Sample records for joint replacements mechanisms

  1. Tribology and total hip joint replacement: current concepts in mechanical simulation.

    PubMed

    Affatato, S; Spinelli, M; Zavalloni, M; Mazzega-Fabbro, C; Viceconti, M

    2008-12-01

    Interest in the rheology and effects of interacting surfaces is as ancient as man. This subject can be represented by a recently coined word: tribology. This term is derived from the Greek word "tribos" and means the "science of rubbing". Friction, lubrication, and wear mechanism in the common English language means the precise field of interest of tribology. Wear of total hip prosthesis is a significant clinical problem that involves, nowadays, a too high a number of patients. In order to acquire further knowledge on the tribological phenomena that involve hip prosthesis wear tests are conducted on employed materials to extend lifetime of orthopaedic implants. The most basic type of test device is the material wear machine, however, a more advanced one may more accurately reproduce some of the in vivo conditions. Typically, these apparatus are called simulators, and, while there is no absolute definition of a joint simulator, its description as a mechanical rig used to test a joint replacement, under conditions approximating those occurring in the human body, is acceptable. Simulator tests, moreover, can be used to conduct accelerated protocols that replicate/simulate particularly extreme conditions, thus establishing the limits of performance for the material. Simulators vary in their level of sophistication and the international literature reveals many interpretations of the design of machines used for joint replacement testing. This paper aims to review the current state of the art of the hip joint simulators worldwide. This is specified through a schematic overview by describing, in particular, constructive solutions adopted to reproduce in vivo conditions. An exhaustive commentary on the evolution and actually existing simulation standards is proposed by the authors. The need of a shared protocol among research laboratories all over the world could lead to a consensus conference.

  2. Hip joint replacement - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: ...

  3. Knee joint replacement

    MedlinePlus

    ... Knee joint replacement - series References American Academy of Orthopedic Surgeons (AAOS) website. Treatment of osteoarthritis of the knee: evidence-based guideline 2nd edition (summary) . www.aaos.org/research/guidelines/TreatmentofOsteoarthritisoftheKneeGuideline.pdf . Updated May 18, 2013. Accessed ...

  4. Hereditary hemochromatosis as a risk factor for joint replacement surgery.

    PubMed

    Sahinbegovic, Enijad; Dallos, Tomás; Aigner, Elmar; Axmann, Roland; Engelbrecht, Matthias; Schöniger-Hekele, Maximilian; Karonitsch, Thomas; Farkas, Martin; Karger, Thomas; Willeit, Johann; Stölzel, Ulrich; Keysser, Gernot; Datz, Christian; Kiechl, Stefan; Schett, Georg; Zwerina, Jochen

    2010-07-01

    Hemochromatosis is an inherited disease with iron overload and joint involvement resembling osteoarthritis. To determine the rate of joint replacement surgery in patients with hemochromatosis, we performed a cross-sectional cohort study. A total of 199 individuals with hereditary hemochromatosis were included. The prevalence of joint replacement surgery in hip, knee, and ankle joints because of secondary osteoarthritis was assessed. Data were compared with 917 healthy subjects from the population-based Bruneck study. A total of 32 of 199 individuals with hemochromatosis received joint replacement surgery with a total number of 52 joints replaced. Compared with expected rates in healthy individuals, patients with hemochromatosis had a significantly higher risk for joint replacement surgery (odds ratio 9.0; confidence interval, 4.6-17.4). Joint replacement occurred significantly earlier in life in patients with hemochromatosis; 21.9% of the patients with hemochromatosis and 1.7% of healthy individuals required joint replacement before the age of 50 years (P=.0027). Moreover, patients with hemochromatosis were more likely to require multiple joint replacements (8.5%) than the control group (expected rate 0.3%; P=.0001). Hemochromatosis is a risk factor for joint replacement surgery because of severe secondary osteoarthritis. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Medicare Program; Comprehensive Care for Joint Replacement Payment Model for Acute Care Hospitals Furnishing Lower Extremity Joint Replacement Services. Final rule.

    PubMed

    2015-11-24

    This final rule implements a new Medicare Part A and B payment model under section 1115A of the Social Security Act, called the Comprehensive Care for Joint Replacement (CJR) model, in which acute care hospitals in certain selected geographic areas will receive retrospective bundled payments for episodes of care for lower extremity joint replacement (LEJR) or reattachment of a lower extremity. All related care within 90 days of hospital discharge from the joint replacement procedure will be included in the episode of care. We believe this model will further our goals in improving the efficiency and quality of care for Medicare beneficiaries with these common medical procedures.

  6. Managed care and critical pathway development: the joint replacement experience.

    PubMed

    Benham, A J

    1999-01-01

    This article examines the economic, social, ethical, and political issues affecting total joint replacement patients in a managed care environment. Using general systems theory as a framework, it examines the interrelated historical events that have shaped the development of both joint replacement procedures and managed care, and discusses the extent to which these two phenomena have been mutually influential. Specifically, the article examines the initial development, implementation, and continuing evolution of clinical pathways as an easily identified and relatively discrete manifestation of managed care for the joint replacement population. While the overall impact of managed care is beyond the scope of this presentation, it is hoped that a focus on the practical application of clinical pathways to joint replacement will allow some general principles to emerge that may be useful for both patients and practitioners operating in other aspects of the managed care environment.

  7. Poly(ethylene glycol)/chitosan/sodium glycerophosphate gel replaced the joint capsule with slow-release lubricant after joint surgery.

    PubMed

    Lu, Hailin; Ren, Shanshan; Li, Xing; Guo, Junde; Dong, Guangneng; Li, Jianhui; Gao, Li

    2018-08-01

    Body fluid is normally the only lubricant after joint replacement surgery, but wear problems have occurred because body fluid has poor lubrication ability. However, traditional lubricant would be diluted by body fluids and then absorbed by the human body. Therefore, an injectable gel with the ability to slow-release lubricant was designed to replace the joint capsule. The proposed gel, poly(ethylene glycol)/chitosan/sodium glycerophosphate (PEG/CS/GP) composite gel was then tested. The tribology results showed that the PEG/CS/GP gel had excellent slow-release properties, especially under pressure, and the PEG played an important role in improving the gel's rheological and mechanical properties. Moreover, this study revealed that the release solution had a good lubrication effect because the PEG and GP could crosslink via the hydrogen bond effect.

  8. Alloplastic total temporomandibular joint replacements: do they perform like natural joints? Prospective cohort study with a historical control.

    PubMed

    Wojczyńska, A; Leiggener, C S; Bredell, M; Ettlin, D A; Erni, S; Gallo, L M; Colombo, V

    2016-10-01

    The aim of this study was to qualitatively and quantitatively describe the biomechanics of existing total alloplastic reconstructions of temporomandibular joints (TMJ). Fifteen patients with unilateral or bilateral TMJ total joint replacements and 15 healthy controls were evaluated via dynamic stereometry technology. This non-invasive method combines three-dimensional imaging of the subject's anatomy with jaw tracking. It provides an insight into the patient's jaw joint movements in real time and provides a quantitative evaluation. The patients were also evaluated clinically for jaw opening, protrusive and laterotrusive movements, pain, interference with eating, and satisfaction with the joint replacements. The qualitative assessment revealed that condyles of bilateral total joint replacements displayed similar basic motion patterns to those of unilateral prostheses. Quantitatively, mandibular movements of artificial joints during opening, protrusion, and laterotrusion were all significantly shorter than those of controls. A significantly restricted mandibular range of motion in replaced joints was also observed clinically. Fifty-three percent of patients suffered from chronic pain at rest and 67% reported reduced chewing function. Nonetheless, patients declared a high level of satisfaction with the replacement. This study shows that in order to gain a comprehensive understanding of complex therapeutic measures, a multidisciplinary approach is needed. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. HiL simulation in biomechanics: a new approach for testing total joint replacements.

    PubMed

    Herrmann, Sven; Kaehler, Michael; Souffrant, Robert; Rachholz, Roman; Zierath, János; Kluess, Daniel; Mittelmeier, Wolfram; Woernle, Christoph; Bader, Rainer

    2012-02-01

    Instability of artificial joints is still one of the most prevalent reasons for revision surgery caused by various influencing factors. In order to investigate instability mechanisms such as dislocation under reproducible, physiologically realistic boundary conditions, a novel test approach is introduced by means of a hardware-in-the-loop (HiL) simulation involving a highly flexible mechatronic test system. In this work, the underlying concept and implementation of all required units is presented enabling comparable investigations of different total hip and knee replacements, respectively. The HiL joint simulator consists of two units: a physical setup composed of a six-axes industrial robot and a numerical multibody model running in real-time. Within the multibody model, the anatomical environment of the considered joint is represented such that the soft tissue response is accounted for during an instability event. Hence, the robot loads and moves the real implant components according to the information provided by the multibody model while transferring back the position and resisting moment recorded. Functionality of the simulator is proved by testing the underlying control principles, and verified by reproducing the dislocation process of a standard total hip replacement. HiL simulations provide a new biomechanical testing tool for analyzing different joint replacement systems with respect to their instability behavior under realistic movements and physiological load conditions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Improving transition of care for veterans after total joint replacement.

    PubMed

    Green, Uthona R; Dearmon, Valorie; Taggart, Helen

    2015-01-01

    Patients transitioning from hospital to home are at risk for readmission to the hospital. Readmissions are costly and occur too often. Standardized discharge education processes have shown to decrease readmissions. The purpose of this quality improvement project was to utilize evidence-based practice changes to decrease 30-day all-cause readmissions after total joint replacement. Review of literature revealed that improved discharge education can decrease unnecessary readmissions after discharge. A quality improvement project was developed including standardized total joint replacement discharge education, teach-back education methodology, and improved postdischarge telephone follow-up. The quality improvement project was initiated and outcomes were evaluated. Improving coordination of the discharge process, enhanced education for patients/caregivers, and postdischarge follow-up decreased total joint replacement readmissions.

  11. Artificial atlanto-odontoid joint replacement through a transoral approach.

    PubMed

    Lu, Bin; He, Xi Jing; Zhao, Chen Guang; Li, Hao Peng; Wang, Dong

    2009-01-01

    Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1-C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P B 0.021) and NZ (P B 0.002) and a significantly increased stiffness (P \\ 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P C 0.719), NZ (P C 0.580), and stiffness (P C 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and tear after the fatigue test

  12. Artificial atlanto-odontoid joint replacement through a transoral approach

    PubMed Central

    Lu, Bin; Zhao, Chen Guang; Li, Hao Peng; Wang, Dong

    2008-01-01

    Resection of the odontoid process and anterior arch of the atlas results in atlantoaxial instability, which if left uncorrected may lead to severe neurological complications. Currently, such atlantoaxial instability is corrected by anterior and/or posterior C1–C2 fusion. However, this results in considerable loss of rotation function of the atlantoaxial complex. From the viewpoint of retaining the rotation function and providing stability, we designed an artificial atlanto-odontoid joint based on anatomical measurements of 50 pairs of dry atlantoaxial specimens by digital calipers and 10 fresh cadaveric specimens by microsurgical techniques. The metal-on-metal titanium alloy joint has an arc-shaped atlas component, and a hollow cylindrical bushing into which fits a rotation axle of an inverted v-shaped axis component and is implanted through a transoral approach. After the joint was implanted onto specimens with anterior decompression, biomechanical tests were performed to compare the stability parameters in the intact state, after decompression, after artificial joint replacement, and after fatigue test. Compared to the intact state, artificial joint replacement resulted in a significant decrease in the range of motion (ROM) and neutral zone (NZ) during flexion, extension, and lateral bending (P < 0.001); however, with regard to axial rotation, there was no significant difference in ROM (P = 0.405), a significant increase in NZ (P = 0.008), and a significant decrease in stiffness (P = 0.003). Compared to the decompressed state, artificial joint replacement resulted in a significantly decreased ROM (P ≤ 0.021) and NZ (P ≤ 0.002) and a significantly increased stiffness (P < 0.001) in all directions. Following artificial joint replacement, there was no significant difference in ROM (P ≥ 0.719), NZ (P ≥ 0.580), and stiffness (P ≥ 0.602) in all directions before and after the fatigue test. The artificial joint showed no signs of wear and

  13. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus.

    PubMed

    Jin, Z M; Dowson, D; Fisher, J

    1997-01-01

    Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubrication film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubrication film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed.

  14. Joint replacement recipients' views about health information privacy.

    PubMed

    Terry, Amanda L; Chesworth, Bert M; Bourne, Robert B; Stolee, Paul; Speechley, Mark

    2015-10-01

    Researchers are concerned about the possibility of restricted access to data as a result of specific consent requirements in privacy legislation, potentially resulting in smaller samples and a lack of representativeness which could bias results. In addition, there is uncertainty about what influences individuals to give consent for the use of their personal health information. To measure joint replacement recipients' health information privacy views and to assess potential predictors of these views. Cross-sectional survey. Potential joint replacement recipients from two teaching hospitals in London, Ontario, Canada. Age, gender, education, employment status, anticipated joint replacement, and expectations for surgery. Privacy concerns as measured by the Concern Scale. The response rate was 182/253 or 72%. The mean Concern score was 143.9/235.0 for the total sample (range = 82-216). Women had higher levels of privacy concerns than men on slightly over half of the individual questionnaire items. In women, surgical joint, age and employment explained 15% of the variance in concerns about personal health information privacy (P = 0.001). The model explained 6% of the variance in concerns in men (P = 0.138) and was not statistically significant. This study indicates that demographic characteristics and health-care experiences play a role in the variability of health information privacy concerns. A greater understanding of patients' privacy views about health information could lead to a greater harmonization among privacy rules, research and data access, and the preferences of health-care consumers. © 2013 John Wiley & Sons Ltd.

  15. [Minimally invasive approaches to hip and knee joints for total joint replacement].

    PubMed

    Rittmeister, M; König, D P; Eysel, P; Kerschbaumer, F

    2004-11-01

    The manuscript features the different minimally invasive approaches to the hip for joint replacement. These include medial, anterior, anterolateral, and posterior approaches. The concept of minimally invasive hip arthroplasty makes sense if it is an integral part of a larger concept to lower postoperative morbidity. Besides minimal soft tissue trauma, this concept involves preoperative patient education, preemptive analgesia, and postoperative physiotherapy. It is our belief that minimal incision techniques for the hip are not suited for all patients and all surgeons. The different minimally invasive approaches to the knee joint for implantation of a knee arthroplasty are described and discussed. There have been no studies published yet that fulfill EBM criteria. The data so far show that minimally invasive approaches and implantation techniques for total knee replacements lead to quicker rehabilitation of patients.

  16. Differences in the stress distribution in the distal femur between patellofemoral joint replacement and total knee replacement: a finite element study

    PubMed Central

    2012-01-01

    Background Patellofemoral joint replacement is a successful treatment option for isolated patellofemoral osteoarthritis. However, results of later conversion to total knee replacement may be compromised by periprosthetic bone loss. Previous clinical studies have demonstrated a decrease in distal femoral bone mineral density after patellofemoral joint replacement. It is unclear whether this is due to periprosthetic stress shielding. The main objective of the current study was to evaluate the stress shielding effect of prosthetic replacement with 2 different patellofemoral prosthetic designs and with a total knee prosthesis. Methods We developed a finite element model of an intact patellofemoral joint, and finite element models of patellofemoral joint replacement with a Journey PFJ prosthesis, a Richards II prosthesis, and a Genesis II total knee prosthesis. For each of these 4 finite element models, the average Von Mises stress in 2 clinically relevant regions of interest were evaluated during a simulated squatting movement until 120 degrees of flexion. Results During deep knee flexion, in the anterior region of interest, the average Von Mises stress with the Journey PFJ design was comparable to the physiological knee, while reduced by almost 25% for both the Richards II design and the Genesis II total knee joint replacement design. The average Von Mises stress in the supracondylar region of interest was similar for both patellofemoral prosthetic designs and the physiological model, with slightly lower stress for the Genesis II design. Conclusions Patellofemoral joint replacement results in periprosthetic stress-shielding, although to a smaller degree than in total knee replacement. Specific patellofemoral prosthetic design properties may result in differences in femoral stress shielding. PMID:22704638

  17. [Effect of sterilisation with formaldehyde, gamma irradiation and ethylene oxide on the properties of polyethylene joint replacement components].

    PubMed

    Fulín, P; Pokorný, D; Slouf, M; Vacková, T; Dybal, J; Sosna, A

    2014-01-01

    Each method of sterilisation has some effect on the structure and properties of UHMWPE and thus also on joint replacement longevity. This study was designed to compare, using objective methods of measurement, several kinds of sterilisation and to recommend the one which has the best prospect for making joint replacements last longer. Two groups of UHMWPE samples were tested. Group 1 included virgin GUR 1020 polyethylene, non-modified and non-sterilised (Meditech, Germany). Group 2 comprised of three sets of samples sterilised with formaldehyde, gamma irradiation and ethylene oxide, respectively. In both groups, physicochemical properties were assessed by infrared spectroscopy (IR), and the oxidation (OI) and trans-vinyl (VI) indices, which show the degree of oxidation of a material, were determined. Free-radical concentrations were measured by the method of electron spin resonance (ESR). The mechanical properties of each sample were studied using small punch tests (SPT) and testing microhardness (MH). Any change in mechanical properties can affect, to various degrees, the quality and longevity of a prosthetic joint. The samples sterilised by gamma irradiation showed higher values of both the OI (0.37) and the VI index (0.038) than the other samples (OI, 0.02 to 0.05 and VI, 0). Also, the free-radical concentration was detectable only in the gamma-sterilised sample. Values obtained for mechanical properties were as follows: peak load in the range of 58.48 N (gamma irradiation) to 59.60 N (ethylene oxide); ultimate load in the range of 46.69 N (gamma irradiation) to 57.50 N (ethylene oxide); ultimate displacement in the range of 4.29 mm (gamma irradiation) to 4.58 mm (virgin polyethylene and formaldehyde); and work to failure in the range of 185.18 mJ (gamma irradiation) to 205.89 mJ (virgin polyethylene). Microhardness values were obtained in the following ranges: 41.2 to 44.6 MPa (virgin polyethylene); 40.2 to 44.1 MPa (formaldehyde); 46.1 to 49.3 MPa (gamma

  18. [A primary application and evaluation of temporomandibular joint replacement with stock prosthesis].

    PubMed

    Zhang, Xiao-hu; Chen, Min-jie; Qiu, Ya-ting; Yang, Chi

    2012-06-01

    To evaluate the effect of total joint replacement in treatment of temporomandibular joint(TMJ) osteoarthropathy with stock prostheses. Six female patients involving 10 joints (2 unilateral and 4 bilateral), with an average age of 59 years old, were involved in this study. Three patients (5 joints) were diagnosed as internal derangement in V stage depending on MRI, 3D-CT findings and clinical characteristics. The other 3 patients (5 joints) had histories of failed temporomandibular joint operation using costochondral graft or temporalis fascial flap. The maximal mouth opening was 1.9 cm on average (range, 1.0 to 2.9cm). All the joints were replaced with Biomet standard prosthesis under general anesthesia. The follow-up period was from 7 to 49 months (average, 17.5 months). All the operations were successfully performed. Heterotopic ossification happened in a bilateral case 1 year postoperatively. One patient with bilateral joint disease complained of severe uncomfortable feeling in the region of the ears and the temples, although there was no significant positive signs according to an ENT examination. Pain relief of the joint and mouth opening improvement were significant in 4 patients. No failure was noted secondary to infection or loosening of the prostheses. The occlusal relationship kept stable postoperatively in all cases. Total TMJ joint replacement with standard prosthesis is a good choice for TMJ reconstruction. It can significantly reduce joint pain and the mouth opening limitation resulted from osteoarthritis. Long-term result remains to be evaluated based on a long-term follow-up.

  19. Patient and implant survival following joint replacement because of metastatic bone disease

    PubMed Central

    2013-01-01

    Background Patients suffering from a pathological fracture or painful bony lesion because of metastatic bone disease often benefit from a total joint replacement. However, these are large operations in patients who are often weak. We examined the patient survival and complication rates after total joint replacement as the treatment for bone metastasis or hematological diseases of the extremities. Patients and methods 130 patients (mean age 64 (30–85) years, 76 females) received 140 joint replacements due to skeletal metastases (n = 114) or hematological disease (n = 16) during the period 2003–2008. 21 replaced joints were located in the upper extremities and 119 in the lower extremities. Clinical and survival data were extracted from patient files and various registers. Results The probability of patient survival was 51% (95% CI: 42–59) after 6 months, 39% (CI: 31–48) after 12 months, and 29% (CI: 21–37) after 24 months. The following surgical complications were seen (8 of which led to additional surgery): 2–5 hip dislocations (n = 8), deep infection (n = 3), peroneal palsy (n = 2), a shoulder prosthesis penetrating the skin (n = 1), and disassembly of an elbow prosthesis (n = 1). The probability of avoiding all kinds of surgery related to the implanted prosthesis was 94% (CI: 89–99) after 1 year and 92% (CI: 85–98) after 2 years. Conclusion Joint replacement operations because of metastatic bone disease do not appear to have given a poorer rate of patient survival than other types of surgical treatment, and the reoperation rate was low. PMID:23530874

  20. Recent advances in computational mechanics of the human knee joint.

    PubMed

    Kazemi, M; Dabiri, Y; Li, L P

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling.

  1. Development of a Mandibular Motion Simulator for Total Joint Replacement

    PubMed Central

    Celebi, Nukhet; Rohner, E. Carlos; Gateno, Jaime; Noble, Philip C.; Ismaily, Sabir K.; Teichgraeber, John F.; Xia, James J.

    2015-01-01

    Purpose The purpose of this study was to develop a motion simulator capable of recreating and recording the full range of mandibular motions in a cadaveric preparation for an intact temporomandibular joint (TMJ) and after total joint replacement. Material and Methods A human cadaver head was used. Two sets of tracking balls were attached to the forehead and mandible, respectively. Computed tomographic (CT) scan was performed and 3-dimensional CT models of the skull were generated. The cadaver head was then dissected to attach the muscle activation cables and mounted onto the TMJ simulator. Realistic jaw motions were generated through the application of the following muscle forces: lateral pterygoid muscle, suprahyoid depressors (geniohyoid, mylohyoid, and digastric muscles), and elevator muscles. To simulate muscle contraction, cables were inserted into the mandible at the center area of each muscle's attachment. To provide a minimum mouth closing force at the initial position, the elevator muscles were combined at the anterior mandible. During mandibular movement, each motion was recorded using a high-resolution laser scanner. The right TMJ of the same head was reconstructed with a total TMJ prosthesis. The same forces were applied and the jaw motions were recorded again. CT scan was performed and 3-dimensional CT models of the skull with TMJ prosthesis were generated. Results Mandibular motions, before and after TMJ replacement, with and without lateral pterygoid muscle reattachment, were re-created in a cadaveric preparation. The laser-scanned data during the mandibular motion were used to drive 3-dimensional CT models. A movie for each mandibular motion was subsequently created for motion path analysis. Compared with mandibular motion before TMJ replacement, mandibular lateral and protrusive motions after TMJ replacement, with and without lateral pterygoid muscle reattachment, were greatly limited. The jaw motion recorded before total joint replacement was

  2. Compliant mechanism road bicycle brake: a rigid-body replacement case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, Brian M; Howell, Larry L; Magleby, Spencer P

    2011-01-19

    The design of high-performance bicycle brakes is complicated by the competing design objectives of increased performance and low weight. But this challenge also provides a good case study to demonstrate the design of compliant mechanisms to replace current rigid-link mechanisms. This paper briefly reviews current road brake designs, demonstrates the use of rigid-body replacement synthesis to design a compliant mechanism, and illustrates the combination of compliant mechanism design tools. The resulting concept was generated from the modified dual-pivot brake design and is a partially compliant mechanism where one pin has the dual role of a joint and a mounting pin.more » The pseudo-rigid-body model, finite element analysis, and optimization algorithms are used to generate design dimensions, and designs are considered for both titanium and E-glass flexures. The resulting design has the potential of reducing the part count and overall weight while maintaining a performance similar to the benchmark.« less

  3. Redesigning a joint replacement program using Lean Six Sigma in a Veterans Affairs hospital.

    PubMed

    Gayed, Benjamin; Black, Stephen; Daggy, Joanne; Munshi, Imtiaz A

    2013-11-01

    In April 2009, an analysis of joint replacement surgical procedures at the Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, revealed that total hip and knee replacements incurred $1.4 million in non-Veterans Affairs (VA) care costs with an average length of stay of 6.1 days during fiscal year 2008. The Joint Replacement Program system redesign project was initiated following the Vision-Analysis-Team-Aim-Map-Measure-Change-Sustain (VA-TAMMCS) model to increase efficiency, decrease length of stay, and reduce non-VA care costs. To determine the effectiveness of Lean Six Sigma process improvement methods applied in a VA hospital. Perioperative processes for patients undergoing total joint replacement were redesigned following the VA-TAMMCS model--the VA's official, branded method of Lean Six Sigma process improvement. A multidisciplinary team including the orthopedic surgeons, frontline staff, and executive management identified waste in the current processes and initiated changes to reduce waste and increase efficiency. Data collection included a 1-year baseline period and a 20-month sustainment period. The primary endpoint was length of stay; a secondary analysis considered non-VA care cost reductions. Length of stay decreased 36% overall, decreasing from 5.3 days during the preproject period to 3.4 days during the 20-month sustainment period (P < .001). Non-VA care was completely eliminated for patients undergoing total hip and knee replacement at the Richard L. Roudebush Veterans Affairs Medical Center, producing an estimated return on investment of $1 million annually when compared with baseline cost and volumes. In addition, the volume of total joint replacements at this center increased during the data collection period. The success of the Joint Replacement Program demonstrates that VA-TAMMCS is an effective tool for Lean and Six Sigma process improvement initiatives in a surgical practice, producing a 36% sustained reduction in

  4. Recent Advances in Computational Mechanics of the Human Knee Joint

    PubMed Central

    Kazemi, M.; Dabiri, Y.; Li, L. P.

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602

  5. Management of the patient with a total joint replacement: the primary care practitioner's role.

    PubMed

    Palmer, L M

    1999-01-01

    The primary care practitioner assumes chief responsibility for patients with arthritis. More than 40 million Americans experience some form of arthritis. Management of the patient with arthritis may include a referral to an orthopedic surgeon for surgical intervention. As estimated, up to 500,000 total joint replacement procedures are performed by orthopedic surgeons each year in the United States. Presurgical evaluation for a total joint replacement is imperative to ensure that the patient can safely undergo this surgical procedure. Postsurgical care of a patient with total joint replacement involves coordinating care with the physical therapist and orthopedic surgeon to ensure adequate follow-through with the recommended rehabilitation program, prophylactic antibiotic coverage, and observation for any complications including infection, deep-vein thrombosis, or loosening of the total-joint prosthesis.

  6. [Efficacy analysis on hip replacement for hip-joint diseases with Parkinson disease].

    PubMed

    Sun, Qi-Cai; Ru, Xuan-Liang; Xia, Yan-Fei; Liu, Xiao-Li; Song, Bai-Shan; Qiao, Song; Yan, Shi-Gui; Wang, Xiang-Hua

    2017-12-25

    To explore clinical efficacy of hip replacement for hip-joint diseases with Parkinson disease. From December 2011 to December 2016, 18 patients with hip-joint diseases with Parkinson disease treated by hip replacement, including 8 males and 10 females aged from 59 to 87 years old with an average of 71 years old. Among them, 3 cases were developmental dysplasia of hip, 3 cases were femoral head necrosis and 12 cases were femoral neck fracture. All patients manifested with obvious pain and limitation of stepping ability. Postoperative complications were observed and Harris score were used to compare hip joint function after operation. The incision were healed well, and pain were alleviated or disappeared, and hip joint function were improved. Eighteen patients were followed up from 1 to 3 years with an average of 2.3 years. At the latest follow up, 14 cases recovered freedom-walk, 2 cases could walk with walking stick, 1 case could walk with walking aid and 1 case was died. Among 18 patients, 2 cases were occurred dislocation, and 1 case were died for cardiac disease at 3 months after operation. Four patients were occurred slight pain. There were significant differences in Harris scores among preoperative (41.7±1.4), 6 months after operation(80.1±5.4) and the final follow-up (83.4±2.1), and 10 cases got excellent result, 4 good, 1 fair and 2 poor. Application of hip replacement for hip-joint diseases with Parkinson disease is a safe and effective clinical therapy, and has advantages of less complications and rapid recovery of hip joint function.

  7. Hip joint replacement

    MedlinePlus

    ... Total hip replacement; Hip hemiarthroplasty; Arthritis - hip replacement; Osteoarthritis - hip replacement ... total hip replacement surgery in patients with hip osteoarthritis: a long-term follow-up of a randomised ...

  8. Design and clinical outcome of a novel 3D-printed prosthetic joint replacement for the human temporomandibular joint.

    PubMed

    Ackland, David; Robinson, Dale; Lee, Peter Vee Sin; Dimitroulis, George

    2018-05-11

    Stock prosthetic temporomandibular joint replacements come in limited sizes, and do not always encompass the joint anatomy that presents clinically. The aims of this study were twofold. Firstly, to design a personalized prosthetic total joint replacement for the treatment of a patient's end-stage temporomandibular joint osteoarthritis, to implant the prosthesis into the patient, and assess clinical outcome 12-months post-operatively; and secondly, to evaluate the influence of changes in prosthetic condyle geometry on implant load response during mastication. A 48-year-old female patient with Grade-5 osteoarthritis to the left temporomandibular joint was recruited, and a prosthesis developed to match the native temporomandibular joint anatomy. The prosthesis was 3D printed, sterilized and implanted into the patient, and pain and function measured 12-months post-operatively. The prosthesis load response during a chewing-bite and maximum-force bite was evaluated using a personalized multi-body musculoskeletal model. Simulations were performed after perturbing condyle thickness, neck length and head sphericity. Increases in prosthetic condyle neck length malaligned the mandible and perturbed temporomandibular joint force. Changes in condylar component thickness greatly influenced fixation screw stress response, while a more eccentric condylar head increased prosthetic joint-contact loading. Post-operatively, the prosthetic temporomandibular joint surgery reduced patient pain from 7/10 to 1/10 on a visual analog scale, and increased intercisal opening distance from 22 mm to 38 mm. This study demonstrates effectiveness of a personalized prosthesis that may ultimately be adapted to treat a wide-range of end-stage temporomandibular joint conditions, and highlights sensitivity of prosthesis load response to changes in condylar geometry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction

    PubMed Central

    Gibon, Emmanuel; Córdova, Luis A.; Lu, Laura; Lin, Tzu-Hua; Yao, Zhenyu; Hamadouche, Moussa; Goodman, Stuart B.

    2017-01-01

    Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. PMID:27080740

  10. Meat consumption and risk of primary hip and knee joint replacement due to osteoarthritis: a prospective cohort study

    PubMed Central

    2011-01-01

    Background There is emerging evidence for a beneficial effect of meat consumption on the musculoskeletal system. However, whether it affects the risk of knee and hip osteoarthritis is unknown. We performed a prospective cohort study to examine the relationship between meat consumption and risk of primary hip and knee replacement for osteoarthritis. Methods Eligible 35,331 participants were selected from the Melbourne Collaborative Cohort Study recruited during 1990-1994. Consumption of fresh red meat, processed meat, chicken, and fish was assessed using a food frequency questionnaire. Primary hip and knee replacement for osteoarthritis during 2001-2005 was determined by linking the cohort records to the Australian National Joint Replacement Registry. Results There was a negative dose-response relationship between fresh red meat consumption and the risk of hip replacement (hazard ratio (HR) 0.94 per increase in intake of one time/week, 95% confidence interval (CI) 0.89-0.98). In contrast, there was no association with knee replacement risk (HR 0.98, 95% CI 0.94-1.02). Consumption of processed meat, chicken and fish were not associated with risk of hip or knee replacement. Conclusion A high level consumption of fresh red meat was associated with a decreased risk of hip, but not knee, joint replacement for osteoarthritis. One possible mechanism to explain these differential associations may be via an effect of meat intake on bone strength and hip shape. Further confirmatory studies are warranted. PMID:21235820

  11. Meat consumption and risk of primary hip and knee joint replacement due to osteoarthritis: a prospective cohort study.

    PubMed

    Wang, Yuanyuan; Simpson, Julie Anne; Wluka, Anita E; English, Dallas R; Giles, Graham G; Graves, Stephen; Cicuttini, Flavia M

    2011-01-16

    There is emerging evidence for a beneficial effect of meat consumption on the musculoskeletal system. However, whether it affects the risk of knee and hip osteoarthritis is unknown. We performed a prospective cohort study to examine the relationship between meat consumption and risk of primary hip and knee replacement for osteoarthritis. Eligible 35,331 participants were selected from the Melbourne Collaborative Cohort Study recruited during 1990-1994. Consumption of fresh red meat, processed meat, chicken, and fish was assessed using a food frequency questionnaire. Primary hip and knee replacement for osteoarthritis during 2001-2005 was determined by linking the cohort records to the Australian National Joint Replacement Registry. There was a negative dose-response relationship between fresh red meat consumption and the risk of hip replacement (hazard ratio (HR) 0.94 per increase in intake of one time/week, 95% confidence interval (CI) 0.89-0.98). In contrast, there was no association with knee replacement risk (HR 0.98, 95% CI 0.94-1.02). Consumption of processed meat, chicken and fish were not associated with risk of hip or knee replacement. A high level consumption of fresh red meat was associated with a decreased risk of hip, but not knee, joint replacement for osteoarthritis. One possible mechanism to explain these differential associations may be via an effect of meat intake on bone strength and hip shape. Further confirmatory studies are warranted.

  12. First metatarsophalangeal joint replacement with modular three-component press-fit implant. Preliminary report.

    PubMed

    Kolodziej, L; Bohatyrewicz, A; Zietek, P

    2013-01-01

    The aim of this retrospective study was to assess functional and radiographic results of the first metatarsophalangeal joint replacement with use of unconstrained, modular, three components, porous titanium and hydroxyapatite coated, press-fit METIS® prosthesis. According to author's knowledge, results of that type of prosthesis have never been published before. 25 prosthesis were implanted in 24 patients between February 2009 and May 2011. American Orthopaedic Foot and Ankle Society Hallux Metatarsophalangeal Interphalangeal scoring system (AOFAS-HMI) was used to assess functional results. Patients were also asked if they would undergo procedure again or recommend it to other people. Weight bearing radiographs ware made at final follow up and analyzed for presence of osteolysis and radiolucencies. In 8 patients total joint replacement was introduced as a salvage after failure of previous surgery like Keller resection arthroplasty, failed arthrodesis, avascular necrosis and postoperative arthritis. In 11 patients the reason for prosthetic replacement were hallux rigidus, in 4 cases rheumatoid arthritis and gout in one patient. In two patients additional procedures like Akin phalangeal osteotomy and in one case fifth metatarsal osteotomy, was performed. There were 20 females and 4 males in presented group. The mean age at the operation was 56 years. The average follow up period was 18 months (from 12 to 36 months). The median postoperative value of AOFAS-HMI scores was 88 points (from 75 to 95 points). First metatarsophalangeal joint motion (dorsiflexion plus plantarflexion) was classified according to AOFAS-HMI ranges as: moderately restricted (between 30 to 70 degrees) in 19 patients 80% (20 prosthesis) and severely restricted (less then 30 degrees) in 5 patients (20%). 15 (64%) patients were completely satisfied, 5 (20%) reported moderate satisfaction and (16%) 4 were totally disappointed and would not undergo this procedure again. A limited hallux dorsiflexion

  13. Risk factors for renal dysfunction after total knee joint replacement.

    PubMed

    Hassan, Basim K; Sahlström, Arne; Dessau, Ram B

    2015-12-01

    Renal injury and dysfunction are serious complications after major surgery, which may lead to increased morbidity and mortality. The objective of our study was to identify the possible risk factors for renal dysfunction after total knee joint replacement. A retrospective study was conducted among 702 consecutive primary knee joint replacements performed between January 2009 and December 2012 in our department. Increased postoperative serum creatinine was considered indicative of postoperative renal injury according to RIFLE criteria. Sixty three patients (9.7%) had significant moderate or severe postoperative renal dysfunction in which 8 patients (1.2%) ended with severe and permanent renal impairment. Advanced age, low intraoperative blood pressure, hypertension, general anaesthesia, and prophylactic dicloxacillin were identified as significant risk factors. Male gender and BMI were independent risk factors for postoperative increase in serum creatinine. Smoking, female gender, diabetes mellitus and duration of surgery were not identified as significant risk factors.

  14. Ethnicity and patient's perception of risk in joint replacement surgery.

    PubMed

    Gandhi, Rajiv; Razak, Fahad; Davey, J Roderick; Mahomed, Nizar N

    2008-08-01

    Despite much evidence showing racial disparities in the use of surgical procedures, it is unknown whether ethnicity affects perception of surgical risk. We surveyed 1609 patients undergoing primary hip or knee replacement surgery. Relevant covariates including demographic data, body mass index (BMI), sex, comorbidities, education, and ethnicity were recorded. Pain and joint functional status were assessed at baseline and at 1-year followup with the Western Ontario McMaster University Osteoarthritis Index (WOMAC) pain and function scores. Risk perception was assessed with 3 survey questions. Non-European patients had greater functional disability and pain prior to surgery and demonstrated significantly greater perception of risk than European patients (p < 0.001). Independent of other covariates, non-European ethnicity was an independent predictor of a greater perception of risk (p < 0.05). Patient ethnicity is an important factor to consider in understanding a patient's perception of risk in joint replacement surgery.

  15. Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue

    2017-12-01

    The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.

  16. Mechanics of Suture Joints

    NASA Astrophysics Data System (ADS)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  17. A novel dynamic mechanical testing technique for reverse shoulder replacements.

    PubMed

    Dabirrahmani, Danè; Bokor, Desmond; Appleyard, Richard

    2014-04-01

    In vitro mechanical testing of orthopedic implants provides information regarding their mechanical performance under simulated biomechanical conditions. Current in vitro component stability testing methods for reverse shoulder implants are based on anatomical shoulder designs, which do not capture the dynamic nature of these loads. With glenoid component loosening as one of the most prevalent modes of failure in reverse shoulder replacements, it is important to establish a testing protocol with a more realistic loading regime. This paper introduces a novel method of mechanically testing reverse shoulder implants, using more realistic load magnitudes and vectors, than is currently practiced. Using a custom made jig setup within an Instron mechanical testing system, it is possible to simulate the change in magnitude and direction of the joint load during arm abduction. This method is a step towards a more realistic testing protocol for measuring reverse shoulder implant stability.

  18. Femoral component rotation in patellofemoral joint replacement.

    PubMed

    van Jonbergen, Hans-Peter W; Westerbeek, Robin E

    2018-06-01

    Clinical outcomes in patellofemoral joint replacement may be related to femoral component rotation. Assessment of rotational alignment is however difficult as patients with isolated patellofemoral osteoarthritis often have trochlear dysplasia. The use of the medial malleolus as a landmark to guide rotation has been suggested. The purpose of our study was to evaluate this technique with regard to femoral component rotation, and to correlate rotation with clinical outcomes at one-year follow-up. Forty-one knees in 39 patients had patellofemoral joint replacement using the Zimmer Gender-Solutions patellofemoral prosthesis. Intraoperatively, we determined femoral component rotational alignment using an extramedullary rod aimed at the inferior tip of the medial malleolus. Postoperatively, we measured the angle between the femoral component and the anatomical transepicondylar axis using CT. The amount of rotation was correlated with clinical outcomes at one-year follow-up. Forty knees in 38 patients were available for one-year follow-up. Mean femoral component rotation relative to the anatomical transepicondylar axis was 1.4° external rotation (range, -3.8 to 5.7°). We found no statistically significant correlation between femoral component rotation and change from baseline KOOS subscales at one-year follow-up. Our findings show that when using the medial malleolus as a landmark to guide rotation, the femoral component of the patellofemoral prosthesis was oriented in external rotation relative to the anatomical transepicondylar axis in 80% of knees. Our study did not show a relation between the amount of external rotation and clinical outcomes. Level III. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Regional analgesia for improvement of long-term functional outcome after elective large joint replacement.

    PubMed

    Atchabahian, Arthur; Schwartz, Gary; Hall, Charles B; Lajam, Claudette M; Andreae, Michael H

    2015-08-13

    Regional analgesia is more effective than conventional analgesia for controlling pain and may facilitate rehabilitation after large joint replacement in the short term. It remains unclear if regional anaesthesia improves functional outcomes after joint replacement beyond three months after surgery. To assess the effects of regional anaesthesia and analgesia on long-term functional outcomes 3, 6 and 12 months after elective major joint (knee, shoulder and hip) replacement surgery. We performed an electronic search of several databases (CENTRAL, MEDLINE, EMBASE, CINAHL), and handsearched reference lists and conference abstracts. We updated our search in June 2015. We included randomized controlled trials (RCTs) comparing regional analgesia versus conventional analgesia in patients undergoing total shoulder, hip or knee replacement. We included studies that reported a functional outcome with a follow-up of at least three months after surgery. We used standard methodological procedures expected by Cochrane. We contacted study authors for additional information. We included six studies with 350 participants followed for at least three months. All of these studies enrolled participants undergoing total knee replacement. Studies were at least partially blinded. Three studies had a high risk of performance bias and one a high risk of attrition bias, but the risk of bias was otherwise unclear or low.Only one study assessed joint function using a global score. Due to heterogeneity in outcome and reporting, we could only pool three out of six RCTs, with range of motion assessed at three months after surgery used as a surrogate for joint function. All studies had a high risk of detection bias. Using the random-effects model, there was no statistically significant difference between the experimental and control groups (mean difference 3.99 degrees, 95% confidence interval (CI) - 2.23 to 10.21; P value = 0.21, 3 studies, 140 participants, very low quality evidence).We did not

  20. Regional analgesia for improvement of long-term functional outcome after elective large joint replacement

    PubMed Central

    Atchabahian, Arthur; Schwartz, Gary; Hall, Charles B; Lajam, Claudette M; Andreae, Michael H

    2015-01-01

    Background Regional analgesia is more effective than conventional analgesia for controlling pain and may facilitate rehabilitation after large joint replacement in the short term. It remains unclear if regional anaesthesia improves functional outcomes after joint replacement beyond three months after surgery. Objectives To assess the effects of regional anaesthesia and analgesia on long-term functional outcomes 3, 6 and 12 months after elective major joint (knee, shoulder and hip) replacement surgery. Search methods We performed an electronic search of several databases (CENTRAL, MEDLINE, EMBASE, CINAHL), and handsearched reference lists and conference abstracts. We updated our search in June 2015. Selection criteria We included randomized controlled trials (RCTs) comparing regional analgesia versus conventional analgesia in patients undergoing total shoulder, hip or knee replacement. We included studies that reported a functional outcome with a follow-up of at least three months after surgery. Data collection and analysis We used standard methodological procedures expected by Cochrane. We contacted study authors for additional information. Main results We included six studies with 350 participants followed for at least three months. All of these studies enrolled participants undergoing total knee replacement. Studies were at least partially blinded. Three studies had a high risk of performance bias and one a high risk of attrition bias, but the risk of bias was otherwise unclear or low. Only one study assessed joint function using a global score. Due to heterogeneity in outcome and reporting, we could only pool three out of six RCTs, with range of motion assessed at three months after surgery used as a surrogate for joint function. All studies had a high risk of detection bias. Using the random-effects model, there was no statistically significant difference between the experimental and control groups (mean difference 3.99 degrees, 95% confidence interval (CI)

  1. Patients' Perceptions of Joint Replacement Care in a Changing Healthcare System: A Qualitative Study

    PubMed Central

    Webster, Fiona; Bremner, Samantha; Katz, Joel; Watt-Watson, Judy; Kennedy, Deborah; Sawhney, Mona; McCartney, Colin

    2014-01-01

    Background: Ontario has introduced strategies over the past decade to reduce wait times and length of stay and improve access to physiotherapy for orthopaedic and other patients. The aim of this study is to explore patients' experiences of joint replacement care during a significant system change in their care setting. Methods: A secondary analysis was done on semi-structured qualitative interviews that were conducted in 2009 with 12 individuals who had undergone at least two hip or knee replacements five years apart at a specialized orthopaedic centre in Ontario, Canada. Interview transcripts were coded and then organized into themes. Results: Although the original study aimed to capture participants' experiences with changes in anaesthetic technique between their first and second joint replacements, the participants described several unrelated differences in the care they received during this period. For example, participants had difficulty obtaining a referral to an orthopaedic surgeon from their family physician. They also noted that the hospital stay and in-hospital physiotherapy they received were shorter after the second joint replacement surgery. They identified guidance from physiotherapists as an important component of their recovery, but sometimes had difficulty arranging physiotherapy after hospital discharge following their most recent surgery. Conclusions: The changes described between the first and second joint replacements provide the participants' perspective on the impact of policy changes on wait times, reduced lengths of hospital stay and physiotherapy access. The impact of these policy changes, often made in an attempt to improve access to care, had an unintended and detrimental effect on participants' perceptions and experiences of the quality of care provided. PMID:24726074

  2. Position of the prosthesis components in total ankle replacement and the effect on motion at the replaced joint.

    PubMed

    Cenni, Francesco; Leardini, Alberto; Cheli, Andrea; Catani, Fabio; Belvedere, Claudio; Romagnoli, Matteo; Giannini, Sandro

    2012-03-01

    In some cases of total ankle replacement, perfect alignment of the prosthetic components is not achieved. This study analyses the extent to which component positioning is critical for the final range of motion. Fourteen patients undergoing total ankle replacement were assessed preoperatively and postoperatively at seven and 13 months follow-up. X-ray pictures of the ankle were taken in static double leg stance, i.e. at neutral joint position, and in maximum plantarflexion and dorsiflexion. Measurements were obtained by a specially devised computer program based on anatomical reference points digitised on the radiograms. These allowed calculation of the position and orientation of the components in the sagittal and coronal planes, together with the joint range of motion. The mean range of motion was about 34 degrees at the first follow-up and maintained at the second. Tibial and talar components were more anterior than the mid-tibial shaft in 11 and nine patients, respectively. Mean inclination was about four degrees posterior for the tibial component and nearly one degree anterior for the talar component. A significantly larger range of motion was found in ankles both with the talar component located and inclined more anteriorly than the tibial. Correlation, though weak, was found between motion at the replaced ankle and possible residual subluxation and inclination of the components. However, a satisfactory range of motion was also achieved in those patients where recommended locations for the components could not be reached because of the size of the original joint deformity.

  3. A new three-dimensional, print-on-demand temporomandibular prosthetic total joint replacement system: Preliminary outcomes.

    PubMed

    Dimitroulis, George; Austin, Stephen; Sin Lee, Peter Vee; Ackland, David

    2018-05-16

    The aim of this study is to present the preliminary clinical data on the OMX Temporomandibular Joint (TMJ) Prosthetic total joint replacement system. A prospective, cohort, clinical study was undertaken of consecutive adult patients with Category 5 end-stage joint disease who were implanted with the OMX TMJ prosthesis between May 2015 and April 2017. A total of 50 devices were implanted in 38 patients, with 12 patients receiving bilateral prosthetic joints. There were 31 females and 7 males in this cohort, who ranged in age from 20 to 66 years, with a mean of 43.8 years (±14.0 years). Ten of the 50 prosthetic joints (20%) were fully customized, while the remaining were patient matched using virtual planning software. Based on a mean follow-up period of 15.3 months (range 12-24 months) following the TMJ total joint replacement, preliminary results suggest the OMX TMJ prosthesis has made a positive impact on clinical outcomes, with a mean 74.4% reduction in joint pain levels and significant improvements (p < 0.05) in jaw function as measured by the visual analogue scales for mouth opening (30.8%), diet (77.1%), and function (59.2%). No device failures were reported during the study period. This study suggests that the print-on-demand OMX TMJ prosthesis, designed for rapid delivery of both patient-matched and fully customize devices, represents a safe, reliable and versatile implantable joint replacement system for the treatment of category 5 end-stage TMJ disease. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement.

    PubMed

    Diomidis, N; Mischler, S; More, N S; Roy, Manish

    2012-02-01

    Knee and hip joint replacement implants involve a sliding contact between the femoral component and the tibial or acetabular component immersed in body fluids, thus making the metallic parts susceptible to tribocorrosion. Micro-motions occur at points of fixation leading to debris and ion release by fretting corrosion. β-Titanium alloys are potential biomaterials for joint prostheses due to their biocompatibility and compatibility with the mechanical properties of bone. The biotribocorrosion behavior of Ti-29Nb-13Ta-4.6Zr was studied in Hank's balanced salt solution at open circuit potential and at an applied potential in the passive region. Reciprocating sliding tribocorrosion tests were carried out against technical grade ultra high molecular weight polyethylene, while fretting corrosion tests were carried out against alumina. The wear of the alloy is insignificant when sliding against polyethylene. However, depassivation does take place, but the tested alloy showed an ability to recover its passive state during sliding. The abrasivity of the alloy depends on the electrochemical conditions of the contact, while the wear of polyethylene proceeds through third body formation and material transfer. Under fretting corrosion conditions recovery of the passive state was also achieved. In a fretting contact wear of the alloy proceeds through plastic deformation of the bulk material and wear resistance depends on the electrochemical conditions. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Nuclear medicine and the failed joint replacement: Past, present, and future

    PubMed Central

    Palestro, Christopher J

    2014-01-01

    (SPECT)/electronic computer X-ray tomography technique (CT) and the availability of fluorine-18 fluoride PET suggests that the diagnostic paradigm may be shifting again. By providing the anatomic information lacking in conventional radionuclide studies, there is renewed interest in bone scintigraphy, performed as a SPECT/CT procedure, for detecting joint instability, mechanical loosening and component malpositioning. Fluoride-PET may provide new insights into periprosthetic bone metabolism. The objective of this manuscript is to provide a comprehensive review of the evolution of nuclear medicine imaging of joint replacements. PMID:25071885

  6. The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction.

    PubMed

    Gibon, Emmanuel; Córdova, Luis A; Lu, Laura; Lin, Tzu-Hua; Yao, Zhenyu; Hamadouche, Moussa; Goodman, Stuart B

    2017-08-01

    Novel evidence-based prosthetic designs and biomaterials facilitate the performance of highly successful joint replacement (JR) procedures. To achieve this goal, constructs must be durable, biomechanically sound, and avoid adverse local tissue reactions. Different biomaterials such as metals and their alloys, polymers, ceramics, and composites are currently used for JR implants. This review focuses on (1) the biological response to the different biomaterials used for TJR and (2) the chronic inflammatory and foreign-body response induced by byproducts of these biomaterials. A homeostatic state of bone and surrounding soft tissue with current biomaterials for JR can be achieved with mechanically stable, infection free and intact (as opposed to the release of particulate or ionic byproducts) implants. Adverse local tissue reactions (an acute/chronic inflammatory reaction, periprosthetic osteolysis, loosening and subsequent mechanical failure) may evolve when the latter conditions are not met. This article (Part 2 of 2) summarizes the biological response to the non-metallic materials commonly used for joint replacement including polyethylene, ceramics, and polymethylmethacrylate (PMMA), as well as the foreign body reaction to byproducts of these materials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1685-1691, 2017. © 2016 Wiley Periodicals, Inc.

  7. Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements

    NASA Astrophysics Data System (ADS)

    Amirouche, Farid

    2008-06-01

    Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As

  8. Mechanical valve replacement in congenital heart disease.

    PubMed

    Fiane, A E; Lindberg, H L; Saatvedt, K; Svennevig, J L

    1996-05-01

    Mechanical valves are the prosthesis of choice in valve replacement in children. However, the problem of somatic growth leading to patient-valve mismatch remains present, and the appropriate anticoagulation regimen remains controversial. We present our experience of valve replacement in a young population over 20 years. Between 1972 and 1992, 48 patients (34 males and 14 females), mean age 11.2 years (range 0.4-27.4 years), underwent mechanical valve replacement at our institution. Aortic valve replacement was performed in 28 patients (58.3%), mitral valve replacement in 13 (27.1%), tricuspid valve replacement in six (12.5%) and pulmonary valve replacement in one patient (2.1%). The prostheses used were: St. Jude Medical (n = 2), Björk-Shiley (n = 14), Medtronic Hall (n = 16), Duromedics (n = 2) and CarboMedics (n = 14). Early mortality was 14.3%, 10.7% for aortic valve replacement and 30.8% for mitral valve replacement. Mean follow up for all patients was 8.3 years (range 0-22 years), with a total of 398 patient-years. Seven patients died during the follow up (17.1%). Survival after 10 years, including operative mortality, was 81% for aortic valve replacement, 33% for mitral valve replacement, 83% for tricuspid valve replacement and 100% for pulmonary valve replacement. All patients were anticoagulated with warfarin. In eight patients (16.7%) an antiplatelet drug (aspirin or dipyridamole) was added. Major events included paravalvular leak in six patients (1.5%/pty), valve thrombosis in five (mitral position in two, tricuspid in three) (1.3%/pty) and endocarditis in one patient (0.3%/pty). Minor thromboembolic events occurred in three patients (0.8%/pty) and minor hemorrhagic events in three (0.8%/pty). No patients developed hemolytic anemia and there was no case of structural failure. In our experience, mechanical prostheses in congenital heart disease were associated with significant morbidity and mortality, however long term survival after aortic valve

  9. Development and application of biomimetic electrospun nanofibers in total joint replacement

    NASA Astrophysics Data System (ADS)

    Song, Wei

    Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on

  10. Biomechanical analysis comparing natural and alloplastic temporomandibular joint replacement using a finite element model.

    PubMed

    Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A

    2011-04-01

    Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Rapid replacement of bridge deck expansion joints study - phase I : [tech transfer summary].

    DOT National Transportation Integrated Search

    2014-12-01

    This initial research phase focused on documenting the current : means and methods of bridge expansion joint deterioration, : maintenance, and replacement and on identifying improvements : through all of the input gathered.

  12. Influence of Total Knee Arthroplasty on Gait Mechanics of the Replaced and Non-Replaced Limb During Stair Negotiation.

    PubMed

    Standifird, Tyler W; Saxton, Arnold M; Coe, Dawn P; Cates, Harold E; Reinbolt, Jeffrey A; Zhang, Songning

    2016-01-01

    This study compared biomechanics during stair ascent in replaced and non-replaced limbs of total knee arthroplasty (TKA) patients with control limbs of healthy participants. Thirteen TKA patients and fifteen controls performed stair ascent. Replaced and non-replaced knees of TKA patients were less flexed at contact compared to controls. The loading response peak knee extension moment was greater in control and non-replaced knees compared with replaced. The push-off peak knee abduction moment was elevated in replaced limbs compared to controls. Loading and push-off peak hip abduction moments were greater in replaced limbs compared to controls. The push-off peak hip abduction moment was greater in non-replaced limbs compared to controls. Future rehabilitation protocols should consider the replaced knee and also the non-replaced knee and surrounding joints. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Recent advances and future directions in the management of knee osteoarthritis: Can biological joint reconstruction replace joint arthroplasty and when?

    PubMed Central

    Paschos, Nikolaos K

    2015-01-01

    In this article, a concise description of the recent advances in the field of osteoarthritis management is presented. The main focus is to highlight the most promising techniques that emerge in both biological joint replacement and artificial joint arthroplasty. A critical view of high quality evidence regarding outcome and safety profile of these techniques is presented. The potential role of kinematically aligned total knee replacement, navigation, and robotic-assisted surgery is outlined. A critical description of both primary and stem cell-based therapies, the cell homing theory, the use of biologic factors and recent advancements in tissue engineering and regenerative medicine is provided. Based on the current evidence, some thoughts on a realistic approach towards answering these questions are attempted. PMID:26495242

  14. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021.

    PubMed

    Kurtz, Steven M; Ong, Kevin L; Lau, Edmund; Bozic, Kevin J

    2014-04-16

    Few studies have explored the role of the National Health Expenditure and macroeconomics on the utilization of total joint replacement. The economic downturn has raised questions about the sustainability of growth for total joint replacement in the future. Previous projections of total joint replacement demand in the United States were based on data up to 2003 using a statistical methodology that neglected macroeconomic factors, such as the National Health Expenditure. Data from the Nationwide Inpatient Sample (1993 to 2010) were used with United States Census and National Health Expenditure data to quantify historical trends in total joint replacement rates, including the two economic downturns in the 2000s. Primary and revision hip and knee arthroplasty were identified using codes from the International Classification of Diseases, Ninth Revision, Clinical Modification. Projections in total joint replacement were estimated using a regression model incorporating the growth in population and rate of arthroplasties from 1993 to 2010 as a function of age, sex, race, and census region using the National Health Expenditure as the independent variable. The regression model was used in conjunction with government projections of National Health Expenditure from 2011 to 2021 to estimate future arthroplasty rates in subpopulations of the United States and to derive national estimates. The growth trend for the incidence of joint arthroplasty, for the overall United States population as well as for the United States workforce, was insensitive to economic downturns. From 2009 to 2010, the total number of procedures increased by 6.0% for primary total hip arthroplasty, 6.1% for primary total knee arthroplasty, 10.8% for revision total hip arthroplasty, and 13.5% for revision total knee arthroplasty. The National Health Expenditure model projections for primary hip replacement in 2020 were higher than a previously projected model, whereas the current model estimates for total

  15. On the stiffness matrix of the intervertebral joint: application to total disk replacement.

    PubMed

    O'Reilly, Oliver M; Metzger, Melodie F; Buckley, Jenni M; Moody, David A; Lotz, Jeffrey C

    2009-08-01

    The traditional method of establishing the stiffness matrix associated with an intervertebral joint is valid only for infinitesimal rotations, whereas the rotations featured in spinal motion are often finite. In the present paper, a new formulation of this stiffness matrix is presented, which is valid for finite rotations. This formulation uses Euler angles to parametrize the rotation, an associated basis, which is known as the dual Euler basis, to describe the moments, and it enables a characterization of the nonconservative nature of the joint caused by energy loss in the poroviscoelastic disk and ligamentous support structure. As an application of the formulation, the stiffness matrix of a motion segment is experimentally determined for the case of an intact intervertebral disk and compared with the matrices associated with the same segment after the insertion of a total disk replacement system. In this manner, the matrix is used to quantify the changes in the intervertebral kinetics associated with total disk replacements. As a result, this paper presents the first such characterization of the kinetics of a total disk replacement.

