Sample records for joint space widths

  1. Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography.

    PubMed

    Segal, Neil A; Frick, Eric; Duryea, Jeffrey; Nevitt, Michael C; Niu, Jingbo; Torner, James C; Felson, David T; Anderson, Donald D

    2017-07-01

    The objective of this project was to determine the relationship between medial tibiofemoral joint space width measured on fixed-flexion radiographs and the three-dimensional joint space width distribution on low-dose, standing CT (SCT) imaging. At the 84-month visit of the Multicenter Osteoarthritis Study, 20 participants were recruited. A commercial SCT scanner for the foot and ankle was modified to image knees while standing. Medial tibiofemoral joint space width was assessed on radiographs at fixed locations from 15% to 30% of compartment width using validated software and on SCT by mapping the distances between three-dimensional subchondral bone surfaces. Individual joint space width values from radiographs were compared with three-dimensional joint space width values from corresponding sagittal plane locations using paired t-tests and correlation coefficients. For the four medial-most tibiofemoral locations, radiographic joint space width values exceeded the minimal joint space width on SCT by a mean of 2.0 mm and were approximately equal to the 61st percentile value of the joint space width distribution at each respective sagittal-plane location. Correlation coefficients at these locations were 0.91-0.97 and the offsets between joint space width values from radiographs and SCT measurements were consistent. There were greater offsets and variability in the offsets between modalities closer to the tibial spine. Joint space width measurements on fixed-flexion radiographs are highly correlated with three-dimensional joint space width from SCT. In addition to avoiding bony overlap obscuring the joint, a limitation of radiographs, the current study supports a role for SCT in the evaluation of tibiofemoral OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1388-1395, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Automatic Quantification of Radiographic Wrist Joint Space Width of Patients With Rheumatoid Arthritis.

    PubMed

    Huo, Yinghe; Vincken, Koen L; van der Heijde, Desiree; de Hair, Maria J H; Lafeber, Floris P; Viergever, Max A

    2017-11-01

    Objective: Wrist joint space narrowing is a main radiographic outcome of rheumatoid arthritis (RA). Yet, automatic radiographic wrist joint space width (JSW) quantification for RA patients has not been widely investigated. The aim of this paper is to present an automatic method to quantify the JSW of three wrist joints that are least affected by bone overlapping and are frequently involved in RA. These joints are located around the scaphoid bone, viz. the multangular-navicular, capitate-navicular-lunate, and radiocarpal joints. Methods: The joint space around the scaphoid bone is detected by using consecutive searches of separate path segments, where each segment location aids in constraining the subsequent one. For joint margin delineation, first the boundary not affected by X-ray projection is extracted, followed by a backtrace process to obtain the actual joint margin. The accuracy of the quantified JSW is evaluated by comparison with the manually obtained ground truth. Results: Two of the 50 radiographs used for evaluation of the method did not yield a correct path through all three wrist joints. The delineated joint margins of the remaining 48 radiographs were used for JSW quantification. It was found that 90% of the joints had a JSW deviating less than 20% from the mean JSW of manual indications, with the mean JSW error less than 10%. Conclusion: The proposed method is able to automatically quantify the JSW of radiographic wrist joints reliably. The proposed method may aid clinical researchers to study the progression of wrist joint damage in RA studies. Objective: Wrist joint space narrowing is a main radiographic outcome of rheumatoid arthritis (RA). Yet, automatic radiographic wrist joint space width (JSW) quantification for RA patients has not been widely investigated. The aim of this paper is to present an automatic method to quantify the JSW of three wrist joints that are least affected by bone overlapping and are frequently involved in RA. These joints

  3. Quantitative in vivo HR-pQCT imaging of 3D wrist and metacarpophalangeal joint space width in rheumatoid arthritis.

    PubMed

    Burghardt, Andrew J; Lee, Chan Hee; Kuo, Daniel; Majumdar, Sharmila; Imboden, John B; Link, Thomas M; Li, Xiaojuan

    2013-12-01

    In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82 μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N = 16, age: 52.6 ± 12.8) and healthy controls (CTRL, N = 7, age: 50.1 ± 15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD)-a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater vs. CTRL (p < 0.01), and JSW.MIN was more than two-fold lower (p < 0.001). Similarly, JSW.SD was significantly greater in the wrist of RA patients vs. CTRL (p < 0.05). In vivo precision was highest for JSW (SDD: 100 μm, RMSCV: 2.1%) while the SDD for JSW.MIN and JSW.SD were 370 and 110 μm, respectively. This study suggests that in vivo quantification of 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases.

  4. Quantitative In Vivo HR-pQCT Imaging of 3D Wrist and Metacarpophalangeal Joint Space Width In Rheumatoid Arthritis

    PubMed Central

    Burghardt, Andrew J.; Lee, Chan Hee; Kuo, Daniel; Majumdar, Sharmila; Imboden, John B.; Link, Thomas M.; Li, Xiaojuan

    2013-01-01

    In this technique development study, high-resolution peripheral quantitative computed tomography (HR-pQCT) was applied to non-invasively image and quantify 3D joint space morphology of the wrist and metacarpophalangeal (MCP) joints of patients with rheumatoid arthritis (RA). HR-pQCT imaging (82μm voxel-size) of the dominant hand was performed in patients with diagnosed rheumatoid arthritis (RA, N=16, age:52.6±12.8) and healthy controls (CTRL, N=7, age:50.1±15.0). An automated computer algorithm was developed to segment wrist and MCP joint spaces. The 3D distance transformation method was applied to spatially map joint space width, and summarized by the mean joint space width (JSW), minimal and maximal JSW (JSW.MIN, JSW.MAX), asymmetry (JSW.AS), and distribution (JSW.SD) – a measure of joint space heterogeneity. In vivo precision was determined for each measure by calculating the smallest detectable difference (SDD) and root mean square coefficient of variation (RMSCV%) of repeat scans. Qualitatively, HR-pQCT images and pseudo-color JSW maps showed global joint space narrowing, as well as regional and focal abnormalities in RA patients. In patients with radiographic JSN at an MCP, JSW.SD was two-fold greater versus CTRL (p<0.01), and JSW.MIN was more than two-fold lower (p<0.001). Similarly, JSW.SD was significantly greater in the wrist of RA patients versus CTRL (p<0.05). In vivo precision was highest for JSW (SDD: 100μm, RMSCV: 2.1%) while the SDD for JSW.MIN and JSW.SD were 370 and 110μm, respectively. This study suggests that in vivo quantification of 3D joint space morphology from HR-pQCT, could improve early detection of joint damage in rheumatological diseases. PMID:23887879

  5. Segmentation and determination of joint space width in foot radiographs

    NASA Astrophysics Data System (ADS)

    Schenk, O.; de Muinck Keizer, D. M.; Bernelot Moens, H. J.; Slump, C. H.

    2016-03-01

    Joint damage in rheumatoid arthritis is frequently assessed using radiographs of hands and feet. Evaluation includes measurements of the joint space width (JSW) and detection of erosions. Current visual scoring methods are timeconsuming and subject to inter- and intra-observer variability. Automated measurement methods avoid these limitations and have been fairly successful in hand radiographs. This contribution aims at foot radiographs. Starting from an earlier proposed automated segmentation method we have developed a novel model based image analysis algorithm for JSW measurements. This method uses active appearance and active shape models to identify individual bones. The model compiles ten submodels, each representing a specific bone of the foot (metatarsals 1-5, proximal phalanges 1-5). We have performed segmentation experiments using 24 foot radiographs, randomly selected from a large database from the rheumatology department of a local hospital: 10 for training and 14 for testing. Segmentation was considered successful if the joint locations are correctly determined. Segmentation was successful in only 14%. To improve results a step-by-step analysis will be performed. We performed JSW measurements on 14 randomly selected radiographs. JSW was successfully measured in 75%, mean and standard deviation are 2.30+/-0.36mm. This is a first step towards automated determination of progression of RA and therapy response in feet using radiographs.

  6. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis.

    PubMed

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L; van de Laar, Mart A; Kuper, Ina H H; Slump, Kees C H; Lafeber, Floris P J G; Bernelot Moens, Hein J

    2016-10-01

    Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp-van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was [Formula: see text] and [Formula: see text] in the two series of radiographs, and of PIP joints [Formula: see text] and [Formula: see text]. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was [Formula: see text], indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of

  7. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis

    PubMed Central

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L.; van de Laar, Mart A.; Kuper, Ina H. H.; Slump, Kees C. H.; Lafeber, Floris P. J. G.; Bernelot Moens, Hein J.

    2016-01-01

    Abstract. Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp–van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was 1.7±0.2 and 1.6±0.3  mm in the two series of radiographs, and of PIP joints 1.0±0.2 and 0.9±0.2  mm. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was 0.0±0.1  mm, indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than

  8. Fully automated joint space width measurement and digital X-ray radiogrammetry in early RA.

    PubMed

    Platten, Michael; Kisten, Yogan; Kälvesten, Johan; Arnaud, Laurent; Forslind, Kristina; van Vollenhoven, Ronald

    2017-01-01

    To study fully automated digital joint space width (JSW) and bone mineral density (BMD) in relation to a conventional radiographic scoring method in early rheumatoid arthritis (eRA). Radiographs scored by the modified Sharp van der Heijde score (SHS) in patients with eRA were acquired from the SWEdish FarmacOTherapy study. Fully automated JSW measurements of bilateral metacarpals 2, 3 and 4 were compared with the joint space narrowing (JSN) score in SHS. Multilevel mixed model statistics were applied to calculate the significance of the association between ΔJSW and ΔBMD over 1 year, and the JSW differences between damaged and undamaged joints as evaluated by the JSN. Based on 576 joints of 96 patients with eRA, a significant reduction from baseline to 1 year was observed in the JSW from 1.69 (±0.19) mm to 1.66 (±0.19) mm (p<0.01), and BMD from 0.583 (±0.068) g/cm 2 to 0.566 (±0.074) g/cm 2 (p<0.01). A significant positive association was observed between ΔJSW and ΔBMD over 1 year (p<0.0001). On an individual joint level, JSWs of undamaged (JSN=0) joints were wider than damaged (JSN>0) joints: 1.68 mm (95% CI 1.70 to 1.67) vs 1.54 mm (95% CI 1.63 to 1.46). Similarly the unadjusted multilevel model showed significant differences in JSW between undamaged (1.68 mm (95% CI 1.72 to 1.64)) and damaged joints (1.63 mm (95% CI 1.68 to 1.58)) (p=0.0048). This difference remained significant in the adjusted model: 1.66 mm (95% CI 1.70 to 1.61) vs 1.62 mm (95% CI 1.68 to 1.56) (p=0.042). To measure the JSW with this fully automated digital tool may be useful as a quick and observer-independent application for evaluating cartilage damage in eRA. NCT00764725.

  9. Semiautomated digital analysis of knee joint space width using MR images.

    PubMed

    Agnesi, Filippo; Amrami, Kimberly K; Frigo, Carlo A; Kaufman, Kenton R

    2007-05-01

    The goal of this study was to (a) develop a semiautomated computer algorithm to measure knee joint space width (JSW) from magnetic resonance (MR) images using standard imaging techniques and (b) evaluate the reproducibility of the algorithm. Using a standard clinical imaging protocol, bilateral knee MR images were obtained twice within a 2-week period from 17 asymptomatic research participants. Images were analyzed to determine the variability of the measurements performed by the program compared with the variability of manual measurements. Measurement variability of the computer algorithm was considerably smaller than the variability of manual measurements. The average difference between two measurements of the same slice performed with the computer algorithm by the same user was 0.004 +/- 0.07 mm for the tibiofemoral joint (TF) and 0.009 +/- 0.11 mm for the patellofemoral joint (PF) compared with an average of 0.12 +/- 0.22 mm TF and 0.13 +/- 0.29 mm PF, respectively, for the manual method. Interuser variability of the computer algorithm was also considerably smaller, with an average difference of 0.004 +/- 0.1 mm TF and 0.0006 +/- 0.1 mm PF compared with 0.38 +/- 0.59 mm TF and 0.31 +/- 0.66 mm PF obtained using a manual method. The between-day reproducibility was larger but still within acceptable limits at 0.09 +/- 0.39 mm TF and 0.09 +/- 0.51 mm PF. This technique has proven consistently reproducible on a same slice base,while the reproducibility comparing different acquisitions of the same subject was larger. Longitudinal reproducibility improvement needs to be addressed through acquisition protocol improvements. A semiautomated method for measuring knee JSW from MR images has been successfully developed.

  10. Computational measurement of joint space width and structural parameters in normal hips.

    PubMed

    Nishii, Takashi; Shiomi, Toshiyuki; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko

    2012-05-01

    Joint space width (JSW) of hip joints on radiographs in normal population may vary by related factors, but previous investigations were insufficient due to limitations of sources of radiographs, inclusion of subjects with osteoarthritis, and manual measurement techniques. We investigated influential factors on JSW using semiautomatic computational software on pelvic radiographs in asymptomatic subjects without radiological osteoarthritic findings. Global and local JSW at the medial, middle, and lateral compartments, and the hip structural parameters were measured in asymptomatic, normal 150 cases (300 hips), using a customized computational software. Reliability of measurement in global and local JSWs was high with intraobserver reproducibility (intraclass correlation coefficient) ranging from 0.957 to 0.993 and interobserver reproducibility ranging from 0.925 to 0.985. There were significant differences among three local JSWs, with the largest JSW at the lateral compartment. Global and medial local JSWs were significantly larger in the right hip, and global, medial and middle local JSWs were significantly smaller in women. Global and local JSWs were inversely correlated with CE angle and positively correlated with horizontal distance of the head center, but not correlated with body mass index in men and women. They were positively correlated with age and inversely correlated with vertical distance of the head center only in men. There were interindividual variations of JSW in normal population, depending on sites of the weight-bearing area, side, gender, age, and hip structural parameters. For accurate diagnosis and assessment of hip osteoarthritis, consideration of those influential factors other than degenerative change is important.

