants that are not metal-on-metal are recommended for women at childbearing ages if they need a hip replacement. PMID:23074429
Hayes, Galina; Gibson, Tom; Moens, Noel M M; Nykamp, Stephanie; Wood, Darren; Foster, Robert; Lerer, Asaf
2016-01-01
Gentamicin impregnated collagen sponge (GICS) can be used to treat intra-articular surgical site infections. High local concentrations of gentamicin can be reached for short periods; however the collagen vehicle may persist for much longer periods. We wished to determine the effect of sponge implantation on joint inflammation and renal function. Eighteen medium sized mixed breed research dogs of hound type were randomized to two groups; arthroscopic implantation of GICS at gentamicin dose = 6 mg/kg (n = 9) or sham operation (n = 9). Endpoints consisted of joint inflammation measured by synovial fluid cell counts and cytokine concentrations; lameness measured by force plate asymmetry indices; and renal function measured by glomerular filtration rate (GFR) study. The prevalence of lesions associated with aminoglycoside nephrotoxicity was assessed by renal biopsy and transmission electron microscopy. Gentamicin impregnated collagen sponge implantation caused joint inflammation (p <0.01), lameness (p = 0.04), and decreased GFR (p = 0.04). No difference was observed in the prevalence of renal lesions on biopsy between the treatment and control groups (p = 0.49). Gentamicin impregnated collagen sponge implantation causes joint inflammation and lameness as well as GFR reductions at the dose assessed. Gentamicin impregnated collagen sponge are not recommended for intra-articular implantation in dogs.
Devlin-Mullin, Aine; Todd, Naomi M; Golrokhi, Zahra; Geng, Hua; Konerding, Moritz A; Ternan, Nigel G; Hunt, John A; Potter, Richard J; Sutcliffe, Chris; Jones, Eric; Lee, Peter D; Mitchell, Christopher A
2017-06-01
Joint replacement surgery is associated with significant morbidity and mortality following infection with either methicillin-resistant Staphylococcus aureus (MRSA) or Staphylococcus epidermidis. These organisms have strong biofilm-forming capability in deep wounds and on prosthetic surfaces, with 10 3 -10 4 microbes resulting in clinically significant infections. To inhibit biofilm formation, we developed 3D titanium structures using selective laser melting and then coated them with a silver nanolayer using atomic layer deposition. On bare titanium scaffolds, S. epidermidis growth was slow but on silver-coated implants there were significant further reductions in both bacterial recovery (p < 0.0001) and biofilm formation (p < 0.001). MRSA growth was similarly slow on bare titanium scaffolds and not further affected by silver coating. Ultrastructural examination and viability assays using either human bone or endothelial cells, demonstrated strong adherence and growth on titanium-only or silver-coated implants. Histological, X-ray computed microtomographic, and ultrastructural analyses revealed that silver-coated titanium scaffolds implanted into 2.5 mm defects in rat tibia promoted robust vascularization and conspicuous bone ingrowth. We conclude that nanolayer silver of titanium implants significantly reduces pathogenic biofilm formation in vitro, facilitates vascularization and osseointegration in vivo making this a promising technique for clinical orthopedic applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kutzner, I; Bender, A; Dymke, J; Duda, G; von Roth, P; Bergmann, G
2017-06-01
Tibiofemoral alignment is important to determine the rate of progression of osteoarthritis and implant survival after total knee arthroplasty (TKA). Normally, surgeons aim for neutral tibiofemoral alignment following TKA, but this has been questioned in recent years. The aim of this study was to evaluate whether varus or valgus alignment indeed leads to increased medial or lateral tibiofemoral forces during static and dynamic weight-bearing activities. Tibiofemoral contact forces and moments were measured in nine patients with instrumented knee implants. Medial force ratios were analysed during nine daily activities, including activities with single-limb support (e.g. walking) and double-limb support (e.g. knee bend). Hip-knee-ankle angles in the frontal plane were analysed using full-leg coronal radiographs. The medial force ratio strongly correlated with the tibiofemoral alignment in the static condition of one-legged stance (R² = 0.88) and dynamic single-limb loading (R² = 0.59) with varus malalignment leading to increased medial force ratios of up to 88%. In contrast, the correlation between leg alignment and magnitude of medial compartment force was much less pronounced. A lateral shift of force occurred during activities with double-limb support and higher knee flexion angles. The medial force ratio depends on both the tibiofemoral alignment and the nature of the activity involved. It cannot be generalised to a single value. Higher medial ratios during single-limb loading are associated with varus malalignment in TKA. The current trend towards a 'constitutional varus' after joint replacement, in terms of overall tibiofemoral alignment, should be considered carefully with respect to the increased medial force ratio. Cite this article: Bone Joint J 2017;99-B:779-87. ©2017 The British Editorial Society of Bone & Joint Surgery.
Total hip replacement for hip fracture: Surgical techniques and concepts.
Coomber, Ross; Porteous, Matthew; Hubble, Matthew J W; Parker, Martyn J
2016-10-01
When treating a hip fracture with a total hip replacement (THR) the surgical technique may differ in a number of aspects in comparison to elective arthroplasty. The hip fracture patient is more likely to have poor bone stock secondary to osteoporosis, be older, have a greater number of co-morbidities, and have had limited peri-operative work-up. These factors lead to a higher risk of complications, morbidity and perioperative mortality. Consideration should be made to performing the THR in a laminar flow theatre, by a surgeon experienced in total hip arthroplasty, using an anterolateral approach, cementing the implant in place, using a large head size and with repair of the joint capsule. Combined Ortho-geriatric care is recommended with similar post-operative rehabilitation to elective THR patients but with less expectation of short length of stay and consideration for fracture prevention measures. Copyright © 2016. Published by Elsevier Ltd.
Influence of Porosity on Mechanical Properties and In vivo Response of Ti6Al4V Implants
Bandyopadhyay, Amit; Espana, Felix; Balla, Vamsi Krishna; Bose, Susmita; Ohgami, Yusuke; Davies, Neal M
2009-01-01
Metallic biomaterials are widely used to restore the lost structure and functions of human bone. Due to the large number of joint replacements, there is a growing demand for new and improved orthopedic implants. More specifically, there is a need for novel load bearing metallic implants with low effective modulus matching to that of bone in order to reduce stress shielding and consequent increase in the in vivo life-span of the implant. In this study, we have fabricated porous Ti6Al4V alloy structures, using Laser Engineered Net Shaping (LENS™) to demonstrate that advanced manufacturing techniques such as LENS™ can be used to fabricate low-modulus, tailored porosity implants with a wide variety of metals/alloys, where the porosity can be designed in areas based on the patient's need to enhance biological fixation and achieve long-term in vivo stability. The effective modulus of Ti6Al4V alloy structures has been tailored between 7 and 60 GPa and porous Ti alloy structures containing 23 to 32 vol. % porosity showed modulus equivalent to human cortical bone. In vivo behavior of porous Ti6Al4V alloy samples in male Sprague-Dawley rats for 16 weeks demonstrated significant increase in calcium within the implants indicating excellent biological tissue ingrowth through interconnected porosity. In vivo results also showed that total amount of porosity plays an important role in tissue ingrowth. PMID:19913643
Sosna, A; Radonský, T; Pokorný, D; Veigl, D; Horák, Z; Jahoda, D
2003-01-01
The experience obtained during revision surgery and findings of polyethylene granulomas in surrounding tissues of replacement as well as marked differences in the viability of implants resulted in the study of polyethylene disease and its basic mechanisms producing the development of osteoaggressive granulomas. We investigated the morphology of particles and their number in tissues surrounding the implant. The aim of our study was to develop a method for the detection of polyethylene particles in tissues, to identify different types of wear and to assess factors that may influence the viability of joint arthroplasty in general. Every revizion of joint arthroplasty performed during the last five years was evaluated in terms of the presence of polyethylene granules and the viability state of articular polyethylene inserts. A total of 55 samples were taken from tissues around loosened endoprostheses. The location of each sample was exactly determined. A technique was developed to identify wear particles and to visualize them after all organic structures of a polyethylene granuloma were dissolved with nitrogenic acid. The viability of articular polyethylene implants showed extreme differences in relation to different periods of manufacture and probably also to different methods of sterilization. Articular inserts sterilized with formaldehyde (the method used at the beginning of arthroplasty in our country) showed the highest viability and the lowest wear. The polyethylene particles present in tissues surrounding the implant were characterized in terms of morphology and size. The comparison of literature data and our results has revealed that there are many unknown facts about the quality and structure of polyethylene. The method of sterilization also appears to play a role. Because the issue is complex, we were not able to identify all factors leading, in some cases, to an early and unexpected failure of the implant and we consider further investigation to be necessary. Polyethylene disease is an important factor limiting the viability of joint arthroplasty. It results from a complex interaction of polyethylene particles arising by wear with surrounding tissues. The particles, less than 0.5 micron in size, are phagocytized by macrophages and, by complex mechanism of expression of inflammation mediators, they result in the inhibition of osteogenesis and activation of osteoclastic processes. The previous methods of sterilization with formaldehyde vapors apparently reduced wear influenced the resistance of polyethylene to wear to a lesser degree. A method was developed to detect these particles and to characterize their morphology in the tissues of a polyethylene granuloma.
Ir'ianov, Iu M; Ir'ianova, T Iu
2012-01-01
In the experiment conducted on 30 Wistar rats, the peculiarities of tibial bone defect replacement under conditions of transosseous osteosynthesis and implantation of titanium nickelide mesh structures were studied using the methods of scanning electron microscopy and x-ray electron probe microanalysis. It was demonstrated that implant osseointegration occured 7 days after surgery, and after 30 days the defect was replaced with bone tissue by the type of primary bone wound healing, thus the organotypical remodeling of regenerated bone took place.
Fabry, Christian; Kaehler, Michael; Herrmann, Sven; Woernle, Christoph; Bader, Rainer
2014-01-01
Tripolar systems have been implanted to reduce the risk of recurrent dislocation. However, there is little known about the dynamic behavior of tripolar hip endoprostheses under daily life conditions and achieved joint stability. Hence, the objective of this biomechanical study was to examine the in vivo dynamics and dislocation behavior of two types of tripolar systems compared to a standard total hip replacement (THR) with the same outer head diameter. Several load cases of daily life activities were applied to an eccentric and a concentric tripolar system by an industrial robot. During testing, the motion of the intermediate component was measured using a stereo camera system. Additionally, their behavior under different dislocation scenarios was investigated in comparison to a standard THR. For the eccentric tripolar system, the intermediate component demonstrated the shifting into moderate valgus-positions, regardless of the type of movement. This implant showed the highest resisting torque against dislocation in combination with a large range of motion. In contrast, the concentric tripolar system tended to remain in varus-positions and was primarily moved after stem contact. According to the results, eccentric tripolar systems can work well under in vivo conditions and increase hip joint stability in comparison to standard THRs. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Parchi, Paolo Domenico; Ferrari, Vincenzo; Piolanti, Nicola; Andreani, Lorenzo; Condino, Sara; Evangelisti, Gisberto; Lisanti, Michele
2013-09-01
Each year approximately 1 million total hip replacements (THR) are performed worldwide. A percentage of failure due to surgical approach and imprecise implant placement still exists. These result in several serious complications. We propose an approach to plan, to simulate, and to assist prosthesis implantation for difficult cases of THR based on 3-D virtual models, generated by segmenting patients' CT images, 3-D solid models, obtained by rapid prototyping (RP), and virtual procedure simulation. We carried out 8 THR with the aid of 3-D reconstruction and RP. After each procedure a questionnaire was submitted to the surgeon to assess the perceived added value of the technology. In all cases, the surgeon evaluated the 3-D model as useful in order to perform the planning. The clinical results showed a mean increase in the Harris Hip Score of about 42.5 points. The mean time of prototyping was 7.3 hours, (min 3.5 hours, max 9.3 hours). The mean surgery time was 65 minutes (min 50 minutes, max 88 minutes). Our study suggests that meticulous preoperative planning is necessary in front of a great aberration of the joint and in absence of normal anatomical landmarks, CT scan is mandatory, and 3-D reconstruction with solid model is useful.
Roach, Brendan L.; Hung, Clark T.; Cook, James L.; Ateshian, Gerard A.; Tan, Andrea R.
2015-01-01
Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950
Simultaneous bilateral total knee and ankle arthroplasty as a single surgical procedure.
Pagenstert, Geert; Hintermann, Beat
2011-10-13
Simultaneous osteoarthritis (OA) of the ankle joint complicates primary total knee arthroplasty (TKA). In such cases, rehabilitation of TKA is limited by debilitating ankle pain, but varus or valgus ankle arthritis may even compromise placement of knee prosthetic components. We present a patient with simultaneous bilateral valgus and patellofemoral OA of the knees and bilateral varus OA of the ankle joints that equally contributed to overall disability. This 63 years old, motivated and otherwise healthy patient was treated by simultaneous bilateral total knee and ankle arthroplasty (quadruple total joint arthroplasty, TJA) during the same anesthesia. Two years outcome showed excellent alignment and function of all four replaced joints. Postoperative time for rehabilitation, back to work (6th week) and hospital stay (12 days) of this special patient was markedly reduced compared to the usual course of separate TJA. Simultaneous quadruple TJA in equally disabling OA of bilateral deformed knees and ankles resulted in a better functional outcome and faster recovery compared to the average reported results after TKA and TAA in literature. However, careful preoperative planning, extensive patient education, and two complete surgical teams were considered essential for successful performance. To the best of our knowledge this is the first case report in literature about quadruple major total joint arthroplasty implanted during the same anesthesia in the same patient.
NASA Astrophysics Data System (ADS)
Muth, John; Poggie, Matthew; Kulesha, Gene; Michael Meneghini, R.
2013-02-01
Hip and knee replacement can dramatically improve a patient's quality of life through pain relief and restored function. Fixation of hip and knee replacement implants to bone is critical to the success of the procedure. A variety of roughened surfaces and three-dimensional porous surfaces have been used to enhance biological fixation on orthopedic implants. Recently, highly porous metals have emerged as versatile biomaterials that may enhance fixation to bone and are suitable to a number of applications in hip and knee replacement surgery. This article provides an overview of several processes used to create these implant surfaces.
Surgeons' Perspectives on Premium Implants in Total Joint Arthroplasty.
Wasterlain, Amy S; Bello, Ricardo J; Vigdorchik, Jonathan; Schwarzkopf, Ran; Long, William J
2017-09-01
Declining total joint arthroplasty reimbursement and rising implant prices have led many hospitals to restrict access to newer, more expensive total joint arthroplasty implants. The authors sought to understand arthroplasty surgeons' perspectives on implants regarding innovation, product launch, costs, and cost-containment strategies including surgeon gain-sharing and patient cost-sharing. Members of the International Congress for Joint Reconstruction were surveyed regarding attitudes about implant technology and costs. Descriptive and univariate analyses were performed. A total of 126 surgeons responded from all 5 regions of the United States. Although 76.9% believed new products advance technology in orthopedics, most (66.7%) supported informing patients that new implants lack long-term clinical data and restricting new implants to a small number of investigators prior to widespread market launch. The survey revealed that 66.7% would forgo gain-sharing incentives in exchange for more freedom to choose implants. Further, 76.9% believed that patients should be allowed to pay incremental costs for "premium" implants. Surgeons who believed that premium products advance orthopedic technology were more willing to forgo gain-sharing (P=.040). Surgeons with higher surgical volume (P=.007), those who believed implant companies should be allowed to charge more for new technology (P<.001), and those who supported discussing costs with patients (P=.004) were more supportive of patient cost-sharing. Most arthroplasty surgeons believe technological innovation advances the field but support discussing the "unproven" nature of new implants with patients. Many surgeons support alternative payment models permitting surgeons and patients to retain implant selection autonomy. Most respondents prioritized patient beneficence and surgeon autonomy above personal financial gain. [Orthopedics. 2017; 40(5):e825-e830.]. Copyright 2017, SLACK Incorporated.
Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg
2007-06-01
Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.
DEALING WITH DENTAL IMPLANT FAILURES
Levin, Liran
2008-01-01
An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them. PMID:19089213
Hernández-Cortés, Pedro; Monje, Alberto; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Mesa, Francisco; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David; O'Valle, Francisco
2014-01-01
This study was designed to explore relationships of resonance frequency analysis (RFA)-assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies.
Identification of the Cause of the Stem Neck Fracture in the Hip Joint Endoprosthesis
NASA Astrophysics Data System (ADS)
Ryniewicz, A. M.; Bojko, Ł.; Ryniewicz, A.; Pałka, P.; Ryniewicz, W.
2018-02-01
Endoprosthesis stem fractures are among the rarest complications that occur after hip joint arthroplasty. The aim of this paper is to evaluate the causes of the fractures of the Aura II stem neck, which is an element of an endoprosthesis implanted in a patient. In order to achieve it, a radiogram was evaluated, the FEM analysis was carried out for the hip joint replaced using the Aura II prosthesis and scanning tests as well as a chemical analysis were performed for the focus of fatigue. The tests performed indicate that the most probable causes leading to the fatigue fracture of the Aura II stem under examination were material defects in the process of casting and forging (forging the material with delamination and the presence of brittle oxides and carbides) that resulted in a significant reduction of strength and resistance to corrosion. In the light of an unprecedented stem neck fracture, this information should be an indication for non-destructive tests of ready-made stems aiming to discover the material and technological defects that may arise in the process of casting and drop forging.
Wei, Jiao; Herrler, Tanja; Han, Dong; Liu, Kai; Huang, Rulin; Guba, Markus; Dai, Chuanchang; Li, Qingfeng
2016-11-28
Joint defects are complex and difficult to reconstruct. By exploiting the body's own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach.
Wei, Jiao; Herrler, Tanja; Han, Dong; Liu, Kai; Huang, Rulin; Guba, Markus; Dai, Chuanchang; Li, Qingfeng
2016-01-01
Joint defects are complex and difficult to reconstruct. By exploiting the body’s own regenerative capacity, we aimed to individually generate anatomically precise neo-tissue constructs for autologous joint reconstruction without using any exogenous additives. In a goat model, CT scans of the mandibular condyle including articular surface and a large portion of the ascending ramus were processed using computer-aided design and manufacturing. A corresponding hydroxylapatite negative mold was printed in 3D and temporarily embedded into the transition zone of costal periosteum and perichondrium. A demineralized bone matrix scaffold implanted on the contralateral side served as control. Neo-tissue constructs obtained by guided self-generation exhibited accurate configuration, robust vascularization, biomechanical stability, and function. After autologous replacement surgery, the constructs showed stable results with similar anatomical, histological, and functional findings compared to native controls. Further studies are required to assess long-term outcome and possible extensions to other further applications. The absence of exogenous cells, growth factors, and scaffolds may facilitate clinical translation of this approach. PMID:27892493
Medical Surveillance Monthly Report (MSMR). Volume 22, Number 5, May 2015
2015-05-01
aTotal column equals one joint replacement per person per period. bAn individual could be counted once in each of the types of joint replacements. cRate...Percentages of joint replace- ment cases who remained in service or had left service, 2 years post-joint replacement, by gender , active component...Musculoskeletal-related disability in US Army personnel: prevalence, gender and military occupational specialties. J Occup Environ Med. 1997;39(1):68–78
Repairing the vibratory vocal fold.
Long, Jennifer L
2018-01-01
A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. Translational research. Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. NA. Laryngoscope, 128:153-159, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.
Pulikottil-Jacob, Ruth; Connock, Martin; Kandala, Ngianga-Bakwin; Mistry, Hema; Grove, Amy; Freeman, Karoline; Costa, Matthew; Sutcliffe, Paul; Clarke, Aileen
2016-01-01
Total hip replacement for end stage arthritis of the hip is currently the most common elective surgical procedure. In 2007 about 7.5% of UK implants were metal-on-metal joint resurfacing (MoM RS) procedures. Due to poor revision performance and concerns about metal debris, the use of RS had declined by 2012 to about a 1% share of UK hip procedures. This study estimated the lifetime cost-effectiveness of metal-on-metal resurfacing (RS) procedures versus commonly employed total hip replacement (THR) methods. We performed a cost-utility analysis using a well-established multi-state semi-Markov model from an NHS and personal and social services perspective. We used individual patient data (IPD) from the National Joint Registry (NJR) for England and Wales on RS and THR surgery for osteoarthritis recorded from April 2003 to December 2012. We used flexible parametric modelling of NJR RS data to guide identification of patient subgroups and RS devices which delivered revision rates within the NICE 5% revision rate benchmark at 10 years. RS procedures overall have an estimated revision rate of 13% at 10 years, compared to <4% for most THR devices. New NICE guidance now recommends a revision rate benchmark of <5% at 10 years. 60% of RS implants in men and 2% in women were predicted to be within the revision benchmark. RS devices satisfying the 5% benchmark were unlikely to be cost-effective compared to THR at a standard UK willingness to pay of £20,000 per quality-adjusted life-year. However, the probability of cost effectiveness was sensitive to small changes in the costs of devices or in quality of life or revision rate estimates. Our results imply that in most cases RS has not been a cost-effective resource and should probably not be adopted by decision makers concerned with the cost effectiveness of hip replacement, or by patients concerned about the likelihood of revision, regardless of patient age or gender.
[Restricted motion after total knee arthroplasty].
Kucera, T; Urban, K; Karpas, K; Sponer, P
2007-10-01
The aim of the study was to ascertain what proportion of patients undergoing total knee arthroplasty (TKA) complain of restricted knee joint motion, and to investigate options for improvement of this situation. Our evaluation included a group of 796 patients treated with TKA at our department in the period from January 1, 1990, to December 31, 2004. In all cases, a condylar implant with preservation of the posterior cruciate ligaments was used. In addition to medical history, the range of motion, knee joint malalignment and radiological findings were assessed before surgery. After THA, the type of implant and complications, if any, were recorded, and improvement in joint motion was followed up. Based on the results of Kim et al., flexion contracture equal to or higher than 15 degrees and/or flexion less than 75 degrees were made the criteria of stiffness after THA. Patients with restricted THA motion who had aseptic or septic implant loosening were not included. Of the 796 evaluated patients, 32 (4.14 %) showed restricted motion after total knee arthroplasty, as assessed by the established criteria. In 16 patients, stiffness defined by these criteria had existed before surgery, and three patients showed an excessive production of adhesions and heterotopic ossifications. In three patients, the implantation procedure resulted in an elevated level of the original joint line and subsequent development of patella infera and increased tension of the posterior cruciate ligament. Four patients declined physical therapy and, in six, the main cause of stiffness could not be found. Seventeen patients did not require surgical therapy for restricted motion; TKA provided significant pain relief and they considered the range of motion achieved to be sufficient. One patient underwent redress 3 months after surgery, but with no success. Repeated releases of adhesions, replacement of a polyethylene liner and revision surgery of the extensor knee structures were performed in 15 patients. In these, the average value of knee flexion increased by 17 degrees only and, in the patients suffering from excessive adhesion production, this value remained almost unchanged. Revision TKA was carried out in four patients, in whom knee joint flexion increased on average by 35 degrees to achieve an average flexion of 83 degrees. Restricted motion after TKA has been reported to range from 1.3 % to 12.0 %, but consistent criteria have not been set up. In our study it was 4.14 %. In agreement with the literature data, one of the reasons was pre-operative restricted motion, which was recorded in 16 of 32 patients. Similarly, also in our patients, biological predisposition to excessive production of fibrocartilage associated with adhesions in all knee joint compartments was the major therapeutic problem. Intra-operative fractures, ligament tears requiring post-operative fixation and unremoved dorsal osteophytes lead to the restriction of knee joint motion. By inadequate resection of articular surface, the original joint line may be at a higher level; this results in an increased tension of the posterior cruciate ligament and patella infera development, both influencing knee flexion. In our study, three patients were affected. Knee joint stiffness can also develop in patients declining physical therapy or in whom this is not correctly performed, often for insufficient analgesia. In contrast to the data reported in the literature, 17 of 32 patients in this study had no need for surgical treatment of restricted knee joint motion. Redress under general anesthesia was not effective. For markedly restricted motion of the knee joint, reimplantation can be recommended or, in less severe cases, an intervention on adjacent soft tissues. Restricted motion of the knee joint after TKA is difficult to treat and, therefore, prevention is recommended. This should include thorough conservative treatment of gonarthrosis, early indication for surgery, prevention of elevation in the joint line and consistent rehabilitation with appropriate analgesia. For severe stiffness of the knee joint, as evaluated by the criteria of Kim et al., revision arthroplasty can be recommended.
Prosthetic valve sparing aortic root replacement: an improved technique.
Leacche, Marzia; Balaguer, Jorge M; Umakanthan, Ramanan; Byrne, John G
2008-10-01
We describe a modified surgical technique to treat patients with a previous history of isolated aortic valve replacement who now require aortic root replacement for an aneurysmal or dissected aorta. This technique consists of replacing the aortic root with a Dacron conduit, leaving intact the previously implanted prosthesis, and re-implanting the coronary arteries in the Dacron graft. Our technique differs from other techniques in that we do not leave behind any aortic tissue remnant and also in that we use a felt strip to obliterate any gap between the old sewing ring and the newly implanted graft. In our opinion, this promotes better hemostasis. We demonstrate that this technique is safe, feasible, and results in acceptable outcomes.
Hickey, B A; Kempshall, P J; Metcalfe, A J; Forster, M C
2012-04-01
As part of the national initiative to reduce waiting times for joint replacement surgery in Wales, the Cardiff and Vale NHS Trust referred 224 patients to the NHS Treatment Centre in Weston-Super-Mare for total knee replacement (TKR). A total of 258 Kinemax TKRs were performed between November 2004 and August 2006. Of these, a total of 199 patients (232 TKRs, 90%) have been followed up for five years. This cohort was compared with 258 consecutive TKRs in 250 patients, performed at Cardiff and Vale Orthopaedic Centre (CAVOC) over a similar time period. The five year cumulative survival rate was 80.6% (95% confidence interval (CI) 74.0 to 86.0) in the Weston-Super-Mare cohort and 95.0% (95% CI 90.2 to 98.2) in the CAVOC cohort with revision for any reason as the endpoint. The relative risk for revision at Weston-Super-Mare compared with CAVOC was 3.88 (p < 0.001). For implants surviving five years, the mean Oxford knee scores (OKS) and mean EuroQol (EQ-5D) scores were similar (OKS: Weston-Super-Mare 29 (2 to 47) vs CAVOC 29.8 (3 to 48), p = 0.61; EQ-5D: Weston-Super-Mare 0.53 (-0.38 to 1.00) vs CAVOC 0.55 (-0.32 to 1.00), p = 0.79). Patients with revised TKRs had significantly lower Oxford knee and EQ-5D scores (p < 0.001). The results show a higher revision rate for patients operated at Weston-Super-Mare Treatment Centre, with a reduction in functional outcome and quality of life after revision. This further confirms that patients moved from one area to another for joint replacement surgery fare poorly.
Revision Proximal Interphalangeal Arthroplasty: An Outcome Analysis of 75 Consecutive Cases.
Wagner, Eric R; Luo, T David; Houdek, Matthew T; Kor, Daryl J; Moran, Steven L; Rizzo, Marco
2015-10-01
To examine the outcomes and complications associated with revision proximal interphalangeal (PIP) joint arthroplasty. An analysis of 75 consecutive revision PIP joint arthroplasties in 49 patients, performed between 1998 to 2012, was performed. The mean age at the time of surgery was 58 years. Thirty-two patients had a history of prior PIP joint trauma, and 18 patients had rheumatoid arthritis. There were 12 constrained (silicone) implants and 63 nonconstrained implants (34 pyrocarbon and 29 metal-plastic). Over the 14-year period, 19 (25%) fingers underwent a second revision surgery. Second revision surgeries were performed for infection, instability, flexion contracture, and heterotopic ossification. The 2-, 5-, and 10-year survival rates were 80%, 70%, and 70%, respectively, for patients requiring a second revision for PIP joint arthroplasty. Worse outcomes were seen with postoperative dislocations, pyrocarbon implants, and when bone grafting was required. Two operations were complicated by intraoperative fractures, but neither required stabilization. Sixteen patients undergoing revision surgery experienced a postoperative complication, including 2 infections, 1 postoperative fracture, 3 cases of heterotopic ossification, and 10 PIP joint dislocations. The volar approach and the use of a pyrocarbon implant was associated with increased rates of heterotopic ossification, whereas preoperative instability increased the rates of PIP joint dislocation following revision. At a mean of 5.3 years (range, 2-10 years) follow-up, 98% of patients had good pain relief but decreased PIP joint total arc of motion. Proximal interphalangeal joint arthroplasty in the revision setting represents a challenge for surgeons. Revision arthroplasty was associated with a 70% 5-year survival but with a high incidence of complications. Instability was associated with worse outcomes. In this series, silicone and metal-polyethylene implants had lower rates of implant failure and postoperative complications than ones made from pyrocarbon. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Musculoskeletal disease burden of hereditary hemochromatosis.
Sahinbegovic, Enijad; Dallos, Tomáš; Aigner, Elmar; Axmann, Roland; Manger, Bernhard; Englbrecht, Matthias; Schöniger-Hekele, Maximilian; Karonitsch, Thomas; Stamm, Tanja; Farkas, Martin; Karger, Thomas; Stölzel, Ulrich; Keysser, Gernot; Datz, Christian; Schett, Georg; Zwerina, Jochen
2010-12-01
To determine the prevalence, clinical picture, and disease burden of arthritis in patients with hereditary hemochromatosis. In this cross-sectional observational study of 199 patients with hemochromatosis and iron overload, demographic and disease-specific variables, genotype, and organ involvement were recorded. The prevalence, intensity, and localization of joint pain were assessed, and a complete rheumatologic investigation was performed. Radiographs of the hands, knees, and ankles were scored for joint space narrowing, erosions, osteophytes, and chondrocalcinosis. In addition, the number and type of joint replacement surgeries were recorded. Joint pain was reported by 72.4% of the patients. Their mean ± SD age at the time of the initial joint symptoms was 45.8 ± 13.2 years. If joint pain was present, it preceded the diagnosis of hemochromatosis by a mean ± SD of 9.0 ± 10.7 years. Bony enlargement was observed in 65.8% of the patients, whereas synovitis was less common (13.6%). Joint space narrowing and osteophytes as well as chondrocalcinosis of the wrist and knee joints were frequent radiographic features of hemochromatosis. Joint replacement surgery was common, with 32 patients (16.1%) undergoing total joint replacement surgery due to severe OA. The mean ± SD age of these patients was 58.3 ± 10.4 years at time of joint replacement surgery. Female sex, metacarpophalangeal joint involvement, and the presence of chondrocalcinosis were associated with a higher risk of early joint failure (i.e., the need for joint replacement surgery). Arthritis is a frequent, early, and severe symptom of hemochromatosis. Disease is not confined to involvement of the metacarpophalangeal joints and often leads to severe damage requiring the replacement of joints. Copyright © 2010 by the American College of Rheumatology.
von Gunten, Simon; Schaer, Beat A; Yap, Sing-Chien; Szili-Torok, Tamas; Kühne, Michael; Sticherling, Christian; Osswald, Stefan; Theuns, Dominic A M J
2016-05-01
Longevity of implantable cardioverter defibrillators (ICDs) is crucial for patients and healthcare systems as replacements impact on infection rates and cost-effectiveness. Aim was to determine longevity using very large databases of two teaching hospitals with a high number of replacements and a rather homogeneous distribution among manufacturers. The study population consists of all patients in whom an ICD was inserted in. All ICD manufacturers operating in Switzerland and the Netherlands and all implanted ICDs were included. Implantable cardioverter defibrillator replacements due to normal battery depletion were considered events, and other replacements were censored. Longevity was assessed depending on manufacturers, pacing mode, implant before/after 2006, and all parameters combined. We analysed data from 3436 patients in whom 4881 ICDs [44.2% VVI-ICDs, 27.4% DDD-ICDs, 26.3% cardiac resynchronization therapy (CRT)-ICDs, 2.0% subcutaneous ICDs] were implanted. The four major manufacturers had implant shares between 18.4 and 31.5%. Replacement due to battery depletion (27.4%) was performed for 1339 ICDs. Patient survival at 5 years was 80.1%. Longevity at 5 years improved in contemporary compared with elderly ICDs [63.9-80.6% across all ICDs, of 73.7-92.1% in VVIs, 58.2-76.1% in DDDs, and of 47.1-66.3% in CRT defibrillators, all P value < 0.05]. Remarkable differences were seen among manufacturers, and those with better performance in elderly ICDs were not those with better performance in contemporary ones. Implantable cardioverter defibrillator longevity increased in contemporary models independent of manufacturer and pacing mode. Still, significant differences exist among manufacturers. These results might impact on device selection. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Hip or knee replacement - after - what to ask your doctor
... chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain Osteoarthritis Patient Instructions Getting your home ready - knee or hip surgery Hip or knee replacement - before - ...