  16. Current Risk Adjustment and Comorbidity Index Underperformance in Predicting Post-Acute Utilization and Hospital Readmissions After Joint Replacements: Implications for Comprehensive Care for Joint Replacement Model.

    PubMed

    Kumar, Amit; Karmarkar, Amol; Downer, Brian; Vashist, Amit; Adhikari, Deepak; Al Snih, Soham; Ottenbacher, Kenneth

    2017-11-01

    To compare the performances of 3 comorbidity indices, the Charlson Comorbidity Index, the Elixhauser Comorbidity Index, and the Centers for Medicare & Medicaid Services (CMS) risk adjustment model, Hierarchical Condition Category (HCC), in predicting post-acute discharge settings and hospital readmission for patients after joint replacement. A retrospective study of Medicare beneficiaries with total knee replacement (TKR) or total hip replacement (THR) discharged from hospitals in 2009-2011 (n = 607,349) was performed. Study outcomes were post-acute discharge setting and unplanned 30-, 60-, and 90-day hospital readmissions. Logistic regression models were built to compare the performance of the 3 comorbidity indices using C statistics. The base model included patient demographics and hospital use. Subsequent models included 1 of the 3 comorbidity indices. Additional multivariable logistic regression models were built to identify individual comorbid conditions associated with high risk of hospital readmissions. The 30-, 60-, and 90-day unplanned hospital readmission rates were 5.3%, 7.2%, and 8.5%, respectively. Patients were most frequently discharged to home health (46.3%), followed by skilled nursing facility (40.9%) and inpatient rehabilitation facility (12.7%). The C statistics for the base model in predicting post-acute discharge setting and 30-, 60-, and 90-day readmission in TKR and THR were between 0.63 and 0.67. Adding the Charlson Comorbidity Index, the Elixhauser Comorbidity Index, or HCC increased the C statistic minimally from the base model for predicting both discharge settings and hospital readmission. The health conditions most frequently associated with hospital readmission were diabetes mellitus, pulmonary disease, arrhythmias, and heart disease. The comorbidity indices and CMS-HCC demonstrated weak discriminatory ability to predict post-acute discharge settings and hospital readmission following joint replacement. © 2017, American College of

  17. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation.

    PubMed

    Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George

    2017-05-01

    Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage

  18. Burden of Restraint, Disablement and Ethnic Identity: A Case Study of Total Joint Replacement for Osteoarthritis

    PubMed Central

    Harrison, Tracie

    2010-01-01

    Health disparities in total joint replacement have been documented based on gender and ethnicity in multiple countries. Absent are studies exploring the meaning of the procedures among diverse women, which is necessary to fully understand the impact of the disparity. Drawing on ethnographic data from a life course exploration of disablement among Mexican American women with mobility impairments, one woman’s reasons for forgoing a joint replacement are considered. It is suggested that inequalities in disablement cannot be understood without considering the mulitple cultural conflicts and loyalties that push and pull women in multiple directions. PMID:21767094

  19. Towards computer-assisted surgery in shoulder joint replacement

    NASA Astrophysics Data System (ADS)

    Valstar, Edward R.; Botha, Charl P.; van der Glas, Marjolein; Rozing, Piet M.; van der Helm, Frans C. T.; Post, Frits H.; Vossepoel, Albert M.

    A research programme that aims to improve the state of the art in shoulder joint replacement surgery has been initiated at the Delft University of Technology. Development of improved endoprostheses for the upper extremities (DIPEX), as this effort is called, is a clinically driven multidisciplinary programme consisting of many contributory aspects. A part of this research programme focuses on the pre-operative planning and per-operative guidance issues. The ultimate goal of this part of the DIPEX project is to create a surgical support infrastructure that can be used to predict the optimal surgical protocol and can assist with the selection of the most suitable endoprosthesis for a particular patient. In the pre-operative planning phase, advanced biomechanical models of the endoprosthesis fixation and the musculo-skeletal system of the shoulder will be incorporated, which are adjusted to the individual's morphology. Subsequently, the support infrastructure must assist the surgeon during the operation in executing his surgical plan. In the per-operative phase, the chosen optimal position of the endoprosthesis can be realised using camera-assisted tools or mechanical guidance tools. In this article, the pathway towards the desired surgical support infrastructure is described. Furthermore, we discuss the pre-operative planning phase and the per-operative guidance phase, the initial work performed, and finally, possible approaches for improving prosthesis placement.

  20. Evaluation of a bisphosphonate enriched ultra-high molecular weight polyethylene for enhanced total joint replacement bearing surface functionality

    NASA Astrophysics Data System (ADS)

    Wright-Walker, Cassandra Jane

    Each year in the United States there is an increasing trend of patients receiving total joint replacement (TJR) procedures. Approximately a half million total knee replacements (TKRs) are performed annually in the United States with increasing prevalence attributed to baby-boomers, obesity, older, and younger patients. This trend is also seen for total hip replacements (THRs) as well. The use of ultra high molecular weight polyethylene (UHMWPE) inserts in TJRs results in wear particle-induced osteolysis, which is the predominant cause for prosthesis failure and revision surgery. Sub-micron size particle generation is inevitable despite the numerous efforts in improving this bearing material. Work by others has shown that the use of oral and intravenous systemic bisphosphonates (BP) can significantly minimize periprosthetic osteolysis. However, the systemic delivery and the high solubility of BPs results in a predominant portion of the drug being excreted via the kidney without reaching its target, bone. This doctoral research project is focused on the development and evaluation of a novel method to administer BPs locally using the inherent wear of UHMWPE for possible use as an anti-osteolysis treatment. For new materials to be considered, they must be mechanically and tribologically comparable to the current gold standard, UHMWPE. In order to evaluate this material, mechanical, drug elution and tribological experiments were performed to allow assessment of material properties. Tensile tests showed comparable yield stress and pin-on-disk testing showed comparable wear to standard virgin UHMWPE. Further, drug elution tests have shown that BP was released from the enriched material both in static and dynamic conditions. Additionally, an aggressive 2 million cycle total knee simulator experiment has shown statistically similar wear results for the two materials. Overall, this research has provided the groundwork for further characterization and development of a new

  1. Associations between socioeconomic status and primary total knee joint replacements performed for osteoarthritis across Australia 2003-10: data from the Australian Orthopaedic Association National Joint Replacement Registry.

    PubMed

    Brennan, Sharon L; Lane, Stephen E; Lorimer, Michelle; Buchbinder, Rachelle; Wluka, Anita E; Page, Richard S; Osborne, Richard H; Pasco, Julie A; Sanders, Kerrie M; Cashman, Kara; Ebeling, Peter R; Graves, Stephen E

    2014-10-28

    Relatively little is known about the social distribution of total knee joint replacement (TKR) uptake in Australia. We examine associations between socioeconomic status (SES) and TKR performed for diagnosed osteoarthritis 2003-10 for all Australian males and females aged ≥ 30 yr. Data of primary TKR (n=213,018, 57.4% female) were ascertained from a comprehensive national joint replacement registry. Residential addresses were matched to Australian Census data to identify area-level social disadvantage, and categorised into deciles. Estimated TKR rates were calculated. Poisson regression was used to model the relative risk (RR) of age-adjusted TKR per 1,000py, stratified by sex and SES. A negative relationship was observed between TKR rates and SES deciles. Females had a greater rate of TKR than males. Surgery utilisation was greatest for all adults aged 70-79 yr. In that age group differences in estimated TKR per 1,000py between deciles were greater for 2010 than 2003 (females: 2010 RR 4.32 and 2003 RR 3.67; males: 2010 RR 2.04 and 2003 RR 1.78). Identifying factors associated with TKR utilisation and SES may enhance resource planning and promote surgery utilisation for end-stage osteoarthritis.

  2. Post-Traumatic Osteoarthritis in Mice Following Mechanical Injury to the Synovial Joint

    PubMed Central

    Rai, Muhammad Farooq; Duan, Xin; Quirk, James D.; Holguin, Nilsson; Schmidt, Eric J.; Chinzei, Nobuaki; Silva, Matthew J.; Sandell, Linda J.

    2017-01-01

    We investigated the spectrum of lesions characteristic of post-traumatic osteoarthritis (PTOA) across the knee joint in response to mechanical injury. We hypothesized that alteration in knee joint stability in mice reproduces molecular and structural features of PTOA that would suggest potential therapeutic targets in humans. The right knees of eight-week old male mice from two recombinant inbred lines (LGXSM-6 and LGXSM-33) were subjected to axial tibial compression. Three separate loading magnitudes were applied: 6N, 9N, and 12N. Left knees served as non-loaded controls. Mice were sacrificed at 5, 9, 14, 28, and 56 days post-loading and whole knee joint changes were assessed by histology, immunostaining, micro-CT, and magnetic resonance imaging. We observed that tibial compression disrupted joint stability by rupturing the anterior cruciate ligament (except for 6N) and instigated a cascade of temporal and topographical features of PTOA. These features included cartilage extracellular matrix loss without proteoglycan replacement, chondrocyte apoptosis at day 5, synovitis present at day 14, osteophytes, ectopic calcification, and meniscus pathology. These findings provide a plausible model and a whole-joint approach for how joint injury in humans leads to PTOA. Chondrocyte apoptosis, synovitis, and ectopic calcification appear to be targets for potential therapeutic intervention. PMID:28345597

  3. Early medication use in new-onset rheumatoid arthritis may delay joint replacement: results of a large population-based study.

    PubMed

    Moura, Cristiano S; Abrahamowicz, Michal; Beauchamp, Marie-Eve; Lacaille, Diane; Wang, Yishu; Boire, Gilles; Fortin, Paul R; Bessette, Louis; Bombardier, Claire; Widdifield, Jessica; Hanly, John G; Feldman, Debbie; Maksymowych, Walter; Peschken, Christine; Barnabe, Cheryl; Edworthy, Steve; Bernatsky, Sasha

    2015-08-03

    Use of disease-modifying anti-rheumatic drugs (DMARDs) in rheumatoid arthritis (RA) may prevent joint damage and potentially reduce joint replacement surgeries. We assessed the association between RA drug use and joint replacement in Quebec, Canada. A cohort of new-onset RA patients was identified from Quebec's physician billing and hospitalization databases from 2002-2011. The outcome was defined using procedure codes submitted by orthopedic surgeons. Medication use was obtained from pharmacy databases. We used alternative Cox regression models with time-dependent variables measuring the cumulative effects of past use during different time windows (one model focussing on the first year after cohort entry) for methotrexate (MTX), and other DMARDs. Models were adjusted for baseline sociodemographics, co-morbidity and prior health service use, time-dependent cumulative use of other drugs (anti-tumor necrosis factor [anti-TNF] agents, other biologics, cyclooxygenase-2 inhibitors [COXIBs], nonselective nonsteroidal antiinflammatory drugs [NSAIDs], and systemic steroids), and markers of disease severity. During follow-up, 608 joint replacements occurred among 11,333 patients (median follow-up: 4.6 years). The best-fitting model relied on the cumulative early use (within the first year after cohort entry) of MTX and of other DMARDs, with an interaction between MTX and other DMARDs. In this model, greater exposure within the first year, to either MTX (adjusted hazard ratio, HR = 0.95 per 1 month, 95% confidence interval, 95% CI 0.93-0.97) or other DMARDs (HR = 0.97, 95% CI 0.95-0.99) was associated with longer time to joint replacement. Our results suggest that longer exposure to either methotrexate (MTX) or other DMARDs within the first year after RA diagnosis is associated with longer time to joint replacement surgery.

  4. Appropriateness for Total Joint Replacement: Perspectives of Decision-Makers

    PubMed Central

    Clavel, Nathalie; De coster, Carolyn; Pomey, Marie-Pascale; Sanmartin, Claudia; Bohm, Éric; Dunbar, Michael J.; Frank, CY; Hawker, Gillian; Noseworthy, Tom

    2016-01-01

    Background: Improving access to total joint replacement (TJR) has been a priority. Without robust mechanisms to ensure appropriateness, these procedures may be overused, incurring substantial costs. In that context, decision-makers are particularly concerned with the appropriateness of TJR. Objective: While our previous research focused on the appropriateness of TJR from clinical and patient perspectives, this study is aimed at understanding decision-makers' perspectives. Methods: Using a semi-structured guide, we interviewed a convenience sample of decision-makers in four Canadian provinces (Alberta, Manitoba, Nova Scotia and Quebec) between February and March 2013. For the purposes of this study, a decision-maker was defined as a manager, institutional leader or policy maker. Results: Fifteen interviews were conducted with decision-makers at ministry (n = 3), regional (n = 6) and institutional levels (n = 8). Decision-makers see themselves as having a key role in the appropriateness discourse, that of optimizing resource allocation and efficient delivery of services for TJR, to improve population outcomes. Conclusion: The decision-makers' view of appropriateness recognizes the importance of the clinical view, but it offers a very different input into the appropriateness discourse, more closely aligned with appropriateness of setting, which refers to cost-effectiveness considerations. PMID:27027795

  5. Total Hip Joint Replacement Biotelemetry System

    NASA Technical Reports Server (NTRS)

    Boreham, J. F.; Postal, R. B.; Luntz, R. A.

    1981-01-01

    The development of a biotelemetry system that is hermetically sealed within a total hip replacement implant is reported. The telemetry system transmits six channels of stress data to reconstruct the major forces acting on the neck of the prosthesis and uses an induction power coupling technique to eliminate the need for internal batteries. The activities associated with the telemetry microminiaturization, data recovery console, hardware fabrications, power induction systems, electrical and mechanical testing and hermetic sealing test results are discussed.

  6. Satisfaction with joint replacement in public versus private hospitals: a cohort study.

    PubMed

    Adie, Sam; Dao, Alan; Harris, Ian A; Naylor, Justine M; Mittal, Rajat

    2012-09-01

    In Australia, the majority of total knee and hip replacement surgeries occur in the private sector. Outcome-based research needs to be inclusive of this sector if the findings are intended to reflect the broader picture. This study compares outcomes up to 1 year post knee and hip replacement between patients treated in the public and private sectors. A prospective, observational study was performed in four high-volume joint replacement centres: two public, two private. Experienced orthopaedic surgeons contributed via their public and private practices. Knee and hip patients were recruited preoperatively. Self-reported questionnaires were completed preoperatively and at 6 and 12 months post-operatively. The primary outcome was satisfaction with surgery. Secondary outcomes included Oxford score, and SF-36 physical and mental component summary scores. Regression modelling was performed to adjust for potential confounders. Three hundred and thirty-one patients (184 public, 147 private; 215 knees, 116 hips) were recruited, with 6- and 12-month follow-up rates of 95% and 89%, respectively. Satisfaction rates were high in both public and private patients (approximately 90%) at 6 and 12 months, but private patients were less likely to be satisfied after adjusting for the strong effect of patient expectation. For both hip and knee cohorts, no between-sector differences were found in either the magnitude or rate of improvement in Oxford score or quality of life post-operatively. Joint replacement outcomes are similar for patients treated in public and private hospitals. Surgeons should manage patient expectation prior to surgery, particularly in private patients. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.

  7. Mechanical end joint system for structural column elements

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Wallsom, R. E. (Inventor)

    1982-01-01

    A mechanical end joint system, useful for the transverse connection of strut elements to a common node, comprises a node joint half with a semicircular tongue and groove, and a strut joint half with a semicircular tongue and groove. The two joint halves are engaged transversely and the connection is made secure by the inherent physical property characteristics of locking latches and/or by a spring-actioned shaft. A quick release mechanism provides rapid disengagement of the joint halves.

  8. The Interface of Mechanics and Nociception in Joint Pathophysiology: Insights From the Facet and Temporomandibular Joints

    PubMed Central

    Sperry, Megan M.; Ita, Meagan E.; Kartha, Sonia; Zhang, Sijia; Yu, Ya-Hsin; Winkelstein, Beth

    2017-01-01

    Chronic joint pain is a widespread problem that frequently occurs with aging and trauma. Pain occurs most often in synovial joints, the body's load bearing joints. The mechanical and molecular mechanisms contributing to synovial joint pain are reviewed using two examples, the cervical spinal facet joints and the temporomandibular joint (TMJ). Although much work has focused on the macroscale mechanics of joints in health and disease, the combined influence of tissue mechanics, molecular processes, and nociception in joint pain has only recently become a focus. Trauma and repeated loading can induce structural and biochemical changes in joints, altering their microenvironment and modifying the biomechanics of their constitutive tissues, which themselves are innervated. Peripheral pain sensors can become activated in response to changes in the joint microenvironment and relay pain signals to the spinal cord and brain where pain is processed and perceived. In some cases, pain circuitry is permanently changed, which may be a potential mechanism for sustained joint pain. However, it is most likely that alterations in both the joint microenvironment and the central nervous system (CNS) contribute to chronic pain. As such, the challenge of treating joint pain and degeneration is temporally and spatially complicated. This review summarizes anatomy, physiology, and pathophysiology of these joints and the sensory pain relays. Pain pathways are postulated to be sensitized by many factors, including degeneration and biochemical priming, with effects on thresholds for mechanical injury and/or dysfunction. Initiators of joint pain are discussed in the context of clinical challenges including the diagnosis and treatment of pain. PMID:28056123

  9. Outcomes of a Joint Replacement Surgical Home Model Clinical Pathway

    PubMed Central

    Chaurasia, Avinash; Garson, Leslie; Kain, Zeev L.; Schwarzkopf, Ran

    2014-01-01

    Optimizing perioperative care to provide maximum benefit at minimum cost may be best achieved using a perioperative clinical pathway (PCP). Using our joint replacement surgical home (JSH) model PCP, we examined length of stay (LOS) following total joint arthroplasty (TJA) to evaluate patient care optimization. We reviewed a spectrum of clinical measurements in 190 consecutive patients who underwent TJA. Patients who had surgery earlier in the week and who were earlier cases of the day had a significantly lower LOS than patients whose cases started both later in the week and later in the day. Patients discharged home had significantly lower LOS than those discharged to a secondary care facility. Patients who received regional versus general anesthesia had a significantly lower LOS. Scheduling patients discharged to home and who will likely receive regional anesthesia for the earliest morning slot and earlier in the week may help decrease overall LOS. PMID:25025045

  10. Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading.

    PubMed

    Wu, Yabin; Stoddart, Martin J; Wuertz-Kozak, Karin; Grad, Sibylle; Alini, Mauro; Ferguson, Stephen J

    2017-08-01

    Articular cartilage plays an essential role in joint lubrication and impact absorption. Through this, the mechanical signals are coupled to the tissue's physiological response. Healthy synovial fluid has been shown to reduce and homogenize the shear stress acting on the cartilage surfaces due to its unique shear-thinning viscosity. As cartilage tissues are sensitive to mechanical changes in articulation, it was hypothesized that replacing the traditional culture medium with a healthy non-Newtonian lubricant could enhance tissue development in a cartilage engineering model, where joint-kinematic-mimicking mechanical loading is applied. Different amounts of hyaluronic acid were added to the culture medium to replicate the viscosities of synovial fluid at different health states. Hyaluronic acid supplementation, especially at a physiologically healthy concentration (2.0 mg ml -1 ), promoted a better preservation of chondrocyte phenotype. The ratio of collagen II to collagen I mRNA was 4.5 times that of the control group, implying better tissue development (however, with no significant difference of measured collagen II content), with a good retention of collagen II and proteoglycan in the mechanically active region. Simulating synovial fluid properties by hyaluronic acid supplementation created a favourable mechanical environment for mechanically loaded constructs. These findings may help in understanding the influence of joint articulation on tissue homeostasis, and moreover, improve methods for functional cartilage tissue engineering. © 2017 The Author(s).

  11. Patients' journeys through total joint replacement: patterns of medication use.

    PubMed

    Johnson, Emma C; Horwood, Jeremy; Gooberman-Hill, Rachael

    2014-06-01

    Medication is used to manage pain that results from both osteoarthritis and total joint replacement (TJR). Research has provided insight into how people living with osteoarthritis use pain relief medication. However, it is not known whether elective TJR affects existing attitudes and behaviours with regard to pain medications. Using qualitative methods, the present study explored patterns of pain relief use around the time of TJR. In-depth face-to-face qualitative interviews were carried out with 24 patients two to four weeks after they had undergone TJR for hip or knee osteoarthritis. Participants were asked to reflect on their use of pain medication pre-surgery, while in hospital and while recovering from their operation at home. Transcripts of the audio-recorded interviews were imported into Atlas.ti® and thematic analysis was used. Attitudes to pain relief medication and their use are not static. Many participants change their use of pain medication around the time of surgery. This shift was influenced by interactions with health professionals and changing views on the acceptability, necessity and value of pain relief in helping to manage an altered pain experience. Understanding reasons for medication-taking behaviour during the journey through joint replacement may be helpful to health professionals. Health professionals have a fundamental role to play in challenging or reinforcing different treatment beliefs, which is the basis for effective use of pain relief over the pre- to postoperative period. © 2013 John Wiley & Sons, Ltd.

  12. Efficient rehabilitation care for joint replacement patients: skilled nursing facility or inpatient rehabilitation facility?

    PubMed

    Tian, Wenqiang; DeJong, Gerben; Horn, Susan D; Putman, Koen; Hsieh, Ching-Hui; DaVanzo, Joan E

    2012-01-01

    There has been lengthy debate as to which setting, skilled nursing facility (SNF) or inpatient rehabilitation facility (IRF), is more efficient in treating joint replacement patients. This study aims to determine the efficiency of rehabilitation care provided by SNF and IRF to joint replacement patients with respect to both payment and length of stay (LOS). This study used a prospective multisite observational cohort design. Tobit models were used to examine the association between setting of care and efficiency. The study enrolled 948 knee replacement patients and 618 hip replacement patients from 11 IRFs and 7 SNFs between February 2006 and February 2007. Output was measured by motor functional independence measure (FIM) score at discharge. Efficiency was measured in 3 ways: payment efficiency, LOS efficiency, and stochastic frontier analysis efficiency. IRF patients incurred higher expenditures per case but also achieved larger motor FIM gains in shorter LOS than did SNF patients. Setting of care was not a strong predictor of overall efficiency of rehabilitation care. Great variation in characteristics existed within IRFs or SNFs and severity groups. Medium-volume facilities among both SNFs and IRFs were most efficient. Early rehabilitation was consistently predictive of efficient treatment. The advantage of either setting is not clear-cut. Definition of efficiency depends in part on preference between cost and time. SNFs are more payment efficient; IRFs are more LOS efficient. Variation within SNFs and IRFs blurred setting differences; a simple comparison between SNF and IRF may not be appropriate.

  13. A prospective study on the risk of glove fingertip contamination during draping in joint replacement surgery.

    PubMed

    Makki, D; Deierl, K; Pandit, A; Trakru, S

    2014-09-01

    The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon's grade, the type of procedure, the role of the assistant and the dominance of the hand. A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1-5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection.

  14. Experience with the use of a partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft.

    PubMed

    Birk, Stephanie; Brase, Christoph; Hornung, Joachim

    2014-08-01

    In the further development of alloplastic prostheses for use in middle ear surgery, the Dresden and Cologne University Hospitals, working together with a company, introduced a new partial ossicular replacement prosthesis in 2011. The ball-and-socket joint between the prosthesis and the shaft mimics the natural articulations between the malleus and incus and between the incus and stapes, allowing reaction to movements of the tympanic membrane graft, particularly during the healing process. Retrospective evaluation To reconstruct sound conduction as part of a type III tympanoplasty, partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft was implanted in 60 patients, with other standard partial ossicular replacement prosthesis implanted in 40 patients and 64 patients. Pure-tone audiometry was carried out, on average, 19 and 213 days after surgery. Results of the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft were compared with those of the standard prostheses. Early measurements showed a mean improvement of 3.3 dB in the air-bone gap (ABG) with the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft, giving similar results than the standard implants (6.6 and 6.0 dB, respectively), but the differences were not statistically significant. Later measurements showed a statistically significant improvement in the mean ABG, 11.5 dB, compared with 4.4 dB for one of the standard partial ossicular replacement prosthesis and a tendency of better results to 6.9 dB of the other standard prosthesis. In our patients, we achieved similarly good audiometric results to those already published for the partial ossicular replacement prosthesis with a ball-and-socket joint between the plate and the shaft. Intraoperative fixation posed no problems, and the postoperative complication rate was low.

  15. Implications of the Definition of an Episode of Care Used in the Comprehensive Care for Joint Replacement Model.

    PubMed

    Ellimoottil, Chad; Ryan, Andrew M; Hou, Hechuan; Dupree, James M; Hallstrom, Brian; Miller, David C

    2017-01-01

    Under the Comprehensive Care for Joint Replacement (CJR) model, hospitals are held accountable for nearly all Medicare payments that occur during the initial hospitalization until 90 days after hospital discharge (ie, the episode of care). It is not known whether unrelated expenditures resulting from this "broad" definition of an episode of care will affect participating hospitals' average episode-of-care payments. To compare the CJR program's broad definition of an episode of care with a clinically narrow definition of an episode of care. We identified Medicare claims for 23 251 patients in Michigan who were Medicare beneficiaries and who underwent joint replacement during the period from 2011 through 2013 at hospitals located in metropolitan statistical areas. Using specifications from the CJR model and the clinically narrow Hospital Compare payment measure, we constructed episodes of care and calculated 90-day episode payments. We then compared hospitals' average 90-day episode payments using the 2 definitions of an episode of care and fit linear regression models to understand whether payment differences were associated with specific hospital characteristics (average Centers for Medicare & Medicaid Services-hierarchical condition categories risk score, rural hospital status, joint replacement volume, percentage of Medicaid discharges, teaching hospital status, number of beds, percentage of joint replacements performed on African American patients, and median income of the hospital's county). We performed analyses from July 1 through October 1, 2015. The correlation and difference between average 90-day episode payments using the broad definition of an episode of care in the CJR model and the clinically narrow Hospital Compare definition of an episode of care. We identified 23 251 joint replacements (ie, episodes of care). The 90-day episode payments using the broad definition of the CJR model ranged from $17 349 to $29 465 (mean [SD] payment, $22 122

  16. Mechanical end joint system for connecting structural column elements

    NASA Technical Reports Server (NTRS)

    Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor)

    1990-01-01

    A mechanical end joint system is presented that eliminates the possibility of free movements between the joint halves during loading or vibration. Both node joint body (NJB) and column end joint body (CEJB) have cylindrical engaging ends. Each of these ends has an integral semicircular tongue and groove. The two joint halves are engaged transversely - the tongue of the NJB mating with the groove of the CEJB and vice versa. The joint system employs a spring loaded internal latch mechanism housed in the CEJB. During mating, this mechanism is pushed away from the NJB and enters the NJB when mating is completed. In order to lock the joint and add a preload across the tongue and groove faces, an operating ring collar is rotated through 45 deg causing an internal mechanism to compress a Belleville washer preload mechanism. This causes an equal and opposite force to be exerted on the latch bolt and the latch plunger. This force presses the two joint halves tightly together. In order to prevent inadvertent disassembly, a secondary lock is also engaged when the joint is closed. Plungers are carried in the operating ring collar. When the joint is closed, the plungers fall into tracks on the CEJB, which allows the joint to be opened only when the operating ring collar and plungers are pushed directly away from the joining end. One application of this invention is the rapid assembly and disassembly of diverse skeletal framework structures which is extremely important in many projects involving the exploration of space.

  17. Influence of Substrate Heating and Nitrogen Flow on the Composition, Morphological and Mechanical Properties of SiNx Coatings Aimed for Joint Replacements

    PubMed Central

    Skjöldebrand, Charlotte; Schmidt, Susann; Vuong, Vicky; Pettersson, Maria; Grandfield, Kathryn; Högberg, Hans; Engqvist, Håkan; Persson, Cecilia

    2017-01-01

    Silicon nitride (SiNx) coatings are promising for joint replacement applications due to their high wear resistance and biocompatibility. For such coatings, a higher nitrogen content, obtained through an increased nitrogen gas supply, has been found to be beneficial in terms of a decreased dissolution rate of the coatings. The substrate temperature has also been found to affect the composition as well as the microstructure of similar coatings. The aim of this study was to investigate the effect of the substrate temperature and nitrogen flow on the coating composition, microstructure and mechanical properties. SiNx coatings were deposited onto CoCrMo discs using reactive high power impulse magnetron sputtering. During deposition, the substrate temperatures were set to 200 °C, 350 °C or 430 °C, with nitrogen-to-argon flow ratios of 0.06, 0.17 or 0.30. Scanning and transmission electron spectroscopy revealed that the coatings were homogenous and amorphous. The coatings displayed a nitrogen content of 23–48 at.% (X-ray photoelectron spectroscopy). The surface roughness was similar to uncoated CoCrMo (p = 0.25) (vertical scanning interferometry). The hardness and Young’s modulus, as determined from nanoindentation, scaled with the nitrogen content of the coatings, with the hardness ranging from 12 ± 1 GPa to 26 ± 2 GPa and the Young’s moduli ranging from 173 ± 8 GPa to 293 ± 18 GPa, when the nitrogen content increased from 23% to 48%. The low surface roughness and high nano-hardness are promising for applications exposed to wear, such as joint implants. PMID:28772532

  18. The effect of local anaesthetic wound infiltration on chronic pain after lower limb joint replacement: A protocol for a double-blind randomised controlled trial

    PubMed Central

    2011-01-01

    Background For the majority of patients with osteoarthritis (OA), joint replacement is a successful intervention for relieving chronic joint pain. However, between 10-30% of patients continue to experience chronic pain after joint replacement. Evidence suggests that a risk factor for chronic pain after joint replacement is the severity of acute post-operative pain. The aim of this randomised controlled trial (RCT) is to determine if intra-operative local anaesthethic wound infiltration additional to a standard anaethesia regimen can reduce the severity of joint pain at 12-months after total knee replacement (TKR) and total hip replacement (THR) for OA. Methods 300 TKR patients and 300 THR patients are being recruited into this single-centre double-blind RCT. Participants are recruited before surgery and randomised to either the standard care group or the intervention group. Participants and outcome assessors are blind to treatment allocation throughout the study. The intervention consists of an intra-operative local anaesthetic wound infiltration, consisting of 60 mls of 0.25% bupivacaine with 1 in 200,000 adrenaline. Participants are assessed on the first 5 days post-operative, and then at 3-months, 6-months and 12-months. The primary outcome is the WOMAC Pain Scale, a validated measure of joint pain at 12-months. Secondary outcomes include pain severity during the in-patient stay, post-operative nausea and vomiting, satisfaction with pain relief, length of hospital stay, joint pain and disability, pain sensitivity, complications and cost-effectiveness. A nested qualitative study within the RCT will examine the acceptability and feasibility of the intervention for both patients and healthcare professionals. Discussion Large-scale RCTs assessing the effectiveness of a surgical intervention are uncommon, particulary in orthopaedics. The results from this trial will inform evidence-based recommendations for both short-term and long-term pain management after lower

  19. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO2-Shielded Arc

    NASA Astrophysics Data System (ADS)

    Wahba, M.; Mizutani, M.; Katayama, S.

    2016-07-01

    With the objective of reducing the operating costs, argon-rich shielding gas was replaced by 100% CO2 gas in hybrid laser-arc welding of shipbuilding steel. The welding parameters were optimized to obtain buried-arc transfer in order to mitigate spatter formation. Sound butt joints could be successfully produced for plates of 14 and 17 mm thickness in one welding pass. Subsequently, the welded joints were subjected to different tests to evaluate the influence of CO2 shielding gas on the mechanical properties of the welded joints. All tensile-tested specimens failed in the base material, indicating the higher strength of the welded joints. The impact toughness of the welded joints, measured at -20 °C, reached approximately 76% of that of the base material, which was well above the limit set by the relevant standard. The microstructure of the fusion zone consisted of grain boundary ferrite and acicular ferrite uniformly over the plate thickness except for the joint root where the microstructure was chiefly ferrite with an aligned second phase. This resulted in higher hardness in the root region compared with the top and middle parts of the fusion zone.

  20. Knee joint mobilization reduces secondary mechanical hyperalgesia induced by capsaicin injection into the ankle joint.

    PubMed

    Sluka, K A; Wright, A

    2001-01-01

    Joint mobilization is a treatment approach commonly used by physical therapists for the management of a variety of painful conditions. However, the clinical effectiveness when compared to placebo and the neurophysiological mechanism of action are not known. The purpose of this study was to establish that application of a manual therapy technique will produce antihyperalgesia in an animal model of joint inflammation and that the antihyperalgesia produced by joint mobilization depends on the time of treatment application. Capsaicin (0.2%, 50 microl) was injected into the lateral aspect of the left ankle joint and mechanical withdrawal threshold assessed before and after capsaicin injection in Sprague-Dawley rats. Joint mobilization of the ipsilateral knee joint was performed 2 h after capsaicin injection for a total of 3 min, 9 min or 15 min under halothane anaesthesia. Control groups included animals that received halothane for the same time as the group that received joint mobilization and those whose limbs were held for the same duration as the mobilization (no halothane). Capsaicin resulted in a decreased mechanical withdrawal threshold by 2 h after injection that was maintained through 4 h. Both 9 and 15 min of mobilization, but not 3 min of mobilization, increased the withdrawal threshold to mechanical stimuli to baseline values when compared with control groups. The antihyperalgesic effect of joint mobilization lasted 30 min. Thus, joint mobilization (9 or 15 min duration) produces a significant reversal of secondary mechanical hyperalgesia induced by intra-articular injection of capsaicin. Copyright 2001 European Federation of Chapters of the International Association for the Study of Pain.

  1. Impact of mechanical heterogeneity on joint density in a welded ignimbrite

    NASA Astrophysics Data System (ADS)

    Soden, A. M.; Lunn, R. J.; Shipton, Z. K.

    2016-08-01

    Joints are conduits for groundwater, hydrocarbons and hydrothermal fluids. Robust fluid flow models rely on accurate characterisation of joint networks, in particular joint density. It is generally assumed that the predominant factor controlling joint density in layered stratigraphy is the thickness of the mechanical layer where the joints occur. Mechanical heterogeneity within the layer is considered a lesser influence on joint formation. We analysed the frequency and distribution of joints within a single 12-m thick ignimbrite layer to identify the controls on joint geometry and distribution. The observed joint distribution is not related to the thickness of the ignimbrite layer. Rather, joint initiation, propagation and termination are controlled by the shape, spatial distribution and mechanical properties of fiamme, which are present within the ignimbrite. The observations and analysis presented here demonstrate that models of joint distribution, particularly in thicker layers, that do not fully account for mechanical heterogeneity are likely to underestimate joint density, the spatial variability of joint distribution and the complex joint geometries that result. Consequently, we recommend that characterisation of a layer's compositional and material properties improves predictions of subsurface joint density in rock layers that are mechanically heterogeneous.

  2. Regenerative Medicine and Restoration of Joint Function

    DTIC Science & Technology

    2014-12-01

    to resist fracture and excessive deformation under antici- pated mechanical loading conditions both during the early healing process and for longer...per sample type), the results sug- gest a correlation between percent fractured sinter neck area and mechanical properties with the lowest bending...joint replacement are used to treat a joint with an intra-articular fracture or destroyed by a combat injury. Generation of personalized, anatomically

  3. A prospective study on the risk of glove fingertip contamination during draping in joint replacement surgery

    PubMed Central

    Deierl, K; Pandit, A; Trakru, S

    2014-01-01

    Introduction The aim of this prospective study was to investigate the risk of contamination of surgical gloves during preparation and draping in joint replacement surgery. Methods During 46 hip and knee replacement procedures, the gloves of orthopaedic consultants (n=5) and registrars (n=3) were assessed for contamination immediately after draping by impression of gloved fingers on blood agar. Contamination was evaluated by the surgeon’s grade, the type of procedure, the role of the assistant and the dominance of the hand. Results A total of 125 pairs of top gloves were examined (79 pairs from registrars and 46 pairs from consultants). Bacterial contamination was isolated on 19 pairs (15.2%) (16 pairs from registrars and 3 pairs from consultants, p=0.04). Coagulase negative staphylococci were the main isolates and contamination was considered low in all cases (1–5 colonies). Contamination was seen more on the dominant hand (16 gloves from dominant hands and 6 from non-dominant hands, p=0.04), on the index finger and thumb. More contaminated gloves were seen in hip arthroplasty procedures (16 pairs from total hip replacements vs 3 pairs from total knee replacements, p=0.02). Conclusions Contamination of glove fingertips during draping in joint replacement procedures is more likely to occur among junior surgeons, in hip rather than knee arthroplasty procedures and on the dominant hand. It is therefore essential that surgeons of different grades replace gloves used in draping to avoid exposing patients to the risk of infection. PMID:25198974

  4. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint

    PubMed Central

    Zhang, Xiangming

    2011-01-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141

  5. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    PubMed

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  6. Glenoid labrum ossification and mechanical restriction of joint motion: extraosseous manifestations of melorheostosis.

    PubMed

    Subhas, N; Sundaram, M; Bauer, T W; Seitz, W H; Recht, M P

    2008-02-01

    We report a case of a 47-year-old man who presented with progressive loss of motion and pain in the right shoulder. Radiographs of the shoulder demonstrated dense ossification in the glenoid and humeral head with extension into the periarticular soft tissues. CT and MRI scans confirmed the radiographic findings and also revealed ossification of the glenoid labrum. A radiographic diagnosis of melorheostosis, an uncommon benign sclerosing bone dysplasia, was made. Because of the patient's severe symptomatology, he underwent total shoulder arthroplasty. Histological analysis of the resected masses was consistent with melorheostosis with a few areas covered by a cartilage cap. This case illustrates several uncommon but important features of melorheostosis, including mechanical obstruction of joint motion requiring joint replacement, ossification of the glenoid labrum, and cartilage-covering portions of the intra-articular masses, not to be confused with cartilage-producing tumors.

  7. Patterns of Ninety-Day Readmissions Following Total Joint Replacement in a Bundled Payment Initiative.

    PubMed

    Behery, Omar A; Kester, Benjamin S; Williams, Jarrett; Bosco, Joseph A; Slover, James D; Iorio, Richard; Schwarzkopf, Ran

    2017-04-01

    Alternative payment models aim to improve quality and decrease costs associated with total joint replacement. Postoperative readmissions within 90 days are of interest to clinicians and administrators as there is no additional reimbursement beyond the episode bundled payment target price. The aim of this study is to improve the understanding of the patterns of readmission which would better guide perioperative patient management affecting readmissions. We hypothesize that readmissions have different timing, location, and patient health profile patterns based on whether the readmission is related to a medical or surgical diagnosis. A retrospective cohort of 80 readmissions out of 1412 total joint replacement patients reimbursed through a bundled payment plan was analyzed. Patients were grouped by readmission diagnosis (surgical or medical) and the main variables analyzed were time to readmission, location of readmission, and baseline Perioperative Orthopaedic Surgical Home and American Society of Anesthesiologists scores capturing pre-existing state of health. Nonparametric tests and multivariable regressions were used to test associations. Surgical readmissions occurred earlier than medical readmissions (mean 18 vs 33 days, P = .011), and were more likely to occur at the hospital where the surgery was performed (P = .035). Perioperative Orthopaedic Surgical Home and American Society of Anesthesiologists scores did not predict medical vs surgical readmissions (P = .466 and .879) after adjusting for confounding variables. Readmissions appear to follow different patterns depending on whether they are surgical or medical. Surgical readmissions occur earlier than medical readmissions, and more often at the hospital where the surgery was performed. The results of this study suggest that these 2 types of readmissions have different patterns with different implications toward perioperative care and follow-up after total joint replacement. Copyright © 2016 Elsevier Inc

  8. Can physical joint simulators be used to anticipate clinical wear problems of new joint replacement implants prior to market release?

    PubMed

    Medley, John B

    2016-05-01

    One of the most important mandates of physical joint simulators is to provide test results that allow the implant manufacturer to anticipate and perhaps avoid clinical wear problems with their new products. This is best done before market release. This study gives four steps to follow in conducting such wear simulator testing. Two major examples involving hip wear simulators are discussed in which attempts had been made to predict clinical wear performance prior to market release. The second one, involving the DePuy ASR implant systems, is chosen for more extensive treatment by making it an illustrative example to explore whether wear simulator testing can anticipate clinical wear problems. It is concluded that hip wear simulator testing did provide data in the academic literature that indicated some risk of clinical wear problems prior to market release of the ASR implant systems. This supports the idea that physical joint simulators have an important role in the pre-market testing of new joint replacement implants. © IMechE 2016.

  9. Hip Joint Replacement Using Monofilament Polypropylene Surgical Mesh: An Animal Model

    PubMed Central

    Białecki, Jacek; Klimowicz-Bodys, Małgorzata Dorota; Wierzchoś, Edward; Kołomecki, Krzysztof

    2014-01-01

    Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur) leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS), triple pelvic osteotomy (TPO), total hip replacement (THR), and femoral head and neck resection (FHNE). The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform. PMID:24987672

  10. Hip joint replacement using monofilament polypropylene surgical mesh: an animal model.

    PubMed

    Białecki, Jacek; Majchrzycki, Marian; Szymczak, Antoni; Klimowicz-Bodys, Małgorzata Dorota; Wierzchoś, Edward; Kołomecki, Krzysztof

    2014-01-01

    Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur) leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS), triple pelvic osteotomy (TPO), total hip replacement (THR), and femoral head and neck resection (FHNE). The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform.

  11. Does addition of low-level laser therapy (LLLT) in conservative care of knee arthritis successfully postpone the need for joint replacement?

    PubMed

    Ip, David

    2015-12-01

    The current study evaluates whether the addition of low-level laser therapy into standard conventional physical therapy in elderly with bilateral symptomatic tri-compartmental knee arthritis can successfully postpone the need for joint replacement surgery. A prospective randomized cohort study of 100 consecutive unselected elderly patients with bilateral symptomatic knee arthritis with each knee randomized to receive either treatment protocol A consisting of conventional physical therapy or protocol B which is the same as protocol A with added low-level laser therapy. The mean follow-up was 6 years. Treatment failure was defined as breakthrough pain which necessitated joint replacement surgery. After a follow-up of 6 years, patients clearly benefited from treatment with protocol B as only one knee needed joint replacement surgery, while nine patients treated with protocol A needed surgery (p < 0.05). We conclude low-level laser therapy should be incorporated into standard conservative treatment protocol for symptomatic knee arthritis.

  12. [Rehabilitation of the patients following the endoprosthetic replacement of the joints of the lower extremities].

    PubMed

    Rud, I M; Melnikova, E A; Rassulova, M A; Razumov, A N; Gorelikov, A E

    2017-12-28

    The present article is the analytical review of the literature pertaining to the problem of rehabilitation of the patients following the endoprosthetic replacement of joints of the lower extremities. The relevance of the problem of interest for medical rehabilitation is beyond any doubt. The traditional methods for the rehabilitation of the patients do not always lead to the desired results. The authors discuss in detail the need for and the contemporary approaches to the rehabilitation of the patients who had undergone reconstructive surgery and arthroplasty of the joints of the lower extremities. The pathogenetically-based three-stage algorithm for medical rehabilitation is proposed.

  13. Cost feasibility of a pre-checking medical tourism system for U.S. patients undertaking joint replacement surgery in Taiwan.

    PubMed

    Haung, Ching-Ying; Wang, Sheng-Pen; Chiang, Chih-Wei

    2010-01-01

    Medical tourism is a relatively recent global economic and political phenomenon that has assumed increasing importance for developing countries, particularly in Asia. In fact, Taiwan possesses a niche for developing medical tourism because many hospitals provide state-of-the-art medicine in all disciplines and many doctors are trained in the United States (US). Among the most common medical procedures outsourced, joint replacements such as total knee replacement (TKR) and total hip replacement (THR) are two surgeries offered to US patients at a lower cost and shorter waiting time than in the US. This paper proposed a pre-checking medical tourism system (PCMTS) and evaluated the cost feasibility of recruiting American clients traveling to Taiwan for joint replacement surgery. Cost analysis was used to estimate the prime costs for each stage in the proposed PCMTS. Sensitivity analysis was implemented to examine how different pricings for medical checking and a surgical operation (MC&SO) and recovery, can influence the surplus per patient considering the PCMTS. Finally, the break-even method was adopted to test the tradeoff between the sunk costs of investment in the PCMTS and the annual surplus for participating hospitals. A novel business plan was built showing that pre-checking stations in medical tourism can provide post-operative care and recovery follow-up. Adjustable pricing for hospital administrators engaged in the PCMTS consisted of two main costs: US$3,700 for MC&SO and US$120 for the hospital stay. Guidelines for pricing were provided to maximize the annual surplus from this plan with different number of patients participating in PCMTS. The maximal profit margin from each American patient undertaking joint surgery is about US$24,315. Using cost analysis, this article might be the first to evaluate the feasibility of PCMTS for joint replacement surgeries. The research framework in this article is applicable when hospital administrators evaluate the

  14. Design of a knee joint mechanism that adapts to individual physiology.

    PubMed

    Jiun-Yih Kuan; Pasch, Kenneth A; Herr, Hugh M

    2014-01-01

    This paper describes the design of a new knee joint mechanism, called the Adaptive Coupling Joint (ACJ). The new mechanism has an adaptive trajectory of the center of rotations (COR) that automatically matches those of the attached biological joint. The detailed design is presented as well as characterization results of the ACJ. Conventional exoskeleton and assistive devices usually consider limb joints as a one to three degrees of freedom (DOFs) joint synthesized by multiple one-DOF hinge joints in a single plane. However, the biological joints are complex and usually rotate with respect to a changing COR. As a result, the mismatch between limb joint motion and mechanical interface motion can lead to forces that cause undesired ligament and muscle length changes and internal mechanical changes. These undesired changes contribute to discomfort, as well as to the slippage and sluggish interaction between humans and devices. It is shown that the ACJ can transmit planetary torques from either active or passive devices to the limbs without altering the normal biological joint motion.

  15. Early revisions of the Femoro-Patella Vialla joint replacement.

    PubMed

    Williams, D P; Pandit, H G; Athanasou, N A; Murray, D W; Gibbons, C L M H

    2013-06-01

    The aim of this study was to review the early outcome of the Femoro-Patella Vialla (FPV) joint replacement. A total of 48 consecutive FPVs were implanted between December 2007 and June 2011. Case-note analysis was performed to evaluate the indications, operative histology, operative findings, post-operative complications and reasons for revision. The mean age of the patients was 63.3 years (48.2 to 81.0) and the mean follow-up was 25.0 months (6.1 to 48.9). Revision was performed in seven (14.6%) at a mean of 21.7 months, and there was one re-revision. Persistent pain was observed in three further patients who remain unrevised. The reasons for revision were pain due to progressive tibiofemoral disease in five, inflammatory arthritis in one, and patellar fracture following trauma in one. No failures were related to the implant or the technique. Trochlear dysplasia was associated with a significantly lower rate of revision (5.9% vs 35.7%, p = 0.017) and a lower incidence of revision or persistent pain (11.8% vs 42.9%, p = 0.045). Focal patellofemoral osteoarthritis secondary to trochlear dysplasia should be considered the best indication for patellofemoral replacement. Standardised radiological imaging, with MRI to exclude overt tibiofemoral disease should be part of the pre-operative assessment, especially for the non-dysplastic knee.

  16. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement

    PubMed Central

    Goodman, S. B.; Gibon, E.; Pajarinen, J.; Lin, T.-H.; Keeney, M.; Ren, P.-G.; Nich, C.; Yao, Z.; Egashira, K.; Yang, F.; Konttinen, Y. T.

    2014-01-01

    Wear particles and by-products from joint replacements and other orthopaedic implants may result in a local chronic inflammatory and foreign body reaction. This may lead to persistent synovitis resulting in joint pain and swelling, periprosthetic osteolysis, implant loosening and pathologic fracture. Strategies to modulate the adverse effects of wear debris may improve the function and longevity of joint replacements and other orthopaedic implants, potentially delaying or avoiding complex revision surgical procedures. Three novel biological strategies to mitigate the chronic inflammatory reaction to orthopaedic wear particles are reported. These include (i) interference with systemic macrophage trafficking to the local implant site, (ii) modulation of macrophages from an M1 (pro-inflammatory) to an M2 (anti-inflammatory, pro-tissue healing) phenotype in the periprosthetic tissues, and (iii) local inhibition of the transcription factor nuclear factor kappa B (NF-κB) by delivery of an NF-κB decoy oligodeoxynucleotide, thereby interfering with the production of pro-inflammatory mediators. These three approaches have been shown to be viable strategies for mitigating the undesirable effects of wear particles in preclinical studies. Targeted local delivery of specific biologics may potentially extend the lifetime of orthopaedic implants. PMID:24478281

  17. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement

    PubMed Central

    Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.

    2016-01-01

    Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these

  18. In Vivo Talocrural Joint Contact Mechanics With Functional Ankle Instability.

    PubMed

    Kobayashi, Takumi; Suzuki, Eiichi; Yamazaki, Naohito; Suzukawa, Makoto; Akaike, Atsushi; Shimizu, Kuniaki; Gamada, Kazuyoshi

    2015-12-01

    Functional ankle instability (FAI) may involve abnormal kinematics and contact mechanics during ankle internal rotation. Understanding of these abnormalities is important to prevent secondary problems in patients with FAI. However, there are no in vivo studies that have investigated talocrural joint contact mechanics during weightbearing ankle internal rotation. The objective of this study to determine talocrural contact mechanics during weightbearing ankle internal rotation in patients with FAI. Twelve male subjects with unilateral FAI (age range, 18-26 years) were enrolled. Computed tomography and fluoroscopic imaging of both lower extremities were obtained during weightbearing passive ankle joint complex rotation. Three-dimensional bone models created from the computed tomographic images were matched to the fluoroscopic images to compute 6 degrees of freedom for talocrural joint kinematics. The closest contact area in the talocrural joint in ankle neutral rotation and maximum internal rotation during either dorsiflexion or plantar flexion was determined using geometric bone models and talocrural joint kinematics data. The closest contact area in the talus shifted anteromedially during ankle dorsiflexion-internal rotation, whereas it shifted posteromedially during ankle plantar flexion-internal rotation. The closest contact area in FAI joints was significantly more medial than that in healthy joints during maximum ankle internal rotation and was associated with excessive talocrural internal rotation or inversion. This study demonstrated abnormal talocrural kinematics and contact mechanics in FAI subjects. Such abnormal kinematics may contribute to abnormal contact mechanics and may increase cartilage stress in FAI joints. Therapeutic, Level IV: cross-sectional case-control study. © 2015 The Author(s).

  19. CONICAL, RADIOGRAPHIC, AND PATIENT-REPORTED RESULTS OF SURFACE REPLACING PROXIMAL INTERPHALANGEAL JOINT ARTHROPLASTY OF THE HAND

    PubMed Central

    Amirtharajah, Mohana; Fufa, Duretti; Lightdale, Nina; Weiland, Andew

    2011-01-01

    The purpose of this study was to evaluate the one-year clinical, radiologic and patient-reported results of surface-replacing proximal interphalangeal joint arthroplasty (SR-PIP) of the hand. Fifteen patients with 18 joints underwent the procedure, and nine patients with 11 joints had follow-up of at least one year's duration. Of these joints, six had a diagnosis of osteoarthritis with no history of trauma, three had post-traumatic arthritis, one had psoriatic arthritis, and one had erosive arthritis. The mean clinical follow-up was at 3.3 years, and the mean radiographic follow-up was at 3.1 years. The average post-operative gain in range of motion at the PIP joint was 28 degrees and was statistically significant. Six patients completed self-reported questionnaires at a mean of 4.8 years post-operatively. The mean Disabilities of the Arm, Shoulder and Hand (DASH) score post-operatively was 17, and the Michigan Hand Questionnaire (MHQ) score for overall satisfaction was 70. There were three complications but only one reoperation. Seven of 11 joints showed some evidence of subsidence on follow-up radiographic examination. However, no joints were revised sec-ondary to loosening. Longer follow-up is needed to determine if this observable radiologic subsidence leads to symptomatic loosening of the implant PMID:22096433

  20. Wnt signalling controls the response to mechanical loading during zebrafish joint development

    PubMed Central

    Brunt, Lucy H.; Begg, Katie; Kague, Erika; Cross, Stephen

    2017-01-01

    Joint morphogenesis requires mechanical activity during development. Loss of mechanical strain causes abnormal joint development, which can impact long-term joint health. Although cell orientation and proliferation are known to shape the joint, dynamic imaging of developing joints in vivo has not been possible in other species. Using genetic labelling techniques in zebrafish we were able, for the first time, to dynamically track cell behaviours in intact moving joints. We identify that proliferation and migration, which contribute to joint morphogenesis, are mechanically controlled and are significantly reduced in immobilised larvae. By comparison with strain maps of the developing skeleton, we identify canonical Wnt signalling as a candidate for transducing mechanical forces into joint cell behaviours. We show that, in the jaw, Wnt signalling is reduced specifically in regions of high strain in response to loss of muscle activity. By pharmacological manipulation of canonical Wnt signalling, we demonstrate that Wnt acts downstream of mechanical activity and is required for joint patterning and chondrocyte maturation. Wnt16, which is also downstream of muscle activity, controls proliferation and migration, but plays no role in chondrocyte intercalation. PMID:28684625

  1. Space station rotary joint mechanisms

    NASA Technical Reports Server (NTRS)

    Driskill, Glen W.

    1986-01-01

    The mechanism which will be used on the space station to position the solar arrays and radiator panels for Sun pointing and Sun avoidance is described. The unique design features will be demonstrated on advanced development models of two of the joints being fabricated under contract to NASA-MSFC.

  2. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  3. Joint health and functional ability in children with haemophilia who receive intensive replacement therapy.

    PubMed

    Groen, W; van der Net, J; Bos, K; Abad, A; Bergstrom, B-M; Blanchette, V S; Feldman, B M; Funk, S; Helders, P; Hilliard, P; Manco-Johnson, M; Petrini, P; Zourikian, N; Fischer, K

    2011-09-01

    Joint physical examination is an important outcome in haemophilia; however its relationship with functional ability is not well established in children with intensive replacement therapy. Boys aged 4-16 years were recruited from two European and three North American treatment centres. Joint physical structure and function was measured with the Haemophilia Joint Health Score (HJHS) while functional ability was measured with the revised Childhood Health Assessment Questionnaire (CHAQ₃₈. Two haemophilia-specific domains were created by selecting items of the CHAQ₃₈ that cover haemophilia-specific problems. Associations between CHAQ, HJHS, cumulative number of haemarthroses and age were assessed. A total of 226 subjects - mean 10.8 years old (SD 3.8) - participated; the majority (68%) had severe haemophilia. Most severe patients (91%) were on prophylactic treatment. Lifetime number of haemarthroses [median=5; interquartile range (IQR)=1-12] and total HJHS (median = 5; IQR=1-12) correlated strongly (ρ = 0.51). Total HJHS did not correlate with age and only weakly (ρ=-0.19) with functional ability scores (median=0; IQR=-0.06-0). Overall, haemarthroses were reported most frequently in the ankles. Detailed analysis of ankle joint health scores revealed moderate associations (ρ=0.3-0.5) of strength, gait and atrophy with lower extremity tasks (e.g. stair climbing). In this population, HJHS summating six joints did not perform as well as individual joint scores, however, certain elements of ankle impairment, specifically muscle strength, atrophy and gait associated significantly with functional loss in lower extremity activities. Mild abnormalities in ankle assessment by HJHS may lead to functional loss. Therefore, ankle joints may warrant special attention in the follow up of these children. © 2011 Blackwell Publishing Ltd.

  4. Multidisciplinary patient education for total joint replacement surgery patients.

    PubMed

    Prouty, Anne; Cooper, Maureen; Thomas, Patricia; Christensen, Judy; Strong, Cheryl; Bowie, Lori; Oermann, Marilyn H

    2006-01-01

    The purpose of this article is to describe a preadmission, preoperative educational program offered free of charge for patients undergoing total joint replacement surgery at a large teaching hospital located in metropolitan Detroit, Michigan. In establishing the preoperative educational program, a multidisciplinary approach was used to provide a comprehensive learning environment for patients and their families. To evaluate the effectiveness of the program, patients completed surveys at the end of each class. Patients reported that their expectations of the program were met, they were less anxious about their surgery as a result of attending the classes, and the preoperative teaching by the multidisciplinary team was effective. Having a live session that offered an opportunity to ask individual and specific questions to each healthcare professional with immediate feedback proved to be a positive experience for patients. Patients' comments supported the multidisciplinary team's impression that real-time, interactive teaching was highly valued by patients and their caregivers.

  5. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May be...

  6. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May be...

  7. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May be...

  8. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May be...

  9. 46 CFR 154.506 - Mechanical expansion joint: Limits in a piping system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical expansion joint: Limits in a piping system..., Construction and Equipment Cargo and Process Piping Systems § 154.506 Mechanical expansion joint: Limits in a piping system. Mechanical expansion joints in a piping system outside of a cargo tank: (a) May be...

  10. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    NASA Technical Reports Server (NTRS)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  11. A computational parametric study on edge loading in ceramic-on-ceramic total hip joint replacements.