  11. Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: A cross-sectional study

    PubMed Central

    Beattie, Karen A; Duryea, Jeffrey; Pui, Margaret; O'Neill, John; Boulos, Pauline; Webber, Colin E; Eckstein, Felix; Adachi, Jonathan D

    2008-01-01

    Background The clinical use of minimum joint space width (mJSW) and cartilage volume and thickness has been limited to the longitudinal measurement of disease progression (i.e. change over time) rather than the diagnosis of OA in which values are compared to a standard. This is primarily due to lack of establishment of normative values of joint space width and cartilage morphometry as has been done with bone density values in diagnosing osteoporosis. Thus, the purpose of this pilot study is to estimate reference values of medial joint space width and cartilage morphometry in healthy individuals of all ages using standard radiography and peripheral magnetic resonance imaging. Design For this cross-sectional study, healthy volunteers underwent a fixed-flexion knee X-ray and a peripheral MR (pMR) scan of the same knee using a 1T machine (ONI OrthOne™, Wilmington, MA). Radiographs were digitized and analyzed for medial mJSW using an automated algorithm. Only knees scoring ≤1 on the Kellgren-Lawrence scale (no radiographic evidence of knee OA) were included in the analyses. All 3D SPGRE fat-sat sagittal pMR scans were analyzed for medial tibial cartilage morphometry using a proprietary software program (Chondrometrics GmbH). Results Of 119 healthy participants, 73 were female and 47 were male; mean (SD) age 38.2 (13.2) years, mean BMI 25.0 (4.4) kg/m2. Minimum JSW values were calculated for each sex and decade of life. Analyses revealed mJSW did not significantly decrease with increasing decade (p > 0.05) in either sex. Females had a mean (SD) medial mJSW of 4.8 (0.7) mm compared to males with corresponding larger value of 5.7 (0.8) mm. Cartilage morphometry results showed similar trends with mean (SD) tibial cartilage volume and thickness in females of 1.50 (0.19) μL/mm2 and 1.45 (0.19) mm, respectively, and 1.77 (0.24) μL/mm2 and 1.71 (0.24) mm, respectively, in males. Conclusion These data suggest that medial mJSW values do not decrease with aging in healthy

  12. Radiographic Measurement of Joint Space Width Using the Fixed Flexion View in 1,102 Knees of Japanese Patients with Osteoarthritis in Comparison with the Standing Extended View

    PubMed Central

    Kan, Hiroyuki; Arai, Yuji; Kobayashi, Masashi; Nakagawa, Shuji; Inoue, Hiroaki; Hino, Manabu; Komaki, Shintaro; Ikoma, Kazuya; Ueshima, Keiichiro; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2017-01-01

    Purpose The fixed flexion view (FFV) of the knee is considered useful for evaluating the joint space when assessing the severity of osteoarthritis (OA) of the knee. To clarify the usefulness of FFV for evaluation of the joint space and severity of knee OA, this study evaluated changes in the joint space on the FFV and standing extended view (SEV) in patients with knee OA. Materials and Methods The SEV and FFV images were acquired in 567 patients (1,102 knees) who visited the hospital with a chief complaint of knee joint pain. Medial joint space width (MJSW) and Kellgren-Lawrence (K-L) classification assessed using the SEV and FFV images were compared. Results Mean MJSW was significantly smaller when assessed on the FFV than on the SEV (3.02±1.55 mm vs. 4.31±1.30 mm; p<0.001). The K-L grade was the same or higher on the FFV than on the SEV. Conclusions The FFV is more useful than the SEV for evaluating the joint space in OA knees. Treatment strategies in patients with knee OA should be determined based on routinely acquired FFV images. PMID:28231651

  13. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  14. Preoperative Joint Space Width Predicts Patient-Reported Outcomes After Total Hip Arthroplasty in Young Patients.

    PubMed

    Stambough, Jeffrey B; Xiong, Ao; Baca, Geneva R; Wu, Ningying; Callaghan, John J; Clohisy, John C

    2016-02-01

    In a new health care economy, there is an emerging need to understand and quantify predictors of total hip arthroplasty (THA) outcomes. We investigated the association between preoperative radiographic disease (as measured quantitatively by joint space width [JSW]) and patient-reported function, activity, pain, and quality of life after THA. We retrospectively analyzed 146 patients (146 hips) 55 years or younger with a diagnosis of osteoarthritis who underwent cementless THA between January 2009 and December 2010. Preoperative pelvic radiographs were measured by 1 author blinded to clinical outcomes to establish JSW, defined as the shortest distance between the femoral head margin and the superolateral weight-bearing portion of the acetabulum. The JSW value was treated as a continuous variable when applied to statistical modeling. The relationship between the JSW and the improvement of clinical outcome was examined via a general linear modeling approach with adjustments for patients' age, body mass index, and sex. We identified an inverse relationship between preoperative JSW and improvements in functional, activity, pain, and quality of life. We found that, as JSW decreased by 1 mm, the outcome measure improvements were modified Harris Hip Score of 6.3 (p<0.001); SF-12 physical: 2.1 (p=0.027); WOMAC-pain: 4.8 (p=0.01); and UCLA Activity: 0.44 (p=0.02). Our results demonstrate that patients with greater preoperative joint space have less predictable improvement in terms of function, pain relief, and activity. These findings suggest that THA in young patients with a JSW less than 1.5 to 2 mm provides more predictable improvements in pain and functional outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Change in joint space width: hyaline articular cartilage loss or alteration in meniscus?

    PubMed

    Hunter, D J; Zhang, Y Q; Tu, X; Lavalley, M; Niu, J B; Amin, S; Guermazi, A; Genant, H; Gale, D; Felson, D T

    2006-08-01

    To explore the relative contribution of hyaline cartilage morphologic features and the meniscus to the radiographic joint space. The Boston Osteoarthritis of the Knee Study is a natural history study of symptomatic knee osteoarthritis (OA). Baseline and 30-month followup assessments included knee magnetic resonance imaging (MRI) and fluoroscopically positioned weight-bearing knee radiographs. Cartilage and meniscal degeneration were scored on MRI in the medial and lateral tibiofemoral joints using a semiquantitative grading system. Meniscal position was measured to the nearest millimeter. The dependent variable was joint space narrowing (JSN) on the plain radiograph (possible range 0-3). The predictor variables were MRI cartilage score, meniscal degeneration, and meniscal position measures. We first conducted a cross-sectional analysis using multivariate regression to determine the relative contribution of meniscal factors and cartilage morphologic features to JSN, adjusting for body mass index (BMI), age, and sex. The same approach was used for change in JSN and change in predictor variables. We evaluated 264 study participants with knee OA (mean age 66.7 years, 59% men, mean BMI 31.4 kg/m(2)). The results from the models demonstrated that meniscal position and meniscal degeneration each contributed to prediction of JSN, in addition to the contribution by cartilage morphologic features. For change in medial joint space, both change in meniscal position and change in articular cartilage score contributed substantially to narrowing of the joint space. The meniscus (both its position and degeneration) accounts for a substantial proportion of the variance explained in JSN, and the change in meniscal position accounts for a substantial proportion of change in JSN.

  16. Automated joint space width quantification of hand and wrist joints: a proof of concept study.

    PubMed

    Huo, Yinghe; Veldhuizen, Renske D; van der Heijde, Desiree M; Besselink, Nick J; Jacobs, Johannes W G; van Laar, Jacob M; Viergever, Max A; Vincken, Koen L; Lafeber, Floris P; de Hair, Maria J H

    2016-01-01

    To compare as proof of concept the sensitivity to change of automated quantification of radiographic wrist and hand joint space width (JSW) with scoring JSW according to the Sharp/van der Heijde scoring method (SHS) in two strategy groups of a treat-to-target and tight-control early rheumatoid arthritis (RA) study. Digital radiographs were assessed for JSW changes of 134 patients of the 236 patients participating in the second Computer Assisted Management in Early Rheumatoid Arthritis trial, of whom both baseline and year 2 radiographs were available (year 1 radiographs n=125). Of those 134 patients, 70 started with methotrexate and prednisone (MTX+Pred) and 64 with MTX and placebo (MTX+Plac). JSW change over 1 and 2 years of the hands and wrists was assessed, applying both the joint space narrowing (JSN) subscore of the SHS by 2 readers and the automated assessment with the JSW quantification software 'JSQ'. For both methods, progression of JSW change of the hand and wrist was analysed using linear mixed modelling (dependent variable 'JSW', factor 'strategy group', covariate 'follow-up time in years', interaction term 'strategy group*follow-up time'; radiographs of baseline, year 1 and year 2 were used). For each method the standardised mean difference (SMD) for the change in JSW from baseline to year 2 between the treatment strategies was obtained using a non-parametric method. Patient characteristics of the current subpopulation were similar to those of the whole study population. JSN of the hand and wrist according to SHS at 2 years was present in 16 vs. 23% in the MTX+Pred group vs. the MTX+Plac group. The mean yearly progression rates of JSW change of the hands and wrists using JSQ were -0.00mm (95% confidence interval (CI) -0.01; 0.01) for MTX+Pred vs. -0.02mm (95%CI -0.03; -0.01) for MTX+Plac, p=0.045, and using SHS JSN they were 0.19 units (95%CI 0.09; 0.30) vs. 0.30 units (95%CI 0.14; 0.45) for MTX+Pred vs. MTX+Plac, p=0.271. The SMD for the change from

  17. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models.

    PubMed

    van IJsseldijk, E A; Valstar, E R; Stoel, B C; Nelissen, R G H H; Baka, N; Van't Klooster, R; Kaptein, B L

    2016-08-01

    An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development.Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van't Klooster, B. L. Kaptein. Three dimensional measurement

  18. Analysis of Contraction Joint Width Influence on Load Stress of Pavement Panels

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Cui, Wei; Sun, Wei

    2018-05-01

    The width of transverse contraction joint of the cement road varies with temperatures, which leads to changes in load transmission among plates of the road surface and affects load stress of the road plates. Three-dimensional element analysis software EverFE is used to address the relation between the contraction joint width and road surface load stress, revealing the impact of reducing contraction joint width. The results could be of critical value in maintaining road functions and extending the service life of cement road surfaces.

  19. Changes in temporomandibular joint spaces after arthroscopic disc repositioning: a self-control study

    PubMed Central

    Kai Hu, Ying; Abdelrehem, Ahmed; Yang, Chi; Cai, Xie Yi; Xie, Qian Yang; Sah, Manoj Kumar

    2017-01-01

    Disc repositioning is a common procedure for patients with anterior disc displacement (ADD). The purpose of this retrospective record-based study was to evaluate changes in the widths of joint spaces and condylar position changes in patients with unilateral ADD following arthroscopic disc repositioning, with the healthy sides as self-control, using magnetic resonance images (MRI).Widths of anterior, superior, and posterior joint spaces (AS, SS, and PS) were measured. The condylar position was described as anterior, centric or posterior, expressed as . Paired-t test and Chi-square test were used to analyze the data. Fifty-four records conformed to the inclusion criteria (mean age of 21.02 years). Widths of SS and PS increased significantly after surgery (P < 0.001) on the operative sides, while joint spaces of healthy sides and AS of operative sides had no significant changes. Dominant location of condyles of operative sides changed from a posterior position to an anterior position, while healthy sides were mostly centric condylar position no matter preoperatively or postoperatively. Therefore, the results of this study indicate that unilateral arthroscopic disc repositioning significantly increases the posterior and superior spaces of the affected joints, without affecting spaces of the healthy sides. PMID:28361905

  20. The rate of decline of joint space width in patients with osteoarthritis of the knee: a systematic review and meta-analysis of randomized placebo-controlled trials of chondroitin sulfate .

    PubMed

    Hochberg, Marc C; Zhan, Min; Langenberg, Patricia

    2008-11-01

    Chondroitin sulfate has been shown to relieve pain and improve functional limitation in patients with osteoarthritis (OA) of the knee in numerous clinical trials and meta-analyses. Its role as a potential structure-modifying drug for knee OA, however, remains controversial. To perform a meta-analysis of randomized double-blind placebo-controlled clinical trials to assess the efficacy of chondroitin sulfate as a structure-modifying drug for knee OA. A Medline search was conducted from 1996 through 2007 and five articles that reported results from three trials were identified; one additional trial was identified through review of presentations at annual rheumatology meetings. There was no evidence of heterogeneity across the trials and results were pooled using a fixed effects meta-analysis. Pooled results demonstrated a small significant effect of chondroitin sulfate on the reduction in rate of decline in minimum joint space width of 0.07 mm/year (95% CI 0.03, 0.10) that corresponded to an effect size of 0.26 (95% CI 0.14, 0.38) (p < 0.0001). This result was robust in sensitivity analyses. The individual studies included in the meta-analysis varied in the number of patients enrolled and the techniques used to acquire knee radiographs and to measure joint space width. These results demonstrate that chondroitin sulfate is effective for reducing the rate of decline in minimum joint space width in patients with OA of the knee. Chondroitin sulfate may have a role as a structure-modifying agent in the management of patients with knee OA.

  1. Symphysis pubis width and unaffected hip joint width in patients with slipped upper femoral epiphysis: widening compared with normal values.

    PubMed

    Tins, Bernhard; Cassar-Pullicino, Victor; Haddaway, Mike

    2010-04-01

    The exact pathomechanism of slipped upper femoral epiphysis (SUFE) remains elusive. This paper suggests a generalised abnormality of the development or maturation of cartilage as a possible cause. It is proposed that SUFE is part of a generalised abnormality of the cartilage formation or maturation resulting in abnormal measurements of cartilaginous joint structures. Radiographs of SUFE patients were assessed for the width of the unaffected hip joint and the symphysis pubis. Comparison with previously published normal values was made. Fifty-one patients were assessed, 35 male, 16 female. The average age was 12 years and 11 months combined for both sexes, 13 years 8 months for boys, 11 years 4 months for girls. Width of the symphysis pubis was assessed on 46 datasets, and comparison with normal values was performed using the Wilcoxon paired rank test. Statistical significance was set as p < 0.05. The average expected width was 5.8 mm (5.4-6.2 mm), the average measured width was 7.3 mm (3.5-12 mm), median value 7.0 mm, and the difference is statistically significant. Cartilage thickness of the uninvolved hip joint could be assessed in 46 cases, and comparison using the Wilcoxon paired rank test resulted in a statistically significant difference (significance set as p < 0.05). The average expected width was 4.9 mm (3.6-6.5 mm), the average measured width was 5.5 mm (4-8 mm), and median 5.3 mm. The results indicate that SUFE patients display a generalised increased width of joint cartilage for their age. This could be due to increased cartilage formation or decreased maturation or a combination of the two, and could explain the increased mechanical vulnerability of these children to normal or abnormal stresses, despite histologically normal organisation of the physis as shown in previous studies.

  2. Tomosynthesis can facilitate accurate measurement of joint space width under the condition of the oblique incidence of X-rays in patients with rheumatoid arthritis.

    PubMed

    Ono, Yohei; Kashihara, Rina; Yasojima, Nobutoshi; Kasahara, Hideki; Shimizu, Yuka; Tamura, Kenichi; Tsutsumi, Kaori; Sutherland, Kenneth; Koike, Takao; Kamishima, Tamotsu

    2016-06-01

    Accurate evaluation of joint space width (JSW) is important in the assessment of rheumatoid arthritis (RA). In clinical radiography of bilateral hands, the oblique incidence of X-rays is unavoidable, which may cause perceptional or measurement error of JSW. The objective of this study was to examine whether tomosynthesis, a recently developed modality, can facilitate a more accurate evaluation of JSW than radiography under the condition of oblique incidence of X-rays. We investigated quantitative errors derived from the oblique incidence of X-rays by imaging phantoms simulating various finger joint spaces using radiographs and tomosynthesis images. We then compared the qualitative results of the modified total Sharp score of a total of 320 joints from 20 patients with RA between these modalities. A quantitative error was prominent when the location of the phantom was shifted along the JSW direction. Modified total Sharp scores of tomosynthesis images were significantly higher than those of radiography, that is to say JSW was regarded as narrower in tomosynthesis than in radiography when finger joints were located where the oblique incidence of X-rays is expected in the JSW direction. Tomosynthesis can facilitate accurate evaluation of JSW in finger joints of patients with RA, even with oblique incidence of X-rays. Accurate evaluation of JSW is necessary for the management of patients with RA. Through phantom and clinical studies, we demonstrate that tomosynthesis may achieve more accurate evaluation of JSW.

  3. Congruence and joint space width alterations of the medial compartment following lateral unicompartmental knee arthroplasty.