Hip or knee replacement - before - what to ask your doctor
... chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain Osteoarthritis Patient Instructions Getting your home ready - knee or hip surgery Hip or knee replacement - after - ...
2015-11-24
This final rule implements a new Medicare Part A and B payment model under section 1115A of the Social Security Act, called the Comprehensive Care for Joint Replacement (CJR) model, in which acute care hospitals in certain selected geographic areas will receive retrospective bundled payments for episodes of care for lower extremity joint replacement (LEJR) or reattachment of a lower extremity. All related care within 90 days of hospital discharge from the joint replacement procedure will be included in the episode of care. We believe this model will further our goals in improving the efficiency and quality of care for Medicare beneficiaries with these common medical procedures.
Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.
2017-01-01
Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079
Biomaterials use in Mulago National Referral Hospital in Kampala, Uganda: Access and affordability.
Bakwatanisa, Bosco; Enywaku, Alfred; Kiwanuka, Martin; Lamunu, Claire; Mbowa, Nicholas; Mukiibi, Denis; Namayega, Catherine; Ngabirano, Beryl; Ntambi, Henry; Reichert, William
2016-01-01
Students in Biomaterials BBE3102 at Makerere University in Kampala, Uganda were assigned semester long group projects in the first semester of the 2014-15 academic year to determine the biomaterials type and usage in Mulago National Referral Hospital, which is emblematic of large public hospitals across East Africa. Information gathering was conducted through student interviews with Mulago physicians because there were no archival records. The students divided themselves into seven project groups covering biomaterials use in the areas of wound closure, dental and oral surgery, cardiology, burn care, bone repair, ophthalmology and total joint replacement. As in the developed world, the majority of biomaterials used in Mulago are basic wound closure materials, dental materials, and bone fixation materials, all of which are comparatively inexpensive, easy to store, and readily available from either the government or local suppliers; however, there were significant issues with the implant supply chain, affordability, and patient compliance and follow-up in cases where specialty expertise and expensive implants were employed. © 2015 Wiley Periodicals, Inc.
[Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].
Sentürk, U; Perka, C
2015-04-01
The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.
MacBarb, Regina F; Lindsey, Derek P; Woods, Shane A; Lalor, Peggy A; Gundanna, Mukund I; Yerby, Scott A
2017-01-01
Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants ( p <0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core ( p <0.002). Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.
Aydin, Unal; Gul, Mehmet; Aslan, Serkan; Akkaya, Emre; Yildirim, Aydin
2015-04-28
Transcatheter valve implantation is a novel interventional technique, which was developed as an alternative therapy for surgical aortic valve replacement in inoperable patients with severe aortic stenosis. Despite limited experience in using transcatheter valve implantation for mitral and aortic regurgitation, transapical transcatheter aortic valve implantation and valve-in-valve implantation for degenerated mitral valve bioprosthesis can be performed in high-risk patients who are not candidates for conventional replacement surgery. In this case, we present the simultaneous transcatheter valve implantation via transapical approach for both degenerated bioprosthetic mitral valve with severe regurgitation and pure severe aortic regurgitation.
Gioe, Terence J; Sharma, Amit; Tatman, Penny; Mehle, Susan
2011-01-01
Numerous joint implant options of varying cost are available to the surgeon, but it is unclear whether more costly implants add value in terms of function or longevity. We evaluated registry survival of higher-cost "premium" knee and hip components compared to lower-priced standard components. Premium TKA components were defined as mobile-bearing designs, high-flexion designs, oxidized-zirconium designs, those including moderately crosslinked polyethylene inserts, or some combination. Premium THAs included ceramic-on-ceramic, metal-on-metal, and ceramic-on-highly crosslinked polyethylene designs. We compared 3462 standard TKAs to 2806 premium TKAs and 868 standard THAs to 1311 premium THAs using standard statistical methods. The cost of the premium implants was on average approximately $1000 higher than the standard implants. There was no difference in the cumulative revision rate at 7-8 years between premium and standard TKAs or THAs. In this time frame, premium implants did not demonstrate better survival than standard implants. Revision indications for TKA did not differ, and infection and instability remained contributors. Longer followup is necessary to demonstrate whether premium implants add value in younger patient groups. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering
Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende
2013-01-01
Abstract The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration. PMID:23593566
Al-Almaie, Saad
2017-01-01
This rare case report describes prosthodontic complications resulting from a dental implant was placed surgically more distally in the area of the missing mandibular first molar with a cantilever effect and a crest width of >12 mm in a 59-year-old patient who had a history of bruxism. Fracture of abutment is a common complication in implant was placed in area with high occlusal forces. Inability to remove the broken abutment may most often end up in discarding the implant. Adding one more dental implant mesially to the previously placed implant, improvisation of technique to remove the broken abutment without sacrificing the osseointegrated dental implant, fabrication with cemented custom-made abutment to replace the broken abutment for the first implant, and the use of the two implants to replace a single molar restoration proved reliable and logical treatment solutions to avoid these prosthodontic complications.
Wojczyńska, A; Leiggener, C S; Bredell, M; Ettlin, D A; Erni, S; Gallo, L M; Colombo, V
2016-10-01
The aim of this study was to qualitatively and quantitatively describe the biomechanics of existing total alloplastic reconstructions of temporomandibular joints (TMJ). Fifteen patients with unilateral or bilateral TMJ total joint replacements and 15 healthy controls were evaluated via dynamic stereometry technology. This non-invasive method combines three-dimensional imaging of the subject's anatomy with jaw tracking. It provides an insight into the patient's jaw joint movements in real time and provides a quantitative evaluation. The patients were also evaluated clinically for jaw opening, protrusive and laterotrusive movements, pain, interference with eating, and satisfaction with the joint replacements. The qualitative assessment revealed that condyles of bilateral total joint replacements displayed similar basic motion patterns to those of unilateral prostheses. Quantitatively, mandibular movements of artificial joints during opening, protrusion, and laterotrusion were all significantly shorter than those of controls. A significantly restricted mandibular range of motion in replaced joints was also observed clinically. Fifty-three percent of patients suffered from chronic pain at rest and 67% reported reduced chewing function. Nonetheless, patients declared a high level of satisfaction with the replacement. This study shows that in order to gain a comprehensive understanding of complex therapeutic measures, a multidisciplinary approach is needed. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Metal hypersensitivity after knee arthroplasty: fact or fiction?
Innocenti, Massimo; Vieri, Berti; Melani, Tommaso; Paoli, Tommaso; Carulli, Christian
2017-06-07
Hypersensitivity to metals in the general population has an incidence of about 15%, and in rising also for the higher number of joint replacements in the last decades. Total Knee Arthroplasty (TKA) represents the most performed orthopaedic procedure during last years, and it seems to be particularly associated with sensitization after surgery. On the other hand, there is a rising amount of patients with painful but well implanted and functioning TKAs: in certain cases, after the exclusion of the most frequent causes of failure, a condition of hypersensitivity may be found, and a revision with anallergic implants is mandatory. The present study is a review of the potential problems related to hypersensitivity in TKA, its possible diagnostic procedures, and the surgical options to date available. Medical history, patch testing, and other specific laboratory assays are useful to assess a status of metals hypersensitivity before surgery in subjects undergoing a knee replacement, or even after TKA in patients complaining pain in otherwise well implanted and aligned prostheses. However, few groups worlwide deal with such condition, and all proposed diagnostic protocols may be considered still today conjectural. On the other hand, these represent the most updated knowledge of this condition, and may be useful for both the patient and the orthopaedic surgeon. Once assessed a possible or ascertained allergy to metals, several options are available for primary andr revision knee surgery, in order to avoid the risk of hypersensitivity. A review of the recent publications on this topic and an overview of the related aspects has been made to understand a condition to date considered negligible. Hypersensitivity to metals has not to be nowadays considered a "fiction", but rather a possible preoperative risk or a postoperative cause of failure of TKA. Crucial is the information of patients and the medical history, associated in suspect cases to laboratory testings. Today in the market several knee implants are available and safe for allergic patients undergoing TKA.
Zaveri, Toral D.; Dolgova, Natalia V.; Lewis, Jamal S.; Hamaker, Kiri; Clare-Salzler, Michael J.; Keselowsky, Benjamin G.
2016-01-01
Aseptic loosening due to peri-prosthetic osteolysis is one of the primary causes for failure of artificial joint replacements. Implant-derived wear particles, often ultra-high molecular weight polyethylene (UHMWPE) microparticles, initiate an inflammatory cascade upon phagocytosis by macrophages, which leads to osteoclast recruitment and activation, ultimately resulting in osteolysis. Investigation into integrin receptors, involved in cellular interactions with biomaterial-adsorbed adhesive proteins, is of interest to understand and modulate inflammatory processes. In this work, we investigate the role of macrophage integrins Mac-1 and RGD-binding integrins in response to UHMWPE wear particles. Using integrin knockout mice as well as integrin blocking techniques, reduction in macrophage phagocytosis and inflammatory cytokine secretion is demonstrated when these receptors are either absent or blocked. Along this line, various opsonizing proteins are shown to differentially modulate microparticle uptake and macrophage secretion of inflammatory cytokines. Furthermore, using a calvarial osteolysis model it is demonstrated that both Mac-1 integrin and RGD-binding integrins modulate the particle induced osteolysis response to UHMWPE microparticles, with a 40% decrease in the area of osteolysis by the absence or blocking of these integrins, in vivo. Altogether, these findings indicate Mac-1 and RGD-binding integrins are involved in macrophage-directed inflammatory responses to UHMWPE and may serve as therapeutic targets to mitigate wear particle induced peri-prosthetic osteolysis for improved performance of implanted joints. PMID:27889664
NASA Astrophysics Data System (ADS)
Jadan, M.; Chelyadinskii, A. R.; Odzhaev, V. B.
2013-02-01
The possibility to control the localization of implanted carbon in sites and interstices in silicon immediately during the implantation has been demonstrated. The formation of residual extended defects in silicon implanted separately with C+ and B+ ions and jointly with C+ and B+ ions has been shown. It has been found that the formation of residual defects can be suppressed due to annihilation of point defects at C atoms (the Watkins effect). The positive effect is attained if implanted carbon is localized over lattice sites, which is provided by its implantation with the effective current density of the scanning ion beam no lower than 1.0 μA cm-2.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Chesapeake, VA. This deviation is necessary to facilitate replacing lift joints on the Norfolk Southern 7... accommodate lift joint replacement. Under the current operating schedule the bridge shall be left in the open.... To facilitate lift joint replacement, the drawbridge will be maintained in the closed-to-navigation...
Factors affecting the decision to replace failed implants: a retrospective study.
Mardinger, Ofer; Oubaid, Saheer; Manor, Yifat; Nissan, Joseph; Chaushu, Gavriel
2008-12-01
The purpose of the present study was to explore the major factors that can affect the decision to replace failed implants. A retrospective cohort study was conducted on 194 patients who presented following dental implant failure during a 6-year period (2000 to 2006). The collected data included patient characteristics, failed implant characteristics, the anatomic status of the alveolar ridge after failure, and factors affecting the decision to avoid reimplantation. The study group included patients in whom the failed dental implants were replaced, whereas there was no reimplantation in the control group. Seventy-four patients (135 implants) made up the control group, and 120 patients (157 implants) made up the study group. The mean patient age was higher and the medical status was worse in the control group. The number of failed implants per patient was higher in the control group. The time between the diagnosis of failure and removal and between implant placement and removal were greater in the control group. The chances of a patient with minor bone loss undergoing reimplantation was 20 times greater (odds ratio, 20.4) than a patient with severe bone loss. The main patient-related reasons for avoiding reimplantation were the additional costs (27%), fear of additional pain (17.7%), and fear of a second failure (16.2%). The removal of a failing implant as soon as it is diagnosed as hopeless will improve the chances for reimplantation.
Removal Torque and Biofilm Accumulation at Two Dental Implant-Abutment Joints After Fatigue.
Pereira, Jorge; Morsch, Carolina S; Henriques, Bruno; Nascimento, Rubens M; Benfatti, Cesar Am; Silva, Filipe S; López-López, José; Souza, Júlio Cm
2016-01-01
The aim of this study was to evaluate the removal torque and in vitro biofilm penetration at Morse taper and hexagonal implant-abutment joints after fatigue tests. Sixty dental implants were divided into two groups: (1) Morse taper and (2) external hexagon implant-abutment systems. Fatigue tests on the implant-abutment assemblies were performed at a normal force (FN) of 50 N at 1.2 Hz for 500,000 cycles in growth medium containing human saliva for 72 hours. Removal torque mean values (n = 10) were measured after fatigue tests. Abutments were then immersed in 1% protease solution in order to detach the biofilms for optical density and colony-forming unit (CFU/cm²) analyses. Groups of implant-abutment assemblies (n = 8) were cross-sectioned at 90 degrees relative to the plane of the implant-abutment joints for the microgap measurement by field-emission guns scanning electron microscopy. Mean values of removal torque on abutments were significantly lower for both Morse taper (22.1 ± 0.5 μm) and external hexagon (21.1 ± 0.7 μm) abutments after fatigue tests than those recorded without fatigue tests (respectively, 24 ± 0.5 μm and 24.8 ± 0.6 μm) in biofilm medium for 72 hours (P = .04). Mean values of microgap size for the Morse taper joints were statistically signicantly lower without fatigue tests (1.7 ± 0.4 μm) than those recorded after fatigue tests (3.2 ± 0.8 μm). Also, mean values of microgap size for external hexagon joints free of fatigue were statistically signicantly lower (1.5 ± 0.4 μm) than those recorded after fatigue tests (8.1 ± 1.7 μm) (P < .05). The optical density of biofilms and CFU mean values were lower on Morse taper abutments (Abs630nm at 0.06 and 2.9 × 10⁴ CFU/cm²) than that on external hexagon abutments (Abs630nm at 0.08 and 4.5 × 10⁴ CFU/cm²) (P = .01). The mean values of removal torque, microgap size, and biofilm density recorded at Morse taper joints were lower in comparison to those recorded at external hexagon implant-abutment joints after fatigue tests in a simulated oral environment for 72 hours.
Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo
2013-01-01
Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. PMID:23369655
Duchalais, Emilie; Meurette, Guillaume; Perrot, Bastien; Wyart, Vincent; Kubis, Caroline; Lehur, Paul-Antoine
2016-02-01
The efficacy of sacral nerve stimulation in faecal incontinence relies on an implanted pulse generator known to have a limited lifespan. The long-term use of sacral nerve stimulation raises concerns about the true lifespan of generators. The aim of the study was to assess the lifespan of sacral nerve stimulation implanted pulse generators in daily practice, and the outcome of exhausted generator replacement, in faecal incontinent patients. Faecal incontinent patients with pulse generators (Medtronic Interstim™ or InterstimII™) implanted in a single centre from 2001 to 2014 were prospectively followed up. Generator lifespan was measured according to the Kaplan-Meier method. Patients with a generator explanted/turned off before exhaustion were excluded. Morbidity of exhausted generator replacement and the outcome (Cleveland Clinic Florida Faecal Incontinence (CCF-FI) and Faecal Incontinence Quality of Life (FIQL) scores) were recorded. Of 135 patients with an implanted pulse generator, 112 (InterstimII 66) were included. Mean follow-up was 4.9 ± 2.8 years. The generator reached exhaustion in 29 (26%) cases. Overall median lifespan of an implanted pulse generator was approximately 9 years (95% CI 8-9.2). Interstim and InterstimII 25th percentile lifespan was 7.2 (CI 6.4-8.3) and 5 (CI 4-not reached) years, respectively. After exhaustion, generators were replaced, left in place or explanted in 23, 2 and 4 patients, respectively. Generator replacement was virtually uneventful. CCF-FI/FIQL scores remained unchanged after generator replacement (CCF-FI 8 ± 2 vs 7 ± 3; FIQL 3 ± 0.6 vs 3 ± 0.5; p = ns). In this study, the implanted pulse generator observed median lifespan was 9 years. After exhaustion, generators were safely and efficiently replaced. The study also gives insight into long-term needs and costs of sacral nerve stimulation (SNS) therapy.
2012-01-01
Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638
Malairungsakul, Anan
2014-12-01
Patients who undergo knee replacement surgery may need to receive a blood transfusion due to blood loss during the operation. Therefore it was important to improve the design of knee implant operative procedures in an attempt to reduce the rate of blood loss. The present study aimed to compare the blood loss between two types of knee replacement surgery. This is a retrospective study in which 78 patients received cemented knee replacements in Phayao Hospital between October 2010 and March 2012. There were two types of surgical procedure: 1) using an implant position covering the end of the femoral bone without cutting into the central part of the distal femoral, 2) using an implant position covering the end of the femoral bone cutting the central part of the distal femoral. Blood loss, blood transfusion, hemoglobin and hematocrit were recorded preoperatively, immediately postsurgery and 48 hours after surgery. Findings revealed that the knee replacement surgery using the implant position covering the end of the femoral bone without cutting the central part of the distal femoral significantly lowered the rate of blood loss when compared to using the implant position covering the end of the femoral bone with central cutting of the distal femor. The average blood loss during the operation without cutting at the central part of distal femoral was 49.50 ± 11.11 mL; whereas the operation cutting the central part of the distal femoral was 58.50 ± 11.69 mL. As regards blood loss, the knee replacement surgery using the implant position covering the end ofthefemoral bone without cutting the central part of distal femor was better than using the implant position covering the end of the femoral bone cutting at the central part of the distal femor.
Knee and Ankle Arthroplasty in Hemophilia
Solimeno, Luigi Piero; Pasta, Gianluigi
2017-01-01
Today, major surgical procedures can be safely performed in hemophilic patients with chronic arthropathy, using available factor concentrates. In this setting, total knee replacement is considered the “gold standard”, while the use of total ankle replacement is still debated. Indeed, the unsatisfactory results obtained with the previous available design of implants did not raise enthusiasm as knee or hip replacement. Recently, the introduction of new implant designs and better reported outcomes have renewed the interest in total ankle replacement in people with hemophilia. In this review, the role of replacement surgery in the treatment of chronic hemophilic arthropathy will be described. PMID:29165342
A prospective 24 months follow-up of a three component press-fit prosthesis for hallux rigidus.
Wassink, S; Burger, B J; Saragas, N P; Asunción Márquez, J; Trtik, L; Harlaar, J
2017-09-01
The aim of this study was to evaluate the results following total first metatarsophalangeal (FMTP) joint replacement arthroplasty using a modular three component press fit prosthesis at two year follow up. All patient data was collected in a prospective way in four study centres. Both preoperative and postoperative evaluation consisted of an assessment using the AOFAS-HMI score, visual analogue scale for pain, evaluation of the range of motion and patient satisfaction scores. Postoperative X-rays were reviewed for loosening and radiolucency up to two years. Fifty-five feet were available for analysis at 24 months. Two implants were removed during the study. Six more feet had additional surgery due to stiffness or malalignment. Postoperative AOFAS-HMI scores improved significantly by 32.4 points at two year follow-up (p<0.001). The visual analogue scale for pain improved significantly from 6.8 (std 1,6) preoperatively to 1.6 (std 1,9) postoperatively (p<0.0001). Mean dorsiflexion improved from 12.6 (std 10,1) degrees preoperatively to 31.2 (std 16,8) degrees postoperatively. Eighty-seven percent of patients were moderately to well satisfied with the end result. Eighteen prostheses showed radiolucency at 24 months. Implantation of a Metis ® modular three component press fit prosthesis for the metatarsophalangeal joint in hallux rigidus shows significant improvement in AOFAS-HMI scores and a decrease in pain. Concerns remain with regard to early reoperation rate (14.5%) and long term survival of the implant. Future studies will have to address these aspects. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Ruggiero, Alessandro; Merola, Massimiliano; Affatato, Saverio
2018-04-09
The hip joint replacement is one of the most successful orthopedic surgical procedures although it involves challenges to overcome. The patient group undergoing total hip arthroplasty now includes younger and more active patients who require a broad range of motion and a longer service lifetime for the replacement joint. It is well known that wear tests have a long duration and they are very expensive, thus studying the effects of geometry, loading, or alignment perturbations may be performed by Finite Element Analysis. The aim of the study was to evaluate total deformation and stress intensity on ultra-high molecular weight polyethylene liner coupled with hard material head during one step. Moving toward in-silico wear assessment of implants, in the presented simulations we used a musculoskeletal multibody model of a human body giving the loading and relative kinematic of the investigated tribo-system during the gait. The analysis compared two frictional conditions -dry and wet and two geometrical cases- with and without radial clearance. The loads and rotations followed the variability of the gait cycle as well as stress/strain acting in the UHWMPE cup. The obtained results allowed collection of the complete stress/strain description of the polyethylene cup during the gait and calculation of the maximum contact pressure on the lateral edge of the insert. The tensional state resulted in being more influenced by the geometrical conditions in terms of radial clearance than by the variation of the friction coefficients due to lubrication phenomena.
Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi
2013-10-01
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro . The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti ( p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control ( n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo , suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
NASA Astrophysics Data System (ADS)
Huang, Zhong-Ming; Qi, Yi-Ying; Du, Shao-Hua; Feng, Gang; Unuma, Hidero; Yan, Wei-Qi
2013-10-01
Because of its excellent biocompatibility and low allergenicity, titanium has been widely used for bone replacement and tissue engineering. To produce a desirable composite with enhanced bone response and mechanical strength, in this study bioactive calcium phosphate (CaP) and gelatin composites were coated onto titanium (Ti) via a novel urease technique. The cellular responses to the CaP/gelatin/Ti (CaP/gel/Ti) and bone bonding ability were evaluated with proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) on CaP/gel/Ti and CaP/Ti in vitro. The results showed that the optical density values, alkaline phosphatase expression and genes expression of MSCs on CaP/gel/Ti were similar to those on CaP/Ti, yet significantly higher than those on pure Ti (p < 0.05). CaP/gel/Ti and CaP/Ti rods (2 mm in diameter, 10 mm in length) were also implanted into femoral shaft of rabbits and pure Ti rods served as control (n = 10). Histological examination, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) measurements were performed at 4 and 8 weeks after the operation. The histological and SEM observations demonstrated clearly that more new bone formed on the surface of CaP/gel/Ti than in the other two groups at each time point. The CaP/gel/Ti bonded to the surrounding bone directly with no intervening soft tissue layer. An interfacial layer, containing Ti, Ca and P, was found to form at the interface between bone and the implant on all three groups by EDS analysis. However, the content of Ca, P in the surface of CaP/gel/Ti implants was more than in the other two groups at each time point. The CaP/gel/Ti modified by the urease method was not only beneficial for MSCs proliferation and osteogenic differentiation, but also favorable for bone bonding ability on Ti implants in vivo, suggesting that Ti functionalized with CaP and gelatin might have a great potential in clinical joint replacement or dental implants.
Embedded piezoelectrics for sensing and energy harvesting in total knee replacement units
NASA Astrophysics Data System (ADS)
Wilson, Brooke E.; Meneghini, Michael; Anton, Steven R.
2015-04-01
The knee replacement is the second most common orthopedic surgical intervention in the United States, but currently only 1 in 5 knee replacement patients are satisfied with their level of pain reduction one year after surgery. It is imperative to make the process of knee replacement surgery more objective by developing a data driven approach to ligamentous balance, which increases implant life. In this work, piezoelectric materials are considered for both sensing and energy harvesting applications in total knee replacement implants. This work aims to embed piezoelectric material in the polyethylene bearing of a knee replacement unit to act as self-powered sensors that will aid in the alignment and balance of the knee replacement by providing intraoperative feedback to the surgeon. Postoperatively, the piezoelectric sensors can monitor the structural health of the implant in order to perceive potential problems before they become bothersome to the patient. Specifically, this work will present on the use of finite element modeling coupled with uniaxial compression testing to prove that piezoelectric stacks can be utilized to harvest sufficient energy to power sensors needed for this application.
Johansen, Jens Brock; Jørgensen, Ole Dan; Møller, Mogens; Arnsbo, Per; Mortensen, Peter Thomas; Nielsen, Jens Cosedis
2011-01-01
Aims Infection is a serious complication of pacemaker (PM) systems. Although the rate of infection has been debated, the figures are largely unknown. We therefore studied the incidence of PM infection and its associated risk factors in the Danish population. Methods and results Since 1982, all PM implantation and removal procedures performed in Denmark have been prospectively recorded in the Danish Pacemaker Register. All patients (n = 46299) who underwent implantation between 1982 and 2007 were included. The total length of surveillance was 236 888 PM-years. The incidence of infection was calculated according to the total number of PM-years. The incidence of surgical site infection (≤365 days after PM implantation) was compared with later infection in first implant and replacement procedures. Multiple-record and multiple-event-per-subject proportional hazards analyses were used to identify the independent risk factors of PM infection. Surgical site infection occurred in 192 cases after first implantation (incidence rate 4.82/1000 PM-years), and in 133 cases after replacement (12.12/1000 PM-years). Infections occurring more than 365 days after the first implantation occurred in 153 cases (1.02/1000 PM-years), and in 118 cases after replacement (3.26/1000 PM-years). Independent factors associated with an increased risk of PM infection were a greater number of PM operations (including replacements), male sex, younger age, implantation during the earliest part of the study period, and absence of antibiotics (P< 0.001). Conclusion The overall risk of infection after PM implantation was low. A greater number of operations augmented the risk of infection. This should be taken into account when considering revisions of PM systems. PMID:21252172
Hip joint replacement - slideshow
... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: ...
Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements
NASA Astrophysics Data System (ADS)
Amirouche, Farid
2008-06-01
Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As patients are living longer and total hip arthroplasty is performed in younger patients the risks of osteolysis associated with cumulative wear is increased. Computer-assisted surgery is based on sensing feedback; vision and imaging that help surgeons align the patient's joints during total knee or hip replacement with a degree of accuracy not possible with the naked eye. For the first time, the computer feedback is essential for ligament balancing and longevity of the implants. The computers navigation systems also help surgeons to use smaller incisions instead of the traditional larger openings. Small-incision surgery offers the potential for faster recovery, less bleeding and less pain for patients. The development of SESCAN imaging technique to create a patient based model of a 3D joint will be presented to show the effective solution of complex geometry of joints.
Intra-articular Implantation of Mesenchymal Stem Cells, Part 2
Kraeutler, Matthew J.; Mitchell, Justin J.; Chahla, Jorge; McCarty, Eric C.; Pascual-Garrido, Cecilia
2017-01-01
Knee osteoarthritis (OA) after partial or total meniscectomy is a prevalent issue that patients must face. Various methods of replacing meniscal tissue have been studied to avoid this progression, including meniscal allograft transplantation, meniscal scaffolds, and synthetic meniscus replacement. Studies have shown that meniscal scaffolds may improve symptoms but have not been shown to prevent progression of OA. Recently, mesenchymal stem cells (MSCs) have been proposed as a possible biological therapy for meniscal regeneration. Several animal studies and 1 human study have evaluated the effect of transplanting MSCs into the knee joint after partial meniscectomy. The purpose of this review was to assess the outcomes of intra-articular transplantation of MSCs on meniscal regeneration in animals and humans after partial meniscectomy. Limited results from animal studies suggest that there is some potential for intra-articular injection of MSCs for the regeneration of meniscal tissue. However, further studies are necessary to determine the quality of regenerated meniscal tissue through histological and biomechanical testing. PMID:28203596
Schweiger, Josef; Neumeier, Peter; Stimmelmayr, Michael; Beuer, Florian; Edelhoff, Daniel
2013-04-01
Implant-supported prosthetic restorations with veneered crowns and fixed dental prostheses are a proven, scientifically accepted treatment concept in fixed prosthodontics. However, in this area of indication there is a comparatively high technical complication rate, which occurs mainly in the area of the superstructure in the form of minor or major chipping of the veneering material. Various studies have shown that purely implant-supported restorations are subjected to higher loading than those on natural abutment teeth due to the special biomechanical conditions. A possible approach to prevent technical complications is to create higher stability for the implant superstructure through the use of high-strength materials. This would, however, result in undiminished overloading being transmitted to the implant components and could cause increased technical and biological complications. This article describes a new procedure for the use of replaceable veneers made from high-performance polymer material on modified implant abutments. By storing digital datasets for the veneer section, it can be replaced easily and quickly if it becomes worn or is fractured. A reduction in the stresses for the implant components and biological structures under the polymer is also to be expected due the material properties of polymers.
Managed care and critical pathway development: the joint replacement experience.
Benham, A J
1999-01-01
This article examines the economic, social, ethical, and political issues affecting total joint replacement patients in a managed care environment. Using general systems theory as a framework, it examines the interrelated historical events that have shaped the development of both joint replacement procedures and managed care, and discusses the extent to which these two phenomena have been mutually influential. Specifically, the article examines the initial development, implementation, and continuing evolution of clinical pathways as an easily identified and relatively discrete manifestation of managed care for the joint replacement population. While the overall impact of managed care is beyond the scope of this presentation, it is hoped that a focus on the practical application of clinical pathways to joint replacement will allow some general principles to emerge that may be useful for both patients and practitioners operating in other aspects of the managed care environment.