    PubMed

    Liu, Feng; Feng, Li; Wang, Junyuan

    2018-07-01

    Edge loading in ceramic-on-ceramic total hip joint replacement is an adverse condition that occurs as the result of a direct contact between the head and the cup rim. It has been associated with translational mismatch in the centres of rotation of the cup and head, and found to cause severe wear and early failure of the implants. Edge loading has been considered in particular in relation to dynamic separation of the cup and head centres during a gait cycle. Research has been carried out both experimentally and computationally to understand the mechanism including the influence of bearing component positioning on the occurrence and severity of edge loading. However, it is experimentally difficult to measure both the load magnitude and duration of edge loading as it occurs as a short impact within the tight space of hip joints. Computationally, a dynamic contact model, for example, developed using the MSC ADAMS software for a multi-body dynamics simulation can be particularly useful for calculating the loads and characterising the edge loading. The aim of the present study was to further develop the computational model, and improve the predictions of contact force and the understanding of mechanism in order to provide guidance on design and surgical factors to avoid or to reduce edge loading and wear. The results have shown that edge loading can be avoided for a low range of translational mismatch in the centres of rotation of the cup and head during gait at the level of approximately 1.0 mm for a cup at 45° inclination, keeping a correct cup inclination at 45° is important to reduce the edge loading severity, and edge loading can be avoided for a certain range of translational mismatch of the cup and head centres with an increased swing phase load. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Development of nanostructured PVD coatings for total knee replacement joints using HIPIMS

    NASA Astrophysics Data System (ADS)

    Sugumaran, Arunprabhu A.

    The aim of this study was to develop thin film coatings for total knee replacement joints using high power impulse magnetron sputtering (HIPIMS). An industrial size four cathode magnetron sputtering system equipped with direct current (DC) and HIPIMS power supplies was used for this purpose. Initially, Plasma diagnostics were carried out using optical emission spectroscopy (OES) while sputtering Ti target in Ar + N2 atmosphere by utilizing various HIP IMS/conventional DCMS (henceforth UBM) source combinations by varying the process parameters such as coil current and N2 flow. Then, single layer titanium nitride (TiN) coating was deposited by varying the degree of HIPIMS utilisation and the process parameters such as bias voltage and coil current to thoroughly understand the effect of degree of HIPIMS utilisation on the microstructure, residual stress, texture, mechanical, tribological and corrosion properties of such coatings. The degree of HIPIMS utilisation was altered by increasing the number of HIPIMS targets used for the deposition. Four different source combinations were used for this purpose, as follows: 4 cathodes in conventional DCMS mode to deposit pure UBM coating, 1 HIPIMS + 3UBM and 2HIPIMS + 2UBM cathodes to deposit combined HIPIMS/UBM coatings and 2HIPIMS cathodes to deposit pure HIPIMS coatings. TiN/NbN, TiCN/NbCN and CrN/NbN multilayer coatings were deposited on CoCr alloy test buttons along with other (HSS, SS and Si) substrates since our intended application is on total knee replacement joints made of CoCr alloy. The knowledge gained by investigating the TiN (Ar + N[2]) plasma and the properties of TiN was used to determine the process parameters for depositing the multilayer coatings. X- ray diffraction (XRD) technique was used for calculating the texture, residual stress and bilayer thickness of the coatings. Nanoindentation method was used to determine the nano hardness of the coatings. The adhesion strength of the coatings was estimated by

  13. Medium-term outcomes and complications after total replacement of the temporomandibular joint. Prospective outcome analysis after 3 and 5 years.

    PubMed

    Gruber, E A; McCullough, J; Sidebottom, A J

    2015-05-01

    In this prospective analysis, we assess the medium-term benefits, efficacy, and safety of the TMJ Concepts joint replacement system in the United Kingdom. Outcome measures of pain, maximum mouth opening, and diet were recorded preoperatively and at intervals up to 3 and 5 years. All patients who had replacement temporomandibular joints (TMJ) within a 6-year period were included. A total of 58 patients (84 joints) were followed up for 3 years (mean age 47, range 19-72) and 26 (42 joints) for 5 years (mean age 46, range 27-70). The female to male ratio was 52:6 at 3 years and 23:3 at 5 years. The most common diagnosis was degenerative disease, and the mean number of previous TMJ procedures was 2.4 (range 0-14). There were significant improvements in pain scores (7.4 reduced to 0.6 at 3 years and 0.8 at 5 years), maximum mouth opening (21.0-35.5mm at 3 years and 23.8-33.7mm at 5 years), and dietary scores (4.1-9.7 at 3 years and 3.7-9.6 at 5 years). Revision operations were required in 2 patients (not included in the outcome data) for biofilm infection of the prosthesis secondary to local infection in the head and neck. One patient had weakness of the temporal branch of the facial nerve that needed correction. TMJ replacement is an effective form of management for an irreparably damaged joint, particularly in cases of ankylosis. It lessens pain and improves function with minimal long-term morbidity. Copyright © 2014 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. The connection between strong social support and joint replacement outcomes.

    PubMed

    Theiss, Mark M; Ellison, Michael W; Tea, Christine G; Warner, Julia F; Silver, Renee M; Murphy, Valerie J

    2011-05-18

    A myriad of emotional, informational, and tangible needs can easily overwhelm patients as they seek to navigate a complicated surgical procedure. This article demonstrates that a dedicated family member or friend supporting their loved one before, during, and after joint replacement surgery measurably impacts quality and outcomes. The multidisciplinary, multihospital study team developed the following Opportunity Statement: "To define, measure, and implement a progressive family/friend support system across the continuum of care promoting optimal patient recovery after total joint arthroplasty." The team used the modified Groningen Orthopedic Social Support Scale to measure levels of social support and associated these levels with other patient outcomes.Analysis of 1722 observations across 4 hospitals found that patients with strong social support have shorter hospital stays, are more likely to be discharged home, to meet ambulation and transfer-out-of-bed targets, and to score hospital quality of care higher, and are more confident and ready to go home on discharge. Three presence intervals were also found to be significant predictors of key outcome measures: family/friend presence during the preoperative classes, in the preoperative holding area, and during the last physical therapy session. These intervals may serve as reasonable social support proxies for organizations desiring to measure social support to ultimately affect quality and outcomes. Copyright 2011, SLACK Incorporated.

  15. Architectural design of diamond-like carbon coatings for long-lasting joint replacements.

    PubMed

    Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan

    2013-07-01

    Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. The Controllable Ball Joint Mechanism

    NASA Astrophysics Data System (ADS)

    Tung, Yung Cheng; Chieng, Wei-Hua; Ho, Shrwai

    A controllable ball joint mechanism with three rotational degrees of freedom is proposed in this paper. The mechanism is composed of three bevel gears, one of which rotates with respect to a fixed frame and the others rotate with respect to individual floating frames. The output is the resultant motion of the differential motions by the motors that rotates the bevel gears at the fixed frame and the floating frames. The mechanism is capable of a large rotation, and the structure is potentially compact. The necessary inverse and forward kinematic analyses as well as the derivation of kinematic singularity are provided according to the kinematical equivalent structure described in this paper.

  17. Polarity effect of electromigration on mechanical properties of lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Ren, Fei

    The trend of electronic packaging is to package the chips and the associated interconnections in a compact way that allows high speed operation; that allows for sufficient heat removal; that can withstand the thermal cycling associated with the turning on and turning off of the circuits; and that protects the circuits from environmental attack. These goals require that flip chip solder joints have higher resistance to electromigration, stronger mechanical property to sustain thermal mechanical stress, and are lead-free materials to satisfy environment and health concern. With lots of work on chemical reaction, electromigration and mechanical study in flip chip solder joints, however, the interaction between different driving forces is still little known. As a matter of fact, the combination study of chemical, electrical and mechanical is more and more significant to the understanding of the behavior of flip chip solder joints. In this dissertation, I developed one dimensional Cu (wire)-eutectic SnAgCu(ball)-Cu(wire) structure to investigate the interaction between electrical and mechanical force in lead-free solder joints. Electromigration was first conducted. The mechanical behaviors of solder joints before, after, and during electromigration were examined. Electrical current and mechanical stress were applied either in serial or in parallel to the solder joints. Tensile, creep, and drop tests, combined with different electrical current densities (1˜5x10 3A/cm2) and different stressing time (3˜144 hours), have been performed to study the effect of electromigration on the mechanical behavior of solder joints. Nano-indentation test was conducted to study the localized mechanical property of IMC at both interfaces in nanometer scale. Fracture images help analyze the failure mechanism of solder joints driven by both electrical and mechanical forces. The combination study shows a strain build-up during electromigration. Furthermore, a ductile-to-brittle transition in

  18. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.

    PubMed

    Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao

    2015-11-01

    This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint.

  19. A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement.

    PubMed

    Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A

    2001-07-01

    Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.

  20. Mechanical flexible joint design document

    NASA Technical Reports Server (NTRS)

    Daily, Vic

    1993-01-01

    The purpose of this report is to document the status of the Mechanical Flexible Joint (MFJ) Design Subtask with the intent of halting work on the design. Recommendations for future work is included in the case that the task is to be resumed. The MFJ is designed to eliminate two failure points from the current flex joint configuration, the inner 'tripod configuration' and the outer containment jacket. The MFJ will also be designed to flex 13.5 degrees and have three degrees of freedom. By having three degrees of freedom, the MFJ will allow the Low Pressure Fuel Duct to twist and remove the necessity to angulate the full 11 degrees currently required. The current flex joints are very labor intensive and very costly and a simple alternative is being sought. The MFJ is designed with a greater angular displacement, with three degrees of freedom, to reside in the same overall envelope, to meet weight constraints of the current bellows, to be compatible with cryogenic fuel and oxidizers, and also to be man-rated.

  1. Improvement in the assessment of wear of total knee replacements using coordinate-measuring machine techniques.

    PubMed

    Blunt, L A; Bills, P J; Jiang, X-Q; Chakrabarty, G

    2008-04-01

    Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5x 10(6) operations performed annually. Currently joint replacements are expected to function for 10-15 years; however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer-term improved quality of life for patients. Wear analysis of total joint replacements has long been an important means in determining failure mechanisms and improving longevity of these devices. The effectiveness of the coordinate-measuring machine (CMM) technique for assessing volumetric material loss during simulated life testing of a replacement knee joint has been proved previously by the present authors. The purpose of the current work is to present an improvement to this method for situations where no pre-wear data are available. To validate the method, simulator tests were run and gravimetric measurements taken throughout the test, such that the components measured had a known wear value. The implications of the results are then discussed in terms of assessment of joint functionality and development of standardized CMM-based product standards. The method was then expanded to allow assessment of clinically retrieved bearings so as to ascertain a measure of true clinical wear.

  2. Modeling the Potential Economic Impact of the Medicare Comprehensive Care for Joint Replacement Episode-Based Payment Model.

    PubMed

    Maniya, Omar Z; Mather, Richard C; Attarian, David E; Mistry, Bipin; Chopra, Aneesh; Strickland, Matt; Schulman, Kevin A

    2017-11-01

    The Medicare program has initiated Comprehensive Care for Joint Replacement (CJR), a bundled payment mandate for lower extremity joint replacements. We sought to determine the degree to which hospitals will invest in care redesign in response to CJR, and to project its economic impacts. We defined 4 potential hospital management strategies to address CJR: no action, light care management, heavy care management, and heavy care management with contracting. For each of 798 hospitals included in CJR, we used hospital-specific volume, cost, and quality data to determine the hospital's economically dominant strategy. We aggregated data to assess the percentage of hospitals pursuing each strategy; savings to the health care system; and costs and percentages of CJR-derived revenues gained or lost for Medicare, hospitals, and postacute care facilities. In the model, 83.1% of hospitals (range 55.0%-100.0%) were expected to take no action in response to CJR, and 16.1% of hospitals (range 0.0%-45.0%) were expected to pursue heavy care management with contracting. Overall, CJR is projected to reduce health care expenditures by 0.5% (range 0.0%-4.1%) or $14 million (range $0-$119 million). Medicare is expected to save 2.2% (range 2.2%-2.2%), hospitals are projected to lose 3.7% (range 4.7% loss to 3.8% gain), and postacute care facilities are expected to lose 6.5% (range 0.0%-12.8%). Hospital administrative costs are projected to increase by $63 million (range $0-$148 million). CJR is projected to have a negligible impact on total health care expenditures for lower extremity joint replacements. Further research will be required to assess the actual care management strategies adopted by CJR hospitals. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis

    PubMed Central

    Yamada, Shigehito

    2016-01-01

    Abstract A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a “spike.” Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs’ limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus. PMID:27499877

  4. Bundled Payments in Total Joint Replacement: Keeping Our Care Affordable and High in Quality.

    PubMed

    McLawhorn, Alexander S; Buller, Leonard T

    2017-09-01

    The purpose of this review was to evaluate the literature regarding bundle payment reimbursement models for total joint arthroplasty (TJA). From an economic standpoint, TJA are cost-effective, but they represent a substantial expense to the Centers for Medicare & Medicaid Services (CMS). Historically, fee-for-service payment models resulted in highly variable cost and quality. CMS introduced Bundled Payments for Care Improvement (BPCI) in 2012 and subsequently the Comprehensive Care for Joint Replacement (CJR) reimbursement model in 2016 to improve the value of TJA from the perspectives of both CMS and patients, by improving quality via cost control. Early results of bundled payments are promising, but preserving access to care for patients with high comorbidity burdens and those requiring more complex care is a lingering concern. Hospitals, regardless of current participation in bundled payments, should develop care pathways for TJA to maximize efficiency and patient safety.

  5. Pre-operative interventions (non-surgical and non-pharmacological) for patients with hip or knee osteoarthritis awaiting joint replacement surgery--a systematic review and meta-analysis.

    PubMed

    Wallis, Jason A; Taylor, Nicholas F

    2011-12-01

    To determine if pre-operative interventions for hip and knee osteoarthritis provide benefit before and after joint replacement. Systematic review with meta-analysis of randomised controlled trials (RCTs) of pre-operative interventions for people with hip or knee osteoarthritis awaiting joint replacement surgery. Standardised mean differences (SMD) were calculated for pain, musculoskeletal impairment, activity limitation, quality of life, and health service utilisation (length of stay and discharge destination). The GRADE approach was used to determine the quality of the evidence. Twenty-three RCTs involving 1461 participants awaiting hip or knee replacement surgery were identified. Meta-analysis provided moderate quality evidence that pre-operative exercise interventions for knee osteoarthritis reduced pain prior to knee replacement surgery (SMD (95% CI)=0.43 [0.13, 0.73]). None of the other meta-analyses investigating pre-operative interventions for knee osteoarthritis demonstrated any effect. Meta-analyses provided low to moderate quality evidence that exercise interventions for hip osteoarthritis reduced pain (SMD (95% CI)=0.52 [0.04, 1.01]) and improved activity (SMD (95% CI)=0.47 [0.11, 0.83]) prior to hip replacement surgery. Meta-analyses provided low quality evidence that exercise with education programs improved activity after hip replacement with reduced time to reach functional milestones during hospital stay (e.g., SMD (95% CI)=0.50 [0.10, 0.90] for first day walking). Low to moderate evidence from mostly small RCTs demonstrated that pre-operative interventions, particularly exercise, reduce pain for patients with hip and knee osteoarthritis prior to joint replacement, and exercise with education programs may improve activity after hip replacement. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Hip or knee replacement - after - what to ask your doctor

    MedlinePlus

    ... chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain Osteoarthritis Patient Instructions Getting your home ready - knee or hip surgery Hip or knee replacement - before - ...

  7. Hip or knee replacement - before - what to ask your doctor

    MedlinePlus

    ... chap 7. Read More Hip joint replacement Hip pain Knee joint replacement Knee pain Osteoarthritis Patient Instructions Getting your home ready - knee or hip surgery Hip or knee replacement - after - ...

  8. Tricuspid valve replacement with mechanical prostheses: Short and long-term outcomes.

    PubMed

    Rossello, Xavier; Muñoz-Guijosa, Christian; Mena, Elisabet; Camprecios, Marta; Mendez, Ana B; Borras, Xavier; Padro, Josep M

    2017-09-01

    Tricuspid valve replacement has been associated with high mortality and poor long-term outcomes. We report the preoperative risk factors associated with short and long-term outcomes following tricuspid valve replacement with mechanical prostheses. In 62 patients who underwent mechanical tricuspid valve replacement, clinical, laboratory, and echocardiographic findings were analyzed using both univariate and multivariate analyses to describe operative and long-term mortality. In our population (mean age 59 ± 9.7 years, 82.3% female), most common causes of tricuspid valve disease were rheumatic fever (69.4%) and functional regurgitation (19.4%). Operative and long-term mortality were 17.7 and 33.9%, respectively. Age, diabetes mellitus, and coronary artery disease were independently associated with increased long-term mortality. New York Heart Association (NYHA) class and right heart failure symptoms significantly improved during follow-up. In this series of mechanical tricuspid valve replacements in patients with predominately rheumatic heart disease, operative and long-term mortality were increased; however, survivors had significant improvement in their NYHA class and freedom from right heart failure symptoms. Three preoperative factors (age, diabetes mellitus, and coronary artery disease) were independently associated with long-term mortality. © 2017 Wiley Periodicals, Inc.

  9. Novel knee joint mechanism of transfemoral prosthesis for stair ascent.

    PubMed

    Inoue, Koh; Wada, Takahiro; Harada, Ryuchi; Tachiwana, Shinichi

    2013-06-01

    The stability of a transfemoral prosthesis when walking on flat ground has been established by recent advances in knee joint mechanisms and their control methods. It is, however, difficult for users of a transfemoral prosthesis to ascend stairs. This difficulty is mainly due to insufficient generation of extension moment around the knee joint of the prosthesis to lift the body to the next step on the staircase and prevent any unexpected flexion of the knee joint in the stance phase. Only a prosthesis with an actuator has facilitated stair ascent using a step-over-step gait (1 foot is placed per step). However, its use has issues associated with the durability, cost, maintenance, and usage environment. Therefore, the purpose of this research is to develop a novel knee joint mechanism for a prosthesis that generates an extension moment around the knee joint in the stance phase during stair ascent, without the use of any actuators. The proposed mechanism is based on the knowledge that the ground reaction force increases during the stance phase when the knee flexion occurs. Stair ascent experiments with the prosthesis showed that the proposed prosthesis can realize stair ascent without any undesirable knee flexion. In addition, the prosthesis is able to generate a positive knee joint moment power in the stance phase even without any power source.

  10. Patient Use of Cost and Quality Data When Choosing a Joint Replacement Provider in the Context of Reference Pricing

    PubMed Central

    Mehrotra, Ateev; DeVries, Andrea; Wu, Sze-jung; SooHoo, Nelson F.; Martsolf, Grant R.

    2015-01-01

    Health plans are encouraging consumerism among joint replacement patients by reporting information on hospital costs and quality. Little is known about how the proliferation of such initiatives impacts patients’ selection of a surgeon and hospital. We performed a qualitative analysis of semistructured interviews with 13 patients who recently received a hip or knee replacement surgery. Patients focused on the choice of a surgeon as opposed to a hospital, and the surgeon choice was primarily made based on reputation. Most patients had long-standing relationships with an orthopedic surgeon and tended to stay with that surgeon for their replacement. Despite growing availability of cost and quality information, patients almost never used such information to make a decision. PMID:28462261

  11. Assessment of the Patient-Centered and Family-Centered Care Experience of Total Joint Replacement Patients Using a Shadowing Technique.

    PubMed

    Marcus-Aiyeku, Ulanda; DeBari, Margaret; Salmond, Susan

    2015-01-01

    In 2030, when baby boomers reach 65 years of age and represent 18% of the population, it is anticipated that 67 million adults will have a diagnosis of arthritis increasing the demand for total hip and knee arthroplasty. With the growing emphasis on patient- and family-centered care, the aim of this project was to assess the patient experience of patients and families throughout the entire spectrum of the total joint replacement service line care at a university regional trauma hospital. A shadowing methodology as defined by the Institute for Health Improvement was utilized. Eight patient/family groups undergoing total joint replacements were shadowed. The mapped care experience included time, caregiver, activity, shadower observations, and impressions. Findings revealed inconsistencies in the delivery of patient- and family-centered care. Communication and interactions were predominantly provider-centric, with a focus on care routines versus the patient and family, and anticipation that care would be medically directed.

  12. Strategies Aimed at Preventing Chronic Post-surgical Pain: Comprehensive Perioperative Pain Management after Total Joint Replacement Surgery

    PubMed Central

    Woodhouse, Linda J.; Kennedy, Deborah; Stratford, Paul; Katz, Joel

    2011-01-01

    ABSTRACT Purpose: Chronic post-surgical pain (CPSP) is a frequent outcome of musculoskeletal surgery. Physiotherapists often treat patients with pain before and after musculoskeletal surgery. The purposes of this paper are (1) to raise awareness of the nature, mechanisms, and significance of CPSP; and (2) to highlight the necessity for an inter-professional team to understand and address its complexity. Using total joint replacement surgeries as a model, we provide a review of pain mechanisms and pain management strategies. Summary of Key Points: By understanding the mechanisms by which pain alters the body's normal physiological responses to surgery, clinicians selectively target pain in post-surgical patients through the use of multi-modal management strategies. Clinicians should not assume that patients receiving multiple medications have a problem with pain. Rather, the modern-day approach is to manage pain using preventive strategies, with the aims of reducing the intensity of acute postoperative pain and minimizing the development of CPSP. Conclusions: The roles of biological, surgical, psychosocial, and patient-related risk factors in the transition to pain chronicity require further investigation if we are to better understand their relationships with pain. Measuring pain intensity and analgesic use is not sufficient. Proper evaluation and management of risk factors for CPSP require inter-professional teams to characterize a patient's experience of postoperative pain and to examine pain arising during functional activities. PMID:22654235

  13. Geographic region, socioeconomic position and the utilisation of primary total joint replacement for hip or knee osteoarthritis across western Victoria: a cross-sectional multilevel study of the Australian Orthopaedic Association National Joint Replacement Registry.

    PubMed

    Brennan-Olsen, Sharon; Vogrin, Sara; Holloway, Kara L; Page, Richard S; Sajjad, Muhammad A; Kotowicz, Mark A; Livingston, Patricia M; Khasraw, Mustafa; Hakkennes, Sharon; Dunning, Trish L; Brumby, Susan; Pedler, Daryl; Sutherland, Alasdair; Venkatesh, Svetha; Williams, Lana J; Duque, Gustavo; Pasco, Julie A

    2017-11-06

    Compared to urban residents, those in rural/regional areas often experience inequitable healthcare from specialist service providers. Independent of small between-area differences in utilisation, socially advantaged groups had the greatest uptake of joint replacement. These data suggest low correlation between 'need' vs. 'uptake' of surgery in rural/regional areas. Compared to urban residents, those in rural and regional areas often experience inequitable healthcare from specialist service providers, often due to geographical issues. We investigated associations between socioeconomic position (SEP), region of residence and utilisation of primary total knee replacement (TKR) and/or total hip replacement (THR) for osteoarthritis. As part of the Ageing, Chronic Disease and Injury study, we extracted data from the Australian Orthopaedic Association National Joint Replacement Registry (2011-2013) for adults that utilised primary TKR (n = 4179; 56% female) and/or THR (n = 3120; 54% female). Residential addresses were matched with the Australian Bureau of Statistics (ABS) 2011 census data: region of residence was defined according to local government areas (LGAs), and area-level SEP (quintiles) defined using an ABS-derived composite index. The ABS-determined control population (n = 591,265; 51% female) excluded individuals identified as cases. We performed multilevel logistic regression modelling using a stratified two-stage cluster design. TKR was higher for those aged 70-79 years (AOR 1.4 95%CI 1.3-1.5; referent = 60-69 years) and in the most advantaged SEP quintile (AOR 2.1, 95%CI 1.8-2.3; referent = SEP quintile 3); results were similar for THR (70-79 years = AOR 1.7, 95%CI 1.5-1.8; SEP quintile 5 = AOR 2.5, 95%CI 2.2-2.8). Total variances contributed by the variance in LGAs were 2% (SD random effects ± 0.28) and 3% (SD ± 0.32), respectively. Independent of small between-LGA differences in utilisation, and in contrast to the expected greater

  14. Wormhole Formation in RSRM Nozzle Joint Backfill

    NASA Technical Reports Server (NTRS)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  15. MP Joint Arthritis

    MedlinePlus

    ... is extensive and severe, joint replacement or joint fusion are effective surgical options. Learn more about joint ... the tabs at the top (Video, Articles/WEB, Images, JHS, Products/Vendors), or the filters on the ...

  16. Mechanical model of suture joints with fibrous connective layer

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Kateryna; Liu, Lei; Tsukrov, Igor; Li, Yaning

    2018-02-01

    A composite model for suture joints with a connective layer of aligned fibers embedded in soft matrix is proposed. Based on the principle of complementary virtual work, composite cylinder assemblage (CCA) approach and generalized self-consistent micro-mechanical models, a hierarchical homogenization methodology is developed to systematically quantify the synergistic effects of suture morphology and fiber orientation on the overall mechanical properties of sutures. Suture joints with regular triangular wave-form serve as an example material system to apply this methodology. Both theoretical and finite element mechanical models are developed and compared to evaluate the overall normal stiffness of sutures as a function of wavy morphology of sutures, fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the interfacial layer. It is found that generally due to the anisotropy-induced coupling effects between tensile and shear deformation, the effective normal stiffness of sutures is highly dependent on the fiber orientation in the connective layer. Also, the effective shear modulus of the connective layer and the stiffness ratio between the fiber and matrix significantly influence the effects of fiber orientation. In addition, optimal fiber orientations are found to maximize the stiffness of suture joints.

  17. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  18. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite

    PubMed Central

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-01-01

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research. PMID:28773703

  19. Mechanical Behavior of Dowel-Type Joints Made of Wood Scrimber Composite.

    PubMed

    He, Minjuan; Tao, Duo; Li, Zheng; Li, Maolin

    2016-07-15

    As a renewable building material with low embodied energy characteristics, wood has gained more and more attention in the green and sustainable building industry. In terms of material resource and physical properties, scrimber composite not only makes full use of fast-growing wood species, but also has better mechanical performance and less inherent variability than natural wood material. In this study, the mechanical behavior of bolted beam-to-column joints built with a kind of scrimber composite was investigated both experimentally and numerically. Two groups of specimens were tested under monotonic and low frequency cyclic loading protocols. The experimental results showed that the bolted joints built with scrimber composite performed well in initial stiffness, ductility, and energy dissipation. A three-dimensional (3D) non-linear finite element model (FEM) for the bolted beam-to-column joints was then developed and validated by experimental results. The validated model was further used to investigate the failure mechanism of the bolted joints through stress analysis. This study can contribute to the application of the proposed scrimber composite in structural engineering, and the developed FEM can serve as a useful tool to evaluate the mechanical behavior of such bolted beam-to-column joints with different configurations in future research.

  20. [Local infiltration analgesia in total joint replacement].

    PubMed

    de Jonge, Tamás; Görgényi, Szabolcs; Szabó, Gabriella; Torkos, Miklós Bulcsú

    2017-03-01

    Total hip and knee replacment surgeries are characterized by severe postoperative pain. Local infiltration analgesia is proved to be very effective. However this method has not been widely used in Hungary. To evaluate the efficacy of the local infiltration analgesia with modified components in patients underwent total hip or knee replacement surgery. Data of 99 consecutive patients underwent primary total hip or knee replacement surgery were evaluated prospectively. In all the 99 surgeries modified local infiltration analgesia was applied. Postoperative pain reported on a visual analog scale was recorded as well as the need for further analgetics during the first 18 hours after surgery. The cost of the analgetic drugs was calculated. The control group comprised 97 consecutive patients underwent total hip or knee replacement, where local infiltration analgesia was not applied. Statistical analysis was done. Patients received local infiltration analgesia reported significantly less pain (p<0.001). The need for postoperatively given analgetics was almost 50% less, and the cost of all postoperative analgetics was 47% less than in the control group. In total hip and knee replacement surgeries the modified local infiltration analgesia decreases postoperative pain effectively and contribute to the early mobilization of the patients. Orv. Hetil., 2017, 158(9), 352-357.

  1. Joint Disorders - Multiple Languages

    MedlinePlus

    ... a new window. Arabic (العربية) Expand Section Home Care After Total Joint Replacement - العربية (Arabic) Bilingual PDF Health Information Translations Bosnian (bosanski) Expand Section Home Care After Total Joint Replacement - bosanski (Bosnian) Bilingual PDF Health Information ...

  2. Orthotic arm joint. [for use in mechanical arms

    NASA Technical Reports Server (NTRS)

    Dane, D. H. (Inventor)

    1974-01-01

    An improved orthopedic (orthotic) arm joint that can be used in various joint of mechanical arms is described. The arm joints includes a worm, which is coupled to an electric motor for rotating a worm gear carried within a rotatable housing. The worm gear is supported on a thrust bearing and the rotatable housing is supported on a radial thrust bearing. A bolt extends through the housing, bearings, and worm gear for securing the device together. A potentiometer extends through the bolt, and is coupled to the rotatable housing for rotating therewith, so as to produce an electrical signal indicating the angular position of the rotatable housing.

  3. Shoulder replacement

    MedlinePlus

    ... the opening at the end of the shoulder blade, called the socket. This type of joint allows ... head. The socket part (glenoid) of your shoulder blade will be replaced with a smooth plastic shell ( ...

  4. Effect of Structured Touch and Guided Imagery for Pain and Anxiety in Elective Joint Replacement Patients--A Randomized Controlled Trial: M-TIJRP.

    PubMed

    Forward, John Brent; Greuter, Nancy Elizabeth; Crisall, Santa J; Lester, Houston F

    2015-01-01

    Postoperative management of pain after total joint arthroplasty remains a challenge despite advancements in analgesics. Evidence shows that complementary modalities with mind-body and tactile-based approaches are valid and effective adjuncts to reduce pain and anxiety postoperatively. To investigate the effectiveness of the "M" Technique (M), a registered method of structured touch using a set sequence and number of strokes, and a consistent level of pressure on hands and feet, compared with guided imagery and usual care, for the reduction of pain and anxiety in patients undergoing elective total knee or hip replacement surgery. Randomized controlled trial: M-TIJRP (MiTechnique and guided Imagery in Joint Replacement Patients [Mighty Junior P]). At a community hospital, 225 male and female patients, aged 38 to 90 years, undergoing elective total hip or knee replacement were randomly assigned to 1 of 3 groups (75 patients in each): M, guided imagery, or usual care. They were blinded to their assignment until the intervention. Reduction of pain and anxiety postoperatively. Secondary outcomes measured use of pain medication and patient satisfaction. This study yielded positive findings for the management of pain and anxiety in patients undergoing elective joint replacement using M and guided imagery for 18 to 20 minutes compared with usual care. M showed the largest predicted decreases in both pain and anxiety between groups. There was no significant difference in narcotic pain medication use between groups. Patient satisfaction survey ratings were highest for M, followed by guided imagery. The benefit of M may be because of the specifically structured sequence of touch by competent caring, trained providers.

  5. Effect of Structured Touch and Guided Imagery for Pain and Anxiety in Elective Joint Replacement Patients—A Randomized Controlled Trial: M-TIJRP

    PubMed Central

    Forward, John Brent; Greuter, Nancy Elizabeth; Crisall, Santa J; Lester, Houston F

    2015-01-01

    Context: Postoperative management of pain after total joint arthroplasty remains a challenge despite advancements in analgesics. Evidence shows that complementary modalities with mind-body and tactile-based approaches are valid and effective adjuncts to reduce pain and anxiety postoperatively. Objective: To investigate the effectiveness of the “M” Technique (M), a registered method of structured touch using a set sequence and number of strokes, and a consistent level of pressure on hands and feet, compared with guided imagery and usual care, for the reduction of pain and anxiety in patients undergoing elective total knee or hip replacement surgery. Methods: Randomized controlled trial: M-TIJRP (MiTechnique and guided Imagery in Joint Replacement Patients [Mighty Junior P]). At a community hospital, 225 male and female patients, aged 38 to 90 years, undergoing elective total hip or knee replacement were randomly assigned to 1 of 3 groups (75 patients in each): M, guided imagery, or usual care. They were blinded to their assignment until the intervention. Main Outcome Measures: Reduction of pain and anxiety postoperatively. Secondary outcomes measured use of pain medication and patient satisfaction. Results: This study yielded positive findings for the management of pain and anxiety in patients undergoing elective joint replacement using M and guided imagery for 18 to 20 minutes compared with usual care. M showed the largest predicted decreases in both pain and anxiety between groups. There was no significant difference in narcotic pain medication use between groups. Patient satisfaction survey ratings were highest for M, followed by guided imagery. Conclusion: The benefit of M may be because of the specifically structured sequence of touch by competent caring, trained providers. PMID:26222093

  6. Experimental analysis of mechanical joints strength by means of energy dissipation

    NASA Astrophysics Data System (ADS)

    Wolf, Alexander; Lafarge, Remi; Kühn, Tino; Brosius, Alexander

    2018-05-01

    Designing complex structures with the demand for weight reduction leads directly to a multi-material concept. This mixture has to be joined securely and welding, mechanical joining and the usage of adhesives are commonly used for that purpose. Sometimes also a mix of at least two materials is useful to combine the individual advantages. The challenge is the non-destructive testing of these connections because destructive testing requires a lot of preparation and expensive testing equipment. The authors show a testing method by measuring and analysing the energy dissipation in mechanical joints. Known methods are radiography, thermography and ultrasound testing. Unfortunately, the usage of these methods is difficult and often not usable in fibre-reinforced-plastics. The presented approach measures the propagation of the elastic strain wave through the joint. A defined impact strain is detected with by strain-gauges whereby the transmitter is located on one side of the joint and the receiver on the other, respectively. Because of different mechanisms, energy dissipates by passing the joint areas. Main reasons are damping caused by friction and material specific damping. Insufficient performed joints lead to an effect especially in the friction damping. By the measurement of the different strains and the resulting energy loss a statement to the connection quality is given. The possible defect during the execution of the joint can be identified by the energy loss and strain vs. time curve. After the description of the method, the authors present the results of energy dissipation measurements at a bolted assembly with different locking torques. By the adjustable tightening torques for the screw connections easily a variation of the contact pressure can be applied and analysed afterwards. The outlook will give a statement for the usability for other mechanical joints and fibre-reinforced-plastics.

  7. Evaluation of total alloplastic temporo-mandibular joint replacement with two different types of prostheses: A three-year prospective study

    PubMed Central

    Gonzalez-Perez-Somarriba, Borja; Centeno, Gabriel; Vallellano, Carpóforo; Montes-Carmona, Jose-Francisco

    2016-01-01

    Background Temporo-Mandibular Joint (TMJ) replacement has been used clinically for years. The objective of this study was to evaluate outcomes achieved in patients with two different categories of TMJ prostheses. Material and Methods All patients who had a TMJ replacement (TMJR) implanted during the study period from 2006 through 2012 were included in this 3-year prospective study. All procedures were performed using the Biomet Microfixation TMJ Replacement System, and all involved replacing both the skull base component (glenoid fossa) and the mandibular condyle. Results Fifty-seven patients (38 females and 19 males), involving 75 TMJs with severe disease requiring reconstruction (39 unilateral, 18 bilateral) were operated on consecutively, and 68 stock prostheses and 7 custom-made prostheses were implanted. The mean age at surgery was 52.6±11.5 years in the stock group and 51.8±11.7 years in the custom-made group. In the stock group, after three years of TMJR, results showed a reduction in pain intensity from 6.4±1.4 to 1.6±1.2 (p<0.001), and an improvement in jaw opening from 2.7±0.9 cm to 4.2±0.7 cm (p<0.001). In the custom-made group, after three years of TMJR, results showed a reduction in pain intensity from 6.0±1.6 to 2.2±0.4 (p<0.001), and an improvement in jaw opening from 1.5±0.5 cm to 4.3±0.6 cm (p<0.001). No statistically significant differences between two groups were detected. Conclusions The results of this three-year prospective study support the surgical placement of TMJ prostheses (stock prosthetic, and custom-made systems), and show that the approach is efficacious and safe, reduces pain, and improves maximum mouth opening movement, with few complications. As such, TMJR represents a viable technique and a stable long-term solution for cranio-mandibular reconstruction in patients with irreversible end-stage TMJ disease. Comparing stock and custom-made groups, no statistically significant differences were detected with respect to pain

  8. Failure mechanisms in wood joints bonded with urea-formaldehyde adhesives

    Treesearch

    B.H. River; R.O. Ebewele; G.E. Myers

    1994-01-01

    Wood joints bonded with urea-formaldehyde (UF) are weakened by cyclic swelling and shrinking. To study the failure mechanisms in UF-bonded joints, specimens were bonded with unmodified, modified (amine), or phenol formaldehyde adhesive and subjected to accelerated aging. Modification of the adhesive properties increased the cleavage fracture toughness and shear...

  9. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    PubMed Central

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  10. Influence of clamp-up force on the strength of bolted composite joints

    NASA Astrophysics Data System (ADS)

    Horn, Walter J.; Schmitt, Ron R.

    1994-03-01

    Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.

  11. Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.

    PubMed

    Kipp, Kristof; Harris, Chad

    2017-07-01

    Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than

  12. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.

    PubMed

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L

    2013-09-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.

  13. Comparison of the effects of forefoot joint-preserving arthroplasty and resection-replacement arthroplasty on walking plantar pressure distribution and patient-based outcomes in patients with rheumatoid arthritis.

    PubMed

    Ebina, Kosuke; Hirao, Makoto; Takagi, Keishi; Ueno, Sachi; Morimoto, Tokimitsu; Matsuoka, Hozo; Kitaguchi, Kazuma; Iwahashi, Toru; Hashimoto, Jun; Yoshikawa, Hideki

    2017-01-01

    The purpose of this retrospective study is to clarify the difference in plantar pressure distribution during walking and related patient-based outcomes between forefoot joint-preserving arthroplasty and resection-replacement arthroplasty in patients with rheumatoid arthritis (RA). Four groups of patients were recruited. Group1 included 22 feet of 11 healthy controls (age 48.6 years), Group2 included 36 feet of 28 RA patients with deformed non-operated feet (age 64.8 years, Disease activity score assessing 28 joints with CRP [DAS28-CRP] 2.3), Group3 included 27 feet of 20 RA patients with metatarsal head resection-replacement arthroplasty (age 60.7 years, post-operative duration 5.6 years, DAS28-CRP 2.4), and Group4 included 34 feet of 29 RA patients with metatarsophalangeal (MTP) joint-preserving arthroplasty (age 64.6 years, post-operative duration 3.2 years, DAS28-CRP 2.3). Patients were cross-sectionally examined by F-SCAN II to evaluate walking plantar pressure, and the self-administered foot evaluation questionnaire (SAFE-Q). Twenty joint-preserving arthroplasty feet were longitudinally examined at both pre- and post-operation. In the 1st MTP joint, Group4 showed higher pressure distribution (13.7%) than Group2 (8.0%) and Group3 (6.7%) (P<0.001). In the 2nd-3rd MTP joint, Group4 showed lower pressure distribution (9.0%) than Group2 (14.5%) (P<0.001) and Group3 (11.5%) (P<0.05). On longitudinal analysis, Group4 showed increased 1st MTP joint pressure (8.5% vs. 14.7%; P<0.001) and decreased 2nd-3rd MTP joint pressure (15.2% vs. 10.7%; P<0.01) distribution. In the SAFE-Q subscale scores, Group4 showed higher scores than Group3 in pain and pain-related scores (84.1 vs. 71.7; P<0.01) and in shoe-related scores (62.5 vs. 43.1; P<0.01). Joint-preserving arthroplasty resulted in higher 1st MTP joint and lower 2nd-3rd MTP joint pressures than resection-replacement arthroplasty, which were associated with better patient-based outcomes.

  14. Older Person's Guide to Joint Replacement

    MedlinePlus

    ... he or she will refer you to an orthopedic surgeon who does hip and knee replacement surgery. ... The Arthritis Foundation Web The American Academy of Orthopedic Surgeons ' The American Association of Knee and Hip ...

  15. Cross-sectional analysis of association between socioeconomic status and utilization of primary total hip joint replacements 2006-7: Australian Orthopaedic Association National Joint Replacement Registry.

    PubMed

    Brennan, Sharon L; Stanford, Tyman; Wluka, Anita E; Henry, Margaret J; Page, Richard S; Graves, Stephen E; Kotowicz, Mark A; Nicholson, Geoffrey C; Pasco, Julie A

    2012-04-30

    The utilization of total hip replacement (THR) surgery is rapidly increasing, however few data examine whether these procedures are associated with socioeconomic status (SES) within Australia. This study examined primary THR across SES for both genders for the Barwon Statistical Division (BSD) of Victoria, Australia. Using the Australian Orthopaedic Association National Joint Replacement Registry data for 2006-7, primary THR with a diagnosis of osteoarthritis (OA) among residents of the BSD was ascertained. The Index of Relative Socioeconomic Disadvantage was used to measure SES; determined by matching residential addresses with Australian Bureau of Statistics census data. The data were categorised into quintiles; quintile 1 indicating the most disadvantaged. Age- and sex-specific rates of primary THR per 1,000 person years were reported for 10-year age bands using the total population at risk. Females accounted for 46.9% of the 642 primary THR performed during 2006-7. THR utilization per 1,000 person years was 1.9 for males and 1.5 for females. The highest utilization of primary THR was observed in those aged 70-79 years (males 6.1, and females 5.4 per 1,000 person years). Overall, the U-shaped pattern of THR across SES gave the appearance of bimodality for both males and females, whereby rates were greater for both the most disadvantaged and least disadvantaged groups. Further work on a larger scale is required to determine whether relationships between SES and THR utilization for the diagnosis of OA is attributable to lifestyle factors related to SES, or alternatively reflects geographic and health system biases. Identifying contributing factors associated with SES may enhance resource planning and enable more effective and focussed preventive strategies for hip OA.

  16. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

    PubMed

    Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D

    2018-02-12

    Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. Construction of Finite Element Model for an Artificial Atlanto-Odontoid Joint Replacement and Analysis of Its Biomechanical Properties.

    PubMed

    Hu, Yong; Dong, Wei-Xin; Hann, Shannon; Yuan, Zhen-Shan; Sun, Xiao-Yang; Xie, Hui; Zhang, Meichao

    To investigate the stress distribution on artificial atlantoaxial-odontoid joint (AAOJ) components during flexion, extension, lateral bending and rotation of AAOJ model constructed with the finite element (FE) method. Human cadaver specimens of normal AAOJ were CT scanned with 1 mm -thickness and transferred into Mimics software to reconstruct the three-dimensional models of AAOJ. These data were imported into Freeform software to place a AAOJ into a atlantoaxial model. With Ansys software, a geometric model of AAOJ was built. Perpendicular downward pressure of 40 N was applied to simulate gravity of a skull, then 1.53 N• m torque was exerted separately to simulate the range of motion of the model. An FE model of atlantoaxial joint after AAOJ replacement was constructed with a total of 103 053 units and 26 324 nodes. In flexion, extension, right lateral bending and right rotation, the AAOJ displacement was 1.109 mm, 3.31 mm, 0.528 mm, and 9.678 mm, respectively, and the range of motion was 1.6°, 5.1°, 4.6° and 22°. During all ROM, stress distribution of atlas-axis changed after AAOJ replacement indicating that AAOJ can offload stress. The stress distribution in the AAOJ can be successfully analyzed with the FE method.

  18. A Qualitative Study of Factors Underlying Decision Making for Joint Replacement among African Americans and Latinos with Osteoarthritis

    PubMed Central

    Parks, Michael L.; Hebert-Beirne, Jennifer; Rojas, Mary; Tuzzio, Leah; Nelson, Charles L.; Boutin-Foster, Carla

    2015-01-01

    To support patients in making decisions that align with their unique cultural beliefs, an understanding of factors underlying patient preferences is needed. We sought to identify psychosocial factors that influenced decision making among African-American and Hispanic patients referred for knee or hip arthroplasty. Thirty-six participants deciding on surgery were interviewed. Responses were audio-taped, transcribed, and read. Codes were assigned to the raw data and then clustered into categories that were analyzed to yield overarching themes. This process was repeated independently by two corroborators. Six categories described the mental calculations made in patients' decision-making processes: 1) self-assessment of ft for surgery based on age and comorbidity, 2) research and development of mental report cards of their surgeons, 3) reliving of social network experiences, 4) reliance on faith and spirituality for guidance, 5) acknowledgment of fear and anxiety, and 6) setting expectations for recovery. This study advanced the understanding of how decisions about joint replacement are constructed and identified cultural levers that can be targeted for intervention. Developing culturally tailored health information that addresses some of our findings and disseminating messages through social networks may reduce the underutilization of joint replacement among racial and ethnic minority populations. PMID:25272219

  19. A qualitative study of factors underlying decision making for joint replacement among African Americans and Latinos with osteoarthritis.

    PubMed

    Parks, Michael L; Hebert-Beirne, Jennifer; Rojas, Mary; Tuzzio, Leah; Nelson, Charles L; Boutin-Foster, Carla

    2014-01-01

    To support patients in making decisions that align with their unique cultural beliefs, an understanding of factors underlying patient preferences is needed. We sought to identify psychosocial factors that influenced decision making among African-American and Hispanic patients referred for knee or hip arthroplasty. Thirty-six participants deciding on surgery were interviewed. Responses were audio-taped, transcribed, and read. Codes were assigned to the raw data and then clustered into categories that were analyzed to yield overarching themes. This process was repeated independently by two corroborators. Six categories described the mental calculations made in patients' decision-making processes: 1) self-assessment of fit for surgery based on age and comorbidity, 2) research and development of mental report cards of their surgeons, 3) reliving of social network experiences, 4) reliance on faith and spirituality for guidance, 5) acknowledgment of fear and anxiety, and 6) setting expectations for recovery. This study advanced the understanding of how decisions about joint replacement are constructed and identified cultural levers that can be targeted for intervention. Developing culturally tailored health information that addresses some of our findings and disseminating messages through social networks may reduce the underutilization of joint replacement among racial and ethnic minority populations.

  20. Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti-6Al-4V butt joints and T-joints

    NASA Astrophysics Data System (ADS)

    Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan

    2016-11-01

    A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.

  1. Early mobilization of patients who have had a hip or knee joint replacement reduces length of stay in hospital: a systematic review.

    PubMed

    Guerra, Mark L; Singh, Parminder J; Taylor, Nicholas F

    2015-09-01

    To systematically review the effect of early mobilization after hip or knee joint replacement surgery on length of stay in an acute hospital. Randomized controlled trials were selected from electronic databases based on inclusion criterion requiring an experimental group mobilizing (sitting out of bed/walking) earlier than a comparison group post joint replacement surgery of the hip or knee in an acute hospital. Clinically homogeneous data were analyzed with meta-analysis. Five randomized controlled trials (totaling 622 participants) were included for review. A meta-analysis of 5 trials found a reduced length of stay of 1.8 days (95% confidence interval 1.1 to 2.6) in favor of the experimental group. In 4 of the 5 trials the experimental group first sat out of bed within 24 hours post operatively. In 4 of the 5 trials the experimental group first walked within 48 hours post operatively. Individual trials reported benefits in range of motion, muscle strength and health-related quality of life in favor of the experimental group. There were no differences in discharge destinations, incidence of negative outcomes or adverse events attributable to early mobilization when compared to the comparison groups. Early mobilization post hip or knee joint replacement surgery can result in a reduced length of stay of about 1.8 days. Trials that reported these positive results showed that early mobilization can be achieved within 24 hours of operation. This positive gain was achieved without an increase in negative outcomes. © The Author(s) 2014.

  2. Diabetes is associated with persistent pain after hip and knee replacement

    PubMed Central

    Rajamäki, Tuomas J; Jämsen, Esa; Puolakka, Pia A; Nevalainen, Pasi I; Moilanen, Teemu

    2015-01-01

    Background and purpose In some patients, for unknown reasons pain persists after joint replacement, especially in the knee. We determined the prevalence of persistent pain following primary hip or knee replacement and its association with disorders of glucose metabolism, metabolic syndrome (MetS), and obesity. Patients and methods The incidence of pain in the operated joint was surveyed 1–2 years after primary hip replacement (74 patients (4 bilateral)) or primary knee replacement (119 patients (19 bilateral)) in 193 osteoarthritis patients who had participated in a prospective study on perioperative hyperglycemia. Of the 155 patients who completed the survey, 21 had undergone further joint replacement surgery during the follow-up and were excluded, leaving 134 patients for analysis. Persistent pain was defined as daily pain in the operated joint that had lasted over 3 months. Factors associated with persistent pain were evaluated using binary logistic regression with adjustment for age, sex, and operated joint. Results 49 of the134 patients (37%) had a painful joint and 18 of them (14%) had persistent pain. A greater proportion of knee patients than hip patients had a painful joint (46% vs. 24%; p = 0.01) and persistent pain (20% vs. 4%; p = 0.007). Previously diagnosed diabetes was strongly associated with persistent pain (5/19 vs. 13/115 in those without; adjusted OR = 8, 95% CI: 2–38) whereas MetS and obesity were not. However, severely obese patients (BMI ≥ 35) had a painful joint (but not persistent pain) more often than patients with BMI < 30 (14/21 vs. 18/71; adjusted OR = 5, 95% CI: 2–15). Interpretation Previously diagnosed diabetes is a risk factor for persistent pain in the operated joint 1–2 years after primary hip or knee replacement. PMID:25953426

  3. Mechanical instability destabilises the ankle joint directly in the ankle-sprain mechanism.

    PubMed

    Gehring, Dominic; Faschian, Katrin; Lauber, Benedikt; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    Despite massive research efforts, it remains unclear how mechanical ankle instability (MAI) and functional ankle instability (FAI) affect joint control in the situation of ankle sprain. Thus, the purpose of this study was to evaluate whether individuals with MAI have deficits in stabilising their ankle joint in a close-to-injury situation compared with those with FAI and healthy controls. Ankle-joint control was assessed by means of three-dimensional motion analysis and electromyography in participants with FAI and MAI (n=19), in participants with pure FAI (n=9) and in healthy controls (n=18). Close-to-injury situations were simulated during standing, walking and jumping by means of a custom-made tilt platform. Individuals with FAI and MAI displayed significantly greater maximum ankle inversion angles (+5°) and inversion velocities (+50°/s) in the walking and jumping conditions compared to those with pure FAI and controls. Furthermore, individuals in the FAI and MAI group showed a significantly decreased pre-activation of the peroneus longus muscle during jumping compared to those with FAI. No differences between groups were found for plantar flexion and internal rotation, or for muscle activities following tilting of the platform. The present study demonstrates that MAI is characterised by impairments of ankle-joint control in close-to-injury situations. This could make these individuals more prone to recurrent ankle sprains, and suggests the need for additional mechanical support such as braces or even surgery. In addition, the study highlights the fact that dynamic experimental test conditions in the acting participant are needed to further unravel the mystery of chronic ankle instability.

  4. [Compensatory joints at the pelvis (author's transl)].

    PubMed

    Schumacher, G; Weber, M

    1980-10-01

    An osteochondrosis ischio-pubica represents a "testing site" for the integrity of the pelvis not only during child age but in adults as well. If all naturally available compensatory mechanisms have been exhausted especially following a change of range of motion in the pelvis ring structure, fatigue fractures or zones in transformation in the area typical of osteochondrosis ischio-pubica may appear. These fractures or transformation zones respectively to our mind have joint character, because they are capable of temporarily replacing lost mobility of physiological joints. Healing is achieved through rest, muscular balance and a specific physiotherapy. The purpose of this muscular training is to cushion all unphysiological motions in the pelvis and to support and boost the function of those joints still well preserved.

  5. [Displacement and tissue remodeling of temporomandibular joint disc].

    PubMed

    Wang, M Q

    2017-03-09

    Sounding takes the highest prevalence of the signs of temporomandibular disorders (TMD). The well accepted theory of the mechanism for temporomandibular joint (TMJ) sounding is the internal derangement typically characterized by disc displacement. However, according to literature, there are approximately one third of asymptomatic joints in population had disc displacement, and, on the other hand, there are one fourth of TMJ sounding patients had not signs or very limited signs of disc displacement. Replacing the displaced disc to the normal position via methods like surgical operation did not achieve satisfactory long-term outcomes. In this review, we discuss and analyze the possible remodeling of the joint disc displacement diagnosed with imaging based on the anatomy and pathophysiology.

  6. One-year outcome following biological or mechanical valve replacement for infective endocarditis.

    PubMed

    Delahaye, F; Chu, V H; Altclas, J; Barsic, B; Delahaye, A; Freiberger, T; Gordon, D L; Hannan, M M; Hoen, B; Kanj, S S; Lejko-Zupanc, T; Mestres, C A; Pachirat, O; Pappas, P; Lamas, C; Selton-Suty, C; Tan, R; Tattevin, P; Wang, A

    2015-01-15

    Nearly half of patients require cardiac surgery during the acute phase of infective endocarditis (IE). We describe the characteristics of patients according to the type of valve replacement (mechanical or biological), and examine whether the type of prosthesis was associated with in-hospital and 1-year mortality. Among 5591 patients included in the International Collaboration on Endocarditis Prospective Cohort Study, 1467 patients with definite IE were operated on during the active phase and had a biological (37%) or mechanical (63%) valve replacement. Patients who received bioprostheses were older (62 vs 54years), more often had a history of cancer (9% vs 6%), and had moderate or severe renal disease (9% vs 4%); proportion of health care-associated IE was higher (26% vs 17%); intracardiac abscesses were more frequent (30% vs 23%). In-hospital and 1-year death rates were higher in the bioprosthesis group, 20.5% vs 14.0% (p=0.0009) and 25.3% vs 16.6% (p<.0001), respectively. In multivariable analysis, mechanical prostheses were less commonly implanted in older patients (odds ratio: 0.64 for every 10years), and in patients with a history of cancer (0.72), but were more commonly implanted in mitral position (1.60). Bioprosthesis was independently associated with 1-year mortality (hazard ratio: 1.298). Patients with IE who receive a biological valve replacement have significant differences in clinical characteristics compared to patients who receive a mechanical prosthesis. Biological valve replacement is independently associated with a higher in-hospital and 1-year mortality, a result which is possibly related to patient characteristics rather than valve dysfunction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints.

    PubMed

    Sugisaki, Norihide; Okada, Junichi; Kanehisa, Hiroaki

    2013-01-01

    The present study aimed to quantify the intensity of lower extremity plyometric exercises by determining joint mechanical output. Ten men (age, 27.3 ± 4.1 years; height, 173.6 ± 5.4 cm; weight, 69.4 ± 6.0 kg; 1-repetition maximum [1RM] load in back squat 118.5 ± 12.0 kg) performed the following seven plyometric exercises: two-foot ankle hop, repeated squat jump, double-leg hop, depth jumps from 30 and 60 cm, and single-leg and double-leg tuck jumps. Mechanical output variables (torque, angular impulse, power, and work) at the lower limb joints were determined using inverse-dynamics analysis. For all measured variables, ANOVA revealed significant main effects of exercise type for all joints (P < 0.05) along with significant interactions between joint and exercise (P < 0.01), indicating that the influence of exercise type on mechanical output varied among joints. Paired comparisons revealed that there were marked differences in mechanical output at the ankle and hip joints; most of the variables at the ankle joint were greatest for two-foot ankle hop and tuck jumps, while most hip joint variables were greatest for repeated squat jump or double-leg hop. The present results indicate the necessity for determining mechanical output for each joint when evaluating the intensity of plyometric exercises.

  8. [Application and effect of auricular acupoint pressing for analgesia in perioperative period of total knee joint replacement].

    PubMed

    Tong, Pei-Jian; Wang, Hai-Dong; Ma, Zhen-Chuan

    2010-09-01

    To observe the effect of auricular acupoint pressing (AAP) for analgesia during perioperative period of total knee joint replacement. Sixty patients with osteoarthritis of ASA grade I - III scheduled to receive unilateral total knee joint replacement were equally randomized into the AAP group and the control group, 30 in each group. The general anesthesia on all patients was implemented by physicians of an identical group through endotracheal intubation. To the patients in the AAP group, AAP with Vaccaria seed was applied before operation, and the local analgesia on affected limb with acupoint pasting was used after operation. Besides, administering of celecoxib 400 mg on the day before operation, and celecoxib 200 mg twice daily post-operation was given to all patients. When the visual analogue scales (VAS) reached more than 7 points, 0.1 g of bucinnazine hydrochloride was given for supplement. Meantime, same post-operative training methods were adopted in both groups. The resting VAS pain scores, contentment of sedation, incidence of adverse event, postoperative range of motion (ROM) of knee joint and Hospital for Special Surgery (HSS) score were recorded. The resting VAS pain scores at 6 h and 24 h after operation was 5.99 +/- 0.67 scores and 4.26 +/- 0.59 scores in the AAP group respectively, which was significantly lower than that in the control group at the corresponding time (7.02 +/- 0.85 scores and 4.92 +/- 0.43 scores, P < 0.01); but it showed insignificant difference between the two groups at 1 h and 48 h after operation (P > 0.05); sedation contentment in the two groups was similar; incidence of adverse event in the AAP groups seemed lower (4 cases vs. 11 cases), but the intergroup difference was statistically insignificant (P > 0.05). ROM before surgery were 75.63 degrees +/- 5.74 degrees and 75.43 degrees +/- 5.63 degrees in the two groups respectively, showing no significant difference (P > 0.05), two weeks after operation, the initiative ROM raised

  9. Effect of leisure time physical activity on severe knee or hip osteoarthritis leading to total joint replacement: a population-based prospective cohort study

    PubMed Central

    2012-01-01

    Background Studies on leisure time physical activity as risk factor or protective factor for knee or hip osteoarthritis (OA) show divergent results. Longitudinal prospective studies are needed to clarify the association of physical activity with future OA. The aim was to explore in a prospective population-based cohort study the influence of leisure time physical activity on severe knee or hip OA, defined as knee or hip replacement due to OA. Methods Leisure time physical activity was reported by 28320 participants (mean age 58 years (SD 7.6), 60% women) at baseline. An overall leisure time physical activity score, taking both duration and intensity of physical activities into account, was created. The most commonly reported activities were also used for analysis. The incidence of knee or hip replacement due to OA over 11 years was monitored by linkage with the Swedish hospital discharge register. Cox’s proportional hazards model (crude and adjusted for potential confounding factors) was used to assess the incidence of total joint replacement, or osteotomy (knee), in separate analyses of leisure time physical activity. Results There was no significant overall association between leisure time physical activity and risk for knee or hip replacement due to OA over the 11-year observation time. For women only, the adjusted RR (95% CI) for hip replacement was 0.66 (0.48, 0.89) (fourth vs. first quartile), indicating a lower risk of hip replacement in those with the highest compared with the lowest physical activity. The most commonly reported activities were walking, bicycling, using stairs, and gardening. Walking was associated with a lower risk of hip replacement (adjusted RR 0.76 (95% CI 0.61, 0.94), specifically for women (adjusted RR 0.75 (95% CI 0.57, 0.98)). Conclusions In this population-based study of middle-aged men and women, leisure time physical activity showed no consistent overall relationship with incidence of severe knee or hip OA, defined as joint

  10. Contact Mechanics and Failure Modes of Compliant Polymeric Bearing Materials for Knee Cartilage Replacement

    NASA Astrophysics Data System (ADS)

    Tohfafarosh, Mariya Shabbir

    Osteoarthritis (OA) is the most common cause of disability affecting millions of people worldwide. Total knee replacement is the current state-of-the-art treatment to alleviate pain and improve mobility among patients in the late stage of knee OA. The current gold standard materials for total knee arthroplasty are cobalt-chromium and ultra-high molecular weight polyethylene (UHMWPE). However, wear debris and implant loosening-related revision persists; consequently, total knee replacements are not universally recommended for all patient subgroups with OA. This work explores the potential of using compliant polymeric materials in knee cartilage replacement devices, which are closer in lubrication and mechanical properties of articular cartilage, to prevent excessive removal of underlying bone and prolong the need for a total knee replacement. Two materials investigated in this thesis are polycarbonate urethane, Bionate 80A, and a novel hydrogel, Cyborgel, both of which have shown promising wear and lubrication properties under physiological loads. Polycarbonate urethane has been previously tested for the effects of gamma sterilization and has shown no significant changes in its mechanical strength or chemical bonds. Since an important aspect of medical device development is the sterilization process, this thesis first evaluated the effect of 30-35 kGy electron beam and gamma radiation on the polymer swell ratio, and the mechanical, chemical and tribological behavior of the novel hydrogel. Three different formulations were mechanically tested, and biphasic material properties were identified using finite element analysis. Fourier transform infrared spectroscopy was used to investigate chemical changes, while the wear properties were tested for 2 million cycles in bovine serum. The results showed no significant difference (p > 0.05) in the swell ratio, mechanical and tribological properties of the electron beam and gamma sterilized hydrogel sample as compared to the

  11. Neuraxial anesthesia improves long-term survival after total joint replacement: a retrospective nationwide population-based study in Taiwan.