    PubMed

    Zuiderbaan, H A; Khamaisy, S; Thein, R; Nawabi, D H; Pearle, A D

    2015-01-01

    Progressive degenerative changes in the medial compartment of the knee following lateral unicompartmental arthroplasty (UKA) remains a leading indication for revision surgery. The purpose of this study is to evaluate changes in the congruence and joint space width (JSW) of the medial compartment following lateral UKA. The congruence of the medial compartment of 53 knees (24 men, 23 women, mean age 13.1 years; sd 62.1) following lateral UKA was evaluated pre-operatively and six weeks post-operatively, and compared with 41 normal knees (26 men, 15 women, mean age 33.7 years; sd 6.4), using an Interactive closest point algorithm which calculated the congruence index (CI) by performing a rigid transformation that best aligns the digitised tibial and femoral surfaces. Inner, middle and outer JSWs were measured by sub-dividing the medial compartment into four quarters on pre- and post-operative, weight bearing tunnel view radiographs. The mean CI of knees following lateral UKA significantly improved from 0.92 (sd 0.06) pre-operatively to 0.96 (sd 0.02) (p < 0.001) six weeks post-operatively. The mean CI of the healthy control group was 0.99 sd 0.01. Post-operatively, the mean inner JSW increased (p = 0.006) and the outer decreased (p = 0.002). The JSW was restored post-operatively as no significant differences were noted in all three locations compared with the control group (inner JSW p = 0.43; middle JSW p = 0.019, outer JSW p = 0.51). Our data suggest that a well conducted lateral UKA may improve the congruence and normalise the JSW of the medial compartment, potentially preventing progression of degenerative change. ©2015 The British Editorial Society of Bone & Joint Surgery.

  4. Effect of traction on wrist joint space and cartilage visibility with and without MR arthrography

    PubMed Central

    Griffith, James F; Tang, W K; Ng, Alex W H; Yeung, David K W

    2017-01-01

    Objective: To compare the effect of traction during non-arthrographic and arthrographic MR examination of the wrist with regard to joint space width, joint fluid dispersion and cartilage surface visibility. Methods: Prospective 3-T MRI study of 100 wrists in 96 patients. The first 50 wrists underwent MR arthrography first without traction and then with traction. The following 50 wrists underwent standard MR first without traction and then with traction. On these examinations, two radiologists independently measured (i) joint space width, semi-quantitatively graded (ii) joint fluid dispersion between opposing cartilage surfaces and (iii) articular cartilage surface visibility. The three parameters were compared between the two groups. Results: Traction led to an increase in joint space width at nearly all joints in all patients (p < 0.05), although more so in the arthrography (∆ = 0.08–0.79 mm, all p < 0.05) than in the non-arthrography (∆ = 0.001–0.61 mm, all p < 0.05) group. Joint fluid dispersion and cartilage surface visibility improved after traction in nearly all joints (p < 0.05) in all patients and more so in the arthographic than in the non-arthrography group. Conclusion: Traction did significantly improve cartilage surface visibility for standard MRI of the wrist although the effect was not as great as that seen with MR arthography or MR arthrography with traction. Advances in knowledge: This is the first study to show the beneficial effect of traction during standard non-arthrography MRI of the wrist and compare the effect of traction between non-arthrographic and arthrographic MRI of the wrist. PMID:28181830

  5. Medial unicompartmental knee arthroplasty improves congruence and restores joint space width of the lateral compartment.

    PubMed

    Khamaisy, Saker; Zuiderbaan, Hendrik A; van der List, Jelle P; Nam, Denis; Pearle, Andrew D

    2016-06-01

    Osteoarthritic progression of the lateral compartment remains a leading indication for medial unicompartmental knee arthroplasty (UKA) revision. Therefore, the purpose of this study was to evaluate the alterations of the lateral compartment congruence and joint space width (JSW) following medial UKA. Retrospectively, lateral compartment congruence and JSW were evaluated in 174 knees (74 females, 85 males, mean age 65.5years; SD±10.1) preoperatively and six weeks postoperatively, and compared to 41 healthy knees (26 men, 15 women, mean age 33.7years; SD±6.4). Congruence (CI) was calculated using validated software that evaluates the geometric relationship between surfaces and calculates a congruence index (CI). JSW was measured on three sides (inner, middle, outer) by subdividing the lateral compartment into four quarters. The CI of the control group was 0.98 (SD±0.01). The preoperative CI was 0.88 (SD±0.01), which improved significantly to 0.93 (SD±0.03) postoperatively (p<0.001). In 82% of knees, CI improved after surgery, while in 18% it decreased. The preoperative significant JSW differences of the inner (p<0.001) and outer JSW (p<0.001) were absent postoperatively. Our data suggests that a well-conducted medial UKA not only resurfaces the medial compartment but also improves congruence and restores the JSW of the lateral compartment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Human ossicular-joint flexibility transforms the peak amplitude and width of impulsive acoustic stimulia)

    PubMed Central

    Gottlieb, Peter K.; Vaisbuch, Yona

    2018-01-01

    The role of the ossicular joints in the mammalian middle ear is still debated. This work tests the hypothesis that the two synovial joints filter potentially damaging impulsive stimuli by transforming both the peak amplitude and width of these impulses before they reach the cochlea. The three-dimensional (3D) velocity along the ossicular chain in unaltered cadaveric human temporal bones (N = 9), stimulated with acoustic impulses, is measured in the time domain using a Polytec (Waldbronn, Germany) CLV-3D laser Doppler vibrometer. The measurements are repeated after fusing one or both of the ossicular joints with dental cement. Sound transmission is characterized by measuring the amplitude, width, and delay of the impulsive velocity profile as it travels from the eardrum to the cochlea. On average, fusing both ossicular joints causes the stapes velocity amplitude and width to change by a factor of 1.77 (p = 0.0057) and 0.78 (p = 0.011), respectively. Fusing just the incudomalleolar joint has a larger effect on amplitude (a factor of 2.37), while fusing just the incudostapedial joint decreases the stapes velocity on average. The 3D motion of the ossicles is altered by fusing the joints. Finally, the ability of current computational models to predict this behavior is also evaluated.

  7. Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Mildebrath, M.; Hassel, T.

    The aim of this research was the experimental investigation of the influence of the gap width and speed of the welding wire on the changes of the geometry in the welded joint in the hybrid laser-arc welding of shipbuilding steel RS E36. The research was divided into three parts. First, in order to understand the influence of the gap width on the welded joint geometry, experimental research was done using continuous wave fiber laser IPG YLS-15000 with arc rectifier VDU-1500DC. The second part involved study of the geometry of the welded joint and hardness test results. Three macrosections from each welded joint were obtained. Influence of the gap width and welding wire speed on the welded joint geometry was researched in the three lines: in the right side of the plates, middle welded joint and in the root welded joint.

  8. Comparison of 2 Radiographic Techniques for Measurement of Tibiofemoral Joint Space Width.

    PubMed

    Mehta, Nabil; Duryea, Jeffrey; Badger, Gary J; Akelman, Matthew R; Jones, Morgan H; Spindler, Kurt P; Fleming, Braden C

    2017-09-01

    No consensus is available regarding the best method for measuring tibiofemoral joint space width (JSW) on radiographs to quantify joint changes after injury. Studies that track articular cartilage thickness after injury frequently use patients' uninjured contralateral knees as controls, although the literature supporting this comparison is limited. (1) To compare JSW measurements using 2 established measurement techniques in healthy control participants and (2) to determine whether the mean JSW of the uninjured contralateral knee in a cohort with anterior cruciate ligament (ACL) reconstruction is different from that obtained from a true control population. Cohort study (diagnosis); Level of evidence, 2. Medial and lateral JSWs were measured on standardized, bilateral, semiflexed metatarsophalangeal positioning, posteroanterior radiographs of 60 healthy individuals (26 females; mean ± SD age, 25 ± 6.2 years; no history of knee injury) via 2 published techniques: a computerized surface-delineation method (surface-fit method) and a manual digitization method (midpoint method). Bland-Altman method was used to examine the agreement between JSW measurements obtained with the 2 methods and to examine the agreement between measurements obtained on left and right knees within a participant for each measurement method. Within- and between-participant variance components and intraclass correlation coefficients (ICCs) were computed for JSW measurements corresponding to each method. Two-sample t tests were used to compare the surface-fit method measurements of mean JSW of the true control group (n = 60) with the previously published mean JSW measurements from the Multicenter Orthopaedics Outcomes Network (MOON) nested cohort of 262 contralateral uninjured knees 2 to 3 years after ACL reconstruction. For JSW in the medial compartment, the surface-fit method had lower within-participant interknee variability (σ 2 within , 0.064; 95% CI, 0.04-0.09) compared with the midpoint

  9. The Waist Width of Skis Influences the Kinematics of the Knee Joint in Alpine Skiing

    PubMed Central

    Zorko, Martin; Nemec, Bojan; Babič, Jan; Lešnik, Blaz; Supej, Matej

    2015-01-01

    Recently alpine skis with a wider waist width, which medially shifts the contact between the ski edge and the snow while turning, have appeared on the market. The aim of this study was to determine the knee joint kinematics during turning while using skis of different waist widths (65mm, 88mm, 110mm). Six highly skilled skiers performed ten turns on a predefined course (similar to a giant slalom course). The relation of femur and tibia in the sagital, frontal and coronal planes was captured by using an inertial motion capture suit, and Global Navigation Satellite System was used to determine the skiers’ trajectories. With respect of the outer ski the knee joint flexion, internal rotation and abduction significantly decreased with the increase of the ski waist width for the greatest part of the ski turn. The greatest abduction with the narrow ski and the greatest external rotation (lowest internal rotation) with the wide ski are probably the reflection of two different strategies of coping the biomechanical requirements in the ski turn. These changes in knee kinematics were most probably due to an active adaptation of the skier to the changed biomechanical conditions using wider skis. The results indicated that using skis with large waist widths on hard, frozen surfaces could bring the knee joint unfavorably closer to the end of the range of motion in transversal and frontal planes as well as potentially increasing the risk of degenerative knee injuries. Key points The change in the skis’ waist width caused a change in the knee joint movement strategies, which had a tendency to adapt the skier to different biomechanical conditions. The use of wider skis or, in particular, skis with a large waist width, on a hard or frozen surface, could unfavourably bring the knee joint closer to the end of range of motion in transversal and frontal planes as well as may potentially increase the risk of degenerative knee injuries. The overall results of the abduction and

  10. Beam-width spreading of vortex beams in free space

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Li, Jinhong; Duan, Meiling

    2018-01-01

    Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.

  11. Responsiveness to change and reliability of measurement of radiographic joint space width in osteoarthritis of the knee: a systematic review.

    PubMed

    Reichmann, W M; Maillefert, J F; Hunter, D J; Katz, J N; Conaghan, P G; Losina, E

    2011-05-01

    The goal of this systematic review was to report the responsiveness to change and reliability of conventional radiographic joint space width (JSW) measurement. We searched the PubMed and Embase databases using the following search criteria: [osteoarthritis (OA) (MeSH)] AND (knee) AND (X-ray OR radiography OR diagnostic imaging OR radiology OR disease progression) AND (joint space OR JSW or disease progression). We assessed responsiveness by calculating the standardized response mean (SRM). We assessed reliability using intra- and inter-reader intra-class correlation (ICC) and coefficient of variation (CV). Random-effects models were used to pool results from multiple studies. Results were stratified by study duration, design, techniques of obtaining radiographs, and measurement method. We identified 998 articles using the search terms. Of these, 32 articles (43 estimates) reported data on responsiveness of JSW measurement and 24 (50 estimates) articles reported data on measures of reliability. The overall pooled SRM was 0.33 [95% confidence interval (CI): 0.26, 0.41]. Responsiveness of change in JSW measurement was improved substantially in studies of greater than 2 years duration (0.57). Further stratifying this result in studies of greater than 2 years duration, radiographs obtained with the knee in a flexed position yielded an SRM of 0.71. Pooled intra-reader ICC was estimated at 0.97 (95% CI: 0.92, 1.00) and the intra-reader CV estimated at 3.0 (95% CI: 2.0, 4.0). Pooled inter-reader ICC was estimated at 0.93 (95% CI: 0.86, 0.99) and the inter-reader CV estimated at 3.4% (95% CI: 1.3%, 5.5%). Measurement of JSW obtained from radiographs in persons with knee is reliable. These data will be useful to clinicians who are planning RCTs where the change in minimum JSW is the outcome of interest. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Normal radiological unossified hip joint space and femoral head size development during growth in 675 children and adolescents.

    PubMed

    Wegener, Veronika; Jorysz, Gabriele; Arnoldi, Andreas; Utzschneider, Sandra; Wegener, Bernd; Jansson, Volkmar; Heimkes, Bernhard

    2017-03-01

    Evaluation of hip joint space width during child growth is important to aid in the early diagnosis of hip pathology in children. We established reference values for hip joint space and femoral head size for each age. Hip joint space development during growth was retrospectively investigated medial and cranial in 1350 hip joints of children using standard anteroposterior supine plain pelvic radiographs. Maximum capital femoral epiphysis diameter and femoral radii were further more investigated. Hip joint space values show a slow decline during growth. Joint space was statistically significantly (p < 0.006) larger in boys than girls. Our hip joint space measurements on supine subjects seem slightly larger than those reported by Hughes on standing subjects. Evaluation of the femoral head diameter and the radii showed a size curve quite parallel to the known body growth charts. Radii medial and perpendicular to the physis are not statistically significantly different. We recommend to compare measurements of hip joint space at two locations to age dependent charts using the same imaging technique. During growth, a divergence in femoral head size from the expected values or loss of the spherical shape should raise the question of hip disorder. Clin. Anat. 30:267-275, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.

    PubMed

    Kalinosky, Benjamin; Sabol, John M; Piacsek, Kelly; Heckel, Beth; Gilat Schmidt, Taly

    2011-12-01

    Digital x-ray tomosynthesis (DTS) has the potential to provide 3D information about the knee joint in a load-bearing posture, which may improve diagnosis and monitoring of knee osteoarthritis compared with projection radiography, the current standard of care. Manually quantifying and visualizing the joint space width (JSW) from 3D tomosynthesis datasets may be challenging. This work developed a semiautomated algorithm for quantifying the 3D tibiofemoral JSW from reconstructed DTS images. The algorithm was validated through anthropomorphic phantom experiments and applied to three clinical datasets. A user-selected volume of interest within the reconstructed DTS volume was enhanced with 1D multiscale gradient kernels. The edge-enhanced volumes were divided by polarity into tibial and femoral edge maps and combined across kernel scales. A 2D connected components algorithm was performed to determine candidate tibial and femoral edges. A 2D joint space width map (JSW) was constructed to represent the 3D tibiofemoral joint space. To quantify the algorithm accuracy, an adjustable knee phantom was constructed, and eleven posterior-anterior (PA) and lateral DTS scans were acquired with the medial minimum JSW of the phantom set to 0-5 mm in 0.5 mm increments (VolumeRad™, GE Healthcare, Chalfont St. Giles, United Kingdom). The accuracy of the algorithm was quantified by comparing the minimum JSW in a region of interest in the medial compartment of the JSW map to the measured phantom setting for each trial. In addition, the algorithm was applied to DTS scans of a static knee phantom and the JSW map compared to values estimated from a manually segmented computed tomography (CT) dataset. The algorithm was also applied to three clinical DTS datasets of osteoarthritic patients. The algorithm segmented the JSW and generated a JSW map for all phantom and clinical datasets. For the adjustable phantom, the estimated minimum JSW values were plotted against the measured values for all

  14. Joint optimization of a partially coherent Gaussian beam for free-space optical communication over turbulent channels with pointing errors.