Complications in implant dentistry
Hanif, Ayesha; Qureshi, Saima; Sheikh, Zeeshan; Rashid, Haroon
2017-01-01
After tooth loss, an individual may seek tooth replacement so that his/her function and esthetics could be restored. Clinical prosthodontics, during the past decade, has significantly improved and developed according to the advancements in the science and patient's demands and needs. Conventional options in prosthodontics for substituting a missing single tooth include the removable partial denture, partial and full coverage bridgework, and resin-bonded bridgework. Dental implants have gained increasing popularity over the years as they are capable of restoring the function to near normal in both partial and completely edentulous arches. With substantial evidence available, fixed implant-supported prosthesis are fully acknowledged as a reliable treatment option for the replacement of single or multiple missing teeth nowadays. While dental implants are increasingly becoming the choice of replacement for missing teeth, the impediments associated with them are progressively emerging too. PMID:28435381
Dargel, Jens; Michael, Joern W P; Feiser, Janna; Ivo, Roland; Koebke, Juergen
2011-04-01
This study investigates differences in the anatomy of male and female knee joints to contribute to the current debate on sex-specific total knee implants. Morphometric data were obtained from 60 human cadaver knees, and sex differences were calculated. All data were corrected for height, and male and female specimens presenting with an identical length of the femur were analyzed as matched pairs. Male linear knee joint dimensions were significantly larger when compared with females. When corrected for differences in height, medial-lateral dimensions of male knees were significantly larger than female; however, matched paired analysis did not prove these differences to be consistent. Although implant design should focus interindividual variations in knee joint anatomy, our data do not support the concept of a female-specific implant design. Copyright © 2011 Elsevier Inc. All rights reserved.
Diabetes is associated with persistent pain after hip and knee replacement
Rajamäki, Tuomas J; Jämsen, Esa; Puolakka, Pia A; Nevalainen, Pasi I; Moilanen, Teemu
2015-01-01
Background and purpose In some patients, for unknown reasons pain persists after joint replacement, especially in the knee. We determined the prevalence of persistent pain following primary hip or knee replacement and its association with disorders of glucose metabolism, metabolic syndrome (MetS), and obesity. Patients and methods The incidence of pain in the operated joint was surveyed 1–2 years after primary hip replacement (74 patients (4 bilateral)) or primary knee replacement (119 patients (19 bilateral)) in 193 osteoarthritis patients who had participated in a prospective study on perioperative hyperglycemia. Of the 155 patients who completed the survey, 21 had undergone further joint replacement surgery during the follow-up and were excluded, leaving 134 patients for analysis. Persistent pain was defined as daily pain in the operated joint that had lasted over 3 months. Factors associated with persistent pain were evaluated using binary logistic regression with adjustment for age, sex, and operated joint. Results 49 of the134 patients (37%) had a painful joint and 18 of them (14%) had persistent pain. A greater proportion of knee patients than hip patients had a painful joint (46% vs. 24%; p = 0.01) and persistent pain (20% vs. 4%; p = 0.007). Previously diagnosed diabetes was strongly associated with persistent pain (5/19 vs. 13/115 in those without; adjusted OR = 8, 95% CI: 2–38) whereas MetS and obesity were not. However, severely obese patients (BMI ≥ 35) had a painful joint (but not persistent pain) more often than patients with BMI < 30 (14/21 vs. 18/71; adjusted OR = 5, 95% CI: 2–15). Interpretation Previously diagnosed diabetes is a risk factor for persistent pain in the operated joint 1–2 years after primary hip or knee replacement. PMID:25953426
Bonde, Mikael Juul; Stokholm, Rie; Schou, Soren; Isidor, Flemming
2013-01-01
To assess patient satisfaction and aesthetic treatment outcome of implant-supported singletooth replacements performed by dental students as part of their undergraduate curriculum 8 to 12 years after treatment. A total of 51 patients were consecutively treated by dental students with 55 implant-supported single-tooth replacements within the incisor, canine and premolar regions. The surgical and prosthetic treatment was performed by the dental students under the supervision of dentists and oral and maxillofacial surgeons, all with specific knowledge about oral implantology. The outcome measures were patient subjective evaluation of peri-implant soft tissues, implant crown, implant function and total implant treatment using a Visual Analogue Scale (VAS). The professional evaluation included the peri-implant soft tissues, implant crown and total implant treatment (combined scores, PES/WES) using the Pink Esthetic Score (PES) and the White Esthetic Score (WES), as well as the level of incisor edge/occlusal surface in relation to neighbouring teeth. A total of 42 patients with 46 implants were available for evaluation 8 to 12 years after treatment. The patients were in general satisfied with the treatment outcome and few patients had low VAS scores. Most implants were characterised by single scores of 1 or 2 resulting in a mean PES score of 8.3 (maximum 14), a mean WES score of 6.3 (maximum 10) and a mean PES/WES score of 14.6 (maximum 24). However, 33% of the implants were characterised by recession (>1 mm) of the facial soft-tissue margin. Correlation analyses involving the subjective parameters indicated that the evaluation of the total implant treatment was mainly influenced by the appearance of the implant crown and to a lesser extent by the peri-implant mucosa. There were no significant correlations between the subjective and professional evaluation. Both the subjective and professional evaluation revealed implants in infraposition. This was registered in 7% and 17% of the implants, respectively. The patient satisfaction and aesthetic outcome 8 to 12 years after treatment with implant-supported single-tooth replacements performed by dental students as part of their clinical undergraduate dental curriculum were characterised by high patient satisfaction and an acceptable aesthetic treatment outcome. Therefore, it seems acceptable to include implant therapy of straightforward cases in the clinical undergraduate curriculum, provided there is substantial supervision by trained clinicians. The study was partially supported by Nobel Biocare, Denmark. There was no conflict of interest.
Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi
2014-09-01
Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.
Health Information in Bosnian (bosanski)
... new window. A Expand Section After Surgery Home Care After Total Joint Replacement - bosanski (Bosnian) Bilingual PDF Health Information ... Information Translations J Expand Section Joint Disorders Home Care After Total Joint Replacement - bosanski (Bosnian) Bilingual PDF Health Information ...
Richter, Berna I; Ostermeier, Sven; Turger, Anke; Denkena, Berend; Hurschler, Christof
2010-06-15
Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants.
2010-01-01
Background Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only. Methods A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made. Results The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures. Conclusions The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. PMID:20550669
Lindsey, Derek P.; Woods, Shane A.; Lalor, Peggy A.; Gundanna, Mukund I.; Yerby, Scott A.
2017-01-01
Background Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. Methods A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. Results Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). Conclusions Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants’ core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. Clinical Relevance Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures. PMID:28765800
Baldwin, Mark A; Clary, Chadd; Maletsky, Lorin P; Rullkoetter, Paul J
2009-10-16
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial-lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10 degrees and 110 degrees femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency. Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1 degrees and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7 degrees and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal-external tilt and inferior-superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.
Da Silva, John D; Kazimiroff, Julie; Papas, Athena; Curro, Frederick A; Thompson, Van P; Vena, Donald A; Wu, Hongyu; Collie, Damon; Craig, Ronald G
2014-07-01
The authors conducted a study to determine the types, outcomes, risk factors and esthetic assessment of implants and their restorations placed in the general practices of a practice-based research network. All patients who visited network practices three to five years previously and underwent placement of an implant and restoration within the practice were invited to enroll. Practitioner-investigators (P-Is) recorded the status of the implant and restoration, characteristics of the implant site and restoration, presence of peri-implant pathology and an esthetic assessment by the P-I and patient. The P-Is classified implants as failures if the original implant was missing or had been replaced, the implant was mobile or elicited pain on percussion, there was overt clinical or radiographic evidence of pathology or excessive bone loss (> 0.2 millimeter per year after an initial bone loss of 2 mm). They classified restorations as failures if they had been replaced or if there was abutment or restoration fracture. The authors enrolled 922 implants and patients from 87 practices, with a mean (standard deviation) follow-up of 4.2 (0.6) years. Of the 920 implants for which complete data records were available, 64 (7.0 percent) were classified as failures when excessive bone loss was excluded from the analysis. When excessive bone loss was included, 172 implants (18.7 percent) were classified as failures. According to the results of univariate analysis, a history of severe periodontitis, sites with preexisting inflammation or type IV bone, cases of immediate implant placement and placement in the incisor or canine region were associated with implant failure. According to the results of multivariate analysis, sites with preexisting inflammation (odds ratio [OR] = 2.17; 95 percent confidence interval [CI], 1.41-3.34]) or type IV bone (OR = 1.99; 95 percent CI, 1.12-3.55) were associated with a greater risk of implant failure. Of the 908 surviving implants, 20 (2.2 percent) had restorations replaced or judged as needing to be replaced. The majority of P-Is and patients were satisfied with the esthetic outcomes for both the implant and restoration. These results suggest that implant survival and success rates in general dental practices may be lower than those reported in studies conducted in academic or specialty settings. The results of this study, generated in the private general practice setting, add to the evidence base to facilitate implant treatment planning.
The Future of Biologic Coatings for Orthopaedic Implants
Goodman, Stuart B.; Yao, Zhenyu; Keeney, Michael; Yang, Fan
2013-01-01
Implants are widely used for othopaedic applications such as fixing fractures, repairing nonunions, obtaining a joint arthrodesis, total joint arthroplasty, spinal reconstruction, and soft tissue anchorage. Previously, orthopaedic implants were designed simply as mechanical devices; the biological aspects of the implant were a byproduct of stable internal/external fixation of the device to the surrounding bone or soft tissue. More recently, biologic coatings have been incorporated into orthopaedic implants in order to modulate the surrounding biological environment. This opinion article reviews current and potential future use of biologic coatings for orthopaedic implants to facilitate osseointegration and mitigate possible adverse tissue responses including the foreign body reaction and implant infection. While many of these coatings are still in the preclinical testing stage, bioengineers, material scientists and surgeons continue to explore surface coatings as a means of improving clinical outcome of patients undergoing orthopaedic surgery. PMID:23391496
NASA Astrophysics Data System (ADS)
Tohfafarosh, Mariya Shabbir
Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the control samples. However, chemical spectra of electron beam sterilized samples revealed minor changes, which were absent in unsterilized and gamma sterilized samples. Upon successful sterilization evaluation, both polycarbonate urethane and the novel hydrogel were investigated for the contact mechanics of compliant-on-compliant artificial knee bearings using a finite element analysis approach. A simplified, axisymmetric, finite element model of a medial knee compartment was developed and validated, and a design of simulation experiments was carried out to evaluate the effect of implant conformity, implant thickness and material properties on the contact mechanics of compliant knee bearings under normal walking and stair climbing loads. All input parameters, namely, implant conformity, implant thickness and material properties, significantly (p<0.001) affected the maximum principal stress, Von Mises stress, maximum shear stress, maximum principal strain, maximum contact pressure and contact area. The knee implant contact mechanics demonstrated sensitivity to all the three design factors, and a correlation between resulting stresses and implant conformity as well as thickness was observed. However, the conformity had the highest effect-size on the contact mechanics. The maximum principal stress value halves and the contact area doubles when ≥ 95% implant conformity (i.e. the ratio of femoral to tibial surface’s radii of curvature) and ≥ 3mm thickness was used, hence, these parameters were recommended for the design of compliant knee bearings. Finally, a battery of mechanical tests was carried out to evaluate the failure criteria of the proposed compliant polymers under physiological loads and strain rates. Uniaxial tests, including tension and unconfined compression, and biaxial tests, such as plane strain compression, were carried out to characterize the mechanical behavior of different material formulations at physiologically relevant testing rates. The materials failed under tension between 250 - 750% true strain, while those under uniaxial and biaxial compression test sustained compression of 50 - 70% engineering strain (39 - 53% true strain) without any signs of cracking or fracture. The tension was determined to be the primary failure mode for the proposed materials, and the tensile test was used to define the failure criteria of the materials. The unconfined compression tests were used to define the yield stresses and strains under compression, which is the main mode of loading for the knee joint. The results of the plane strain compression were modeled using a finite element model and the maximum principal stress, von Mises stress, maximum shear stress, and maximum principal strain failure criteria were predicted at the corresponding yield strain of each material formulation. Upon comparing the knee model contact stress and strain prediction under normal walking and stair climbing loads with those of the empirical failure criteria at yield, the polycarbonate urethane showed better overall potential for use in compliant knee implants, while the hydrogels exhibited higher potential for delamination or fracture, especially if appropriate implant conformity and thickness are not employed. The outcome of this study and the previous parametric model results helped to determine a niche design space within which designing a knee implant with compliant bearing materials may be feasible. In summary, the potential of compliant bearing materials was thoroughly examined in this thesis, and the results provided a foundation for future testing and development of a compliant cartilage replacement implant. Such an implant would be a promising improvement and alternative to conventional total knee replacements.
Sauerbier, M; Hahn, M E; Fujita, M; Neale, P G; Germann, G; An, K N; Berger, R A
2002-08-01
The most common method of treating the arthrotic distal radioulnar joint (DRUJ) is resection of the entire ulnar head (Darrach procedure). Complications related to instability of the distal forearm resulting from loss of the ulnar head are usually manifested by pain and weak grip strength and have remained the drawbacks of this procedure. In an attempt to mechanically stabilize the distal forearm, an endoprosthesis was developed to replace the ulnar head after Darrach resection. The purpose of this study was to: 1) evaluate the dynamic effects of the Darrach procedure on radioulnar convergence; and 2) evaluate the mechanical efficacy of two soft tissue stabilizing techniques (Pronator quadratus advancement flap and ECU/FCU tenodesis) for the unstable distal ulnar stump and 3) the stability after the implantation of an ulnar head endoprosthesis following a Darrach resection on radioulnar convergence. With a dynamic PC-controled forearm simulator the rotation of 7 fresh-frozen cadaver upper extremities was actively and passively performed while loading relevant muscles. Resultant total forearm torque and the 3-dimensional kinematics of the ulna, radius and third metacarpal were recorded simultaneously. The implantation of the ulnar head endoprosthesis effectively restored the stability of the DRUJ. There were significantly better results after the implantation of the prosthesis compared with the Darrach and the soft tissue stabilization procedures. This study provides laboratory validity to the option of implanting an ulnar head endoprosthesis as an attempt to stabilize the distal forearm after Darrach resection in lieu of performing soft tissue stabilization techniques.
A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments
Park, Ji-Man; Lee, Jai-Bong; Heo, Seong-Joo
2014-01-01
PURPOSE The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ±0.1 µm at 50 points. RESULTS Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment. PMID:24605206
Lee, Cheng-Hung; Shih, Cheng-Min; Huang, Kui-Chou; Chen, Kun-Hui; Hung, Li-Kun; Su, Kuo-Chih
2016-11-01
Clinical implantation of clavicle hook plates is often used as a treatment for acromioclavicular joint dislocation. However, it is not uncommon to find patients that have developed acromion osteolysis or had peri-implant fracture after hook plate fixation. With the aim of preventing complications or fixation failure caused by implantation of inappropriate clavicle hook plates, the present study investigated the biomechanics of clavicle hook plates made of different materials and with different hook depths in treating acromioclavicular joint dislocation, using finite element analysis (FEA). This study established four parts using computer models: the clavicle, acromion, clavicle hook plate, and screws, and these established models were used for FEA. Moreover, implantations of clavicle hook plates made of different materials (stainless steel and titanium alloy) and with different depths (12, 15, and 18 mm) in patients with acromioclavicular joint dislocation were simulated in the biomechanical analysis. The results indicate that deeper implantation of the clavicle hook plate reduces stress on the clavicle, and also reduces the force applied to the acromion by the clavicle hook plate. Even though a clavicle hook plate made of titanium alloy (a material with a lower Young's modulus) reduces the force applied to the acromion by the clavicle hook plate, slightly higher stress on the clavicle may occur. The results obtained in this study provide a better reference for orthopedic surgeons in choosing different clavicle hook plates for surgery. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Management of the patient with a total joint replacement: the primary care practitioner's role.
Palmer, L M
1999-01-01
The primary care practitioner assumes chief responsibility for patients with arthritis. More than 40 million Americans experience some form of arthritis. Management of the patient with arthritis may include a referral to an orthopedic surgeon for surgical intervention. As estimated, up to 500,000 total joint replacement procedures are performed by orthopedic surgeons each year in the United States. Presurgical evaluation for a total joint replacement is imperative to ensure that the patient can safely undergo this surgical procedure. Postsurgical care of a patient with total joint replacement involves coordinating care with the physical therapist and orthopedic surgeon to ensure adequate follow-through with the recommended rehabilitation program, prophylactic antibiotic coverage, and observation for any complications including infection, deep-vein thrombosis, or loosening of the total-joint prosthesis.
Clifford, Anton G; Gabriel, Stefan M; O’Connell, Mary; Lowe, David; Miller, Larry E; Block, Jon E
2013-01-01
Symptomatic medial compartment knee osteoarthritis (OA) is the leading cause of musculoskeletal pain and disability in adults. Therapies intended to unload the medial knee compartment have yielded unsatisfactory results due to low patient compliance with conservative treatments and high complication rates with surgical options. There is no widely available joint-unloading treatment for medial knee OA that offers clinically important symptom alleviation, low complication risk, and high patient acceptance. The KineSpring® Knee Implant System (Moximed, Inc, Hayward, CA, USA) is a first-of-its-kind, implantable, extra-articular, extra-capsular prosthesis intended to alleviate knee OA-related symptoms by reducing medial knee compartment loading while overcoming the limitations of traditional joint-unloading therapies. Preclinical and clinical studies have demonstrated excellent prosthesis durability, substantial reductions in medial compartment and total joint loads, and clinically important improvements in OA-related pain and function. The purpose of this report is to describe the KineSpring System, including implant characteristics, principles of operation, indications for use, patient selection criteria, surgical technique, postoperative care, preclinical testing, and clinical experience. The KineSpring System has potential to bridge the gap between ineffective conservative treatments and irreversible surgical interventions for medial compartment knee OA. PMID:23717052
Sreeram, Roopa Rani S; Prasad, L Krishna; Chakravarthi, P Srinivas; Devi, Naga Neelima; Kattimani, Vivekanand S; Sreeram, Sanjay Krishna
2015-08-01
Missing teeth lead to loss of structural balance, inefficient function, poor aesthetics and psychological effects on human beings, which needs restoration for normal contour, function and aesthetics. Several natural or synthetic substitutes are being used for replacement of missing tooth since centuries. Implants are the latest modality of replacement. So, the study was aimed to assess clinical success rate of Hi-Tec implant; which is economical and new in market. Results of the study will help clinician for appropriate implant selection. The study included 10 patients from 19 to 31 years and needed restoration of missing mandibular first molar. Restoration had done using Hi Tec Single-tooth implants with metal-ceramic single crown prosthesis after three months of osseointegration. The implants were evaluated clinically (bleeding on probing, probing depth, implant mobility- periotest) and radiographically (marginal bone loss and peri-implant radiolucency) for six years. The observers were blinded for the duration of the study to prevent bias. All the patients had uneventful post-surgical healing. No bleeding on probing, Implant mobility, peri-implant radiolucency with minimal marginal bone loss and constant probing depths were observed well within the normal range during follow-up periods. Two stage single-tooth Hi Tec implant restoration can be used as a successful treatment modality for replacing mandibular first molar in an economic way. However, these results were obtained after 6 years of follow up with a smaller sample size, so long term multi center studies with a larger sample size is recommended for the predictability of success rate conclusively.
Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.
Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru
2014-01-01
Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.
Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David
2014-01-01
Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307
Elsner, Jonathan J; Shemesh, Maoz; Shefy-Peleg, Adaya; Gabet, Yankel; Zylberberg, Eyal; Linder-Ganz, Eran
2015-09-01
A synthetic meniscus implant was recently developed for the treatment of patients with mild to moderate osteoarthritis with knee pain associated with medial joint overload. The implant is distinctively different from most orthopedic implants in its pliable construction, and non-anchored design, which enables implantation through a mini-arthrotomy without disruption to the bone, cartilage, and ligaments. Due to these features, it is important to show that the material and design can withstand knee joint conditions. This study evaluated the long-term performance of this device by simulating loading for a total of 5 million gait cycles (Mc), corresponding to approximately five years of service in-vivo. All five implants remained in good condition and did not dislodge from the joint space during the simulation. Mild abrasion was detected by electron microscopy, but µ-CT scans of the implants confirmed that the damage was confined to the superficial surfaces. The average gravimetric wear rate was 14.5 mg/Mc, whereas volumetric changes in reconstructed µ-CT scans point to an average wear rate of 15.76 mm(3)/Mc (18.8 mg/Mc). Particles isolated from the lubricant had average diameter of 15 µm. The wear performance of this polycarbonate-urethane meniscus implant concept under ISO-14243 loading conditions is encouraging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Redesigning a joint replacement program using Lean Six Sigma in a Veterans Affairs hospital.
Gayed, Benjamin; Black, Stephen; Daggy, Joanne; Munshi, Imtiaz A
2013-11-01
In April 2009, an analysis of joint replacement surgical procedures at the Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, revealed that total hip and knee replacements incurred $1.4 million in non-Veterans Affairs (VA) care costs with an average length of stay of 6.1 days during fiscal year 2008. The Joint Replacement Program system redesign project was initiated following the Vision-Analysis-Team-Aim-Map-Measure-Change-Sustain (VA-TAMMCS) model to increase efficiency, decrease length of stay, and reduce non-VA care costs. To determine the effectiveness of Lean Six Sigma process improvement methods applied in a VA hospital. Perioperative processes for patients undergoing total joint replacement were redesigned following the VA-TAMMCS model--the VA's official, branded method of Lean Six Sigma process improvement. A multidisciplinary team including the orthopedic surgeons, frontline staff, and executive management identified waste in the current processes and initiated changes to reduce waste and increase efficiency. Data collection included a 1-year baseline period and a 20-month sustainment period. The primary endpoint was length of stay; a secondary analysis considered non-VA care cost reductions. Length of stay decreased 36% overall, decreasing from 5.3 days during the preproject period to 3.4 days during the 20-month sustainment period (P < .001). Non-VA care was completely eliminated for patients undergoing total hip and knee replacement at the Richard L. Roudebush Veterans Affairs Medical Center, producing an estimated return on investment of $1 million annually when compared with baseline cost and volumes. In addition, the volume of total joint replacements at this center increased during the data collection period. The success of the Joint Replacement Program demonstrates that VA-TAMMCS is an effective tool for Lean and Six Sigma process improvement initiatives in a surgical practice, producing a 36% sustained reduction in length of stay and completely eliminating non-VA care for total hip and knee replacements while increasing total joint replacement volume at this medical center.
Corrosion and Tribology of Materials Used in a Novel Reverse Hip Replacement.
Braddon, Linda; Termanini, Zafer; MacDonald, Steven; Parvizi, Jay; Lieberman, Jay; Frankel, Victor; Zuckerman, Joseph
2017-07-05
Total hip arthroplasty has been utilized for the past 50 years as an effective treatment for degenerative, inflammatory and traumatic disorders of the hip. The design of these implants has generally followed the anatomy of the hip as a ball and socket joint with the femoral head representing the ball and the acetabulum representing the socket. We describe a novel hip arthroplasty design in which the "ball" is located on the acetabular side and the "socket" is located on the femoral side. The results of extensive biomechanical testing are described and document wear and corrosion characteristics that are at least equivalent to standard designs. These results support clinical assessment as the next step of the evaluation.
Corrosion and Tribology of Materials Used in a Novel Reverse Hip Replacement
Braddon, Linda; Termanini, Zafer; MacDonald, Steven; Parvizi, Jay; Lieberman, Jay; Frankel, Victor; Zuckerman, Joseph
2017-01-01
Total hip arthroplasty has been utilized for the past 50 years as an effective treatment for degenerative, inflammatory and traumatic disorders of the hip. The design of these implants has generally followed the anatomy of the hip as a ball and socket joint with the femoral head representing the ball and the acetabulum representing the socket. We describe a novel hip arthroplasty design in which the “ball” is located on the acetabular side and the “socket” is located on the femoral side. The results of extensive biomechanical testing are described and document wear and corrosion characteristics that are at least equivalent to standard designs. These results support clinical assessment as the next step of the evaluation. PMID:28773112
Knee Osteoarthritis Treatment with the KineSpring Knee Implant System: A Report of Two Cases
Hayes, David A.; Miller, Larry E.; Block, Jon E.
2012-01-01
Osteoarthritis (OA) is a leading cause of disability in middle-aged and older adults with the prevalence expected to increase by 40% by 2025. This dramatic projected increase in OA reflects, in large part, the alarming obesity epidemic. Indeed, it is now well understood that abnormal loading across the knee joint due to malalignment and/or excessive weight gain is responsible for accelerating OA progression. Consequently, there is a therapeutic need for alternative knee OA treatments that directly address joint overload to fill the gap between ineffective conservative care and invasive joint-modifying surgical procedures. We describe two cases that presented with bilateral knee OA resistant to conservative treatments, each with one knee previously and unsuccessfully treated with high tibial osteotomy to improve alignment and the contralateral knee successfully treated with a joint-preserving, load-absorbing implant (KineSpring Knee Implant System). PMID:23304590
Niska, Jared A.; Shahbazian, Jonathan H.; Ramos, Romela Irene; Francis, Kevin P.; Bernthal, Nicholas M.
2013-01-01
Treatment of prosthetic joint infections often involves a two-stage exchange, with implant removal and antibiotic spacer placement followed by systemic antibiotic therapy and delayed reimplantation. However, if antibiotic therapy can be improved, one-stage exchange or implant retention may be more feasible, thereby decreasing morbidity and preserving function. In this study, a mouse model of prosthetic joint infection was used in which Staphylococcus aureus was inoculated into a knee joint containing a surgically placed metallic implant extending from the femur. This model was used to evaluate whether combination therapy of vancomycin plus rifampin has increased efficacy compared with vancomycin alone against these infections. On postoperative day 7, vancomycin with or without rifampin was administered for 6 weeks with implant retention. In vivo bioluminescence imaging, ex vivo CFU enumeration, X-ray imaging, and histologic analysis were carried out. We found that there was a marked therapeutic benefit when vancomycin was combined with rifampin compared with vancomycin alone. Taken together, our results suggest that the mouse model used could serve as a valuable in vivo preclinical model system to evaluate and compare efficacies of antibiotics and combinatory therapy for prosthetic joint infections before more extensive studies are carried out in human subjects. PMID:23917317
Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao
2017-04-01
Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.
2011-01-01
Background For the majority of patients with osteoarthritis (OA), joint replacement is a successful intervention for relieving chronic joint pain. However, between 10-30% of patients continue to experience chronic pain after joint replacement. Evidence suggests that a risk factor for chronic pain after joint replacement is the severity of acute post-operative pain. The aim of this randomised controlled trial (RCT) is to determine if intra-operative local anaesthethic wound infiltration additional to a standard anaethesia regimen can reduce the severity of joint pain at 12-months after total knee replacement (TKR) and total hip replacement (THR) for OA. Methods 300 TKR patients and 300 THR patients are being recruited into this single-centre double-blind RCT. Participants are recruited before surgery and randomised to either the standard care group or the intervention group. Participants and outcome assessors are blind to treatment allocation throughout the study. The intervention consists of an intra-operative local anaesthetic wound infiltration, consisting of 60 mls of 0.25% bupivacaine with 1 in 200,000 adrenaline. Participants are assessed on the first 5 days post-operative, and then at 3-months, 6-months and 12-months. The primary outcome is the WOMAC Pain Scale, a validated measure of joint pain at 12-months. Secondary outcomes include pain severity during the in-patient stay, post-operative nausea and vomiting, satisfaction with pain relief, length of hospital stay, joint pain and disability, pain sensitivity, complications and cost-effectiveness. A nested qualitative study within the RCT will examine the acceptability and feasibility of the intervention for both patients and healthcare professionals. Discussion Large-scale RCTs assessing the effectiveness of a surgical intervention are uncommon, particulary in orthopaedics. The results from this trial will inform evidence-based recommendations for both short-term and long-term pain management after lower limb joint replacement. If a local anaesthetic wound infiltration is found to be an effective and cost-effective intervention, implementation into clinical practice could improve long-term pain outcomes for patients undergoing lower limb joint replacement. Trial registration Current Controlled Trials ISRCTN96095682 PMID:21352559
Krackhardt, Florian; Kherad, Behrouz; Krisper, Maximilian; Pieske, Burkert; Laule, Michael; Tschöpe, Carsten
2017-01-01
Conduction disturbances requiring permanent pacemaker implantation following transcatheter aortic valve replacement (TAVR) are a common problem. Pacemaker implantation rates after TAVR appear to be higher compared to conventional aortic valve replacement. The aim of this study was to analyze whether a high annulus implantation conveys the benefit of a decreased rate of permanent pacemaker implantation while being safe and successful according to Valve Academic Research Consortium 2 (VARC2)-criteria. A total of 23 patients with symptomatic severe aortic valve stenosis, an aortic annulus of 19-27 mm and at high risk for surgery were treated with the Lotus valve. In all patients the valve was implanted in a high annulus position via femoral access. The primary device performance endpoint was VARC2-defined device success after 30 days and the primary safety endpoint was the need for permanent pacemaker implantation. The mean age was 73.23 ± 7.65 years, 46% were female, 38% were New York Heart Association class III/IV at baseline. Thirty-day follow-up data were available for all patients. The VARC2-defined device success rate after 30 days was 22/23 (96%). 2/21 (10%) patients required a newly implanted pacemaker due to 3rd degree atrioventricular block. 25% of the patients developed a new left bundle branch block after valvuloplasty or device implantation. 21 of the 23 patients (96%) had no other signs of conduction disturbances after 30 days. The approach of the modified implantation technique of Lotus TAVR device was safe and effective. The incidence of need for a permanent pacemaker following TAVR could be significantly reduced due to adopted implantation protocol.
Analysis of in vitro and in vivo function of total knee replacements using dynamic contact models
NASA Astrophysics Data System (ADS)
Zhao, Dong
Despite the high incidence of osteoarthritis in human knee joint, its causes remain unknown. Total knee replacement (TKR) has been shown clinically to be effective in restoring the knee function. However, wear of ultra-high molecular weight polyethylene has limited the longevity of TKRs. To address these important issues, it is necessary to investigate the in vitro and in vivo function of total knee replacements using dynamic contact models. A multibody dynamic model of an AMTI knee simulator was developed. Incorporating a wear prediction model into the contact model based on elastic foundation theory enables the contact surface to take into account creep and wear during the dynamic simulation. Comparisons of the predicted damage depth, area, and volume lost with worn retrievals from a physical machine were made to validate the model. In vivo tibial force distributions during dynamic and high flexion activities were investigated using the dynamic contact model. In vivo medial and lateral contact forces experienced by a well-aligned instrumented knee implant, as well as upper and lower bounds on contact pressures for a variety of activities were studied. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. For this patient, the load split during the mid-stance phase of gait and during stair is more equal than anticipated. The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. In vivo data collected from a subject with an instrumented knee implant were analyzed to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe out) while instrumented implant, video motion, and ground reaction data were simultaneously collected. The high correlation coefficient results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait.