    PubMed

    Chen, Wei-Hung; Hung, Kuo-Chuan; Tan, Ping-Heng; Shi, Hon-Yi

    2015-04-01

    This study explored the effects of general (GA) and neuraxial (NA) anesthesia on the outcomes of primary total joint replacement (TJR) in terms of postoperative mortality, length of stay (LOS), and hospital treatment costs. From 1997 to 2010, this nationwide population-based study retrospectively evaluated 7,977 patients in Taiwan who underwent primary total hip or knee replacement. We generated two propensity-score-matched subgroups, each containing an equal number of patients who underwent TJR with either GA or NA. Of the 7,977 patients, 2,990 (37.5%) underwent GA and 4,987 (62.5%) underwent NA. Propensity-score matching was used to create comparable GA and NA groups adjusted for age, sex, comorbidities, surgery type, hospital volume, and surgeon volume. Survival over the first three years following surgery was similar. The proportion of patients alive up to 14 years postoperatively for those undergoing NA was 58.2% (95% confidence interval [CI] 50.4 to 66.0), and for those undergoing GA it was 57.3% (95% CI 51.4 to 63.2). Neuraxial anesthesia was associated with lower median [interquartile range; IQR] hospital treatment cost ($4,079 [3,805-4,444] vs $4,113 [3,812-4,568]; P < 0.001) and shorter median [IQR] LOS (8 [7-10] days vs 8 [6-10] days, respectively; P = 0.024). Our results support the use of NA for primary TJR. The improvements in hospital costs persist even when anesthesia costs are removed. The mechanism underlying the association between NA and long-term survival is unknown.

  12. Behavior of stress generated in semiconductor chips with high-temperature joints: Influence of mechanical properties of joint materials

    NASA Astrophysics Data System (ADS)

    Ito, H.; Kuwahara, M.; Ohta, R.; Usui, M.

    2018-04-01

    High-temperature joint materials are indispensable to realizing next-generation power modules with high-output performance. However, crack initiation resulting from stress concentration in semiconductor chips joined with high-temperature joint materials remains a critical problem in high-temperature operation. Therefore, clarifying the quantitative influence of joint materials on the stress generated in chips is essential. This study investigates the stress behavior of chips joined by Ni-Sn solid-liquid interdiffusion (SLID), which results in a high-temperature joint material likely to generate cracks after joining or when under thermal cycling. The results are compared with those fabricated using three types of solders, Pb-10%Sn, Sn-0.7%Cu, and Sn-10%Sb (mass %), which are conventional joint materials with different melting points and mechanical properties. Using Ni-Sn SLID results in the generation of high compressive stress (500 MPa) without stress relaxation after the joining process in contrast to the case of solders in which the compressive stresses are low (<300 MPa) and decrease to still lower levels (<250 MPa). In addition, no stress relaxation occurs during thermal cycling when using Ni-Sn SLID, whereas stress relaxation is clearly observed during heating to 200 °C using solders. Different stress behaviors between Ni-Sn SLID and other joint materials are illustrated by their mechanical strength and resistance against plastic and creep deformation. These results suggest that stress relaxation in a chip is key in suppressing crack initiation in highly reliable modules during high-temperature operation.

  13. Interfacial microstructure and mechanical properties of brazed aluminum / stainless steel - joints

    NASA Astrophysics Data System (ADS)

    Fedorov, V.; Elßner, M.; Uhlig, T.; Wagner, G.

    2017-03-01

    Due to the demand of mass and cost reduction, joints based on dissimilar metals become more and more interesting. Especially there is a high interest for joints between stainless steel and aluminum, often necessary for example for automotive heat exchangers. Brazing offers the possibilities to manufacture several joints in one step at, in comparison to fusion welding, lower temperatures. In the recent work, aluminum / stainless steel - joints are produced by induction brazing using an AlSi10 filler and a non-corrosive flux. The mechanical properties are determined by tensile shear tests as well as fatigue tests at ambient and elevated temperatures. The microstructure of the brazed joints and the fracture surfaces of the tested samples are investigated by SEM.

  14. The use of synthetic ligaments in the design of an enhanced stability total knee joint replacement.

    PubMed

    Stokes, Michael D; Greene, Brendan C; Pietrykowski, Luke W; Gambon, Taylor M; Bales, Caroline E; DesJardins, John D

    2018-03-01

    Current total knee replacement designs work to address clinically desired knee stability and range of motion through a balance of retained anatomy and added implant geometry. However, simplified implant geometries such as bearing surfaces, posts, and cams are often used to replace complex ligamentous constraints that are sacrificed during most total knee replacement procedures. This article evaluates a novel total knee replacement design that incorporates synthetic ligaments to enhance the stability of the total knee replacement system. It was hypothesized that by incorporating artificial cruciate ligaments into a total knee replacement design at specific locations and lengths, the stability of the total knee replacement could be significantly altered while maintaining active ranges of motion. The ligament attachment mechanisms used in the design were evaluated using a tensile test, and determined to have a safety factor of three with respect to expected ligamentous loading in vivo. Following initial computational modeling of possible ligament orientations, a physical prototype was constructed to verify the function of the design by performing anterior/posterior drawer tests under physiologic load. Synthetic ligament configurations were found to increase total knee replacement stability up to 94% compared to the no-ligament case, while maintaining total knee replacement flexion range of motion between 0° and 120°, indicating that a total knee replacement that incorporates synthetic ligaments with calibrated location and lengths should be able to significantly enhance and control the kinematic performance of a total knee replacement system.

  15. Fractionation and characterization of particles simulating wear of total joint replacement (TJR) following ASTM standards.

    PubMed

    Saha, Subrata; Musib, Mrinal

    2011-01-01

    Reactions of bone cells to orthopedic wear debris produced by the articulating motion of total joint replacements (TJRs) are largely responsible for the long-term failure of such replacements. Metal and polyethylene (PE) wear particles isolated from fluids from total joint simulators, as well as particles that are fabricated by other methods, are widely used to study such in vitro cellular response. Prior investigations have revealed that cellular response to wear debris depends on the size, shape, and dose of the particles. Hence, to have a better understanding of the wear-mediated osteolytic process it is important that these particles are well characterized and clinically relevant, both qualitatively, and quantitatively. In this study we have fractionated both ultra-high molecular weight polyethylene (UHMWPE) and Ti particles, into micron (1.0-10.0 μm), submicron (0.2-1.0 μm), and nanoparticle (0.01-0.2 μm) fractions, and characterized them based on the following size-shape descriptors as put forth in ASTM F1877: i) equivalent circle diameter (ECD), ii) aspect ratio (AR), iii) elongation (E), iv) roundness (R), and v) form factor (FF). The mean (± SD) ECDs (in μm) for micron, submicron, and nanoparticles of UHMWPE were 1.652 ± 0.553, 0.270 ± 0.180, and 0.061 ± 0.035, respectively, and for Ti were 1.894 ± 0.667, 0.278 ± 0.180, and 0.055 ± 0.029, respectively. The values for other descriptors were similar (no statistically significant difference). The nanofraction particles were found to be more sphere-like (higher R and FF values, and lower E and AR values) as compared to larger particles. Future experiments will involve use of these well characterized particles for in vitro studies.

  16. The Effect of Advancing Age on Total Joint Replacement Outcomes

    PubMed Central

    Noiseux, Nicolas; Linson, Eric; Cram, Peter

    2015-01-01

    Objective: To describe age-related differences in outcomes among older adults undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA). Design: Retrospective study. Participants: A total of 1792 patients who underwent primary THA or TKA at the University of Iowa Hospitals and Clinics between 2010 and 2013 were identified in the University HealthSystem Consortium Database and University of Iowa Orthopedics Joint Replacement Registry. Main Outcome Measures: Hospital length of stay (LOS), 30-day readmission rate, in-hospital mortality, number of days admitted to intensive care unit (ICU discharge disposition), in-hospital complications (pulmonary embolism, deep vein thrombosis, wound infection, hemorrhage, sepsis, or myocardial infarction), quality of life (measured using Short-Form 36 [SF-36]), discharge disposition (home, home with home health, nursing home, inpatient rehabilitation, transfer to another acute care hospital, and dead), and total patient level observed hospital cost (based on hospital charge information from each revenue code and estimated labor costs). Outcomes were compared in patients stratified by age and categorized by decade (ie, ≤50, 51-60, 61-70, 71-80, and ≥81). Results: A total of 871 THAs and 921 TKAs were performed. The mean age of our cohort was 60.5 years and 56.1% were women. In-hospital complication rates and ICU utilization progressively increased with increasing age. There was also a higher likelihood of skilled nursing facility placement and longer LOS. There was no increase in 30-day readmissions, mortality, or total cost. Improvements in patient reported outcomes (SF-36) scores were similar for all age-groups. Conclusions: Compared to younger patients, older THA and TKA recipients were more likely to experience postoperative complications, admission to the ICU, discharge to a skilled care facility, and had longer hospital LOS. Improvements in patient-related outcomes were similar across all age-groups. These

  17. Biomechanics of the natural, arthritic, and replaced human ankle joint

    PubMed Central

    2014-01-01

    The human ankle joint complex plays a fundamental role in gait and other activities of daily living. At the same time, it is a very complicated anatomical system but the large literature of experimental and modelling studies has not fully described the coupled joint motion, position and orientation of the joint axis of rotation, stress and strain in the ligaments and their role in guiding and stabilizing joint motion, conformity and congruence of the articular surfaces, patterns of contact at the articular surfaces, patterns of rolling and sliding at the joint surfaces, and muscle lever arm lengths. The present review article addresses these issues as described in the literature, reporting the most recent relevant findings. PMID:24499639

  18. Measurement of installation deformation of the acetabulum during prosthetic replacement of a hip joint using digital image correlation

    NASA Astrophysics Data System (ADS)

    Lei, Dong; Bai, Pengxiang; Zhu, Feipeng

    2018-01-01

    Nowadays, acetabulum prosthesis replacement is widely used in clinical medicine. However, there is no efficient way to evaluate the implantation effect of the prosthesis. Based on a modern photomechanics technique called digital image correlation (DIC), the evaluation method of the installation effect of the acetabulum was established during a prosthetic replacement of a hip joint. The DIC method determines strain field by comparing the speckle images between the undeformed sample and the deformed counterpart. Three groups of experiments were carried out to verify the feasibility of the DIC method on the acetabulum installation deformation test. Experimental results indicate that the installation deformation of acetabulum generally includes elastic deformation (corresponding to the principal strain of about 1.2%) and plastic deformation. When the installation angle is ideal, the plastic deformation can be effectively reduced, which could prolong the service life of acetabulum prostheses.

  19. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    DTIC Science & Technology

    2012-01-01

    Joints in Glass Fibre / Epoxy Laminates. Composites, Volume 16. No 2. Kolsky, H. (1949). An Investigation of the Mechanical Properties of Materials at...and equations 2.1 and 2, Figures 2.3, 2.4, and 2.5 were constructed to determine optimal specimen properties for later testing of bolted joints of...9.5 l/d=11.5 UNCLASSIFIED UNCLASSIFIED 2.5 Discussion Ideal specimen properties are high total equilibrium times, low equilibrium start times and

  20. Altered Tibiofemoral Joint Contact Mechanics and Kinematics in Patients with Knee Osteoarthritis and Episodic Complaints of Joint Instability

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Klatt, Brian A.; Gustafson, Jonathan A.; Tashman, Scott; Fitzgerald, G. Kelley

    2014-01-01

    Background To evaluate knee joint contact mechanics and kinematics during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. Methods Forty-three subjects, 11 with medial compartment knee osteoarthritis and self-reported instability (unstable), 7 with medial compartment knee osteoarthritis but no reports of instability (stable), and 25 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a downhill gait task on a treadmill. Findings The medial compartment contact point excursions were longer in the unstable group compared to the stable (p=0.046) and the control groups (p=0.016). The peak medial compartment contact point velocity was also greater for the unstable group compared to the stable (p=0.047) and control groups (p=0.022). Additionally, the unstable group demonstrated a coupled movement pattern of knee extension and external rotation after heel contact which was different than the coupled motion of knee flexion and internal rotation demonstrated by stable and control groups. Interpretation Our findings suggest that knee joint contact mechanics and kinematics are altered during the loading response phase of downhill gait in knee osteoarthritis patients with self-reported instability. The observed longer medial compartment contact point excursions and higher velocities represent objective signs of mechanical instability that may place the arthritic knee joint at increased risk for disease progression. Further research is indicated to explore the clinical relevance of altered contact mechanics and kinematics during other common daily activities and to assess the efficacy of rehabilitation programs to improve altered joint biomechanics in knee osteoarthritis patients with self-reported instability. PMID:24856791

  1. An investigation into the mechanism for enhanced mechanical properties in friction stir welded AA2024-T3 joints coated with cold spraying

    NASA Astrophysics Data System (ADS)

    Li, N.; Li, W. Y.; Yang, X. W.; Feng, Y.; Vairis, A.

    2018-05-01

    Using cold spraying (CS), a surface layer with a modified microstructure and enhanced mechanical properties was formed on a 3.2 mm thick friction stir welded (FSWed) AA2024-T3 joint. The combined effect of "shot peening effect (SPE)" and "heat flow effect (HFE)" during CS were used to enhance joint mechanical properties. The microstructure evolution of the FSWed AA2024-T3 joints in the surface layer following CS coatings and their effect on mechanical properties were systematically characterized with electron back-scattered diffraction, transmission electron microscopy, differential scanning calorimetry and mechanical tests. Based on these experiments, a grain refinement, finer and more S phases, and improved amount of Guinier-Preston-Bagaryatsky (GPB) zones produced by CS treatments are proposed. The deposition of aluminum coating on the joint, lead to hardness recovery in the stir zone and the development of two low hardness zones as the density of GPB increased. The tensile properties of FSWed AA2024-T3 joints improved with the application of the aluminum coatings. Experiments and analysis of the enhanced mechanical properties mechanism indicate that SPE with a high plastic deformation and HFE with an intensive heat flow are necessary for the production of refined grains and increased numbers of GPB zones.

  2. Longevity after aortic root replacement: is the mechanically valved conduit really the gold standard for quinquagenarians?

    PubMed

    Etz, Christian D; Girrbach, Felix F; von Aspern, Konstantin; Battellini, Roberto; Dohmen, Pascal; Hoyer, Alexandro; Luehr, Maximilian; Misfeld, Martin; Borger, Michael A; Mohr, Friedrich W

    2013-09-10

    The choice of the best conduit for root/ascending disease and its impact on longevity remain controversial in quinquagenarians. A total of 205 patients (men=155) between 50 and 60 years (mean, 55.7 ± 2.9 years) received either a stentless porcine xenoroot (n=78) or a mechanically valved composite prosthesis (n=127) between February 1998 and July 2011. Of these, 166 patients underwent root replacement for aneurysmal disease (porcine: 39% [n=65]; mechanical: 61% [n=101]; P=0.5), 25 for acute type A aortic dissection (porcine: 32% [n=8]; mechanical: 68% [n=17]; P=0.51), and 14 for endocarditis/iatrogenic injury involving the aortic root (6.4% [n=5] versus 7.1% [n=9]; P=1.0). The predominant aortic valve pathology was stenosis in 19% (n=38), regurgitation in 50% (n=102), combined valvular dysfunction in 26% (n=54), and normal aortic valve function in 5% (n=11). Concomitant procedures included coronary artery bypass grafting (13%), mitral valve repair (7%), and partial/complete arch replacement (12%/4%), with no significant differences between porcine and mechanical root replacement. Overall hospital mortality was 7.3%, with no difference between the 2 types of valve prostheses (7.7% for porcine and 7.1% for mechanical root replacement; P=1.0). Follow-up averaged 5.4 ± 3.7 years (1096 patient-years) and was 100% complete. Freedom from aorta-related reoperation at 12 years was not statistically different between the groups (porcine: 94.9% versus mechanical: 96.1%; P=0.73). Survival was equivalent between both groups, with a 5-year survival of 86 ± 3% (porcine: 88 ± 4%; mechanical: 85 ± 3%; P=0.96) and a 10-year survival of 76% (porcine: 80 ± 7%; mechanical: 75 ± 5%; P=0.84). The linearized mortality rate was 3.1%/patient-year (porcine: 2.9%/patient-year; mechanical: 3.2%/patient-year). In quinquagenerians, long-term survival after stentless porcine xenograft aortic root replacement is equivalent to that after a mechanical Bentall procedure. These results bring

  3. Experimental study of the mechanism and sequence of calcite-dolomite replacement

    NASA Astrophysics Data System (ADS)

    Moraila-Martinez, Teresita; Putnis, Christine V.; Putnis, Andrew

    2015-04-01

    For many years the formation, mechanism and environmental settings of dolomite formation have been under discussion, mainly because dolomite is commonly found in ancient rocks, whereas it is rarely present in modern sediments. The most favoured hypothesis is the 'dolomitization' of limestone by Mg-bearing aqueous solutions [1,2]. The existence of sharp limestone-dolomite contacts in natural rocks suggests that dolomitization involves a coupled dissolution-precipitation process. For a better understanding of the replacement mechanism of calcite by dolomite we performed hydrothermal experiments using Carrara marble cubes of 1.5 mm size, that reacted with 1M (Ca,Mg)Cl2 solutions with a Mg:Ca ratio of 3, at 200°C for different duration times (10, 20, 40, 50 and 58 days). After reaction, the product phases were characterized using Raman spectroscopy, electron microprobe analysis, and scanning electron microscopy. After reaction, the external morphology of the samples was preserved. Back-scattered images revealed two replacement end products: dolomite and magnesite. Grain boundaries of the samples were maintained. Shorter time duration experiments resulted in the replacement reaction occurring mainly along grain boundaries, whereas in longer duration time experiments more replacement was located in the core of the sample. In this type of reaction, grain boundaries are very important for the replacement to occur, acting as fluid pathways, allowing the infiltration of the solution further from the rock surface, enhancing fluid permeability within the sample and allowing further replacement reactions to occur. 1. Kaczmarek S.E., Sibley D.F. On the evolution of dolomite stoichiometry and cation order during high temperature synthesis experiments: An alternative model for geochemical evolution of natural dolomites. Sedimentary Geology. 240, 30-40 (2011). 2. Etschmann B., Brugger J., Pearce M.A., Ta C., Brautigan D., Jung M., Pring A. Grain boundaries as microreactors during

  4. Sick leave in Sweden before and after total joint replacement in hip and knee osteoarthritis patients.

    PubMed

    Stigmar, Kjerstin; Dahlberg, Leif E; Zhou, Caddie; Jacobson Lidgren, Helena; Petersson, Ingemar F; Englund, Martin

    2017-04-01

    Background and purpose - Little is know about patterns of sick leave in connection with total hip and knee joint replacement (THR and TKR) in patients with osteoarthritis (OA). Patients and methods - Using registers from southern Sweden, we identified hip and knee OA patients aged 40-59 years who had a THR or TKR in the period 2004-2012. Patients who died or started on disability pension were excluded. We included 1,307 patients with THR (46% women) and 996 patients with TKR (56% women). For the period 1 year before until 2 years after the surgery, we linked individual-level data on sick leave from the Swedish Social Insurance Agency. We created a matched reference cohort from the general population by age, birth year, and area of residence (THR: n = 4,604; TKR: n = 3,425). The mean number of days on sick leave and the proportion (%) on sick leave 12 and 24 months before and after surgery were calculated. Results - The month after surgery, about 90% of patients in both cohorts were on sick leave. At the two-year follow-up, sick leave was lower for both cohorts than 1 year before surgery, except for men with THR, but about 9% of the THR patients and 12-17% of the TKR patients were still sick-listed. In the matched reference cohorts, sick leave was constant at around 4-7% during the entire study period. Interpretation - A long period of sick leave is common after total joint replacement, especially after TKR. There is a need for better knowledge on how workplace adjustments and rehabilitation can facilitate the return to work and can postpone surgery.

  5. Design optimization of dual-axis driving mechanism for satellite antenna with two planar revolute clearance joints

    NASA Astrophysics Data System (ADS)

    Bai, Zheng Feng; Zhao, Ji Jun; Chen, Jun; Zhao, Yang

    2018-03-01

    In the dynamic analysis of satellite antenna dual-axis driving mechanism, it is usually assumed that the joints are ideal or perfect without clearances. However, in reality, clearances in joints are unavoidable due to assemblage, manufacturing errors and wear. When clearance is introduced to the mechanism, it will lead to poor dynamic performances and undesirable vibrations due to impact forces in clearance joint. In this paper, a design optimization method is presented to reduce the undesirable vibrations of satellite antenna considering clearance joints in dual-axis driving mechanism. The contact force model in clearance joint is established using a nonlinear spring-damper model and the friction effect is considered using a modified Coulomb friction model. Firstly, the effects of clearances on dynamic responses of satellite antenna are investigated. Then the optimization method for dynamic design of the dual-axis driving mechanism with clearance is presented. The objective of the optimization is to minimize the maximum absolute vibration peak of antenna acceleration by reducing the impact forces in clearance joint. The main consideration here is to optimize the contact parameters of the joint elements. The contact stiffness coefficient, damping coefficient and the dynamic friction coefficient for clearance joint elements are taken as the optimization variables. A Generalized Reduced Gradient (GRG) algorithm is used to solve this highly nonlinear optimization problem for dual-axis driving mechanism with clearance joints. The results show that the acceleration peaks of satellite antenna and contact forces in clearance joints are reduced obviously after design optimization, which contributes to a better performance of the satellite antenna. Also, the application and limitation of the proposed optimization method are discussed.

  6. The Cost of Joint Replacement: Comparing Two Approaches to Evaluating Costs of Total Hip and Knee Arthroplasty.

    PubMed

    Palsis, John A; Brehmer, Thomas S; Pellegrini, Vincent D; Drew, Jacob M; Sachs, Barton L

    2018-02-21

    In an era of mandatory bundled payments for total joint replacement, accurate analysis of the cost of procedures is essential for orthopaedic surgeons and their institutions to maintain viable practices. The purpose of this study was to compare traditional accounting and time-driven activity-based costing (TDABC) methods for estimating the total costs of total hip and knee arthroplasty care cycles. We calculated the overall costs of elective primary total hip and total knee replacement care cycles at our academic medical center using traditional and TDABC accounting methods. We compared the methods with respect to the overall costs of hip and knee replacement and the costs for each major cost category. The traditional accounting method resulted in higher cost estimates. The total cost per hip replacement was $22,076 (2014 USD) using traditional accounting and was $12,957 using TDABC. The total cost per knee replacement was $29,488 using traditional accounting and was $16,981 using TDABC. With respect to cost categories, estimates using traditional accounting were greater for hip and knee replacement, respectively, by $3,432 and $5,486 for personnel, by $3,398 and $3,664 for space and equipment, and by $2,289 and $3,357 for indirect costs. Implants and consumables were derived from the actual hospital purchase price; accordingly, both methods produced equivalent results. Substantial cost differences exist between accounting methods. The focus of TDABC only on resources used directly by the patient contrasts with the allocation of all operating costs, including all indirect costs and unused capacity, with traditional accounting. We expect that the true costs of hip and knee replacement care cycles are likely somewhere between estimates derived from traditional accounting methods and TDABC. TDABC offers patient-level granular cost information that better serves in the redesign of care pathways and may lead to more strategic resource-allocation decisions to optimize

  7. Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints

    NASA Astrophysics Data System (ADS)

    Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.

    2014-07-01

    In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.

  8. Behaviour and Analysis of Mechanically Fastened Joints in Composite Structures

    DTIC Science & Technology

    1988-03-01

    Safety Factors for Use When Designing bolted Joints In GRP," Composites , April 1979, pp. M376. 93. Dastln, S., "Joining and Machining Techniques... MACHINE SPACER LOCKmm STEEL PLATE FASTENER 203 mm OR DOWEL FiN EXTENSOMETER EXTENSOMETER TGAUGE LENGTH ATTACHMENT COMPOSITE - PLATE 31 mm p NOTE: NOT TO...No.427 Behaviour and Analysis of Mechanically Fastened Joints in Composite Structures DTIC CXVTflUTION STATEME~r £ELECTE Approved fm Vubhc sIlam l JUL

  9. Literature Review on the Design of Composite Mechanically Fastened Joints (Revue de la Documentation sur la Conception des Joints a Liaison Mecanique en Composites),

    DTIC Science & Technology

    1986-02-01

    mechanics Eisenmann (32) established a bolted joint static strength prediction model based on fracture mechanics for composite materials. The failure...34 Composite Materials, Volume 2, Academic Press, 1974, pp. 353-431. 32. Eisenmann , J.R., "Bolted Joint Static Strength Model for Composite Materials," NASA

  10. Pessimistic Determination of Mechanical Conditions and Micro/macroeconomic Evaluation of Mine Pillar Replacement

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu

    2017-12-01

    Numerous pillars are left after mining of underground mineral resources using the open stope method or after the first step of the partial filling method. The mineral recovery rate can, however, be improved by replacement recovery of pillars. In the present study, the relationships among the pillar type, minimum pillar width, and micro/macroeconomic factors were investigated from two perspectives, namely mechanical stability and micro/macroeconomic benefit. Based on the mechanical stability formulas for ore and artificial pillars, the minimum width for a specific pillar type was determined using a pessimistic criterion. The microeconomic benefit c of setting an ore pillar, the microeconomic benefit w of artificial pillar replacement, and the economic net present value (ENPV) of the replacement process were calculated. The values of c and w were compared with respect to ENPV, based on which the appropriate pillar type and economical benefit were determined.

  11. Mechanical Properties of Lightweight Concrete Using Recycled Cement-Sand Brick as Coarse Aggregates Replacement

    NASA Astrophysics Data System (ADS)

    Joohari, Ilya; Farhani Ishak, Nor; Amin, Norliyati Mohd

    2018-03-01

    This paper presents the result of replacing natural course aggregate with recycled cement-sand brick (CSB) towards the mechanical properties of concrete. Natural aggregates were used in this study as a control sample to compare with recycled coarse aggregates. This study was also carried to determine the optimum proportion of coarse aggregates replacement to produce lightweight concrete. Besides, this study was conducted to observe the crack and its behaviour development during the mechanical testing. Through this study, four types of concrete mixed were prepared, which were the control sample, 25%, 50% and 75% replacement of CSB. The test conducted to determine the effectiveness of recycled CSB as coarse aggregates replacement in this study were slump test, density measurement, compression test, and flexural test and. The strength of concrete was tested at 7 days and 28 days of curing. From the results obtained, the optimum proportion which produced the highest strength is 25% replacement of recycled CSB. The compressive and flexural strength has decreased by 10%-12% and 4%-34% respectively compared to the control sample. The presence of recycled coarse aggregates in sample has decreased the density of concrete by 0.8%-3% compared to the control sample.

  12. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  13. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

  14. Comprehensive Care for Joint Replacement Model (CJR); Delay of Effective Date. Final rule; delay of effective date.

    PubMed

    2017-05-19

    This final rule finalizes May 20, 2017 as the effective date of the final rule titled "Advancing Care Coordination Through Episode Payment Models (EPMs); Cardiac Rehabilitation Incentive Payment Model; and Changes to the Comprehensive Care for Joint Replacement Model (CJR)" originally published in the January 3, 2017 Federal Register. This final rule also finalizes a delay of the applicability date of the regulations at 42 CFR part 512 from July 1, 2017 to January 1, 2018 and delays the effective date of the specific CJR regulations listed in the DATES section from July 1, 2017 to January 1, 2018.

  15. [Partial replacement of the knee joint with patient-specific instruments and implants (ConforMIS iUni, iDuo)].

    PubMed

    Beckmann, J; Steinert, A; Zilkens, C; Zeh, A; Schnurr, C; Schmitt-Sody, M; Gebauer, M

    2016-04-01

    Knee arthroplasty is a successful standard procedure in orthopedic surgery; however, approximately 20 % of patients are dissatisfied with the clinical results as they suffer pain and can no longer achieve the presurgery level of activity. According to the literature the reasons are inexact fitting of the prosthesis or too few anatomically formed implants resulting in less physiological kinematics of the knee joint. Reducing the number of dissatisfied patients and the corresponding number of revisions is an important goal considering the increasing need for artificial joints. In this context, patient-specific knee implants are an obvious alternative to conventional implants. For the first time implants are now matched to the individual bone and not vice versa to achieve the best possible individual situation and geometry and more structures (e.g. ligaments and bone) are preserved or only those structures are replaced which were actually destroyed by arthrosis. According to the authors view, this represents an optimal and pioneering addition to conventional implants. Patient-specific implants and the instruments needed for correct alignment and fitting can be manufactured by virtual 3D reconstruction and 3D printing based on computed tomography (CT) scans. The portfolio covers medial as well as lateral unicondylar implants, medial as well as lateral bicompartmental implants (femorotibial and patellofemoral compartments) and cruciate ligament-preserving as well as cruciate ligament-substituting total knee replacements; however, it must be explicitly emphasized that the literature is sparse and no long-term data are available.

  16. Survivorship of Total Hip Joint Replacements Following Isolated Liner Exchange for Wear.

    PubMed

    Vadei, Leone; Kieser, David C; Frampton, Chris; Hooper, Gary

    2017-11-01

    Liner exchange for articular component wear in total hip joint replacements (THJRs) is a common procedure, often thought to be benign with reliable outcomes. Recent studies, however, suggest high failure rates of liner exchange revisions with significant complications. The primary aim of this study was, therefore, to analyze the survivorship of isolated liner exchange for articular component wear, and secondarily to assess the influence of patient demographics (gender, age, and American Society of Anaesthesiologists [ASA] ratings) on rerevisions following isolated liner exchange for wear. A retrospective review of the 15-year New Zealand Joint Registry (1999-2014) was performed, analyzing the outcomes of isolated liner exchange for articular component wear. The survivorship as defined as rerevision with component exchange was determined and 10-year Kaplan-Meier survivorship curves were constructed. These revision rates were compared to age, gender, and ASA rating groups using a log-rank test. The 10-year survivorship of THJR following liner exchange revision for liner wear was 75.3%. If a rerevision was required, the median time to rerevision was 1.33 years with a rerevision rate of 3.33 per 100 component years (95% confidence interval 2.68-4.08/100 component years). The principle reasons for rerevision were dislocation (48.4%) and acetabular component loosening (20.9%). There was no statistically significant difference in rerevision rates based on gender, age categories, or ASA scores. THJR isolated liner exchange for liner wear is not a benign procedure with a survivorship of 75.3% at 10 years. Surgeons contemplating liner exchange revisions should be cognisant of this risk and should adequately assess component position and stability preoperatively. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mechanical characteristics of welded joints between different stainless steels grades

    NASA Astrophysics Data System (ADS)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  18. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    NASA Astrophysics Data System (ADS)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  19. A Study of Knee Joint Kinematics and Mechanics using a Human FE Model.

    PubMed

    Kitagawa, Yuichi; Hasegawa, Junji; Yasuki, Tsuyoshi; Iwamoto, Masami; Miki, Kazuo

    2005-11-01

    Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so

  20. Salvage Procedures for Management of Prosthetic Joint Infection After Hip and Knee Replacements

    PubMed Central

    Mahmoud, Samer S.S.; Sukeik, Mohamed; Alazzawi, Sulaiman; Shaath, Mohammed; Sabri, Omar

    2016-01-01

    Background: The increasing load placed by joint replacement surgery on health care systems makes infection, even with the lowest rates, a serious concern that needs to be thoroughly studied and addressed using all possible measures. Methods: A comprehensive review of the current literature on salvage procedures for recurrent PJIs using PubMed, EMBASE and CINAHL has been conducted. Results: Prolonged suppressive antibiotic therapy (PSAT), resection arthroplasty and arthrodesis were the most common procedures performed. Suppressive antibiotic therapy is based on the use of well tolerated long term antibiotics in controlling sensitive organisms. Resection arthroplasty which should be reserved as a last resort provided more predictable outcomes in the hip whereas arthrodesis was associated with better outcomes in the knee. Various methods for arthrodesis including internal and external fixation have been described. Conclusion: Despite good union and infection control rates, all methods were associated with complications occasionally requiring further surgical interventions. PMID:28144373

  1. Influence of hip joint simulator design and mechanics on the wear and creep of metal-on-polyethylene bearings

    PubMed Central

    Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M

    2016-01-01

    Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. PMID:27160559

  2. Influence of hip joint simulator design and mechanics on the wear and creep of metal-on-polyethylene bearings.

    PubMed

    Ali, Murat; Al-Hajjar, Mazen; Partridge, Susan; Williams, Sophie; Fisher, John; Jennings, Louise M

    2016-05-01

    Hip joint simulators are used extensively for preclinical testing of hip replacements. The variation in simulator design and test conditions used worldwide can affect the tribological performance of polyethylene. The aim of this study was to assess the effects of simulator mechanics and design on the wear and creep of ultra-high-molecular-weight polyethylene. In the first part of this study, an electromechanical simulator and pneumatic simulator were used to compare the wear and creep of metal-on-polyethylene components under the same standard gait conditions. In the second part of the study, the same electromechanical hip joint simulator was used to investigate the influence of kinematics on wear. Higher wear rates and penetration depths were observed from the electromechanical simulator compared with the pneumatic simulator. When adduction/abduction was introduced to the gait cycle, there was no significant difference in wear with that obtained under the gait cycle condition without adduction/abduction. This study confirmed the influence of hip simulator design and loading conditions on the wear of polyethylene, and therefore direct comparisons of absolute wear rates between different hip joint simulators should be avoided. This study also confirmed that the resulting wear path was the governing factor in obtaining clinically relevant wear rates, and this can be achieved with either two axes or three axes of rotations. However, three axes of rotation (with the inclusion of adduction/abduction) more closely replicate clinical conditions and should therefore be the design approach for newly developed hip joint simulators used for preclinical testing. © IMechE 2016.

  3. Robust control of multi-jointed arm with a decentralized autonomous control mechanism

    NASA Technical Reports Server (NTRS)

    Kimura, Shinichi; Miyazaki, Ken; Suzuki, Yoshiaki

    1994-01-01

    A decentralized autonomous control mechanism applied to the control of three dimensional manipulators and its robustness to partial damage was assessed by computer simulation. Decentralized control structures are believed to be quite robust to time delay between the operator and the target system. A 10-jointed manipulator based on our control mechanism was able to continue its positioning task in three-dimensional space without revision of the control program, even after some of its joints were damaged. These results suggest that this control mechanism can be effectively applied to space telerobots, which are associated with serious time delay between the operator and the target system, and which cannot be easily repaired after being partially damaged.

  4. Comparison of arthrodesis, resurfacing hemiarthroplasty, and total joint replacement in the treatment of advanced hallux rigidus.

    PubMed

    Erdil, Mehmet; Elmadağ, Nuh Mehmet; Polat, Gökhan; Tunçer, Nejat; Bilsel, Kerem; Uçan, Vahdet; Erkoçak, Omer Faruk; Sen, Cengiz

    2013-01-01

    The purpose of the present study was to compare the functional results of arthrodesis, resurfacing hemiarthroplasty, and total joint replacement in hallux rigidus. The data from patients treated from 2006 to 2010 for advanced stage hallux rigidus were retrospectively reviewed. A total of 38 patients who had at least 2 years (range 24 to 66 months, mean 31.1) of follow-up were included in the present study. Of the 38 patients, 12 were included in the total joint replacement group (group A), 14 in the resurfacing hemiarthroplasty group (group B), and 12 in the arthrodesis group (group C). At the last follow-up visit, the functional outcomes were evaluated using the American Orthopaedic Foot and Ankle Society-Hallux Metatarsophalangeal Interphalangeal (AOFAS-HMI) scale, visual analog scale (VAS), and metatarsophalangeal range of motion. Significant improvements were seen in the AOFAS-HMI score, with a decrease in the VAS score in all 3 groups. According to the AOFAS-HMI score, no significant difference was found between groups A and B. However, in group C, the AOFAS-HMI scores were significantly lower than in the other groups owing to the lack of motion. According to the final VAS scores, no significant difference was found between groups A and B; however, the VAS score had decreased significantly more in group C than in the other groups. No major complications occurred in any of the 3 groups. After 2 years of follow-up, all the groups had good functional outcomes. Although arthrodesis is still the most reliable procedure, implant arthroplasty is also a good alternative for advanced stage hallux rigidus. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Microstructure and Mechanical Properties of Friction Stir Welded Aluminum Alloy/Stainless Steel Lap Joints

    NASA Astrophysics Data System (ADS)

    Ogura, Tomo; Nishida, Taichi; Nishida, Hidehito; Yoshikawa, Syuhei; Yoshida, Takumi; Omichi, Noriko; Fujimoto, Mitsuo; Hirose, Akio

    The mechanical properties and interfacial microstructure of an aluminum alloy/stainless steel dissimilar lap joint using friction stir welding (FSW) were characterized. In an FSWed A3003 aluminum alloy-SUS304 steel lap joint, the strength on the advancing side was larger than that at the retreating side. TEM observation indicated that a sound joint can be obtained from the stage of the formation of the amorphous layer owing to the mechanical alloying effects before the formation of intermetallic compounds. This lap joining technique was also successfully applied to A6061-T6 aluminum alloy-grooved SUS304 plates. The maximum tensile strength of the lap joint was approximately the same as that of the base alloy, however, the proof stress of the joint decreased with the dissolution of the β″ phase in the A6061 aluminium alloy, which is caused by the generation of heat during friction stir welding.

  6. Safety assessment of Cracked K-joint Structure Based on Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pengyu, Yan; Jianwei, Du; Fuhai, Cai

    2017-05-01

    The K-joint is the main bearing structure of lattice jib crane. During frequent operation of the crane, surface cracks often occur at its weld toe, and then continue to expand until failure. The safety of the weak structure K-joint of the crane jib can be evaluated by BS7910 failure assessment standard in order to improve its utilization. The finite element model of K-joint structure with cracks is established, and its mechanical properties is analyzed by ABAQUS software, the results show that the crack depth has a great influence on the bearing capacity of the structure compared with the crack length. It is assumed that the K-joint with the semi-elliptical surface crack under the action of the tension propagate stably under the condition that the c/a (ratio of short axis to long axis of ellipse) is about 0.3. The safety assessment of K-joint with different lengths crack is presented according to the 2A failure assessment diagram of BS7910, and the critical crack of K-joint under different loads can be obtained.

  7. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  8. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  9. An investigation of the validity of six measures of physical function in people awaiting joint replacement surgery of the hip or knee.

    PubMed

    Gill, Stephen D; de Morton, Natalie A; Mc Burney, Helen

    2012-10-01

    To assess and compare the validity of six physical function measures in people awaiting hip or knee joint replacement. Eighty-two people awaiting hip or knee replacement were assessed using six physical function measures including the WOMAC Function scale, SF-36 Physical Function scale, SF-36 Physical Component Summary scale, Patient Specific Functional Scale, 30-second chair stand test, and 50-foot timed walk. Validity was assessed using a head-to-head comparison design. Convergent validity was demonstrated with significant correlations between most measures (Spearman's rho 0.22 to 0.71). The Patient Specific Functional Scale had the lowest correlations with other measures of physical function. Discriminant validity was demonstrated with low correlations between mental health and physical function scores (Spearman's rho -0.12 to 0.33). Only the WOMAC Function scale, 30-second chair stand test, and 50-foot timed walk demonstrated known groups validity when scores for participants who walked with a gait aid were compared with those who did not. Standardized response means and Guyatt's responsiveness indexes indicated that the SF-36 was the least responsive measure. For those awaiting joint replacement surgery of the hip or knee, the current investigation found that the WOMAC Function scale, 30-second chair stand test, and 50-foot timed walk demonstrated the most evidence of validity. The Patient Specific Functional Scale might complement other measures by capturing a different aspect of physical function.

  10. The mechanics and energetics of human walking and running: a joint level perspective.

    PubMed

    Farris, Dominic James; Sawicki, Gregory S

    2012-01-07

    Humans walk and run at a range of speeds. While steady locomotion at a given speed requires no net mechanical work, moving faster does demand both more positive and negative mechanical work per stride. Is this increased demand met by increasing power output at all lower limb joints or just some of them? Does running rely on different joints for power output than walking? How does this contribute to the metabolic cost of locomotion? This study examined the effects of walking and running speed on lower limb joint mechanics and metabolic cost of transport in humans. Kinematic and kinetic data for 10 participants were collected for a range of walking (0.75, 1.25, 1.75, 2.0 m s(-1)) and running (2.0, 2.25, 2.75, 3.25 m s(-1)) speeds. Net metabolic power was measured by indirect calorimetry. Within each gait, there was no difference in the proportion of power contributed by each joint (hip, knee, ankle) to total power across speeds. Changing from walking to running resulted in a significant (p = 0.02) shift in power production from the hip to the ankle which may explain the higher efficiency of running at speeds above 2.0 m s(-1) and shed light on a potential mechanism behind the walk-run transition.

  11. The Influence of Processing on Strengthening Mechanisms in Pb-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Mutuku, Francis; Arfaei, Babak; Cotts, Eric J.

    2017-04-01

    The number, and the spacing, of Ag3Sn precipitates in Sn-Ag-Cu/Cu solder joints were related to separate processing parameters. The mechanical properties of an individual solder joint were directly related to the resulting distribution of different dispersoids in the joint. As the number of Ag3Sn precipitates increased, so did solder joint strength and shear fatigue lifetime. The room-temperature shear fatigue lifetime was inversely correlated with the separation between Ag3Sn precipitates. Bi and Sb solid solution strengthening was found to result in significantly larger values of shear strength and shear fatigue lifetime for one Pb-free solder. Room-temperature shear fatigue lifetime tests were identified as a relatively straightforward, yet sensitive means to gain insight into the reliability of Sn-Ag-Cu (SAC) solder joints.

  12. Cross-Shear Implementation in Sliding-Distance-Coupled Finite Element Analysis of Wear in Metal-on-Polyethylene Total Joint Arthroplasty: Intervertebral Total Disc Replacement as an Illustrative Application

    PubMed Central

    Goreham-Voss, Curtis M.; Hyde, Philip J.; Hall, Richard M.; Fisher, John; Brown, Thomas D.

    2010-01-01

    Computational simulations of wear of orthopaedic total joint replacement implants have proven to valuably complement laboratory physical simulators, for pre-clinical estimation of abrasive/adhesive wear propensity. This class of numerical formulations has primarily involved implementation of the Archard/Lancaster relationship, with local wear computed as the product of (finite element) contact stress, sliding speed, and a bearing-couple-dependent wear factor. The present study introduces an augmentation, whereby the influence of interface cross-shearing motion transverse to the prevailing molecular orientation of the polyethylene articular surface is taken into account in assigning the instantaneous local wear factor. The formulation augment is implemented within a widely-utilized commercial finite element software environment (ABAQUS). Using a contemporary metal-on-polyethylene total disc replacement (ProDisc-L) as an illustrative implant, physically validated computational results are presented to document the role of cross-shearing effects in alternative laboratory consensus testing protocols. Going forward, this formulation permits systematically accounting for cross-shear effects in parametric computational wear studies of metal-on-polyethylene joint replacements, heretofore a substantial limitation of such analyses. PMID:20399432

  13. An evaluation of the effectiveness of relaxation therapy for patients receiving joint replacement surgery.

    PubMed

    Lin, Pi-Chu

    2012-03-01

    To examine the effect of relaxation therapy on reducing patient anxiety and pain before and after total joint replacement. Despite the use of analgesics, patients may feel anxiety and pain before and after surgery, delaying their recovery. An experimental control group pretest-post-test quasi-experimental design was employed. Subjects (n = 93) recruited from a medical centre in Taipei, Taiwan, from November 2006-March 2007 were randomly assigned to experimental (n = 45) and control (n = 48) groups. Subjects in the experimental group received relaxation therapy from the day before surgery to the third postoperative day. Researchers helped participants listen to a breath relaxation and guided imagery tape for 20 minutes daily. A pain and anxiety scale questionnaire, the State-Trait Anxiety Inventory questionnaire, blood pressure and heart rate were monitored before and after intervention. The average age of the 93 patients was 71·0 (SD 11·1) years. The least pain severity scores in the experimental were lower than those in the control group (p < 0·05) but both experienced the same level of worst or average pain (p > 0·05). The mean difference in the pain score before and after intervention in the experimental group on the pre-op day (t = 2·675, p = 0·009) and post-op day one (t = 3·059, p = 0·003) was greater than that in the control group (0·48 SD 0·94 vs. 0·10 SD 0·30 and 0·93 SD 1·46 vs. 0·20 SD 0·71, respectively). The two groups differed significantly in systolic blood pressure (F = 6·750, p < 0·05) but not in mean blood pressure, heart rate, or State-Trait Anxiety Inventory scores (p > 0·05). Patients reported that relaxation therapy helped them relax and promoted sleep. Relaxation therapy could complement analgesics to help postoperative patients better manage pain and anxiety. Clinical practice should include complementary relaxation therapy to alleviate pain and anxiety in patients with joint replacement. © 2011 Blackwell Publishing Ltd.

  14. Intra-articular pressures and joint mechanics: should we pay attention to effusion in knee osteoarthritis?

    PubMed

    Rutherford, Derek James

    2014-09-01

    What factors play a role to ensure a knee joint does what it should given the demands of moving through the physical environment? This paper aims to probe the hypothesis that intra-articular joint pressures, once a topic of interest, have been left aside in contemporary frameworks in which we now view knee joint function. The focus on ligamentous deficiencies and the chondrocentric view of osteoarthritis, while important, have left little attention to the consideration of other factors that can impair joint function across the lifespan. Dynamic knee stability is required during every step we take. While there is much known about the role that passive structures and muscular activation play in maintaining a healthy knee joint, this framework does not account for the role that intra-articular joint pressures may have in providing joint stability during motion and how these factors interact. Joint injuries invariably result in some form of intra-articular fluid accumulation. Ultimately, it may be how the knee mechanically responds to this fluid, of which pressure plays a significant role that provides the mechanisms for continued function. Do joint pressures provide an important foundation for maintaining knee function? This hypothesis is unique and argues that we are missing an important piece of the puzzle when attempting to understand implications that joint injury and disease have for joint function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of Multiple Local Repairs on Microstructure and Mechanical Properties of T24 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    Chaus, Alexander S.; Kuhajdová, Andrea; Marônek, Milan; Dománková, Mária

    2018-05-01

    The effect of multiple local repairs on the microstructure and mechanical properties of the T24 steel welded joints was studied. T24 steel tubes were butt-welded by the GTAW method. Peripheral welded joints were made in four locations of the tube. In order to simulate the repair procedure, the welds were cut off from the root and the first local repair was performed. Other two local repairs were carried out in the same way. After each local repair, the microstructure and mechanical properties of the joints were evaluated. The results of the mechanical tests demonstrate that only two local repairs can be performed on the T24 steel peripheral welded joint. After the third local repair, impact energy of the welded joint was lower than required value, which is attributed to the coarser martensite and the coarser carbide precipitates formed in the heat-affected zone, compared with the weld metal.

  16. Rapid replacement of bridge deck expansion joints study - phase I.

    DOT National Transportation Integrated Search

    2014-12-01

    Bridge deck expansion joints are used to allow for movement of the bridge deck due to thermal expansion, dynamics loading, and : other factors. More recently, expansion joints have also been utilized to prevent the passage of winter de-icing chemical...

  17. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... replaced. (d) Each rail shall be bolted with at least two bolts at each joint. (e) Each joint bar shall be... in this subpart. (f) No rail shall have a bolt hole which is torch cut or burned. (g) No joint bar shall be reconfigured by torch cutting. ...

  18. [Arthrodesis (with/without correction) of the ankle and subtalar joint: A3 nail fixation with triple bending and mechanical navigation].

    PubMed

    Richter, M

    2014-08-01

    Restoration of a stable and plantigrade foot in deformities of the ankle and/or hindfoot and concomitant degenerative changes at the ankle and subtalar joints. Deformities at the ankle and/or hindfoot and concomitant degenerative changes at the ankle and subtalar joint. Failed (corrective) arthrodesis of the ankle and subtalar joints. Fused ankle and degeneration of the subtalar joint. Failed total ankle replacement with insufficient substance of talar body and/or degeneration of subtalar joint. Massive hindfoot instability. Active local infection or relevant vascular insufficiency, possible preservation of the ankle or subtalar joint (relative contraindication). Prone position and posterolateral approach to ankle and subtalar joints (alternative supine position/anterior approach; lateral position/lateral approach). Exposition of ankle and subtalar joints and removal of remaining cartilage. Optional corrective osteotomies and/or bone grafting. Correction and optional fixation of the corrected position with 2.0 mm K-wires. Mechanically navigated insertion of a retrograde guide wire in projection of the tibial axis and insertion of a second guide wire through the entry point of the nail lateral and dorsal to the tibial axis. Reaming and insertion of the A3 nail with a distal double bend; one posterior and one lateral, and a proximal bend corresponding to a slight recurvatum. Insertion of locking screws into the calcaneus, talus and tibia (twice with optional static or dynamic locking). Optional compression between calcaneus and talus, and between tibia and talus. Insertion of a drainage and layer-wise closure. For the first 6 weeks 15 kg partial weight bearing in an orthosis, followed by full weight bearing in a stable standard shoe. In October 2010 (n = 2) and from 15 October 2011 to 13 April 2012 (n = 26) 28 arthrodeses (with/without correction) with A3 fixation were performed. In all cases, exact nail placement was achieved. Thirteen cases completed

  19. Description of the rates, trends and surgical burden associated with revision for prosthetic joint infection following primary and revision knee replacements in England and Wales: an analysis of the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man

    PubMed Central

    Lenguerrand, Erik; Whitehouse, Michael R; Beswick, Andrew D; Toms, Andrew D; Porter, Martyn L; Blom, Ashley W

    2017-01-01

    Objectives To describe the prevalence rates of revision surgery for the treatment of prosthetic joint infection (PJI) for patients undergoing knee replacement, their time trends, the cumulative incidence function of revision for PJI and estimate the burden of PJI at health service level. Design We analysed revision knee replacements performed due to a diagnosis of PJI and the linked index procedures recorded in the National Joint Registry from 2003 to 2014 for England and Wales. The cohort analysed consisted of 679 010 index primary knee replacements, 33 920 index revision knee replacements and 8247 revision total knee replacements performed due to a diagnosis of PJI. The prevalence rates, their time trends investigated by time from index surgery to revision for PJI, cumulative incidence functions and the burden of PJI (total procedures) were calculated. Overall linear trends were investigated with log-linear regression. Results The incidence of revision total knee replacement due to PJI at 2 years was 3.2/1000 following primary and 14.4/1000 following revision knee replacement, respectively. The prevalence of revision due to PJI in the 3 months following primary knee replacement has risen by 2.5-fold (95% CI 1.2 to 5.3) from 2005 to 2013 and 7.5-fold (95% CI 1.0 to 56.1) following revision knee replacement. Over 1000 procedures per year are performed as a consequence of knee PJI, an increase of 2.8 from 2005 to 2013. Overall, 75% of revisions were two-stage with an increase in use of single-stage from 7.9% in 2005 to 18.8% in 2014. Conclusions Although the risk of revision due to PJI following knee replacement is low, it is rising, and coupled with the established and further predicted increased incidence of both primary and revision knee replacements, this represents an increasing and substantial treatment burden for orthopaedic service delivery in England and Wales. This has implications for future service design and the funding of individual and

  20. Comparison of a self-administered foot evaluation questionnaire (SAFE-Q) between joint-preserving arthroplasty and resection-replacement arthroplasty in forefoot surgery for patients with rheumatoid arthritis.

    PubMed

    Ebina, Kosuke; Hirao, Makoto; Hashimoto, Jun; Nampei, Akihide; Shi, Kenrin; Tomita, Tetsuya; Futai, Kazuma; Kunugiza, Yasuo; Noguchi, Takaaki; Yoshikawa, Hideki

    2017-09-01

    To clarify the difference of patient-based outcome between joint-preserving arthroplasty and resection-replacement arthroplasty in forefoot surgery for patients with rheumatoid arthritis (RA). A total of 63 feet of 49 RA patients who underwent forefoot surgery were asked to answer pre-operative and post-operative self-administered foot evaluation questionnaire (SAFE-Q). Patients were treated with either (1) metatarsal head resection-replacement arthroplasty (28 feet, post-operative mean age 63.8 years, follow-up 4.2 years, DAS28-CRP 2.2) or (2) metatarsophalangeal joint-preserving arthroplasty (35 feet, post-operative mean age 63.1 years, follow-up 3.6 years, DAS28-CRP 2.1) at each surgeon's discretion. Mean pre-operative and post-operative subscale scores of SAFE-Q of group (1) and (2) were as follows. Pain and pain-related [(1) pre-op 36.8 to post-op 75.0 vs. (2) pre-op 42.2 to post-op 82.6], physical functioning and daily-living [(1) 43.2-68.8 vs. (2) 52.778.1], social functioning [(1) 44.3-72.0 vs. (2) 52.5-81.9], general health and well-being [(1) 48.4-68.4 vs. (2) 45.5-84.4], and shoe-related [(1) 30.1-50.3 vs. (2) 30.6-64.4]. Both general health and well-being subscale scores (p < 0.05) and shoe-related subscale scores (p < 0.05) were significantly more improved in group (2) compared with group (1). Joint-preserving arthroplasty resulted in better patient-based outcomes than resection-replacement arthroplasty.

  1. Study on Joint Interface and Mechanical Properties of Cu/Pb-Sn/Cu Lap Joint Produced by Friction Stir Soldering Process

    NASA Astrophysics Data System (ADS)

    Sarkari Khorrami, Mahmoud; Kokabi, Amir Hossein; Movahedi, Mojtaba

    2015-05-01

    In this work, friction stir soldering (FSS) as a new approach for fabrication of copper/copper lap joints was introduced. This process is principally based on the friction stir processing (FSP) that can be performed using FSP tools with and without pin on the top sheet. In the present study, Pb-Sn foil was used as a solder which would be melted and then extruded in the area between the copper sheets during FSS process. This process was carried out using tools with and without pin at various rotation speeds of 1200, 1400, and 1600 rpm and traverse speed of 32 mm/min. Also, the same joint was fabricated using furnace soldering to compare the mechanical properties obtained with FSS and furnace soldering processes. It was observed that FSS possesses some advantages over the conventional furnace soldering process including the formation of more bond area at the interface corresponding to the higher fracture load of FSS joints compared with furnace soldering one. Moreover, it was concluded that the thickness of intermetallic compounds (IMCs) and the formation of voids at the joint interface were the predominant factor determining the mechanical properties of the FSS joints produced by FSS tool with and without pin, respectively. The microstructural examinations revealed that Cu-Sn IMCs of Cu3Sn and Cu6Sn5 were formed at the joint interface. It was observed that the FSS joint produced by tool with pin experienced the more peak temperature in comparison with that produced by pin-free tool. This may lead to the formation of thicker IMCs at the interface. Of course, the thickness of IMCs can be controlled by choosing proper FSS parameters, especially the rotation speed of the tool.

  2. Consequence of patient substitution of nattokinase for warfarin after aortic valve replacement with a mechanical prosthesis.

    PubMed

    Elahi, Maqsood M; Choi, Charles H; Konda, Subbareddy; Shake, Jay G

    2015-01-01

    This report describes a patient's self-substitution of nattokinase for the vitamin K antagonist warfarin after aortic valve replacement with a mechanical prosthesis. Nattokinase is an enzyme derived from a popular fermented soybean preparation in Japan (natto), which has fibrinolytic properties and is gaining popularity in nontraditional health journals and nonmedical health websites as an over-the-counter thrombolytic. After nearly a year of use of nattokinase without warfarin, the patient developed thrombus on the mechanical valve and underwent successful repeat valve replacement. We believe this is the first documented case of nattokinase being used as a substitute for warfarin after valve replacement, and we strongly discourage its use for this purpose.