    PubMed

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali

    2013-02-01

    Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.

  15. Space Weather Forecasting at the Joint Space Operations Center (JSpOC)

    NASA Astrophysics Data System (ADS)

    Nava, O.

    2012-12-01

    The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.

  16. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    NASA Astrophysics Data System (ADS)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  17. Semantic, perceptual and number space: relations between category width and spatial processing.

    PubMed

    Brugger, Peter; Loetscher, Tobias; Graves, Roger E; Knoch, Daria

    2007-05-17

    Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.

  18. Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Valish, Dana J.

    2011-01-01

    In 2009 and early 2010, a test was performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design meets the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future space suits. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis and a variance in torque values for some of the tested joints was apparent. Potential variables that could have affected the data were identified and re-testing was conducted in an attempt to eliminate these variables. The results of the retest will be used to determine if further testing and modification is necessary before the method can be validated.

  19. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    NASA Astrophysics Data System (ADS)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  20. Losses analysis of soft magnetic ring core under sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) excitations

    NASA Astrophysics Data System (ADS)

    Gao, Hezhe; Li, Yongjian; Wang, Shanming; Zhu, Jianguo; Yang, Qingxin; Zhang, Changgeng; Li, Jingsong

    2018-05-01

    Practical core losses in electrical machines differ significantly from those experimental results using the standardized measurement method, i.e. Epstein Frame method. In order to obtain a better approximation of the losses in an electrical machine, a simulation method considering sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) waveforms is proposed. The influence of the pulse width modulation (PWM) parameters on the harmonic components in SPWM and SVPWM is discussed by fast Fourier transform (FFT). Three-level SPWM and SVPWM are analyzed and compared both by simulation and experiment. The core losses of several ring samples magnetized by SPWM, SVPWM and sinusoidal alternating current (AC) are obtained. In addition, the temperature rise of the samples under SPWM, sinusoidal excitation are analyzed and compared.

  1. Joint space narrowing, body mass index, and knee pain: the ROAD study (OAC1839R1).

    PubMed

    Muraki, S; Akune, T; En-Yo, Y; Yoshida, M; Suzuki, T; Yoshida, H; Ishibashi, H; Tokimura, F; Yamamoto, S; Tanaka, S; Nakamura, K; Kawaguchi, H; Oka, H; Yoshimura, N

    2015-06-01

    The objective of the present study was to clarify the association of joint space narrowing with knee pain in Japanese men and women using a large-scale population-based cohort of the Research on Osteoarthritis/osteoporosis Against Disability (ROAD) study. This study examined the association between minimum joint space width (mJSW) in the medial compartment and pain at the knee. mJSW was measured in the medial and lateral compartments of the knee using a knee osteoarthritis (OA) computer-aided diagnosis system. From the 3040 participants in the ROAD study, the present study analyzed 2733 participants who completed the radiographic examinations and questionnaires regarding knee pain (975 men and 1758 women; mean age, 69.9 ± 11.2 years). Subjects with lateral knee OA were excluded. After adjustment for age and Body mass index (BMI), medial mJSW, as well as medial mJSW/lateral mJSW, was significantly associated with knee pain. Sex and BMI affected the association of medial mJSW with knee pain. The threshold of medial mJSW was approximately 3 mm in men and 2 mm in women, while that of medial mJSW/lateral mJSW was approximately 60% in both men and women. BMI was found to have a distinct effect on the association of mJSW with pain. The present cross-sectional study using a large-scale population from the ROAD study showed that joint space narrowing had a significant association with knee pain. The thresholds of joint space narrowing for knee pain were also established. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  3. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2009-01-01

    A space suit s mobility is critical to an astronaut s ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. The term mobility, with respect to space suits, is defined in terms of two key components: joint range of motion and joint torque. Individually these measures describe the path which in which a joint travels and the force required to move it through that path. Previous space suits mobility requirements were defined as the collective result of these two measures and verified by the completion of discrete functional tasks. While a valid way to impose mobility requirements, such a method does necessitate a solid understanding of the operational scenarios in which the final suit will be performing. Because the Constellation space suit system requirements are being finalized with a relatively immature concept of operations, the Space Suit Element team elected to define mobility in terms of its constituent parts to increase the likelihood that the future pressure garment will be mobile enough to enable a broad scope of undefined exploration activities. The range of motion requirements were defined by measuring the ranges of motion test subjects achieved while performing a series of joint maximizing tasks in a variety of flight and prototype space suits. The definition of joint torque requirements has proved more elusive. NASA evaluated several different approaches to the problem before deciding to generate requirements based on unmanned joint torque evaluations of six different space suit configurations being articulated through 16 separate joint movements. This paper discusses the experiment design, data analysis and results, and the process used to determine the final values for the Constellation pressure garment joint torque requirements.

  4. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  5. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  6. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  7. The effect of increased intra-abdominal pressure on orbital subarachnoid space width and intraocular pressure.

    PubMed

    Liu, Su-Meng; Wang, Ning-Li; Zuo, Zhen-Tao; Chen, Wei-Wei; Yang, Di-Ya; Li, Zhen; Cao, Yi-Wen

    2018-02-01

    In accordance with the trans-lamina cribrosa pressure difference theory, decreasing the trans-lamina cribrosa pressure difference can relieve glaucomatous optic neuropathy. Increased intracranial pressure can also reduce optic nerve damage in glaucoma patients, and a safe, effective and noninvasive way to achieve this is by increasing the intra-abdominal pressure. The purpose of this study was to observe the changes in orbital subarachnoid space width and intraocular pressure at elevated intra-abdominal pressure. An inflatable abdominal belt was tied to each of 15 healthy volunteers, aged 22-30 years (12 females and 3 males), at the navel level, without applying pressure to the abdomen, before they laid in the magnetic resonance imaging machine. The baseline orbital subarachnoid space width around the optic nerve was measured by magnetic resonance imaging at 1, 3, 9, and 15 mm behind the globe. The abdominal belt was inflated to increase the pressure to 40 mmHg (1 mmHg = 0.133 kPa), then the orbital subarachnoid space width was measured every 10 minutes for 2 hours. After removal of the pressure, the measurement was repeated 10 and 20 minutes later. In a separate trial, the intraocular pressure was measured for all the subjects at the same time points, before, during and after elevated intra-abdominal pressure. Results showed that the baseline mean orbital subarachnoid space width was 0.88 ± 0.1 mm (range: 0.77-1.05 mm), 0.77 ± 0.11 mm (range: 0.60-0.94 mm), 0.70 ± 0.08 mm (range: 0.62-0.80 mm), and 0.68 ± 0.08 mm (range: 0.57-0.77 mm) at 1, 3, 9, and 15 mm behind the globe, respectively. During the elevated intra-abdominal pressure, the orbital subarachnoid space width increased from the baseline and dilation of the optic nerve sheath was significant at 1, 3 and 9 mm behind the globe. After decompression of the abdominal pressure, the orbital subarachnoid space width normalized and returned to the baseline value. There was no significant difference in the

  8. Validity of radiographic assessment of the knee joint space using automatic image analysis.

    PubMed

    Komatsu, Daigo; Hasegawa, Yukiharu; Kojima, Toshihisa; Seki, Taisuke; Ikeuchi, Kazuma; Takegami, Yasuhiko; Amano, Takafumi; Higuchi, Yoshitoshi; Kasai, Takehiro; Ishiguro, Naoki

    2016-09-01

    The present study investigated whether there were differences between automatic and manual measurements of the minimum joint space width (mJSW) on knee radiographs. Knee radiographs of 324 participants in a systematic health screening were analyzed using the following three methods: manual measurement of film-based radiographs (Manual), manual measurement of digitized radiographs (Digital), and automatic measurement of digitized radiographs (Auto). The mean mJSWs on the medial and lateral sides of the knees were determined using each method, and measurement reliability was evaluated using intra-class correlation coefficients. Measurement errors were compared between normal knees and knees with radiographic osteoarthritis. All three methods demonstrated good reliability, although the reliability was slightly lower with the Manual method than with the other methods. On the medial and lateral sides of the knees, the mJSWs were the largest in the Manual method and the smallest in the Auto method. The measurement errors of each method were significantly larger for normal knees than for radiographic osteoarthritis knees. The mJSW measurements are more accurate and reliable with the Auto method than with the Manual or Digital method, especially for normal knees. Therefore, the Auto method is ideal for the assessment of the knee joint space.

  9. The effects of grip width on sticking region in bench press.

    PubMed

    Gomo, Olav; Van Den Tillaar, Roland

    2016-01-01

    The aim of this study was to examine the occurrence of the sticking region by examining how three different grip widths affect the sticking region in powerlifters' bench press performance. It was hypothesised that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width, indicating a poor mechanical region for vertical force production at these joint angles. Twelve male experienced powerlifters (age 27.7 ± 8.8 years, mass 91.9 ± 15.4 kg) were tested in one repetition maximum (1-RM) bench press with a narrow, medium and wide grip. Joint kinematics, timing, bar position and velocity were measured with a 3D motion capture system. All participants showed a clear sticking region with all three grip widths, but this sticking region was not found to occur at the same joint angles in all three grip widths, thereby rejecting the hypothesis that the sticking region would occur at the same joint angle of the elbow and shoulder independent of grip width. It is suggested that, due to the differences in moment arm of the barbell about the elbow joint in the sticking region, there still might be a poor mechanical region for total force production that is joint angle-specific.

  10. Econazole-releasing porous space maintainers for fungal periprosthetic joint infection.

    PubMed

    Tatara, Alexander M; Rozich, Allison J; Kontoyiannis, Panayiotis D; Watson, Emma; Albert, Nathaniel D; Bennett, George N; Mikos, Antonios G

    2018-05-11

    While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.

  11. Results and Analysis from Space Suit Joint Torque Testing

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer

    2010-01-01

    A space suit's mobility is critical to an astronaut's ability to perform work efficiently. As mobility increases, the astronaut can perform tasks for longer durations with less fatigue. Mobility can be broken down into two parts: range of motion (ROM) and torque. These two measurements describe how the suit moves and how much force it takes to move. Two methods were chosen to define mobility requirements for the Constellation Space Suit Element (CSSE). One method focuses on range of motion and the second method centers on joint torque. A joint torque test was conducted to determine a baseline for current advanced space suit joint torques. This test utilized the following space suits: Extravehicular Mobility Unit (EMU), Advanced Crew Escape Suit (ACES), I-Suit, D-Suit, Enhanced Mobility (EM)- ACES, and Mark III (MK-III). Data was collected data from 16 different joint movements of each suit. The results were then reviewed and CSSE joint torque requirement values were selected. The focus of this paper is to discuss trends observed during data analysis.

  12. Inferior or double joint spaces injection versus superior joint space injection for temporomandibular disorders: a systematic review and meta-analysis.

    PubMed

    Li, Chunjie; Zhang, Yifan; Lv, Jun; Shi, Zongdao

    2012-01-01

    To compare the effect and safety of inferior or double temporomandibular joint spaces drug injection versus superior temporomandibular joint space injection in the treatment of temporomandibular disorders. MEDLINE (via Ovid, 1948 to March 2011), CENTRAL (Issue 1, 2011), Embase (1984 to March 2011), CBM (1978 to March 2011), and World Health Organization International Clinical Trials Registry Platform were searched electronically; relevant journals as well as references of included studies were hand-searched for randomized controlled trials comparing effect or safety of inferior or double joint spaces drug injection technique with those of superior space injection technique. Risk of bias assessment with the tool recommended by Cochrane Collaboration, reporting quality assessment with CONSORT and data extraction, were carried out independently by 2 reviewers. Meta-analysis was delivered with RevMan 5.0.23. Four trials with 349 participants were included. All the included studies had moderate risk of bias. Meta-analysis showed that inferior or double spaces injection technique could significantly increase 2.88 mm more maximal mouth opening (P = .0001) and alleviate pain intensity in the temporomandibular area on average by 9.01 mm visual analog scale scores (P = .0001) compared with superior space injection technique, but could not markedly change synthesized clinical index (P = .05) in the short term; nevertheless, they showed more beneficial maximal mouth opening (P = .002), pain relief (P < .0001), and synthesized clinical variable (P < .0001) in the long term than superior space injection. No serious adverse events were reported. Inferior or double temporomandibular joint spaces drug injection technique shows better effect than superior space injection technique, and their safety is affirmative. However, more high-quality studies are still needed to test and verify the evidence. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  13. Analysis and testing of a space crane articulating joint testbed

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey

    1992-01-01

    The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.

  14. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors.

    PubMed

    Lee, It Ee; Ghassemlooy, Zabih; Ng, Wai Pang; Khalighi, Mohammad-Ali; Liaw, Shien-Kuei

    2016-01-01

    Joint effects of aperture averaging and beam width on the performance of free-space optical communication links, under the impairments of atmospheric loss, turbulence, and pointing errors (PEs), are investigated from an information theory perspective. The propagation of a spatially partially coherent Gaussian-beam wave through a random turbulent medium is characterized, taking into account the diverging and focusing properties of the optical beam as well as the scintillation and beam wander effects. Results show that a noticeable improvement in the average channel capacity can be achieved with an enlarged receiver aperture in the moderate-to-strong turbulence regime, even without knowledge of the channel state information. In particular, it is observed that the optimum beam width can be reduced to improve the channel capacity, albeit the presence of scintillation and PEs, given that either one or both of these adverse effects are least dominant. We show that, under strong turbulence conditions, the beam width increases linearly with the Rytov variance for a relatively smaller PE loss but changes exponentially with steeper increments for higher PE losses. Our findings conclude that the optimal beam width is dependent on the combined effects of turbulence and PEs, and this parameter should be adjusted according to the varying atmospheric channel conditions. Therefore, we demonstrate that the maximum channel capacity is best achieved through the introduction of a larger receiver aperture and a beam-width optimization technique.

  15. Connecting the Force from Space: The IRIS Joint Capability Technology Demonstration

    DTIC Science & Technology

    2010-01-01

    the Joint in Joint Capability Technology Demonstration, we have two sponsors, both U.S. Strategic Command and the Defense Information Systems...Capability Technology Demonstration will provide an excellent source of data on space-based Internet Protocol net- working. Operational... Internet Routing in Space Joint Capability Technology Demonstration Operational Manager, Space and Missile Defense Battle Lab, Colorado Springs

  16. Joint Space Doctrine: Catapulting into the Future

    DTIC Science & Technology

    1994-01-01

    Information dominance will provide the stimulus for the military space program in the near term. Maximizing the capabilities of the information weapon, however, requires formulating joint space doctrine that has broad support and applicability. This doctrine will provide a significant advantage for the United States over those nations which employ space assets in a piecemeal

  17. Overcoming Space and Time Disadvantages in Joint Theater Missile Defense

    DTIC Science & Technology

    2002-02-04

    Disadvantages in Joint Theater Missile Defense (Unclassified) 9. Personal Authors: Major Robert Kelley 10.Type of Report: FINAL 11. Date of Report...Classification of This Page Unclassified NAVAL WAR COLLEGE Newport, RI Overcoming Space and Time Disadvantages in Joint Theater Missile Defense By Robert...Covered (from... to) - Title and Subtitle Overcoming Space and Time Disadvantages in Joint Theater Missile Defense Contract Number Grant Number

  18. Elbow and knee joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    An elbow or knee joint for a hard space suit or similar usage is formed of three serially connected rigid sections which have truncated spherical configurations. The ends of each section form solid geometric angles, and the sections are interconnected by hermetically sealed ball bearings. The outer two sections are fixed together for rotation in a direction opposite to rotation of the center section. A preferred means to make the outer sections track each other in rotation comprises a rotatable continuous bead chain which engages sockets circumferentially spaced on the facing sides of the outer races of the bearings. The joint has a single pivot point and the bearing axes are always contained in a single plane for any articulation of the joint. Thus flexure of the joint simulates the coplanar flexure of the knee or elbow and is not susceptible to lockup.