Linked shoulder replacement: current design problems and a new design proposal.
Mohammed, Ali Abdullah; Frostick, Simon Peter
2016-04-01
Totally constrained shoulder replacement with linked components is one of the surgical options in post-tumor resection shoulder reconstruction or in complex shoulder revision operations. In this paper, we intend to shed light on such an implant design, which provides a linked constrained connection between the humeral head and the glenoid, and to show some immediate postoperative complications, implant progression to decrease the chances of implant mechanical postinsertion failure, and a new design proposal. In our center, we use the linked prosthesis in complex revision situations; however, there have been some complications, which could be attributed mainly to the engineering and the implant design, and hence potentially avoidable by making a different design to cover for those mechanical issues. Two such complications are described in this paper. Early revisions after linked shoulder replacement implantation were needed in two occasions due to implant disconnection: one of them was due to dislodgement from the native glenoid, and the second one was due to the disengagement of the ringlet which secures the linkage mechanism between the humeral head and the implanted glenoid shell. There is a need for a more stable design construct to avoid the reported complications that needed early revision surgeries. The new design proposed is an attempt to help providing a better and more stable implant to decrease the chances of revision in those complex situations where the patient already had many major operations, and working to increase the durability of the implant is crucial.
Heinlein, Bernd; Kutzner, Ines; Graichen, Friedmar; Bender, Alwina; Rohlmann, Antonius; Halder, Andreas M; Beier, Alexander; Bergmann, Georg
2009-05-01
Detailed information about the loading of the knee joint is required for various investigations in total knee replacement. Up to now, gait analysis plus analytical musculo-skeletal models were used to calculate the forces and moments acting in the knee joint. Currently, all experimental and numerical pre-clinical tests rely on these indirect measurements which have limitations. The validation of these methods requires in vivo data; therefore, the purpose of this study was to provide in vivo loading data of the knee joint. A custom-made telemetric tibial tray was used to measure the three forces and three moments acting in the implant. This prosthesis was implanted into two subjects and measurements were obtained for a follow-up of 6 and 10 months, respectively. Subjects performed level walking and going up and down stairs using a self-selected comfortable speed. The subjects' activities were captured simultaneously with the load data on a digital video tape. Customized software enabled the display of all information in one video sequence. The highest mean values of the peak load components from the two subjects were as follows: during level walking the forces were 276%BW (percent body weight) in axial direction, 21%BW (medio-lateral), and 29%BW (antero-posterior). The moments were 1.8%BW*m in the sagittal plane, 4.3%BW*m (frontal plane) and 1.0%BW*m (transversal plane). During stair climbing the axial force increased to 306%BW, while the shear forces changed only slightly. The sagittal plane moment increased to 2.4%BW*m, while the frontal and transversal plane moments decreased slightly. Stair descending produced the highest forces of 352%BW (axial), 35%BW (medio-lateral), and 36%BW (antero-posterior). The sagittal and frontal plane moments increased to 2.8%BW*m and 4.6%BW*m, respectively, while the transversal plane moment changed only slightly. Using the data obtained, mechanical simulators can be programmed according to realistic load profiles. Furthermore, musculo-skeletal models can be validated, which until now often lacked the ability to predict properly the non-sagittal load values, e.g. varus-valgus and internal-external moments.
Biomechanical and functional variation in rat sciatic nerve following cuff electrode implantation
2014-01-01
Background Nerve cuff electrodes are commonly and successfully used for stimulating peripheral nerves. On the other hand, they occasionally induce functional and morphological changes following chronic implantation, for reasons not always clear. We hypothesize that restriction of nerve mobility due to cuff implantation may alter nerve conduction. Methods We quantified acute changes in nerve-muscle electrophysiology, using electromyography, and nerve kinematics in anesthetized Sprague Dawley rat sciatic nerves during controlled hindlimb joint movement. We compared electrophysiological and biomechanical response in uncuffed nerves and those secured within a cuff electrode using analysis of variance (ANOVA) and regression analysis. Results Tethering resulting from cuff implantation resulted in altered nerve strain and a complex biomechanical environment during joint movement. Coincident with biomechanical changes, electromyography revealed significantly increased variability in the response of conduction latency and amplitude in cuffed, but not free, nerves following joint movement. Conclusion Our findings emphasize the importance of the mechanical interface between peripheral nerves and their devices on neurophysiological performance. This work has implications for nerve device design, implantation, and prediction of long-term efficacy. PMID:24758405
Treatment planning: implant-supported partial overdentures.
Chee, Winston W L
2005-04-01
When multiple anterior teeth are missing, many options of replacement are available. Traditionally, the choice was between a fixed or removable prostheses. Today, with the predictability of dental implants, the options of tooth replacement range from removable partial dentures to implant-supported fixed prostheses. The choice of which restoration that will best provide occlusion and esthetics depends on multiple factors including the number and location of missing teeth, the residual ridge form in relation to the replacement teeth, the relationship of the maxillary and mandibular anterior teeth, the condition of teeth adjacent to the edentulous span, the amount of bone available for implant placement, the patients "smile line" and display of teeth, lip support, and financial constraints. When there is minimal loss of the ridge contour, restorations that emerge from the ridge are the most functional and esthetic restorations, adhesive-type fixed partial dentures, conventional fixed partial dentures, and implant-supported restorations can be indicated with the choice of restoration dependent on a risk benefit and cost benefit analysis. When there is a loss of ridge contour due to residual ridge resorption or trauma, the decision becomes more complex as not only does the tooth structure need to be replaced, the ridge form also has to be replaced. (Figures 1 and 2). This can be assessed clinically as illustrated by Figures 1 and 2 where a dis crepancy in arch form and ridge form in relation to the adjacent teeth and/or opposing arch can be observed. Other considerations are lip support and display of the teeth when smiling. This article presents a case and rationale for implant-supported par tial overdentures. Many authors have written on the merits of com plete overdentures. The complete overdenture has proven to be an improvement over conventional complete prostheses with respect to chewing efficiency, patient comfort and satisfaction. In partial edentulism, the implant-supported overdenture has several advantages, some in common with a removable partial denture.
Physicochemical and microscopic characterization of implant–abutment joints
Lopes, Patricia A.; Carreiro, Adriana F. P.; Nascimento, Rubens M.; Vahey, Brendan R.; Henriques, Bruno; Souza, Júlio C. M.
2018-01-01
Objective: The purpose of this study was to investigate Morse taper implant–abutment joints by chemical, mechanical, and microscopic analysis. Materials and Methods: Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant–abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant–abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant–abutment joints. Statistics: Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Results: Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant–abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Conclusions: Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant–abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication. PMID:29657532
[Survey on the use and behaviour of metal-metal hip replacements in Spain].
Calcerrada, N; Fernández-Vega, A; Valls-León, C; Garcia-Cimbrelo, E
2016-01-01
Following medical device alerts published in different countries of problems with metal-on-metal total hip replacements, the Spanish Agency of Medicines and Medical Devices (AEMPS) in collaboration with the Spanish Hip Society Surgery designed a national survey to gather information on the use and behaviour of these hip implants. The survey consisted of a questionnaire sent by e-mail to 283 clinical centre recipients of metal-on-metal hips to be filled in by surgeons with expertise in the field. A total of 257 questionnaires were completed. The response rate of the clinical centres was 36.7%. A total of 97.7% of the responses reported that clinical and radiological follow-ups are carried out, and 79.6% undertook metal ion analyses (chromium and cobalt). A large majority (83.6%) of the responders who had who used surface implants, and 70% of those with large-head implants reported peri-operative complications. The most common complication was pain (25% with surface implants and 30.8% with large-head implants). Currently 80.8% of those responding were considering abandoning implanting of these hip replacements. Despite the many limitations to this study, the survey has allowed us to obtain in a quick first view of the implant scenario of Metal on Metal hip implants in Spain, and to determine the type of patient implanted, the time of implantation, and the experience/expertise of the surgeons, and the type of follow-up carried out. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.
Influence of the implant-abutment connection design and diameter on the screw joint stability.
Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung; Jeong, Chang-Mo
2014-04-01
This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). THE POSTLOAD REMOVAL TORQUE VALUE WAS HIGH IN THE FOLLOWING ORDER WITH REGARD TO MAGNITUDE: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate.
Influence of the implant-abutment connection design and diameter on the screw joint stability
Shin, Hyon-Mo; Huh, Jung-Bo; Yun, Mi-Jeong; Jeon, Young-Chan; Chang, Brian Myung
2014-01-01
PURPOSE This study was conducted to evaluate the influence of the implant-abutment connection design and diameter on the screw joint stability. MATERIALS AND METHODS Regular and wide-diameter implant systems with three different joint connection designs: an external butt joint, a one-stage internal cone, and a two-stage internal cone were divided into seven groups (n=5, in each group). The initial removal torque values of the abutment screw were measured with a digital torque gauge. The postload removal torque values were measured after 100,000 cycles of a 150 N and a 10 Hz cyclic load had been applied. Subsequently, the rates of the initial and postload removal torque losses were calculated to evaluate the effect of the joint connection design and diameter on the screw joint stability. Each group was compared using Kruskal-Wallis test and Mann-Whitney U test as post-hoc test (α=0.05). RESULTS The postload removal torque value was high in the following order with regard to magnitude: two-stage internal cone, one-stage internal cone, and external butt joint systems. In the regular-diameter group, the external butt joint and one-stage internal cone systems showed lower postload removal torque loss rates than the two-stage internal cone system. In the wide-diameter group, the external butt joint system showed a lower loss rate than the one-stage internal cone and two-stage internal cone systems. In the two-stage internal cone system, the wide-diameter group showed a significantly lower loss rate than the regular-diameter group (P<.05). CONCLUSION The results of this study showed that the external butt joint was more advantageous than the internal cone in terms of the postload removal torque loss. For the difference in the implant diameter, a wide diameter was more advantageous in terms of the torque loss rate. PMID:24843398
Röhner, Eric; Pfitzner, Tilman; Preininger, Bernd; Zippelius, Timo; Perka, Carsten
2016-01-01
The present study describes a new temporary arthrodesis procedure, which aims for septic knee prosthesis replacement, in particular for larger bone and soft tissue defects. Our technique offers high stability and full weight-bearing capacity of the knee joint. The study included 16 patients with major bone defects (AORI type IIb or greater) after receiving a radical debridement and a septic two-stage revision total knee arthroplasty. After removing the infected prosthesis and debridement, two AO fixator rods were positioned into the intramedullary space of the femur and tibia. Subsequently, both rods were joined tube-to-tube and adjusted in the center of the knee joint. Finally, the whole cavity of the knee joint was filled with PMMA. The number of previous surgeries, bacterial spectrum, risk factors for further infection and reinfection rates was recorded. Immediately after the temporary arthrodesis, radiographs of the knee with the enclosed spacers were taken in order to compare to previous radiographs and avoiding to miss possible spacer loosening. Nine of sixteen patients underwent more than two revision surgeries before receiving our new arthrodesis technique. No cases of spacer loosening were observed in all 16 patients; further, there were no peri-implant fractures, and four persistent infections were noted. Temporary arthrodesis using AO fixator rods offers a high stability without loosening. Its potential to replace conventional augmentation techniques should be taken into account, particularly in the case of larger bone and tissue defects. In clinical practice, the cemented spacer using AO fixator rods could be an alternative technique for temporary knee arthrodesis after septic debridement. Retrospective case series, Level IV.
Skjöldebrand, Charlotte; Schmidt, Susann; Vuong, Vicky; Pettersson, Maria; Grandfield, Kathryn; Högberg, Hans; Engqvist, Håkan; Persson, Cecilia
2017-01-01
Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23–48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young’s modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young’s moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants. PMID:28772532
Carbon offers advantages as implant material in human body
NASA Technical Reports Server (NTRS)
Benson, J.
1969-01-01
Because of such characteristics as high strength and long-term biocompatability, aerospace carbonaceous materials may be used as surgical implants to correct pathological conditions in the body resulting from disease or injury. Examples of possible medical uses include bone replacement, implantation splints and circulatory bypass implants.
Agodi, A; Auxilia, F; Barchitta, M; Cristina, M L; D'Alessandro, D; Mura, I; Nobile, M; Pasquarella, C
2015-07-01
Recent studies have shown a higher rate of surgical site infections in hip prosthesis implantation using unidirectional airflow ventilation compared with turbulent ventilation. However, these studies did not measure the air microbial quality of operating theatres (OTs), and assumed it to be compliant with the recommended standards for this ventilation technique. To evaluate airborne microbial contamination in OTs during hip and knee replacement surgery, and compare the findings with values recommended for joint replacement surgery. Air samplings were performed in 28 OTs supplied with unidirectional, turbulent and mixed airflow ventilation. Samples were collected using passive sampling to determine the index of microbial air contamination (IMA). Active sampling was also performed in some of the OTs. The average number of people in the OT and the number of door openings during the sampling period were recorded. In total, 1228 elective prosthesis procedures (60.1% hip and 39.9% knee) were included in this study. Of passive samplings performed during surgical activity in unidirectional airflow ventilation OTs (U-OTs) and mixed airflow OTs (M-OTs), 58.9% and 87.6% had IMA values >2, respectively. Of samplings performed during surgical activity in turbulent airflow OTs (T-OTs) and in turbulent airflow OTs with the surgical team wearing Steri-Shield Turbo Helmets (TH-OTs), 8.6% and 60% had IMA values ≤ 2, respectively. Positive correlation was found between IMA values and the number of people in the OT and the number of door openings (P < 0.001). In addition, correlation was found between active and passive sampling (P < 0.001). These findings challenge the belief that unidirectional systems always provide acceptable airborne bacterial counts. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Hip Implant Modified To Increase Probability Of Retention
NASA Technical Reports Server (NTRS)
Canabal, Francisco, III
1995-01-01
Modification in design of hip implant proposed to increase likelihood of retention of implant in femur after hip-repair surgery. Decreases likelihood of patient distress and expense associated with repetition of surgery after failed implant procedure. Intended to provide more favorable flow of cement used to bind implant in proximal extreme end of femur, reducing structural flaws causing early failure of implant/femur joint.
Fardal, Øystein; O'Neill, Ciaran; Gjermo, Per; Fardal, Elizabeth; Sandvik, Leiv; Hansen, B Frode; Linden, Gerard J
2012-12-01
Successful periodontal treatment requires a commitment to regular lifelong maintenance and may be perceived by patients to be costly. This study calculates the total lifetime cost of periodontal treatment in the setting of a specialist periodontal practice and investigates the cost implications of choosing not to proceed with such treatment. Data from patients treated in a specialist practice in Norway were used to calculate the total lifetime cost of periodontal treatment that included baseline periodontal treatment, regular maintenance, retreatment, and replacing teeth lost during maintenance. Incremental costs for alternative strategies based on opting to forego periodontal treatment or maintenance and to replace any teeth lost with either bridgework or implants were calculated. Patients who completed baseline periodontal treatment but did not have any additional maintenance or retreatment could replace only three teeth with bridgework or two teeth with implants before the cost of replacing additional teeth would exceed the cost of lifetime periodontal treatment. Patients who did not have any periodontal treatment could replace ≤ 4 teeth with bridgework or implants before a replacement strategy became more expensive. Within the limits of the assumptions made, periodontal treatment in a Norwegian specialist periodontal practice is cost-effective when compared to an approach that relies on opting to replace teeth lost as a result of progressive periodontitis with fixed restorations. In particular, patients who have initial comprehensive periodontal treatment but do not subsequently comply with maintenance could, on average, replace ≤ 3 teeth with bridgework or two teeth with implants before this approach would exceed the direct cost of lifetime periodontal treatment in the setting of the specialist practice studied.
Penile Prosthesis First and Replacement Surgeries: Analysis of Patient and Partner Satisfaction.
Lledó-García, Enrique; Jara-Rascón, José; Moncada Iribarren, Ignacio; Piñero-Sánchez, Javier; Aragón-Chamizo, Juan; Hernández-Fernández, Carlos
2015-07-01
Among the many treatments for erectile dysfunction, implantation of a penile prosthesis has been associated with high patient satisfaction rates. Prosthesis replacement has become an accepted procedure in the event of device malfunction or complications, but to our knowledge, there are no data regarding the impact of implant replacement on patients and partner satisfaction. The aim of our study was to assess and to compare the level of satisfaction, with a first or second penile prosthesis implantation (PPI), in men with refractory erectile dysfunction and their partners. A survey study based on a five-item questionnaire was carried out at our center between January 1999 and January 2012. The main outcome measure used was the level of patient and partner satisfaction with sexual intercourse after PPI. Of the 190 eligible patients, 149 (78%) completed the survey (110 underwent a first implant and 39 a reimplant). Seventy-nine percent of first-time implanted patients and 80% of the reimplanted patients (P > 0.05; not significant [ns]) reported satisfactory sexual intercourse (very or moderately satisfied), while 74% and 80% of their partners reported satisfactory intercourses, respectively (P > 0.05; ns). Overall, 73.7% of first implants and 70% of second implants reported that they would undergo the procedure again if the PPI failed (P > 0.05; ns). With regards to cosmetic aspects, 13% of the first implants' and 15% of second implants' partners reported either penile shortness or soft glans as the main causes of their dissatisfaction. Only 2.4% of first implants and 1% of reimplanted patients expressed difficulty in manipulating the device. PPI is successful in returning the ability for satisfactory sexual intercourse to both first implant and reimplanted patients and their respective partners. © 2015 International Society for Sexual Medicine.
Schunck, Antje; Kronz, Andreas; Fischer, Cornelius; Buchhorn, Gottfried Hans
2016-02-01
In a previous failure analysis performed on femoral components of cemented total hip replacements, we determined high volumes of abraded bone cement. Here, we describe the topography of the polished surface of polymethyl methacrylate (PMMA) bone cement containing zirconia radiopacifier, analyzed by scanning electron microscopy and vertical scanning interferometry. Zirconia spikes protruded about 300nm from the PMMA matrix, with pits of former crystal deposition measuring about 400nm in depth. We deduced that the characteristically mulberry-shaped agglomerates of zirconia crystals are ground and truncated into flat surfaces and finally torn out of the PMMA matrix. Additionally, evaluation of in vitro PMMA-on-PMMA articulation confirmed that crystal agglomerations of zirconia were exposed to grain pullout, fatigue, and abrasion. In great quantities, micron-sized PMMA wear and zirconia nanoparticles accumulate in the cement-bone interface and capsular tissues, thereby contributing to osteolysis. Dissemination of nanoparticles to distant lymph nodes and organs of storage has been reported. As sufficient information is lacking, foreign body reactions to accumulated nanosized zirconia in places of long-term storage should be investigated. The production of wear particles of PMMA bone cement in the interface to joint replacement devices, presents a local challenge. The presence of zirconia particles results in frustrated digestion attempts by macrophages, liberation of inflammatory mediators, and necrosis leading to aseptic inflammation and osteolyses. Attempts to minimize wear of articulating joints reduced the attention to the deterioration of cement cuffs. We therefore investigated polished surfaces of retrieved cuffs to demonstrate their morphology and to measure surface roughness. Industrially admixed agglomerates of the radiopacifier are abraded to micron and nano-meter sized particles. The dissemination of zirconia particles in the reticulo-endothelial system to storage organs is a possible burden. Research to replace the actual contrast media by non-particulate material deserves more attention. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio
2017-09-01
Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).
Joint Disorders - Multiple Languages
... a new window. Arabic (العربية) Expand Section Home Care After Total Joint Replacement - العربية (Arabic) Bilingual PDF Health Information Translations Bosnian (bosanski) Expand Section Home Care After Total Joint Replacement - bosanski (Bosnian) Bilingual PDF Health Information ...
Daniels, Alan H; Paller, David J; Koruprolu, Sarath; Palumbo, Mark A; Crisco, Joseph J
2013-01-01
Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.
Daniels, Alan H.; Paller, David J.; Koruprolu, Sarath; Palumbo, Mark A.; Crisco, Joseph J.
2013-01-01
Background Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system. Methods Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode. Results The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18). Conclusions Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions. PMID:23451222
Improving transition of care for veterans after total joint replacement.
Green, Uthona R; Dearmon, Valorie; Taggart, Helen
2015-01-01
Patients transitioning from hospital to home are at risk for readmission to the hospital. Readmissions are costly and occur too often. Standardized discharge education processes have shown to decrease readmissions. The purpose of this quality improvement project was to utilize evidence-based practice changes to decrease 30-day all-cause readmissions after total joint replacement. Review of literature revealed that improved discharge education can decrease unnecessary readmissions after discharge. A quality improvement project was developed including standardized total joint replacement discharge education, teach-back education methodology, and improved postdischarge telephone follow-up. The quality improvement project was initiated and outcomes were evaluated. Improving coordination of the discharge process, enhanced education for patients/caregivers, and postdischarge follow-up decreased total joint replacement readmissions.
Djoudi, Farid
2013-01-01
Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.
MR Imaging of Knee Arthroplasty Implants
Fritz, Jan; Lurie, Brett
2015-01-01
Primary total knee arthroplasty is a highly effective treatment that relieves pain and improves joint function in a large percentage of patients. Despite an initially satisfactory surgical outcome, pain, dysfunction, and implant failure can occur over time. Identifying the etiology of complications is vital for appropriate management and proper timing of revision. Due to the increasing number of knee arthroplasties performed and decreasing patient age at implantation, there is a demand for accurate diagnosis to determine appropriate treatment of symptomatic joints following knee arthroplasty, and for monitoring of patients at risk. Magnetic resonance (MR) imaging allows for comprehensive imaging evaluation of the tissues surrounding knee arthroplasty implants with metallic components, including the polyethylene components. Optimized conventional and advanced pulse sequences can result in substantial metallic artifact reduction and afford improved visualization of bone, implant-tissue interfaces, and periprosthetic soft tissue for the diagnosis of arthroplasty-related complications. In this review article, we discuss strategies for MR imaging around knee arthroplasty implants and illustrate the imaging appearances of common modes of failure, including aseptic loosening, polyethylene wear–induced synovitis and osteolysis, periprosthetic joint infections, fracture, patellar clunk syndrome, recurrent hemarthrosis, arthrofibrosis, component malalignment, extensor mechanism injury, and instability. A systematic approach is provided for evaluation of MR imaging of knee implants. MR imaging with optimized conventional pulse sequences and advanced metal artifact reduction techniques can contribute important information for diagnosis, prognosis, risk stratification, and surgical planning. ©RSNA, 2015 PMID:26295591
Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay
2016-01-01
Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastating complication. Use of local delivery system consisting of S.aureus specific phage along with linezolid (incorporated in biopolymer) allowing gradual release of the two agents at the implant site represents a new, still unexplored treatment option (against orthopaedic implant infections) that has been studied in an animal model of prosthetic joint infection. Naked wire, hydroxypropyl methylcellulose (HPMC) coated wire and phage and /or linezolid coated K-wire were surgically implanted into the intra-medullary canal of mouse femur bone of respective groups followed by inoculation of S.aureus ATCC 43300(MRSA). Mice implanted with K-wire coated with both the agents i.e phage as well as linezolid (dual coated wires) showed maximum reduction in bacterial adherence, associated inflammation of the joint as well as faster resumption of locomotion and motor function of the limb. Also, all the coating treatments showed no emergence of resistant mutants. Use of dual coated implants incorporating lytic phage (capable of self-multiplication) as well as linezolid presents an attractive and aggressive early approach in preventing as well as treating implant associated infections caused by methicillin resistant S. aureus strains as assessed in a murine model of experimental joint infection. PMID:27333300
STS-111 Flight Day 09 Highlights
NASA Technical Reports Server (NTRS)
2002-01-01
The STS-111 flight crew consists of Kenneth D. Cockrell, Commander, Paul S. Lockhart, Pilot, Franklin R. Chang-Diaz, Mission Specialist, Philippe Perrin, (CNES), Mission Specialist, Valery G. Korzun, (RSA), ISS Up, Peggy A. Whitson, ISS Up , Sergei Y. Treschev (RSC), ISS Up, Yuri I. Onufriyenko (RSA), ISS Down, Carl E. Walz, and Daniel W. Bursch (ISS) Down. The main goal on this ninth day of flight STS-111, is to replace the wrist roll joint of the Robotic Arm on the International Space Station. Live footage of the wrist roll joint replacement is presented. Paul Lockhart is the spacewalk coordinator for this mission. Franklin Chang-Diaz and Philippe Perrin, are responsible for replacing the wrist roll joint and performing maintenance activities. The spacewalk to repair this joint occurs outside the Space Station's Quest Airlock. The wrist roll joint was replaced successfully. The spacewalk took approximately 7 hours and 17 minutes to complete.
2009-09-01
Replace CV boot assembly. 11 Replace propeller shafts , universal joints, and center bearings. 11 Replace front axle spindle . 5 Replace...propeller shafts , universal joints, and center bearings. (SL1/2) 12 Troubleshoot axles. (SL1/2) 11 Replace front axle spindle . (SL1/2) 6...Social Sciences. NOTE: The findings in this report are not to be construed as an official Department of the Army position, unless so designated by
[Design and application of implantable medical device information management system].
Cao, Shaoping; Yin, Chunguang; Zhao, Zhenying
2013-03-01
Through the establishment of implantable medical device information management system, with the aid of the regional joint sharing of resources, we further enhance the implantable medical device traceability management level, strengthen quality management, control of medical risk.
Van Haver, Annemieke; De Roo, Karel; De Beule, Matthieu; Labey, Luc; De Baets, Patrick; Dejour, David; Claessens, Tom; Verdonk, Peter
2015-06-01
Trochlear dysplasia appears in different geometrical variations. The Dejour classification is widely used to grade the severity of trochlear dysplasia and to decide on treatment. To investigate the effect of trochlear dysplasia on patellofemoral biomechanics and to determine if different types of trochlear dysplasia have different effects on patellofemoral biomechanics. Controlled laboratory study. Trochlear dysplasia was simulated in 4 cadaveric knees by replacing the native cadaveric trochlea with different types of custom-made trochlear implants, manufactured with 3-dimensional printing. For each knee, 5 trochlear implants were designed: 1 implant simulated the native trochlea (control condition), and 4 implants simulated 4 types of trochlear dysplasia. The knees were subjected to 3 biomechanical tests: a squat simulation, an open chain extension simulation, and a patellar stability test. The patellofemoral kinematics, contact area, contact pressure, and stability were compared between the control condition (replica implants) and the trochlear dysplastic condition and among the subgroups of trochlear dysplasia. The patellofemoral joint in the trochlear dysplastic group showed increased internal rotation, lateral tilt, and lateral translation; increased contact pressures; decreased contact areas; and decreased stability when compared with the control group. Within the trochlear dysplastic group, the implants graded as Dejour type D showed the largest deviations for the kinematical parameters, and the implants graded as Dejour types B and D showed the largest deviations for the patellofemoral contact areas and pressures. Patellofemoral kinematics, contact area, contact pressure, and stability are significantly affected by trochlear dysplasia. Of all types of trochlear dysplasia, the models characterized with a pronounced trochlear bump showed the largest deviations in patellofemoral biomechanics. Investigating the relationship between the shape of the trochlea and patellofemoral biomechanics can provide insight into the short-term effects (maltracking, increased pressures, and instability) and long-term effects (osteoarthritis) of different types of trochlear dysplasia. Furthermore, this investigation provides an empirical explanation for better treatment outcomes of trochleoplasty for Dejour types B and D dysplasia. © 2015 The Author(s).
MacBarb, Regina F; Lindsey, Derek P; Bahney, Chelsea S; Woods, Shane A; Wolfe, Mark L; Yerby, Scott A
2017-01-01
An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation ( e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells ( n =5 per group) were measured. Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs ( p =0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants.
Guillaume, B
2016-12-01
A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
TOTAL KNEE REPLACEMENT IN PATIENTS WITH BELOW-KNEE AMPUTATION
Karam, Matthew D; Willey, Michael; Shurr, Donald G
2010-01-01
Total knee replacement (TKR) is reserved for patients with severe and disabling arthritis that is non-responsive to conservative measures. Based on existing data, total knee replacement is a safe and cost-effective treatment for alleviating pain and improving physical function in patients who do not respond to conservative therapy. Despite the large variation in health status of patients and types of prosthesis implanted, total knee replacement has proven to be a relatively low risk and successful operation. Each year in the United States surgeons perform approximately 300,000 TKR.1 Likewise, lower extremity amputation is commonly performed in the United States with an annual incidence of 110,000 per year.2 Nearly 70% of all lower extremity amputations are performed as the result of chronic vascular disease, followed by trauma (22%), congenital etiology and tumor (4% each).3 Approximately 50% of all lower extremity amputations are performed secondary to complications from Diabetes Mellitus. Norvell et al. demonstrated that patients who have previously undergone transtibial amputation and ambulate with a prosthesis are more likely to develop degenerative joint disease in the con-tralateral extremity than the ipsilateral extremity.4 Further, radiographic changes consistent with osteoporosis have been demonstrated in up to 88% of limbs that have undergone transtibial amputation.8 To our knowledge, there have been only three reported cases of total knee replacement in patients with ipsilateral transtibial amputation.5,7 The purpose of the present study is to review the existing data on total knee replacement in patients who have undergone transtibial amputation. Further we present a patient with a transtibial amputation who underwent contralateral total knee replacement. PMID:21045987
Mattila, S; Waris, E
2016-03-01
The bioabsorbable poly-L-D-lactide joint scaffold arthroplasty is a recent attempt in the reconstruction of small joints in rheumatoid patients. In this study, we analysed the 1-year clinical, functional and radiologic results of partial trapeziectomy with the poly-L-D-lactide (96/4) joint scaffold in 23 patients with isolated trapeziometacarpal osteoarthritis. The results showed that the procedure provided pain relief and improvement in overall function according to the Quick Disabilities of the Arm, Shoulder and Hand score in most patients. However, radiographs demonstrated a high frequency of osteolysis around the implant. Seven patients developed clinically manifested foreign-body reactions 6 months to 1 year after surgery. The reason for the unexpected tissue reactions may relate to excessive mechanical cyclic loading of the implant. The outcomes of this implant in our patients have not been sufficiently beneficial and we have discontinued use of this implant in isolated trapeziometacarpal osteoarthritis. © The Author(s) 2015.
Enhancement of healing in osteochondral defects by collagen sponge implants.
Speer, D P; Chvapil, M; Volz, R G; Holmes, M D
1979-10-01
Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.