  3. Consequence of patient substitution of nattokinase for warfarin after aortic valve replacement with a mechanical prosthesis

    PubMed Central

    Elahi, Maqsood M.; Choi, Charles H.; Konda, Subbareddy

    2015-01-01

    This report describes a patient's self-substitution of nattokinase for the vitamin K antagonist warfarin after aortic valve replacement with a mechanical prosthesis. Nattokinase is an enzyme derived from a popular fermented soybean preparation in Japan (natto), which has fibrinolytic properties and is gaining popularity in nontraditional health journals and nonmedical health websites as an over-the-counter thrombolytic. After nearly a year of use of nattokinase without warfarin, the patient developed thrombus on the mechanical valve and underwent successful repeat valve replacement. We believe this is the first documented case of nattokinase being used as a substitute for warfarin after valve replacement, and we strongly discourage its use for this purpose. PMID:25552810

  4. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, David W.; Hager, E. Randolph

    1986-01-01

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange.

  5. Cervical facet force analysis after disc replacement versus fusion.

    PubMed

    Patel, Vikas V; Wuthrich, Zachary R; McGilvray, Kirk C; Lafleur, Matthew C; Lindley, Emily M; Sun, Derrick; Puttlitz, Christian M

    2017-05-01

    Cervical total disc replacement was developed to preserve motion and reduce adjacent-level degeneration relative to fusion, yet concerns remain that total disc replacement will lead to altered facet joint loading and long-term facet joint arthrosis. This study is intended to evaluate changes in facet contact force, pressure and surface area at the treated and superior adjacent levels before and after discectomy, disc replacement, and fusion. Ten fresh-frozen human cadaveric cervical spines were potted from C2 to C7 with pressure sensors placed into the facet joints of C3-C4 and C4-C5 via slits in the facet capsules. Moments were applied to the specimens to produce axial rotation, lateral bending and extension. Facet contact force and pressure were measured at both levels for intact, discectomy at C4-C5, disc replacement with ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5, and anterior discectomy and fusion with Cervical Spine Locking Plate (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5. Facet contact area was calculated from the force and pressure measurements. An analysis of variance was used to determine significant differences with P-values <0.05 indicating significance. Facet contact force was elevated at the treated level under extension following both discectomy and disc replacement, while facet contact pressure and area were relatively unchanged. Facet contact force and area were decreased at the treated level following fusion for all three loading conditions. Total disc replacement preserved facet contact force for all scenarios except extension at the treated level, highlighting the importance of the anterior disco-ligamentous complex. This could promote treated-level facet joint disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Custom-made implant for complex facial reconstruction: A case of total replacement of temporo-mandibular joint, zygomatic arch and malar bone].

    PubMed

    Guillier, D; Moris, V; See, L-A; Girodon, M; Wajszczak, B-L; Zwetyenga, N

    2017-02-01

    Total prosthetic replacement of the temporo-mandibular joint (TMJ) has become a common procedure, but it is usually limited to the TMJ itself. We report about one case of complex prosthetic joint reconstruction extending to the neighbouring bony structures. A 57-year-old patient, operated several times for a cranio-facial fibrous dysplasia, presented with a recurring TMJ ankylosis and a complexe latero-facial bone loss on the right side. We performed a reconstruction procedure including the TMJ, the zygomatic arch and the malar bone by mean of custom made composite prosthesis (chrome-cobalt-molybdenum-titanium and polyethylene). Five years postoperatively, mouth opening, nutrition, pain and oral hygiene were significantly improved. Nowadays technical possibilities allow for complex facial alloplastic reconstructions with good medium term results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Clinical characteristics, microbiology, and outcomes of prosthetic joint infection in Taiwan.

    PubMed

    Tsai, Jen-Chih; Sheng, Wang-Huei; Lo, Wan-Yu; Jiang, Ching-Chuan; Chang, Shan-Chwen

    2015-04-01

    Prosthetic joint infection (PJI) after total knee or hip replacement is a devastating complication associated with substantial morbidity and economic cost. The incidence of prosthetic joint infection is increasing as the use of mechanical joint replacement increases. The treatment approach to prosthetic joint infection is based on different clinical situations such as a patient's comorbidities, epidemic microbiology data, and surgical procedures. The aim of our study was to understand clinical characteristics of prosthetic joint infection, the microbiology of the prosthetic joint infection, and the outcomes of different treatment strategies during 2006-2011. We retrospectively collected cases of prosthetic joint infection in the National Taiwan University Hospital between January 1, 2006 and December 31, 2011. The patients' characteristics, microbiology, outcomes, and factors associated with treatment success were recorded. One hundred and forty-four patients were identified as having PJI. Of these, 92 patients were entered into per-protocol analysis. Staphylococcus aureus was the most common causative organism (29.9%), followed by coagulase-negative Staphylococci (16.7%), and Enterococci (9.7%). The overall treatment success rate was 50%. Patients who received a two-stage revision had a better outcome, compared to patients who underwent other types of surgeries (70% vs. 32.7%, respectively; p < 0.001). In multivariate analysis, the two-stage revision was significantly associated with treatment success (odds ratio = 3.923, 95% confidence interval = 1.53-10.04). Our study demonstrates that Staphylococcus aureus was the most common causative organisms in PJI. Performing two-stage revisions was significantly associated with a better outcome. Copyright © 2013. Published by Elsevier B.V.

  8. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  9. Columnar jointing - the mechanics of thermal contraction in cooling lavas

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.

    2014-12-01

    Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio

  10. Spatial variation of fixed charge density in knee joint cartilage from sodium MRI - Implication on knee joint mechanics under static loading.

    PubMed

    Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2016-10-03

    The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Experimental Studies on the Mechanical Behaviour of Rock Joints with Various Openings

    NASA Astrophysics Data System (ADS)

    Li, Y.; Oh, J.; Mitra, R.; Hebblewhite, B.

    2016-03-01

    The mechanical behaviour of rough joints is markedly affected by the degree of joint opening. A systematic experimental study was conducted to investigate the effect of the initial opening on both normal and shear deformations of rock joints. Two types of joints with triangular asperities were produced in the laboratory and subjected to compression tests and direct shear tests with different initial opening values. The results showed that opened rock joints allow much greater normal closure and result in much lower normal stiffness. A semi-logarithmic law incorporating the degree of interlocking is proposed to describe the normal deformation of opened rock joints. The proposed equation agrees well with the experimental results. Additionally, the results of direct shear tests demonstrated that shear strength and dilation are reduced because of reduced involvement of and increased damage to asperities in the process of shearing. The results indicate that constitutive models of rock joints that consider the true asperity contact area can be used to predict shear resistance along opened rock joints. Because rock masses are loosened and rock joints become open after excavation, the model suggested in this study can be incorporated into numerical procedures such as finite-element or discrete-element methods. Use of the model could then increase the accuracy and reliability of stability predictions for rock masses under excavation.

  12. Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints

    NASA Astrophysics Data System (ADS)

    Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.

    2016-02-01

    During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.

  13. Using DR52c/Ni2+ mimotope tetramers to detect Ni2+ reactive CD4+ T cells in patients with joint replacement failure.

    PubMed

    Zhang, Yan; Wang, Yang; Anderson, Kirsten; Novikov, Andrey; Liu, Zikou; Pacheco, Karin; Dai, Shaodong

    2017-09-15

    T cell mediated hypersensitivity to nickel (Ni 2+ ) is one of the most common causes of allergic contact dermatitis. Ni 2+ sensitization may also contribute to the failure of Ni 2+ containing joint implants, and revision to non-Ni 2+ containing hardware can be costly and debilitating. Previously, we identified Ni 2+ mimotope peptides, which are reactive to a CD4 + T cell clone, ANi2.3 (Vα1, Vβ17), isolated from a Ni 2+ hypersensitive patient with contact dermatitis. This T cell is restricted to the major histocompatibility complex class II (MHCII) molecule, Human Leukocyte Antigen (HLA)-DR52c (DRA, DRB3*0301). However, it is not known if Ni 2+ induced T cell responses in sensitized joint replacement failure patients are similar to subjects with Ni 2+ induced contact dermatitis. Here, we generated DR52c/Ni 2+ mimotope tetramers, and used them to test if the same Ni 2+ T cell activation mechanism could be generalized to Ni 2+ sensitized patients with associated joint implant failure. We confirmed the specificity of these tetramers by staining of ANi2.3T cell transfectomas. The DR52c/Ni 2+ mimotope tetramer detected Ni 2+ reactive CD4 + T cells in the peripheral blood mononuclear cells (PBMC) of patients identified as Ni 2+ sensitized by patch testing and a positive Ni 2+ LPT. When HLA-typed by a DR52 specific antibody, three out of four patients were DR52 positive. In one patient, Ni 2+ stimulation induced the expansion of Vβ17 positive CD4 + T cells from 0.8% to 13.3%. We found that the percentage of DR52 positivity and Vβ17 usage in Ni 2+ sensitized joint failure patients are similar to Ni sensitized skin allergy patients. Ni 2+ independent mimotope tetramers may be a useful tool to identify the Ni 2+ reactive CD4 + T cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Low-Friction, Low-Profile, High-Moment Two-Axis Joint

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Le, Thang; Carroll, Monty B.

    2010-01-01

    The two-axis joint is a mechanical device that provides two-degrees-of-freedom motion between connected components. A compact, moment-resistant, two-axis joint is used to connect an electromechanical actuator to its driven structural members. Due to the requirements of the overall mechanism, the joint has a low profile to fit within the allowable space, low friction, and high moment-reacting capability. The mechanical arrangement of this joint can withstand high moments when loads are applied. These features allow the joint to be used in tight spaces where a high load capability is required, as well as in applications where penetrating the mounting surface is not an option or where surface mounting is required. The joint consists of one base, one clevis, one cap, two needle bearings, and a circular shim. The base of the joint is the housing (the base and the cap together), and is connected to the grounding structure via fasteners and a bolt pattern. Captive within the housing, between the base and the cap, are the rotating clevis and the needle bearings. The clevis is attached to the mechanical system (linear actuator) via a pin. This pin, and the rotational movement of the clevis with respect to the housing, provides two rotational degrees of freedom. The larger diameter flange of the clevis is sandwiched between a pair of needle bearings, one on each side of the flange. During the assembly of the two-axis joint, the circular shims are used to adjust the amount of preload that is applied to the needle bearings. The above arrangement enables the joint to handle high moments with minimal friction. To achieve the high-moment capability within a low-profile joint, the use of depth of engagement (like that of a conventional rotating shaft) to react moment is replaced with planar engagement parallel to the mounting surface. The needle bearings with the clevis flange provide the surface area to react the clevis loads/moments into the joint housing while providing minimal

  15. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.

    PubMed

    Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John

    2016-06-01

    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice. Copyright © 2016. Published by Elsevier Ltd.

  16. In the queue for total joint replacement: patients' perspectives on waiting times. Ontario Hip and Knee Replacement Project Team.

    PubMed

    Llewellyn-Thomas, H A; Arshinoff, R; Bell, M; Williams, J I; Naylor, C D

    1998-02-01

    We assessed patients on the waiting lists of a purposive sample of orthopaedic surgeons in Ontario, Canada, to determine patients' attitudes towards time waiting for hip or knee replacement. We focused on 148 patients who did not have a definite operative date, obtaining complete information on 124 (84%). Symptom severity was assessed with the Western Ontario/McMaster Osteoarthritis Index and a disease-specific standard gamble was used to elicit patients' overall utility for their arthritic state. Next, in a trade-off task, patients considered a hypothetical choice between a 1-month wait for a surgeon who could provide a 2% risk of post-operative mortality, or a 6-month wait for joint replacement with a 1% risk of post-operative mortality. Waiting times were then shifted systematically until the patient abandoned his/her initial choice, generating a conditional maximal acceptable wait time. Patients were divided in their attitudes, with 57% initially choosing a 6-month wait with a 1% mortality risk. The overall distribution of conditional maximum acceptable wait time scores ranged from 1 to 26 months, with a median of 7 months. Utility values were independently but weakly associated with patients' tolerance of waiting times (adjusted R-square = 0.059, P = 0.004). After splitting the sample along the median into subgroups with a relatively 'low' and 'high' tolerance for waiting, the subgroup with the apparently lower tolerance for waiting reported lower utility scores (z = 2.951; P = 0.004) and shorter times since their surgeon first advised them of the need for surgery (z = 3.014; P = 0.003). These results suggest that, in the establishment and monitoring of a queue management system for quality-of-life-enhancing surgery, patients' own perceptions of their overall symptomatic burden and ability to tolerate delayed relief should be considered along with information derived from clinical judgements and pre-weighted health status instruments.

  17. Community reintegration following a total joint replacement: a pilot study.

    PubMed

    Stergiou-Kita, Mary; Grigorovich, Alisa

    2014-06-01

    To examine community reintegration following a hip or knee total joint replacement (TJR) from the perspective of rehabilitation clients. A phenomenological frame of reference guided the present study. Ten participants who received inpatient rehabilitation completed semi-structured qualitative interviews to explore their experiences with reintegrating back into their chosen communities and the meanings that they ascribed to their reintegration. Interview data were analysed using thematic analysis. Demographic data, and information regarding participants' living situation and supports were extracted from existing databases and used to characterize the sample. Participants revealed that reintegration after a TJR encompassed two key elements of meaning: i) engagement in meaningful activities; and ii) satisfaction levels. Additionally, the following five factors were identified as facilitators or barriers to community reintegration following a TJR: i) ongoing preparation and education; ii) confounding health issues; iii) driving and transportation; iv) personal facilitators; v) access to supports from professionals, family and friends, and community programmes. The present study highlights the significance of engaging in meaningful activities and being satisfied in one's level of engagement to achieving a sense of community reintegration following a TJR. This suggests that reintegration post-TJR has broader meanings than just improvements in functional abilities. Practitioners are encouraged to inquire about patients' meaningful activities, support their preparedness throughout the rehabilitation process, to identify confounding health issues that may limit reintegration, consider patients' fears and anxieties and establish supports to enhance their feelings of self-efficacy and abilities to cope following a TJR. © 2014 John Wiley & Sons, Ltd.

  18. [Effect of Transcutaneous Acupoint Electrical Stimulation on Hemodynamic Fluctuation Caused by Loosing Tourniquet in Elderly Patients Undergoing Knee Joint Replacement].

    PubMed

    Liang, Han-Sheng; Feng, Yi

    2017-12-25

    To observe the effect of transcutaneous acupoint electrical stimulation (TAES) on hemodynamic fluctuation caused by loosing tourniquet in the elderly patients undergoing knee joint replacement. A total of 60 ASA (America Society Anesthesiologist) I or II elderly patients for elective knee joint replacement surgery were randomly divided into control group (30 cases) and TAES group (30 cases). Patients of both groups were treated by intravenous anesthesia, and monitored with bispectral index (BIS, between 45-60) for anesthesia depth, stroke volume variation (SVV) for fluid management, mean arterial pressure (MAP) and cardiac index (CI) for hemodynamic fluctuation evaluation, and with analgesia nociception index (ANI, between 50-70) for remifentanil dosage adjustment. TAES (2 Hz/100 Hz, 8-20 mA) was applied to bilateral Xinshu (BL 15), Feishu (BL 13), Neiguan (PC 6) and Hegu (LI 4) acupoints for 30 min first (followed by anesthesia induction and operation), and given continuously until 15 min after tourniquet loosing. Patients of the control group were only given with electrodes attachment without electrical stimulation. The levels of MAP, CI, and arterial blood pH, PaCO 2 , PaO 2 , base excess (BE) and lactic acid (Lac) 1 min before, and 5 and 15 min after tourniquet loosing, and the dosages of remifentanil and ephedrine after tourniquet loosing were recorded. The changed levels of MAP, CI and blood Lac at 5 min after tourniquet loosing (relevant to the baseline levels), and blood Lac content at 15 min after tourniquet loosing (relevant to 5 min after tourniquet loosing) were significantly lower in the TAES group than in the control group ( P <0.05), but the levels of MAP and CI at 15 min after tourniquet loosing (relevant to 5 min following tourniquet loosing) were significantly higher in the TAES group than in the control group ( P <0.05), suggesting an improvement of blood pressure, cardiac function and substance metabolism after TAES. Moreover, the dosages

  19. The Effect on Long-Term Survivorship of Surgeon Preference for Posterior-Stabilized or Minimally Stabilized Total Knee Replacement: An Analysis of 63,416 Prostheses from the Australian Orthopaedic Association National Joint Replacement Registry.

    PubMed

    Vertullo, Christopher J; Lewis, Peter L; Lorimer, Michelle; Graves, Stephen E

    2017-07-05

    Controversy still exists as to the optimum management of the posterior cruciate ligament (PCL) in total knee arthroplasty. Surgeons can choose to kinematically substitute the PCL with a posterior-stabilized total knee replacement or alternatively to utilize a cruciate-retaining, also known as minimally stabilized, total knee replacement. Proponents of posterior-stabilized total knee replacement propose that the reported lower survivorship in registries when directly compared with minimally stabilized total knee replacement is due to confounders such as selection bias because of the preferential usage of posterior-stabilized total knee replacement in more complex or severe cases. In this study, we aimed to eliminate these possible confounders by performing an instrumental variable analysis based on surgeon preference to choose either posterior-stabilized or minimally stabilized total knee replacement, rather than the actual prosthesis received. Cumulative percent revision, hazard ratio (HR), and revision diagnosis data were obtained from the Australian Orthopaedic Association National Joint Replacement Registry from September 1, 1999, to December 31, 2014, for 2 cohorts of patients, those treated by high-volume surgeons who preferred minimally stabilized replacements and those treated by high-volume surgeons who preferred posterior-stabilized replacements. All patients had a diagnosis of osteoarthritis and underwent fixed-bearing total knee replacement with patellar resurfacing. At 13 years, the cumulative percent revision was 5.0% (95% confidence interval [CI], 4.0% to 6.2%) for the surgeons who preferred the minimally stabilized replacements compared with 6.0% (95% CI, 4.2% to 8.5%) for the surgeons who preferred the posterior-stabilized replacements. The revision risk for the surgeons who preferred posterior-stabilized replacements was significantly higher for all causes (HR = 1.45 [95% CI, 1.30 to 1.63]; p < 0.001), for loosening or lysis (HR = 1.93 [95% CI, 1

  20. Remote controlled vacuum joint closure mechanism

    DOEpatents

    Doll, D.W.; Hager, E.R.

    1984-02-22

    A remotely operable and maintainable vacuum joint closure mechanism for a noncircular aperture is disclosed. The closure mechanism includes an extendible bellows coupled at one end to a noncircular duct and at its other end to a flange assembly having sealed grooves for establishing a high vacuum seal with the abutting surface of a facing flange which includes an aperture forming part of the system to be evacuated. A plurality of generally linear arrangements of pivotally coupled linkages and piston combinations are mounted around the outer surface of the duct and aligned along the length thereof. Each of the piston/linkage assemblies is adapted to engage the flange assembly by means of a respective piston and is further coupled to a remote controlled piston drive shaft to permit each of the linkages positioned on a respective flat outer surface of the duct to simultaneously and uniformly displace a corresponding piston and the flange assembly with which it is in contact along the length of the duct in extending the bellows to provide a high vacuum seal between the movable flange and the facing flange. A plurality of latch mechanisms are also pivotally mounted on the outside of the duct. A first end of each of the latch mechanisms is coupled to a remotely controlled latch control shaft for displacing the latch mechanism about its pivot point. In response to the pivoting displacement of the latch mechanism, a second end thereof is displaced so as to securely engage the facing flange and maintain the high vacuum seal established by the displacement of the flange assembly and extension of the bellows without displacing the entire duct.

  1. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  2. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  3. Microstructure Evolution and Mechanical Properties of High-Speed Friction Stir Welded Aluminum Alloy Thin Plate Joints

    NASA Astrophysics Data System (ADS)

    Liu, Fenjun; Fu, Li; Chen, Haiyan

    2018-06-01

    Sound friction stir welded (FSW) joints of 6061-T6 aluminum alloy sheets with an 0.8 mm thickness were obtained at conventional speed (2000 rpm, 300 mm/min) and high speed (11,000 rpm, 1500 mm/min). The recrystallization mechanism, precipitate evolution, mechanical properties and fracture behavior were investigated in detail. Microstructure analyses revealed that the grain structure evolution in the nugget zone (NZ) was dominated by continuous dynamic recrystallization. In the process of FSW, high speed facilitates the formation of finer equiaxed recrystallized grains, higher density of dislocations and substructures, and a larger number of precipitates in the NZ compared to the conventional speed, which further significantly improves the hardness and tensile strength of the joints. The maximum tensile strength was obtained with 292.6 MPa, 83.2% for the 6061-T6 aluminum alloy and 122.6% for the conventional-speed FSW joints. This work provides an effective method for preparing FSW aluminum alloy thin plate joints with excellent mechanical properties.

  4. Description of the rates, trends and surgical burden associated with revision for prosthetic joint infection following primary and revision knee replacements in England and Wales: an analysis of the National Joint Registry for England, Wales, Northern Ireland and the Isle of Man.

    PubMed

    Lenguerrand, Erik; Whitehouse, Michael R; Beswick, Andrew D; Toms, Andrew D; Porter, Martyn L; Blom, Ashley W

    2017-07-10

    To describe the prevalence rates of revision surgery for the treatment of prosthetic joint infection (PJI) for patients undergoing knee replacement, their time trends, the cumulative incidence function of revision for PJI and estimate the burden of PJI at health service level. We analysed revision knee replacements performed due to a diagnosis of PJI and the linked index procedures recorded in the National Joint Registry from 2003 to 2014 for England and Wales. The cohort analysed consisted of 679 010 index primary knee replacements, 33 920 index revision knee replacements and 8247 revision total knee replacements performed due to a diagnosis of PJI. The prevalence rates, their time trends investigated by time from index surgery to revision for PJI, cumulative incidence functions and the burden of PJI (total procedures) were calculated. Overall linear trends were investigated with log-linear regression. The incidence of revision total knee replacement due to PJI at 2 years was 3.2/1000 following primary and 14.4/1000 following revision knee replacement, respectively. The prevalence of revision due to PJI in the 3 months following primary knee replacement has risen by 2.5-fold (95% CI 1.2 to 5.3) from 2005 to 2013 and 7.5-fold (95% CI 1.0 to 56.1) following revision knee replacement. Over 1000 procedures per year are performed as a consequence of knee PJI, an increase of 2.8 from 2005 to 2013. Overall, 75% of revisions were two-stage with an increase in use of single-stage from 7.9% in 2005 to 18.8% in 2014. Although the risk of revision due to PJI following knee replacement is low, it is rising, and coupled with the established and further predicted increased incidence of both primary and revision knee replacements, this represents an increasing and substantial treatment burden for orthopaedic service delivery in England and Wales. This has implications for future service design and the funding of individual and specialist centres. © Article author

  5. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness

    NASA Astrophysics Data System (ADS)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings

  6. Influences of Shear History and Infilling on the Mechanical Characteristics and Acoustic Emissions of Joints

    NASA Astrophysics Data System (ADS)

    Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing

    2017-08-01

    Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.

  7. Hip Replacement: MedlinePlus Health Topic

    MedlinePlus

    ... damage. The most common cause of damage is osteoarthritis . Osteoarthritis causes pain, swelling, and reduced motion in your ... Food and Drug Administration) Genetics Genetics Home Reference: osteoarthritis (National Library of Medicine) Images Hip joint replacement - ...

  8. Effect of process parameters on microstructure and mechanical properties of friction stir welded joints: A review

    NASA Astrophysics Data System (ADS)

    Wanare, S. P.; Kalyankar, V. D.

    2018-04-01

    Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.

  9. High density polyethylene/graphite nano-composites for total hip joint replacements: processing and in vitro characterization.

    PubMed

    Fouad, H; Elleithy, Rabeh

    2011-10-01

    The main objective of the present study is to investigate how the thermal, rheological, mechanical and cytotoxicity behavior of High Density Polyethylene (HDPE) can be changed by the addition of graphite nano particles (GNPs) at different contents. The HDPE/GNPs composites were prepared using melt blending in a co-rotating intermeshing twin screw extruder. The in vitro tests results showed that the original material (HDPE) and all HDPE/GNPs composites do not exhibit any cytotoxicity to the WISH cell line. The microscopic examination of the nano-composite tensile-fractured surface found a good distribution of GNPs in the HDPE matrix. The Differential Scanning Calorimetry (DSC) results indicated that the crystallization percentage increased by adding GNPs to HDPE up to 4%. The XRD patterns of the HDPE/GNPs composites showed an increase in peak intensity compared to neat HDPE. This increase echoed the crystallinity results obtained from DSC. The rheological tests showed that the complex viscosity of the HDPE increased as the percentage of GNPs increased due to the restriction of the molecular mobility. The tensile test results showed that with increasing the GNPs content, Young's modulus and the yield strength of the HDPE/GNPs composite increased while the strain at fracture decreased. Finally, the preliminary results of the abrasion test indicated that the abrasion rate decreased by increasing the GNPs ratio up to 4% content. The prepared HDPE/GNPs composites appear to have fairly good comprehensive properties that make them a good candidate as a bearing material for the total joint replacement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall be replaced. (c) If a joint bar is cracked or broken between the middle two bolt holes it shall be... in this subpart. (f) No rail shall have a bolt hole which is torch cut or burned. (g) No joint bar...

  11. 49 CFR 213.351 - Rail joints.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shall be replaced. (c) If a joint bar is cracked or broken between the middle two bolt holes it shall be... in this subpart. (f) No rail shall have a bolt hole which is torch cut or burned. (g) No joint bar...

  12. Electronics reliability fracture mechanics. Volume 1: Causes of failures of shop replaceable units and hybrid microcircuits

    NASA Astrophysics Data System (ADS)

    Kallis, J.; Buechler, D.; Erickson, J.; Westerhuyzen, D. V.; Strokes, R.

    1992-05-01

    This is the first of two volumes. The other volume (WL-TR-91-3119) is 'Fracture Mechanics'. The objective of the Electronics Reliability Fracture Mechanics (ERFM) program was to develop and demonstrate a life prediction technique for electronic assemblies, when subjected to environmental stress of vibration and thermal cycling, based upon the mechanical properties of the materials and packaging configurations which make up an electronic system. A detailed investigation was performed of the following two shop replaceable units (SRUs): Timing and Control Module (P/N 3562102) and Linear Regulator Module (P/N 3569800). The SRUs are in the Programmable Signal Processor (3137042) Line Replaceable Unit (LRU) of the Hughes AN/APG-63 Radar for the F-15 Aircraft.

  13. Assesment of influncing factors on mechanical and electrical properties of Al/Cu joints

    NASA Astrophysics Data System (ADS)

    Selvaraj, R. Meby; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Joining of dissimilar materials opens up challenging opportunities in todays technology. Al/Cu weldments are used in applications that demands corrosion resistance, thermal and electrical conducting properties. In dissimilar joining mechanical and thermal properties result in large stress gradients during heating. The Al-Cu joints are lighter, cheaper and have conductivity equal to copper alloy. The main scope of this study is to assess the influencing factors of Al/Cu joints in mechanical and electrical properties. It includes the influence of the dilution between the base metals, influence of physical properties, influence of welding parameters, influence of filler metal, influence of heat treatment, and influence of electrical properties

  14. Second-site prosthetic joint infection in patients with multiple prosthetic joints.

    PubMed

    Clesham, Kevin; Hughes, Andrew J; O' hEireamhoin, Sven; Fleming, Catherine; Murphy, Colin G

    2018-04-10

    Prosthetic joint infections (PJIs) are among the most serious complications in arthroplasty. A second-site PJI in patients with multiple prosthetic joints increases morbidity, with many requiring further revision procedures. We aimed to establish why some patients with multiple joints develop second-site infections. Our institution's arthroplasty database was reviewed from 2004 to 2017. All PJIs were identified, and all patients with more than one prosthetic joint in situ were included. We recorded risk factors, causative organisms, number of procedures and length of stay. Forty-four patients meeting the criteria were identified. Four patients (9.1%) developed second-site infection. Eight patients (18.2%) developed re-infection of the primary PJI. Positive MRSA carrier status and PJI of a total knee replacement were associated with an increased risk of a second episode of infection. Patients who developed further infection had more frequent admission and longer lengths of stay than isolated PJIs. Higher morbidity and use of hospital resources are associated with this cohort of patients. PJIs in total knee replacements and positive MRSA status are associated with higher rates of second infection. Identifying this vulnerable cohort of patients at an early stage is critical to ensure measures are taken to reduce the risks of further infection.

  15. Optimum design of bolted composite lap joints under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Kradinov, Vladimir Yurievich

    A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.

  16. Achieving Consensus on Total Joint Replacement Trial Outcome Reporting Using the OMERACT Filter: Endorsement of the Final Core Domain Set for Total Hip and Total Knee Replacement Trials for Endstage Arthritis.

    PubMed

    Singh, Jasvinder A; Dowsey, Michelle M; Dohm, Michael; Goodman, Susan M; Leong, Amye L; Scholte Voshaar, Marieke M J H; Choong, Peter F

    2017-11-01

    Discussion and endorsement of the OMERACT total joint replacement (TJR) core domain set for total hip replacement (THR) and total knee replacement (TKR) for endstage arthritis; and next steps for selection of instruments. The OMERACT TJR working group met at the 2016 meeting at Whistler, British Columbia, Canada. We summarized the previous systematic reviews, the preliminary OMERACT TJR core domain set and results from previous surveys. We discussed preliminary core domains for TJR clinical trials, made modifications, and identified challenges with domain measurement. Working group participants (n = 26) reviewed, clarified, and endorsed each of the inner and middle circle domains and added a range of motion domain to the research agenda. TJR were limited to THR and TKR but included all endstage hip and knee arthritis refractory to medical treatment. Participants overwhelmingly endorsed identification and evaluation of top instruments mapping to the core domains (100%) and use of subscales of validated multidimensional instruments to measure core domains for the TJR clinical trial core measurement set (92%). An OMERACT core domain set for hip/knee TJR trials has been defined and we are selecting instruments to develop the TJR clinical trial core measurement set to serve as a common foundation for harmonizing measures in TJR clinical trials.

  17. Joint Inversion of Source Location and Source Mechanism of Induced Microseismics

    NASA Astrophysics Data System (ADS)

    Liang, C.

    2014-12-01

    Seismic source mechanism is a useful property to indicate the source physics and stress and strain distribution in regional, local and micro scales. In this study we jointly invert source mechanisms and locations for microseismics induced in fluid fracturing treatment in the oil and gas industry. For the events that are big enough to see waveforms, there are quite a few techniques can be applied to invert the source mechanism including waveform inversion, first polarity inversion and many other methods and variants based on these methods. However, for events that are too small to identify in seismic traces such as the microseismics induced by the fluid fracturing in the Oil and Gas industry, a source scanning algorithms (SSA for short) with waveform stacking are usually applied. At the same time, a joint inversion of location and source mechanism are possible but at a cost of high computation budget. The algorithm is thereby called Source Location and Mechanism Scanning Algorithm, SLMSA for short. In this case, for given velocity structure, all possible combinations of source locations (X,Y and Z) and source mechanism (Strike, Dip and Rake) are used to compute travel-times and polarities of waveforms. Correcting Normal moveout times and polarities, and stacking all waveforms, the (X, Y, Z , strike, dip, rake) combination that gives the strongest stacking waveform is identified as the solution. To solve the problem of high computation problem, CPU-GPU programing is applied. Numerical datasets are used to test the algorithm. The SLMSA has also been applied to a fluid fracturing datasets and reveal several advantages against the location only method: (1) for shear sources, the source only program can hardly locate them because of the canceling out of positive and negative polarized traces, but the SLMSA method can successfully pick up those events; (2) microseismic locations alone may not be enough to indicate the directionality of micro-fractures. The statistics of

  18. Improving Mechanical Properties of PVPPA Welded Joints of 7075 Aluminum Alloy by PWHT

    PubMed Central

    Li, Guowei; Chen, Furong; Han, Yongquan; Liang, Yahong

    2018-01-01

    In this study, 7075 aluminum alloy with a thickness of 10 mm was successfully welded with no obvious defects by pulsed variable polarity plasma arc (PVPPA) welding. The mechanical properties of PVPPA welded joints have been researched by post weld heat treatment (PWHT). The results indicate that the heat treatment strongly affects the mechanical properties of the welded joints. The tensile strength and the microhardness of the welded joints gradually improved with the increase of the solution temperature. With the increase of the solution time, the tensile strength, and microhardness first dramatically increased and then decreased slightly. The best tensile strength of 537.5 MPa and the microhardness of 143.7 HV were obtained after 490 °C × 80 min + 120 °C × 24 h, and the strength was nearly 91.2% of that of the parent metal, and increased about 35% compared with as-welded. The improvement of strength and microhardness was mainly due to the precipitation of η′ phase. PMID:29510551

  19. Mechanical Prophylaxis after Lower Extremity Total Joint Arthroplasty: A Review.

    PubMed

    Chughtai, Morad; Newman, Jared M; Solow, Max; Davidson, Iyooh U; Sodhi, Nipun; Gaal, Benjamin; Khlopas, Anton; Sultan, Assem A; Mont, Michael A

    2017-12-22

    Venous thromboembolism (VTE) is a serious complication that can occur after total hip and knee arthroplasty, and can potentially lead to significant morbidity and even mortality. While various modalities have been used to prevent VTE development, the medications can be associated with a number of adverse events. Therefore, mechanical prophylaxis with pumps and compressive devices has been used more frequently alone, or in combination, with medications. Therefore, the purpose of this study was to review the current literature on mechanical prophylaxis for VTEs after lower extremity total joint arthroplasty. Specifically, we reviewed mechanical prophylaxis after: 1) total hip arthroplasty and 2) total knee arthroplasty.

  20. Static Strength Characteristics of Mechanically Fastened Composite Joints

    NASA Technical Reports Server (NTRS)

    Fox, D. E.; Swaim, K. W.

    1999-01-01

    The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.

  1. Exploring the relationships between International Classification of Functioning, Disability and Health (ICF) constructs of Impairment, Activity Limitation and Participation Restriction in people with osteoarthritis prior to joint replacement.

    PubMed

    Pollard, Beth; Johnston, Marie; Dieppe, Paul

    2011-05-16

    The International Classification of Functioning, Disability and Health (ICF) proposes three main constructs, impairment (I), activity limitation (A) and participation restriction (P). The ICF model allows for all paths between the constructs to be explored, with significant paths likely to vary for different conditions. The relationships between I, A and P have been explored in some conditions but not previously in people with osteoarthritis prior to joint replacement. The aim of this paper is to examine these relationships using separate measures of each construct and structural equation modelling. A geographical cohort of 413 patients with osteoarthritis about to undergo hip and knee joint replacement completed the Aberdeen measures of Impairment, Activity Limitation and Participation Restriction (Ab-IAP). Confirmatory factor analysis was used to test the three factor (I, A, P) measurement model. Structural equation modelling was used to explore the I, A and P pathways in the ICF model. There was support from confirmatory factor analysis for the three factor I, A, P measurement model. The structural equation model had good fit [S-B Chi-square = 439.45, df = 149, CFI robust = 0.91, RMSEA robust = 0.07] and indicated significant pathways between I and A (standardised coefficient = 0.76 p < 0.0001) and between A and P (standardised coefficient = 0.75 p < 0.0001). However, the path between I and P was not significant (standardised coefficient = 0.01). The significant pathways suggest that treatments and interventions aimed at reducing impairment, such as joint replacement, may only affect P indirectly, through A, however, longitudinal data would be needed to establish this.

  2. Recent advances in jointed quantum mechanics and molecular mechanics calculations of biological macromolecules: schemes and applications coupled to ab initio calculations.

    PubMed

    Hagiwara, Yohsuke; Tateno, Masaru

    2010-10-20

    We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd

  3. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  4. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis.

    PubMed

    Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L

    2013-11-20

    Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.

  5. Self-reported knee joint instability is related to passive mechanical stiffness in medial knee osteoarthritis

    PubMed Central

    2013-01-01

    Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592

  6. Estimation of wear in total hip replacement using a ten station hip simulator.

    PubMed

    Brummitt, K; Hardaker, C S

    1996-01-01

    The results of hip simulator tests on a total of 16 total hip joints, all of them 22.25 mm Charnley designs, are presented. Wear at up to 6.75 million cycles was assessed by using a coordinate measuring machine. The results gave good agreement with clinical estimates of wear rate on the same design of joint replacement from a number of sources. Good agreement was also obtained when comparison was made with the published results from more sophisticated simulators. The major source of variation in the results was found to occur in the first million cycles where creep predominates. The results of this study support the use of this type of simplified simulator for estimating wear in a total hip prosthesis. The capability to test a significant number of joints simultaneously may make this mechanism preferable to more complex machines in many cases.

  7. Emergence of Joint Attention through Bootstrap Learning based on the Mechanisms of Visual Attention and Learning with Self-evaluation

    NASA Astrophysics Data System (ADS)

    Nagai, Yukie; Hosoda, Koh; Morita, Akio; Asada, Minoru

    This study argues how human infants acquire the ability of joint attention through interactions with their caregivers from a viewpoint of cognitive developmental robotics. In this paper, a mechanism by which a robot acquires sensorimotor coordination for joint attention through bootstrap learning is described. Bootstrap learning is a process by which a learner acquires higher capabilities through interactions with its environment based on embedded lower capabilities even if the learner does not receive any external evaluation nor the environment is controlled. The proposed mechanism for bootstrap learning of joint attention consists of the robot's embedded mechanisms: visual attention and learning with self-evaluation. The former is to find and attend to a salient object in the field of the robot's view, and the latter is to evaluate the success of visual attention, not joint attention, and then to learn the sensorimotor coordination. Since the object which the robot looks at based on visual attention does not always correspond to the object which the caregiver is looking at in an environment including multiple objects, the robot may have incorrect learning situations for joint attention as well as correct ones. However, the robot is expected to statistically lose the learning data of the incorrect ones as outliers because of its weaker correlation between the sensor input and the motor output than that of the correct ones, and consequently to acquire appropriate sensorimotor coordination for joint attention even if the caregiver does not provide any task evaluation to the robot. The experimental results show the validity of the proposed mechanism. It is suggested that the proposed mechanism could explain the developmental mechanism of infants' joint attention because the learning process of the robot's joint attention can be regarded as equivalent to the developmental process of infants' one.

  8. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative.

    PubMed

    Eckstein, Felix; Boudreau, Robert; Wang, Zhijie; Hannon, Michael J; Duryea, Jeff; Wirth, Wolfgang; Cotofana, Sebastian; Guermazi, Ali; Roemer, Frank; Nevitt, Michael; John, Markus R; Ladel, Christoph; Sharma, Leena; Hunter, David J; Kwoh, C Kent

    2016-06-01

    To evaluate whether change in fixed-location measures of radiographic joint space width (JSW) and cartilage thickness by MRI predict knee replacement. Knees replaced between 36 and 60 months' follow-up in the Osteoarthritis Initiative were each matched with one control by age, sex and radiographic status. Radiographic JSW was determined from fixed flexion radiographs and subregional femorotibial cartilage thickness from 3 T MRI. Changes between the annual visit before replacement (T0) and 2 years before T0 (T-2) were compared using conditional logistic regression. One hundred and nineteen knees from 102 participants (55.5 % women; age 64.2 ± 8.7 [mean ± SD] years) were studied. Fixed-location JSW change at 22.5 % from medial to lateral differed more between replaced and control knees (case-control [cc] OR = 1.57; 95 % CI: 1.23-2.01) than minimum medial JSW change (ccOR = 1.38; 95 % CI: 1.11-1.71). Medial femorotibial cartilage loss displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed-location JSW. Location-independent thinning and thickening scores were elevated prior to knee replacement. Discrimination of structural progression between knee pre-placement cases versus controls was stronger for fixed-location than minimum radiographic JSW. MRI displayed similar discrimination to radiography and suggested greater simultaneous cartilage thickening and loss prior to knee replacement. • Fixed-location JSW predicts surgical knee replacement more strongly than minimum JSW. • MRI predicts knee replacement with similar accuracy to radiographic JSW. • MRI reveals greater cartilage thinning and thickening prior to knee replacement.

  9. Experimental and Numerical Models of Complex Clinical Scenarios; Strategies to Improve Relevance and Reproducibility of Joint Replacement Research

    PubMed Central

    Bechtold, Joan E.; Swider, Pascal; Goreham-Voss, Curtis; Soballe, Kjeld

    2016-01-01

    This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical

  10. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  11. Wafer-level Cu-Sn micro-joints with high mechanical strength and low Sn overflow

    NASA Astrophysics Data System (ADS)

    Duan, Ani; Luu, Thi-Thuy; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils

    2015-09-01

    In this paper, we report wafer-level bonding using solid-liquid inter-diffusion (SLID) processes for fabricating micro-joints Cu-Sn at low temperature (270 °C). The evolution of multilayer Cu/Sn to micro-joint alloys has been characterized by optical microscopy and mechanical die-shear testing. The Cu-Sn joints with line width from 80 to 200 μm prove to be reliable packaging materials for bonding vacuum micro-cavities with controllable Sn overflow, as well as high mechanical strength (>70 MPa). A thermodynamic model has been performed to further understand the formation of Cu-Sn intermetallic alloys. There are two important findings for this work: 1) Using a two-step temperature profile may significantly reduce the amount of Sn overflow; 2) for packaging, a bond frame width greater than 80 μm will result in high yield.

  12. Influence of solder joint length to the mechanical aspect during the thermal stress analysis

    NASA Astrophysics Data System (ADS)

    Tan, J. S.; Khor, C. Y.; Rahim, Wan Mohd Faizal Wan Abd; Ishak, Muhammad Ikman; Rosli, M. U.; Jamalludin, Mohd Riduan; Zakaria, M. S.; Nawi, M. A. M.; Aziz, M. S. Abdul; Ani, F. Che

    2017-09-01

    Solder joint is an important interconnector in surface mount technology (SMT) assembly process. The real time stress, strain and displacement of the solder joint is difficult to observe and assess the experiment. To tackle these problems, simulation analysis was employed to study the von Mises stress, strain and displacement in the thermal stress analysis by using Finite element based software. In this study, a model of leadless electronic package was considered. The thermal stress analysis was performed to investigate the effect of the solder length to those mechanical aspects. The simulation results revealed that solder length gives significant effect to the maximum von Mises stress to the solder joint. Besides, changes in solder length also influence the displacement of the solder joint in the thermal environment. The increment of the solder length significantly reduces the von Mises stress and strain on the solder joint. Thus, the understanding of the physical parameter for solder joint is important for engineer prior to designing the solder joint of the electronic component.

  13. Deciding to have knee or hip replacement

    MedlinePlus

    ... joint replacement surgery References Harkess JW, Crockarell JR. Arthroplasty of the hip. In: Azar FM, Beaty JH, ... Philadelphia, PA: Elsevier; 2017:chap 3. Mihalko WM. Arthroplasty of the knee. In: Azar FM, Beaty JH, ...

  14. Effect of Complete Syndesmotic Disruption and Deltoid Injuries and Different Reduction Methods on Ankle Joint Contact Mechanics.

    PubMed

    LaMothe, Jeremy; Baxter, Josh R; Gilbert, Susannah; Murphy, Conor I; Karnovsky, Sydney C; Drakos, Mark C

    2017-06-01

    Syndesmotic injuries can be associated with poor patient outcomes and posttraumatic ankle arthritis, particularly in the case of malreduction. However, ankle joint contact mechanics following a syndesmotic injury and reduction remains poorly understood. The purpose of this study was to characterize the effects of a syndesmotic injury and reduction techniques on ankle joint contact mechanics in a biomechanical model. Ten cadaveric whole lower leg specimens with undisturbed proximal tibiofibular joints were prepared and tested in this study. Contact area, contact force, and peak contact pressure were measured in the ankle joint during simulated standing in the intact, injured, and 3 reduction conditions: screw fixation with a clamp, screw fixation without a clamp (thumb technique), and a suture-button construct. Differences in these ankle contact parameters were detected between conditions using repeated-measures analysis of variance. Syndesmotic disruption decreased tibial plafond contact area and force. Syndesmotic reduction did not restore ankle loading mechanics to values measured in the intact condition. Reduction with the thumb technique was able to restore significantly more joint contact area and force than the reduction clamp or suture-button construct. Syndesmotic disruption decreased joint contact area and force. Although the thumb technique performed significantly better than the reduction clamp and suture-button construct, syndesmotic reduction did not restore contact mechanics to intact levels. Decreased contact area and force with disruption imply that other structures are likely receiving more loads (eg, medial and lateral gutters), which may have clinical implications such as the development of posttraumatic arthritis.

  15. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    PubMed Central

    Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.

    2014-01-01

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772

  16. Gait analysis of patients with an off-the-shelf total knee replacement versus customized bi-compartmental knee replacement.

    PubMed

    Wang, Henry; Foster, Jonathan; Franksen, Natasha; Estes, Jill; Rolston, Lindsey

    2018-04-01

    Newer TKR designs have been introduced to the market with the aim of overcoming common sizing problems with older TKR designs. Furthermore, since a sizable percentage of patients with OA present with disease limited to the medial/lateral knee compartment in addition to the patellofemoral joint, for whom, a customized bi-compartmental knee replacement (BKR) is available as a treatment option. To date, there is very little information regarding knee strength and mechanics during gait for patients implanted with these modern TKR and BKR designs. The purpose of the study was to evaluate knee strength and mechanics during walking for patients with either a modern off the shelf TKR or a customized BKR and compare these findings to a cohort of healthy controls. Twelve healthy controls, eight BKR, and nine TKR patients participated in the study. Maximal isometric knee strength was evaluated. 3D kinematic and kinetic analyses were conducted for level walking. The TKR knee exhibited less peak extensor torque when compared to, both the BKR and control limbs (p < 0.05). The TKR knee had less extensor moment at stance than both the BKR and control knees (p < 0.05). Both the BKR and control knees displayed larger internal rotation at stance than that of the TKR knee (p < 0.05). This study suggests that, for patients that exhibit isolated OA of the tibiofemoral joint, using a customized BKR implant is a viable treatment option and may contribute to superior mechanical advantages.

  17. Active Joint Mechanism Driven by Multiple Actuators Made of Flexible Bags: A Proposal of Dual Structural Actuator

    PubMed Central

    Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input. PMID:24385868

  18. Active joint mechanism driven by multiple actuators made of flexible bags: a proposal of dual structural actuator.

    PubMed

    Kimura, Hitoshi; Matsuzaki, Takuya; Kataoka, Mokutaro; Inou, Norio

    2013-01-01

    An actuator is required to change its speed and force depending on the situation. Using multiple actuators for one driving axis is one of the possible solutions; however, there is an associated problem of output power matching. This study proposes a new active joint mechanism using multiple actuators. Because the actuator is made of a flexible bag, it does not interfere with other actuators when it is depressurized. The proposed joint achieved coordinated motion of multiple actuators. This report also discusses a new actuator which has dual cylindrical structure. The cylinders are composed of flexible bags with different diameters. The joint torque is estimated based on the following factors: empirical formula for the flexible actuator torque, geometric relationship between the joint and the actuator, and the principle of virtual work. The prototype joint mechanism achieves coordinated motion of multiple actuators for one axis. With this motion, small inner actuator contributes high speed motion, whereas large outer actuator generates high torque. The performance of the prototype joint is examined by speed and torque measurements. The joint showed about 30% efficiency at 2.0 Nm load torque under 0.15 MPa air input.

  19. The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints.

    PubMed

    Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur

    2018-03-01

    Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.

  20. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  1. Macrophages – Key Cells in the Response to Wear Debris from Joint Replacements

    PubMed Central

    Nich, Christophe; Takakubo, Yuya; Pajarinen, Jukka; Ainola, Mari; Salem, Abdelhakim; Sillat, Tarvo; Rao, Allison J.; Raska, Milan; Tamaki, Yasunobu; Takagi, Michiaki; Konttinen, Yrjö T.; Goodman, Stuart B.; Gallo, Jiri

    2013-01-01

    The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of pro-inflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented. PMID:23568608

  2. Forced-air warming and ultra-clean ventilation do not mix: an investigation of theatre ventilation, patient warming and joint replacement infection in orthopaedics.

    PubMed

    McGovern, P D; Albrecht, M; Belani, K G; Nachtsheim, C; Partington, P F; Carluke, I; Reed, M R

    2011-11-01

    We investigated the capacity of patient warming devices to disrupt the ultra-clean airflow system. We compared the effects of two patient warming technologies, forced-air and conductive fabric, on operating theatre ventilation during simulated hip replacement and lumbar spinal procedures using a mannequin as a patient. Infection data were reviewed to determine whether joint infection rates were associated with the type of patient warming device that was used. Neutral-buoyancy detergent bubbles were released adjacent to the mannequin's head and at floor level to assess the movement of non-sterile air into the clean airflow over the surgical site. During simulated hip replacement, bubble counts over the surgical site were greater for forced-air than for conductive fabric warming when the anaesthesia/surgery drape was laid down (p = 0.010) and at half-height (p < 0.001). For lumbar surgery, forced-air warming generated convection currents that mobilised floor air into the surgical site area. Conductive fabric warming had no such effect. A significant increase in deep joint infection, as demonstrated by an elevated infection odds ratio (3.8, p = 0.024), was identified during a period when forced-air warming was used compared to a period when conductive fabric warming was used. Air-free warming is, therefore, recommended over forced-air warming for orthopaedic procedures.

  3. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system.

    PubMed

    Grasmeijer, N; Stankovic, M; de Waard, H; Frijlink, H W; Hinrichs, W L J

    2013-04-01

    The aim of this study was to elucidate the role of the two main mechanisms used to explain the stabilization of proteins by sugar glasses during drying and subsequent storage: the vitrification and the water replacement theory. Although in literature protein stability is often attributed to either vitrification or water replacement, both mechanisms could play a role and they should be considered simultaneously. A model protein, alkaline phosphatase, was incorporated in either inulin or trehalose by spray drying. To study the storage stability at different glass transition temperatures, a buffer which acts as a plasticizer, ammediol, was incorporated in the sugar glasses. At low glass transition temperatures (<50°C), the enzymatic activity of the protein strongly decreased during storage at 60°C. Protein stability increased when the glass transition temperature was raised considerably above the storage temperature. This increased stability could be attributed to vitrification. A further increase of the glass transition temperature did not further improve stability. In conclusion, vitrification plays a dominant role in stabilization at glass transition temperatures up to 10 to 20°C above storage temperature, depending on whether trehalose or inulin is used. On the other hand, the water replacement mechanism predominantly determines stability at higher glass transition temperatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The estimated mechanical advantage of the prosimian ankle joint musculature, and implications for locomotor adaptation.

    PubMed

    Goto, Ryosuke; Kumakura, Hiroo

    2013-05-01

    In this study we compared the power arm lengths and mechanical advantages attributed to 12 lower leg muscles across three prosimian species. The origins and insertions of the lower leg muscles in Garnett's galago, the ring-tailed lemur, and the slow loris were quantified and correlated with positional behaviour. The ankle joint of the galago has a speed-oriented mechanical system, in contrast to that of the slow loris, which exhibits more power-oriented mechanics. The lemur ankle joint exhibited intermediate power arm lengths and an intermediate mechanical advantage relative to the other primates. This result suggests that the mechanical differences in the ankle between the galago and the lemur, taxa that exhibit similar locomotory repertoires, reflect a difference in the kinematics and kinetics of leaping (i.e. generalised vs. specialised leapers). In contrast to leaping primates, lorises have developed a more power-oriented mechanical system as a foot adaptation for positional behaviours such as bridging or cantilevering in their arboreal habitat. © 2013 Anatomical Society.

  5. Effect of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of X52 Linepipe HFIW Joints

    NASA Astrophysics Data System (ADS)

    Kavousi Sisi, A.; Mirsalehi, S. E.

    2015-04-01

    In the present paper, influences of normalization heat treatment on microstructural and mechanical properties of high-frequency induction welded (HFIW) joints of X52 steel have been investigated. HFIW joints were post-weld heat treated at different times and temperatures. The microstructure and mechanical properties of the heat treated joints were then comprehensively investigated. Based on the results, a proper normalization of the primary fine grain steel caused the grain size to increase; but because of converting brittle microstructure into ductile microstructure, it caused the toughness to increase also. In addition, the ductility of the joints was enhanced. Nevertheless, tensile strength, yield strength, and hardness were reduced. The results showed that 950 °C was the optimum normalization temperature from the standpoint of fracture toughness for the X52 steel joints. At 1050 °C, the carbides and/or nitrides in the steel dissolved, and excessive grain growth occurred. Hence, the maximum allowable temperature for normalization was found to be 1000 °C.

  6. The associations between quadriceps muscle strength, power, and knee joint mechanics in knee osteoarthritis: A cross-sectional study.

    PubMed

    Murray, Amanda M; Thomas, Abbey C; Armstrong, Charles W; Pietrosimone, Brian G; Tevald, Michael A

    2015-12-01

    Abnormal knee joint mechanics have been implicated in the pathogenesis and progression of knee osteoarthritis. Deficits in muscle function (i.e., strength and power) may contribute to abnormal knee joint loading. The associations between quadriceps strength, power and knee joint mechanics remain unclear in knee osteoarthritis. Three-dimensional motion analysis was used to collect peak knee joint angles and moments during the first 50% of stance phase of gait in 33 participants with knee osteoarthritis. Quadriceps strength and power were assessed using a knee extension machine. Strength was quantified as the one repetition maximum. Power was quantified as the peak power produced at 40-90% of the one repetition maximum. Quadriceps strength accounted for 15% of the variance in peak knee flexion angle (P=0.016). Quadriceps power accounted for 20-29% of the variance in peak knee flexion angle (P<0.05). Quadriceps power at 90% of one repetition maximum accounted for 9% of the variance in peak knee adduction moment (P=0.05). These data suggest that quadriceps power explains more variance in knee flexion angle and knee adduction moment during gait in knee osteoarthritis than quadriceps strength. Additionally, quadriceps power at multiple loads is associated with knee joint mechanics and therefore should be assessed at a variety of loads. Taken together, these results indicate that quadriceps power may be a potential target for interventions aimed at changing knee joint mechanics in knee osteoarthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Relationship between mechanical ankle joint laxity and subjective function.

    PubMed

    Hubbard-Turner, Tricia

    2012-10-01

    An increase in ankle joint laxity has been reported in patients with chronic ankle instability (CAI). However, it is not known if this increase in joint laxity is responsible for the subjective level of functional deficits also reported in these patients. One hundred twenty subjects with unilateral CAI (55 males, 65 females; age, 20.6 ± 1.5 years; mass, 74.5 ± 13.6 kg; height, 174.2 ± 9.7 cm) participated in the study. Mechanical joint stability was measured with an instrumented ankle arthrometer. The arthrometer measured ankle joint motion for anterior/posterior translation and inversion/eversion angular displacement. Subjective level of function was assessed with the foot and ankle disability index (FADI) and foot and ankle disability index sport (FADIS). Bivariate correlations using Pearson Product Moments were made between all dependent variables taken on the unstable ankles. The strongest relationship was between anterior laxity and the FADIS (r = -0.88, p < 0.0001). As scores on the FADIS decreased, anterior laxity increased. Similar significant results were reported for anterior laxity and the FADI (r = -0.65, p = 0.013), as well as inversion laxity and the FADI (r = -0.53, p = 0.017) and FADIS (r = -0.45, p = 0.013). These data demonstrate that there appears to be a relationship between anterior and inversion ankle laxity and subjective function in those with CAI. Although numerous insufficiencies develop after an ankle sprain, increased laxity may cause some of the subjective functional deficits reported in those with CAI. Strategies to prevent increased laxity following ankle sprain may improve the patient's subjective level of function.

  8. The Effects of Fluid Absorption on the Mechanical Properties of Joint Prostheses Components

    NASA Astrophysics Data System (ADS)

    Yarbrough, David; Viano, Ann

    2010-02-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is the material playing the role of cartilage in human prosthetic joints. Wear debris from UHMWPE is a common reason for joint arthroplasty failure, and the exact mechanism responsible for wear remains an area of investigation. In this study, the microstructure of UHMWPE was examined as a function of fluid absorption. Samples with varying exposure to e-beam radiation (as part of the manufacturing process) were soaked for forty days in saline or artificial synovial fluid, under zero or 100 lbs load. Samples were then tensile-tested according to ASTM D-3895. The post-stressed material was then examined by transmission electron microscopy to evaluate the molecular response to stress, which correlates with macroscopic mechanical properties. Three parameters of the crystalline lamellae were measured: thickness, stacking ratio, and alignment to stress direction. Results indicate that fluid absorption does affect the mechanical properties of UHMWPE at both the microscopic and microscopic levels. )

  9. Healthcare Utilization and Costs of Knee or Hip Replacements versus Pain-Relief Injections

    PubMed Central

    Pasquale, Margaret K.; Louder, Anthony M.; Cheung, Raymond Y.; Reiners, Andrew T.; Mardekian, Jack; Sanchez, Robert J.; Goli, Veerainder

    2015-01-01

    Background Given the dramatic increase in total knee and hip replacement procedures among the US population aged 45 years and older, there is a need to compare the downstream healthcare utilization and costs between patients who undergo joint replacement and those who receive intraarticular injections as a low-cost alternative. Objective To compare changes in osteoarthritis (OA)-related healthcare utilization and costs for Medicare members with OA who underwent knee or hip replacement versus those receiving steroid or viscosupplementation injections. Methods Medicare members aged ≥45 years diagnosed with OA were identified for this retrospective longitudinal study. Data were compared for patients who underwent primary knee or hip replacement surgery between July 1, 2007, and June 30, 2012, and those receiving injection of pain-relief medication during the same period. The date of joint replacement surgery was considered the index date. For the comparison cohort, the index date was 180 days postinjection of the first intraarticular injection. Medical and pharmacy claims were examined longitudinally in 90-day increments, from 180 days preindex until 360 days postindex. Difference-in-difference analyses were conducted to compare the change in OA-related healthcare costs, postindex versus preindex, between the study cohorts. Time-to-event analyses were used to measure rates of readmissions and venous thromboembolism (VTE). Results The mean age was 70.7 years for patients with knee replacement, 71.7 years for those with hip replacement, and 71.1 years for those receiving pain-relief injection (P <.0001). The RxRisk-V comorbidity index scores were 4.7, 4.4, and 4.8, respectively (P <.0001). Difference-in-difference analyses indicated that decreases in OA-related costs were greater for the joint replacement cohorts (coefficient for knee replacement*time: −0.603; hip replacement*time: −0.438; P <.001 for both) than for the comparison cohort. The VTE rates were 5

  10. Does self-efficacy influence recovery and well-being in osteoarthritis patients undergoing joint replacement? A systematic review.