  19. Space station rotary joint mechanisms

    NASA Technical Reports Server (NTRS)

    Driskill, Glen W.

    1986-01-01

    The mechanism which will be used on the space station to position the solar arrays and radiator panels for Sun pointing and Sun avoidance is described. The unique design features will be demonstrated on advanced development models of two of the joints being fabricated under contract to NASA-MSFC.

  20. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY-A CADAVERIC STUDY.

    PubMed

    Djernaes, Julie D; Nielsen, Jon V; Berg, Lise C

    2017-03-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired. Sequential radiographs were acquired with each interspinous space in focus. Measurements were performed for each interspinous space in the focus position and up to eight angled positions as the interspinous space moved away from focus (±). Focus position measurements were compared to matching sagittal CT measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous spaces in position +3 (P = 0.038). Changes in width did not follow a consistent pattern. Interspinous space widths in focus position were significantly smaller in radiographs compared to matching reconstructed CT images for backs diagnosed with kissing spine syndrome (P < 0.001). Geometric distortion markedly affected appearance of interspinous space width between planes. In conclusion, X-ray beam angle and geometric distortion influence radiographically measured widths of interspinous spaces in the equine thoracolumbar spine, and this should be taken into consideration when evaluating sport horses. © 2016 American College of Veterinary Radiology.

  1. Minimum Weight Design of a Leaf Spring Tapered in Thickness and Width for the Hubble Space Telescope-Space Support Equipment

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.

    1990-01-01

    A linear elastic solution to the problem of minimum weight design of cantilever beams with variable width and depth is presented. The solution shown is for the specific application of the Hubble Space Telescope maintenance mission hardware. During these maintenance missions, delicate instruments must be isolated from the potentially damaging vibration environment of the space shuttle cargo bay during the ascent and descent phases. The leaf springs are designed to maintain the isolation system natural frequency at a level where load transmission to the instruments in a minimum. Nonlinear programming is used for the optimization process. The weight of the beams is the objective function with the deflection and allowable bending stress as the constraint equations. The design variables are the width and depth of the beams at both the free and the fixed ends.

  2. Comparison of radiographic joint space width and magnetic resonance imaging for prediction of knee replacement: A longitudinal case-control study from the Osteoarthritis Initiative.

    PubMed

    Eckstein, Felix; Boudreau, Robert; Wang, Zhijie; Hannon, Michael J; Duryea, Jeff; Wirth, Wolfgang; Cotofana, Sebastian; Guermazi, Ali; Roemer, Frank; Nevitt, Michael; John, Markus R; Ladel, Christoph; Sharma, Leena; Hunter, David J; Kwoh, C Kent

    2016-06-01

    To evaluate whether change in fixed-location measures of radiographic joint space width (JSW) and cartilage thickness by MRI predict knee replacement. Knees replaced between 36 and 60 months' follow-up in the Osteoarthritis Initiative were each matched with one control by age, sex and radiographic status. Radiographic JSW was determined from fixed flexion radiographs and subregional femorotibial cartilage thickness from 3 T MRI. Changes between the annual visit before replacement (T0) and 2 years before T0 (T-2) were compared using conditional logistic regression. One hundred and nineteen knees from 102 participants (55.5 % women; age 64.2 ± 8.7 [mean ± SD] years) were studied. Fixed-location JSW change at 22.5 % from medial to lateral differed more between replaced and control knees (case-control [cc] OR = 1.57; 95 % CI: 1.23-2.01) than minimum medial JSW change (ccOR = 1.38; 95 % CI: 1.11-1.71). Medial femorotibial cartilage loss displayed discrimination similar to minimum JSW, and central tibial cartilage loss similar to fixed-location JSW. Location-independent thinning and thickening scores were elevated prior to knee replacement. Discrimination of structural progression between knee pre-placement cases versus controls was stronger for fixed-location than minimum radiographic JSW. MRI displayed similar discrimination to radiography and suggested greater simultaneous cartilage thickening and loss prior to knee replacement. • Fixed-location JSW predicts surgical knee replacement more strongly than minimum JSW. • MRI predicts knee replacement with similar accuracy to radiographic JSW. • MRI reveals greater cartilage thinning and thickening prior to knee replacement.

  3. Differences between dentitions with palatally and labially located maxillary canines observed in incisor width, dental morphology and space conditions.

    PubMed

    Artmann, L; Larsen, H J; Sørensen, H B; Christensen, I J; Kjaer, I

    2010-06-01

    To analyze the interrelationship between incisor width, deviations in the dentition and available space in the dental arch in palatally and labially located maxillary ectopic canine cases. Size: On dental casts from 69 patients (mean age 13 years 6 months) the mesiodistal widths of each premolar, canine and incisor were measured and compared with normal standards. Dental deviations: Based on panoramic radiographs from the same patients the dentitions were grouped accordingly: Group I: normal morphology; Group IIa: deviations in the dentition within the maxillary incisors only; Group IIb: deviations in the dentition in general. Descriptive statistics for the tooth sizes and dental deviations were presented by the mean and 95% confidence limits for the mean and the p-value for the T-statistic. Space: Space was expresses by subtracting the total tooth sizes of incisors, canines and premolars from the length of the arch segments. Size of lateral maxillary incisor: The widths of the lateral incisors were significantly different in groups I, IIa and IIb (p=0.016) and in cases with labially located ectopic canines on average 0.65 (95% CI:0.25-1.05, p=0.0019) broader than lateral incisors in cases with palatally located ectopic canines. Space: Least available space was observed in cases with labially located canines. The linear model did show a difference between palatally and labially located ectopic canines (p=0.03). Space related to deviations in the dentition: When space in the dental arch was related to dental deviations (groups I, IIa and IIb), the cases in group IIb with palatally located canines had significantly more space compared with I and IIa. Two subgroups of palatally located ectopic maxillary canine cases based on registration of space, incisor width and deviations in the morphology of the dentition were identified.

  4. Modelling of subarachnoid space width changes in apnoea resulting as a function of blood flow parameters.

    PubMed

    Kalicka, Renata; Mazur, Kamila; Wolf, Jacek; Frydrychowski, Andrzej F; Narkiewicz, Krzysztof; Winklewski, Pawel J

    2017-09-01

    During apnoea, the pial artery is subjected to two opposite physiological processes: vasoconstriction due to elevated blood pressure and vasorelaxation driven by rising pH in the brain parenchyma. We hypothesized that the pial artery response to apnoea may vary, depending on which process dominate. Apnoea experiments were performed in a group of 19 healthy, non-smoking volunteers (9 men and 10 women). The following parameters were obtained for further analysis: blood pressure, the cardiac (from 0.5 to 5.0Hz) and slow (<0.5Hz) components of subarachnoid space width, heart rate, mean cerebral blood flow velocity in the internal carotid artery, pulsatility and resistivity index, internal carotid artery diameter, blood oxygen saturation and end-tidal carbon dioxide. The experiment consisted of three apnoeas, sequentially: 30s, 60s and maximal apnoea. The breath-hold was separated for 5minute rest. The control process is sophisticated, involving internal cross-couplings and cross-dependences. The aim of work was to find a mathematical dependence between data. Unexpectedly, the modelling revealed two different reactions, on the same experimental procedure. As a consequence, there are two subsets of cardiac subarachnoid space width responses to breath-hold in humans. A positive cardiac subarachnoid space width change to apnoea depends on changes in heart rate and cerebral blood flow velocity. A negative cardiac subarachnoid space width change to apnoea is driven by heart rate, mean arterial pressure and pulsatility index changes. The described above two different reactions to experimental breath-hold provides new insights into our understanding of the complex mechanisms governing the adaptation to apnoea in humans. We proposed a mathematical methodology that can be used in further clinical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Space Situational Awareness in the Joint Space Operations Center

    NASA Astrophysics Data System (ADS)

    Wasson, M.

    2011-09-01

    Flight safety of orbiting resident space objects is critical to our national interest and defense. United States Strategic Command has assigned the responsibility for Space Situational Awareness (SSA) to its Joint Functional Component Command - Space (JFCC SPACE) at Vandenberg Air Force Base. This paper will describe current SSA imperatives, new developments in SSA tools and developments in Defensive Operations. Current SSA processes are being examined to capture, and possibly improve, tasking of SSN sensors and "new" space-based sensors, "common" conjunction assessment methodology, and SSA sharing due to the growth seen over the last two years. The stand-up of a Defensive Ops Branch will highlight the need for advanced analysis and collaboration across space, weather, intelligence, and cyber specialties. New developments in SSA tools will be a description of computing hardware/software upgrades planned as well as the use of User-Defined Operating Pictures and visualization applications.

  6. Effect of joint spacing and joint dip on the stress distribution around tunnels using different numerical methods

    NASA Astrophysics Data System (ADS)

    Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza

    2016-11-01

    Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.

  7. Fixed-flexion knee radiography using a new positioning device produced highly repeatable measurements of joint space width: ELSA-Brasil Musculoskeletal Study (ELSA-Brasil MSK).

    PubMed

    Telles, Rosa Weiss; Costa-Silva, Luciana; Machado, Luciana A C; Reis, Rodrigo Citton Padilha Dos; Barreto, Sandhi Maria

    To describe the performance of a non-fluoroscopic fixed-flexion PA radiographic protocol with a new positioning device, developed for the assessment of knee osteoarthritis (OA) in Brazilian Longitudinal Study of Adult Health Musculoskeletal Study (ELSA-Brasil MSK). A test-retest design including 19 adults (38 knee images) was conducted. Feasibility of the radiographic protocol was assessed by image quality parameters and presence of radioanatomic alignment according to intermargin distance (IMD) values. Repeatability was assessed for IMD and joint space width (JSW) measured at three different locations. Approximately 90% of knee images presented excellent quality. Frequencies of nearly perfect radioanatomic alignment (IMD ≤1mm) ranged from 29% to 50%, and satisfactory alignment was found in up to 71% and 76% of the images (IMD ≤1.5mm and ≤1.7mm, respectively). Repeatability analyses yielded the following results: IMD [SD of mean difference=1.08; coefficient of variation (%CV)=54.68%; intraclass correlation coefficient (ICC) (95%CI)=0.59 (0.34-0.77)]; JSW [SD of mean difference=0.34-0.61; %CV=4.48%-9.80%; ICC (95%CI)=0.74 (0.55-0.85)-0.94 (0.87-0.97)]. Adequately reproducible measurements of IMD and JSW were found in 68% and 87% of the images, respectively. Despite the difficulty in achieving consistent radioanatomic alignment between subsequent radiographs in terms of IMD, the protocol produced highly repeatable JSW measurements when these were taken at midpoint and 10mm from the medial extremity of the medial tibial plateau. Therefore, measurements of JSW at these locations can be considered adequate for the assessment of knee OA in ELSA-Brasil MSK. Copyright © 2016. Published by Elsevier Editora Ltda.

  8. Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Joint Space Operations Center (JSpOC) Mission System Increment 3 (JMS Inc 3) Defense...1725 DSN Phone: DSN Fax: Date Assigned: May 16, 2014 Program Information Program Name Joint Space Operations Center (JSpOC) Mission System...approved program baseline; therefore, no Original Estimate has been established. JMS Inc 3 2016 MAR UNCLASSIFIED 4 Program Description The Joint Space

  9. Evaluation of traction stirrup distraction technique to increase the joint space of the shoulder joint in the dog: A cadaveric study.

    PubMed

    Devesa, V; Rovesti, G L; Urrutia, P G; Sanroman, F; Rodriguez-Quiros, J

    2015-06-01

    The objective of this study was to evaluate technical feasibility and efficacy of a joint distraction technique by traction stirrup to facilitate shoulder arthroscopy and assess potential soft tissue damage. Twenty shoulders were evaluated radiographically before distraction. Distraction was applied with loads from 40 N up to 200 N, in 40 N increments, and the joint space was recorded at each step by radiographic images. The effects of joint flexion and intra-articular air injection at maximum load were evaluated. Radiographic evaluation was performed after distraction to evaluate ensuing joint laxity. Joint distraction by traction stirrup technique produces a significant increase in the joint space; an increase in joint laxity could not be inferred by standard and stress radiographs. However, further clinical studies are required to evaluate potential neurovascular complications. A wider joint space may be useful to facilitate arthroscopy, reducing the likelihood for iatrogenic damage to intra-articular structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Demonstration of reconfigurable joint orbital angular momentum mode and space switching

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, Jian

    2016-11-01

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.

  11. Demonstration of reconfigurable joint orbital angular momentum mode and space switching.

    PubMed

    Liu, Jun; Wang, Jian

    2016-11-21

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications.

  12. L'espace articulaire de la Robotique Industrielle est un espace vectorielIndustrial Robotics joint space is a vector space

    NASA Astrophysics Data System (ADS)

    Tondu, Bertrand

    2003-05-01

    The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws. To cite this article: B. Tondu, C. R. Mecanique 331 (2003).

  13. Measurement of glomerulus diameter and Bowman's space width of renal albino rats.

    PubMed

    Kotyk, Taras; Dey, Nilanjan; Ashour, Amira S; Balas-Timar, Dana; Chakraborty, Sayan; Ashour, Ahmed S; Tavares, João Manuel R S

    2016-04-01

    Glomerulus diameter and Bowman's space width in renal microscopic images indicate various diseases. Therefore, the detection of the renal corpuscle and related objects is a key step in histopathological evaluation of renal microscopic images. However, the task of automatic glomeruli detection is challenging due to their wide intensity variation, besides the inconsistency in terms of shape and size of the glomeruli in the renal corpuscle. Here, a novel solution is proposed which includes the Particles Analyzer technique based on median filter for morphological image processing to detect the renal corpuscle objects. Afterwards, the glomerulus diameter and Bowman's space width are measured. The solution was tested with a dataset of 21 rats' renal corpuscle images acquired using light microscope. The experimental results proved that the proposed solution can detect the renal corpuscle and its objects efficiently. As well as, the proposed solution has the ability to manage any input images assuring its robustness to the deformations of the glomeruli even with the glomerular hypertrophy cases. Also, the results reported significant difference between the control and affected (due to ingested additional daily dose (14.6mg) of fructose) groups in terms of glomerulus diameter (97.40±19.02μm and 177.03±54.48μm, respectively). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Demonstration of reconfigurable joint orbital angular momentum mode and space switching

    PubMed Central

    Liu, Jun; Wang, Jian

    2016-01-01

    We propose and demonstrate space-selective switch functions employing orbital angular momentum (OAM) modes in the space domain for switching network. One is the switching among different OAM modes having different spatial phase structures, called OAM mode switching. The other is the switching among different space locations, called space switching. The switching operation mechanism relies on linear optics. Reconfigurable 4 × 4 OAM mode switching, space switching, and joint OAM mode and space switching fabric using a single spatial light modulator (SLM) are all demonstrated in the experiment. In addition, the presented OAM-incorporated space-selective switch might be further extended to N × N joint OAM mode and space switching with fast response, scalability, cascading ability and compability to facilitate robust switching applications. PMID:27869133

  15. Preloaded joint analysis methodology for space flight systems

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1995-01-01

    This report contains a compilation of some of the most basic equations governing simple preloaded joint systems and discusses the more common modes of failure associated with such hardware. It is intended to provide the mechanical designer with the tools necessary for designing a basic bolted joint. Although the information presented is intended to aid in the engineering of space flight structures, the fundamentals are equally applicable to other forms of mechanical design.