Meakin, J R
2001-03-01
An axisymmetric finite element model of a human lumbar disk was developed to investigate the properties required of an implant to replace the nucleus pulposus. In the intact disk, the nucleus was modeled as a fluid, and the annulus as an elastic solid. The Young's modulus of the annulus was determined empirically by matching model predictions to experimental results. The model was checked for sensitivity to the input parameter values and found to give reasonable behavior. The model predicted that removal of the nucleus would change the response of the annulus to compression. This prediction was consistent with experimental results, thus validating the model. Implants to fill the cavity produced by nucleus removal were modeled as elastic solids. The Poisson's ratio was fixed at 0.49, and the Young's modulus was varied from 0.5 to 100 MPa. Two sizes of implant were considered: full size (filling the cavity) and small size (smaller than the cavity). The model predicted that a full size implant would reverse the changes to annulus behavior, but a smaller implant would not. By comparing the stress distribution in the annulus, the ideal Young's modulus was predicted to be approximately 3 MPa. These predictions have implications for current nucleus implant designs. Copyright 2001 Kluwer Academic Publishers
Pabinger, C; Berghold, A; Boehler, N; Labek, G
2013-02-01
To assess revision rates after knee arthroplasty by comparing the cumulative results from worldwide clinical studies and arthroplasty registers. We hypothesised that the revision rate of all clinical studies of a given implant and register data would not differ significantly. A systematic review of clinical studies in indexed peer-reviewed journals was performed followed by internal and external validation. Parameters for measurement of revision were applied (Revision for any reason, Revisions per 100 observed component years). Register data served as control group. Thirty-six knee arthroplasty systems were identified to meet the inclusion criteria: 21 total knee arthroplasty (TKA) systems, 14 unicondylar knee arthroplasty (UKA) systems, one patello-femoral implant system. For 13 systems (36%), no published study was available that contained revision data. For 17 implants (47%), publications were available dealing with radiographic, surgical or technical details, but power was too weak to compare revision rates at a significant level. Six implant systems (17%) had a significant number of revisions published and were finally analysed. In general, developers report better results than independent users. Studies from developers represent an overproportional share of all observed component years. Register data report overall 10-year revision rates of TKA of 6.2% (range: 4.9-7.8%), rates for UKA are 16.5% (range: 9.7-19.6%). Revision rates of all clinical studies of a given implant do not differ significantly from register data. However, significant differences were found between the revision rates published by developers and register data. Therefore the different data need to be interpreted in the context of the source of the information. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Maiti, Raman; Cowie, Raelene M; Fisher, John; Jennings, Louise M
2017-01-01
Complications of patellofemoral arthroplasty often occur soon after implantation and, as well as other factors, can be due to the design of the implant or its surgical positioning. A number of studies have previously considered the wear of ultra-high-molecular-weight polyethylene patellae following suboptimal implantation; however, studies have primarily been carried out under a limited number of degrees of freedom. The aim of this study was to develop a protocol to assess the wear of patellae under a malaligned condition in a six-axis patellofemoral joint simulator. The malalignment protocol hindered the tracking of the patella centrally in the trochlear groove and imparted a constant 5° external rotation (tilt) on the patella button. Following 3 million cycles of wear simulation, this condition had no influence on the wear of ultra-high-molecular-weight polyethylene patellae aged for 4 years compared to well-positioned non-aged implants (p > 0.05). However, under the malaligned condition, ultra-high-molecular-weight polyethylene patellae aged 8–10 years after unpacking (following sterilisation by gamma irradiation in an inert atmosphere) and worn ultra-high-molecular-weight polyethylene components also aged 4 years after unpacking (following the same sterilisation process) exhibited a high rate of wear. Fatigue failure due to elevated contact stress led to delamination of the ultra-high-molecular-weight polyethylene and in some cases complete failure of the patellae. The results suggest that suboptimal tracking of the patella in the trochlear groove and tilt of the patella button could have a significant effect on the wear of ultra-high-molecular-weight polyethylene and could lead to implant failure. PMID:28661229
Maiti, Raman; Cowie, Raelene M; Fisher, John; Jennings, Louise M
2017-07-01
Complications of patellofemoral arthroplasty often occur soon after implantation and, as well as other factors, can be due to the design of the implant or its surgical positioning. A number of studies have previously considered the wear of ultra-high-molecular-weight polyethylene patellae following suboptimal implantation; however, studies have primarily been carried out under a limited number of degrees of freedom. The aim of this study was to develop a protocol to assess the wear of patellae under a malaligned condition in a six-axis patellofemoral joint simulator. The malalignment protocol hindered the tracking of the patella centrally in the trochlear groove and imparted a constant 5° external rotation (tilt) on the patella button. Following 3 million cycles of wear simulation, this condition had no influence on the wear of ultra-high-molecular-weight polyethylene patellae aged for 4 years compared to well-positioned non-aged implants (p > 0.05). However, under the malaligned condition, ultra-high-molecular-weight polyethylene patellae aged 8-10 years after unpacking (following sterilisation by gamma irradiation in an inert atmosphere) and worn ultra-high-molecular-weight polyethylene components also aged 4 years after unpacking (following the same sterilisation process) exhibited a high rate of wear. Fatigue failure due to elevated contact stress led to delamination of the ultra-high-molecular-weight polyethylene and in some cases complete failure of the patellae. The results suggest that suboptimal tracking of the patella in the trochlear groove and tilt of the patella button could have a significant effect on the wear of ultra-high-molecular-weight polyethylene and could lead to implant failure.
Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.
Okuyama, Hiroomi; Umeda, Satoshi; Takama, Yuichi; Terasawa, Takeshi; Nakayama, Yasuhide
2018-02-01
Although many approaches to esophageal replacement have been investigated, these efforts have thus far only met limited success. In-body-tissue-engineered connective tissue tubes have been reported to be effective as vascular replacement grafts. The aim of this study was to investigate the usefulness of an In-body-tissue-engineered collagenous connective tissue membrane, "Biosheet", as a novel esophageal scaffold in a beagle model. We prepared Biosheets by embedding specially designed molds into subcutaneous pouches in beagles. After 1-2months, the molds, which were filled with ingrown connective tissues, were harvested. Rectangular-shaped Biosheets (10×20mm) were then implanted to replace defects of the same size that had been created in the cervical esophagus of the beagle. An endoscopic evaluation was performed at 4 and 12weeks after implantation. The esophagus was harvested and subjected to a histological evaluation at 4 (n=2) and 12weeks (n=2) after implantation. The animal study protocols were approved by the National Cerebral and Cardiovascular Centre Research Institute Committee (No. 16048). The Biosheets showed sufficient strength and flexibility to replace the esophagus defect. All animals survived with full oral feeding during the study period. No anastomotic leakage was observed. An endoscopic study at 4 and 12weeks after implantation revealed that the anastomotic sites and the internal surface of the Biosheets were smooth, without stenosis. A histological analysis at 4weeks after implantation demonstrated that stratified squamous epithelium was regenerated on the internal surface of the Biosheets. A histological analysis at 12weeks after implantation showed the regeneration of muscle tissue in the implanted Biosheets. The long-term results of patch esophagoplasty using Biosheets showed regeneration of stratified squamous epithelium and muscular tissues in the implanted sheets. These results suggest that Biosheets may be useful as a novel esophageal scaffold. Copyright © 2017 Elsevier Inc. All rights reserved.
Ip, David; Fu, Nga Yue
2015-01-01
Background This study evaluated whether half-yearly hyaluronic acid injection together with low-level laser therapy in addition to standard conventional physical therapy can successfully postpone the need for joint replacement surgery in elderly patients with bilateral symptomatic tricompartmental knee arthritis. Methods In this prospective, double-blind, placebo-controlled study, 70 consecutive unselected elderly patients with bilateral tricompartmental knee arthritis were assigned at random to either one of two conservative treatment protocols to either one of the painful knees. Protocol A consisted of conventional physical therapy plus a sham light source plus saline injection, and protocol B consisted of protocol A with addition of half-yearly hyaluronic acid injection as well as low-level laser treatment instead of using saline and a sham light source. Treatment failure was defined as breakthrough pain necessitating joint replacement. Results Among the 140 painful knees treated with either protocol A or protocol B, only one of the 70 painful knees treated by protocol B required joint replacement, whereas 15 of the 70 painful knees treated by protocol A needed joint replacement surgery (P<0.05). Conclusion We conclude that half-yearly hyaluronic acid injections together with low-level laser therapy should be incorporated into the standard conservative treatment protocol for symptomatic knee arthritis, because it may prolong the longevity of the knee joint without the need for joint replacement. PMID:26346122
NASA Astrophysics Data System (ADS)
Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse
2017-03-01
Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.
Multidisciplinary approach for in-deep assessment of joint prosthesis failure.
Tessarolo, F; Caola, I; Piccoli, F; Dorigotti, P; Demattè, E; Molinari, M; Malavolta, M; Barbareschi, M; Caciagli, P; Nollo, G
2009-01-01
In spite of advancement in biomaterials and biomechanics, in development of new osteo-integrative materials and coatings, and in macro- micro- component design, a non negligible fraction of the implanted prosthesis fails before the expected lifetime. A prospective observational clinical study has been conducted to define and apply a set of experimental techniques to in-deep assess the failure of joint prosthesis. Microbiological, histological and micro-structural techniques were implemented to specifically address phenomena occurring at the tissue-implant interface. Results obtained from 27 cases of prosthetic joint failure are discussed in terms of sensitivity and specificity. A procedural flow-chart is finally proposed for the assessment of joint prosthesis failure.
Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.
Goossen, A; Weber, G M; Dries, S P M
2012-01-01
For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.
Materials and applications of bioresorbable electronics
NASA Astrophysics Data System (ADS)
Huang, Xian
2018-01-01
Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework. Project supported by the National Natural Science Foundation of China (No. 61604108) and the Natural Science Foundation of Tianjin (No. 16JCYBJC40600).
Kostuj, T; Preis, M; Walther, M; Aghayev, E; Krummenauer, F; Röder, C
2014-10-01
Even though arthroplasty of the ankle joint is considered to be an established procedure, only about 1,300 endoprostheses are implanted in Germany annually. Arthrodeses of the ankle joint are performed almost three times more often. This may be due to the availability of the procedure - more than twice as many providers perform arthrodesis - as well as the postulated high frequency of revision procedures of arthroplasties in the literature. In those publications, however, there is often no clear differentiation between revision surgery with exchange of components, subsequent interventions due to complications and subsequent surgery not associated with complications. The German Orthopaedic Foot and Ankle Association's (D. A. F.) registry for total ankle replacement collects data pertaining to perioperative complications as well as cause, nature and extent of the subsequent interventions, and postoperative patient satisfaction. The D. A. F.'s total ankle replacement register is a nation-wide, voluntary registry. After giving written informed consent, the patients can be added to the database by participating providers. Data are collected during hospital stay for surgical treatment, during routine follow-up inspections and in the context of revision surgery. The information can be submitted in paper-based or online formats. The survey instruments are available as minimum data sets or scientific questionnaires which include patient-reported outcome measures (PROMs). The pseudonymous clinical data are collected and evaluated at the Institute for Evaluative Research in Medicine, University of Bern/Switzerland (IEFM). The patient-related data remain on the register's module server in North Rhine-Westphalia, Germany. The registry's methodology as well as the results of the revisions and patient satisfaction for 115 patients with a two year follow-up period are presented. Statistical analyses are performed with SAS™ (Version 9.4, SAS Institute, Inc., Cary, NC, USA). About 2½ years after the register was launched there are 621 datasets on primary implantations, 1,427 on follow-ups and 121 records on re-operation available. 49 % of the patients received their implants due to post-traumatic osteoarthritis, 27 % because of a primary osteoarthritis and 15 % of patients suffered from a rheumatic disease. More than 90 % of the primary interventions proceeded without complications. Subsequent interventions were recorded for 84 patients, which corresponds to a rate of 13.5 % with respect to the primary implantations. It should be noted that these secondary procedures also include two-stage procedures not due to a complication. "True revisions" are interventions with exchange of components due to mechanical complications and/or infection and were present in 7.6 % of patients. 415 of the patients commented on their satisfaction with the operative result during the last follow-up: 89.9 % of patients evaluate their outcome as excellent or good, 9.4 % as moderate and only 0.7 % (3 patients) as poor. In these three cases a component loosening or symptomatic USG osteoarthritis was present. Two-year follow-up data using the American Orthopedic Foot and Ankle Society Ankle and Hindfoot Scale (AOFAS-AHS) are already available for 115 patients. The median AOFAS-AHS score increased from 33 points preoperatively to more than 80 points three to six months postoperatively. This increase remained nearly constant over the entire two-year follow-up period. Covering less than 10 % of the approximately 240 providers in Germany and approximately 12 % of the annually implanted total ankle-replacements, the D. A. F.-register is still far from being seen as a national registry. Nevertheless, geographical coverage and inclusion of "high-" (more than 100 total ankle replacements a year) and "low-volume surgeons" (less than 5 total ankle replacements a year) make the register representative for Germany. The registry data show that the number of subsequent interventions and in particular the "true revision" procedures are markedly lower than the 20 % often postulated in the literature. In addition, a high level of patient satisfaction over the short and medium term is recorded. From the perspective of the authors, these results indicate that total ankle arthroplasty - given a correct indication and appropriate selection of patients - is not inferior to an ankle arthrodesis concerning patients' satisfaction and function. First valid survival rates can be expected about 10 years after the register's start. Georg Thieme Verlag KG Stuttgart · New York.
Long-term outcome of total hip arthroplasty in patients with haemophilia.
Strauss, A C; Rommelspacher, Y; Nouri, B; Bornemann, R; Wimmer, M D; Oldenburg, J; Pennekamp, P H; Schmolders, J
2017-01-01
Besides the target joints (elbow, knee and ankle), the hip is one of the commonly affected joints in haemophilic arthropathy. Hip arthroplasty is the therapy of choice after failure of conservative treatment. There are only limited data on long-term results after primary total hip arthroplasty (THA). The aim of this retrospective study was to analyse clinical outcome and complication rate after total hip replacement in patients with severe haemophilic arthropathy. Forty-three patients with haemophilia (PWH), one patient with von Willebrand disease and one patient with a Factor-VII-deficiency undergoing 49 total hip arthroplasties, were evaluated in a retrospective study. Harris hip score (HHS), range of motion (ROM), pain status (visual analogue scale, VAS) complication rate and patient satisfaction were assessed at a mean follow-up of 11.5 years (range: 3-32). HSS, ROM and VAS improved significantly combined with high patient satisfaction. In total, three (6.1%) periprosthetic infections and five (10.2%) aseptic implant loosenings occurred after THA leading to revision arthroplasty. In two (4.1%) cases, a pseudotumour and one (2.0%) periarticular ossification had to be resected after THA. Total hip replacement in PWH leads to a significant increase of function, reduction of pain and a high satisfaction. Due to the relatively high complication rate (infections and aseptic loosening) compared to patients without haemophilia, an individual assessment of the risk-benefit ratio from surgical and haemostaseological point of view is needed. © 2016 John Wiley & Sons Ltd.
Kurtz, Steven M; Ong, Kevin L; Lau, Edmund; Bozic, Kevin J
2014-04-16
Few studies have explored the role of the National Health Expenditure and macroeconomics on the utilization of total joint replacement. The economic downturn has raised questions about the sustainability of growth for total joint replacement in the future. Previous projections of total joint replacement demand in the United States were based on data up to 2003 using a statistical methodology that neglected macroeconomic factors, such as the National Health Expenditure. Data from the Nationwide Inpatient Sample (1993 to 2010) were used with United States Census and National Health Expenditure data to quantify historical trends in total joint replacement rates, including the two economic downturns in the 2000s. Primary and revision hip and knee arthroplasty were identified using codes from the International Classification of Diseases, Ninth Revision, Clinical Modification. Projections in total joint replacement were estimated using a regression model incorporating the growth in population and rate of arthroplasties from 1993 to 2010 as a function of age, sex, race, and census region using the National Health Expenditure as the independent variable. The regression model was used in conjunction with government projections of National Health Expenditure from 2011 to 2021 to estimate future arthroplasty rates in subpopulations of the United States and to derive national estimates. The growth trend for the incidence of joint arthroplasty, for the overall United States population as well as for the United States workforce, was insensitive to economic downturns. From 2009 to 2010, the total number of procedures increased by 6.0% for primary total hip arthroplasty, 6.1% for primary total knee arthroplasty, 10.8% for revision total hip arthroplasty, and 13.5% for revision total knee arthroplasty. The National Health Expenditure model projections for primary hip replacement in 2020 were higher than a previously projected model, whereas the current model estimates for total knee arthroplasty were lower. Economic downturns in the 2000s did not substantially influence the national growth trends for hip and knee arthroplasty in the United States. These latest updated projections provide a basis for surgeons, hospitals, payers, and policy makers to plan for the future demand for total joint replacement surgery.
Reduced Operating Time but Not Blood Loss With Cruciate Retaining Total Knee Arthroplasty
Vermesan, Dinu; Trocan, Ilie; Prejbeanu, Radu; Poenaru, Dan V; Haragus, Horia; Gratian, Damian; Marrelli, Massimo; Inchingolo, Francesco; Caprio, Monica; Cagiano, Raffaele; Tatullo, Marco
2015-01-01
Background There is no consensus regarding the use of retaining or replacing cruciate implants for patients with limited deformity who undergo a total knee replacement. Scope of this paper is to evaluate whether a cruciate sparing total knee replacement could have a reduced operating time compared to a posterior stabilized implant. Methods For this purpose, we performed a randomized study on 50 subjects. All procedures were performed by a single surgeon in the same conditions to minimize bias and only knees with a less than 20 varus deviation and/or maximum 15° fixed flexion contracture were included. Results Surgery time was significantly shorter with the cruciate retaining implant (P = 0.0037). The mean duration for the Vanguard implant was 68.9 (14.7) and for the NexGen II Legacy was 80.2 (11.3). A higher range of motion, but no significant Knee Society Scores at 6 months follow-up, was used as controls. Conclusions In conclusion, both implants had the potential to assure great outcomes. However, if a decision has to be made, choosing a cruciate retaining procedure could significantly reduce the surgical time. When performed under tourniquet, this gain does not lead to reduced blood loss. PMID:25584102
Manjunath, Girish; Rao, Prakash; Prakash, Nagendra; Shivaram, B K
2016-01-01
Recent data from landmark trials suggest that the indications for cardiac pacing and implantable cardioverter defibrillators (ICDs) are set to expand to include heart failure, sleep-disordered breathing, and possibly routine implantation in patients with myocardial infarction and poor ventricular function.[1] This will inevitably result in more patients with cardiac devices undergoing surgeries. Perioperative electromagnetic interference and their potential effects on ICDs pose considerable challenges to the anesthesiologists.[2] We present a case of a patient with automatic ICD with severe left ventricular dysfunction posted for double valve replacement.
Landolina, Maurizio; Curnis, Antonio; Morani, Giovanni; Vado, Antonello; Ammendola, Ernesto; D'onofrio, Antonio; Stabile, Giuseppe; Crosato, Martino; Petracci, Barbara; Ceriotti, Carlo; Bontempi, Luca; Morosato, Martina; Ballari, Gian Paolo; Gasparini, Maurizio
2015-08-01
Device replacement at the time of battery depletion of implantable cardioverter-defibrillators (ICDs) may carry a considerable risk of complications and engenders costs for healthcare systems. Therefore, ICD device longevity is extremely important both from a clinical and economic standpoint. Cardiac resynchronization therapy defibrillators (CRT-D) battery longevity is shorter than ICDs. We determined the rate of replacements for battery depletion and we identified possible determinants of early depletion in a series of patients who had undergone implantation of CRT-D devices. We retrieved data on 1726 consecutive CRT-D systems implanted from January 2008 to March 2010 in nine centres. Five years after a successful CRT-D implantation procedure, 46% of devices were replaced due to battery depletion. The time to device replacement for battery depletion differed considerably among currently available CRT-D systems from different manufacturers, with rates of batteries still in service at 5 years ranging from 52 to 88% (log-rank test, P < 0.001). Left ventricular lead output and unipolar pacing configuration were independent determinants of early depletion [hazard ratio (HR): 1.96; 95% 95% confidence interval (CI): 1.57-2.46; P < 0.001 and HR: 1.58, 95% CI: 1.25-2.01; P < 0.001, respectively]. The implantation of a recent-generation device (HR: 0.57; 95% CI: 0.45-0.72; P < 0.001), the battery chemistry and the CRT-D manufacturer (HR: 0.64; 95% CI: 0.47-0.89; P = 0.008) were additional factors associated with replacement for battery depletion. The device longevity at 5 years was 54%. High left ventricular lead output and unipolar pacing configuration were associated with early battery depletion, while recent-generation CRT-Ds displayed better longevity. Significant differences emerged among currently available CRT-D systems from different manufacturers. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Antimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide
Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.
2017-01-01
Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial molecule, nitric oxide. S-nitroso-penicillamine, a S-nitrosothiol nitric oxide donor, was covalently immobilized on the metal oxide surface using self-assembled monolayers. Infrared spectroscopy was used to confirm the attachment of the S-nitrosothiol donor to the Ti-Al-4V surface. Attachment of S-nitroso-penicillamine resulted in a nitric oxide (NO) release of 89.6 ± 4.8 nmol/cm2 under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli and Staphylococcus epidermidis growth by 41.5 ± 1.2% and 25.3 ± 0.6%, respectively. Combining the S-nitrosothiol releasing Ti-6Al-4V with tetracycline, a commonly-prescribed antibiotic, increased the effectiveness of the antibiotic by 35.4 ± 1.3%, which allows for lower doses of antibiotics to be used. A synergistic effect of ampicillin with S-nitroso-penicillamine-modified Ti-6Al-4V against S. epidermidis was not observed. The functionalized Ti-6Al-4V surface was not cytotoxic to mouse fibroblasts. PMID:28635681
Nabeshima, Akira; Pajarinen, Jukka; Lin, Tzu-hua; Jiang, Xinyi; Gibon, Emmanuel; Córdova, Luis A.; Loi, Florence; Lu, Laura; Jämsen, Eemeli; Egashira, Kensuke; Yang, Fan; Yao, Zhenyu; Goodman, Stuart B
2016-01-01
Wear particle-induced osteolysis limits the long-term survivorship of total joint replacement (TJR). Monocyte/macrophages are the key cells of this adverse reaction. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) is the most important chemokine regulating trafficking of monocyte/macrophages in particle-induced inflammation. 7ND recombinant protein is a mutant of CCL2 that inhibits CCL2 signaling. We have recently developed a layer-by-layer (LBL) coating platform on implant surfaces that can release biologically active 7ND. In this study, we investigated the effect of 7ND on wear particle-induced bone loss using the murine continuous polyethylene (PE) particle infusion model with 7ND coating of a titanium rod as a local drug delivery device. PE particles were infused into hollow titanium rods with or without 7ND coating implanted in the distal femur for 4 weeks. Specific groups were also injected with RAW 264.7 as the reporter macrophages. Wear particle-induced bone loss and the effects of 7ND were evaluated by microCT, immunohistochemical staining, and bioluminescence imaging. Local delivery of 7ND using the LBL coating decreased systemic macrophage recruitment, the number of osteoclasts and wear particle-induced bone loss. The development of a novel orthopaedic implant coating with anti-CCL2 protein may be a promising strategy to mitigate peri-prosthetic osteolysis. PMID:27918885
Summer, Burkhard; Paul, Carina; Mazoochian, Farhad; Rau, Christoph; Thomsen, Marc; Banke, Ingo; Gollwitzer, Hans; Dietrich, Karin-Almut; Mayer-Wagner, Susanne; Ruzicka, Thomas; Thomas, Peter
2010-07-01
Some nickel (Ni) allergic patients develop complications following Ni-containing arthroplasty. In the peri-implant tissue of such patients, we had observed lymphocyte dominated inflammation together with IFN-gamma and IL-17 expression. To determine whether Ni stimulation of peripheral blood mononuclear cells (PBMCs) of such patients would lead to a different cytokine pattern as compared to Ni-allergic patients with symptom-free arthroplasty. Based on history and patch testing in 15 Ni-allergic patients (five without implant, five with symptom-free arthroplasty, five with complicated arthroplasty) and five non-allergic individuals, lymphocyte transformation test (LTT) was performed using PBMC. In parallel in vitro cytokine response to Ni was assessed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). All 15 Ni-allergic individuals showed enhanced LTT reactivity to Ni (mean SI = 8.42 +/- 1.8) compared to the non-allergic control group. Predominant IFN-gamma expression to Ni was found both in the five allergic patients without arthroplasty and also in the five allergic, symptom-free arthroplasty patients. In contrast, in the five Ni-allergic patients with arthroplasty-linked complications a predominant, significant IL-17 expression to Ni was seen but not in patients with symptom-free arthroplasty. The predominant IL-17 type response to Ni may characterize a subgroup of Ni-allergic patients prone to develop lymphocytic peri-implant hyper-reactivity.
Tam, Derrick Y; Hughes, Avery; Fremes, Stephen E; Youn, Saerom; Hancock-Howard, Rebecca L; Coyte, Peter C; Wijeysundera, Harindra C
2018-05-01
Although transcatheter aortic valve implantation has been shown to be noninferior to surgical aortic valve replacement in patients with severe aortic stenosis at intermediate surgical risk, the cost-effectiveness of this strategy in this population is unknown. Our objective was to conduct a cost-utility analysis comparing transcatheter aortic valve implantation with surgical aortic valve replacement in the population with intermediate risk severe aortic stenosis. A fully probabilistic Markov model with 30-day cycles was constructed from the Canadian third-party payer's perspective to estimate the difference in cost and effectiveness (measured as quality-adjusted life years) of transcatheter aortic valve implantation versus surgical aortic valve replacement for intermediate-risk patients over a lifetime time horizon, discounted at 1.5% per annum. Clinical trial data from The Placement of Aortic Transcatheter Valve 2 informed the efficacy inputs. Costs (adjusted to 2016 Canadian dollars) were obtained from the Canadian Institute of Health Information and the Ontario Schedule of Benefits. Incremental cost-effectiveness ratios were calculated. In the base-case analysis, total lifetime costs for transcatheter aortic valve implantation were $10,548 higher than surgical aortic valve replacement but added 0.23 quality-adjusted life years, for an incremental cost-effectiveness ratio of $46,083/quality-adjusted life-years gained. Deterministic 1-way analyses showed that the incremental cost-effectiveness ratio was sensitive to rates of complications and cost of the transcatheter aortic valve implantation prosthesis. There was moderate-to-high parameter uncertainty; transcatheter aortic valve implantation was the preferred option in only 52.7% and 55.4% of the simulations at a $50,000 and $100,000 per quality-adjusted life years willingness-to-pay thresholds, respectively. On the basis of current evidence, transcatheter aortic valve implantation may be cost-effective for the treatment of severe aortic stenosis in patients with intermediate surgical risk. There remains moderate-to-high uncertainty surrounding the base-case incremental cost-effectiveness ratio. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
... Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... total hip replacement surgery in patients with hip osteoarthritis: a long-term follow-up of a randomised ...
[A primary application and evaluation of temporomandibular joint replacement with stock prosthesis].
Zhang, Xiao-hu; Chen, Min-jie; Qiu, Ya-ting; Yang, Chi
2012-06-01
To evaluate the effect of total joint replacement in treatment of temporomandibular joint(TMJ) osteoarthropathy with stock prostheses. Six female patients involving 10 joints (2 unilateral and 4 bilateral), with an average age of 59 years old, were involved in this study. Three patients (5 joints) were diagnosed as internal derangement in V stage depending on MRI, 3D-CT findings and clinical characteristics. The other 3 patients (5 joints) had histories of failed temporomandibular joint operation using costochondral graft or temporalis fascial flap. The maximal mouth opening was 1.9 cm on average (range, 1.0 to 2.9cm). All the joints were replaced with Biomet standard prosthesis under general anesthesia. The follow-up period was from 7 to 49 months (average, 17.5 months). All the operations were successfully performed. Heterotopic ossification happened in a bilateral case 1 year postoperatively. One patient with bilateral joint disease complained of severe uncomfortable feeling in the region of the ears and the temples, although there was no significant positive signs according to an ENT examination. Pain relief of the joint and mouth opening improvement were significant in 4 patients. No failure was noted secondary to infection or loosening of the prostheses. The occlusal relationship kept stable postoperatively in all cases. Total TMJ joint replacement with standard prosthesis is a good choice for TMJ reconstruction. It can significantly reduce joint pain and the mouth opening limitation resulted from osteoarthritis. Long-term result remains to be evaluated based on a long-term follow-up.
Sanz, Mariano; Lindhe, Jan; Alcaraz, Jaime; Sanz-Sanchez, Ignacio; Cecchinato, Denis
2017-08-01
To assess the added value of using a bone replacement graft in combination with immediate implants in reducing the bone dimensional changes occurring in the residual ridge. Randomized parallel controlled clinical trial to study the efficacy of grafting with demineralized bovine bone mineral with 10% collagen (DBBM-C) in the gap between the implant surface and the inner bone walls when the implants were immediately placed in the anterior maxilla. The changes between implant placement and 16 weeks later in the horizontal and vertical crestal bone changes in relation to the implant were evaluated through direct bone measurements using a periodontal probe. Mean changes were compared between the experimental and control sites using parametric statistics. A total of 86 implant sites in 86 subjects were included in the analysis (43 in the test group and 43 in the control group). The horizontal crest dimension underwent marked changes during healing mainly at the buccal aspect of the alveolar crest where this reduction amounted to 1.1 (29%) in the test group and 1.6 mm (38%) in the control group, being these statistically significant (P = 0.02). This outcome was even more pronounced at sites in the anterior maxilla and with thinner buccal bone plates. In conclusion, the results from this clinical trial demonstrated that placing a DBBM-C bone replacement graft significantly reduced the horizontal bone resorptive changes occurring in the buccal bone after the immediate implantation in fresh extraction sockets. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano
2017-08-01
Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1774-1783, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices
NASA Astrophysics Data System (ADS)
Starly, Binil
Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.
Economic evaluation of single-tooth replacement: dental implant versus fixed partial denture.
Kim, Younhee; Park, Joo-Yeon; Park, Sun-Young; Oh, Sung-Hee; Jung, YeaJi; Kim, Ji-Min; Yoo, Soo-Yeon; Kim, Seong-Kyun
2014-01-01
This study assessed the cost-effectiveness from a societal perspective of a dental implant compared with a three-unit tooth-supported fixed partial denture (FPD) for the replacement of a single tooth in 2010. A decision tree was developed to estimate cost-effectiveness over a 10-year period. The survival rates of single-tooth implants and FPDs were extracted from a meta-analysis of single-arm studies. Medical costs included initial treatment costs, maintenance costs, and costs to treat complications. Patient surveys were used to obtain the costs of the initial single-tooth implant or FPD. Maintenance costs and costs to treat complications were based on surveys of seven clinical experts at dental clinics or hospitals. Transportation costs were calculated based on the number of visits for implant or FPD treatment. Patient time costs were estimated using the number of visits and time required, hourly wage, and employment rate. Future costs were discounted by 5% to convert to present values. The results of a 10-year period model showed that a single dental implant cost US $261 (clinic) to $342 (hospital) more than an FPD and had an average survival rate that was 10.4% higher. The incremental cost-effectiveness ratio was $2,514 in a clinic and $3,290 in a hospital for a prosthesis in situ for 10 years. The sensitivity analysis showed that initial treatment costs and survival rate influenced the cost-effectiveness. If the cost of an implant were reduced to 80% of the current cost, the implant would become the dominant intervention. Although the level of evidence for effectiveness is low, and some aspects of single-tooth implants or FPDs, such as satisfaction, were not considered, this study will help patients requiring single-tooth replacement to choose the best treatment option.