    PubMed

    Magklara, Eleni; Burton, Christopher R; Morrison, Val

    2014-09-01

    To investigate the role of self-efficacy in functional recovery and well-being outcomes in osteoarthritis patients, undergoing hip or knee replacement surgery. Studies were identified using MEDLINE via PUB med, PsycINFO and CINAHL from inception to July 2013. Three search strategies that combined key terms of 'self-efficacy', 'functional recovery', 'well-being' and 'joint replacement' were applied. Titles and abstracts were screened for eligibility and, accordingly, potentially eligible studies were retrieved for review. Included studies were assessed in terms of their quality, and data were extracted by two independent reviewers. A narrative synthesis of results was conducted. In total, 836 articles were identified and after electronic de-duplication, 708 articles remained. After screening 15 articles were retrieved as potentially eligible and eight articles were included in the review. Of the eight studies (n = 967 patients), seven had a prospective design and all studies were considered of good quality. No fully conclusive evidence for the influence of self-efficacy upon functional recovery outcomes was found. When the timing of self-efficacy measurement was examined, post-operative self-efficacy was found to be related to functional recovery outcomes. Presurgical self-efficacy was the least consistent predictor of functional outcomes while postoperative self-efficacy was more consistently associated with recovery outcomes such as longer distance ambulation, exercise repetition and frequency, walking speed and disability. © The Author(s) 2014.

  11. Reoperations following proximal interphalangeal joint nonconstrained arthroplasties.

    PubMed

    Pritsch, Tamir; Rizzo, Marco

    2011-09-01

    To retrospectively analyze the reasons for reoperations following primary nonconstrained proximal interphalangeal (PIP) joint arthroplasty and review clinical outcomes in this group of patients with 1 or more reoperations. Between 2001 and 2009, 294 nonconstrained (203 pyrocarbon and 91 metal-plastic) PIP joint replacements were performed in our institution. A total of 76 fingers (59 patients) required reoperation (50 pyrocarbon and 26 metal-plastic). There were 40 women and 19 men with an average age of 51 years (range, 19-83 y). Primary diagnoses included osteoarthritis in 35, posttraumatic arthritis in 24, and inflammatory arthritis in 17 patients. There were 21 index, 27 middle, 18 ring, and 10 small fingers. The average number of reoperations per PIP joint was 1.6 (range, 1-4). A total of 45 joints had 1 reoperation, 19 had 2, 11 had 3, and 1 had 4. Extensor mechanism dysfunction was the most common reason for reoperation; it involved 51 of 76 fingers and was associated with Chamay or tendon-reflecting surgical approaches. Additional etiologies included component loosening in 17, collateral ligament failure in 10, and volar plate contracture in 8 cases. Inflammatory arthritis was associated with collateral ligament failure. Six fingers were eventually amputated, 9 had PIP joint arthrodeses, and 2 had resection arthroplasties. The arthrodesis and amputation rates correlated with the increased number of reoperations per finger. Clinically, most patients had no or mild pain at the most recent follow-up, and the PIP joint range-of-motion was not significantly different from preoperative values. Pain levels improved with longer follow-up. Reoperations following primary nonconstrained PIP joint arthroplasties are common. Extensor mechanism dysfunction was the most common reason for reoperation. The average reoperation rate was 1.6, and arthrodesis and amputation are associated with an increasing number of operations. Overall clinical outcomes demonstrated no

  12. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-04-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  13. Microstructural Characteristics and Mechanical Properties of an Electron Beam-Welded Ti/Cu/Ni Joint

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Wang, Ting; Jiang, Siyuan; Zhang, Binggang; Feng, Jicai

    2018-05-01

    Electron beam welding experiments of TA15 titanium alloy to GH600 nickel superalloy with and without a copper sheet interlayer were carried out. Surface appearance, microstructure and phase constitution of the joint were examined by optical microscopy, scanning electron microscopy and x-ray diffraction analysis. Mechanical properties of Ti/Ni and Ti/Cu/Ni joint were evaluated based on tensile strength and microhardness tests. The results showed that cracking occurred in Ti/Ni electron beam weldment for the formation of brittle Ni-Ti intermetallics, while a crack-free electron beam-welded Ti/Ni joint can be obtained by using a copper sheet as filler metal. The addition of copper into the weld affected the welding metallurgical process of the electron beam-welded Ti/Ni joint significantly and was helpful for restraining the formation of Ti-Ni intermetallics in Ti/Ni joint. The microstructure of the weld was mainly characterized by a copper-based solid solution and Ti-Cu interfacial intermetallic compounds. Ti-Ni intermetallic compounds were almost entirely suppressed. The hardness of the weld zone was significantly lower than that of Ti/Ni joint, and the tensile strength of the joint can be up to 282 MPa.

  14. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  15. Assessment and validation of CT scanogram to compare per-operative and post-operative mechanical axis after navigated total knee replacement

    PubMed Central

    Jain, Sunil

    2008-01-01

    Our objective was to assess and validate low-dose computed tomography (CT) scanogram as a post-operative imaging modality to measure the mechanical axis after navigated total knee replacement. A prospective study was performed to compare intra-operative and post-operative mechanical axis after navigated total knee replacements. All consecutive patients who underwent navigated total knee replacement between May and December 2006 were included. The intra-operative final axis was recorded, and post-operatively a CT scanogram of lower limbs was performed. The mechanical axis was measured and compared against the intra-operative measurement. There were 15 patients ranging in age from 57 to 80 (average 70) years. The average final intra-operative axis was 0.56° varus (4° varus to 1.5° valgus) and post-operative CT scanogram axis was 0.52° varus (3.1° varus to 1.8° valgus). The average deviation from final axes to CT scanogram axes was 0.12° valgus with a correlation coefficient of 0.9. Our study suggests that CT scanogram is an imaging modality with reasonable accuracy for measuring mechanical axis despite significantly low radiation. It also confirms a high level of correlation between intra-operative and post-operative mechanical axis after navigated total knee replacement. PMID:18696064

  16. Microstructures and Mechanical Properties of 12Cr1MoVG Tube Welded Joints With/Without Post-weld Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Sun, Jian; Yu, Xinhai; Chen, Guohong; Fu, Qiuhua; Gao, Chao; Tang, Wenming

    2017-10-01

    Small-caliber, thick-wall 12Cr1MoVG seamless steel tube welded joints were fabricated in this study by gas tungsten arc welding and shielded metal arc welding techniques, then the microstructures, mechanical properties, and residual stress distributions of the joints with or without post-weld heat treatment (PWHT) were compared. The welded joints are mainly composed of bcc ferrite (F), Fe3C, and M7C3 carbides. PWHT did not cause an apparent microstructure evolution in the joints, but promoted granular pearlite decomposition and growth of F grains and carbides, therefore decreasing the yield, tensile strength, and hardness while increasing the impact toughness and elongation of the welded joints. PWHT also released the circumferential residual stress and altered the stress state in the joint from tensile to compressive. Although the mechanical properties and bending performance of the small-caliber, thick-wall 12Cr1MoVG seamless welded joints without PWHT are acceptable, our results show that the joints with PWHT are more reliable.

  17. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    PubMed Central

    Roddy, Karen A.; Prendergast, Patrick J.; Murphy, Paula

    2011-01-01

    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint. PMID:21386908

  18. The mechanism of joint capsule thermal modification in an in-vitro sheep model.

    PubMed

    Hayashi, K; Peters, D M; Thabit, G; Hecht, P; Vanderby, R; Fanton, G S; Markel, M D

    2000-01-01

    The purpose of this study was to understand the mechanism responsible for joint capsule shrinkage after nonablative laser application in an in-vitro sheep model. Femoropatellar joint capsular tissue specimens harvested from 20 adult sheep were treated with one of three power settings of a holmium:yttrium-aluminum-garnet laser or served as a control. Laser treatment significantly shortened the tissue and decreased tissue stiffness in all three laser groups, whereas failure strength was not altered significantly by laser treatment. Transmission electron microscopic examination showed swollen collagen fibrils and loss of membrane integrity of fibroblasts. A thermometric study revealed nonablative laser energy caused tissue temperature to rise in the range of 64 degrees C to 100 degrees C. Electrophoresis after trypsin digestion of the tissue revealed significant loss of distinct alpha bands of Type I collagen in laser treated samples, whereas alpha bands were present in laser treated tissue without trypsin digestion. The results of this study support the concept that the primary mechanism responsible for the effect of nonablative laser energy is thermal denaturation of collagen in joint capsular tissue associated with unwinding of the triple helical structure of the collagen molecule.

  19. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination.

    PubMed

    Keller, Peter E; Novembre, Giacomo; Hove, Michael J

    2014-12-19

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social-psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Effect of post weld impact treatment (PWIT) on mechanical properties of spot-welded joint

    NASA Astrophysics Data System (ADS)

    Ghazali, F. A.; Salleh, Z.; Hyie, K. M.; Rozlin, N. M. Nik; Hamidi, S. H. Ahmad; Padzi, M. M.

    2017-12-01

    This paper focuses on the study of improvement for spot welding on the tensile shear and hardness by applying post weld impact treatment (PWIT) on the welded joint. The main objective of the research is to characterize and improve the mechanical properties of the joint. The method of PWIT used on the welded joint was Pneumatic Impact Treatment (PIT). The concept of PIT on spot welding is that it improves the mechanical properties of the welded zone. The working sample was undergoing a resistance spot welding of joining two similar in dimension and material of a steel plate before treated. The dimension of both plate are 110 mm × 45 mm × 1.2 mm and the material used were low carbon steel (LCS). All the welded samples were tested for its mechanical properties by performing the tensile-shear and hardness test. Tensile-shear test was conducted on the spot welded, both treated and as-welded samples using crosshead speed of 2 mm/min, while hardness test was performed using 1kgf load via Vickers hardness indenter. The effects of PIT on tensile-shear properties and hardness were evaluated and found that the implementation of PIT has increased tensile shear and hardness significantly.

  1. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, T g, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, T ref, by the same amount as the T g depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive T g depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  2. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGES

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; ...

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, T g, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, T ref, by the same amount as the T g depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive T g depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  3. Mechanical Properties and Microstructure of TIG and FSW Joints of a New Al-Mg-Mn-Sc-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Guofu; Qian, Jian; Xiao, Dan; Deng, Ying; Lu, Liying; Yin, Zhimin

    2016-04-01

    A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.

  4. Impact of multiple joint impairments on the energetics and mechanics of walking in patients with haemophilia.

    PubMed

    Lobet, S; Detrembleur, C; Hermans, C

    2013-03-01

    Few studies have assessed the changes produced by multiple joint impairments (MJI) of the lower limbs on gait in patients with haemophilia (PWH). In patients with MJI, quantifiable outcome measures are necessary if treatment benefits are to be compared. This study was aimed at observing the metabolic cost, mechanical work and efficiency of walking among PWH with MJI and to investigate the relationship between joint damage and any changes in mechanical and energetic variables. This study used three-dimensional gait analysis to investigate the kinematics, cost, mechanical work and efficiency of walking in 31 PWH with MJI, with the results being compared with speed-matched values from a database of healthy subjects. Regarding energetics, the mass-specific net cost of transport (C(net)) was significantly higher for PWH with MJI compared with control and directly related to a loss in dynamic joint range of motion. Surprisingly, however, there was no substantial increase in mechanical work, with PWH being able to adopt a walking strategy to improve energy recovery via the pendulum mechanism. This probable compensatory mechanism to economize energy likely counterbalances the supplementary work associated with an increased vertical excursion of centre of mass (CoM) and lower muscle efficiency of locomotion. Metabolic variables were probably the most representative variables of gait disability for these subjects with complex orthopaedic degenerative disorders. © 2012 Blackwell Publishing Ltd.

  5. Size effects in tin-based lead-free solder joints: Kinetics of bond formation and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Abdelhadi, Ousama Mohamed Omer

    Continuous miniaturization of microelectronic interconnects demands smaller joints with comparable microstructural and structural sizes. As the size of joints become smaller, the volume of intermetallics (IMCs) becomes comparable with the joint size. As a result, the kinetics of bond formation changes and the types and thicknesses of IMC phases that form within the constrained region of the bond varies. This dissertation focuses on investigating combination effects of process parameters and size on kinetics of bond formation, resulting microstructure and the mechanical properties of joints that are formed under structurally constrained conditions. An experiment is designed where several process parameters such as time of bonding, temperature, and pressure, and bond thickness as structural chracteristic, are varied at multiple levels. The experiment is then implemented on the process. Scanning electron microscope (SEM) is then utilized to determine the bond thickness, IMC phases and their thicknesses, and morphology of the bonds. Electron backscatter diffraction (EBSD) is used to determine the grain size in different regions, including the bulk solder, and different IMC phases. Physics-based analytical models have been developed for growth kinetics of IMC compounds and are verified using the experimental results. Nanoindentation is used to determine the mechanical behavior of IMC phases in joints in different scales. Four-point bending notched multilayer specimen and four-point bending technique were used to determine fracture toughness of the bonds containing IMCs. Analytical modeling of peeling and shear stresses and fracture toughness in tri-layer four-point bend specimen containing intermetallic layer was developed and was verified and validated using finite element simulation and experimental results. The experiment is used in conjunction with the model to calculate and verify the fracture toughness of Cu6Sn5 IMC materials. As expected two different IMC phases

  6. Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems.

    PubMed

    Thiyahuddin, M I; Thambiratnam, D P; Gu, Y T

    2014-10-01

    Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular "wall" representative of a 30m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier "wall" and the vehicle was obtained and the results show that a rotational stiffness of 3000kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    NASA Astrophysics Data System (ADS)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  8. Global Gene Expression Differences in Joints of Mice with Divergent Post Traumatic Osteoarthritis Phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibui, J.

    Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation which prompts pain, stiffness and swelling. Contributing factors include age, genetics, obesity, injury and overuse of joints. OA is defined by an acute phase and a chronic phase whereby inflammation and degeneration of articular cartilage and other tissues is followed by joint pain and limited mobility. Patients remain asymptomatic until substantial joint damage has occurred and therefore rely on long term surgical joint replacement and pain management as their sole treatment options. For this reason, there is an increasing need to identify early stage osteoarthritis biomarkers. Our study aimedmore » to identify and characterize gene expression variances in 3 different mouse strains (STR/ort, C57BL/6 and MRL/MpJ) with different susceptibility to post traumatic osteoarthritis (PTOA). Through RNA sequence analysis of whole knee joint RNA, we identified differentially expressed genes associated with the initial stages of PTOA in relation to mice with divergent phenotypes. These results will help elucidate potential mechanisms responsible for PTOA outcomes.« less

  9. Effects of step rate manipulation on joint mechanics during running.

    PubMed

    Heiderscheit, Bryan C; Chumanov, Elizabeth S; Michalski, Max P; Wille, Christa M; Ryan, Michael B

    2011-02-01

    the objective of this study was to characterize the biomechanical effects of step rate modification during running on the hip, knee, and ankle joints so as to evaluate a potential strategy to reduce lower extremity loading and risk for injury. three-dimensional kinematics and kinetics were recorded from 45 healthy recreational runners during treadmill running at constant speed under various step rate conditions (preferred, ± 5%, and ± 10%). We tested our primary hypothesis that a reduction in energy absorption by the lower extremity joints during the loading response would occur, primarily at the knee, when step rate was increased. less mechanical energy was absorbed at the knee (P < 0.01) during the +5% and +10% step rate conditions, whereas the hip (P < 0.01) absorbed less energy during the +10% condition only. All joints displayed substantially (P < 0.01) more energy absorption when preferred step rate was reduced by 10%. Step length (P < 0.01), center of mass vertical excursion (P < 0.01), braking impulse (P < 0.01), and peak knee flexion angle (P < 0.01) were observed to decrease with increasing step rate. When step rate was increased 10% above preferred, peak hip adduction angle (P < 0.01) and peak hip adduction (P < 0.01) and internal rotation (P < 0.01) moments were found to decrease. we conclude that subtle increases in step rate can substantially reduce the loading to the hip and knee joints during running and may prove beneficial in the prevention and treatment of common running-related injuries.

  10. Effects of Step Rate Manipulation on Joint Mechanics during Running

    PubMed Central

    Heiderscheit, Bryan C.; Chumanov, Elizabeth S.; Michalski, Max P.; Wille, Christa M.; Ryan, Michael B.

    2010-01-01

    Purpose The objective of this study was to characterize the biomechanical effects of step rate modification during running on the hip, knee and ankle joints, so as to evaluate a potential strategy to reduce lower extremity loading and risk for injury. Methods Three-dimensional kinematics and kinetics were recorded from 45 healthy recreational runners during treadmill running at constant speed under various step rate conditions (preferred, ± 5% and ± 10%). We tested our primary hypothesis that a reduction in energy absorption by the lower extremity joints during the loading response would occur, primarily at the knee, when step rate was increased. Results Less mechanical energy was absorbed at the knee (p<0.01) during the +5% and +10% step rate conditions, while the hip (p<0.01) absorbed less energy during the +10% condition only. All joints displayed substantially (p<0.01) more energy absorption when preferred step rate was reduced by 10. Step length (p<0.01), center of mass vertical excursion (p<0.01), breaking impulse (p<0.01) and peak knee flexion angle (p<0.01) were observed to decrease with increasing step rate. When step rate was increased 10% above preferred, peak hip adduction angle (p<0.01), as well as peak hip adduction (p<0.01) and internal rotation (p<0.01) moments, were found to decrease. Conclusion We conclude that subtle increases in step rate can substantially reduce the loading to the hip and knee joints during running and may prove beneficial in the prevention and treatment of common running-related injuries. PMID:20581720

  11. Corrosion behaviour and mechanical properties of functionally gradient materials developed for possible hard-tissue applications.

    PubMed

    Becker, B S; Bolton, J D

    1997-12-01

    Artificial hip joints have an average lifetime of 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 year for a longer lasting joint of 25 years or more. Compliant layers incorporated into the acetabular cup generate elastohydrodynamic lubrication conditions between the bearing surfaces, reduce joint friction coefficients and wear debris production and could increase the average life of total hip replacements, and other human load-bearing joint replacements, i.e. total knee replacements. Poor adhesion between a fully dense substrate and the compliant layer has so far prevented any further exploitation. This work investigated the possibility of producing porous metallic, functionally gradient type acetabular cups using powder metallurgy techniques - where a porous surface was supported by a denser core - into which the compliant layers could be incorporated. The corrosion behaviour and mechanical properties of three biomedically approved alloys containing two levels of total porosity (>30% and <10%) were established, resulting in Ti-6Al-4V being identified as the most promising biocompatible functionally graded material, not only for this application but for other hard-tissue implants.

  12. Joint awareness in osteoarthritis of the hip and knee evaluated with the 'Forgotten Joint' Score before and after joint replacement.

    PubMed

    Thienpont, E; Vanden Berghe, A; Schwab, P E; Forthomme, J P; Cornu, O

    2016-10-01

    To utilize the 'Forgotten Joint' Score (FJS), a 12-item questionnaire analysing the ability to forget the joint, for comparing preoperative status in osteoarthritic patients scheduled for total hip arthroplasty (THA) or total knee arthroplasty (TKA). Higher scores represent a better result with a maximum of 100. The hypothesis of this study was that a preoperative difference in favour of hip arthritis could eventually explain why THA is cited more often as a forgotten joint than TKA. A prospective cohort study was conducted in 150 patients with either tricompartmental knee (n = 75) or hip osteoarthritis (n = 75). Patients completed FJS-12 scores preoperatively and 1 year postoperatively. A similar preoperative FJS-12 was observed for hip (22 (15)) and knee osteoarthritis (24 (17)) (n.s.). The postoperative FJS-12 score was significantly higher for THA (80 (24)) than for TKA (70 (27)) (p < 0.05). High reliability after 6 weeks was observed for the preoperative FJS-12 test-retest reliability (ICC = 0.87) in TKA. A preoperative floor effect of 15 % in THA and 0 % in TKA was found as well as a postoperative ceiling effect of 33 % in THA and 9 % in TKA. The clinical relevance of utilizing the FJS-12 as an instrument to evaluate outcome is strongly proposed for knee arthroplasty. In general, one is not aware of a healthy joint during the ADL, and it can therefore be regarded as 'forgotten'. The preoperative FJS-12 Score is a powerful tool to provide patients with clearer insights into their positive evolution after surgery. The use of the FJS-12 in THA is a topic for further research, as this study found that floor and ceiling effects limit its usefulness in studies evaluating clinical outcome in this area. II.

  13. Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review.

    PubMed

    Vafaeian, B; Zonoobi, D; Mabee, M; Hareendranathan, A R; El-Rich, M; Adeeb, S; Jaremko, J L

    2017-04-01

    Developmental dysplasia of the hip (DDH) is a common condition predisposing to osteoarthritis (OA). Especially since DDH is best identified and treated in infancy before bones ossify, there is surprisingly a near-complete absence of literature examining mechanical behavior of infant dysplastic hips. We sought to identify current practice in finite element modeling (FEM) of DDH, to inform future modeling of infant dysplastic hips. We performed multi-database systematic review using PRISMA criteria. Abstracts (n = 126) fulfilling inclusion criteria were screened for methodological quality, and results were analyzed and summarized for eligible articles (n = 12). The majority of the studies modeled human adult dysplastic hips. Two studies focused on etiology of DDH through simulating mechanobiological growth of prenatal hips; we found no FEM-based studies in infants or children. Finite element models used either patient-specific geometry or idealized average geometry. Diversities in choice of material properties, boundary conditions, and loading scenarios were found in the finite-element models. FEM of adult dysplastic hips demonstrated generally smaller cartilage contact area in dysplastic hips than in normal joints. Contact pressure (CP) may be higher or lower in dysplastic hips depending on joint geometry and mechanical contribution of labrum (Lb). FEM of mechanobiological growth of prenatal hip joints revealed evidence for effects of the joint mechanical environment on formation of coxa valga, asymmetrically shallow acetabulum and malformed femoral head associated with DDH. Future modeling informed by the results of this review may yield valuable insights into optimal treatment of DDH, and into how and why OA develops early in DDH. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  14. A new approach to knee joint arthroplasty.

    PubMed

    Zarychta, P

    2018-04-01

    The main aim of this new approach dedicated to knee arthroplasty is to provide an automated method for determining the cutting planes of both the head of femur and the head of tibia in knee replacement surgery. This paper shows a new approach differing from standard procedures associated with manual determination of the mechanical axis of the lower extremity (during surgery) and replacing them with a procedure based on the imprints (with selected cutting planes) of the two heads of bones. Both these imprints have been performed on the basis of the toposcan of the lower limb (before surgery). This methodology has been implemented in MATLAB and tested in clinical CT images of the lower limb in the coronal and transverse planes (61 studies) and in clinical MRI studies of the knee joint in coronal plane (107 studies). Correct results were obtained for about 90% cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of groove size and reinforcements addition on mechanical properties and microstructure of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Reddy Baridula, Ravinder; Ibrahim, Abdullah Bin; Yahya, Che Ku Mohammad Faizal Bin Che Ku; Kulkarni, Ratnakar; Varma Ramaraju, Ramgopal

    2018-03-01

    The butt joints fabricated by friction stir welding were found to have more strength than the joints obtained by conventional joining process. The important outcome of this process is the successful fabrication of surface composites with improved properties. Thus in order to further enhance the strength of the dissimilar alloy joints the reinforcements can be deposited in to the aluminium matrix during the process of friction stir welding. In the present study the multi-walled carbon nanotubes were embedded in to the groove by varying the width during joining of dissimilar alloys AA2024 and AA7075. Four widths were selected with constant depth and optimum process parameters were selected to fabricate the sound welded joints. The results show that the mechanical properties of the fabricated butt joints were influenced by the size of the groove, due to variation in the deposition of reinforcement in the stir zone. The microstructural study and identification of the elements of the welded joints show that the reinforcements deposition is influenced by the size of the groove. It has also been observed that the groove with minimum width is more effective than higher width. The mechanical properties are found to be improved due to the pinning of grain boundaries.

  16. Joint Contact Stress

    PubMed Central

    Brand, Richard A

    2005-01-01

    A joint's normal mechanical history contributes to the maintenance of articular cartilage and underlying bone. Loading facilitates the flow of nutrients into cartilage and waste products away, and additionally provides the mechanical signals essential for normal cell and tissue maintenance. Deleteriously low or high contact stresses have been presumed to result in joint deterioration, and particular aspects of the mechanical environment may facilitate repair of damaged cartilage. For decades, investigators have explored static joint contact stresses (under some more or less arbitrary condition) as a surrogate of the relevant mechanical history. Contact stresses have been estimated in vitro in many joints and in a number of species, although only rarely in vivo. Despite a number of widely varying techniques (and spatial resolutions) to measure these contact stresses, reported ranges of static peak normal stresses are relatively similar from joint to joint across species, and in the range of 0.5 to 5.0 MPa. This suggests vertebrate diarthrodial joints have evolved to achieve similar mechanical design criteria. Available evidence also suggests some disorders of cartilage deterioration are associated with somewhat higher peak pressures ranging from 1-20 MPa, but overlapping the range of normal pressures. Some evidence and considerable logic suggests static contact stresses per se do not predict cartilage responses, but rather temporal aspects of the contact stress history. Static contact stresses may therefore not be a reasonable surrogate for biomechanical studies. Rather, temporal and spatial aspects of the loading history undoubtedly induce beneficial and deleterious biological responses. Finally, since all articular cartilage experiences similar stresses, the concept of a "weight-bearing" versus a "non-weight-bearing" joint seems flawed, and should be abandoned. PMID:16089079

  17. Total knee replacement with natural rollback.

    PubMed

    Wachowski, Martin Michael; Walde, Tim Alexander; Balcarek, Peter; Schüttrumpf, Jan Philipp; Frosch, Stephan; Stauffenberg, Caspar; Frosch, Karl-Heinz; Fiedler, Christoph; Fanghänel, Jochen; Kubein-Meesenburg, Dietmar; Nägerl, Hans

    2012-03-20

    A novel class of total knee replacement (AEQUOS G1) is introduced which features a unique design of the articular surfaces. Based on the anatomy of the human knee and differing from all other prostheses, the lateral tibial "plateau" is convexly curved and the lateral femoral condyle is posteriorly shifted in relation to the medial femoral condyle. Under compressive forces the configuration of the articular surfaces of human knees constrains the relative motion of femur and tibia in flexion/extension. This constrained motion is equivalent to that of a four-bar linkage, the virtual 4 pivots of which are given by the centres of curvature of the articulating surfaces. The dimensions of the four-bar linkage were optimized to the effect that constrained motion of the total knee replacement (TKR) follows the flexional motion of the human knee in close approximation, particularly during gait. In pilot studies lateral X-ray pictures have demonstrated that AEQUOS G1 can feature the natural rollback in vivo. Rollback relieves the load of the patello-femoral joint and minimizes retropatellar pressure. This mechanism should reduce the prevalence of anterior knee pain. The articulating surfaces roll predominantly in the stance phase. Consequently sliding friction is replaced by the lesser rolling friction under load. Producing rollback should minimize material wear due to friction and maximize the lifetime of the prosthesis. To definitely confirm these theses one has to wait for the long term results. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Concept for a fast analysis method of the energy dissipation at mechanical joints

    NASA Astrophysics Data System (ADS)

    Wolf, Alexander; Brosius, Alexander

    2017-10-01

    When designing hybrid parts and structures one major challenge is the design, production and quality assessment of the joining points. While the polymeric composites themselves have excellent material properties, the necessary joints are often the weak link in assembled structures. This paper presents a method of measuring and analysing the energy dissipation at mechanical joining points of hybrid parts. A simplified model is applied based on the characteristic response to different excitation frequencies and amplitudes. The dissipation from damage is the result of relative moments between joining partners und damaged fibres within the composite, whereas the visco-elastic material behaviour causes the intrinsic dissipation. The ambition is to transfer these research findings to the characterisation of mechanical joints in order to quickly assess the general quality of the joint with this non-destructive testing method. The inherent challenge for realising this method is the correct interpretation of the measured energy dissipation and its attribution to either a bad joining point or intrinsic material properties. In this paper the authors present the concept for energy dissipation measurements at different joining points. By inverse analysis a simplified fast semi-analytical model will be developed that allows for a quick basic quality assessment of a given joining point.

  19. Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Xie, Weidong

    2014-12-01

    The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.

  20. 21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...

  1. 21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...

  2. 21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...

  3. 21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...

  4. 21 CFR 888.3800 - Wrist joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Wrist joint metal/polymer semi-constrained... Wrist joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A wrist joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a wrist joint...

  5. Joint BioEnergy Institute

    ScienceCinema

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2018-05-11

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  6. Musclelike joint mechanism driven by dielectric elastomer actuator for robotic applications

    NASA Astrophysics Data System (ADS)

    Jung, Ho Sang; Cho, Kyeong Ho; Park, Jae Hyeong; Yang, Sang Yul; Kim, Youngeun; Kim, Kihyeon; Nguyen, Canh Toan; Phung, Hoa; Tien Hoang, Phi; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk

    2018-07-01

    The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.

  7. Meniscus tear surgery and meniscus replacement

    PubMed Central

    Vaquero, Javier; Forriol, Francisco

    2016-01-01

    Summary Objective the menisci are easily injured and difficult to repair. The aim of this study was to analyze the current state of meniscal surgery aimed at preserving morphology and conserving the biomechanics of the knee to prevent joint degeneration. Methodology a search of the electronic medical literature database Medline was conducted, from http://www.ncbi.nlm.nih.gov/pubmed. The search was not limited by language. Candidate articles were identified by searching for those that included the keywords meniscus, surgery, suture, implant, allograft. The limits were included for clinical research and clinical trials. Basic research was not included. The studies selected were evaluated and classified in three different categories: basic science, reconstruction (suture and meniscectomy) and implants (scaffolds and allograft). Results the consequences of meniscectomy performed at a young age can lead to a joint cartilage degeneration twenty years later. There are few surgical options for the repair of meniscal injuries in order both to preserve the meniscus and to ensure the long term survival of the knee joint, meniscectomy, repair, suturing the tear, or reconstruction, when a meniscal allograft or synthetic substitute is used to replace the meniscus, but the biomechanical properties of the native meniscus are not reproduced entirely by the scaffolds that exist today. Conclusion therapies that successfully repair or replace the meniscus are therefore likely to prevent or delay osteoarthritis progression. PMID:27331034

  8. Temporomandibular Joint Disorders: A Review of Etiology, Clinical Management, and Tissue Engineering Strategies

    PubMed Central

    Murphy, Meghan K.; MacBarb, Regina F.; Wong, Mark E.; Athanasiou, Kyriacos A.

    2015-01-01

    Epidemiology reports state temporomandibular joint disorders (TMD) affect up to 25% of the population, yet their etiology and progression are poorly understood. As a result, treatment options are limited and fail to meet the long-term demands of the relatively young patient population. TMD are a class of degenerative musculoskeletal conditions associated with morphological and functional deformities. In up to 70% of cases, TMD are accompanied by malpositioning of the TMJ disc, termed “internal derangement.” Though onset is not well characterized, correlations between internal derangement and osteoarthritic change have been identified. Due to the complex and unique nature of each TMD case, diagnosis requires patient-specific analysis accompanied by various diagnostic modalities. Likewise, treatment requires customized plans to address the specific characteristics of each patient’s disease. In the mechanically demanding and biochemically active environment of the TMJ, therapeutic approaches capable of restoring joint functionality while responding to changes in the joint have become a necessity. Capable of integration and adaptation in the TMJ, one such approach, tissue engineering, carries significant potential in the development of repair and replacement tissues. The following review presents a synopsis of etiology, current treatment methods, and the future of tissue engineering for repairing and/or replacing diseased joint components, specifically the mandibular condyle and TMJ disc. Preceding the current trends in tissue engineering is an analysis of native tissue characterization, toward identifying tissue engineering objectives and validation metrics for restoring healthy and functional structures of the TMJ. PMID:24278954

  9. Decreasing Postanesthesia Care Unit to Floor Transfer Times to Facilitate Short Stay Total Joint Replacements.

    PubMed

    Sibia, Udai S; Grover, Jennifer; Turcotte, Justin J; Seanger, Michelle L; England, Kimberly A; King, Jennifer L; King, Paul J

    2018-04-01

    We describe a process for studying and improving baseline postanesthesia care unit (PACU)-to-floor transfer times after total joint replacements. Quality improvement project using lean methodology. Phase I of the investigational process involved collection of baseline data. Phase II involved developing targeted solutions to improve throughput. Phase III involved measured project sustainability. Phase I investigations revealed that patients spent an additional 62 minutes waiting in the PACU after being designated ready for transfer. Five to 16 telephone calls were needed between the PACU and the unit to facilitate each patient transfer. The most common reason for delay was unavailability of the unit nurse who was attending to another patient (58%). Phase II interventions resulted in transfer times decreasing to 13 minutes (79% reduction, P < .001). Phase III recorded sustained transfer times at 30 minutes, a net 52% reduction (P < .001) from baseline. Lean methodology resulted in the immediate decrease of PACU-to-floor transfer times by 79%, with a 52% sustained improvement. Our methods can also be used to improve efficiencies of care at other institutions. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  10. Joint Mobilization Enhances Mechanisms of Conditioned Pain Modulation in Individuals With Osteoarthritis of the Knee.

    PubMed

    Courtney, Carol A; Steffen, Alana D; Fernández-de-Las-Peñas, César; Kim, John; Chmell, Samuel J

    2016-03-01

    An experimental laboratory study with a repeated-measures crossover design. Treatment effects of joint mobilization may occur in part by decreasing excitability of central nociceptive pathways. Impaired conditioned pain modulation (CPM) has been found experimentally in persons with knee and hip osteoarthritis, indicating impaired inhibition of central nociceptive pathways. We hypothesized increased effectiveness of CPM following application of joint mobilization, determined via measures of deep tissue hyperalgesia. To examine the effect of joint mobilization on impaired CPM. An examination of 40 individuals with moderate/severe knee osteoarthritis identified 29 (73%) with impaired CPM. The subjects were randomized to receive 6 minutes of knee joint mobilization (intervention) or manual cutaneous input only, 1 week apart. Deep tissue hyperalgesia was examined via pressure pain thresholds bilaterally at the knee medial joint line and the hand at baseline, postintervention, and post-CPM testing. Further, vibration perception threshold was measured at the medial knee epicondyle at baseline and post-CPM testing. Joint mobilization, but not cutaneous input intervention, resulted in a global increase in pressure pain threshold, indicated by diminished hyperalgesic responses to pressure stimulus. Further, CPM was significantly enhanced following joint mobilization. Diminished baseline vibration perception threshold acuity was enhanced following joint mobilization at the knee that received intervention, but not at the contralateral knee. Resting pain was also significantly lower following the joint intervention. Conditioned pain modulation was enhanced following joint mobilization, demonstrated by a global decrease in deep tissue pressure sensitivity. Joint mobilization may act via enhancement of descending pain mechanisms in patients with painful knee osteoarthritis.

  11. The Influence of the Heat-Affected Zone Mechanical Properties on the Behaviour of the Welding in Transverse Plate-to-Tube Joints.

    PubMed

    Lozano, Miguel; Serrano, Miguel A; López-Colina, Carlos; Gayarre, Fernando L; Suárez, Jesús

    2018-02-09

    Eurocode 3 establishes the component method to analytically characterize the structural joints between beam and columns. When one of the members involved in the joint is a hollow section (i.e., a tube) there is a lack of information for the specific components present in the joint. There are two different ways to bridge the gap: experimental testing on the actual beam column joints involving tubular sections; or numerical modelization, typically by means of finite element analysis. For this second option, it is necessary to know the actual mechanical properties of the material. As long as the joint implies a welding process, there is a concern related to how the mechanical properties in the heat-affected zone (HAZ) influence the behavior of the joint. In this work, some coupons were extracted from the HAZ of the beam-column joint. The coupons were tested and the results were implemented in the numerical model of the joint, in an attempt to bring it closer to the experimental results of the tested joints.

  12. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  13. Prediction of elbow joint contact mechanics in the multibody framework.

    PubMed

    Rahman, Munsur; Cil, Akin; Stylianou, Antonis P

    2016-03-01

    Computational multibody musculoskeletal models of the elbow joint that are capable of simultaneous and accurate predictions of muscle and ligament forces, along with cartilage contact mechanics can be immensely useful in clinical practice. As a step towards producing a musculoskeletal model that includes the interaction between cartilage and muscle loading, the goal of this study was to develop subject-specific multibody models of the elbow joint with discretized humerus cartilage representation interacting with the radius and ulna cartilages through deformable contacts. The contact parameters for the compliant contact law were derived using simplified elastic foundation contact theory. The models were then validated by placing the model in a virtual mechanical tester for flexion-extension motion similar to a cadaver experiment, and the resulting kinematics were compared. Two cadaveric upper limbs were used in this study. The humeral heads were subjected to axial motion in a mechanical tester and the resulting kinematics from three bones were recorded for model validation. The maximum RMS error between the predicted and measured kinematics during the complete testing cycle was 2.7 mm medial-lateral translation and 9.7° varus-valgus rotation of radius relative to humerus (for elbow 2). After model validation, a lateral ulnar collateral ligament (LUCL) deficient condition was simulated and, contact pressures and kinematics were compared to the intact elbow model. A noticeable difference in kinematics, contact area, and contact pressure were observed for LUCL deficient condition. LUCL deficiency induced higher internal rotations for both the radius and ulna during flexion and an associated medial shift of the articular contact area. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Knee Joint Contact Mechanics during Downhill Gait and its Relationship with Varus/Valgus Motion and Muscle Strength in Patients with Knee Osteoarthritis

    PubMed Central

    Farrokhi, Shawn; Voycheck, Carrie A.; Gustafson, Jonathan A.; Fitzgerald, G. Kelley; Tashman, Scott

    2015-01-01

    Objective The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Methods Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Group differences in contact mechanics and frontal-plane motion excursions were compared using analysis of covariance with adjustments for body mass index. Differences in strength were compared using independent sample t-tests. Additionally, linear associations between contact mechanics with frontal-plane knee motion and muscle strength were evaluated using Pearson's correlation coefficients. Results Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p<0.02) and greater heel-strike joint contact point velocities (p<0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p=0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p<0.01) and greater quadriceps and hip abductor muscle weakness (p=0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p<0.04) but not with quadriceps or hip abductor strength. Conclusion Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with

  15. Adjustable bias column end joint assembly

    NASA Technical Reports Server (NTRS)

    Wallsom, Richard E. (Inventor); Bush, Harold G. (Inventor)

    1994-01-01

    An adjustable mechanical end joint system for connecting structural column elements and eliminating the possibility of free movement between joint halves during loading or vibration has a node joint body having a cylindrical engaging end and a column end body having a cylindrical engaging end. The column end joint body has a compressible preload mechanism and plunger means housed therein. The compressible preload mechanism may be adjusted from the exterior of the column end joint body through a port.

  16. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics

    ERIC Educational Resources Information Center

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L.

    2013-01-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. Purpose: To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Method: Eighteen men performed the following tasks: unloaded…

  17. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  18. Effect of progressive wear on the contact mechanics of hip replacements--does the realistic surface profile matter?

    PubMed

    Wang, Ling; Yang, Wenjian; Peng, Xifeng; Li, Dichen; Dong, Shuangpeng; Zhang, Shu; Zhu, Jinyu; Jin, Zhongmin

    2015-04-13

    The contact mechanics of artificial metal-on-polyethylene hip joints are believed to affect the lubrication, wear and friction of the articulating surfaces and may lead to the joint loosening. Finite element analysis has been widely used for contact mechanics studies and good agreements have been achieved with current experimental data; however, most studies were carried out with idealist spherical geometries of the hip prostheses rather than the realistic worn surfaces, either for simplification reason or lacking of worn surface profile. In this study, the worn surfaces of the samples from various stages of hip simulator testing (0 to 5 million cycles) were reconstructed as solid models and were applied in the contact mechanics study. The simulator testing results suggested that the center of the head has various departure value from that of the cup and the value of the departure varies with progressively increased wear. This finding was adopted into the finite element study for better evaluation accuracy. Results indicated that the realistic model provided different evaluation from that of the ideal spherical model. Moreover, with the progressively increased wear, large increase of the contact pressure (from 12 to 31 MPa) was predicted on the articulating surface, and the predicted maximum von Mises stress was increased from 7.47 to 13.26 MPa, indicating the marked effect of the worn surface profiles on the contact mechanics of the joint. This study seeks to emphasize the importance of realistic worn surface profile of the acetabular cup especially following large wear volume. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Utilisation of primary total knee joint replacements across socioeconomic status in the Barwon Statistical Division, Australia, 2006-2007: a cross-sectional study.

    PubMed

    Brennan, Sharon Lee; Stanford, Tyman; Wluka, Anita E; Page, Richard S; Graves, Stephen E; Kotowicz, Mark A; Nicholson, Geoffrey C; Pasco, Julie A

    2012-01-01

    There are few Australian data that examine the association between total knee joint replacement (TKR) utilisation and socioeconomic status (SES). This study examined TKR surgeries with a diagnosis of osteoarthritis (OA) performed for residents of Barwon Statistical Division (BSD) for 2006-2007. Cross-sectional. BSD, South-eastern Victoria, Australia All patients who underwent a TKR for OA, 2006-2007, and whose residential postcode was identified as within the BSD of Australia, and for whom SES data were available, were eligible for inclusion. Primary TKR data ascertained from the Australian Orthopaedic Association National Joint Replacement Registry. Residential addresses were matched with the Australian Bureau of Statistics census data, and the Index of Relative Socioeconomic Disadvantage was used to determine SES, categorised into quintiles whereby quintile 1 indicated the most disadvantaged and quintile 5 the least disadvantaged. Age-specific and sex-specific rates of TKR utilisation per 1000 person-years were reported for 10-year age bands. Females accounted for 62.7% of the 691 primary TKR surgeries performed during 2006-2007. The greatest utilisation rates of TKR in males was 7.6 observed in those aged >79 years, and in 10.2 in females observed in those aged 70-79 years. An increase in TKR was observed for males in SES quintile four compared to quintile 1 in which the lowest utilisation which was observed (p=0.04). No differences were observed in females across SES quintiles. Further investigation is warranted on a larger scale to examine the role that SES may play in TKR utilisation, and to determine whether any social disparities in TKR utilisation reflect health system biases or geographic differences.

  20. Kinematic evaluation of the finger's interphalangeal joints coupling mechanism--variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations.

    PubMed

    Leijnse, J N A L; Quesada, P M; Spoor, C W

    2010-08-26

    The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study's aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date. 2010 Elsevier Ltd. All rights reserved.

  1. Multiscale Homogenization Theory: An Analysis Tool for Revealing Mechanical Design Principles in Bone and Bone Replacement Materials

    NASA Astrophysics Data System (ADS)

    Hellmich, Christian; Fritsch, Andreas; Dormieux, Luc

    Biomimetics deals with the application of nature-made "design solutions" to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand "building plans" inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component "collagen" induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the "collagen reinforcement" breaks. Bone replacement materials should mimic these "microstructural mechanics" features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265-268, 2009).

  2. Prevalence of Total Hip and Knee Replacement in the United States.

    PubMed

    Maradit Kremers, Hilal; Larson, Dirk R; Crowson, Cynthia S; Kremers, Walter K; Washington, Raynard E; Steiner, Claudia A; Jiranek, William A; Berry, Daniel J

    2015-09-02

    Descriptive epidemiology of total joint replacement procedures is limited to annual procedure volumes (incidence). The prevalence of the growing number of individuals living with a total hip or total knee replacement is currently unknown. Our objective was to estimate the prevalence of total hip and total knee replacement in the United States. Prevalence was estimated using the counting method by combining historical incidence data from the National Hospital Discharge Survey and the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases from 1969 to 2010 with general population census and mortality counts. We accounted for relative differences in mortality rates between those who have had total hip or knee replacement and the general population. The 2010 prevalence of total hip and total knee replacement in the total U.S. population was 0.83% and 1.52%, respectively. Prevalence was higher among women than among men and increased with age, reaching 5.26% for total hip replacement and 10.38% for total knee replacement at eighty years. These estimates corresponded to 2.5 million individuals (1.4 million women and 1.1 million men) with total hip replacement and 4.7 million individuals (3.0 million women and 1.7 million men) with total knee replacement in 2010. Secular trends indicated a substantial rise in prevalence over time and a shift to younger ages. Around 7 million Americans are living with a hip or knee replacement, and consequently, in most cases, are mobile, despite advanced arthritis. These numbers underscore the substantial public health impact of total hip and knee arthroplasties. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  3. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  4. A tribological and biomimetic study of potential bone joint repair materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rahul

    This research investigates materials for bone-joint failure repair using tribological and biomimicking approaches. The materials investigated represent three different repairing strategies. Refractory metals with and without treatment are candidates for total joint replacements due to their mechanical strength, high corrosion resistance and biocompatibility. A composite of biodegradable polytrimethylene carbonate, hydroxyl apatite, and nanotubes was investigated for application as a tissue engineering scaffold. Non-biodegradable polymer polyimide combined with various concentrations of nanotubes was investigated as a cartilage replacement material. A series of experimental approaches were used in this research. These include analysis of material surfaces and debris using high-resolution techniques and tribological experiments, as well as evaluation of nanomechanical properties. Specifically, the surface structure and wear mechanisms were investigated using a scanning electron microscope and an atomic force microscope. Debris morphology and structure was investigated using a transmission electron microscope. The debris composition was analyzed using an X-ray diffractometer. Nanoindentation was incorporated to investigate the surface nanomechanical properties. Polytrimythelene carbonate combined with hydroxyapatite and nanotubes exhibited a friction coefficient lower than UHMWPE. The nanoindentation response mimicked cartilage more closely than UHMWPE. A composite formed with PI and nanotubes showed a varying friction coefficient and varying nanoindentation response with variation in nanotube concentration. Low friction coefficients corresponded with low modulus values. A theory was proposed to explain this behavior based on surface interactions between nanotubes and between nanotubes and PI. A model was developed to simulate the modulus as a function of nanotube concentration. The boronized refractory metals exhibited brittleness and cracking. Higher friction

  5. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.

    PubMed

    Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-10-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. Copyright © 2015 the American Physiological Society.

  6. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion

    PubMed Central

    Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario

    2015-01-01

    This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. PMID:26245321

  7. [Juvenile rheumatoid diseases: Endoprosthetic care of destroyed hip joints].

    PubMed

    Rehart, S; Henniger, M

    2015-07-01

    Patients with juvenile idiopathic arthritis (JIA) often suffer from involvement of the hip joints, with joint destruction and related functional limitations, making hip replacement necessary. To discover what special features are to be expected in patients with JIA and hip arthroplasty and what impact they have on surgical indication, choice of implant, and technique. Selective literature review and evaluation of our patient population. Compared with osteoarthritis patients, JIA patients are on average much younger at the time of hip replacement. Owing to the onset of the disease in childhood or adolescence and the frequent glucocorticoid therapy, growth disorders or abnormal anatomical findings are common in these patients. Bone density is often reduced at an early age. The perioperative management of medication has to be planned. Special implants for patients with rheumatic diseases do not exist, but the above peculiarities of this group of patients should be considered for surgical procedure and choice of implant and material. Overall, the results of hip arthroplasty in juvenile rheumatic diseases, in terms of pain relief and functional improvement, are good. The limited life of the arthroplasty is problematic. By relieving pain, improvement of the range of motion and activity level very high patient satisfaction is usually achieved by hip arthroplasty in JIA patients. In the case of involvement of the contralateral hip or the ipsilateral knee joint it may be useful to perform a simultaneous, single-stage joint replacement of both joints.

  8. Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements.

    PubMed

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2010-03-15

    A crosslinked hydrogel coating similar to poly(ethylene glycol) (PEG) was covalently bonded to the surface of ultrahigh molecular weight polyethylene (UHMWPE) to improve the lubricity and wear resistance of the UHWMPE for use in total joint replacements. The chemistry, hydrophilicity, and protein adsorption resistance of the coatings were determined, and the wear behavior of the PEG-like coating was examined by two methods: pin-on-disk tribometry to evaluate macroscale behavior, and atomic force microscopy (AFM) to simulate asperity wear. As expected, the coating was found to be highly PEG-like, with approximately 83% ether content by x-ray photoelectron spectroscopy and more hydrophilic and resistant to protein adsorption than uncoated UHMWPE. Pin-on-disk testing showed that the PEG-like coating could survive 3 MPa of contact pressure, comparable to that experienced by total hip replacements. AFM nanoscratching experiments uncovered three damage mechanisms for the coatings: adhesion/microfracture, pure adhesion, and delamination. The latter two mechanisms appear to correlate well with wear patterns induced by pin-on-disk testing and evaluated by attenuated total reflection Fourier transform infrared spectroscopy mapping. Understanding the mechanisms by which the PEG-like coatings wear is critical for improving the behavior of subsequent generations of wear-resistant hydrogel coatings. (c) 2009 Wiley Periodicals, Inc.

  9. Incorporation of Interfacial Intermetallic Morphology in Fracture Mechanism Map for Sn-Ag-Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Kumar, P.; Dutta, I.; Sidhu, R.; Renavikar, M.; Mahajan, R.

    2014-01-01

    A fracture mechanism map (FMM) is a powerful tool which correlates the fracture behavior of a material to its microstructural characteristics in an explicit and convenient way. In the FMM for solder joints, an effective thickness of the interfacial intermetallic compound (IMC) layer ( t eff) and the solder yield strength ( σ ys,eff) are used as abscissa and ordinate axes, respectively, as these two predominantly affect the fracture behavior of solder joints. Earlier, a definition of t eff, based on the uniform thickness of IMC ( t u) and the average height of the IMC scallops ( t s), was proposed and shown to aptly explain the fracture behavior of solder joints on Cu. This paper presents a more general definition of t eff that is more widely applicable to a range of metallizations, including Cu and electroless nickel immersion gold (ENIG). Using this new definition of t eff, mode I FMM for SAC387/Cu joints has been updated and its validity was confirmed. A preliminary FMM for SAC387/Cu joints with ENIG metallization is also presented.

  10. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  11. 21 CFR 888.3510 - Knee joint femorotibial metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer constrained... Knee joint femorotibial metal/polymer constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer constrained cemented prosthesis is a device intended to be implanted to replace part...

  12. 21 CFR 888.3660 - Shoulder joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer semi-constrained... Shoulder joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace a...

  13. 21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer non-constrained... Shoulder joint metal/polymer non-constrained cemented prosthesis. (a) Identification. A shoulder joint metal/polymer non-constrained cemented prosthesis is a device intended to be implanted to replace a...

  14. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  15. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage

    PubMed Central

    Beddoes, Charlotte M.; Whitehouse, Michael R.; Briscoe, Wuge H.; Su, Bo

    2016-01-01

    Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour. PMID:28773566

  16. Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage.

    PubMed

    Beddoes, Charlotte M; Whitehouse, Michael R; Briscoe, Wuge H; Su, Bo

    2016-06-03

    Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.

  17. Neuro-cognitive mechanisms of decision making in joint action: a human-robot interaction study.

    PubMed

    Bicho, Estela; Erlhagen, Wolfram; Louro, Luis; e Silva, Eliana Costa

    2011-10-01

    In this paper we present a model for action preparation and decision making in cooperative tasks that is inspired by recent experimental findings about the neuro-cognitive mechanisms supporting joint action in humans. It implements the coordination of actions and goals among the partners as a dynamic process that integrates contextual cues, shared task knowledge and predicted outcome of others' motor behavior. The control architecture is formalized by a system of coupled dynamic neural fields representing a distributed network of local but connected neural populations. Different pools of neurons encode task-relevant information about action means, task goals and context in the form of self-sustained activation patterns. These patterns are triggered by input from connected populations and evolve continuously in time under the influence of recurrent interactions. The dynamic model of joint action is evaluated in a task in which a robot and a human jointly construct a toy object. We show that the highly context sensitive mapping from action observation onto appropriate complementary actions allows coping with dynamically changing joint action situations. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Mechanical Reliability of the Epoxy Sn-58wt.%Bi Solder Joints with Different Surface Finishes Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo

    2018-04-01

    The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder

  19. Mechanical Reliability of the Epoxy Sn-58wt.%Bi Solder Joints with Different Surface Finishes Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo

    2018-07-01

    The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder

  20. A patterned microtexture to reduce friction and increase longevity of prosthetic hip joints

    PubMed Central

    Chyr, Anthony; Qiu, Mingfeng; Speltz, Jared; Jacobsen, Ronald L.; Sanders, Anthony P.; Raeymaekers, Bart

    2014-01-01

    More than 285,000 total hip replacement surgeries are performed in the US each year. Most prosthetic hip joints consist of a cobalt-chromium (CoCr) femoral head that articulates with a polyethylene acetabular component, lubricated with synovial fluid. The statistical survivorship of these metal-on-polyethylene prosthetic hip joints declines significantly after 10 to 15 years of use, primarily as a result of polyethylene wear and wear debris incited disease. The current engineering paradigm to increase the longevity of prosthetic hip joints is to improve the mechanical properties of the polyethylene component, and to manufacture ultra-smooth articulating surfaces. In contrast, we show that adding a patterned microtexture to the ultra-smooth CoCr femoral head reduces friction when articulating with the polyethylene acetabular liner. The microtexture increases the load-carrying capacity and the thickness of the joint lubricant film, which reduces contact between the articulating surfaces. As a result, friction and wear is reduced. We have used a lubrication model to design the geometry of the patterned microtexture, and experimentally demonstrate reduced friction for the microtextured compared to conventional smooth surrogate prosthetic hip joints. PMID:25013240

  1. Knee joint contact mechanics during downhill gait and its relationship with varus/valgus motion and muscle strength in patients with knee osteoarthritis.

    PubMed

    Farrokhi, Shawn; Voycheck, Carrie A; Gustafson, Jonathan A; Fitzgerald, G Kelley; Tashman, Scott

    2016-01-01

    The objective of this exploratory study was to evaluate tibiofemoral joint contact point excursions and velocities during downhill gait and assess the relationship between tibiofemoral joint contact mechanics with frontal-plane knee joint motion and lower extremity muscle weakness in patients with knee osteoarthritis (OA). Dynamic stereo X-ray was used to quantify tibiofemoral joint contact mechanics and frontal-plane motion during the loading response phase of downhill gait in 11 patients with knee OA and 11 control volunteers. Quantitative testing of the quadriceps and the hip abductor muscles was also performed. Patients with knee OA demonstrated larger medial/lateral joint contact point excursions (p < 0.02) and greater heel-strike joint contact point velocities (p < 0.05) for the medial and lateral compartments compared to the control group. The peak medial/lateral joint contact point velocity of the medial compartment was also greater for patients with knee OA compared to their control counterparts (p = 0.02). Additionally, patients with knee OA demonstrated significantly increased frontal-plane varus motion excursions (p < 0.01) and greater quadriceps and hip abductor muscle weakness (p = 0.03). In general, increased joint contact point excursions and velocities in patients with knee OA were linearly associated with greater frontal-plane varus motion excursions (p < 0.04) but not with quadriceps or hip abductor strength. Altered contact mechanics in patients with knee OA may be related to compromised frontal-plane joint stability but not with deficits in muscle strength.

  2. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    PubMed

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  3. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  4. 21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...

  5. 21 CFR 888.3340 - Hip joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/composite semi-constrained... Hip joint metal/composite semi-constrained cemented prosthesis. (a) Identification. A hip joint metal/composite semi-constrained cemented prosthesis is a two-part device intended to be implanted to replace a...

  6. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  7. 21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...

  8. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  9. 21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...

  10. 21 CFR 888.3160 - Elbow joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Elbow joint metal/polymer semi-constrained... Elbow joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An elbow joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an elbow...

  11. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  12. Ablating spinal NK1-bearing neurons eliminates the development of pain & reduces spinal neuronal hyperexcitability & inflammation from mechanical joint injury in the rat

    PubMed Central

    Weisshaar, Christine L.; Winkelstein, Beth A.