  16. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  17. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  18. Minimum distraction gap: how much ankle joint space is enough in ankle distraction arthroplasty?

    PubMed

    Fragomen, Austin T; McCoy, Thomas H; Meyers, Kathleen N; Rozbruch, S Robert

    2014-02-01

    The success of ankle distraction arthroplasty relies on the separation of the tibiotalar articular surfaces. The purpose of this study was to find the minimum distraction gap needed to ensure that the tibiotalar joint surfaces would not contact each other with full weight-bearing while under distraction. Circular external fixators were mounted to nine cadaver ankle specimens. Each specimen was then placed into a custom-designed load chamber. Loads of 0, 350, and 700N were applied to the specimen. Radiographic joint space was measured and joint contact pressure was monitored under each load. The external fixator was then sequentially distracted, and the radiographic joint space was measured under the three different loads. The experiment was stopped when there was no joint contact under 700N of load. The radiographic joint space was measured and the initial (undistracted) radiographic joint space was subtracted from it yielding the distraction gap. The minimum distraction gap (mDG) that would provide total unloading was calculated. The average mDG was 2.4 mm (range, 1.6 to 4.0 mm) at 700N of load, 4.4 mm (range, 3.7 to 5.8 mm) at 350N of load, and 4.9 mm (range, 3.7 to 7.0 mm) at 0N of load. These results suggest that if the radiographic joint space of on a standing X-ray of an ankle undergoing distraction arthroplasty shows a minimum of 5.8 mm of DG, then there will be no contact between joint surfaces during full weight-bearing. Therefore, 5 mm of radiographic joint space, as recommended historically, may not be adequate to prevent contact of the articular surfaces during weight-bearing.

  19. An evolving joint space campaign concept and the Army's role

    NASA Astrophysics Data System (ADS)

    Franke, Henry G., III

    1992-05-01

    This monograph examines the question of an evolving joint space campaign concept and the Army's role in it over the next 20 years. Analysis progresses logically through a series of topics in order to arrive at a complete picture of this evolutionary space campaign concept, as well as the Army's place in it. Space plays an increasingly important role in US military operations, particularly when tied together with advances in information management. The synergistic impact due to the combination of these two areas suggests a revolution in the nature of modern warfare which saw its emergence during the 1991 Gulf War. With this theme in mind, I review the Army's roles, missions, and historical involvement in space, then present technological opportunities and a perspective on investment strategies for military space. A detailed discussion of a near-term military space theory and current space doctrines supports the need for an accepted military space theory as a foundation for Joint and Service space doctrines, space campaign design and conduct, and space force generation. The basis for such a theory is established using Julian Corbett's maritime warfare theory as a point of departure, while recognizing that space as a unique military operating medium requires its own theory and a regime to govern the application of space forces.

  20. Axisymmetric shell analysis of the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Anderson, Melvin S.

    1989-01-01

    The Space Shuttle Challenger (STS 51-L) accident led to an intense investigation of the structural behavior of the solid rocket booster (SRB) tang and clevis field joints. The presence of structural deformations between the clevis inner leg and the tang, substantial enough to prevent the O-ring seals from eliminating hot gas flow through the joints, has emerged as a likely cause of the vehicle failure. This paper presents results of axisymmetric shell analyses that parametrically assess the structural behavior of SRB field joints subjected to quasi-steady-state internal pressure loading for both the original joint flown on mission STS 51-L and the redesigned joint recently flown on the Space Shuttle Discovery. Discussion of axisymmetric shell modeling issues and details is presented and a generic method for simulating contact between adjacent shells of revolution is described. Results are presented that identify the performance trends of the joints for a wide range of joint parameters.

  1. Association of occupational activity with joint space narrowing and osteophytosis in the medial compartment of the knee: the ROAD study (OAC5914R2).

    PubMed

    Muraki, S; Oka, H; Akune, T; En-yo, Y; Yoshida, M; Nakamura, K; Kawaguchi, H; Yoshimura, N

    2011-07-01

    We investigated the association of occupational activity with joint space narrowing and osteophytosis at the knee separately in Japanese subjects using a large-scale population-based cohort of the Research on Osteoarthritis Against Disability (ROAD). From the baseline survey of the ROAD study, 1,402 participants (512 men and 890 women) living in mountainous and seacoast communities were analyzed. Information collected included a lifetime occupational history and details of specific workplace physical activities. To estimate the severity of joint space narrowing and osteophytosis at the knee, minimum joint space width (mJSW) and osteophyte area (OPA) in the medial compartment of the knee were measured using a knee osteoarthritis (OA) computer-aided diagnosis system. For women, agricultural, forestry, and fishery workers had significantly lower mJSW values compared with clerical workers or technical experts, whereas OPA did not differ significantly among job titles in men or women. For occupational activities, kneeling and squatting were associated with lower mJSW as well as higher OPA. Walking and heavy lifting were associated with lower mJSW, but not with OPA. This cross-sectional study using a population-based cohort suggests that an occupational activity that includes kneeling and squatting appears to have a greater effect on knee OA. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Optimization of the Robotic Joint Equipped with Epicyloidal Gear and Direct Drive for Space Applications

    NASA Astrophysics Data System (ADS)

    Seweryn, Karol; Grassmann, Kamil; Ciesielska, Monika; Rybus, Tomasz; Turek, Michal

    2013-09-01

    One of the most critical element in the orbital manipulators are kinematic joints. Joints must be adapted to work in tough conditions of space environment and must ensure the greatest efficiency and work without backlash. At the Space Mechatronics and Robotics Laboratory (LMRS) of the Space Research Centre, PAS our team designed and built a lightweight kinematic pair based on a new concept. The new concept is based on the epicycloid two-stage gearbox with torque motor. In this paper we have focused on optimization of the joint design for space application. The optimization was focused on the minimization of the mass and backlash effects and on maximizing the joint efficiency.

  3. Digital tomosynthesis rendering of joint margins for arthritis assessment

    NASA Astrophysics Data System (ADS)

    Duryea, Jeffrey W.; Neumann, Gesa; Yoshioka, Hiroshi; Dobbins, James T., III

    2004-05-01

    PURPOSE: Rheumatoid arthritis (RA) of the hand is a significant healthcare problem. Techniques to accurately quantity the structural changes from RA are crucial for the development and prescription of therapies. Analysis of radiographic joint space width (JSW) is widely used and has demonstrated promise. However, radiography presents a 2D view of the joint. In this study we performed tomosynthesis reconstructions of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints to measure the 3D joint structure. METHODS: We performed a reader study using simulated radiographs of 12 MCP and 12 PIP joints from skeletal specimens imaged with micro-CT. The tomosynthesis technique provided images of reconstructed planes with 0.75 mm spacing, which were presented to 2 readers with a computer tool. The readers were instructed to delineate the joint surfaces on tomosynthetic slices where they could visualize the margins. We performed a quantitative analysis of 5 slices surrounding the central portion of each joint. Reader-determined JSW was compared to a gold standard. As a figure of merit we calculated the average root-mean square deviation (RMSD). RESULTS: RMSD was 0.22 mm for both joints. For the individual joints, RMSD was 0.18 mm (MCP), and 0.26 mm (PIP). The reduced performance for the smaller PIP joints suggests that a slice spacing less than 0.75 mm may be more appropriate. CONCLUSIONS: We have demonstrated the capability of limited 3D rendering of joint surfaces using digital tomosynthesis. This technique promises to provide an improved method to visualize the structural changes of RA.

  4. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space.

    PubMed

    Hubbard-Turner, Tricia; Wikstrom, Erik A; Guderian, Sophie; Turner, Michael J

    2017-06-02

      Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known.   To measure knee-joint space after a single surgically induced ankle sprain in mice.   Randomized controlled trial.   University research laboratory.   Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice.   Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs.   Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups.   Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function.

  5. A Method for and Issues Associated with the Determination of Space Suit Joint Requirements

    NASA Technical Reports Server (NTRS)

    Matty, Jennifer E.; Aitchison, Lindsay

    2010-01-01

    This joint mobility KC lecture included information from two papers, "A Method for and Issues Associated with the Determination of Space Suit Joint Requirements" and "Results and Analysis from Space Suit Joint Torque Testing," as presented for the International Conference on Environmental Systems in 2009 and 2010, respectively. The first paper discusses historical joint torque testing methodologies and approaches that were tested in 2008 and 2009. The second paper discusses the testing that was completed in 2009 and 2010.

  6. Comparing fixed and variable-width Gaussian networks.

    PubMed

    Kůrková, Věra; Kainen, Paul C

    2014-09-01

    The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space

    PubMed Central

    Wikstrom, Erik A.; Guderian, Sophie; Turner, Michael J.

    2017-01-01

    Context:  Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known. Objective:  To measure knee-joint space after a single surgically induced ankle sprain in mice. Design:  Randomized controlled trial. Setting:  University research laboratory. Patients or Other Participants:  Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice. Main Outcome Measure(s):  Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs. Results:  Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups. Conclusions:  Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function. PMID:28437129

  8. Space Station Solar Array Joint Repair

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Allmon, Curtis; Reznik, Carter; McFatter, Justin; Davis, Robert E.

    2015-01-01

    In Oct 2007 the International Space Station (ISS) crew noticed a vibrating camera in the vicinity of Starboard Solar Alpha Rotary Joint (SARJ). It had less than 5 months of run time when the anomaly was observed. This approximately 3.2 meter diameter bearing joint supports solar arrays that power the station critical to its operation. The crew performed an EVA to identify what was causing the vibration. It was discovered that one of the 3 bearing tracks of this unconventional bearing had significant spalling damage. This paper discusses the SARJ's unique bearing design and the vulnerability in its design leading to the observed anomaly. The design of a SARJ vacuum test rig is also described along with the results of a life test that validated the proposed repair should extend the life of the SARJ a minimum of 18 years on-orbit.

  9. INVESTIGATING THE EFFECTIVENESS OF KINESIO® TAPING SPACE CORRECTION METHOD IN HEALTHY ADULTS ON PATELLOFEMORAL JOINT AND SUBCUTANEOUS SPACE.

    PubMed

    Lyman, Katie J; Keister, Kassiann; Gange, Kara; Mellinger, Christopher D; Hanson, Thomas A

    2017-04-01

    Limited quantitative, physiological evidence exists regarding the effectiveness of Kinesio® Taping methods, particularly with respect to the potential ability to impact underlying physiological joint space and structures. To better understand the impact of these techniques, the underlying physiological processes must be investigated in addition to the examination of more subjective measures related to pain in unhealthy tissues. The purpose of this study was to determine whether the Kinesio® Taping Space Correction Method created a significant difference in patellofemoral joint space, as quantified by diagnostic ultrasound. Pre-test/post-test prospective cohort study. Thirty-two participants with bilaterally healthy knees and no past history of surgery took part in the study. For each participant, diagnostic ultrasound was utilized to collect three measurements: the patellofemoral joint space, the distance from the skin to the superficial patella, and distance from the skin to the patellar tendon. The Kinesio® Taping Space Correction Method was then applied. After a ten-minute waiting period in a non-weight bearing position, all three measurements were repeated. Each participant served as his or her own control. Paired t tests showed a statistically significant difference (mean difference = 1.1 mm, t [3,1]  = 2.823, p  = 0.008, g  = .465) between baseline and taped conditions in the space between the posterior surface of the patella to the medial femoral condyle. Neither the distance from the skin to the superficial patella nor the distance from the skin to the patellar tendon increased to a statistically significant degree. The application of the Kinesio® Taping Space Correction Method increases the patellofemoral joint space in healthy adults by increasing the distance between the patella and the medial femoral condyle, though it does not increase the distance from the skin to the superficial patella nor to the patellar tendon. 3.

  10. Neutron resonance parameters of 6830Zn+n and statistical distributions of level spacings and widths

    NASA Astrophysics Data System (ADS)

    Garg, J. B.; Tikku, V. K.; Harvey, J. A.; Halperin, J.; Macklin, R. L.

    1982-04-01

    Discrete values of the parameters (E0, gΓn, Jπ, Γγ, etc.) of the resonances in the reaction 6830Zn + n have been determined from total cross section measurements from a few keV to 380 keV with a nominal resolution of 0.07 ns/m for the highest energy and from capture cross section measurements up to 130 keV using the pulsed neutron time-of-flight technique with a neutron burst width of 5 ns. The cross section data were analyzed to determine the parameters of the resonances using R-matrix multilevel codes. These results have provided values of average quantities as follows: S0=(2.01+/-0.34), S1=(0.56+/-0.05), S2=(0.2+/-0.1) in units of 10-4, D0=(5.56+/-0.43) keV and D1=(1.63+/-0.14) keV. From these measurements we have also determined the following average radiation widths: (Γ¯γ)l=0=(302+/-60) meV and (Γ¯γ)l=1=(157 +/-7) meV. The investigation of the statistical properties of neutron reduced widths and level spacings showed excellent agreement of the data with the Porter-Thomas distribution for s- and p-wave neutron widths and with the Dyson-Mehta Δ3 statistic and the Wigner distribution for the s-wave level spacing distribution. In addition, a correlation coefficient of ρ=0.50+/-0.10 between Γ0n and Γγ has been observed for s-wave resonances. The value of <σnγ> at (30+/-10) keV is 19.2 mb. NUCLEAR REACTIONS 3068Zn(n,n), 3068Zn(n,γ), E=few keV to 380, 130 keV, respectively. Measured total and capture cross sections versus neutron energy, deduced resonance parameters, E0, Jπ, gΓn, Γγ, S0, S1, S2, D0, D1.

  11. 2D data-space cross-gradient joint inversion of MT, gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Pak, Yong-Chol; Li, Tonglin; Kim, Gang-Sop

    2017-08-01

    We have developed a data-space multiple cross-gradient joint inversion algorithm, and validated it through synthetic tests and applied it to magnetotelluric (MT), gravity and magnetic datasets acquired along a 95 km profile in Benxi-Ji'an area of northeastern China. To begin, we discuss a generalized cross-gradient joint inversion for multiple datasets and model parameters sets, and formulate it in data space. The Lagrange multiplier required for the structural coupling in the data-space method is determined using an iterative solver to avoid calculation of the inverse matrix in solving the large system of equations. Next, using model-space and data-space methods, we inverted the synthetic data and field data. Based on our result, the joint inversion in data-space not only delineates geological bodies more clearly than the separate inversion, but also yields nearly equal results with the one in model-space while consuming much less memory.