2008-03-28
It is designed to help patients with retinitus pigmentosa . The eye glasses and photoprocessor worn on the waist are used to train the retinal ...patient [5]. ............................................................. 3 Figure 1.3: The Learning Retinal Implant from Intelligent Medical Systems...implantable biosensors [4]. Examples of such advances include the AbioCor implantable replacement heart (Figure 1.2), Learning Retinal Implant (Figure 1.3
Moewis, Philippe; Checa, Sara; Kutzner, Ines; Hommel, Hagen; Duda, Georg N
2018-01-01
Mechanical and kinematical aligning techniques are the usual positioning methods during total knee arthroplasty. However, alteration of the physiological joint line and unbalanced medio-lateral load distribution are considered disadvantages in the mechanical and kinematical techniques, respectively. The aim of this study was to analyse the influence of the joint line on the strain and stress distributions in an implanted knee and their sensitivity to rotational mal-alignment. Finite element calculations were conducted to analyse the stresses in the PE-Inlay and the mechanical strains at the bone side of the tibia component-tibia bone interface during normal positioning of the components and internal and external mal-rotation of the tibial component. Two designs were included, a horizontal and a physiological implant. The loading conditions are based on internal knee joint loads during walking. A medialization of the stresses on the PE-Inlay was observed in the physiological implant in a normal position, accompanied by higher stresses in the mal-rotated positions. Within the tibia component-tibia bone interface, similar strain distributions were observed in both implant geometries in the normal position. However, a medialization of the strains was observed in the physiological implant in both mal-rotated conditions with greater bone volume affected by higher strains. Although evident changes due to mal-rotation were observed, the stresses do not suggest a local plastic deformation of the PE-Inlay. The strains values within most of the tibia component-tibia bone interface were in the physiological strain zone and no significant bone changes would be expected. The physiological cut on the articular aspect showed no detrimental effect compared to the horizontal implant.
Effect of motion inputs on the wear prediction of artificial hip joints
Liu, Feng; Fisher, John; Jin, Zhongmin
2013-01-01
Hip joint simulators have been largely used to assess the wear performance of joint implants. Due to the complexity of joint movement, the motion mechanism adopted in simulators varies. The motion condition is particularly important for ultra-high molecular weight polyethylene (UHMWPE) since polyethylene wear can be substantially increased by the bearing cross-shear motion. Computational wear modelling has been improved recently for the conventional UHMWPE used in total hip joint replacements. A new polyethylene wear law is an explicit function of the contact area of the bearing and the sliding distance, and the effect of multidirectional motion on wear has been quantified by a factor, cross-shear ratio. In this study, the full simulated walking cycle condition based on a walking measurement and two simplified motions, including the ISO standard motion and a simplified ProSim hip simulator motion, were considered as the inputs for wear modelling based on the improved wear model. Both the full simulation and simplified motions generated the comparable multidirectional motion required to reproduce the physiological wear of the bearing in vivo. The predicted volumetric wear of the ProSim simulator motion and the ISO motion conditions for the walking cycle were 13% and 4% lower, respectively, than that of the measured walking condition. The maximum linear wear depths were almost the same, and the areas of the wear depth distribution were 13% and 7% lower for the ProSim simulator and the ISO condition, respectively, compared with that of the measured walking cycle motion condition. PMID:25540472
Spazzin, Aloísio Oro; Henriques, Guilherme Elias Pessanha; de Arruda Nóbilo, Mauro Antônio; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Mesquita, Marcelo Ferraz
2009-01-01
Objectives: This study evaluated the influence of prosthetic screw material on joint stability in implantsupported dentures at two levels of fit. Methods: Ten mandibular implant-supported dentures were fabricated. Twenty cast models were fabricated using these dentures. Four groups (n=10) were tested, according to the vertical fit of the dentures [passive and non-passive] and prosthetic screw materials [titanium (Ti) or gold (Au) alloy]. The one-screw test was performed to quantify the vertical misfits using an optic microscope. The loosening torque for the prosthetic screws was measured 24 hours after the tightening torque (10 Ncm) using a digital torque meter. Data were analyzed by two-way ANOVA and Tukey’s test (α=0.05). Results: Overall, dentures with passive fit and Ti screws resulted in significantly higher loosening torque of the prosthetic screws (p<0.05). No significant interaction was found between fit level and screw material (p=0.199). The prosthetic screw material and fit of implant-supported dentures have an influence on screw joint stability. Ti screws presented higher joint stability than Au screws and minimum of misfit should be found clinically to improve the mechanical behavior of the screw joint. PMID:20148135
Asseln, Malte; Hänisch, Christoph; Schick, Fabian; Radermacher, Klaus
2018-05-14
Morphological differences between female and male knees have been reported in the literature, which led to the development of so-called gender-specific implants. However, detailed morphological descriptions covering the entire joint are rare and little is known regarding whether gender differences are real sexual dimorphisms or can be explained by overall differences in size. We comprehensively analysed knee morphology using 33 features of the femur and 21 features of the tibia to quantify knee shape. The landmark recognition and feature extraction based on three-dimensional surface data were fully automatically applied to 412 pathological (248 female and 164 male) knees undergoing total knee arthroplasty. Subsequently, an exploratory statistical analysis was performed and linear correlation analysis was used to investigate normalization factors and gender-specific differences. Statistically significant differences between genders were observed. These were pronounced for distance measurements and negligible for angular (relative) measurements. Female knees were significantly narrower at the same depth compared to male knees. The correlation analysis showed that linear correlations were higher for distance measurements defined in the same direction. After normalizing the distance features according to overall dimensions in the direction of their definition, gender-specific differences disappeared or were smaller than the related confidence intervals. Implants should not be linearly scaled according to one dimension. Instead, features in medial/lateral and anterior/posterior directions should be normalized separately (non-isotropic scaling). However, large inter-individual variations of the features remain after normalization, suggesting that patient-specific design solutions are required for an improved implant design, regardless of gender. Copyright © 2018 Elsevier B.V. All rights reserved.
Gordon, Oliver; Vig Slenters, Tünde; Brunetto, Priscilla S.; Villaruz, Amer E.; Sturdevant, Daniel E.; Otto, Michael; Landmann, Regine; Fromm, Katharina M.
2010-01-01
Prosthetic joint replacements are used increasingly to alleviate pain and improve mobility of the progressively older and more obese population. Implant infection occurs in about 5% of patients and entails significant morbidity and high social costs. It is most often caused by staphylococci, which are introduced perioperatively. They are a source of prolonged seeding and difficult to treat due to antibiotic resistance; therefore, infection prevention by prosthesis coating with nonantibiotic-type anti-infective substances is indicated. A renewed interest in topically used silver has fostered development of silver nanoparticles, which, however, present a potential health hazard. Here we present new silver coordination polymer networks with tailored physical and chemical properties as nanostructured coatings on metallic implant substrates. These compounds exhibited strong biofilm sugar-independent bactericidal activity on in vitro-grown biofilms and prevented murine Staphylococcus epidermidis implant infection in vivo with slow release of silver ions and limited transient leukocyte cytotoxicity. Furthermore, we describe the biochemical and molecular mechanisms of silver ion action by gene screening and by targeting cell metabolism of S. epidermidis at different levels. We demonstrate that silver ions inactivate enzymes by binding sulfhydryl (thiol) groups in amino acids and promote the release of iron with subsequent hydroxyl radical formation by an indirect mechanism likely mediated by reactive oxygen species. This is the first report investigating the global metabolic effects of silver in the context of a therapeutic application. We anticipate that the compounds presented here open a new treatment field with a high medical impact. PMID:20660682
Oshima, Masamitsu; Inoue, Kaoru; Nakajima, Kei; Tachikawa, Tetsuhiko; Yamazaki, Hiromichi; Isobe, Tomohide; Sugawara, Ayaka; Ogawa, Miho; Tanaka, Chie; Saito, Masahiro; Kasugai, Shohei; Takano-Yamamoto, Teruko; Inoue, Takashi; Tezuka, Katsunari; Kuboki, Takuo; Yamaguchi, Akira; Tsuji, Takashi
2014-01-01
Bio-hybrid artificial organs are an attractive concept to restore organ function through precise biological cooperation with surrounding tissues in vivo. However, in bio-hybrid artificial organs, an artificial organ with fibrous connective tissues, including muscles, tendons and ligaments, has not been developed. Here, we have enveloped with embryonic dental follicle tissue around a HA-coated dental implant, and transplanted into the lower first molar region of a murine tooth-loss model. We successfully developed a novel fibrous connected tooth implant using a HA-coated dental implant and dental follicle stem cells as a bio-hybrid organ. This bio-hybrid implant restored physiological functions, including bone remodelling, regeneration of severe bone-defect and responsiveness to noxious stimuli, through regeneration with periodontal tissues, such as periodontal ligament and cementum. Thus, this study represents the potential for a next-generation bio-hybrid implant for tooth loss as a future bio-hybrid artificial organ replacement therapy. PMID:25116435
[Eleven-Year Experience with Total Ankle Arthroplasty].
Popelka, S; Sosna, A; Vavřík, P; Jahoda, D; Barták, V; Landor, I
2016-01-01
PURPOSE OF THE STUDY Total joint replacement is one of the options in surgical treatment of advanced ankle arthritis. It allows the ankle to remain mobile but, unfortunately, it does not provide the same longevity as total knee or hip replacements. Therefore, decisions concerning the kind of treatment are very individual and depend on the clinical status and opinion of each patient. MATERIAL AND METHODS A total of 132 total ankle replacements were carried out in the period from 2004 to 2015. The prostheses used included the Ankle Evolutive System (AES) in 52 patients, Mobility Total Ankle System (DePuy) in 24 patients and, recently, Rebalance Total Ankle Replacement implant in 53 patients. Three patients allergic to metal received the Taric prosthesis. Revision arthroplasty using the Hintegra prosthesis was carried out in four patients. The outcome of arthroplasty was evaluated on the American Orthopaedic Foot and Ankle Society (AOFAS) scoring scale. Indications for total ankle arthroplasty included post-traumatic arthritis in 83 patients, rheumatoid arthritis in 37 and primary arthritis in 12 patients. There were 78 women and 54 men, with an average age of 55.6 years at the time of surgery. RESULTS The average follow-up was 6.1 years (1-11 years). The average AOFAS score of the whole group increased from 33.2 before surgery to 82.5 after it. The primary indication had an important role. Arthroplasty outcomes were poorer in patients with post-traumatic arthritis than in those with rheumatoid arthritis or primary arthritis. In patients with post-traumatic arthritis, the average AOFAS score rose to 78.6 due to restricted motion of the ankle, and some patients continued to have pain when walking. The average AOFAS score in a total of 49 patients who had rheumatoid arthritis or primary arthritis reached a value of 86.4. Post-operative complications were recorded in ten patients (7.6%) in whom part of the wound was healing by second intention. Ossification was also a frequent complication and had to be removed in six patients (4.5%). No early infection was recorded and late infection was treated in three patients. The prosthesis had to be removed and ankle arthrodesis performed in seven patients (5.3%). All had necrosis of the talus with ankle instability. In five, the retrograde nail Medin was used and extensive defects remaining after talar necrosis were filled with massive bone grafts obtained from a bone bank. One patient required tibio-calcaneal arthrodesis with external fixator; surgery in one case involved the use of a Zimmer Trabecular Metal Ankle Fusion Spacer with retrograde nail fixation. The development of cystic radiolucencies adjacent to tibial or talar components presents another post-operative complication. It was recorded mostly in the patients after AES implantation, in whom eight of 52 (15.3%) had these findings. DISCUSSION Total ankle arthroplasty is a complicated surgical procedure potentially associated with various technical problems. The occurrence of complications is indirectly related to the experience of the orthopaedist performing surgery; literature data show that the number of complication decreases with an increased frequency of ankle replacements done. CONCLUSIONS Total ankle arthroplasty, as every orthopaedic surgery, has its advantages and disadvantages. The positive aspects are pain relief and improved mobility of the ankle allowing for physiological gait. However, it shows a lower survivorship rate that the other large joint replacements. A successful outcome depends on the correct indication. The ankle should be stable, the talus without signs of necrosis and valgus or varus deviations of the ankle should not exceed 10 to 15 degrees. total ankle arthroplasty, re-implantation, aseptic loosening, retrograde nail, Trabecular Metal spacer, revision arthroplasty.
Management of dental implant fractures. A case history.
Al Quran, Firas A M; Rashan, Bashar A; Al-Dwairi, Ziad N
2009-01-01
The widespread use of endosseous osseointegrated implants to replace missing natural teeth increases the chances of implant complications and failures, despite the high initial success rate reported in the literature. Implant fracture is one possible complication that results in ultimate failure of the dental implant. Such a complication poses a management crisis even for the most experienced clinician. This article reports on a case of implant fracture, its possible causes, and how the case was managed.
Immediate, non-submerged, root-analogue zirconia implant in single tooth replacement.
Pirker, W; Kocher, A
2008-03-01
This report demonstrates the successful clinical use of a modified root-analogue zirconia implant for immediate single tooth replacement. A right maxillary premolar was removed and a custom-made, root-analogue, roughened zirconia implant with macro-retentions in the interdental space was fabricated and placed into the extraction socket 4 days later. Four months after root implantation a composite crown was cemented. No complications occurred during the healing period. An excellent esthetic and functional result was achieved with the composite crown. No clinically noticeable bone resorption or soft-tissue recession was observed at 26 months follow up. Significant modifications such as macro-retentions seem to indicate that primary stability and excellent osseointegration of immediate root-analogue zirconia implants can be achieved, while preventing unesthetic bone resorption. The macro-retentions must be limited to the interdental space to avoid fracture of the thin buccal cortex. This successful case warrants further clinical research in well controlled trials.
NASA Astrophysics Data System (ADS)
Kuznetsov, P. G.; Tverdokhlebov, S. I.; Goreninskii, S. I.; Bolbasov, E. N.; Popkov, A. V.; Kulbakin, D. E.; Grigoryev, E. G.; Cherdyntseva, N. V.; Choinzonov, E. L.
2017-09-01
The present work demonstrates the possibility of production of personalized implants from bioresorbable polymers designed for replacement of bone defects. The stages of creating a personalized implant are described, which include the obtaining of 3D model from a computer tomogram, development of the model with respect to shape of bone fitment bore using Autodesk Meshmixer software, and 3D printing process from bioresorbable polymers. The results of bioresorbable polymer scaffolds implantation in pre-clinical tests on laboratory animals are shown. The biological properties of new bioresorbable polymers based on poly(lactic acid) were studied during their subcutaneous, intramuscular, bone and intraosseous implantation in laboratory animals. In all cases, there was a lack of a fibrous capsule formation around the bioresorbable polymer over time. Also, during the performed study, conclusions were made on osteogenesis intensity depending on the initial state of bone tissue.
Bharat, Vijaya
2004-01-01
The incidence of permanent pacemaker-related complications is reducing due to advancement of technology and increasing operator experience. There are only few series from India reporting the annual complication rates from a single center over the years. This is a series of 782 pacemakers implanted over 20 years in a secondary healthcare set-up. Eighty-two patients underwent redo surgery, either for a procedure-related complication (n=34) or for replacement of a malfunctioning/end-of-life pacemaker (n=48). Through critical analysis and corrective measures, all the procedural complications were reduced to less than 4% of the annual implantations. The introduction of a pacemaker follow-up clinic contributed to reducing the rate of elective replacement for battery depletion from 19.17% of the implanted VVI pacemakers to 0.63%. Despite being a low-volume center, with less than 100 pacemakers implanted annually, the performance of our pacing practice has shown continuous improvement.
Muneretto, Claudio; Alfieri, Ottavio; Cesana, Bruno Mario; Bisleri, Gianluigi; De Bonis, Michele; Di Bartolomeo, Roberto; Savini, Carlo; Folesani, Gianluca; Di Bacco, Lorenzo; Rambaldini, Manfredo; Maureira, Juan Pablo; Laborde, Francois; Tespili, Maurizio; Repossini, Alberto; Folliguet, Thierry
2015-12-01
We sought to investigate the clinical outcomes of patients with isolated severe aortic stenosis and an intermediate- to high-risk profile treated by means of conventional surgery (surgical aortic valve replacement), sutureless valve implantation, or transcatheter aortic valve replacement in a multicenter evaluation. Among 991 consecutive patients with isolated severe aortic stenosis and an intermediate- to high-risk profile (Society of Thoracic Surgeons score >4 and logistic European System for Cardiac Operative Risk Evaluation I >10), a propensity score analysis was performed on the basis of the therapeutic strategy: surgical aortic valve replacement (n = 204), sutureless valve implantation (n = 204), and transcatheter aortic valve replacement (n = 204). Primary end points were 30-day mortality and overall survival at 24-month follow-up; the secondary end point was survival free from a composite end point of major adverse cardiac events (defined as cardiac-related mortality, myocardial infarction, cerebrovascular accidents, and major hemorrhagic events) and periprosthetic regurgitation greater than 2. Thirty-day mortality was significantly higher in the transcatheter aortic valve replacement group (surgical aortic valve replacement = 3.4% vs sutureless = 5.8% vs transcatheter aortic valve replacement = 9.8%; P = .005). The incidence of postprocedural was 3.9% in asurgical aortic valve replacement vs 9.8% in sutureless vs 14.7% in transcatheter aortic valve replacement (P< .001) and peripheral vascular complications occurred in 0% of surgicalaortic valve replacement vs 0% of sutureless vs 9.8% transcatheter aortic valve replacement (P< .001). At 24-month follow-up, overall survival (surgical aortic valve replacement = 91.3% ± 2.4% vs sutureless = 94.9% ± 2.1% vs transcatheter aortic valve replacement = 79.5% ± 4.3%; P < .001) and survival free from the composite end point of major adverse cardiovascular events and periprosthetic regurgitation were significantly better in patients undergoing surgical aortic valve replacement and sutureless valve implantation than in patients undergoing transcatheter aortic valve replacement (surgical aortic valve replacement = 92.6% ± 2.3% vs sutureless = 96% ± 1.8% vs transcatheter aortic valve replacement = 77.1% ± 4.2%; P < .001). Multivariate Cox regression analysis identified transcatheter aortic valve replacement as an independent risk factor for overall mortality hazard ratio (hazard ratio, 2.5; confidence interval, 1.1-4.2; P = .018). The use of transcatheter aortic valve replacement in patients with an intermediate- to high-risk profile was associated with a significantly higher incidence of perioperative complications and decreased survival at short- and mid-term when compared with conventional surgery and sutureless valve implantation. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Panholzer, Bernd; Cremer, Jochen; Haneya, Assad
2018-01-01
Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed. PMID:29552039
Huenges, Katharina; Panholzer, Bernd; Cremer, Jochen; Haneya, Assad
2018-01-01
Left ventricular assist device (LVAD) is nowadays a routine therapy for patients with advanced heart failure. We present the case of a 74-year-old male patient who was admitted to our center with terminal heart failure in dilated cardiomyopathy and ascending aortic aneurysm with aortic valve regurgitation. The LVAD implantation with simultaneous aortic valve and supracoronary ascending aortic replacement was successfully performed.
Li, Mingwen; Xiao, Yingbin; Chen, Daozhong; Liu, Liming; Ma, Liming; Wang, Pingfan; Jia, Kui; Yang, Kai; Chen, Lin
2016-05-18
Star GK valves were widely used in China, and we studied the clinical follow-up results of patients with Star GK valve implants for more than one year. Clinical data were collected from those patients who had Star GK valve implants for over one year. Patients were divided into three groups: (1) AVR group: received aortic valve replacement surgery. Based on the valve model this group was further sub-divided into two groups: 21A group, and 23A group; (2) MVR group: received mitral valve replacement surgery. Based on the valve model this group was further sub-divided into three groups: 25M group, 27M group, and 29M group; (3) DVR group: received combined replacement surgeries including AVR + MVR. According to postoperative follow-up time these patients were divided into two groups: 1-year group and 3-year group. Follow-up data were collected by telephone, outpatient visits, or correspondence. Clinical data were aggregated by professional data scientists to conduct independent analyses. 959 patients were included in the study following Star GK valve implant. Follow-up after 1 year found that thrombosis occurred in 4 cases, hemorrhage in 15 cases, left heart failure in 13 cases, paravalvular leakage in 5 cases, and death due to cardiac causes in 2 cases. The long-term efficacy of Star GK valve implants was satisfactory with low incidence of valve-related complications, and following Star GK valve implant, valve and blood were highly compatible and blood component damage was minor. Very low incidence rate of thrombosis was observed following Star GK valve implant, however, attention should be paid to adjust the anticoagulation intensity.
... Knee joint replacement - series References American Academy of Orthopedic Surgeons (AAOS) website. Treatment of osteoarthritis of the knee: evidence-based guideline 2nd edition (summary) . www.aaos.org/research/guidelines/TreatmentofOsteoarthritisoftheKneeGuideline.pdf . Updated May 18, 2013. Accessed ...
... the skeleton) in people who have had total hip replacement surgery (surgery to replace the hip joint with an artificial joint) or in people ... 8 ounces [180 to 240 mL]) of plain water while you are sitting or standing. Sit or ...
77 FR 25591 - Drawbridge Operation Regulation; Intracoastal Waterway, Chesapeake, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... replacing the lift joints of the drawbridge. This deviation restricts operation of the draw span, allowing... and to perform periodic maintenance. To facilitate replacement of the lift joints of the draw span...
Getting your home ready - knee or hip surgery
... Philadelphia, PA: Elsevier; 2017:chap 55. Read More ACL reconstruction Hip fracture surgery Hip joint replacement Knee ... Knee joint replacement Knee microfracture surgery Patient Instructions ACL reconstruction - discharge Hip fracture - discharge Hip or knee ...
Rapid replacement of bridge deck expansion joints study - phase I : [tech transfer summary].
DOT National Transportation Integrated Search
2014-12-01
This initial research phase focused on documenting the current : means and methods of bridge expansion joint deterioration, : maintenance, and replacement and on identifying improvements : through all of the input gathered.
Moura, Cristiano S; Abrahamowicz, Michal; Beauchamp, Marie-Eve; Lacaille, Diane; Wang, Yishu; Boire, Gilles; Fortin, Paul R; Bessette, Louis; Bombardier, Claire; Widdifield, Jessica; Hanly, John G; Feldman, Debbie; Maksymowych, Walter; Peschken, Christine; Barnabe, Cheryl; Edworthy, Steve; Bernatsky, Sasha
2015-08-03
Use of disease-modifying anti-rheumatic drugs (DMARDs) in rheumatoid arthritis (RA) may prevent joint damage and potentially reduce joint replacement surgeries. We assessed the association between RA drug use and joint replacement in Quebec, Canada. A cohort of new-onset RA patients was identified from Quebec's physician billing and hospitalization databases from 2002-2011. The outcome was defined using procedure codes submitted by orthopedic surgeons. Medication use was obtained from pharmacy databases. We used alternative Cox regression models with time-dependent variables measuring the cumulative effects of past use during different time windows (one model focussing on the first year after cohort entry) for methotrexate (MTX), and other DMARDs. Models were adjusted for baseline sociodemographics, co-morbidity and prior health service use, time-dependent cumulative use of other drugs (anti-tumor necrosis factor [anti-TNF] agents, other biologics, cyclooxygenase-2 inhibitors [COXIBs], nonselective nonsteroidal antiinflammatory drugs [NSAIDs], and systemic steroids), and markers of disease severity. During follow-up, 608 joint replacements occurred among 11,333 patients (median follow-up: 4.6 years). The best-fitting model relied on the cumulative early use (within the first year after cohort entry) of MTX and of other DMARDs, with an interaction between MTX and other DMARDs. In this model, greater exposure within the first year, to either MTX (adjusted hazard ratio, HR = 0.95 per 1 month, 95% confidence interval, 95% CI 0.93-0.97) or other DMARDs (HR = 0.97, 95% CI 0.95-0.99) was associated with longer time to joint replacement. Our results suggest that longer exposure to either methotrexate (MTX) or other DMARDs within the first year after RA diagnosis is associated with longer time to joint replacement surgery.
Influence of abutment screw preload on stress distribution in marginal bone.
Khraisat, Ameen
2012-01-01
Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.
Moore, R M; Hamburger, S; Jeng, L L; Hamilton, P M
1991-01-01
National population-based estimates on the magnitude and distribution of orthopedic implant devices in the United States have not been available to date. The Food and Drug Administration's Center for Devices and Radiological Health (FDA/CDRH) collaborated with the Centers for Disease Control's National Center for Health Statistics (CDC/NCHS) in the design and conduct of a nationwide medical device implant survey to generate the first national population-based prevalence estimates of orthopedic implant devices. A Medical Device Implant Supplement to the 1988 National Health Interview Survey was administered in personal household interviews to a national sample of 47,485 households, which included 122,310 individuals. An estimated 6.5 million orthopedic implants were in use in the general US population in 1988, including 1.6 million artificial joints and 4.9 million fixation devices. As a group, orthopedic implants comprised nearly half of all medical device implants in use, 43.4%. The majority of artificial joint recipients were 65 years of age or older, white, and male. The majority of fixation device recipients were less than 45 years of age, white, and male. The limitations and strengths of these population-based estimates are discussed.
HyBAR: hybrid bone-attached robot for joint arthroplasty.
Song, S; Mor, A; Jaramaz, B
2009-06-01
A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolber, Marcin K.; Shukla, Pratik A.; Kumar, Abhishek
PurposeRecurrent spontaneous hemarthrosis is an infrequent but debilitating late complication of joint replacement, affecting up to 1.6% of patients with arthroplasty of the affected joint. Repeated episodes of bleeding result in an inflammatory cascade that further propagates bleeding events. Open and arthroscopic synovectomy are often performed when conservative treatments fail. Transarterial embolization is increasingly utilized as a less invasive option; however, its role is not widely established. We performed a systematic literature review to report the safety and efficacy of transarterial embolization in treating recurrent hemarthrosis in the setting of prior arthroplasty.Materials and MethodsA systematic review was conducted in accordancemore » with the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. A structured search was performed in PubMed, Web of Science, Embase, and SCOPUS databases of patients undergoing embolization for recurrent hemarthrosis after arthroplasty. Patients immediately post-operative, those embolized at first bleeding episode, and those with hemophilia were excluded. Demographic data, clinical information, angiographic findings, treatment, and outcomes were tabulated.ResultsThe search identified 119 titles of which 24 were deemed relevant, comprising 91 patients undergoing 99 embolization procedures. Mean time from prosthesis implantation was 32.2 months. Technical success was 99%. Mean follow-up time was 24.9 months. There were 10 recurrences (10%). Two cases were complicated by joint infection requiring arthroplasty revision.ConclusionsTransarterial embolization for recurrent spontaneous hemarthrosis may be safe and effective in patients having undergone arthroplasty of the affected joint.« less
2011-01-01
Background Femoral offset influences the forces at the hip and the implant stresses after revision THR. For extended bone defects, these forces may cause considerable bending moments within the implant, possibly leading to implant failure. This study investigates the influences of femoral anteversion and offset on stresses in the Wagner SL revision stem implant under varying extents of bone defect conditions. Methods Wagner SL revision stems with standard (34 mm) and increased offset (44 mm) were virtually implanted in a model femur with bone defects of variable extent (Paprosky I to IIIb). Variations in surgical technique were simulated by implanting the stems each at 4° or 14° of anteversion. Muscle and joint contact forces were applied to the reconstruction and implant stresses were determined using finite element analyses. Results Whilst increasing the implant's offset by 10 mm led to increased implant stresses (16.7% in peak tensile stresses), altering anteversion played a lesser role (5%). Generally, larger stresses were observed with reduced bone support: implant stresses increased by as much as 59% for a type IIIb defect. With increased offset, the maximum tensile stress was 225 MPa. Conclusion Although increased stresses were observed within the stem with larger offset and increased anteversion, these findings indicate that restoration of offset, key to restoring joint function, is unlikely to result in excessive implant stresses under routine activities if appropriate fixation can be achieved. PMID:21569522
Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.
Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki
2013-01-01
The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at <26 years after implantation. Localized disk wear was found at the sites where the disk abutted the struts of the cage, in disk valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves
Management of the failed biaxial wrist replacement.
Talwalkar, S C; Hayton, M J; Trail, I A; Stanley, J K
2005-06-01
Nine cases of failed biaxial wrist replacement underwent revision surgery and subsequent clinical and radiographic assessment at a mean follow-up of 28 months. Clinical assessment included the hospital for special surgery (HSS) and activities of daily living scoring systems. Five patients had a revision biaxial wrist replacement, three had wrist fusions and two underwent an excision arthroplasty. The mean HSS score was 73 for the revision biaxial replacements, 63 for the wrist fusions and 92 for the excision arthroplasties. The mean activities for daily living score was 16 for the revision biaxial replacements, 14 for the wrist fusion and 20 for the excision arthroplasties. Despite the experience of implant failure, six patients would still choose a primary wrist replacement again. All patients in this small series appear to have had good clinical outcomes. Revision to another wrist replacement appears no worse than a wrist fusion in the short term and patients value the preservation of movement that an implant offers.
Subcutaneous Implantable Cardioverter-Defibrillator
... the SICD. The SICD lacks remote monitoring capabilities. Battery Life Device battery replacement is necessary for all patients with implanted devices. The SICD battery life is not as long as that of ...
Sakamoto, Kosuke; Totsugawa, Toshinori; Hiraoka, Arudo; Tamura, Kentaro; Yoshitaka, Hidenori; Sakaguchi, Taichi
2018-05-30
An 88-year-old woman was diagnosed with aortic stenosis and an aortic annulus that was too narrow to perform transcatheter aortic valve implantation. Surgery was performed through a 7-cm right mini-thoracotomy at the fourth intercostal space. A 19-mm aortic valve bioprosthesis was implanted after root enlargement. The fourth intercostal space was a suitable site for aortic root enlargement because of the shorter skin-to-root distance and the detailed exposure of the aortic valve after cutting the aortic wall. This study concluded that minimally-invasive aortic valve replacement following root enlargement can be an option for the treatment of elderly patients with aortic stenosis accompanied by an annulus that is too small to perform transcatheter aortic valve implantation.
JOMJUNYONG, K.; RUNGSIYAKULL, P.; RUNGSIYAKULL, C.; AUNMEUNGTONG, W.; CHANTARAMUNGKORN, M.; KHONGKHUNTHIAN, P.