    2014-01-01

    The facet joint is a common source of pain especially from mechanical injury. Although chronic pain is associated with altered spinal glial and neuronal responses, the contribution of specific spinal cells to joint pain are not understood. This study used the neurotoxin [Sar9,Met(O2)11]-substance P-saporin (SSP-SAP) to selectively eliminate spinal cells expressing neurokinin-1 receptor (NK1R) in a rat model of painful facet joint injury to determine the role of those spinal neurons in pain from facet injury. Following spinal administration of SSP-SAP or its control (blank-SAP), a cervical facet injury was imposed and behavioral sensitivity assessed. Spinal extracellular recordings were made on day 7 to classify neurons and quantify evoked firing. Spinal glial activation and IL1α expression also were evaluated. SSP-SAP prevented the development of mechanical hyperalgesia that is induced by joint injury and reduced NK1R expression and mechanically-evoked neuronal firing in the dorsal horn. SSP-SAP also prevented a shift toward wide dynamic range neurons that is seen after injury. Spinal astrocytic activation and IL1α expression were reduced to sham levels with SSP-SAP treatment. These results suggest that spinal NK1R-bearing cells are critical in initiating spinal nociception and inflammation associated with a painful mechanical joint injury. Perspective Results demonstrate that cells expressing NK1R in the spinal cord are critical for the development of joint pain and spinal neuroplasticity and inflammation after trauma to the joint. These findings have utility for understanding mechanisms of joint pain and developing potential targets to treat pain. PMID:24389017

  13. Hállux Rígidus: prospective study of joint replacement with hemiarthroplasty

    PubMed Central

    dos Santos, Alexandre Leme Godoy; Duarte, Fernando Aires; Seito, Carlos Augusto Itiu; Ortiz, Rafael Trevisan; Sakaki, Marcos Hideyo; Fernandes, Túlio Diniz

    2013-01-01

    OBJECTIVE: To report the results of medium-term follow-up after deploying Arthrosurface-HemiCap(r) in patients with diagnosis of Hállux Rigidus (HR). METHOD: Eleven patients underwent partial Arthroplasty of the first metatarsal-phalangeal joint. Six women and five men with an average age 51.9 years (46 to 58 years) and average postoperative follow-up of 3.73 years (3-4 years); were classified through the Kravitz system and evaluated by the American Orthopaedic Foot and Ankle Society (AOFAS) scales for hállux, Visual Analogical Scale (VAS) - analog functional pain - and range of motion in the first metatarsal joint in preoperative, postoperative after six months and present post-operative. RESULTS: The results show significant improvement of the three analyzed parameters, both for overall analysis and for pre and post-operative comparisons individually. The comparative analysis of each variable in the six months and the current postoperative periods do not show statistically significant differences, indicating maintenance of parameters during this interval. CONCLUSION: hemiarthroplasty of first metatarsophalangeal joint is a reproducible and safe option for the surgical treatment of hállux rigidus II and III, with significant improvement of the evaluated parameters for the studied population. Level of Evidence IV, Case Series. PMID:24453646

  14. Effect of preoperative incentive spirometry patient education on patient outcomes in the knee and hip joint replacement population.

    PubMed

    Bergin, Carole; Speroni, Karen Gabel; Travis, Tom; Bergin, John; Sheridan, Michael J; Kelly, Karen; Daniel, Marlon G

    2014-02-01

    This study examined the effects of preoperative incentive spirometry (IS) education (POISE) on postoperative outcomes for knee and hip total joint replacement patients. In this prospective study, 140 patients were randomized to Group 1 (POISE intervention = 50 completing) or Group 2 (no intervention = 56 completing) (34 dropped). The Group 1 intervention consisted of formal instruction preoperatively for IS home use, postoperative use, and IS volumes documentation. Group 2 patients received no intervention. Patients recorded postoperative IS volumes, which were used to determine return to baseline volume. One hundred six patients completed the study. Most were Caucasian females averaging 64 years. Although IS return to baseline volume time was not significantly different between groups, POISE patients had fewer postoperative complications, hospital days, and charges. POISE patients ranked the intervention as helpful. Although IS volumes were not significantly different between groups, POISE patients had better outcomes and ranked the intervention as helpful. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  15. Mechanical and interfacial characterization of laser welded Co-Cr alloy with different joint configurations

    PubMed Central

    Kokolis, John; Chakmakchi, Makdad; Theocharopoulos, Antonios; Prombonas, Anthony

    2015-01-01

    PURPOSE The mechanical and interfacial characterization of laser welded Co-Cr alloy with two different joint designs. MATERIALS AND METHODS Dumbbell cast specimens (n=30) were divided into 3 groups (R, I, K, n=10). Group R consisted of intact specimens, group I of specimens sectioned with a straight cut, and group K of specimens with a 45° bevel made at the one welding edge. The microstructure and the elemental distributions of alloy and welding regions were examined by an SEM/EDX analysis and then specimens were loaded in tension up to fracture. The tensile strength (TS) and elongation (ε) were determined and statistically compared among groups employing 1-way ANOVA, SNK multiple comparison test (α=.05) and Weibull analysis where Weibull modulus m and characteristic strength σο were identified. Fractured surfaces were imaged by a SEM. RESULTS SEM/EDX analysis showed that cast alloy consists of two phases with differences in mean atomic number contrast, while no mean atomic number was identified for welded regions. EDX analysis revealed an increased Cr and Mo content at the alloy-joint interface. All mechanical properties of group I (TS, ε, m and σο) were found inferior to R while group K showed intermediated values without significant differences to R and I, apart from elongation with group R. The fractured surfaces of all groups showed extensive dendritic pattern although with a finer structure in the case of welded groups. CONCLUSION The K shape joint configuration should be preferred over the I, as it demonstrates improved mechanical strength and survival probability. PMID:25722836

  16. Gap compression/extension mechanism of bacterial flagellar hook as the molecular universal joint.

    PubMed

    Furuta, Tadaomi; Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Namba, Keiichi; Kitao, Akio

    2007-03-01

    Bacterial flagellar hook acts as a molecular universal joint, transmitting torque produced by the flagellar basal body, a rotary motor, to the flagellar filament. The hook forms polymorphic supercoil structures and can be considered as an assembly of 11 circularly arranged protofilaments. We investigated the molecular mechanism of the universal joint function of the hook by a approximately two-million-atom molecular dynamics simulation. On the inner side of the supercoil, protein subunits are highly packed along the protofilament and no gaps remain for further compression, whereas subunits are slightly separated and are hydrogen bonded through one layer of water molecules on the outer side. As for the intersubunit interactions between protofilaments, subunits are packed along the 6-start helix in a left-handed supercoil whereas they are highly packed along the 5-start helix in a right-handed supercoil. We conclude that the supercoiled structures of the hook in the left- and right-handed forms make maximal use of the gaps between subunits, which we call "gap compression/extension mechanism". Mutual sliding of subunits at the subunit interface accompanying rearrangements of intersubunit hydrogen bonds is interpreted as a mechanism to allow continuous structural change of the hook during flagellar rotation at low energy cost.

  17. Can combined use of low-level lasers and hyaluronic acid injections prolong the longevity of degenerative knee joints?

    PubMed Central

    Ip, David; Fu, Nga Yue

    2015-01-01

    Background This study evaluated whether half-yearly hyaluronic acid injection together with low-level laser therapy in addition to standard conventional physical therapy can successfully postpone the need for joint replacement surgery in elderly patients with bilateral symptomatic tricompartmental knee arthritis. Methods In this prospective, double-blind, placebo-controlled study, 70 consecutive unselected elderly patients with bilateral tricompartmental knee arthritis were assigned at random to either one of two conservative treatment protocols to either one of the painful knees. Protocol A consisted of conventional physical therapy plus a sham light source plus saline injection, and protocol B consisted of protocol A with addition of half-yearly hyaluronic acid injection as well as low-level laser treatment instead of using saline and a sham light source. Treatment failure was defined as breakthrough pain necessitating joint replacement. Results Among the 140 painful knees treated with either protocol A or protocol B, only one of the 70 painful knees treated by protocol B required joint replacement, whereas 15 of the 70 painful knees treated by protocol A needed joint replacement surgery (P<0.05). Conclusion We conclude that half-yearly hyaluronic acid injections together with low-level laser therapy should be incorporated into the standard conservative treatment protocol for symptomatic knee arthritis, because it may prolong the longevity of the knee joint without the need for joint replacement. PMID:26346122

  18. Total Knee Replacement

    PubMed Central

    2005-01-01

    Executive Summary Objective The aim of this review was to assess the effectiveness, in terms of pain reduction and functional improvement, and costing of total knee replacement (TKR) for people with osteoarthritis for whom less invasive treatments (such as physiotherapy, analgesics, anti-inflammatory drugs, intra-articular steroids, hyaluronic acids, and arthroscopic surgery) have failed. Clinical Need Osteoarthritis affects an estimated 10% to 12% of Canadian adults. The therapeutic goals of osteoarthritis treatment are to improve joint mobility and reduce pain. Stepwise treatment options include exercise, weight loss, physiotherapy, analgesics, anti-inflammatory drugs, intra-articular steroids and hyaluronic acids, arthroscopic surgery, and, in severe cases, total joint replacement with follow-up rehabilitation. These treatments are delivered by a range of health care professionals, including physiotherapists, occupational therapists, family physicians, internists, rheumatologists, and orthopedic surgeons. TKR is an end-of-line treatment for patients with severe pain and functional limitations. More women than men undergo knee replacement, and most patients are between 55 and 84 years old. The Technology TKR is a surgical procedure in which an artificial joint or prosthesis replaces a damaged knee joint. The primary indication for TKR is pain, followed by functional limitation. Usually, a person’s daily activities must be substantially affected by pain and functional limitations for him or her to be considered a candidate for TKR. There are 3 different types of knee replacement prostheses. Non-constrained prostheses use the patient’s ligaments and muscles to provide the stability for the prosthesis. Semi-constrained prostheses provide some stability for the knee and do not rely entirely on the patient’s ligaments and muscles to provide the stability. Constrained prostheses are for patients whose ligaments and muscles are not able to provide stability for

  19. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  20. 21 CFR 888.3370 - Hip joint (hemi-hip) acetabular metal cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint (hemi-hip) acetabular metal cemented... (hemi-hip) acetabular metal cemented prosthesis. (a) Identification. A hip joint (hemi-hip) acetabular metal cemented prosthesis is a device intended to be implanted to replace a portion of the hip joint...

  1. Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice

    PubMed Central

    Li, Xihai; Liu, Hongbing; Gu, Shuping; Liu, Chao; Sun, Cheng; Zheng, Yuqian; Chen, YiPing

    2013-01-01

    The temporomandibular joint (TMJ) consists of the glenoid fossa arising from the otic capsule through intramembranous ossification, the fibrocartilaginous disc and the condyle, derived from the secondary cartilage by endochondral ossification. We have reported previously that cranial neural crest-specific inactivation of the homeobox gene Shox2, which is expressed in the mesenchymal cells of maxilla-mandibular junction and later in the progenitor cells and perichondrium of the developing chondyle, led to dysplasia and ankylosis of the TMJ, and replacement of the mouse Shox2 with the human SHOX gene rescued the dysplastic and ankylosis phenotypes but developed a prematurely worn out articular disc. In this study, we investigated the molecular and cellular bases for the premature wear out articular disc in the TMJ of mice carrying the human SHOX replacement allele in the Shox2 locus (referred as Shox2SHOX-KI/KI). We found that the developmental process and expression of several key genes in the TMJ of Shox2SHOX-KI/KI mice appeared similar to the controls. However, the disc of the Shox2SHOX-KI/KI TMJ exhibited a reduced level of Col I and Aggrecan, accompanied by increased activities of matrix metalloproteinases (MMPs) and a down-regulation of Ihh expression. Dramatically increased cell apoptosis in the disc was also observed. These combinatory cellular and molecular defects appear to contribute to the observed disc phenotype, suggesting that while the human SHOX can exert similar function as the mouse Shox2 in regulating early TMJ development, it apparently has a distinct function in the regulation of those molecules that are involved in tissue homeostasis. PMID:24248941

  2. Effect of Mg and Cu on mechanical properties of high-strength welded joints of aluminum alloys obtained by laser welding

    NASA Astrophysics Data System (ADS)

    Annin, B. D.; Fomin, V. M.; Karpov, E. V.; Malikov, A. G.; Orishich, A. M.

    2017-09-01

    Results of experimental investigations of welded joints of high-strength aluminum-lithium alloys of the Al-Cu-Li and Al-Mg-Li systems are reported. The welded joints are obtained by means of laser welding and are subjected to various types of processing for obtaining high-strength welded joints. A microstructural analysis is performed. The phase composition and mechanical properties of the welded joints before and after heat treatment are studied. It is found that combined heat treatment of the welded joint (annealing, quenching, and artificial ageing) increases the joint strength, but appreciably decreases the alloy strength outside the region thermally affected by the welding process.

  3. Feasibility study of a discrete bearing/roller drive rotary joint for the space station

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Schuller, F. T.

    1986-01-01

    The most critical mechanism on board the proposed space station is the continously rotating joint which must accurately align the solar power units with the sun during earth orbit. The feasibility of a multiple, discrete bearing supported joint driven by a self-loading, pinch drive actuator was investigated for this application. This concept appears to offer greater protection against catastrophic jamming, less sensitivity to adverse thermal gradients, greater accessibility to inorbit servicing or replacement and greater adaptability to very large (5 m) truss members than to more conventional continuous support bearing/gear reducer joints. Analytical trade studies performed herein establish that a discrete cam roller bearing support system having eight hangers around a continuous ring would provide sufficient radial and bending stiffness to prevent any degradation in the fundamental frequencies of the solar wing structure. Furthermore, it appears that the pinch roller drive mechanism can be readily sized to meet or exceed system performance and service life requirements. Wear life estimates based on experimental data for a steel roller coated with an advanced polyimide film show a continuous service life more than two orders of magnitude greater than required for this application.

  4. Evaluation of total alloplastic temporo-mandibular joint replacement with two different types of prostheses: A three-year prospective study.

    PubMed

    Gonzalez-Perez, L-M; Gonzalez-Perez-Somarriba, B; Centeno, G; Vallellano, C; Montes-Carmona, J-F

    2016-11-01

    Temporo-Mandibular Joint (TMJ) replacement has been used clinically for years. The objective of this study was to evaluate outcomes achieved in patients with two different categories of TMJ prostheses. All patients who had a TMJ replacement (TMJR) implanted during the study period from 2006 through 2012 were included in this 3-year prospective study. All procedures were performed using the Biomet Microfixation TMJ Replacement System, and all involved replacing both the skull base component (glenoid fossa) and the mandibular condyle. Fifty-seven patients (38 females and 19 males), involving 75 TMJs with severe disease requiring reconstruction (39 unilateral, 18 bilateral) were operated on consecutively, and 68 stock prostheses and 7 custom-made prostheses were implanted. The mean age at surgery was 52.6±11.5 years in the stock group and 51.8±11.7 years in the custom-made group. In the stock group, after three years of TMJR, results showed a reduction in pain intensity from 6.4±1.4 to 1.6±1.2 (p<0.001), and an improvement in jaw opening from 2.7±0.9 cm to 4.2±0.7 cm (p<0.001). In the custom-made group, after three years of TMJR, results showed a reduction in pain intensity from 6.0±1.6 to 2.2±0.4 (p<0.001), and an improvement in jaw opening from 1.5±0.5 cm to 4.3±0.6 cm (p<0.001). No statistically significant differences between two groups were detected. The results of this three-year prospective study support the surgical placement of TMJ prostheses (stock prosthetic, and custom-made systems), and show that the approach is efficacious and safe, reduces pain, and improves maximum mouth opening movement, with few complications. As such, TMJR represents a viable technique and a stable long-term solution for cranio-mandibular reconstruction in patients with irreversible end-stage TMJ disease. Comparing stock and custom-made groups, no statistically significant differences were detected with respect to pain intensity reduction and maximum mouth opening

  5. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint

    PubMed Central

    Chokhandre, Snehal; Colbrunn, Robb; Bennetts, Craig; Erdemir, Ahmet

    2015-01-01

    Understanding of tibiofemoral joint mechanics at multiple spatial scales is essential for developing effective preventive measures and treatments for both pathology and injury management. Currently, there is a distinct lack of specimen-specific biomechanical data at multiple spatial scales, e.g., joint, tissue, and cell scales. Comprehensive multiscale data may improve the understanding of the relationship between biomechanical and anatomical markers across various scales. Furthermore, specimen-specific multiscale data for the tibiofemoral joint may assist development and validation of specimen-specific computational models that may be useful for more thorough analyses of the biomechanical behavior of the joint. This study describes an aggregation of procedures for acquisition of multiscale anatomical and biomechanical data for the tibiofemoral joint. Magnetic resonance imaging was used to acquire anatomical morphology at the joint scale. A robotic testing system was used to quantify joint level biomechanical response under various loading scenarios. Tissue level material properties were obtained from the same specimen for the femoral and tibial articular cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, and medial and lateral collateral ligaments. Histology data were also obtained for all tissue types to measure specimen-specific cell scale information, e.g., cellular distribution. This study is the first of its kind to establish a comprehensive multiscale data set for a musculoskeletal joint and the presented data collection approach can be used as a general template to guide acquisition of specimen-specific comprehensive multiscale data for musculoskeletal joints. PMID:26381404

  6. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  7. Effect of total shoulder replacements on airport security screening in the post-9/11 era.

    PubMed

    Dines, Joshua S; Elkousy, Hussein; Edwards, T Bradley; Gartsman, Gary M; Dines, David M

    2007-01-01

    There are few reports in the literature on the effect of orthopaedic implants on airport security devices and none on shoulder arthroplasty implants after September 11, 2001. Since 9/11, airport security screening devices have become more sensitive in response to the increasing threat of terrorism. Often, patients with joint implants activate the metal detectors and are subsequently subjected to more intensive screening. We assess the effects of shoulder joint implants on different airport security devices and what effect the results had on passenger travel. In this study, 154 patients who had previously undergone shoulder replacement responded to a questionnaire regarding their travel experiences after 9/11. Of these, 85 had flown during the time period studied (47 men and 38 women; mean age, 67.8 years); 79 had traveled domestically (mean, 7 flights), and 22 had taken international flights (mean, 6.1 flights). The questionnaire addressed each patient's height/weight, the number of flight segments flown (domestic and international), the number of times that a patient activated the doorway alarm/wand alarm, and the effect of a card stating that the patient had joint replacement (when applicable). On average, patients with shoulder replacement traveling domestically activated the security gate 52% of the time. The average for international travel was 42%. Of the patients who flew both domestically and internationally, there was a high correlation of activation (R = 0.54). Twenty-six patients had multiple joint implants (mean, 2.8). Multiple joint implants caused increased alarm activation (P < .001). All patients reported that their travel was delayed during the instances of security activation. There was no statistically significant effect of body mass index, height, weight, age, or sex on security device activation. Of the patients, 71% were told by their doctor that the shoulder replacement may activate security devices. Of these, 46 were given a card by their

  8. Do the radial head prosthesis components fit with the anatomical structures of the proximal radioulnar joint?

    PubMed

    Wegmann, Kilian; Hain, Moritz K; Ries, Christian; Neiss, Wolfram F; Müller, Lars P; Burkhart, Klaus J

    2015-09-01

    The fitting accuracy of radial head components has been investigated in the capitulo-radial joint, and reduced contact after prosthetic replacement of the radial head has been observed. The kinematics of the proximal radioulnar joint (PRUJ) are affected by radial head arthroplasty as well, but have not yet been investigated in this regard. The elbow joints of 60 upper extremities of formalin-fixed body donors were disarticulated to obtain a good view of the PRUJ. Each specimen was mounted on the examining table and radial head position in the native PRUJ was assessed in neutral position, full pronation, and full supination. Measurements were repeated after implantation of mono- and bi-polar prostheses. Analysis of the distribution of the joint contacts in the compartments showed significant differences after radial head replacement. In comparison to the native joint, after bipolar and monopolar radial head replacement, the physiological shift of the proximal radius was altered. The physiological shift of the joint contact of the radial head from anterior to posterior during forearm rotation that was found in the native joint in our cadaver model was not observed after prosthetic replacement. With higher conformity and physiological kinematic of radial head prostheses, possibly lower shear forces and lower contact pressures would be generated. The tested radial head prostheses do not replicate the physiological kinematics of the radial head. Further development in the prosthesis design has to be made. The meticulous reconstruction of the annular ligament seems to be of importance to increase joint contact.

  9. [Total Joint Replacement and Return to Sports].

    PubMed

    Oehler, N; Schmidt, T; Niemeier, A

    2016-12-01

    Background: An increasing number of physically active patients not only need to know if they will basically be able to engage in sports after undergoing arthroplasty. They also would like to know whether or not they will be able to resume their preoperative activity levels. This article aims to provide an overview of recent data regarding the following questions on hip, knee and shoulder arthroplasty: (1) What is the impact of physical activity on an endoprosthesis? (2) What level of sports can be achieved after an arthroplasty procedure? (3) What types of sport are recommended for patients with an endoprosthesis? Methods: PubMed-based review of the literature. Narrative review focusing on current data from the years 2010 to 2016. Results: The commonly known recommendation to exercise low-impact sports such as hiking, swimming, cycling or golf at a moderate intensity remains valid for all types of prostheses in all joints. There is broad consensus that the benefits of these sports outweigh the negative effects. Having undergone total hip or knee arthroplasty, most patients with a high preoperative activity level return to sports after 3-6 months, albeit with a clear tendency to lower intensity and a shift from high-impact to low-impact sports. Some key questions have to be answered regarding the effects of low-impact sports that are exercised with high intensity, the effects resulting from high-impact sports, effects specific to different types of sport, and possibilities provided by different prosthesis types. In this context, a lot remains to be done to investigate the limits between positive and negative effects resulting from physical activity of varying intensity. New data suggests that generally a higher physical performance level may be achieved than has been traditionally recommended. Early results of unicondylar knee prostheses are far better than those achieved with bicondylar prostheses. In contrast to expert recommendations, shoulder endoprostheses show

  10. Evaluation of Rock Joint Coefficients

    NASA Astrophysics Data System (ADS)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.

  11. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: Implications for preclinical testing.

    PubMed

    Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D

    2014-08-01

    Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.

  12. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  13. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  14. Understanding why people do or do not engage in activities following total joint replacement: a longitudinal qualitative study.

    PubMed

    Webster, F; Perruccio, A V; Jenkinson, R; Jaglal, S; Schemitsch, E; Waddell, J P; Venkataramanan, V; Bytautas, J; Davis, A M

    2015-06-01

    Numerous studies report large and significant improvements in basic mobility and activities of daily living following total hip or knee replacement (TJR). Nevertheless, quantitative research has shown minimal increase in participation in activities that benefit overall health. This study explored why people do or do not engage in activities following hip or knee TJR. This was a longitudinal qualitative study. Sampling was guided by constructivist grounded theory and data collected using open-ended, semi-structured interviews. Participants were recruited using maximum variation sampling based on age, sex and joint replaced (hip or knee). Data were analysed using a constant comparative approach and coded for thematic patterns and relationships from which overarching themes were constructed. Twenty-nine patients participated in interviews prior to, and 8 and 18 months post following TJR. A high degree of variability with regard to participants' return to activities was found and five emergent themes were identified that accounted for this variability. These themes highlight the importance of issues beyond medical factors alone, such as socio-cultural factors that partially determine participants' participation in activity following TJR. Findings suggest that multi-faceted experiences impact participation in activity following TJR. These experiences include changes in identity and lifestyle that preclude a 'return to normal'. There is an urgent need for supports to increase people's activity post-TJR in order to facilitate enhancement of post-surgery levels of engagement. Approaches that take into consideration more personalized interventions may be critical to promoting healthy aging in people with TJR. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Structure and Mechanical Properties of Friction Stir Weld Joints of Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Nagasawa, T.; Otsuka, M.; Yokota, T.; Ueki, T.

    The applicability of friction stir welding to hot rolled sheet of commercial magnesium alloy AZ31 plates has been investigated. Friction stir weld joint showed mechanical strength comparable to that of base material, though the ductility remained at one half of that of the latter. The results are consistent with the microstructure which is characterized by a fine grained bond layer bounded by-intermediate grained base metals. It is found that both anodizing treatment and insertion of aluminum foil between batting faces do not degrade the joint properties at all. The results suggest that friction stir welding can be potentially applied to magnesium alloy.

  16. [Effects of exercise on joints.

    PubMed

    Moriyama, Hideki

    Joints are composed of several different tissues(cartilage, capsule, meniscus, and ligament), and articular cartilage plays an important role in maintaining mechanical competence during exercise. Weight-bearing exercise has several benefit, including improved blood and synovial fluid circulation in a given joint. Consistent moderate activities facilitate cycles of anabolism and catabolism. Mechanical stresses are crucial for the maintenance of the morphologic and functional integrity of articular cartilage. Healthy cartilage is exposed by hydrostatic pressure and tensile strain, when cartilage degeneration develops, abnormal cartilage is exposed by shear stress. Moderate(physiological)exercise is characterized by a range of equilibrium between matrix anabolic and catabolic processes, or anabolism beyond catabolism. Joints are susceptible to insufficient or excessive activities, leading to joint degeneration. Lack of exercise is known to induce joint contracture seen clinically as a consequence of disuse changes, and excess mechanical stresses induce joint destruction such as osteoarthritis. Joint diseases resulting from insufficient or excessive activities are new and major challenging issues with our aging population. Thus, it is highly desirable to have an effective and efficient treatment to improve and protect against these joint diseases, and thereby to solve these clearly unanswered issues.

  17. Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action.

    PubMed

    Artola, Marta; Ruiz-Avila, Laura B; Vergoñós, Albert; Huecas, Sonia; Araujo-Bazán, Lidia; Martín-Fontecha, Mar; Vázquez-Villa, Henar; Turrado, Carlos; Ramírez-Aportela, Erney; Hoegl, Annabelle; Nodwell, Matthew; Barasoain, Isabel; Chacón, Pablo; Sieber, Stephan A; Andreu, Jose M; López-Rodríguez, María L

    2015-03-20

    Essential cell division protein FtsZ is considered an attractive target in the search for antibacterials with novel mechanisms of action to overcome the resistance problem. FtsZ undergoes GTP-dependent assembly at midcell to form the Z-ring, a dynamic structure that evolves until final constriction of the cell. Therefore, molecules able to inhibit its activity will eventually disrupt bacterial viability. In this work, we report a new series of small molecules able to replace GTP and to specifically inhibit FtsZ, blocking the bacterial division process. These new synthesized inhibitors interact with the GTP-binding site of FtsZ (Kd = 0.4-0.8 μM), display antibacterial activity against Gram-positive pathogenic bacteria, and show selectivity against tubulin. Biphenyl derivative 28 stands out as a potent FtsZ inhibitor (Kd = 0.5 μM) with high antibacterial activity [MIC (MRSA) = 7 μM]. In-depth analysis of the mechanism of action of compounds 22, 28, 33, and 36 has revealed that they act as effective inhibitors of correct FtsZ assembly, blocking bacterial division and thus leading to filamentous undivided cells. These findings provide a compelling rationale for the development of compounds targeting the GTP-binding site as antibacterial agents and open the door to antibiotics with novel mechanisms of action.

  18. Cemented total knee replacement in 24 dogs: surgical technique, clinical results, and complications.

    PubMed

    Allen, Matthew J; Leone, Kendall A; Lamonte, Kimberly; Townsend, Katy L; Mann, Kenneth A

    2009-07-01

    To characterize the performance of cemented total knee replacement (TKR) in dogs. Preclinical research study. Skeletally mature, male Hounds (25-30 kg; n=24) with no preexisting joint pathology. Dogs had unilateral cemented TKR and were evaluated at 6, 12, 26, or 52 weeks (6 dogs/time point) by radiography, bone density analysis, visual gait assessment, and direct measurement of thigh circumference and stifle joint range of motion as indicators of functional recovery. At study end, the stability of the cemented tibial component was determined by destructive mechanical testing. Joint stability was excellent in 16 dogs (67%) and good in 8 dogs. None of the tibial components had evidence of migration or periprosthetic osteolysis whereas 1 femoral component was loose at 52 weeks. There was an early and significant decrease in tibial bone density, likely because of disuse of the operated limb. Dogs returned to full activity by 12 weeks. The tibial cement-bone interface maintained its strength over 52 weeks. Cement provides stable fixation of the tibial component in canine TKR. Cemented TKR yields adequate clinical function and stifle joint excursion in the dog. Clinical studies are needed to determine the long-term fate of cemented TKR implants, to assess the influence of implant design on implant fixation and wear, and to obtain objective functional data.

  19. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  20. The tribology of metal-on-metal total hip replacements.

    PubMed

    Scholes, S C; Unsworth, A

    2006-02-01

    Total hip surgery is an effective way of alleviating the pain and discomfort caused by diseased or damaged joints. However, in the majority of cases, these joints have a finite life. The main reason for failure is osteolysis (bone resorption). It is well documented that an important cause of osteolysis, and therefore the subsequent loosening and failure of conventional metal- or ceramic-on-ultra-high molecular weight polyethylene joints, is the body's immunological response to the polyethylene wear particles. To avoid this, interest has been renewed in metal-on-metal joints. The intention of this paper is to review the studies that have taken place within different laboratories to determine the tribological performance of new-generation metal-on-metal total hip replacements. These types of joint offer a potential solution to enhance the longevity of prosthetic hip systems; however, problems may arise owing to the effects of metal ion release, which are, as yet, not fully understood.

  1. Evaluation of the cryogenic mechanical properties of the insulation material for ITER Feeder superconducting joint

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Huang, Rongjin; Huang, ChuanJun; Yang, Yanfang; Huang, Xiongyi; Li, Laifeng

    2017-12-01

    The Glass-fiber reinforced plastic (GFRP) fabricated by the vacuum bag process was selected as the high voltage electrical insulation and mechanical support for the superconducting joints and the current leads for the ITER Feeder system. To evaluate the cryogenic mechanical properties of the GFRP, the mechanical properties such as the short beam strength (SBS), the tensile strength and the fatigue fracture strength after 30,000 cycles, were measured at 77K in this study. The results demonstrated that the GFRP met the design requirements of ITER.

  2. Increase in vastus medialis cross-sectional area is associated with reduced pain, cartilage loss, and joint replacement risk in knee osteoarthritis.

    PubMed

    Wang, Yuanyuan; Wluka, Anita E; Berry, Patricia A; Siew, Terence; Teichtahl, Andrew J; Urquhart, Donna M; Lloyd, David G; Jones, Graeme; Cicuttini, Flavia M

    2012-12-01

    Although there is evidence for a beneficial effect of increased quadriceps strength on knee symptoms, the effect on knee structure is unclear. We undertook this study to examine the relationship between change in vastus medialis cross-sectional area (CSA) and knee pain, tibial cartilage volume, and risk of knee replacement in subjects with symptomatic knee osteoarthritis (OA). One hundred seventeen subjects with symptomatic knee OA underwent magnetic resonance imaging of the knee at baseline and at 2 and 4.5 years. Vastus medialis CSA was measured at baseline and at 2 years. Tibial cartilage volume was measured at baseline and at 2 and 4.5 years. Knee pain was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index at baseline and at 2 years. The frequency of knee joint replacement over 4 years was determined. Regression coefficients (B) and odds ratios were determined along with 95% confidence intervals (95% CIs). After adjusting for confounders, baseline vastus medialis CSA was inversely associated with current knee pain (r = -0.16, P = 0.04) and with medial tibial cartilage volume loss from baseline to 2 years (B coefficient -10.9 [95% CI -19.5, -2.3]), but not with baseline tibial cartilage volume. In addition, an increase in vastus medialis CSA from baseline to 2 years was associated with reduced knee pain over the same time period (r = 0.24, P = 0.007), reduced medial tibial cartilage loss from 2 to 4.5 years (B coefficient -16.8 [95% CI -28.9, -4.6]), and reduced risk of knee replacement over 4 years (odds ratio 0.61 [95% CI 0.40, 0.94]). In a population of patients with symptomatic knee OA, increased vastus medialis size was associated with reduced knee pain and beneficial structural changes at the knee, suggesting that management of knee pain and optimizing vastus medialis size are important in reducing OA progression and subsequent knee replacement. Copyright © 2012 by the American College of Rheumatology.

  3. The volume of the human knee joint.

    PubMed

    Matziolis, Georg; Roehner, Eric; Windisch, Christoph; Wagner, Andreas

    2015-10-01

    Despite its clinical relevance, particularly in septic knee surgery, the volume of the human knee joint has not been established to date. Therefore, the objective of this study was to determine knee joint volume and whether or not it is dependent on sex or body height. Sixty-one consecutive patients (joints) who were due to undergo endoprosthetic joint replacement were enrolled in this prospective study. During the operation, the joint volume was determined by injecting saline solution until a pressure of 200 mmHg was achieved in the joint. The average volume of all knee joints was 131 ± 53 (40-290) ml. The volume was not found to be dependent on sex, but it was dependent on the patients' height (R = 0.312, p = 0.014). This enabled an estimation of the joint volume according to V = 1.6 height - 135. The considerable inter-individual variance of the knee joint volume would suggest that it should be determined or at least estimated according to body height if the joint volume has consequences for the diagnostics or therapy of knee disorders.

  4. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  5. Anaerobic prosthetic joint infection.

    PubMed

    Shah, Neel B; Tande, Aaron J; Patel, Robin; Berbari, Elie F

    2015-12-01

    In an effort to improve mobility and alleviate pain from degenerative and connective tissue joint disease, an increasing number of individuals are undergoing prosthetic joint replacement in the United States. Joint replacement is a highly effective intervention, resulting in improved quality of life and increased independence [1]. By 2030, it is predicted that approximately 4 million total hip and knee arthroplasties will be performed yearly in the United States [2]. One of the major complications associated with this procedure is prosthetic joint infection (PJI), occurring at a rate of 1-2% [3-7]. In 2011, the Musculoskeletal Infectious Society created a unifying definition for prosthetic joint infection [8]. The following year, the Infectious Disease Society of America published practice guidelines that focused on the diagnosis and management of PJI. These guidelines focused on the management of commonly encountered organisms associated with PJI, including staphylococci, streptococci and select aerobic Gram-negative bacteria. However, with the exception of Propionibacterium acnes, management of other anaerobic organisms was not addressed in these guidelines [1]. Although making up approximately 3-6% of PJI [9,10], anaerobic microorganisms cause devastating complications, and similar to the more common organisms associated with PJI, these bacteria also result in significant morbidity, poor outcomes and increased health-care costs. Data on diagnosis and management of anaerobic PJI is mostly derived from case reports, along with a few cohort studies [3]. There is a paucity of published data outlining factors associated with risks, diagnosis and management of anaerobic PJI. We therefore reviewed available literature on anaerobic PJI by systematically searching the PubMed database, and collected data from secondary searches to determine information on pathogenesis, demographic data, clinical features, diagnosis and management. We focused our search on five commonly

  6. Medicare Program; Cancellation of Advancing Care Coordination Through Episode Payment and Cardiac Rehabilitation Incentive Payment Models; Changes to Comprehensive Care for Joint Replacement Payment Model: Extreme and Uncontrollable Circumstances Policy for the Comprehensive Care for Joint Replacement Payment Model. Final rule; interim final rule with comment period.

    PubMed

    2017-12-01

    This final rule cancels the Episode Payment Models (EPMs) and Cardiac Rehabilitation (CR) Incentive Payment Model and rescinds the regulations governing these models. It also implements certain revisions to the Comprehensive Care for Joint Replacement (CJR) model, including: Giving certain hospitals selected for participation in the CJR model a one-time option to choose whether to continue their participation in the model; technical refinements and clarifications for certain payment, reconciliation and quality provisions; and a change to increase the pool of eligible clinicians that qualify as affiliated practitioners under the Advanced Alternative Payment Model (Advanced APM) track. An interim final rule with comment period is being issued in conjunction with this final rule in order to address the need for a policy to provide some flexibility in the determination of episode costs for providers located in areas impacted by extreme and uncontrollable circumstances.

  7. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  8. Microstructure and Mechanical Properties of 316L Stainless Steel Filling Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Nakata, K.; Tsumura, T.; Fujii, H.; Ikeuchi, K.; Michishita, Y.; Fujiya, Y.; Morimoto, M.

    2014-10-01

    Keyhole left at 316L stainless steel friction stir welding/friction stir processing seam was repaired by filling friction stir welding (FFSW). Both metallurgical and mechanical bonding characteristics were obtained by the combined plastic deformation and flow between the consumable filling tool and the wall of the keyhole. Two ways based on the original conical and modified spherical keyholes, together with corresponding filling tools and process parameters were investigated. Microstructure and mechanical properties of 316L stainless steel FFSW joints were evaluated. The results showed that void defects existed at the bottom of the refilled original conical keyhole, while excellent bonding interface was obtained on the refilled modified spherical keyhole. The FFSW joint with defect-free interface obtained on the modified spherical keyhole fractured at the base metal side during the tensile test due to microstructural refinement and hardness increase in the refilled keyhole. Moreover, no σ phase but few Cr carbides were formed in the refilled zone, which would not result in obvious corrosion resistance degradation of 316L stainless steel.

  9. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  10. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  11. Missed aortic valve endocarditis resulting in complete atrioventricular block and redo mechanical valve replacement.

    PubMed

    Harky, Amer; Garner, Megan; Popa, Miruna; Shipolini, Alex

    2017-08-03

    Infective endocarditis is a rare disease associated with high morbidity and mortality. As a result, early diagnosis and prompt antibiotic treatment with or without surgical intervention is crucial in the management of such condition.We report a case of missed infective endocarditis of the aortic valve. The patient underwent mechanical aortic valve replacement, with the native valve being sent for histopathological examination. On re-admission 16 months later, he presented with syncope, shortness of breathing and complete heart block. On review of the histopathology of native aortic valve, endocarditis was identified which had not been acted on. The patient underwent redo aortic valve replacement for severe aortic regurgitation.We highlight the importance of following up histopathological results as well as the need for multidisciplinary treatment of endocarditis with a combination of surgical and antibiotic therapy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Petrasek, D. W.

    1985-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  13. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.; Petrasek, Donald W.

    1988-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  14. Structural Mechanics Solutions for Butt Joint Seals in Cold Climates

    DOT National Transportation Integrated Search

    1996-08-01

    An effective, formed-in-place joint seal will respond with elastic or viscoelastic behavior over a reasonable design life to any large movement of the joint without adhesive or cohesive failure. For a given joint movement, seals with lower stiffness ...

  15. Predictive and postdictive mechanisms jointly contribute to visual awareness.

    PubMed

    Soga, Ryosuke; Akaishi, Rei; Sakai, Katsuyuki

    2009-09-01

    One of the fundamental issues in visual awareness is how we are able to perceive the scene in front of our eyes on time despite the delay in processing visual information. The prediction theory postulates that our visual system predicts the future to compensate for such delays. On the other hand, the postdiction theory postulates that our visual awareness is inevitably a delayed product. In the present study we used flash-lag paradigms in motion and color domains and examined how the perception of visual information at the time of flash is influenced by prior and subsequent visual events. We found that both types of event additively influence the perception of the present visual image, suggesting that our visual awareness results from joint contribution of predictive and postdictive mechanisms.

  16. Mechanical properties of the fiberglass prepreg system used for the National Transonic Facility replacement blade set

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Wallace, John W.

    1991-01-01

    The results are presented of mechanical and physical properties characterization testing for the fiber glass prepreg system used to fabricate 15 of the replacement set of 25 fan blades for the National Transonic Facility. The fan blades were fabricated to be identical to the original blade set with the exception that the 7576 style E glass cloth used for the replacement set has a different surface finish than the original 7576 cloth. The 7781 E glass cloth and resin system were unchanged. The data are presented for elevated, room, and cryogenic temperatures. The results are compared with data from the original blade set and evaluated against selected structural design criteria. Test experience is described along with recommendations for future testing of these materials if required.

  17. Association of the Joint Effect of Menopause and Hormone Replacement Therapy and Cancer in African American Women: The Jackson Heart Study

    PubMed Central

    Campbell Jenkins, Brenda W.; Addison, Clifton; Wilson, Gregory; Liu, Jiankang; Fortune, Melody; Robinson, Kiana; White, Monique; Sarpong, Daniel

    2011-01-01

    Cancer is the second leading cause of death in the US and in Mississippi. Breast cancer (BC) is the most common cancer among women, and the underlying pathophysiology remains unknown, especially among African American (AA) women. The study purpose was to examine the joint effect of menopause status (MS) and hormone replacement therapy (HRT) on the association with cancers, particularly BC using data from the Jackson Heart Study. The analytic sample consisted of 3202 women between 35 and 84 years of which 73.7% and 22.6% were postmenopausal and on HRT, respectively. There were a total of 190 prevalent cancer cases (5.9%) in the sample with 22.6% breast cancer cases. Menopause (p < 0.0001), but not HRT (p = 0.6402), was independently associated with cancer. Similar results were obtained for BC. BC, cancer, hypertension, type 2 diabetes, prevalent cardiovascular disease, physical activity and certain dietary practices were all significantly associated with the joint effect of menopause and HRT in the unadjusted analyses. The family history of cancer was the only covariate that was significantly associated with cancer in the age-adjusted models. In examining the association of cancer and the joint effect of menopause and HRT, AA women who were menopausal and were not on HRT had a 1.97 (95% CI: 1.15, 3.38) times odds of having cancer compared to pre-menopausal women after adjusting for age; which was attenuated after further adjusting for family history of cancer. Given that the cancer and BC cases were small and key significant associations were attenuated after adjusting for the above mentioned covariates, these findings warrant further investigation in studies with larger sample sizes of cancer (and BC) cases. PMID:21776241

  18. Costs and outcomes associated with alternative discharge strategies following joint replacement surgery: analysis of an observational study using a propensity score.

    PubMed

    Coyte, P C; Young, W; Croxford, R

    2000-11-01

    We estimated the impact of alternative discharge strategies, following joint replacement (JR) surgery, on acute care readmission rates and the total cost of a continuum of care. Following surgery, patients were discharged to one of four destinations. Propensity scores were used to adjust costs and outcomes for potential bias in the assignment of discharge destinations. We demonstrated that the use of rehabilitation hospitals may lower readmission rates, but at a prohibitive incremental cost of each saved readmission, that patients discharged with home care had longer acute care stays than other patients, that the provision of home care services increased health system costs, and that acute care readmission rates were greatest among patients discharged with home care. Our study should be seen as one important stepping stone towards a full economic evaluation of the continuum of care for patients.

  19. Moje first metatarsophalangeal replacement--a case series with functional outcomes using the AOFAS-HMI score.

    PubMed

    Brewster, Mark; McArthur, John; Mauffrey, Cyril; Lewis, Andrew Charles; Hull, Peter; Ramos, James

    2010-01-01

    We report the functional results of a case series of Moje first metatarsophalangeal total joint replacements carried out between February 2001 and November 2006. All patients who underwent Moje arthroplasty under the care of a single surgeon were included; outcome scores and complications were recorded annually. A total of 32 joints in 29 consecutive patients were followed for a mean duration of 34 (range 6 to 74) months, and the mean patient age at the time of operation was 56 (range 38 to 79) years. Hallux rigidus was the primary diagnosis in 28 (87.5%) of the cases. The mean American Orthopaedic Foot & Ankle Society Hallux-Metatarsophalangeal-Interphalangeal score at final follow-up was 74/100 (range 9 to 100), with 13 (40.63%) joints rated good to excellent. Two (6.25%) joints were revised to arthrodesis at a mean of 52 (range 41 to 63) months following the arthroplasty procedure, and the overall prevalence of postoperative complications was 6 (18.75%). Based on these results, we concluded that first MTPJ total joint replacement with the Moje device remains promising, but still has room for improvement before the results match those obtained with larger joint (knee, hip) arthroplasty. Copyright 2010 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Inhibition of prostaglandin biosynthesis as the mechanism of analgesia of aspirin-like drugs in the dog knee joint.

    PubMed

    Moncada, S; Ferreira, S H; Vane, J R

    1975-04-01

    A method has been developed to measure the analgesic action of aspirin-like drugs in knee joints of anaesthetized dogs. Bradykinin, injected into the joint cavity, induced a reflex rise in blood pressure which was dose-dependent; this was used as a measure of nociceptive activity. The joint cavity became more sensitive to bradykinin as the experiment proceeded, or when a low concentration of prostaglandin E1 or E2 was infused locally. The increase in sensitivity with time was prevented by local injection of aspirin or indomethacin, but that induced by exogenous prostaglandin infusion was not. Injections of carrageenin into dog knee joints increased the prostaglandin E2 content of synovial fluid by up to 160 ng per joint; indomethacin prevented this increase. These experiments support our previous conclusion that local biosynthesis of a prostaglandin (induced by mild trauma) sensitizes pain receptors to mechanical or chemical stimuli. Aspirin-like drugs are analgesic because they prevent prostaglandin biosynthesis, thereby preventing this sensitization.

  2. How weak values emerge in joint measurements on cloned quantum systems.

    PubMed

    Hofmann, Holger F

    2012-07-13

    A statistical analysis of optimal universal cloning shows that it is possible to identify an ideal (but nonpositive) copying process that faithfully maps all properties of the original Hilbert space onto two separate quantum systems, resulting in perfect correlations for all observables. The joint probabilities for noncommuting measurements on separate clones then correspond to the real parts of the complex joint probabilities observed in weak measurements on a single system, where the measurements on the two clones replace the corresponding sequence of weak measurement and postselection. The imaginary parts of weak measurement statics can be obtained by replacing the cloning process with a partial swap operation. A controlled-swap operation combines both processes, making the complete weak measurement statistics accessible as a well-defined contribution to the joint probabilities of fully resolved projective measurements on the two output systems.

  3. How do gait frequency and serum-replacement interval affect polyethylene wear in knee-wear simulator tests?

    PubMed

    Reinders, Jörn; Sonntag, Robert; Kretzer, Jan Philippe

    2014-11-01

    Polyethylene wear (PE) is known to be a limiting factor in total joint replacements. However, a standardized wear test (e.g. ISO standard) can only replicate the complex in vivo loading condition in a simplified form. In this study, two different parameters were analyzed: (a) Bovine serum, as a substitute for synovial fluid, is typically replaced every 500,000 cycles. However, a continuous regeneration takes place in vivo. How does serum-replacement interval affect the wear rate of total knee replacements? (b) Patients with an artificial joint show reduced gait frequencies compared to standardized testing. What is the influence of a reduced frequency? Three knee wear tests were run: (a) reference test (ISO), (b) testing with a shortened lubricant replacement interval, (c) testing with reduced frequency. The wear behavior was determined based on gravimetric measurements and wear particle analysis. The results showed that the reduced test frequency only had a small effect on wear behavior. Testing with 1 Hz frequency is therefore a valid method for wear testing. However, testing with a shortened replacement interval nearly doubled the wear rate. Wear particle analysis revealed only small differences in wear particle size between the different tests. Wear particles were not linearly released within one replacement interval. The ISO standard should be revised to address the marked effects of lubricant replacement interval on wear rate.

  4. The Treatment of Joint Pain with Intra-articular Pulsed Radiofrequency.

    PubMed

    Schianchi, Pietro M; Sluijter, Menno E; Balogh, Susan E

    2013-09-01

    The intra-articular (IA) application of pulsed radiofrequency (PRF) for pain in small and large joints represents a recent development that has proven to be effective in many cases. We performed a retrospective study of 89 such procedures in 57 consecutive patients with chronic articular pain. The aim of this retrospective study is to evaluate the effectiveness of intraarticular PRF in a group of 57 consecutive patients with chronic joint pain. Patients with intractable joint pain for more than 6 months were treated with IA PRF 40-45V for 10-15 min in small joints and 60V for 15 min in large joints using fluoroscopic confirmation of correct needle position. A total of 28 shoulders, 40 knees, 10 trapezio-metacarpal, and 11 first metatarso-phalangeal joints were treated. Results were evaluated at 1, 2, and 5 months. The procedure was repeated after 1 month in 10 patients with initial suboptimal results. Success was defined as a reduction of pain score by at least 50%. All groups showed significant reductions in pain scores at all three follow-up visits. Success rates were higher in small joints (90% and 82%, respectively) than large ones (64% and 60%, respectively). Interestingly, IA PRF was successful in 6 out of 10 patients who had undergone previous surgery, including 3 with prosthetic joint replacement and in 6 of the 10 repeated procedures. There were no significant adverse effects or complications. IA PRF induced significant pain relief of long duration in a majority of our patients with joint pain. The exact mechanism is unclear, but may be related to the exposure of immune cells to low-strength RF fields, inducing an anti-inflammatory effect. The success rate appears to be highest in small joints. We recommend additional research including control groups to further investigate and clarify this method; our data suggest that it may represent a useful modality in the treatment of arthrogenic pain.

  5. Body mass index affects knee joint mechanics during gait differently with and without moderate knee osteoarthritis.

    PubMed

    Harding, Graeme T; Hubley-Kozey, Cheryl L; Dunbar, Michael J; Stanish, William D; Astephen Wilson, Janie L

    2012-11-01

    Obesity is a highly cited risk factor for knee osteoarthritis (OA), but its role in knee OA pathogenesis and progression is not as clear. Excess weight may contribute to an increased mechanical burden and altered dynamic movement and loading patterns at the knee. The objective of this study was to examine the interacting role of moderate knee OA disease presence and obesity on knee joint mechanics during gait. Gait analysis was performed on 104 asymptomatic and 140 individuals with moderate knee OA. Each subject group was divided into three body mass categories based on body mass index (BMI): healthy weight (BMI<25), overweight (25≤BMI≤30), and obese (BMI>30). Three-dimensional knee joint angles and net external knee joint moments were calculated and waveform principal component analysis (PCA) was applied to extract major patterns of variability from each. PC scores for major patterns were compared between groups using a two-factor ANOVA. Significant BMI main effects were found in the pattern of the knee adduction moment, the knee flexion moment, and the knee rotation moment during gait. Two interaction effects between moderate OA disease presence and BMI were also found that described different changes in the knee flexion moment and the knee flexion angle with increased BMI with and without knee OA. Our results suggest that increased BMI is associated with different changes in biomechanical patterns of the knee joint during gait depending on the presence of moderate knee OA. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Postoperative cognitive dysfunction and its relationship to cognitive reserve in elderly total joint replacement patients.

    PubMed

    Scott, J E; Mathias, J L; Kneebone, A C; Krishnan, J

    2017-06-01

    Whether total joint replacement (TJR) patients are susceptible to postoperative cognitive dysfunction (POCD) remains unclear due to inconsistencies in research methodologies. Moreover, cognitive reserve may moderate the development of POCD after TJR, but has not been investigated in this context. The current study investigated POCD after TJR, and its relationship with cognitive reserve, using a more rigorous methodology than has previously been utilized. Fifty-three older adults (aged 50+) scheduled for TJR were assessed pre and post surgery (6 months). Forty-five healthy controls matched for age, gender, and premorbid IQ were re-assessed after an equivalent interval. Cognition, cognitive reserve, and physical and mental health were all measured. Standardized regression-based methods were used to assess cognitive changes, while controlling for the confounding effect of repeated cognitive testing. TJR patients only demonstrated a significant decline in Trail Making Test Part B (TMT B) performance, compared to controls. Cognitive reserve only predicted change in TMT B scores among a subset of TJR patients. Specifically, patients who showed the most improvement pre to post surgery had significantly higher reserve than those who showed the greatest decline. The current study provides limited evidence of POCD after TJR when examined using a rigorous methodology, which controlled for practice effects. Cognitive reserve only predicted performance within a subset of the TJR sample. However, the role of reserve in more cognitively compromised patients remains to be determined.

  7. Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants.

    PubMed

    Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D

    2017-11-01

    Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design

  8. Replacement of seam welded hot reheat pipe using narrow groove GTA machine welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.R.; Yanes, J.; Bryant, R.

    1995-12-31

    Southern California Edison, recognizing a potential safety concern, scrutinized its existing seam welded hot reheat pipe manufactured by the same supplier as that which failed. Alternatives were narrowed to two in dealing with the installed seam welded pipe. The overriding consideration, however, was one of safety. With this in mind, the utility company evaluated replacement of the seam welded hot reheat pipe with seamless pipe or increasing the frequency of its inspection program. Although increased inspection was much costly, pipe replacement was chosen due to potential safety concerns with seam welded pipe even with more frequent inspection. The utility companymore » then proceeded to determine the most effective method to complete this work. Analysis showed machine-made (automatic) gas tungsten arc welds (GTAW) as the method of choice due to cleanliness and superior mechanical properties. In conjunction with this method, the narrow groove (3{degree} bevel) weld joint as opposed to the traditional groove (37 1/2{degree} bevel) was shown to provide significant technical advantages.« less

  9. Skeletal muscle contraction in protecting joints and bones by absorbing mechanical impacts

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Tsyuryupa, S.; Sarvazyan, A.

    2016-09-01

    We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.

  10. [Bacteriuria and Symptomatic Urinary Tract Infections during Antimicrobial Prophylaxis in Patients with Short-Term Urinary Catheters - Prospective Randomised Study in Patients after Joint Replacement Surgery].

    PubMed

    Dejmek, M; Kučera, T; Ryšková, L; Čermáková, E; Šponer, P

    2017-01-01

    PURPOSE OF THE STUDY A very serious complication following joint replacement surgery is periprosthetic joint infection that can be caused by a urinary tract infection. Insertion of an indwelling urinary catheter constitutes a risk factor that may result in urinary tract infections. The aim of this prospective randomised study was to compare the occurrence of significant bacteriuria and symptomatic urinary tract infections during antibiotic prophylaxis at the time of removal of an indwelling urinary catheter by cotrimoxazole in two doses and with no administration of antibiotics. We also monitored the incidence of potential periprosthetic infection following the endoprosthesis implantation. The findings of preoperative urine tests were compared with the declared negative preoperative examination. MATERIAL AND METHODS The study included patients indicated for a total hip or knee replacement with a negative urine culture as a part of the preoperative testing. Where leukocyteria was detected, urine culture by mid-stream clean catch urine was obtained. The second part included patients, in whom an indwelling urinary catheter had to be inserted postoperatively for urine retention and/or monitoring of fluid balance and who were divided into two groups on a rota basis. No antibiotics were administered to the first group, whereas Cotrimoxazol 960 mg tablets p.o. was administered to the second group, 14 and 2 hours before the removal of the catheter. The urine culture test was performed 4 hours after the removal of the indwelling urinary catheter, in both the groups. The test was repeated after 14 days and a questionnaire was filled in to report urinary tract complications. Considered as significant bacteriuria by urinalysis was the laboratory finding of > 10x4 CFU/ml in case of a single pathogen or > 10x5 in case of multiple pathogens. The results were statistically processed by Fischer's exact test with the level of significance = 0.05. RESULTS In the first part of the

  11. Joint Venture Health Plans May Give ACOs a Run for Their Money.

    PubMed

    Reinke, Thomas

    2016-12-01

    Joint venture plans are starting to demonstrate their ability to implement clinical management and financial management reforms. A JV health plan replaces the offloading of financial risk by health plans to ill-equipped providers with an executive-level cost management committee stated jointly by the hospital and payer.

  12. Wrist joint assembly

    NASA Technical Reports Server (NTRS)

    Kersten, L.; Johnson, J. D. (Inventor)

    1978-01-01

    A wrist joint assembly is provided for use with a mechanical manipulator arm for finely positioning an end-effector carried by the wrist joint on the terminal end of the manipulator arm. The wrist joint assembly is pivotable about a first axis to produce a yaw motion, a second axis is to produce a pitch motion, and a third axis to produce a roll motion. The wrist joint assembly includes a disk segment affixed to the terminal end of the manipulator arm and a first housing member, a second housing member, and a third housing member. The third housing member and the mechanical end-effector are moved in the yaw, pitch, and roll motion. Drive means are provided for rotating each of the housings about their respective axis which includes a cluster of miniature motors having spur gears carried on the output drive shaft which mesh with a center drive gear affixed on the housing to be rotated.

  13. Joint attention and language evolution

    NASA Astrophysics Data System (ADS)

    Kwisthout, Johan; Vogt, Paul; Haselager, Pim; Dijkstra, Ton

    2008-06-01

    This study investigates how more advanced joint attentional mechanisms, rather than only shared attention between two agents and an object, can be implemented and how they influence the results of language games played by these agents. We present computer simulations with language games showing that adding constructs that mimic the three stages of joint attention identified in children's early development (checking attention, following attention, and directing attention) substantially increase the performance of agents in these language games. In particular, the rates of improved performance for the individual attentional mechanisms have the same ordering as that of the emergence of these mechanisms in infants' development. These results suggest that language evolution and joint attentional mechanisms have developed in a co-evolutionary way, and that the evolutionary emergence of the individual attentional mechanisms is ordered just like their developmental emergence.

  14. Alloplastic temporomandibular joint replacement systems: a systematic review of their history.

    PubMed

    De Meurechy, N; Mommaerts, M Y

    2018-06-01

    This systematic review provides an overview of the historical evolution of the prosthetic temporomandibular joint and addresses the challenges and complications faced by engineers and surgeons, in an effort to shed light on why only a few systems remain available. A better understanding of the history of temporomandibular joint prostheses might also provide insights into the origin of the negative public opinion of the prosthesis, which is based on outdated information. A computerized search using the PubMed Central, ScienceDirect, Wiley Online, Ovid, and Cochrane Library databases was performed following the PRISMA guidelines. Out of 7122 articles identified, 41 met the inclusion criteria for this systematic review. Although several historical reviews have been published previously, none has covered such an extensive time period or has described all designs. Furthermore, besides providing a historical overview, this review discusses the rationale behind the evolution in design and biomaterials, which have largely contributed to the outcomes of the prosthetic systems. Copyright © 2018 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. [Implant with a mobile or a fixed bearing in unicompartmental knee joint replacemen].

    PubMed

    Matziolis, G; Tohtz, S; Gengenbach, B; Perka, C

    2007-12-01

    Although the goal of anatomical and functional joint reconstruction in unicompartmental knee replacement is well defined, no uniform implant design has become established. In particular, the differential indications for implantation of an implant with a mobile or a fixed bearing are still not clear. The long-term results of mobile and with fixed bearings are comparable, but there are significant differences in resulting knee joint kinematics, tribological properties and implant-associated complications. In unicompartmental knee replacement mobile bearings restore the physiological joint kinematics better than fixed implants, although the differences to total knee arthroplasty seem minor. The decoupling of mobile bearings from the tibia implant allows a high level of congruence with the femoral implant, resulting in larger contact areas than with fixed bearings. This fact in combination with the more physiological joint kinematics leads to less wear and a lower incidence of osteolyses with mobile bearings. Disadvantages of mobile bearings are the higher complication and early revision rates resulting from bearing dislocation and impingement syndromes caused by suboptimal implantation technique or instability. Especially in cases with ligamentous pathology fixed bearings involve a lower complication rate. It seems their use can also be beneficial in patients with a low level of activity, as problems related to wear are of minor importance for this subgroup. The data currently available allow differentiations between various indications for implants with mobile or fixed bearings, so that the implants can be matched to the patient and the joint pathology in unicompartmental knee joint replacement.