  12. Method for selecting minimum width of leaf in multileaf adjustable collimator while inhibiting passage of particle beams of radiation through sawtooth joints between collimator leaves

    DOEpatents

    Ludewigt, Bernhard; Bercovitz, John; Nyman, Mark; Chu, William

    1995-01-01

    A method is disclosed for selecting the minimum width of individual leaves of a multileaf adjustable collimator having sawtooth top and bottom surfaces between adjacent leaves of a first stack of leaves and sawtooth end edges which are capable of intermeshing with the corresponding sawtooth end edges of leaves in a second stack of leaves of the collimator. The minimum width of individual leaves in the collimator, each having a sawtooth configuration in the surface facing another leaf in the same stack and a sawtooth end edge, is selected to comprise the sum of the penetration depth or range of the particular type of radiation comprising the beam in the particular material used for forming the leaf; plus the total path length across all the air gaps in the area of the joint at the edges between two leaves defined between lines drawn across the peaks of adjacent sawtooth edges; plus at least one half of the length or period of a single sawtooth. To accomplish this, in accordance with the method of the invention, the penetration depth of the particular type of radiation in the particular material to be used for the collimator leaf is first measured. Then the distance or gap between adjoining or abutting leaves is selected, and the ratio of this distance to the height of the sawteeth is selected. Finally the number of air gaps through which the radiation will pass between sawteeth is determined by selecting the number of sawteeth to be formed in the joint. The measurement and/or selection of these parameters will permit one to determine the minimum width of the leaf which is required to prevent passage of the beam through the sawtooth joint.

  13. Development of assembly and joint concepts for erectable space structures

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.

    1980-01-01

    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.

  14. Joint operations planning for space surveillance missions on the MSX satellite

    NASA Technical Reports Server (NTRS)

    Stokes, Grant; Good, Andrew

    1994-01-01

    The Midcourse Space Experiment (MSX) satellite, sponsored by BMDO, is intended to gather broad-band phenomenology data on missiles, plumes, naturally occurring earthlimb backgrounds and deep space backgrounds. In addition the MSX will be used to conduct functional demonstrations of space-based space surveillance. The JHU/Applied Physics Laboratory (APL), located in Laurel, MD, is the integrator and operator of the MSX satellite. APL will conduct all operations related to the MSX and is charged with the detailed operations planning required to implement all of the experiments run on the MSX except the space surveillance experiments. The non-surveillance operations are generally amenable to being defined months ahead of time and being scheduled on a monthly basis. Lincoln Laboratory, Massachusetts Institute of Technology (LL), located in Lexington, MA, is the provider of one of the principle MSX instruments, the Space-Based Visible (SBV) sensor, and the agency charged with implementing the space surveillance demonstrations on the MSX. The planning timelines for the space surveillance demonstrations are fundamentally different from those for the other experiments. They are generally amenable to being scheduled on a monthly basis, but the specific experiment sequence and pointing must be refined shortly before execution. This allocation of responsibilities to different organizations implies the need for a joint mission planning system for conducting space surveillance demonstrations. This paper details the iterative, joint planning system, based on passing responsibility for generating MSX commands for surveillance operations from APL to LL for specific scheduled operations. The joint planning system, including the generation of a budget for spacecraft resources to be used for surveillance events, has been successfully demonstrated during ground testing of the MSX and is being validated for MSX launch within the year. The planning system developed for the MSX forms a

  15. The contribution of 3D quantitative meniscal and cartilage measures to variation in normal radiographic joint space width-Data from the Osteoarthritis Initiative healthy reference cohort.

    PubMed

    Roth, Melanie; Wirth, Wolfgang; Emmanuel, Katja; Culvenor, Adam G; Eckstein, Felix

    2017-02-01

    To explore to what extent three-dimensional measures of the meniscus and femorotibial cartilage explain the variation in medial and lateral femorotibial radiographic joint space width (JSW), in healthy men and women. The right knees of 87 Osteoarthritis Initiative healthy reference participants (no symptoms, radiographic signs or risk factors of osteoarthritis; 37 men, 50 women; age 55.0±7.6; BMI 24.4±3.1) were assessed. Quantitative measures of subregional femorotibial cartilage thickness and meniscal position and morphology were computed from segmented magnetic resonance images. Minimal and medial/lateral fixed-location JSW were determined from fixed-flexion radiographs. Correlation and regression analyses were used to explore the contribution of demographic, cartilage and meniscal parameters to JSW in healthy subjects. The correlation with (medial) minimal JSW was somewhat stronger for cartilage thickness (0.54≤r≤0.67) than for meniscal (-0.31≤r≤0.50) or demographic measures (-0.15≤r≤0.48), in particular in men. In women, in contrast, the strength of the correlations of cartilage thickness and meniscal measures with minimal JSW were in the same range. Fixed-location JSW measures showed stronger correlations with cartilage thickness (r≥0.68 medially; r≥0.59 laterally) than with meniscal measures (r≤|0.32| medially; r≤|0.32| laterally). Stepwise regression models revealed that meniscal measures added significant independent information to the total variance explained in minimal JSW (adjusted multiple r 2 =58%) but not in medial or lateral fixed-location JSW (r 2 =60/51%, respectively). In healthy subjects, minimal JSW was observed to reflect a combination of cartilage and meniscal measures, particularly in women. Fixed-location JSW, in contrast, was found to be dominated by variance in cartilage thickness in both men and women, with somewhat higher correlations between cartilage and JSW in the medial than lateral femorotibial compartment. The

  16. The Effects of Elbow Bracing on Medial Elbow Joint Space Gapping Associated With Repetitive Throwing in High School Baseball Players

    PubMed Central

    Hattori, Hiroshi; Akasaka, Kiyokazu; Otsudo, Takahiro; Takei, Keiichi; Yamamoto, Mitsuru

    2017-01-01

    Background: Throwing athletes risk medial elbow injury from extreme valgus stress generated across the medial elbow during throwing. Braces have been developed to protect the elbow joint; however, no previous study has investigated the effects of elbow bracing on medial elbow joint space gapping associated with repetitive throwing. Hypothesis/Purpose: The purpose of this study was to investigate the effects of elbow bracing on medial elbow joint space gapping during repetitive throwing. Our hypothesis was that an elbow brace may reduce mechanical stress on the elbow by reducing medial elbow joint space gapping. Study Design: Controlled laboratory study. Methods: Twenty-five high school baseball players participated in this study. Each subject pitched 100 times under 2 conditions: control (without elbow brace) and elbow brace. The ulnohumeral joint space was measured ultrasonically before pitching and after every block of 20 pitches. Measurement of the ulnohumeral joint space was carried out using ultrasound with the forearm hanging by the side. Two-way repeated-measures analysis of variance and post hoc tests were used to compare ulnohumeral joint space with repeated pitching and between the elbow brace and control conditions. Results: In the control condition, ulnohumeral joint space after 60 pitches was significantly greater than that before pitching (P < .01). In contrast, in the elbow brace condition, ulnohumeral joint space was not significantly different after repeated pitching. When comparing these 2 conditions, ulnohumeral joint space in the control condition was significantly greater than that in the elbow brace condition after 60 pitches (P < .01). Conclusion: An elbow brace has the effect of preventing medial elbow joint space gapping with repeated throwing when determined ultrasonically by measuring the ulnohumeral joint space under gravity load. Clinical Relevance: An elbow brace worn during baseball pitching practice may help reduce mechanical stress

  17. The Effects of Elbow Bracing on Medial Elbow Joint Space Gapping Associated With Repetitive Throwing in High School Baseball Players.

    PubMed

    Hattori, Hiroshi; Akasaka, Kiyokazu; Otsudo, Takahiro; Takei, Keiichi; Yamamoto, Mitsuru

    2017-04-01

    Throwing athletes risk medial elbow injury from extreme valgus stress generated across the medial elbow during throwing. Braces have been developed to protect the elbow joint; however, no previous study has investigated the effects of elbow bracing on medial elbow joint space gapping associated with repetitive throwing. The purpose of this study was to investigate the effects of elbow bracing on medial elbow joint space gapping during repetitive throwing. Our hypothesis was that an elbow brace may reduce mechanical stress on the elbow by reducing medial elbow joint space gapping. Controlled laboratory study. Twenty-five high school baseball players participated in this study. Each subject pitched 100 times under 2 conditions: control (without elbow brace) and elbow brace. The ulnohumeral joint space was measured ultrasonically before pitching and after every block of 20 pitches. Measurement of the ulnohumeral joint space was carried out using ultrasound with the forearm hanging by the side. Two-way repeated-measures analysis of variance and post hoc tests were used to compare ulnohumeral joint space with repeated pitching and between the elbow brace and control conditions. In the control condition, ulnohumeral joint space after 60 pitches was significantly greater than that before pitching ( P < .01). In contrast, in the elbow brace condition, ulnohumeral joint space was not significantly different after repeated pitching. When comparing these 2 conditions, ulnohumeral joint space in the control condition was significantly greater than that in the elbow brace condition after 60 pitches ( P < .01). An elbow brace has the effect of preventing medial elbow joint space gapping with repeated throwing when determined ultrasonically by measuring the ulnohumeral joint space under gravity load. An elbow brace worn during baseball pitching practice may help reduce mechanical stress on the elbow by reducing medial elbow joint space gapping.

  18. Neural joint control for Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.

    1992-01-01

    Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.

  19. Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product.

    PubMed

    Oktem, Figen S; Ozaktas, Haldun M

    2010-08-01

    Linear canonical transforms (LCTs) form a three-parameter family of integral transforms with wide application in optics. We show that LCT domains correspond to scaled fractional Fourier domains and thus to scaled oblique axes in the space-frequency plane. This allows LCT domains to be labeled and ordered by the corresponding fractional order parameter and provides insight into the evolution of light through an optical system modeled by LCTs. If a set of signals is highly confined to finite intervals in two arbitrary LCT domains, the space-frequency (phase space) support is a parallelogram. The number of degrees of freedom of this set of signals is given by the area of this parallelogram, which is equal to the bicanonical width product but usually smaller than the conventional space-bandwidth product. The bicanonical width product, which is a generalization of the space-bandwidth product, can provide a tighter measure of the actual number of degrees of freedom, and allows us to represent and process signals with fewer samples.

  20. 30 CFR 18.31 - Enclosures-joints and fastenings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... covers 2 1/4″ 3 3/8″ 3 1/2″ Minimum width of joint; all in one plane 4 1/2″ 3/4″ 1″ Maximum clearance; joint all in one plane 0.002″ 0.003″ 0.004″ Minimum width of joint, portions of which are in different planes; cylinders or equivalent 4,5 3/8″ 5/8″ 3/4″ Maximum clearances; joint in two or more planes...

  1. Butt Welding Joint of Aluminum Alloy by Space GHTA Welding Process in Vacuum

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Shinike, Shuhei; Ekuni, Tomohide; Terajima, Noboru; Tsukuda, Yoshiyuki; Imagawa, Kichiro

    Aluminum alloys have been used widely in constructing various space structures including the International Space Station (ISS) and launch vehicles. For space applications, welding experiments on aluminum alloy were performed using the GHTA (Gas Hollow Tungsten Arc) welding process using a filler wire feeder in a vacuum. We investigated the melting phenomenon of the base metal and filler wire, bead formation, and the effects of wire feed speed on melting characteristics. The melting mechanism in the base metal during the bead on a plate with wire feed was similar to that for the melt run without wire feed. We clarified the effects of wire feed speed on bead sizes and configurations. Furthermore, the butt welded joint welded using the optimum wire feed speed, and the joint tensile strengths were evaluated. The tensile strength of the square butt joint welded by the pulsed DC GHTA welding with wire feed in a vacuum is nearly equal to that of the same joint welded by conventional GTA (Gas Tungsten Arc) welding in air.

  2. On the apparent insignificance of the randomness of flexible joints on large space truss dynamics

    NASA Technical Reports Server (NTRS)

    Koch, R. M.; Klosner, J. M.

    1993-01-01

    Deployable periodic large space structures have been shown to exhibit high dynamic sensitivity to period-breaking imperfections and uncertainties. These can be brought on by manufacturing or assembly errors, structural imperfections, as well as nonlinear and/or nonconservative joint behavior. In addition, the necessity of precise pointing and position capability can require the consideration of these usually negligible and unknown parametric uncertainties and their effect on the overall dynamic response of large space structures. This work describes the use of a new design approach for the global dynamic solution of beam-like periodic space structures possessing parametric uncertainties. Specifically, the effect of random flexible joints on the free vibrations of simply-supported periodic large space trusses is considered. The formulation is a hybrid approach in terms of an extended Timoshenko beam continuum model, Monte Carlo simulation scheme, and first-order perturbation methods. The mean and mean-square response statistics for a variety of free random vibration problems are derived for various input random joint stiffness probability distributions. The results of this effort show that, although joint flexibility has a substantial effect on the modal dynamic response of periodic large space trusses, the effect of any reasonable uncertainty or randomness associated with these joint flexibilities is insignificant.

  3. Medial joint space widening of the ankle in displaced Tillaux and Triplane fractures in children.

    PubMed

    Gourineni, Prasad; Gupta, Asheesh

    2011-10-01

    Tillaux and Triplane fractures occur in children predominantly from external rotation mechanism. We hypothesized that in displaced fractures, the talus would shift laterally along with the distal fibula and the distal tibial epiphyseal fragment increasing the medial joint space. Consecutive cases evaluated retrospectively. Level I and Level II centers. Twenty-two skeletally immature patients with 14 displaced Triplane fractures and eight displaced Tillaux fractures were evaluated for medial joint space widening. Measurement of fracture displacement and medial joint space widening before and after intervention. Thirteen Triplane and six Tillaux fractures (86%) showed medial space widening of 1 to 9 mm and equal to the amount of fracture displacement. Reduction of the fracture reduced the medial space to normal. There were no known complications. Medial space widening of the ankle may be a sign of ankle fracture displacement. Anatomic reduction of the fracture reduces the medial space and may improve the results in Tillaux and Triplane fractures.

  4. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  5. Shoulder and hip joint for hard space suits

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    Shoulder and hip joints for hard space suits are disclosed which are comprised of three serially connected truncated spherical sections, the ends of which converge. Ball bearings between the sections permit relative rotation. The proximal end of the first section is connected to the torso covering by a ball bearing and the distal end of the outermost section is connected to the elbow or thigh covering by a ball bearing. The sections are equi-angular and this alleviates lockup, the condition where the distal end of the joint leaves the plane in which the user is attempting to flex. The axes of rotation of the bearings and the bearing mid planes are arranged to intersect in a particular manner that provides the joint with a minimum envelope. In one embodiment, the races of the bearing between the innermost section and the second section is partially within the inner race of the bearing between the torso and the innermost spherical section further to reduce bulk.

  6. Philosophies Applied in the Selection of Space Suit Joint Range of Motion Requirements

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsway; Ross, Amy; Matty, Jennifer

    2009-01-01

    Space suits are the most important tool for astronauts working in harsh space and planetary environments; suits keep crewmembers alive and allow them to perform exploration, construction, and scientific tasks on a routine basis over a period of several months. The efficiency with which the tasks are performed is largely dictated by the mobility features of the space suit. For previous space suit development programs, the mobility requirements were written as pure functional mobility requirements that did not separate joint ranges of motion from the joint torques. The Constellation Space Suit Element has the goal to make more quantitative mobility requirements that focused on the individual components of mobility to enable future suit designers to build and test systems more effectively. This paper details the test planning and selection process for the Constellation space suit pressure garment range of motion requirements.