2017-01-01
SUMMARY Introduction. Although many previous studies have reported on the high success rate of short dental implants, prosthetic design still plays an important role in the long-term implant treatment results. This study aims to evaluate stress distribution characteristics involved with various prosthetic designs on standard implants or short implants in the posterior maxilla. Materials and methods. Six finite element models were simulated representing the missing first and second maxillary molars. A standard implant (PW+ implant: 5.0×10 mm) and a short implant (PW+ implant: 5.0×6.0 mm) were applied under the various prosthetic conditions. The peri-implant maximum bone stress (V on mises stress) was evaluated when 200 N 30° oblique load was applied. A type III bone was approximated and complete osseous integration was assumed. Results. Maximum Von mises stress was numerically located at the cortical bone around the implant neck in all models. In every standard implant model shows better stress distribution. Stress values and concentration area decreased in the cortical and cancellous bone when implants were splinted in both the standard and short implant models. With regard to the non-replacing second molar models found that the area of stress at the cortical bone around the first molar implant to be more intensive. Moreover, in the non-replacing second molar models, the stress also spread to the second pre-molar in both the standard and short implant models. Conclusions. The length of the implant and prosthetics designs both affect the stress value and distribution of stress to the cortical and cancellous bones around the implant. PMID:29682254
Blunt, L A; Bills, P J; Jiang, X-Q; Chakrabarty, G
2008-04-01
Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5x 10(6) operations performed annually. Currently joint replacements are expected to function for 10-15 years; however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer-term improved quality of life for patients. Wear analysis of total joint replacements has long been an important means in determining failure mechanisms and improving longevity of these devices. The effectiveness of the coordinate-measuring machine (CMM) technique for assessing volumetric material loss during simulated life testing of a replacement knee joint has been proved previously by the present authors. The purpose of the current work is to present an improvement to this method for situations where no pre-wear data are available. To validate the method, simulator tests were run and gravimetric measurements taken throughout the test, such that the components measured had a known wear value. The implications of the results are then discussed in terms of assessment of joint functionality and development of standardized CMM-based product standards. The method was then expanded to allow assessment of clinically retrieved bearings so as to ascertain a measure of true clinical wear.
Albright, Rachel H; Waverly, Brett J; Klein, Erin; Weil, Lowell; Weil, Lowell S; Fleischer, Adam E
Hammertoe deformities are one of the most common foot deformities, affecting up to one third of the general population. Fusion of the joint can be achieved with various devices, with the current focus on percutaneous Kirschner (K)-wire fixation or commercial intramedullary implant devices. The purpose of the present study was to determine whether surgical intervention with percutaneous K-wire fixation versus commercial intramedullary implant is more cost effective for proximal interphalangeal joint arthrodesis in hammertoe surgery. A formal cost-effectiveness analysis using a decision analytic tree model was conducted to investigate the healthcare costs and outcomes associated with either K-wire or commercial intramedullary implant fixation. The outcomes assessed included long-term costs, quality-adjusted life-years (QALYs), and incremental cost per QALY gained. Costs were evaluated from the healthcare system perspective and are expressed in U.S. dollars at a 2017 price base. Our results found that commercial implants were minimally more effective than K-wires but carried significantly higher costs. The total cost for treatment with percutaneous K-wire fixation was $5041 with an effectiveness of 0.82 QALY compared with a commercial implant cost of $6059 with an effectiveness of 0.83 QALY. The incremental cost-effectiveness ratio of commercial implants was $146,667. With an incremental cost-effectiveness ratio of >$50,000, commercial implants failed to justify their proposed benefits to outweigh their cost compared to percutaneous K-wire fixation. In conclusion, percutaneous K-wire fixation would be preferred for arthrodesis of the proximal interphalangeal joint for hammertoes from a healthcare system perspective. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2011 CFR
2011-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2014 CFR
2014-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2012 CFR
2012-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
14 CFR 67.211 - Cardiovascular.
Code of Federal Regulations, 2013 CFR
2013-01-01
... any of the following: (a) Myocardial infarction; (b) Angina pectoris; (c) Coronary heart disease that...) Cardiac valve replacement; (e) Permanent cardiac pacemaker implantation; or (f) Heart replacement. ...
A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions.
Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph
2015-01-01
Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients.
A Novel Approach for Dynamic Testing of Total Hip Dislocation under Physiological Conditions
Herrmann, Sven; Kluess, Daniel; Kaehler, Michael; Grawe, Robert; Rachholz, Roman; Souffrant, Robert; Zierath, János; Bader, Rainer; Woernle, Christoph
2015-01-01
Constant high rates of dislocation-related complications of total hip replacements (THRs) show that contributing factors like implant position and design, soft tissue condition and dynamics of physiological motions have not yet been fully understood. As in vivo measurements of excessive motions are not possible due to ethical objections, a comprehensive approach is proposed which is capable of testing THR stability under dynamic, reproducible and physiological conditions. The approach is based on a hardware-in-the-loop (HiL) simulation where a robotic physical setup interacts with a computational musculoskeletal model based on inverse dynamics. A major objective of this work was the validation of the HiL test system against in vivo data derived from patients with instrumented THRs. Moreover, the impact of certain test conditions, such as joint lubrication, implant position, load level in terms of body mass and removal of muscle structures, was evaluated within several HiL simulations. The outcomes for a normal sitting down and standing up maneuver revealed good agreement in trend and magnitude compared with in vivo measured hip joint forces. For a deep maneuver with femoral adduction, lubrication was shown to cause less friction torques than under dry conditions. Similarly, it could be demonstrated that less cup anteversion and inclination lead to earlier impingement in flexion motion including pelvic tilt for selected combinations of cup and stem positions. Reducing body mass did not influence impingement-free range of motion and dislocation behavior; however, higher resisting torques were observed under higher loads. Muscle removal emulating a posterior surgical approach indicated alterations in THR loading and the instability process in contrast to a reference case with intact musculature. Based on the presented data, it can be concluded that the HiL test system is able to reproduce comparable joint dynamics as present in THR patients. PMID:26717236
Nishioka, Renato Sussumu; Rodrigues, Vinicius Anéas; De Santis, Leandro Ruivo; Nishioka, Gabriela Nogueira De Melo; Santos, Vivian Mayumi Miyazaki; Souza, Francisley Ávila
2016-02-01
To quantify microstrain development during axial loading using strain gauge analysis for short implants, varying the type of fixture-abutment joint and thread design. An internal hexagon implant (4 × 8 mm) and a plateau design implant (4 × 8 mm) were embedded on the center of 10 polyurethane blocks with dimensions of 190 × 30 × 12 mm. The respective abutments were screwed onto the implants. Four strain gauges (SGs) were bonded onto the surface of each block, and 4 vertical SGs were bonded onto the side of each block. Axial load of 30 kgf was applied for 10 seconds in the center of each implant. The data were analyzed statistically by analysis of variance for repeated measures and Tukey test (P < 0.05). The interaction between implant and region factors have been statistically significant (P = 0.0259). Tukey test revealed a difference on plateau's horizontal region. The cervical region presented higher microstrain values, when compared with the medium and apical regions of the implants. Within the purpose of the study, the type of fixture-abutment joint is a relevant factor to affect the amount of stress/strain in bone simulation. The microstrain development was concentrated on the cervical region of the implant.
New Soft Tissue Implants Using Organic Elastomers
NASA Astrophysics Data System (ADS)
Ku, David N.
Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.
Smeraglia, Francesco; Mariconda, Massimo; Balato, Giovanni; Di Donato, Sigismondo Luca; Criscuolo, Giovanni; Maffulli, Nicola
2018-06-01
Trapeziometacarpal arthritis is a common and disabling condition. There is no evidence in the literature of superiority of one surgical procedure over others. Several prosthetic implants have been introduced to preserve joint mobility. We searched the on Medline (PubMed), Web of Science and Scopus databases using the combined keywords 'artelon', 'thumb', 'carpometacarpal', 'trapeziometacarpal' and 'rhizoarthrosis'; 11 studies were identified. The use of Artelon implant is not recommended because of its high revision rate and worse outcomes compared to conventional techniques. Inert materials subjected to compressive and shearing forces could produce debris and subsequent inflammatory response. There is debate in the published scientific literature regarding the role of preoperative antibiotic profilaxis and post-surgery inflammatory response. Standard techniques such as trapeziectomy alone or combined with interposition or suspensionplasty offer effective treatment for thumb basal joint arthritis. Several prosthetic implants show promising results in terms of pain relief and functional request, but there is a need of long-term randomized controlled trials to demonstrate their equivalence, and eventually superiority, compared to standard techniques.
Comparing Two Antibacterial Treatments for Bioceramic Coatings at Short Culture Times
NASA Astrophysics Data System (ADS)
Melero, H.; Madrid, C.; Fernández, J.; Guilemany, J. M.
2014-04-01
Plasma-sprayed hydroxyapatite coatings were employed industrially for decades to improve osteointegration of articular implants, but many studies have warned about the problems inherent to this procedure (mechanical properties, harmful phases). Consequently, a combination of hydroxyapatite with TiO2 sprayed by high velocity oxy-fuel spray was considered in this study. As infection after joint replacement surgery is one of the most critical concerns when considering implant performance, it is necessary to study possible ways to reduce or eliminate it. Two coating treatments were chosen for this study: addition of a percentage of ZnO and immersion in gentamicin for 24 h. Furthermore, three bacteria were considered: Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The evolution of bacteria viability in solution was measured at 0, 2, and 4 h; and plate assays were performed to study antibacterial effects by diffusion. The results show an important antibacterial effect of the as-sprayed coating, attributed to the presence of -OH radicals on the surface. The presence of ZnO did not have any additional influence on bacteria viability, but gentamicin-treated samples showed an improvement in antibacterial behavior for Gram-negative bacteria in solution, as well as a bactericidal effect in diffusion conditions.
Cost analysis of fresh-frozen femoral head allografts: is it worthwhile to run a bone bank?
Benninger, E; Zingg, P O; Kamath, A F; Dora, C
2014-10-01
To assess the sustainability of our institutional bone bank, we calculated the final product cost of fresh-frozen femoral head allografts and compared these costs with the use of commercial alternatives. Between 2007 and 2010 all quantifiable costs associated with allograft donor screening, harvesting, storage, and administration of femoral head allografts retrieved from patients undergoing elective hip replacement were analysed. From 290 femoral head allografts harvested and stored as full (complete) head specimens or as two halves, 101 had to be withdrawn. In total, 104 full and 75 half heads were implanted in 152 recipients. The calculated final product costs were €1367 per full head. Compared with the use of commercially available processed allografts, a saving of at least €43 119 was realised over four-years (€10 780 per year) resulting in a cost-effective intervention at our institution. Assuming a price of between €1672 and €2149 per commercially purchased allograft, breakeven analysis revealed that implanting between 34 and 63 allografts per year equated to the total cost of bone banking. ©2014 The British Editorial Society of Bone & Joint Surgery.
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3590 - Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint tibial (hemi-knee) metallic resurfacing... Knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis. (a) Identification. A knee joint tibial (hemi-knee) metallic resurfacing uncemented prosthesis is a device intended to be implanted...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
21 CFR 888.3310 - Hip joint metal/polymer constrained cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer constrained cemented or... Hip joint metal/polymer constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal/polymer constrained cemented or uncemented prosthesis is a device intended to be implanted to...
Grammatopoulos, G; Pandit, H G; da Assunção, R; McLardy-Smith, P; De Smet, K A; Gill, H S; Murray, D W
2014-10-01
There is great variability in acetabular component orientation following hip replacement. The aims of this study were to compare the component orientation at impaction with the orientation measured on post-operative radiographs and identify factors that influence the difference between the two. A total of 67 hip replacements (52 total hip replacements and 15 hip resurfacings) were prospectively studied. Intra-operatively, the orientation of the acetabular component after impaction relative to the operating table was measured using a validated stereo-photogrammetry protocol. Post-operatively, the radiographic orientation was measured; the mean inclination/anteversion was 43° (sd 6°)/ 19° (sd 7°). A simulated radiographic orientation was calculated based on how the orientation would have appeared had an on-table radiograph been taken intra-operatively. The mean difference between radiographic and intra-operative inclination/anteversion was 5° (sd 5°)/ -8° (sd 8°). The mean difference between simulated radiographic and intra-operative inclination/anteversion, which quantifies the effect of the different way acetabular orientation is measured, was 3°/-6° (sd 2°). The mean difference between radiographic and simulated radiographic orientation inclination/anteversion, which is a manifestation of the change in pelvic position between component impaction and radiograph, was 1°/-2° (sd 7°). This study demonstrated that in order to achieve a specific radiographic orientation target, surgeons should implant the acetabular component 5° less inclined and 8° more anteverted than their target. Great variability (2 sd about ± 15°) in the post-operative radiographic cup orientation was seen. The two equally contributing causes for this are variability in the orientation at which the cup is implanted, and the change in pelvic position between impaction and post-operative radiograph. ©2014 The British Editorial Society of Bone & Joint Surgery.
Mieres, Juan; Menéndez, Marcelo; Fernández-Pereira, Carlos; Rubio, Miguel; Rodríguez, Alfredo E.
2015-01-01
Transcatheter Aortic Valve Replacement (TAVR) is performed in patients who are poor surgical candidates. Many patients have inadequate femoral access, and alternative access sites have been used such as the transapical approach discussed in this paper. We present an elderly and fragile patient not suitable for surgery for unacceptable high risk, including poor ventricular function, previous myocardial infarction with percutaneous coronary intervention, pericardial effusion, and previous cardiac surgery with replacement of mechanical mitral valve. Transapical aortic valve replacement with a second-generation self-expanding JenaValve is performed. The JenaValve is a second-generation transapical TAVR valve consisting of a porcine root valve mounted on a low-profile nitinol stent. The valve is fully retrievable and repositionable. We discuss transapical access, implantation technique, and feasibility of valve implantation in this extremely high surgical risk patient. PMID:26346128
Mieres, Juan; Menéndez, Marcelo; Fernández-Pereira, Carlos; Rubio, Miguel; Rodríguez, Alfredo E
2015-01-01
Transcatheter Aortic Valve Replacement (TAVR) is performed in patients who are poor surgical candidates. Many patients have inadequate femoral access, and alternative access sites have been used such as the transapical approach discussed in this paper. We present an elderly and fragile patient not suitable for surgery for unacceptable high risk, including poor ventricular function, previous myocardial infarction with percutaneous coronary intervention, pericardial effusion, and previous cardiac surgery with replacement of mechanical mitral valve. Transapical aortic valve replacement with a second-generation self-expanding JenaValve is performed. The JenaValve is a second-generation transapical TAVR valve consisting of a porcine root valve mounted on a low-profile nitinol stent. The valve is fully retrievable and repositionable. We discuss transapical access, implantation technique, and feasibility of valve implantation in this extremely high surgical risk patient.
Detection of orthopaedic foot and ankle implants by security screening devices.
Bluman, Eric M; Tankson, Cedric; Myerson, Mark S; Jeng, Clifford L
2006-12-01
A common question asked by patients contemplating foot and ankle surgery is whether the implants used will set off security screening devices in airports and elsewhere. Detectability of specific implants may require the orthopaedic surgeon to provide attestation regarding their presence in patients undergoing implantation of these devices. Only two studies have been published since security measures became more stringent in the post-9/11 era. None of these studies specifically focused on the large numbers of orthopaedic foot and ankle implants in use today. This study establishes empiric data on the detectability by security screening devices of some currently used foot and ankle implants. A list of foot and ankle procedures was compiled, including procedures frequently used by general orthopaedists as well as those usually performed only by foot and ankle specialists. Implants tested included those used for open reduction and internal fixation, joint fusion, joint arthroplasty, osteotomies, arthroreisis, and internal bone stimulation. A test subject walked through a gate-type security device and was subsequently screened using a wand-type detection device while wearing each construct grouping. The screening was repeated with the implants placed within uncooked steak to simulate subcutaneous and submuscular implantation. None of the implants were detected by the gate-type security device. Specific implants that triggered the wand-type detection device regardless of coverage with the meat were total ankle prostheses, implantable bone stimulators, large metatarsophalangeal hemiarthroplasty, large arthroreisis plugs, medial distal tibial locking construct, supramalleolar osteotomy fixation, stainless steel bimalleolar ankle fracture fixation, calcaneal fracture plate and screw constructs, large fragment blade plate constructs, intramedullary tibiotalocalcaneal fusion constructs, and screw fixation for calcaneal osteotomies, ankle arthrodeses, triple arthrodeses, and stainless steel first metatarsophalangeal joint arthrodeses. The placement of implants in meat prevented the detectability of only the stainless steel Jones fracture implant (stainless steel 6.5-mm cannulated screw) and the stainless steel midfoot fusion construct (four stainless steel 4.0-mm cannulated screws). These data may help the orthopaedic surgeon in counseling patients as to the detectability of some orthopaedic foot and ankle implants in use today. Specific constructs for which documentation may need to be provided to the patient are identified. As security standards evolve and the environments in which they are practiced change, empiric testing of many of these devices may need to be repeated.
Trabandt, Nicolaus; Brandes, Gudrun; Wintermantel, Erich; Lenarz, Thomas; Stieve, Martin
2004-09-01
Because the performance of titanium dioxide (TiO2) has not yet been assessed in the unique environment of the middle ear, its role as an ossicular replacement prototype in the form of a total ossicular replacement prosthesis (TORP) was tested and compared with aluminum oxide (Al2O3), once considered to be a suitable implant material. Ossiculoplasty was performed by implanting TORPs into the tympanic cavities of rabbits. After an implantation period of 28, 84, or 300 days, the petrous bones were extracted, whereby the biocompatibility of the prostheses was examined using light microscopy and scanning electron microscopy to determine morphologic changes in situ. Proper implant placement and functionality was tested via manual manipulation. Mucosa was seen covering most of the implants by day 84. Inflammatory cells were not observed in any of the specimens examined. The macroporous TiO2 TORPs were subjected to osseous infiltration, material dissolution, and fragmentation, whereas the microporous TiO2 implants were subjected to an increasing frequency of fissure formations. The Al2O3 prostheses demonstrated signs of material dissolution by producing encapsulated aggregates during the experimental trial period. Neither the macroporous nor microporous oxide ceramics were able to withstand the oscillatory stress to which they were continually subjected. Although porosity allows for the rapid integration of an implant material into a biological environment, its properties are not suited to fulfill the requirements of strength and long-term stability, which are demanded of middle ear prostheses.
Tribological performance of the biological components of synovial fluid in artificial joint implants
NASA Astrophysics Data System (ADS)
Ghosh, Subir; Choudhury, Dipankar; Roy, Taposh; Moradi, Ali; Masjuki, H. H.; Pingguan-Murphy, Belinda
2015-08-01
The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.
Functional evaluation of a cell replacement therapy in the inner ear
Hu, Zhengqing; Ulfendahl, Mats; Prieskorn, Diane M.; Olivius, N. Petri; Miller, Josef M.
2015-01-01
Hypothesis Cell replacement therapy in the inner ear will contribute to the functional recovery of hearing loss. Background Cell replacement therapy is a potentially powerful approach to replace degenerated or severely damaged spiral ganglion neurons. This study aimed at stimulating the neurite outgrowth of the implanted neurons and enhancing the potential therapeutic of inner ear cell implants. Methods Chronic electrical stimulation (CES) and exogenous neurotrophic growth factor (NGF) were applied to 46 guinea pigs transplanted with embryonic dorsal root ganglion (DRG) neurons four days post deafening. The animals were evaluated with the electrically-evoked auditory brain stem responses (EABRs) at experimental day 7, 11, 17, 24, 31. The animals were euthanized at day 31 and the inner ears were dissected out for immunohistochemistry investigation. Results Implanted DRG cells, identified by EGFP fluorescence and a neuronal marker, were found close to Rosenthal's canal in the adult inner ear for up to four weeks following transplantation. Extensive neurite projections clearly, greater than in non-treated animals, were observed to penetrate the bony modiolus and reach the spiral ganglion region in animals supplied with CES and/or NGF. There was, however, no significant difference in the thresholds of EABRs between DRG-transplanted-animals supplied with CES and/or NGF and DRG-transplanted animals without CES or NGF supplement. Conclusions The results suggest that CES and/or NGF can stimulate neurite outgrowth from implanted neurons, although based on EABR measurement these interventions did not induce functional connections to the central auditory pathway. Additional time or novel approaches may enhance functional responsiveness of implanted cells in the adult cochlea. PMID:19395986
Wide-awake Anesthesia No Tourniquet Trapeziometacarpal Joint Prosthesis Implantation.
Müller, Camillo Theo; Christen, Thierry; Heidekruger, Paul I; Lamouille, Jessie; Raffoul, Wassim; McKee, Daniel; Lalonde, Donald H; Durand, Sébastien
2018-04-01
Wide awake local anesthesia no tourniquet (WALANT) hand surgery is a rapidly growing in popularity. WALANT has been used by hand surgeons when operating on bones, tendons, ligaments, nerve entrapments. We offer a case report of the first case in the literature describing WALANT technique when performing trapeziometacarpal joint arthroplasty with prosthesis implantation. We offer technical points on how to perform this procedure and the advantages that are associated with using WALANT for prosthesis arthroplasty.
Hahn, D W; Wolfarth, D L; Parks, N L
1997-04-01
This paper describes micro-Raman spectroscopy of ultra-high molecular weight polyethylene wear debris isolated from revised knee replacements. The novel application of micro-Raman spectroscopy to the analysis of in vivo-generated wear debris was used to evaluate the chemical nature of individual, retrieved polyethylene particles. The analysis revealed the presence of beta-carotene on particles from both synovial fluid and tissue samples. Raman analysis of retrieved polyethylene tibial inserts also revealed localized beta-carotene signals within the primary wear region. In this paper, a mechanism is suggested that may account for the coupling of beta-carotene and polyethylene wear debris. We also discuss the origin of beta-carotene within the implanted joint and the implications that beta-carotene, an anti-oxidant, has for the overall host response to polyethylene orthopedic components.
Khare, Rahul; Jaramaz, Branislav
2016-12-01
Unicondylar Knee Replacement (UKR) is an orthopedic surgical procedure to reduce pain and improve function in the knee. Load-bearing long-standing antero-posterior (AP) radiographs are typically used postoperatively to measure the leg alignment and assess the varus/valgus implant orientation. However, implant out-of-plane rotations, user variability, and X-ray acquisition parameters introduce errors in the estimation of the implant varus/valgus estimation. Previous work has explored the accuracy of various imaging modalities in this estimation. In this work, we explored the impact of out-of-plane rotations and X-ray acquisition parameters on the estimation of implant component varus/valgus angles. For our study, we used a single CT scan and positioned femoral and tibial implants under varying orientations within the CT volume. Then, a custom software application was used to obtain digitally reconstructed radiographs from the CT scan with implants under varying orientations. Two users were then asked to manually estimate the varus/valgus angles for the implants. We found that there was significant inter-user variability (p < 0.05) in the varus/valgus estimates for the two users. However, the 'ideal' measurements, obtained using actual implant orientations, showed small errors due to variations in implant orientation. We also found that variation in the projection center does not have a statistically significant impact (p < 0.01) on the estimation of implant varus/valgus angles. We conclude that manual estimates of UKR implant varus/valgus orientations are unreliable.
Reul, Ross M.; Ramchandani, Mahesh K.; Reardon, Michael J.
2017-01-01
Surgical aortic valve replacement is the gold standard procedure to treat patients with severe, symptomatic aortic valve stenosis or insufficiency. Bioprosthetic valves are used for surgical aortic valve replacement with a much greater prevalence than mechanical valves. However, bioprosthetic valves may fail over time because of structural valve deterioration; this often requires intervention due to severe bioprosthetic valve stenosis or regurgitation or a combination of both. In select patients, transcatheter aortic valve replacement is an alternative to surgical aortic valve replacement. Transcatheter valve-in-valve (ViV) replacement is performed by implanting a transcatheter heart valve within a failing bioprosthetic valve. The transcatheter ViV operation is a less invasive procedure compared with reoperative surgical aortic valve replacement, but it has been associated with specific complications and requires extensive preoperative work-up and planning by the heart team. Data from experimental studies and analyses of results from clinical procedures have led to strategies to improve outcomes of these procedures. The type, size, and implant position of the transcatheter valve can be optimized for individual patients with knowledge of detailed dimensions of the surgical valve and radiographic and echocardiographic measurements of the patient's anatomy. Understanding the complexities of the ViV procedure can lead surgeons to make choices during the original surgical valve implantation that can make a future ViV operation more technically feasible years before it is required. PMID:29743998
Use of Metallic Endosseous Implants as a Tooth Substitute.
1979-06-01
exposed in the oral cavity and placed in function with the opposing dentition iBACKGROUND The development of a dental implant that will serve as a...contract year was spent in testing the dental implant as a single tooth replacement. The ultimate goal of this implant study was to develop a free-standing...to read and sign an informed consent form. SURGICAL PROCEDURES The dental implant was inserted into the edentulous area using the exact procedures as
Müller, Daniel A; Zingg, Patrick O; Dora, Claudio
2014-01-01
Opponents associate minimally invasive total hip replacement (THR) with additional risks, potentially resulting in increased implant failure rates. The purpose was to document complications, quality of implant positioning and five-year survivorship of THR using the AMIS approach and to test the hypothesis that eventual high complication and revision rates would be limited to an early series and be avoided by junior surgeons who get trained by a senior surgeon. A consecutive series of 150 primary THR implanted during the introduction of the AMIS technique in the department was retrospectively analysed for complications, implant positioning and implant survival after a minimum of five years. Survivorship curves of implants were compared between different surgeons and time periods. Due to implant revision for any reason the five-year survival rate was 94.6%, 78.9% for the first 20 and 96.8% for the following 130 AMIS procedures (p = 0.001). The hazard ratio for implant failure was 0.979 indicating a risk reduction of 2% every further case. The five-year implant survivorship of those procedures performed by two junior surgeons was 97.7%. We conclude that adoption of AMIS temporarily exposed patients to a higher risk of implant revisions, which normalised after the first 20 cases and that experience from a single surgeon's learning curve could effectively be taught to junior surgeons.
Implant-supported single-tooth restorations. A 12-year prospective study.
Donati, Mauro; Ekestubbe, Annika; Lindhe, Jan; Wennström, Jan L
2016-10-01
The aim of this study was to evaluate prospectively the 12-year outcome of implant-supported single-tooth restorations. Originally 45 self-tapping Astra Tech TiOblast ® ST-implants were installed by a two-stage protocol in 40 subjects requiring single-tooth prosthetic replacement for a missing tooth. Clinical and radiologic examinations were performed at completion of the prosthetic treatment 4-7 months after implant installation surgery and after 5 and 12 years in function. At 12 years 31 patients and 35 implants were available for evaluation. The overall failure rate after 12 years was 10.3% on the subject level and 9.1% on the implant level. The mean bone loss amounted to 0.67 mm (SD 2.20) on a subject level and 0.47 mm (1.72) on an implant level. Three subjects (10%) and three implants (8.6%) were diagnosed with peri-implantitis. Five subjects had experienced technical complications; three incidences of loosening of the abutment retention screw during the first 5 years and two minor porcelain fracture of the crown (two patients) between 5- and 12-years of follow-up. The findings reported in this 12-year prospective case series suggest that the use of the Astra Tech dental implants may be a valid treatment alternative for single-tooth replacement prostheses. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device.
Coogan, Jessica S; Francis, W Loren; Eliason, Travis D; Bredbenner, Todd L; Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Nicolella, Daniel P
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3-L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3-L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus.
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
Coogan, Jessica S.; Francis, W. Loren; Eliason, Travis D.; Bredbenner, Todd L.; Stemper, Brian D.; Yoganandan, Narayan; Pintar, Frank A.; Nicolella, Daniel P.
2016-01-01
Nucleus replacement technologies are a minimally invasive alternative to spinal fusion and total disc replacement that have the potential to reduce pain and restore motion for patients with degenerative disc disease. Finite element modeling can be used to determine the biomechanics associated with nucleus replacement technologies. The current study focuses on a new nucleus replacement device designed as a conforming silicone implant with an internal void. A validated finite element model of the human lumbar L3–L4 motion segment was developed and used to investigate the influence of the nucleus replacement device on spine biomechanics. In addition, the effect of device design changes on biomechanics was determined. A 3D, L3–L4 finite element model was constructed from medical imaging data. Models were created with the normal intact nucleus, the nucleus replacement device, and a solid silicone implant. Probabilistic analysis was performed on the normal model to provide quantitative validation metrics. Sensitivity analysis was performed on the silicone Shore A durometer of the device. Models were loaded under axial compression followed by flexion/extension, lateral bending, or axial rotation. Compressive displacement, endplate stresses, reaction moment, and annulus stresses were determined and compared between the different models. The novel nucleus replacement device resulted in similar compressive displacement, endplate stress, and annulus stress and slightly higher reaction moment compared with the normal nucleus. The solid implant resulted in decreased displacement, increased endplate stress, decreased annulus stress, and decreased reaction moment compared with the novel device. With increasing silicone durometer, compressive displacement decreased, endplate stress increased, reaction moment increased, and annulus stress decreased. Finite element analysis was used to show that the novel nucleus replacement device results in similar biomechanics compared with the normal intact nucleus. PMID:27990418
Cochlear Implants: Who Are They For?
... as an option to replace hearing aids. Who are they for? Answers from Douglas P. Sladen, Ph. ... receive implants several decades after hearing loss began. Are you a candidate? Whether you're a candidate ...