  16. Effect of Mechanical Heterogeneity on the Crack Driving Force of a Reactor Pressure Vessel Outlet Nozzle DMW Joint

    NASA Astrophysics Data System (ADS)

    Lingyan, Zhao; Yinghao, Cui; He, Xue

    2017-12-01

    The welding mechanical heterogeneity, load complexity, material and geometrical structure makes it very difficult to assess the structural integrity of dissimilar metal weld (DMW) joints. Based on a numerical simulated approach of the continuous change of material mechanical property in the buttering layer, a reactor pressure vessel (RPV) outlet nozzle DMW joint with service loads is studied, effect of mechanical heterogeneity on the stress-strain field and stress triaxiality at the semi-elliptical surface crack front are discussed. The analyses show that once the crack extends into the high hardness zone of Alloy 182 buttering, the strain decreases sharply, the strain gradient increases and the crack propagation slows down. The influence of strength mismatch on the stress triaxiality at the shallow crack front is greater than that at the deep crack front. The interaction between strength mismatch and crack depth directly affects the crack growth direction.

  17. Combined low-dose aspirin and warfarin anticoagulant therapy of postoperative atrial fibrillation following mechanical heart valve replacement.

    PubMed

    Wang, Jian-tang; Dong, Ming-feng; Song, Guang-min; Ma, Zeng-shan; Ma, Sheng-jun

    2014-12-01

    The safety and efficacy of combined low dose aspirin and warfarin therapy in patients with atrial fibrillation after mechanical heart valve replacement were evaluated. A total of 1016 patients (620 females, mean age of 36.8±7.7 years) admitted for cardiac valve replacement and complicated with atrial fibrillation after surgery were randomly divided into study (warfarin plus 75-100 mg aspirin) or control (warfarin only) groups. International normalized ratio (INR) and prothrombin time were maintained at 1.8-2.5 and 1.5-2.0 times the normal values, respectively. Thromboembolic events and major bleedings were registered during the follow-up period. Patients were followed up for 24±9 months. The average dose of warfarin in the study and control groups was 2.91±0.83 mg and 2.88±0.76 mg, respectively (P>0.05). The incidence of overall thromboembolic events in study group was lower than that in control group (2.16% vs. 4.35%, P=0.049). No statistically significant differences were found in hemorrhage events (3.53% vs. 3.95%, P=0.722) or mortality (0.20% vs. 0.40%, P=0.559) between the two groups. Combined low dose aspirin and warfarin therapy in the patients with atrial fibrillation following mechanical heart valve replacement significantly decreased thromboembolic events as compared with warfarin therapy alone. This combined treatment was not associated with an increase in the risk of major bleeding or mortality.

  18. Load application for the contact mechanics analysis and wear prediction of total knee replacement.

    PubMed

    Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin

    2017-05-01

    Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.

  19. Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joints.

    PubMed

    Shamaei, Kamran; Cenciarini, Massimo; Adams, Albert A; Gregorczyk, Karen N; Schiffman, Jeffrey M; Dollar, Aaron M

    2014-06-01

    In this study, we describe the mechanical design and control scheme of a quasi-passive knee exoskeleton intended to investigate the biomechanical behavior of the knee joint during interaction with externally applied impedances. As the human knee behaves much like a linear spring during the stance phase of normal walking gait, the exoskeleton implements a spring across the knee in the weight acceptance (WA) phase of the gait while allowing free motion throughout the rest of the gait cycle, accomplished via an electromechanical clutch. The stiffness of the device is able to be varied by swapping springs, and the timing of engagement/disengagement changed to accommodate different loading profiles. After describing the design and control, we validate the mechanical performance and reliability of the exoskeleton through cyclic testing on a mechanical knee simulator. We then describe a preliminary experiment on three healthy adults to evaluate the functionality of the device on both left and right legs. The kinetic and kinematic analyses of these subjects show that the exoskeleton assistance can partially/fully replace the function of the knee joint and obtain nearly invariant moment and angle profiles for the hip and ankle joints, and the overall knee joint and exoskeleton complex under the applied moments of the exoskeleton versus the control condition, implying that the subjects undergo a considerable amount of motor adaptation in their lower extremities to the exoskeletal impedances, and encouraging more in-depth future experiments with the device.

  20. Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.

    2012-01-01

    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  1. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    PubMed Central

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (<1.88 mg/day). Among the 8 algorithms compared, the algorithms of Wei, Huang, and Miao showed a lower MAE and higher percentage within 20% in both the initial and the stable warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han

  2. Verification of pharmacogenetics-based warfarin dosing algorithms in Han-Chinese patients undertaking mechanic heart valve replacement.

    PubMed

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88-4.38 mg/day) than the low-dose range (<1.88 mg/day). Among the 8 algorithms compared, the algorithms of Wei, Huang, and Miao showed a lower MAE and higher percentage within 20% in both the initial and the stable warfarin dose prediction and in the low-dose and the ideal-dose ranges. All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart

  3. Web-based Comparative Patient-reported Outcome Feedback to Support Quality Improvement and Comparative Effectiveness Research in Total Joint Replacement.

    PubMed

    Zheng, Hua; Li, Wenjun; Harrold, Leslie; Ayers, David C; Franklin, Patricia D

    2014-01-01

    Patient-reported outcomes (PROs) are rarely included in quality monitoring systems, surgeon comparative feedback reports, or registries. We present the design and implementation of a secure website in a federally funded research program-Function and Outcomes Research for Comparative Effectiveness in Total Joint Replacement (FORCE-TJR)-to return comparative PRO reports to participating surgeons, in addition to including traditional quality measures, in order to monitor and improve quality and health outcomes. The surgeon-specific comparative PRO reports were designed and structured based on user input for content, data elements, integration, and display. Three questions are addressed regarding the knee and hip joint symptom profiles of patients before TJR, as well as outcomes of surgery. The website is organized with a hierarchical structure to display data at national, practice, and individual surgeon levels, and provides a comprehensive site-level executive summary and surgeon-level data reports that can be downloaded. As of September 2014, over 22,000 patients were enrolled from more than 130 surgeons in 22 states. The reporting website was launched in September 2012 and has been updated quarterly for all surgeons to review their site- and individual-specific outcomes data compared to national benchmarks. In this novel system, quarterly comparative surgeon feedback extends beyond traditional measures of complication rates to include PROs of pain relief and functional gain. We anticipate that this enhanced data will facilitate patient-centered quality improvement (QI) and outcomes research from the registry. As the Centers for Medicare & Medicaid Services (CMS) and other insurers consider future implementation of PROs, surgeons will increasingly need comparative data by which to self-monitor their practice outcomes.

  4. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL-rupture.

    PubMed

    Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn

    2018-05-23

    Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee

  5. Analysis of Interrelationships among Voluntary and Prosthetic Leg Joint Parameters Using Cyclograms.

    PubMed

    Jasni, Farahiyah; Hamzaid, Nur Azah; Mohd Syah, Nor Elleeiana; Chung, Tze Y; Abu Osman, Noor Azuan

    2017-01-01

    The walking mechanism of a prosthetic leg user is a tightly coordinated movement of several joints and limb segments. The interaction among the voluntary and mechanical joints and segments requires particular biomechanical insight. This study aims to analyze the inter-relationship between amputees' voluntary and mechanical coupled leg joints variables using cyclograms. From this analysis, the critical gait parameters in each gait phase were determined and analyzed if they contribute to a better powered prosthetic knee control design. To develop the cyclogram model, 20 healthy able-bodied subjects and 25 prosthesis and orthosis users (10 transtibial amputees, 5 transfemoral amputees, and 10 different pathological profiles of orthosis users) walked at their comfortable speed in a 3D motion analysis lab setting. The gait parameters (i.e., angle, moment and power for the ankle, knee and hip joints) were coupled to form 36 cyclograms relationship. The model was validated by quantifying the gait disparities of all the pathological walking by analyzing each cyclograms pairs using feed-forward neural network with backpropagation. Subsequently, the cyclogram pairs that contributed to the highest gait disparity of each gait phase were manipulated by replacing it with normal values and re-analyzed. The manipulated cyclograms relationship that showed highest improvement in terms of gait disparity calculation suggested that they are the most dominant parameters in powered-knee control. In case of transfemoral amputee walking, it was identified using this approach that at each gait sub-phase, the knee variables most responsible for closest to normal walking were: knee power during loading response and mid-stance, knee moment and knee angle during terminal stance phase, knee angle and knee power during pre-swing, knee angle at initial swing, and knee power at terminal swing. No variable was dominant during mid-swing phase implying natural pendulum effect of the lower limb between

  6. Behavior of single lap composite bolted joint under traction loading: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand

    2018-04-01

    Composite bolted joints are preferred connection in the composite structures to facilitate the dismantling for the replacements/ maintenance work. The joint behavior under tractive forces has been studied in order to understand the safety of the structure designed. The main objective of this paper is to investigate the behavior of single-lap joints in carbon fiber reinforced epoxy composites under traction loading conditions. The experiments were designed to identify the effect of bolt diameter, stacking sequence and loading rate on the properties of the joint. The experimental results show that the parameters influence the joint performance significantly.

  7. Definition of large components assembled on-orbit and robot compatible mechanical joints

    NASA Technical Reports Server (NTRS)

    Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.

    1990-01-01

    One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

  8. Microstructure and mechanical properties of diffusion bonded W/steel joint using V/Ni composite interlayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W.S.; Cai, Q.S., E-mail: cai2009pm@163.com; Ma, Y.Z.

    2013-12-15

    Diffusion bonding between W and steel using V/Ni composite interlayer was carried out in vacuum at 1050 °C and 10 MPa for 1 h. The microstructural examination and mechanical property evaluation of the joints show that the bonding of W to steel was successful. No intermetallic compound was observed at the steel/Ni and V/W interfaces for the joints bonded. The electron probe microanalysis and X-ray diffraction analysis revealed that Ni{sub 3}V, Ni{sub 2}V, Ni{sub 2}V{sub 3} and NiV{sub 3} were formed at the Ni/V interface. The tensile strength of about 362 MPa was obtained for as-bonded W/steel joint and themore » failure occurred at W near the V/W interface. The nano-indentation test across the joining interfaces demonstrated the effect of solid solution strengthening and intermetallic compound formation in the diffusion zone. - Highlights: • Diffusion bonding of W to steel was realized using V/Ni composite interlayer. • The interfacial microstructure of the joint was clarified. • Several V–Ni intermetallic compounds were formed in the interface region. • The application of V/Ni composite interlayer improved the joining quality.« less

  9. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A

    2016-05-19

    The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.

  10. Microstructure and mechanical properties of friction stir lap welded Mg/Al joint assisted by stationary shoulder

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei

    2017-11-01

    Using magnesium alloy as upper sheet, 3 mm-thick AZ31 magnesium alloy and 6061 aluminum alloy were joined using friction stir lap welding assisted by stationary shoulder. The effects of tool rotating speed on cross-sections, microstructure and mechanical properties of Mg/Al lap joints were mainly discussed. Results showed that stationary shoulder contributed to joint formation, by which stir zones (SZ) were characterized by big onion rings after welding. Because of the big forging force exerted by stationary shoulder, the upper region of hook was well bonded. SZ showed much higher hardness because of intermetallic compounds (IMCs). The bonding conditions at the base material (BM)/SZ interface at advancing side and the hook region played important roles on joint lap shear properties. The X-ray diffraction pattern analysis revealed that the main IMCs were Al3Mg2 and Al12Mg17.

  11. Influence of PC-GTAW Parameters on the Microstructural and Mechanical Properties of Thin AISI 1008 Steel Joints

    NASA Astrophysics Data System (ADS)

    Kumar, Ravindra; Anant, Ramkishor; Ghosh, P. K.; Kumar, Ankit; Agrawal, B. P.

    2016-09-01

    Butt weld joints are prepared using pulse current gas tungsten arc welding out of thin sheets of AISI 1008 steel using various combinations of pulse parameters. During welding, the welding speed was kept high, but with the increase of welding speed the mean current was also increased to get the required weld joint at the constant heat input. The use of pulse current has led to improvement in mechanical and metallurgical properties of weld joints. It has resulted in less development of humping which is a common problem with high-speed welding. The undercut or dipped weld face is not observed severe. The tensile strength and hardness are enhanced by 12.5 and 12%. The increase of tensile strength and hardness is justified through TEM micrograph showing the presence of dislocation.

  12. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control

    PubMed Central

    2016-01-01

    Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa–trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax–coxa and femur–tibia joints were often directed opposite to fore–aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking. PMID:26791608

  13. The Infection Rate of Metal-on-Metal Total Hip Replacement Is Higher When Compared to Other Bearing Surfaces as Documented by the Australian Orthopaedic Association National Joint Replacement Registry.

    PubMed

    Huang, Phil; Lyons, Matt; O'Sullivan, Michael

    2018-02-01

    Despite the well-documented decline in the use of metal-on-metal (MoM) implants over the last decade, there are still controversies regarding whether all MoM implants are created equally. Complications such as elevated serum metal ion levels, aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) and pseudotumours have all been well documented, but recent studies suggest increased risk of infection with MoM bearing surfaces. Most of these studies however have small patient numbers. The purpose of this study was to examine the cumulative incidence of revision for infection of MoM bearing surfaces in primary hip arthroplasty at a national and single-surgeon level. Data was collected from the Australian Orthopaedic Association National Joint Replacement Registry, which contains over 98% of all arthroplasties performed in Australia since 2001. The cumulative incidence of revision for infection was extracted at a national level and single-surgeon level. Two hundred seventy-six thousand eight hundred seventy-eight subjects were documented in the Australian registry. The 10-year cumulative percent revision for infection of MoM bearing surfaces in primary total hip replacement (THR) was 2.5% at a national level, compared to 0.8% for other bearing surfaces. The senior author contributed 1755 subjects with 7-year follow-up and a cumulative percent revision for infection of MoM bearing surfaces in primary THR of 36.9%, compared to 2.0% for other bearing surfaces. The cumulative percent of revision of MoM bearing surfaces is higher compared to other bearing surfaces; this is especially pronounced in cumulative percent of revision for infection. There was a higher cumulative percent of revision for infection in MoM bearings surfaces (in particular, large-head MoM) compared to other bearing surfaces at both the national and individual-surgeon level.

  14. Metal-on-metal hip joint tribology.

    PubMed

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  15. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2015-01-01

    The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

  16. Effect of Stretching Combined With Ultrashort Wave Diathermy on Joint Function and Its Possible Mechanism in a Rabbit Knee Contracture Model.

    PubMed

    Zhang, Quan Bing; Zhou, Yun; Zhong, Hua Zhang; Liu, Yi

    2018-05-01

    The aim of this study was to investigate the therapeutic effect of stretching combined with ultrashort wave on joint contracture and explore its possible mechanism. Thirty-two rabbits underwent unilateral immobilization of a knee joint at full extension to cause joint contracture. At 6 wks after immobilization, the rabbits were randomly divided into the following four groups: natural recovery group, stretching treatment group, ultrashort wave treatment group, and combined treatment group. For comparison, eight control group animals of corresponding age were also examined. The effect of stretching and ultrashort wave treatment on joint contracture was assessed by measuring the joint range of motion, evaluating the collagen deposition of joint capsule and assessing the mRNA and protein levels for transforming growth factor β1 in the joint capsule. The combined treatment group led to the best recovery of joint function. The combined treatment with stretching and ultrashort wave was more effective than stretching or ultrashort wave treatment alone against the synovial thickening of suprapatellar joint capsule, the collagen deposition of anterior joint capsule, and the elevated expression of transforming growth factor β1 in the joint capsule. Stretching combined with ultrashort wave treatment was effective in improving joint range of motion, reducing the biomechanical, histological, and molecular manifestations of joint capsule fibrosis in a rabbit model of extending joint contracture.

  17. A self-aligning knee joint for walking assistance devices.

    PubMed

    Byungjune Choi; Younbaek Lee; Jeonghun Kim; Minhyung Lee; Jongwon Lee; Se-Gon Roh; Hyundo Choi; Yong-Jae Kim; Jung-Yun Choi

    2016-08-01

    This paper presents a novel self-aligning knee mechanism for walking assistance devices for the elderly to provide physical gait assistance. Self-aligning knee joints can assist in flexion/extension motions of the knee joint and compensate the knee's transitional movements in the sagittal plane. In order to compensate the center of rotation, which moves with the flexion/extension motion of the human knee joint, a self-aligning knee joint is proposed that adds redundant degrees of freedom (i.e., 2-DoF) to the 1-DoF revolute joint. The key idea of the proposed mechanism is to decouple joint rotations and translations for use in lower-extremity wearable devices. This paper describes the mechanical design of this self-aligning knee mechanism and its implementation on a wearable robot and in preliminary experiments. The performance of the proposed mechanism is verified by simulations and experiments.

  18. Effect of Epoxy on Mechanical Property of SAC305 Solder Joint with Various Surface Finishes Under 3-Point Bend Test.

    PubMed

    Jeong, Haksan; Myung, Woo-Ram; Sung, Yong-Gue; Kim, Kyung-Yeol; Jung, Seung-Boo

    2018-09-01

    Microstructures and mechanical property of Sn-3.0Ag-0.5Cu (SAC305) and epoxy Sn-3.0Ag-0.5Cu (epoxy SAC) solder joints were investigated with various surface finishes; organic solderability preservative (OSP), electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). Bending property of solder joints was evaluated by 3-point bend test method. Microstructure and chemical composition of solder joints was characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively. Epoxy did not effect on intermetallic compound (IMC) morphology. Scalloped shaped Cu6Sn5 IMC was observed at OSP surface finish. Chunky-like shaped and needle-like shaped (Ni,Cu)6Sn5 IMC were observed at the solder/ENIG joint and solder/ENEPIG joint, respectively. The bending cycles of SAC305/OSP joint, SAC305/ENIG joints and SAC305/ENEPIG joints were 720, 440 and 481 cycle numbers. The bending cycles of epoxy SAC and three types surface finished solder joints were over 1000 bending cycles. Under OSP surface finish, bending cycles of epoxy SAC solder was approximately 1.5 times higher than those of SAC305 solder joint. Bending cycles of epoxy SAC solder was over twice times higher than those of SAC305 solder with ENIG and ENEPIG surface finishes. The bending property of epoxy solder joint was enhanced due to epoxy fillet held the solder joint.

  19. Double slotted socket spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2001-05-22

    A new class of spherical joints is disclosed. These spherical joints are capable of extremely large angular displacements (full cone angles in excess of 270.degree.), while exhibiting no singularities or dead spots in their range of motion. These joints can improve or simplify a wide range of mechanical devices.

  20. Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results.

    PubMed

    Aeyels, B; Peeraer, L; Vander Sloten, J; Van der Perre, G

    1992-05-01

    The shortcomings of conventional above-knee prostheses are due to their lack of adaptive control. Implementation of a microcomputer controlling the knee joint in a passive way has been suggested to enhance the patient's gait comfort, safety and cosmesis. This approach was used in the design of a new prosthetic system for the above-knee amputee, and tested on one patient. The knee joint of a conventional, modular prosthesis was replaced by a knee joint mechanism, equipped with a controllable brake on the knee joint axis. Sensors and a microcomputer were added, keeping the system self-contained. The modularity of the design permits the use of an alternative, external, PC-based control unit, emulating the self-contained one, and offering extended data monitoring and storage facilities. For both units an operating environment was written, including sensor/actuator interfacing and the implementation of a real-time interrupt, executing the control algorithm. A double finite state approach was used in the design of the control algorithm. On a higher level, the mode identification algorithm reveals the patient's intent. Within a specific mode (lower level), the relevant mode control algorithm looks for the current phase within the gait cycle. Within a particular phase, a specific simple control action with the brake replaces normal knee muscle activity. Tests were carried out with one prosthetic patient using a basic control algorithm for level walking, allowing controlled knee flexion during stance phase. The technical feasibility of such a concept is illustrated by the test results, even though only flexion during early stance phase was controlled during the trials.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Lateral Ligament Repair and Reconstruction Restore Neither Contact Mechanics of the Ankle Joint nor Motion Patterns of the Hindfoot

    PubMed Central

    Prisk, Victor R.; Imhauser, Carl W.; O'Loughlin, Padhraig F.; Kennedy, John G.

    2010-01-01

    Background: Ankle sprains may damage both the lateral ligaments of the hindfoot and the osteochondral tissue of the ankle joint. When nonoperative treatment fails, operative approaches are indicated to restore both native motion patterns at the hindfoot and ankle joint contact mechanics. The goal of the present study was to determine the effect of lateral ligament injury, repair, and reconstruction on ankle joint contact mechanics and hindfoot motion patterns. Methods: Eight cadaveric specimens were tested with use of robotic technology to apply combined compressive (200-N) and inversion (4.5-Nm) loads to the hindfoot at 0° and 20° of plantar flexion. Contact mechanics at the ankle joint were simultaneously measured. A repeated-measures experiment was designed with use of the intact condition as control, with the other conditions including sectioned anterior talofibular and calcaneofibular ligaments, the Broström and Broström-Gould repairs, and graft reconstruction. Results: Ligament sectioning decreased contact area and caused a medial and anterior shift in the center of pressure with inversion loads relative to those with the intact condition. There were no significant differences in inversion or coupled axial rotation with inversion between the Broström repair and the intact condition; however, medial translation of the center of pressure remained elevated after the Broström repair relative to the intact condition. The Gould modification of the Broström procedure provided additional support to the hindfoot relative to the Broström repair, reducing inversion and axial rotation with inversion beyond that of intact ligaments. There were no significant differences in center-of-pressure excursion patterns between the Broström-Gould repair and the intact ligament condition, but this repair increased contact area beyond that with the ligaments intact. Graft reconstruction more closely restored inversion motion than did the Broström-Gould repair at 20° of

  2. The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties.

    PubMed

    Denny, Mark W; King, Felicia A

    2016-06-15

    By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (∼14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (∼35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology. © 2016. Published by The Company of Biologists Ltd.

  3. Probabilistic joint inversion of waveforms and polarity data for double-couple focal mechanisms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wéber, Zoltán

    2018-06-01

    Estimating the mechanisms of small (M < 4) earthquakes is quite challenging. A common scenario is that neither the available polarity data alone nor the well predictable near-station seismograms alone are sufficient to obtain reliable focal mechanism solutions for weak events. To handle this situation we introduce here a new method that jointly inverts waveforms and polarity data following a probabilistic approach. The procedure called joint waveform and polarity (JOWAPO) inversion maps the posterior probability density of the model parameters and estimates the maximum likelihood double-couple mechanism, the optimal source depth and the scalar seismic moment of the investigated event. The uncertainties of the solution are described by confidence regions. We have validated the method on two earthquakes for which well-determined focal mechanisms are available. The validation tests show that including waveforms in the inversion considerably reduces the uncertainties of the usually poorly constrained polarity solutions. The JOWAPO method performs best when it applies waveforms from at least two seismic stations. If the number of the polarity data is large enough, even single-station JOWAPO inversion can produce usable solutions. When only a few polarities are available, however, single-station inversion may result in biased mechanisms. In this case some caution must be taken when interpreting the results. We have successfully applied the JOWAPO method to an earthquake in North Hungary, whose mechanism could not be estimated by long-period waveform inversion. Using 17 P-wave polarities and waveforms at two nearby stations, the JOWAPO method produced a well-constrained focal mechanism. The solution is very similar to those obtained previously for four other events that occurred in the same earthquake sequence. The analysed event has a strike-slip mechanism with a P axis oriented approximately along an NE-SW direction.

  4. Lateral ligament repair and reconstruction restore neither contact mechanics of the ankle joint nor motion patterns of the hindfoot.

    PubMed

    Prisk, Victor R; Imhauser, Carl W; O'Loughlin, Padhraig F; Kennedy, John G

    2010-10-20

    Ankle sprains may damage both the lateral ligaments of the hindfoot and the osteochondral tissue of the ankle joint. When nonoperative treatment fails, operative approaches are indicated to restore both native motion patterns at the hindfoot and ankle joint contact mechanics. The goal of the present study was to determine the effect of lateral ligament injury, repair, and reconstruction on ankle joint contact mechanics and hindfoot motion patterns. Eight cadaveric specimens were tested with use of robotic technology to apply combined compressive (200-N) and inversion (4.5-Nm) loads to the hindfoot at 0° and 20° of plantar flexion. Contact mechanics at the ankle joint were simultaneously measured. A repeated-measures experiment was designed with use of the intact condition as control, with the other conditions including sectioned anterior talofibular and calcaneofibular ligaments, the Broström and Broström-Gould repairs, and graft reconstruction. Ligament sectioning decreased contact area and caused a medial and anterior shift in the center of pressure with inversion loads relative to those with the intact condition. There were no significant differences in inversion or coupled axial rotation with inversion between the Broström repair and the intact condition; however, medial translation of the center of pressure remained elevated after the Broström repair relative to the intact condition. The Gould modification of the Broström procedure provided additional support to the hindfoot relative to the Broström repair, reducing inversion and axial rotation with inversion beyond that of intact ligaments. There were no significant differences in center-of-pressure excursion patterns between the Broström-Gould repair and the intact ligament condition, but this repair increased contact area beyond that with the ligaments intact. Graft reconstruction more closely restored inversion motion than did the Broström-Gould repair at 20° of plantar flexion but limited

  5. Recent Patents and Designs on Hip Replacement Prostheses

    PubMed Central

    Derar, H; Shahinpoor, M

    2015-01-01

    Hip replacement surgery has gone through tremendous evolution since the first procedure in 1840. In the past five decades the advances that have been made in technology, advanced and smart materials innovations, surgical techniques, robotic surgery and methods of fixations and sterilization, facilitated hip implants that undergo multiple design revolutions seeking the least problematic implants and a longer survivorship. Hip surgery has become a solution for many in need of hip joint remedy and replacement across the globe. Nevertheless, there are still long-term problems that are essential to search and resolve to find the optimum implant. This paper reviews several recent patents on hip replacement surgery. The patents present various designs of prostheses, different materials as well as methods of fixation. Each of the patents presents a new design as a solution to different issues ranging from the longevity of the hip prostheses to discomfort and inconvenience experienced by patients in the long-term. PMID:25893020

  6. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhang, Junyu; Wu, Qingsheng

    2017-07-01

    Tungsten Inner Gas (TIG) welding is employed for joining of China low activation martensitic (CLAM) steel. A new filler wire was proposed, and the investigation on welding with various heat input and welding passes were conducted to lower the tendency towards the residual of δ ferrite in the joint. With the optimized welding parameters, a butt joint by multi-pass welding with the new filler wire was prepared to investigate the microstructure and mechanical properties. The microstructure of the joint was observed by optical microscope (OM) and scanning electron microscope (SEM). The hardness, Charpy impact and tensile tests of the joint were implemented at room temperature (25 °C). The results revealed that almost full martensite free from ferrite in the joints were obtained by multipass welding with the heat input of 2.26 kJ/mm. A certain degree of softening occurred at the heat affected zone of the joint according to the results of tensile and hardness tests. The as welded joints showed brittle fracture in the impact tests. However, the joints showed toughness fracture after tempering and relatively better comprehensive performance were achieved when the joints were tempered at 740 °C for 2 h.

  7. [Clinical evaluation of the ceramic femoral component used for reconstruction of total knee replacement].

    PubMed

    Vavrík, P; Landor, I; Denk, F

    2008-12-01

    The study evaluates mid-term results of total knee replacement with a zirconia ceramic (ZrO2) femoral component. The evaluated group comprised 20 knees in 19 patients (4 men and 15 women). In one patient the replacement was performed bilaterally. Two patients had in the contralateral knee the same type of prosthesis with a femoral chrome-cobalt component.The mean age at the time of operation was 65.2 years (range, 38-81 years).The primary indication was 14 times osteoarthritis and 5 times rheumatoid arthritis. The average follow-up period was 6.5 years (range, 2.1-8.5 years). Patients included in the study regardless of age, body mass and the basic diagnosis, agreed with the use of the ceramic femoral component. The evaluation covered a range of motion, mechanical axis, joint stability, pain, swelling, ability to walk on level ground and on stairs, subjective satisfaction (EULAR Knee Chart). Radiograph were assessed at one year intervals in two projections to identify the incidence of radiolucency around the implant. The Kaplan-Meier survival curve was used and compared with the survival curve in identical chrome-cobalt implants. At he final follow-up, 14 knees were evaluated, because 3 patients died without any connection with the implant, in one case the tibial component migrated due to necrosis of the tibial condyle in a patient with RA and two implants had to be revised and replaced due to polyethylene wear. No infection or negative tissue reaction was recorded in the evaluated group. The average flexion range was 109 degrees. All knees were stable and without swelling, in two cases there occurred slight femoropatellar pain. Twelve patients were fully satisfied, 2 patients were satisfied with a certain reservation. The differences in the course of the survival curves of chrome-cobalt and ceramic implants were statistically insignificant. Although the use of zirconia ceramics in vitro reduces the amount of polyethylene wear, the clinical outcomes of total knee

  8. Impact extractive fracture of jointed steel plates of a bolted joint

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.

    2012-08-01

    This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.

  9. Biotribology of artificial hip joints

    PubMed Central

    Di Puccio, Francesca; Mattei, Lorenza

    2015-01-01

    Hip arthroplasty can be considered one of the major successes of orthopedic surgery, with more than 350000 replacements performed every year in the United States with a constantly increasing rate. The main limitations to the lifespan of these devices are due to tribological aspects, in particular the wear of mating surfaces, which implies a loss of matter and modification of surface geometry. However, wear is a complex phenomenon, also involving lubrication and friction. The present paper deals with the tribological performance of hip implants and is organized in to three main sections. Firstly, the basic elements of tribology are presented, from contact mechanics of ball-in-socket joints to ultra high molecular weight polyethylene wear laws. Some fundamental equations are also reported, with the aim of providing the reader with some simple tools for tribological investigations. In the second section, the focus moves to artificial hip joints, defining materials and geometrical properties and discussing their friction, lubrication and wear characteristics. In particular, the features of different couplings, from metal-on-plastic to metal-on-metal and ceramic-on-ceramic, are discussed as well as the role of the head radius and clearance. How friction, lubrication and wear are interconnected and most of all how they are specific for each loading and kinematic condition is highlighted. Thus, the significant differences in patients and their lifestyles account for the high dispersion of clinical data. Furthermore, such consideration has raised a new discussion on the most suitable in vitro tests for hip implants as simplified gait cycles can be too far from effective implant working conditions. In the third section, the trends of hip implants in the years from 2003 to 2012 provided by the National Joint Registry of England, Wales and Northern Ireland are summarized and commented on in a discussion. PMID:25621213

  10. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.

    PubMed

    Hu, Jiayu; Chen, Zhenxian; Xin, Hua; Zhang, Qida; Jin, Zhongmin

    2018-05-01

    Detailed knowledge of the in vivo loading and kinematics in the knee joint is essential to understand its normal functions and the aetiology of osteoarthritis. Computer models provide a viable non-invasive solution for estimating joint loading and kinematics during different physiological activities. However, the joint loading and kinematics of the tibiofemoral and patellofemoral joints during a gait cycle were not typically investigated concurrently in previous computational simulations. In this study, a natural knee architecture was incorporated into a lower extremity musculoskeletal multibody dynamics model based on a force-dependent kinematics approach to investigate the contact mechanics and kinematics of a natural knee joint during a walking cycle. Specifically, the contact forces between the femoral/tibial articular cartilages and menisci and between the femoral and tibial/patellar articular cartilages were quantified. The contact forces and kinematics of the tibiofemoral and patellofemoral joints and the muscle activations and ligament forces were predicted simultaneously with a reasonable level of accuracy. The developed musculoskeletal multibody dynamics model with a natural knee architecture can serve as a potential platform for assisting clinical decision-making and postoperative rehabilitation planning.

  11. A Systematic Review of Clinical Functional Outcomes After Medial Stabilized Versus Non-Medial Stabilized Total Knee Joint Replacement

    PubMed Central

    Young, Tony; Dowsey, Michelle M.; Pandy, Marcus; Choong, Peter F.

    2018-01-01

    Background Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. Purpose To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. Methods The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. Results In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: −0.27; 95% CI: −0.47 to −0.07; p = 0.009). Moderate to high values (I2) of heterogeneity were observed during the statistical comparison of these functional outcomes. Conclusion Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level of Evidence Level II PMID:29696144

  12. A Systematic Review of Clinical Functional Outcomes After Medial Stabilized Versus Non-Medial Stabilized Total Knee Joint Replacement.

    PubMed

    Young, Tony; Dowsey, Michelle M; Pandy, Marcus; Choong, Peter F

    2018-01-01

    Medial stabilized total knee joint replacement (TKJR) construct is designed to closely replicate the kinematics of the knee. Little is known regarding comparison of clinical functional outcomes of patients utilising validated patient reported outcome measures (PROM) after medial stabilized TKJR and other construct designs. To perform a systematic review of the available literature related to the assessment of clinical functional outcomes following a TKJR employing a medial stabilized construct design. The review was performed with a Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) algorithm. The literature search was performed using variouscombinations of keywords. The statistical analysis was completed using Review Manager (RevMan), Version 5.3. In the nineteen unique studies identified, there were 2,448 medial stabilized TKJRs implanted in 2,195 participants, there were 1,777 TKJRs with non-medial stabilized design constructs implanted in 1,734 subjects. The final mean Knee Society Score (KSS) value in the medial stabilized group was 89.92 compared to 90.76 in the non-medial stabilized group, with the final KSS mean value difference between the two groups was statistically significant and favored the non-medial stabilized group (SMD 0.21; 95% CI: 0.01 to 0.41; p = 004). The mean difference in the final WOMAC values between the two groups was also statistically significant and favored the medial stabilized group (SMD: -0.27; 95% CI: -0.47 to -0.07; p = 0.009). Moderate to high values ( I 2 ) of heterogeneity were observed during the statistical comparison of these functional outcomes. Based on the small number of studies with appropriate statistical analysis, we are unable to reach a clear conclusion in the clinical performance of medial stabilized knee replacement construct. Level II.

  13. Wait time management strategies for total joint replacement surgery: sustainability and unintended consequences.

    PubMed

    Pomey, Marie-Pascale; Clavel, Nathalie; Amar, Claudia; Sabogale-Olarte, Juan Carlos; Sanmartin, Claudia; De Coster, Carolyn; Noseworthy, Tom

    2017-09-07

    In Canada, long waiting times for core specialized services have consistently been identified as a key barrier to access. Governments and organizations have responded with strategies for better access management, notably for total joint replacement (TJR) of the hip and knee. While wait time management strategies (WTMS) are promising, the factors which influence their sustainable implementation at the organizational level are understudied. Consequently, this study examined organizational and systemic factors that made it possible to sustain waiting times for TJR within federally established limits and for at least 18 months or more. The research design is a multiple case study of WTMS implementation. Five cases were selected across five Canadian provinces. Three success levels were pre-defined: 1) the WTMS maintained compliance with requirements for more than 18 months; 2) the WTMS met requirements for 18 months but could not sustain the level thereafter; 3) the WTMS never met requirements. For each case, we collected documents and interviewed key informants. We analyzed systemic and organizational factors, with particular attention to governance and leadership, culture, resources, methods, and tools. We found that successful organizations had specific characteristics: 1) management of the whole care continuum, 2) strong clinical leadership; 3) dedicated committees to coordinate and sustain strategy; 4) a culture based on trust and innovation. All strategies led to relatively similar unintended consequences. The main negative consequence was an initial increase in waiting times for TJR and the main positive consequence was operational enhancement of other areas of specialization based on the TJR model. This study highlights important differences in factors which help to achieve and sustain waiting times. To be sustainable, a WTMS needs to generate greater synergies between contextual-level strategy (provincial or regional) and organizational objectives and

  14. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  15. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    PubMed

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-01

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  16. The John Charnley Award Paper. The role of joint fluid in the tribology of total joint arthroplasty.

    PubMed

    Mazzucco, Daniel; Spector, Myron

    2004-12-01

    The effect of joint fluid on the tribology (ie, lubrication, friction, and wear) of total hip arthroplasty has not yet been investigated adequately. In the current study, a friction assay was used to assess four hypotheses relating to the effect of human joint fluid and its principal components on the articulation of metal-on-polyethylene. First, joint fluid was found to produce a widely varying amount of friction between cobalt-chromium and polyethylene; this range exceeded the range produced when the articulation was lubricated by water or bovine serum. Second, it was shown that hyaluronic acid, phospholipid, albumin, and gamma-globulin were not acting as boundary lubricants, but that one or more other proteins (as yet unidentified) were responsible for reducing friction in this couple. Third, lower friction was found when oxidized zirconium alloy replaced cobalt-chromium as a bearing surface on polyethylene. Finally, a pilot study suggested that lubricin, which contributes to cartilage-on-cartilage lubrication, is not a protein responsible for the tribological variabiation found among joint fluid samples. The current study showed that joint fluid is a patient factor that influences the tribology of metal-on-polyethylene arthroplasty.

  17. Meniscal tears, repairs and replacement: their relevance to osteoarthritis of the knee.

    PubMed

    McDermott, Ian

    2011-04-01

    The menisci of the knee are important load sharers and shock absorbers in the joint. Meniscal tears are common, and whenever possible meniscal tears should be surgically repaired. Meniscectomy leads to a significant increased risk of osteoarthritis, and various options now exist for replacing missing menisci, including the use of meniscal scaffolds or the replacement of the entire meniscus by meniscal allograft transplantation. The field of meniscal surgery continues to develop apace, and the future may lie in growing new menisci by tissue engineering techniques.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), United Space Alliance technicians replace the attachment points for the spars on the interior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility (OPF), United Space Alliance technicians replace the attachment points for the spars on the interior of a wing of Space Shuttle Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing with a series of floating joints - spars - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation. The next launch of Atlantis will be on mission STS-114, a utilization and logistics flight to the International Space Station.

  19. An Analysis of Pathological Activities of CCN Proteins in Joint Disorders: Mechanical Stretch-Mediated CCN2 Expression in Cultured Meniscus Cells.

    PubMed

    Furumatsu, Takayuki; Ozaki, Toshifumi

    2017-01-01

    The multifunctional growth factor CYR61/CTGF/NOV (CCN) 2, also known as connective tissue growth factor, regulates cellular proliferation, differentiation, and tissue regeneration. Recent literatures have described important roles of CCN2 in the meniscus metabolism. However, the mechanical stress-mediated transcriptional regulation of CCN2 in the meniscus remains unclear. The meniscus is a fibrocartilaginous tissue that controls complex biomechanics of the knee joint. Therefore, the injured unstable meniscus has a poor healing potential especially in the avascular inner region. In addition, dysfunction of the meniscus correlates with the progression of degenerative knee joint disorders and joint space narrowing. Here, we describe an experimental approach that investigates the distinct cellular behavior of inner and outer meniscus cells in response to mechanical stretch. Our experimental model can analyze the relationships between stretch-induced CCN2 expression and its functional role in the meniscus homeostasis.

  20. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  1. Revision Rates after Primary Hip and Knee Replacement in England between 2003 and 2006

    PubMed Central

    Sibanda, Nokuthaba; Copley, Lynn P; Lewsey, Jim D; Borroff, Mick; Gregg, Paul; MacGregor, Alex J; Pickford, Martin; Porter, Martyn; Tucker, Keith; van der Meulen, Jan H

    2008-01-01

    Background Hip and knee replacement are some of the most frequently performed surgical procedures in the world. Resurfacing of the hip and unicondylar knee replacement are increasingly being used. There is relatively little evidence on their performance. To study performance of joint replacement in England, we investigated revision rates in the first 3 y after hip or knee replacement according to prosthesis type. Methods and Findings We linked records of the National Joint Registry for England and Wales and the Hospital Episode Statistics for patients with a primary hip or knee replacement in the National Health Service in England between April 2003 and September 2006. Hospital Episode Statistics records of succeeding admissions were used to identify revisions for any reason. 76,576 patients with a primary hip replacement and 80,697 with a primary knee replacement were included (51% of all primary hip and knee replacements done in the English National Health Service). In hip patients, 3-y revision rates were 0.9% (95% confidence interval [CI] 0.8%–1.1%) with cemented, 2.0% (1.7%–2.3%) with cementless, 1.5% (1.1%–2.0% CI) with “hybrid” prostheses, and 2.6% (2.1%–3.1%) with hip resurfacing (p < 0.0001). Revision rates after hip resurfacing were increased especially in women. In knee patients, 3-y revision rates were 1.4% (1.2%–1.5% CI) with cemented, 1.5% (1.1%–2.1% CI) with cementless, and 2.8% (1.8%–4.5% CI) with unicondylar prostheses (p < 0.0001). Revision rates after knee replacement strongly decreased with age. Interpretation Overall, about one in 75 patients needed a revision of their prosthesis within 3 y. On the basis of our data, consideration should be given to using hip resurfacing only in male patients and unicondylar knee replacement only in elderly patients. PMID:18767900

  2. The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using ultrasonic vibration assisted welding process

    NASA Astrophysics Data System (ADS)

    Li, Hui; Zhang, Jiansheng

    2017-12-01

    The evolution of microstructures, corrosion resistance and mechanical properties of AZ80 joints using an ultrasonic vibration assisted welding process is investigated. The results show that, with ultrasonic vibration treatment, a reliable AZ80 joint without defects is obtained. The coarsening α-Mg grains are refined to about 83.5  ±  3.3 µm and the continuous β-Mg17Al12 phases are broken to granular morphology, owing to the acoustic streaming effect and the cavitation effect evoked by ultrasonic vibration. Both immersion and electrochemical test results indicate that the corrosion resistance of the AZ80 joint welded with ultrasonic vibration is improved, attributed to microstructure evolution. With ultrasonic power of 900 W, the maximum tensile strength of an AZ80 specimen is 261  ±  7.5 MPa and fracture occurs near the heat affected zone of the joint.

  3. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.

    PubMed

    Gooyers, Chad E; McMillan, Robert D; Howarth, Samuel J; Callaghan, Jack P

    2012-08-01

    An in vitro biomechanics investigation exposing porcine functional spinal units (FSUs) to submaximal cyclic or static compressive forces while in a flexed, neutral, or extended posture. To investigate the combined effect of cyclically applied compressive force (e.g., vibration) and postural deviation on intervertebral joint mechanics. Independently, prolonged vibration exposure and non-neutral postures are known risk factors for development of low back pain and injury. However, there is limited basic scientific evidence to explain how the risk of low back injury from vibration exposure is modified by other mechanical factors. This work examined the influence of static postural deviation on vertebral joint height loss and compressive stiffness under cyclically applied compressive force. Forty-eight FSUs, consisting of 2 adjacent vertebrae, ligaments, and the intervening intervertebral disc were included in the study. Each specimen was randomized to 1 of 3 experimental posture conditions (neutral, flexed, or extended) and assigned to 1 of 2 loading protocols, consisting of (1) cyclic (1500 ± 1200 N applied at 5 Hz using a sinusoidal waveform, resulting in 0.2 g rms acceleration) or (2) 1500 N of static compressive force. RESULTS.: As expected, FSU height loss followed a typical first-order response in both the static and cyclic loading protocols, with the majority (~50%) of the loss occurring in the first 20 minutes of testing. A significant interaction between posture and loading protocol (P < 0.001) was noted in the magnitude of FSU height loss. Subsequent analysis of simple effects revealed significant differences between cyclic and static loading protocols in both a neutral (P = 0.016) and a flexed posture (P < 0.0001). No significant differences (P = 0.320) were noted between pre/postmeasurements of FSU compressive stiffness. Posture is an important mechanical factor to consider when assessing the risk of injury from cyclic loading to the lumbar spine.

  4. Cost-effectiveness of unicompartmental compared with total knee replacement: a population-based study using data from the National Joint Registry for England and Wales

    PubMed Central

    Liddle, Alexander D; Hamilton, Thomas W; Judge, Andrew; Pandit, Hemant G; Murray, David W; Pinedo-Villanueva, Rafael

    2018-01-01

    Objectives To assess the value for money of unicompartmental knee replacement (UKR) compared with total knee replacement (TKR). Design A lifetime Markov model provided the framework for the analysis. Setting Data from the National Joint Registry (NJR) for England and Wales primarily informed the analysis. Participants Propensity score matched patients in the NJR who received either a UKR or TKR. Interventions UKR is a less invasive alternative to TKR, where only the compartment affected by osteoarthritis is replaced. Primary outcome measures Incremental quality-adjusted life years (QALYs) and healthcare system costs. Results The provision of UKR is expected to lead to a gain in QALYs compared with TKR for all age and gender subgroups (male: <60 years: 0.12, 60–75 years: 0.20, 75+ years: 0.19; female: <60 years: 0.10, 60–75 years: 0.28, 75+ years: 0.44) and a reduction in costs (male: <60: £−1223, 60–75 years: £−1355, 75+ years: £−2005; female: <60 years: £−601, 60–75 years: £−935, 75+ years: £−1102 per patient over the lifetime). UKR is expected to lead to a reduction in QALYs compared with TKR when performed by surgeons with low UKR utilisation but an increase among those with high utilisation (<10%, median 6%: −0.04, ≥10%, median 27%: 0.26). Regardless of surgeon usage, costs associated with UKR are expected to be lower than those of TKR (<10%: £−127, ≥10%: £−758). Conclusions UKR can be expected to generate better health outcomes and lower lifetime costs than TKR. Surgeon usage of UKR does, however, have a significant impact on the cost-effectiveness of the procedure. To achieve the best results, surgeons need to perform a sufficient proportion of knee replacements as UKR. Low usage surgeons may therefore need to broaden their indications for UKR. PMID:29706598

  5. Haemophilia and joint disease: pathophysiology, evaluation, and management

    PubMed Central

    Knobe, Karin; Berntorp, Erik

    2011-01-01

    In patients with haemophilia, regular replacement therapy with clotting factor concentrates (prophylaxis) is effective in preventing recurrent bleeding episodes into joints and muscles. However, despite this success, intra-articular and intramuscular bleeding is still a major clinical manifestation of the disease. Bleeding most commonly occurs in the knees, elbows, and ankles, and is often evident from early childhood. The pathogenesis of haemophilic arthropathy is multifactorial, with changes occurring in the synovium, bone, cartilage, and blood vessels. Recurrent joint bleeding causes synovial proliferation and inflammation (haemophilic synovitis) that contribute to end-stage degeneration (haemophilic arthropathy); with pain and limitation of motion severely affecting patients’ quality of life. If joint bleeding is not treated adequately, it tends to recur, resulting in a vicious cycle that must be broken to prevent the development of chronic synovitis and degenerative arthritis. Effective prevention and management of haemophilic arthropathy includes the use of early, aggressive prophylaxis with factor replacement therapies, as well as elective procedures, including restorative physical therapy, analgesia, aspiration, synovectomy, and orthopaedic surgery. Optimal treatment of patients with haemophilia requires a multidisciplinary team comprising a haematologist, physiotherapist, orthopaedic practitioner, rehabilitation physician, occupational therapist, psychologist, social workers, and nurses. Journal of Comorbidity 2011;1:51–59 PMID:29090136

  6. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    PubMed Central

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  7. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    PubMed

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  8. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  9. Knee joint transplantation combined with surgical angiogenesis in rabbits – a new experimental model

    PubMed Central

    Kremer, Thomas; Giusti, Guilherme; Friedrich, Patricia F.; Willems, Wouter; Bishop, Allen T.; Giessler, Goetz A.

    2012-01-01

    Summary Purpose We have previously described a means to maintain bone allotransplant viability, without long-term immune modulation, replacing allogenic bone vasculature with autogenous vessels. A rabbit model for whole knee joint transplantation was developed and tested using the same methodology, initially as an autotransplant. Materials/Methods Eight New Zealand White rabbit knee joints were elevated on a popliteal vessel pedicle to evaluate limb viability in a non-survival study. Ten additional joints were elevated and replaced orthotopically in a fashion identical to allotransplantation, obviating only microsurgical repairs and immunosuppression. A superficial inferior epigastric facial (SIEF) flap and a saphenous arteriovenous (AV) bundle were introduced into the femur and tibia respectively, generating a neoangiogenic bone circulation. In allogenic transplantation, this step maintains viability after cessation of immunosuppression. Sixteen weeks later, x-rays, microangiography, histology, histomorphometry and biomechanical analysis were performed. Results Limb viability was preserved in the initial 8 animals. Both soft tissue and bone healing occurred in 10 orthotopic transplants. Surgical angiogenesis from the SIEF flap and AV bundle was always present. Bone and joint viability was maintained, with demonstrable new bone formation. Bone strength was less than the opposite side. Arthrosis and joint contractures were frequent. Conclusion We have developed a rabbit knee joint model and evaluation methods suitable for subsequent studies of whole joint allotransplantation. PMID:22113889

  10. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    NASA Astrophysics Data System (ADS)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  11. 42 CFR 433.117 - Initial approval of replacement systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Information Retrieval Systems § 433.117 Initial approval of replacement systems. (a) A replacement system must meet all conditions of initial approval of a mechanized claims processing and information retrieval system. (b) The agency must submit a APD that includes— (1) The date the replacement system will...

  12. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism.

    PubMed

    Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Nagashima, Shigehiro; Shaikh, Tanvir R; Thomas, Dennis R; Chen, James Z; Derosier, David J; Kitao, Akio; Namba, Keiichi

    2004-10-28

    The bacterial flagellum is a motile organelle, and the flagellar hook is a short, highly curved tubular structure that connects the flagellar motor to the long filament acting as a helical propeller. The hook is made of about 120 copies of a single protein, FlgE, and its function as a nano-sized universal joint is essential for dynamic and efficient bacterial motility and taxis. It transmits the motor torque to the helical propeller over a wide range of its orientation for swimming and tumbling. Here we report a partial atomic model of the hook obtained by X-ray crystallography of FlgE31, a major proteolytic fragment of FlgE lacking unfolded terminal regions, and by electron cryomicroscopy and three-dimensional helical image reconstruction of the hook. The model reveals the intricate molecular interactions and a plausible switching mechanism for the hook to be flexible in bending but rigid against twisting for its universal joint function.

  13. HyBAR: hybrid bone-attached robot for joint arthroplasty.

    PubMed

    Song, S; Mor, A; Jaramaz, B

    2009-06-01

    A number of small bone-attached surgical robots have been introduced to overcome some disadvantages of large stand-alone surgical robots. In orthopaedics, increasing demand on minimally invasive joint replacement surgery has also been encouraging small surgical robot developments. Among various technical aspects of such an approach, optimal miniaturization that maintains structural strength for high speed bone removal was investigated. By observing advantages and disadvantages from serial and parallel robot structures, a new hybrid kinematic configuration was designed for a bone-attached robot to perform precision bone removal for cutting the femoral implant cavity during patellofemoral joint arthroplasty surgery. A series of experimental tests were conducted in order to evaluate the performance of the new robot, especially with respect to accuracy of bone preparation. A miniaturized and rigidly-structured robot prototype was developed for minimally invasive bone-attached robotic surgery. A new minimally invasive modular clamping system was also introduced to enhance the robotic procedure. Foam and pig bone experimental results demonstrated a successful implementation of the new robot that eliminated a number of major design problems of a previous prototype. For small bone-attached surgical robots that utilize high speed orthopaedic tools, structural rigidity and clamping mechanism are major design issues. The new kinematic configuration using hinged prismatic joints enabled an effective miniaturization with good structural rigidity. Although minor problems still exist at the prototype stage, the new development would be a significant step towards the practical use of such a robot.

  14. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  15. Strength and Mechanics of Bonded Scarf Joints for Repair of Composite Materials

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Adkins, D. W.

    1982-01-01

    Experimental and analytical investigations of scarf joints indicate that slight bluntness of adherend tips induces adhesive stress concentrations which significantly reduce joint strength, and the stress distribution through the adhesive thickness is non-uniform and has significant stress concentrations at the ends of the joint. The laminate stacking sequence can have important effects on the adhesive stress distribution. A significant improvement in joint strength is possible by increasing overlap at the expense of raising the repair slightly above the original surface. Although a surface grinder was used to make most experimental specimens, a hand held rotary bur can make a surprisingly good scarf. Scarf joints wit doublers on one side, such as might be used for repair, bend under tensile loads and may actually be weaker than joints without doublers.

  16. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis.

    PubMed

    Barr, Andrew J; Campbell, T Mark; Hopkinson, Devan; Kingsbury, Sarah R; Bowes, Mike A; Conaghan, Philip G

    2015-08-25

    Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. PROSPERO registration number: CRD 42013005009.

  17. Mid- to long-term outcome comparison of the Medtronic Hancock II and bi-leaflet mechanical aortic valve replacement in patients younger than 60 years of age: a propensity-matched analysis.

    PubMed

    Wang, Yin; Chen, Si; Shi, Jiawei; Li, Geng; Dong, Nianguo

    2016-03-01

    This study aims to compare mid-long-term clinical outcomes between patients younger than 60 years of age undergoing bioprosthetic and mechanical aortic valve replacement. From January 2002 to December 2009, patients younger than 60 years of age who received Medtronic Hancock II porcine bioprostheses were selected and compared with those who received mechanical bi-leaflet valves in the aortic position. A stepwise logistic regression propensity score identified a subset of 112 evenly matched patient-pairs. Mid-long-term outcomes of survival, valve-related reoperations, thromboembolic events and bleeding events were assessed. The follow-up was only 95.1% complete. Fourteen measurable variables were statistically similar for the matched cohort. Postoperative in-hospital mortality was 3.6% (bioprosthetic valves) and 2.7% (mechanical valves) (P = 0.700). Survival at 5 and 10 years was 96.3 and 88.7% for patients receiving bioprosthetic valve replacement versus 96.3 and 87.9% for patients receiving mechanical valve replacement (P = 0.860), respectively. At 5 and 10 years after operations, freedom from valve-related reoperation was 97.2 and 94.8% for patients receiving mechanical valve replacement, and 96.3 and 90.2% for patients receiving bioprosthetic valve replacement (P = 0.296), respectively. There was no difference between freedom from thromboembolic events (P = 0.528) and bleeding events (P = 0.128) between the matched groups during the postoperative 10 years. In patients younger than 60 years of age undergoing aortic valve replacement, mid-long-term survival rate was similar for patients receiving bioprosthetic versus mechanical valve replacement. Bioprosthetic valves were associated with a trend for a lower risk of anticoagulation treatment and did not have significantly greater likelihood of a reoperation. These findings suggest that a bioprosthetic valve may be a reasonable choice for AVR in patients younger than 60 years of age. © The Author 2015. Published by

  18. [Clinical study on patellar replacement in total knee arthroplasty].

    PubMed

    Bao, Liang; Gao, Zhihui; Shi, Xiaoqiang; Fang, Xiaomin; Jin, Qunhua

    2013-01-01

    To evaluate the influence of patellar replacement on total knee arthroplasty by comparing with non patellar replacement. Between September 2010 and November 2010, 63 patients (63 knees) with osteoarthritis who met the selection criteria and underwent total knee arthroplasty, were randomly divided into 2 groups: patellar replacement in 32 cases (replacement group), non patellar replacement in 31 cases (non patellar replacement group). There was no significant difference in gender, age, disease duration, osteoarthritis grading, the clinical and functional scores of American Knee Society Score (KSS), the patellar tilt angle, tibiofemoral angle, and patellar ligament ratio between 2 groups (P > 0.05), they were comparable. After 6 weeks, 3, 6, and 12 months of operation, clinical and imaging evaluation methods were used to assessment the effectiveness. Primary healing of incision was obtained in all patients of 2 groups. Deep venous thrombosis occurred in 6 cases of replacement group and in 8 cases of non patellar replacement group. All patients were followed up 12 months. The postoperative incidence of anterior knee pain in replacement group was significantly lower than that in non patellar replacement group (P < 0.05) at 3, 6, and 12 months after operation. No significant difference was found in the postoperative KSS clinical score between 2 groups at each time point (P > 0.05). The joint function score of the replacement group was significantly higher than that of the non patellar replacement group at the other time point (P < 0.05) except the score at 6 weeks and 3 months. Significant difference was found in the patella score between 2 groups at 12 months (P < 0.05), but no significant difference at the other time points (P > 0.05). X-ray film showed no patellar fracture and dislocation, or loosening and breakage of internal fixation. At 12 months after operation, the tibiofemoral angle, the patellar ligament ratio, and the patellar tilt angle showed no significant

  19. Neuromuscular properties of different spastic human joints vary systematically.

    PubMed

    Mirbagheri, M M; Settle, K

    2010-01-01

    We quantified the mechanical abnormalities of the spastic wrist in chronic stroke survivors, and determined whether these findings were representative of those recorded at the elbow and ankle joints. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joints at different joint angles over the range of motion. Age-matched healthy subjects were used as control.

  20. Pain from intra-articular NGF or joint injury in the rat requires contributions from peptidergic joint afferents.

    PubMed

    Kras, Jeffrey V; Weisshaar, Christine L; Pall, Parul S; Winkelstein, Beth A

    2015-09-14

    Non-physiological stretch of the cervical facet joint's capsular ligament induces persistent behavioral hypersensitivity and spinal neuronal hyperexcitability via an intra-articular NGF-dependent mechanism. Although that ligament is innervated by nociceptors, it is unknown if a subpopulation is exclusively responsible for the behavioral and spinal neuronal responses to intra-articular NGF and/or facet joint injury. This study ablated joint afferents using the neurotoxin saporin targeted to neurons involved in either peptidergic ([Sar(9),Met (O2)(11)]-substance P-saporin (SSP-Sap)) or non-peptidergic (isolectin B4-saporin (IB4-Sap)) signaling to investigate the contributions of those neuronal populations to facet-mediated pain. SSP-Sap, but not IB4-Sap, injected into the bilateral C6/C7 facet joints 14 days prior to an intra- articular NGF injection prevents NGF-induced mechanical and thermal hypersensitivity in the forepaws. Similarly, only SSP- Sap prevents the increase in mechanical forepaw stimulation- induced firing of spinal neurons after intra-articular NGF. In addition, intra-articular SSP-Sap prevents both behavioral hypersensitivity and upregulation of NGF in the dorsal root ganglion after a facet joint distraction that normally induces pain. These findings collectively suggest that disruption of peptidergic signaling within the joint may be a potential treatment for facet pain, as well as other painful joint conditions associated with elevated NGF, such as osteoarthritis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.