Safety and 6-month effectiveness of minimally invasive sacroiliac joint fusion: a prospective study
Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Lockstadt, Harry; Kovalsky, Don; Soo, Cheng-Lun
2013-01-01
Background Sacroiliac (SI) joint pain is an often overlooked cause of low back pain. SI joint arthrodesis has been reported to relieve pain and improve quality of life in patients suffering from degeneration or disruption of the SI joint who have failed non-surgical care. We report herein early results of a multicenter prospective single-arm cohort of patients with SI joint degeneration or disruption who underwent minimally invasive fusion using the iFuse Implant System®. Methods The safety cohort includes 94 subjects at 23 sites with chronic SI joint pain who met study eligibility criteria and underwent minimally invasive SI joint fusion with the iFuse Implant System® between August 2012 and September 2013. Subjects underwent structured assessments preoperatively, immediately postoperatively, and at 1, 3, and 6 months postoperatively, including SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQoL-5D (EQ-5D). Patient satisfaction with surgery was assessed at 6 months. The effectiveness cohort includes the 32 subjects who have had 6-month follow-up to date. Results Mean subject age was 51 years (n=94, safety cohort) and 66% of patients were women. Subjects were highly debilitated at baseline (mean VAS pain score 78, mean ODI score 54). Three implants were used in 80% of patients; two patients underwent staged bilateral implants. Twenty-three adverse events occurred within 1 month of surgery and 29 additional events occurred between 30 days and latest follow-up. Six adverse events were severe but none were device-related. Complete 6-month postoperative follow-up was available in 26 subjects. In the effectiveness cohort, mean (± standard deviation) SI joint pain improved from a baseline score of 76 (±16.2) to a 6-month score of 29.3 (±23.3, an improvement of 49 points, P<0.0001), mean ODI improved from 55.3 (±10.7) to 38.9 (±18.5, an improvement of 15.8 points, P<0.0001) and SF-36 PCS improved from 30.7 (±4.3) to 37.0 (±10.7, an improvement of 6.7 points, P=0.003). Ninety percent of subjects who were ambulatory at baseline regained full ambulation by month 6; median time to full ambulation was 30 days. Satisfaction with the procedure was high at 85%. Conclusion Minimally invasive SI joint fusion using the iFuse Implant System® is safe. Mid-term follow-up indicates a high rate of improvement in pain and function with high rates of patient satisfaction. PMID:24363562
Van Nimwegen, W G; Raghoebar, G M; Tymstra, N; Vissink, A; Meijer, H J A
2017-06-01
To conduct a systematic review on the clinical outcome of single implant-supported two-unit cantilever FDP's and to conduct a 5-year prospective comparative pilot study of patients with a missing central and lateral upper incisor treated with either a single implant-supported two-unit cantilever FDP or two implants with solitary implant crowns in the aesthetic zone. Medline, Embase and the Cochrane Central Register of Controlled Trials were searched (last search 1 August 2016) for eligible studies. In the comparative pilot study, an implant-cantilever group of five patients with a single implant-supported two-unit cantilever FDP (NobelReplace Groovy Regular Platform) was compared with an implant-implant group of five patients with two adjacent single implant-supported crowns (NobelReplace Groovy Regular Platform) in the aesthetic zone. Implant survival, marginal bone level (MBL) changes, pocket probing depth, papilla index and patient satisfaction were assessed during a 5-year follow-up period. Five of 276 articles were considered eligible for data extraction. Implant survival ranged from 96·6% to 100%. Marginal bone level changes were higher in the anterior region than in the posterior region. Technical complications occurred more often in the posterior than anterior region. In the 5-year comparative pilot study, no clinically significant differences in hard and soft peri-implant tissue levels occurred between both groups. Single implant-supported two-unit cantilever FDP's can be a viable alternative to the placement of two adjacent single implant crowns in the aesthetic zone. Due to technical complications, placement of two-unit cantilever crowns in the posterior region can be considered unwise. © 2017 John Wiley & Sons Ltd.
Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.
Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério
2013-10-01
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Schwager, K
1998-01-01
The middle ear poses unique challenges when finding suitable materials for ossicular reconstruction, primarily because of its link to the external environment via the eustachian tube and, hence, its greater exposure to infectious agents. In this study, the biocompatability of titanium was examined in the middle ear of rabbits by using light and scanning electron microscopy. Implants were placed as middle ear prostheses or as free implants. These were inspected at 28 days, 84 days, 168 days, 336 days and 504 days following implantation for mucosal coverage, percent epithelization and any sign of foreign-body reaction. After 28 days, the prostheses were covered by regular mucosa. Although a majority of the free implants took up to 336 days for complete epithelialization, some of the free implants were not epithelialized even at day 504. There were no inflammatory cells observed on the surface of the material, nor were unusual amounts of fibrous tissue seen. In addition, the titanium material exhibited an affinity toward bone. The results of this animal experiment indicate that titanium is a favorable material for ossicular replacement prostheses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, H.; Masuhara, K.; Takaoka, K.
1985-01-01
The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hypmore » mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.« less
Jansson, V; Steinbrück, A; Hassenpflug, J
2016-06-01
The German Arthroplasty Registry (EPRD) was founded in 2010 and has been in full operation since 2014. Previous attempts at a systematic data collection of elective and non-elective knee and hip replacement in Germany failed mainly because of the long-term lack of funding. The EPRD is an interdisciplinary collaborative partnership between the German Association of Orthopedics and Orthopedic Surgery (DGOOC), all implant manufacturers of the German Medical Technology Association (BVMed), health insurers (AOK and the Association of Additional Healthcare Insurance) and hospitals (German Hospital Federation). As part of this cooperation a worldwide unique implant database has been set up, which includes all relevant components and a detailed description of implant specifications. This implant library enables a detailed evaluation of implant survival, revision rates and possible inferior implant performance of knee and hip replacements in Germany. At the end of 2015 the EPRD encompassed over 200,000 registered operations. Due to the high number of hip and knee arthroplasties in Germany with many different implants from different manufacturers there will be a rapid growth of data that are available for a national and also international comparison of the results.
Veigl, D; Vavřík, P; Pokorný, D; Slouf, M; Pavlova, E; Landor, I
2011-01-01
The aim of the study was to evaluate in vivo and compare, in terms of the quality and number of ultra high-molecular polyethylene (UHMWPE) wear particles, total knee replacements of identical construction differing only in the material used for femoral component production, i.e., CoCrMo alloy or ZrO2 ceramics. Samples of peri-prosthetic granuloma tissue were collected in two patients with total knee replacement suffering from implant migration, who were matched in relevant characteristics. The primary knee replacement in Patient 1 with a CoCrMo femoral component was done 7.2 years and in Patient 2 with a ZrO2 implant 6.8 years before this assessment. The polyethylene wear-induced granuloma was analysed by the MORF method enabling us to assess the shape and size of wear debris and the IRc method for assessment of particle concentration. In the granuloma tissue samples of Patient 1, on the average, particles were 0.30 mm in size and their relative volume was 0.19. In the Patient 2 tissue samples, the average size of particles was 0.33 mm and their relative volume was 0.26. There was no significant difference in either particle morphology or their concentration in the granuloma tissue between the two patients. One of the options of how to reduce the production of polyethylene wear particles is to improve the tribological properties of contacting surfaces in total knee replacement by substituting a cobalt-chrome femoral component with a zirconia ceramic femoral component. The previous in vitro testing carried out with a mechanical simulator under conditions approaching real weight-bearing in the human body did show a nearly three-fold decrease in the number of UHMWPE wear particles in zirconia components. The evaluation of granuloma tissue induced by the activity of a real prosthetic joint for nearly seven years, however, did not reveal any great difference in either quality or quantity of polyethylene debris between the two replacements. The difference of surface roughness between CoCrMo (Ra = 0.05) and ZrO2 (Ra = 0.02) components did not play any role in in vivo conditions. CONCLUSIONS In accordance with a previous clinical study, this evaluation of the quality and quantity of UHMWPE wear particles produced by a ceramic femoral component in vivo failed to demonstrate any advantage of zirconia ceramic components over the cobalt-chrome femoral components so far used.
42 CFR 419.66 - Transitional pass-through payments: Medical devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... replace human skin (for example, a biological skin replacement material or synthetic skin replacement... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEM FOR HOSPITAL OUTPATIENT... human tissue, and is surgically implanted or inserted whether or not it remains with the patient when...
42 CFR 419.66 - Transitional pass-through payments: Medical devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... replace human skin (for example, a biological skin replacement material or synthetic skin replacement... HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEM FOR HOSPITAL OUTPATIENT... human tissue, and is surgically implanted or inserted whether or not it remains with the patient when...
Andresen Eguiluz, Roberto C.; Cook, Sierra G.; Tan, Mingchee; Brown, Cory N.; Pacifici, Noah J.; Samak, Mihir S.; Bonassar, Lawrence J.; Putnam, David; Gourdon, Delphine
2017-01-01
Lubricin (LUB), a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN), a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA) normal force measurements indicate that the lubricin-mimetic (mimLUB) could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28). These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica) substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo. PMID:28702455
Reflor, H J; Wirth, C J; Schreiner, B
1979-10-01
30 patients whose total endoprosthesis of the hip joint had been removed without any replacement, thus creating a so-called state of secondary resection, were followed up 6 months to 6 years after the operation. It was found that in almost two-thirds of the cases a subjective feeling of improved mobility was reported. The objective findings consisted in restrictions of the total rotation, abduction and adduction of 1/3 rd of the normal extent of mobility. An average value of 74.7 degrees was recorded for flexion. 28 patients stated that their walking performance was satisfactory to very good when using a walking-stick as support. More than three-quarters of the patients questioned stated their pain had been positively influenced by the creation of the state of secondary resection. Another objective finding was a difference between the length of the legs amounting to 4.2 cm on the average. We could prove the existence of a relationship between the difference in leg length and the roentgenologically visualised supporting of the resection area of the coxal end of the femur at the lateral pelvis. Since all the patients with the exception of two could resume their customary daily routine activities, the state of secondary resection after unsuccessful total endoprosthesis of the hip joint must be considered a reasonably acceptable alternative.
Bayona, Carlos Eduardo Afanador; Somerson, Jeremy S; Matsen, Frederick A
2018-02-01
National registries are valuable tools for understanding the results of shoulder arthroplasty across populations. These databases provide an unselected view of shoulder joint replacement within geographical areas that cannot be obtained from case series or prospective studies. They can be particularly helpful in determining which diagnoses, patients, procedures, and prostheses have higher than expected rates of revision. In an attempt to determine the generalizability of registry data, we asked, 'how similar are the patients and procedures among the different national registries?' We analyzed national shoulder arthroplasty registries and databases accessed via Internet portals and through a PubMed literature search. Seven national/regional registries and five publications regarding national shoulder arthroplasty data were identified; these sources contained a combined total of 261,484 shoulder arthroplasty cases. The percentages of hemiarthroplasty, anatomic (aTSA) and reverse total shoulders (rTSA), the diagnoses leading to arthroplasty, the mean patient age, and the distribution of patient gender varied significantly among these different databases. This study indicates that the indications for and application of shoulder arthroplasty have important geographical variations and that these variations must be considered when comparing outcomes of shoulder arthroplasty from different locations. Without controlling for age, gender, diagnosis and procedure type, the results from one national registry may not be applicable to patients from a different location. In that national data provide the opportunity to reduce costs by identifying implants and procedures with higher failure rates, the funding of registries needs to be free of conflicts of interest.
Mycobacterium smegmatis infection of a prosthetic total knee arthroplasty.
Saffo, Zaid; Ognjan, Anthony
2016-01-01
The most common organisms causing prosthetic knee joint infections are staphylococci. However, arthroplasty infections with atypical microbial pathogens, such as Mycobacteria can occur. Due to the rarity of mycobacterial prosthetic joint infections, diagnosis, treatment, and management of these atypical infections represent a clinical challenge. A 71-year old female post-operative day 40 after a left total knee arthroplasty was hospitalized secondary to left knee pain and suspected arthroplasty infection. She had failed outpatient oral antimicrobial treatment for superficial stitch abscess; and outpatient IV/Oral antimicrobials for a clinical postoperative septic bursitis. Ultimately, resection arthroplasty with operative tissue acid fast bacterial cultures demonstrated growth of the Mycobacterium smegmatis group. Post-operatively, she completed a combination course of oral doxycycline and levofloxacin and successfully completed a replacement arthroplasty with clinical and microbial resolution of the infection. To our knowledge, literature review demonstrates three case of knee arthroplasty infection caused by the Mycobacterium smegmatis group. Correspondingly, optimal surgical procedures and antimicrobial management including antimicrobial selection, treatment duration are not well defined. Presently, the best treatment options consists of two step surgical management including prosthesis hardware removal followed by extended antimicrobial therapy, followed by consideration for re-implantation arthroplasty. Our case illustrates importance of considering atypical mycobacterial infections in post-operative arthroplasty infections not responding to traditional surgical manipulations and antimicrobials. For an arthroplasty infection involving the atypical Mycobacterium smegmatis group, two step arthroplasty revision, including arthroplasty resection, with a combination of oral doxycycline and levofloxacin can lead to successful infection resolution, allowing for a successful replacement arthroplasty.
Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A
2015-06-01
Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P < .01) and deltoid load required for active abduction (+9 ± 22 N and +11 ± 15 N; P < .02), whereas joint load angle was unaffected (P > .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P < .002); however, external rotation was not affected (P > .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
2004-04-15
Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc. has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc. is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.
Lindsey, Derek P.; Bahney, Chelsea S.; Woods, Shane A.; Wolfe, Mark L.; Yerby, Scott A.
2017-01-01
Background An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation (e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. Methods This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells (n=5 per group) were measured. Results Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs (p=0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. Conclusions Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. Clinical Relevance Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants. PMID:28765799
Functionally graded bioactive coatings: From fabrication to testing
NASA Astrophysics Data System (ADS)
Foppiano, Silvia
Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are cytocompatible, but should be preconditioned in SBF prior to their use. Preconditioning stabilizes the coatings, eliminates possible contaminants introduced during processing and handling, and yields dissolution products capable of inducing specific gene expression (e.g. Runx-2). Future research will involve identification of such dissolution products as well as in vivo testing.
Compatibility of the totally replaced hip. Reduction of wear by amorphous diamond coating.
Santavirta, Seppo
2003-12-01
Particulate wear debris in totally replaced hips causes adverse local host reactions. The extreme form of such a reaction, aggressive granulomatosis, was found to be a distinct condition and different from simple aseptic loosening. Reactive and adaptive tissues around the totally replaced hip were made of proliferation of local fibroblast like cells and activated macrophages. Methylmethacrylate and high-molecular-weight polyethylene were shown to be essentially immunologically inert implant materials, but in small particulate form functioned as cellular irritants initiating local biological reactions leading to loosening of the implants. Chromium-cobalt-molybdenum is the most popular metallic implant material; it is hard and tough, and the bearings of this metal are partially self-polishing. In total hip implants, prerequisites for longevity of the replaced hip are good biocompatibility of the materials and sufficient tribological properties of the bearings. The third key issue is that the bearing must minimize frictional shear at the prosthetic bone-implant interface to be compatible with long-term survival. Some of the approaches to meet these demands are alumina-on-alumina and metal-on-metal designs, as well as the use of highly crosslinked polyethylene for the acetabular component. In order to avoid the wear-based deleterious properties of the conventional total hip prosthesis materials or coatings, the present work included biological and tribological testing of amorphous diamond. Previous experiments had demonstrated that a high adhesion of tetrahedral amorphous carbon coatings to a substrate can be achieved by using mixing layers or interlayers. Amorphous diamond was found to be biologically inert, and simulator testing indicated excellent wear properties for conventional total hip prostheses, in which either the ball or both bearing surfaces were coated with hydrogen-free tetrahedral amorphous diamond films. Simulator testing with such total hip prostheses showed no measurable wear or detectable delamination after 15,000,000 test cycles corresponding to 15 years of clinical use. The present work clearly shows that wear is one of the basic problems with totally replaced hips. Diamond coating of the bearing surfaces appears to be an attractive solution to improve longevity of the totally replaced hip.
Varanoid Tooth Eruption and Implantation Modes in a Late Cretaceous Mosasaur.
Liu, Min; Reed, David A; Cecchini, Giancarlo M; Lu, Xuanyu; Ganjawalla, Karan; Gonzales, Carol S; Monahan, Richard; Luan, Xianghong; Diekwisch, Thomas G H
2016-01-01
Erupting teeth are some of the oldest witnesses of developmental processes in the vertebrate fossil record and provide an important resource for vertebrate cladistics. Here, we have examined a mosasaur jaw fragment from central Texas using ultrathin ground section histology and 3D tomographic imaging to assess features critical for the cladistic placement of mosasaurs among varanoids vs. snakes: (i) the orientation of replacement teeth compared to the major tooth axis, (ii) the occurrence of resorption pits, and (iii) the mode of tooth implantation/attachment to the tooth bearing element (TBE). The replacement tooth studied here developed in an inclined position slightly distal of the deciduous parent tooth, similar to another varanoid squamate, the Gila monster Heloderma suspectum. Ground sections and tomographs also demonstrated that the replacement tooth attachment apparatus was entirely intact and that there was no evidence of mechanical deformation. Sections and tomographs further illustrated that the replacement tooth was located within a bony crypt and the inclination of the crypt matched the inclination of the replacement tooth. These preparations also revealed the presence of a resorption pit within the boundaries of the deciduous tooth that surrounded the developing replacement tooth. This finding suggests that developing mosasaur teeth developed within the walls of resorption pits similar to varanoid tooth germs and unlike developing snake teeth which are surrounded by fibrous connective tissue integuments. Finally, mosasaurs featured pseudo-thecodont tooth implantation with teeth anchored within a socket of mineralized tissue by means of a mineralized periodontal ligament. Together, these data indicate that the moderate inclination of the erupting mosasaur tooth studied here is neither a result of postmortem displacement nor a character representative of snakes, but rather a shared character between Mosasaurs and other varanoids such as Heloderma. In conjunction with the presence of resorption pits and the evidence for pseudothecodont tooth implantation, the tooth eruption and implantation characters described in the present study either place mosasaurs among the varanoids or suggest convergent evolution mechanisms between both clades, with mosasaurs evolving somewhat independently from a common varanoid ancestor.
Varanoid Tooth Eruption and Implantation Modes in a Late Cretaceous Mosasaur
Liu, Min; Reed, David A.; Cecchini, Giancarlo M.; Lu, Xuanyu; Ganjawalla, Karan; Gonzales, Carol S.; Monahan, Richard; Luan, Xianghong
2016-01-01
Erupting teeth are some of the oldest witnesses of developmental processes in the vertebrate fossil record and provide an important resource for vertebrate cladistics. Here, we have examined a mosasaur jaw fragment from central Texas using ultrathin ground section histology and 3D tomographic imaging to assess features critical for the cladistic placement of mosasaurs among varanoids vs. snakes: (i) the orientation of replacement teeth compared to the major tooth axis, (ii) the occurrence of resorption pits, and (iii) the mode of tooth implantation/attachment to the tooth bearing element (TBE). The replacement tooth studied here developed in an inclined position slightly distal of the deciduous parent tooth, similar to another varanoid squamate, the Gila monster Heloderma suspectum. Ground sections and tomographs also demonstrated that the replacement tooth attachment apparatus was entirely intact and that there was no evidence of mechanical deformation. Sections and tomographs further illustrated that the replacement tooth was located within a bony crypt and the inclination of the crypt matched the inclination of the replacement tooth. These preparations also revealed the presence of a resorption pit within the boundaries of the deciduous tooth that surrounded the developing replacement tooth. This finding suggests that developing mosasaur teeth developed within the walls of resorption pits similar to varanoid tooth germs and unlike developing snake teeth which are surrounded by fibrous connective tissue integuments. Finally, mosasaurs featured pseudo-thecodont tooth implantation with teeth anchored within a socket of mineralized tissue by means of a mineralized periodontal ligament. Together, these data indicate that the moderate inclination of the erupting mosasaur tooth studied here is neither a result of postmortem displacement nor a character representative of snakes, but rather a shared character between Mosasaurs and other varanoids such as Heloderma. In conjunction with the presence of resorption pits and the evidence for pseudothecodont tooth implantation, the tooth eruption and implantation characters described in the present study either place mosasaurs among the varanoids or suggest convergent evolution mechanisms between both clades, with mosasaurs evolving somewhat independently from a common varanoid ancestor. PMID:27242535
Autoinflammation Around AES Total Ankle Replacement Implants.
Koivu, Helka; Takakubo, Yuya; Mackiewicz, Zygmunt; Al-Samadi, Ahmed; Soininen, Antti; Peled, Nitai; Kukis, Modestas; Trokovic, Nina; Konttinen, Yrjö T
2015-12-01
Failure of total ankle replacement (TAR) can be characterized by early peri-implant osteolysis even in the presence of very modest numbers of wear particles. The hypothesis of the study was that this reaction is in part mediated by autoinflammatory responses mediated via damage-associated molecular patterns (DAMPs, danger signals) and pattern-recognizing danger signal receptors (PRRs). Peri-implant tissue and control samples from 10 patients with AES implants were immunostained for hypoxia inducible factor-1α (HIF-1α), activated caspase-3, high-mobility group box 1 (HMGB1), receptor for advanced glycation end product (RAGE), and toll-like receptors TLR2 and TLR4. Results were evaluated on a 0 to 4 scale (from 0% to >50% stained area). Peri-implant tissue around failed TAR implants had a relatively high mean HIF-1α score of 3 on a scale, which however was similar in control samples. HMGB1 (a DAMP) was seen to be mobilized from nuclei to cellular cytoplasm, and the active caspase-3(+) cells were increased. All PRRs were increased in revision samples. Increased expression of HMGB1 and other danger signals together with increased PRR-dependent responsiveness could contribute to autoinflammatory peri-implantitis, multilocular cyst formation, and osteolysis in failed TAR implants. Level IV, case series. © The Author(s) 2015.
... is extensive and severe, joint replacement or joint fusion are effective surgical options. Learn more about joint ... the tabs at the top (Video, Articles/WEB, Images, JHS, Products/Vendors), or the filters on the ...
The Survival of Total Knee Arthroplasty: Current Data from Registries on Tribology: Review Article.
Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio; Lepri, Andrea Cozzi; Sirleo, Luigi; Innocenti, Massimo
2017-02-01
Polyethylene (PE) wear is a major contributor to implant loosening following total knee arthroplasty (TKA), and advanced bearings in TKA are being investigated with hopes of reducing or eliminate wear-related loosening. Currently, information on knee tribology is available from national joint registries and may be the best tools to evaluate the efficacy and safety of design innovations in joint arthroplasty. We performed a review of national joint registries trying to answer the following questions: "Which is the main factor directly related to revisions rate in TKA?" and "Are there new bearing options better than conventional ones?" A review was performed of all published annual reports of National Joint Registers, as well as of the literature. The search was carried out using and comparing the National Joint Registers. Current data from registries for total knee arthroplasty indicates that age is the major factor affecting the outcome of primary total knee replacement. The 10-year cumulative revision rate for non-cross-linked PE was 5.8% and for XLPE it was 3.5%. The effect of cross-linked polyethylene was more evident in the younger patients. The survival of the oxidized zirconium (OxZr) femoral component appears better when compared to a similar age group of patients with conventional group of prostheses. Our review suggests that the revision rates are half for the OxZr components compared to conventional CoCr femoral components. Age is the most relevant single factor related to revision rate. Cross-linked PE has a statistical lower revision rate at 10 years compared to conventional PE and, in the OxZr group, the revision rate is 2 times lower than Co-Cr in the same group of age.
Ip, David
2015-12-01
The current study evaluates whether the addition of low-level laser therapy into standard conventional physical therapy in elderly with bilateral symptomatic tri-compartmental knee arthritis can successfully postpone the need for joint replacement surgery. A prospective randomized cohort study of 100 consecutive unselected elderly patients with bilateral symptomatic knee arthritis with each knee randomized to receive either treatment protocol A consisting of conventional physical therapy or protocol B which is the same as protocol A with added low-level laser therapy. The mean follow-up was 6 years. Treatment failure was defined as breakthrough pain which necessitated joint replacement surgery. After a follow-up of 6 years, patients clearly benefited from treatment with protocol B as only one knee needed joint replacement surgery, while nine patients treated with protocol A needed surgery (p < 0.05). We conclude low-level laser therapy should be incorporated into standard conservative treatment protocol for symptomatic knee arthritis.
Paschos, Nikolaos K
2015-01-01
In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242
Hypersensitivity reactions to metal implants: laboratory options.
Carossino, Anna Maria; Carulli, Christian; Ciuffi, Simone; Carossino, Roberto; Zappoli Thyrion, Giorgia Donata; Zonefrati, Roberto; Innocenti, Massimo; Brandi, Maria Luisa
2016-11-23
All implant compounds undergo an electrochemical process when in contact with biological fluids, as well as mechanical corrosion due to abrasive wear, with production of metal debris that may inhibit repair processes. None of the commonly-used methods can diagnose implant allergies when used singly, therefore a panel of tests should be performed on allergic patients as pre-operative screening, or when a postoperative metal sensitisation is suspected. We analysed patients with painful prostheses and subjects prone to allergies using the Patch Test in comparison with the Lymphocyte Transformation Test. Cytokine production was evaluated to identify prognostic markers for early diagnosis of aseptic loosening. Metal debris endocytosis and cytoskeletal rearrangement was visualised by confocal microscopy. Our results demonstrate that the Lymphocyte Transformation Test can identify patients who have a predisposition to develop allergic reactions and can confirm the diagnosis of hypersensitivity in patients with painful prostheses. The prevalence of a Th2-cytokine pattern may be used to identify predisposition to the development of allergic diseases, while the selective presence of osteoclastogenic cytokines may be used as predictor of a negative outcome in patients with painful prosthesis. The hypothesis of the prognostic value of these cytokines as early markers of aseptic loosening is attractive, but its confirmation would require extensive testing. The Lymphocyte Transformation Test is the most suitable method for testing systemic allergies. We suggest that the combined use of the Patch Test and the Lymphocyte Transformation Test, associated with cytokine detection in selected patients, could provide a useful tool for preventive evaluation of immune reactivity in patients undergoing primary joint replacement surgery, and for clinical monitoring of the possible onset of a metal sensitization in patients with implanted devices.
* Murine Model of Progressive Orthopedic Wear Particle-Induced Chronic Inflammation and Osteolysis.
Pajarinen, Jukka; Nabeshima, Akira; Lin, Tzu-Hua; Sato, Taishi; Gibon, Emmanuel; Jämsen, Eemeli; Lu, Laura; Nathan, Karthik; Yao, Zhenyu; Goodman, Stuart B
2017-12-01
Periprosthetic osteolysis and subsequent aseptic loosening of total joint replacements are driven by byproducts of wear released from the implant. Wear particles cause macrophage-mediated inflammation that culminates with periprosthetic bone loss. Most current animal models of particle-induced osteolysis are based on the acute inflammatory reaction induced by wear debris, which is distinct from the slowly progressive clinical scenario. To address this limitation, we previously developed a murine model of periprosthetic osteolysis that is based on slow continuous delivery of wear particles into the murine distal femur over a period of 4 weeks. The particle delivery was accomplished by using subcutaneously implanted osmotic pumps and tubing, and a hollow titanium rod press-fit into the distal femur. In this study, we report a modification of our prior model in which particle delivery is extended to 8 weeks to better mimic the progressive development of periprosthetic osteolysis and allow the assessment of interventions in a setting where the chronic particle-induced osteolysis is already present at the initiation of the treatment. Compared to 4-week samples, extending the particle delivery to 8 weeks significantly exacerbated the local bone loss observed with μCT and the amount of both peri-implant F4/80 + macrophages and tartrate-resistant acid phosphatase-positive osteoclasts detected with immunohistochemical and histochemical staining. Furthermore, systemic recruitment of reporter macrophages to peri-implant tissues observed with bioluminescence imaging continued even at the later stages of particle-induced inflammation. This modified model system could provide new insights into the mechanisms of chronic inflammatory bone loss and be particularly useful in assessing the efficacy of treatments in a setting that resembles the clinical scenario of developing periprosthetic osteolysis more closely than currently existing model systems.
Johnson, Aaron J; Naziri, Qais; Hooper, Hasan A; Mont, Michael A
2012-04-04
The sensitivity of airport security screening measures has increased substantially during the past decade, but few reports have examined how this affects patients who have undergone hip arthroplasty. The purpose of this study was to determine the experiences of patients who had hip prostheses and who passed through airport security screenings. A consecutive series of 250 patients who presented to the office of a high-volume surgeon were asked whether they had had a hip prosthesis for at least one year and, if so, whether they had flown on a commercial airline within the past year. Patients who responded affirmatively to both questions were asked to complete a written survey that included questions about which joint(s) had been replaced, the number of encounters with airport security, the frequency and location of metal detector activation, any additional screening procedures that were utilized, whether security officials requested documentation regarding the prosthesis, the degree of inconvenience, and other relevant information. Of the 143 patients with hip replacements who traveled by air, 120 (84%) reported triggering the alarm and required wanding with a handheld detector. Twenty-five of these patients reported subsequently having to undergo further inspection, including additional wanding, being patted down, and in two cases having to undress in a private room to show the incision. Ninety-nine (69%) of the 143 patients reported that the prosthetic joint caused an inconvenience while traveling. This study provides interesting and critical information that allows physicians to understand the real-world implications of implanted orthopaedic devices for patients who are traveling where there has been heightened security since September 11, 2001. Patients should be counseled that they should expect delays and be prepared for such inconveniences, but that these are often only momentary. This information could relieve some anxiety and concerns that patients may have prior to traveling.
A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.
Liu, Feng; Feng, Li; Wang, Junyuan
2018-07-01
Edge loading in ceramic-on-ceramic total hip joint replacement is an adverse condition that occurs as the result of a direct contact between the head and the cup rim. It has been associated with translational mismatch in the centres of rotation of the cup and head, and found to cause severe wear and early failure of the implants. Edge loading has been considered in particular in relation to dynamic separation of the cup and head centres during a gait cycle. Research has been carried out both experimentally and computationally to understand the mechanism including the influence of bearing component positioning on the occurrence and severity of edge loading. However, it is experimentally difficult to measure both the load magnitude and duration of edge loading as it occurs as a short impact within the tight space of hip joints. Computationally, a dynamic contact model, for example, developed using the MSC ADAMS software for a multi-body dynamics simulation can be particularly useful for calculating the loads and characterising the edge loading. The aim of the present study was to further develop the computational model, and improve the predictions of contact force and the understanding of mechanism in order to provide guidance on design and surgical factors to avoid or to reduce edge loading and wear. The results have shown that edge loading can be avoided for a low range of translational mismatch in the centres of rotation of the cup and head during gait at the level of approximately 1.0 mm for a cup at 45° inclination, keeping a correct cup inclination at 45° is important to reduce the edge loading severity, and edge loading can be avoided for a certain range of translational mismatch of the cup and head centres with an increased swing phase load. Copyright © 2018 Elsevier Ltd. All rights reserved.
1987-03-13
guides Taps for plastics Orthopedic implants (hip and knee joints, etc.) Extrusion spinnerettes Finishing rolls for copper rod Extrusion nozzles...detail in following sections. C. Comparison to Coating Techniques -,* Because ion implantation is a process that modifies surface properties it is often...Therefore, it is important to understand the differences between ion implantation and coating techniques, especially ion plating. The result of ion
Crosnier, Emilie A; Keogh, Patrick S; Miles, Anthony W
2016-08-01
The hip joint is subjected to cyclic loading and motion during activities of daily living and this can induce micromotions at the bone-implant interface of cementless total hip replacements. Initial stability has been identified as a crucial factor to achieve osseointegration and long-term survival. Whilst fixation of femoral stems achieves good clinical results, the fixation of acetabular components remains a challenge. In vitro methods assessing cup stability keep the hip joint in a fixed position, overlooking the effect of hip motion. The effect of hip motion on cup micromotion using a hip motion simulator replicating hip flexion-extension and a six degrees of freedom measurement system was investigated. The results show an increase in cup micromotion under dynamic hip motion compared to Static Flexion. This highlights the need to incorporate hip motion and measure all degrees of freedom when assessing cup micromotion. In addition, comparison of two press-fit acetabular cups with different surface coatings suggested similar stability between the two cups. This new method provides a basis for a more representative protocol for future pre-clinical evaluation of different cup designs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.