  7. The Fate of DDH Hips Showing Cartilaginous or Fibrous Tissue-filled Joint Spaces Following Primary Reduction.

    PubMed

    Kim, Hui Taek; Lee, Tae Hoon; Ahn, Tae Young; Jang, Jae Hoon

    Because the use of magnetic resonance imaging is still not universal for the patients with developmental dysplasia of the hip patients, orthopaedists do not generally distinguish widened joint spaces which are "empty" after primary treatment (and therefore still reducible), from those which are filled and much more difficult to treat. To date no studies have focused on the latter hips. We treated and observed the outcomes for 19 hips which showed filled joint spaces after primary treatment. We retrospectively reviewed 19 cases of developmental dysplasia of the hip: (1) who showed a widened joint space on radiographs after primary treatment; and (2) whose magnetic resonance imaging showed that the widened joint space was accompanied by acetabular cartilage hypertrophy and/or was filled with fibrous tissues. All patients were over 1 year old at the time of primary reduction (reduction was closed in 4 patients, open in 6, and open with pelvic osteotomy in 9). Thirteen patients received at least 1 secondary treatment. Final results were classified using a modified Severin classification. Final outcomes were satisfactory in 10 (52.6%) and unsatisfactory in 9 (47.4%). The widened joint spaces gradually filled with bone, resulting in a shallow acetabulum in the patients with unsatisfactory results. Of 9 patients who underwent combined pelvic osteotomy at the time of primary reduction, results were satisfactory in 6 (66.7%), whereas all patients who had only closed or open primary reduction had unsatisfactory results. Combined pelvic osteotomy at the time of primary reduction is advisable in hips with widened joint spaces. However, hips with filled joint spaces after primary treatment often have unsatisfactory results even after additional pelvic and/or femoral osteotomy. Level IV-prognostic study.

  8. Experiences in the development of rotary joints for robotic manipulators in space applications

    NASA Technical Reports Server (NTRS)

    Priesett, Klaus

    1992-01-01

    European developments in robotics for space applications have resulted in human arm-like manipulators with six or more rotational degrees of freedom. The rotary joints including their own electromechanical actuator and feedback sensors must be very compact units. The specific joint concept is presented as evolved so far. The problems encountered during the first hardware development phases are covered on both component and joint level.

  9. Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1975-01-01

    The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.

  10. Template-based automatic extraction of the joint space of foot bones from CT scan

    NASA Astrophysics Data System (ADS)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  11. Structural analysis of three space crane articulated-truss joint concepts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Sutter, Thomas R.

    1992-01-01

    Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.

  12. Ternary isocratic mobile phase optimization utilizing resolution Design Space based on retention time and peak width modeling.

    PubMed

    Kawabe, Takefumi; Tomitsuka, Toshiaki; Kajiro, Toshi; Kishi, Naoyuki; Toyo'oka, Toshimasa

    2013-01-18

    An optimization procedure of ternary isocratic mobile phase composition in the HPLC method using a statistical prediction model and visualization technique is described. In this report, two prediction models were first evaluated to obtain reliable prediction results. The retention time prediction model was constructed by modification from past respectable knowledge of retention modeling against ternary solvent strength changes. An excellent correlation between observed and predicted retention time was given in various kinds of pharmaceutical compounds by the multiple regression modeling of solvent strength parameters. The peak width of half height prediction model employed polynomial fitting of the retention time, because a linear relationship between the peak width of half height and the retention time was not obtained even after taking into account the contribution of the extra-column effect based on a moment method. Accurate prediction results were able to be obtained by such model, showing mostly over 0.99 value of correlation coefficient between observed and predicted peak width of half height. Then, a procedure to visualize a resolution Design Space was tried as the secondary challenge. An artificial neural network method was performed to link directly between ternary solvent strength parameters and predicted resolution, which were determined by accurate prediction results of retention time and a peak width of half height, and to visualize appropriate ternary mobile phase compositions as a range of resolution over 1.5 on the contour profile. By using mixtures of similar pharmaceutical compounds in case studies, we verified a possibility of prediction to find the optimal range of condition. Observed chromatographic results on the optimal condition mostly matched with the prediction and the average of difference between observed and predicted resolution were approximately 0.3. This means that enough accuracy for prediction could be achieved by the proposed

  13. Comparison of joint space versus task force load distribution optimization for a multiarm manipulator system

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I.; Alberts, Thomas E.

    1989-01-01

    It is often proposed that the redundancy in choosing a force distribution for multiple arms grasping a single object should be handled by minimizing a quadratic performance index. The performance index may be formulated in terms of joint torques or in terms of the Cartesian space force/torque applied to the body by the grippers. The former seeks to minimize power consumption while the latter minimizes body stresses. Because the cost functions are related to each other by a joint angle dependent transformation on the weight matrix, it might be argued that either method tends to reduce power consumption, but clearly the joint space minimization is optimal. A comparison of these two options is presented with consideration given to computational cost and power consumption. Simulation results using a two arm robot system are presented to show the savings realized by employing the joint space optimization. These savings are offset by additional complexity, computation time and in some cases processor power consumption.

  14. The Role of High-resolution Peripheral Quantitative Computed Tomography as a Biomarker for Joint Damage in Inflammatory Arthritis.

    PubMed

    Tam, Lai-Shan

    2016-10-01

    Since 2011, members of the SPECTRA Collaboration (Study grouP for xtrEme-Computed Tomography in Rheumatoid Arthritis) have investigated the validity, reliability, and responsiveness of high-resolution peripheral quantitative computed tomography (HR-pQCT) as a biomarker for joint damage in inflammatory arthritis. Presented in this series of articles are a systematic review of HR-pQCT-related findings to date, a review of selected images of cortical and subchondral trabecular bone of metacarpophalangeal (MCP) joints, results of a consensus process to standardize the definition of erosions and their quantification, as well as an examination of the effect of joint flexion on width and volume assessment of the joint space.

  15. DINAMICS OF KNEE JOINT SPACE ASYMMETRY ON X-RAY AS A MARKER OF KNEE OSTEOARTHRITIS REHABILITATION EFFICACY.

    PubMed

    Sheveleva, N; Minbayeva, L; Belyayeva, Y

    2017-03-01

    Reducing of articular cartilage functional volume in knee joint osteoarthritis occurs unevenly and accompanied with pathological changes of lower limb axis as a result of connective tissue and muscle structures dysfunction. Evaluation of X-ray knee joint space asymmetry seems to be informative to analyze the dynamics of lower extremities biomechanical imbalances characteristic for knee joint osteoarthritis. However, standardized method of X-ray joint space determining does not include its symmetry calculation. The purpose of the study was optimization of knee joint radiological examination by developing of X-ray knee joint space asymmetry index calculation method. The proposed method was used for comparative analysis of extracorporeal shock-wave therapy efficacy in 30 patients with knee joint osteoarthritis of 2-3 degrees (Kellgren-Lawrence, 1957). As a result of the conducted treatment statistically significant decrease of the X-ray knee joint space asymmetry index was observed (Me(Q1;Q3): Z=5.20, p<0.001) and amounted as 0.22 (0.18;0.24) before treatment and 0.12 (0.10;0.14) after. Also, statistically significant (Z=5.10; p=0.00001) changes of load asymmetry on front and rear foot sections were observed by the results of podometric survey in comparative assessment before (Me(Q1;Q3)=24(12;30)) and after (Me(Q1;Q3)=6(4;30)) course therapy. 30% (n=9) of the patients evaluated the outcome of the treatment as "excellent" (1 point), 63% (n=19) - as "good" (2 points) and only 7% (n=2) - as "acceptable" (3 points) according to the Roles and Maudsley score. The listed above data was regarded as an X-ray positive dynamics comparable with clinical improvement. Thus, the X-ray knee joint space asymmetry index, calculated according to the proposed method, allows to evaluate dynamics of articular surfaces congruency changes and provide differentiated approach to the treatment of knee joint osteoarthritis.

  16. Determination of body width in brown and white layer pullets by image analyses.

    PubMed

    Giersberg, M F; Kemper, N; Hartung, J; Schrader, L; Spindler, B

    2017-06-01

    1. Specific legal requirements for keeping pullets are not available in the European Union. However, two of the most important rearing factors for pullets are sufficient perching and feeder space. Both factors represent horizontal space dimensions which derive from the body width of the birds. 2. The body width of two strains of layer pullets (brown (BL) and white (WL) layer pullets) based on the measurement of distances in digital images was conducted on front-view digital photographs of BL and WL pullets taken at 8, 12 and 19 weeks of life. 3. Depending on live weight, age and body position, BL pullets measured an average body width between 10.70 ± 1.10 and 13.96 ± 1.11 cm. The width of WL pullets ranged from 10.30 ± 0.86 to 13.00 ± 1.14 cm. 4. Compared with WL, BL pullets occupied more horizontal space during rearing. Age influenced the body width of BL and WL pullets at the end of rearing. The tested body positions of the pullets did not affect the measured body width. 5. The biometric data obtained in this study are a useful basis for developing legal requirements for pullets, especially for defining minimum perch width and feeder space allowances.

  17. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    NASA Astrophysics Data System (ADS)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  18. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    PubMed Central

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  19. Towards Scalable Strain Gauge-Based Joint Torque Sensors.

    PubMed

    Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio

    2017-08-18

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS) , the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot- MiniHyQ . This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).

  20. Investigation Leads to Improved Understanding of Space Shuttle RSRM Internal Insulation Joints

    NASA Technical Reports Server (NTRS)

    McWhorter, Bruce B.; Bolton, Doug E.; Hicken, Steve V.; Allred, Larry D.; Cook, Dave J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) uses an internal insulation J-joint design for the mated insulation interface between two assembled RSRM segments. In this assembled (mated) segment configuration, this J-joint design serves as a thermal barrier to prevent hot gases from affecting the case field joint metal surfaces and O-rings. A pressure sensitive adhesive (PSA) provides some adhesion between the two mated insulation surfaces. In 1995, after extensive testing, a new ODC-free PSA (free of ozone depleting chemicals) was selected for flight on RSRM-55 (STS-78). Post-flight inspection revealed that the J-joint, equipped with the new ODC-free PSA, did not perform well. Hot gas seeped inside the J-joint interface. Although not a flight safety threat, the J-joint hot gas intrusion on RSRM-55 was a mystery to the investigators since the PSA had previously worked well on a full-scale static test. A team was assembled to study the J-joint and PSA further. All J-joint design parameters, measured data, and historical performance data were re-reviewed and evaluated by subscale testing and analysis. Although both the ODC-free and old PSA were weakened by humidity, the ODC-free PSA strength was lower to start with. Another RSRM full-scale static test was conducted in 1998 and intentionally duplicated the gas intrusion. This test, along with many concurring tests, showed that if a J-joint was 1) mated with the new ODC-free PSA, 2) exposed to a history of high humidity (Kennedy Space Center levels), and 3) also a joint which experienced significant but normal joint motion (J-joint deformation resulting from motor pressurization dynamics) then that J-joint would open (allow gas intrusion) during motor operation. When all of the data from the analyses, subscale tests, and full-scale tests were considered together, a theory emerged. Most of the joint motion on the RSRM occurs early in motor operation at which point the J-joints are pulled into tension. If the new

  1. 76 FR 41307 - NASA Advisory Council; Space Operations Committee and Exploration Committee; Joint Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Operations Committee and Exploration Committee; Joint Meeting AGENCY: National Aeronautics and Space... the Space Operations Committee and Exploration Committee of the NASA Advisory Council. DATES: Tuesday.../Exploration Systems Mission Directorate Merger Update. [[Page 41308

  2. Medial Elbow Joint Space Increases With Valgus Stress and Decreases When Cued to Perform A Maximal Grip Contraction.

    PubMed

    Pexa, Brett S; Ryan, Eric D; Myers, Joseph B

    2018-04-01

    Previous research indicates that the amount of valgus torque placed on the elbow joint during overhead throwing is higher than the medial ulnar collateral ligament (UCL) can tolerate. Wrist and finger flexor muscle activity is hypothesized to make up for this difference, and in vitro studies that simulated activity of upper extremity musculature, specifically the flexor digitorum superficialis and flexor carpi ulnaris, support this hypothesis. To assess the medial elbow joint space at rest, under valgus stress, and under valgus stress with finger and forearm flexor contraction by use of ultrasonography in vivo. Controlled laboratory study. Participants were 22 healthy males with no history of elbow dislocation or UCL injury (age, 21.25 ± 1.58 years; height, 1.80 ± 0.08 m; weight, 79.43 ± 18.50 kg). Medial elbow joint space was measured by use of ultrasonography during 3 separate conditions: at rest (unloaded), under valgus load (loaded), and with a maximal grip contraction under a valgus load (loaded-contracted) in both limbs. Participants lay supine with their arm abducted 90° and elbow flexed 30° with the forearm in full supination. A handgrip dynamometer was placed in the participants' hand to grip against during the contracted condition. Images were reduced in ImageJ to assess medial elbow joint space. A 2-way (condition × limb) repeated-measures analysis of variance and Cohen's d effect sizes were used to assess changes in medial elbow joint space. Post hoc testing was performed with a Bonferroni adjustment to assess changes within limb and condition. The medial elbow joint space was significantly larger in the loaded condition (4.91 ± 1.16 mm) compared with the unloaded condition (4.26 ± 1.23 mm, P < .001, d = 0.712) and the loaded-contracted condition (3.88 ± 0.94 mm, P < .001, d = 1.149). No significant change was found between the unloaded and loaded-contracted conditions ( P = .137). Medial elbow joint space increases under a valgus load and then

  3. Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis)

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.

    2015-02-01

    Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies.

  4. Structural behavior of the space shuttle SRM Tang-Clevis joint

    NASA Technical Reports Server (NTRS)

    Greene, W. H.; Knight, N. F., Jr.; Stockwell, A. E.

    1986-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  5. Structural behavior of the space shuttle SRM tang-clevis joint

    NASA Technical Reports Server (NTRS)

    Greene, William H.; Knight, Norman F., Jr.; Stockwell, Alan E.

    1988-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  6. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection.

    PubMed

    Ling, F; Halabi, S; Jones, C

    2018-07-01

    Periprosthetic joint infection is a major complication of total joint replacement surgery and is associated with significant morbidity, mortality and financial burden. Surgical body suits (space suits), originally designed to reduce the incidence of infection, have paradoxically been implicated in increased periprosthetic joint infection rates recently. Air exhausted from space suits may contribute to this increased rate of periprosthetic joint infection. To investigate the flow of air exhausted from space suits commonly used in modern operating theatres. The exhaust airflow patterns of four commercially available space suit systems were compared using a fog machine and serial still photographs. The space suit systems tested all air exhausted into the operating room. The single fan systems with a standard surgical gown exhausted air laterally from the posterior gown fold at approximately the level of the surgical field. The single fan system with a dedicated zippered suit exhausted air at a level below the surgical field. The dual fan system exhausted air out of the top of the helmet at a level above the surgical field. Space suit systems currently in use in joint replacement surgery differ significantly from traditional body exhaust systems; rather than removing contaminated air from the operating environment, modern systems exhaust this air into the operating room, in some cases potentially towards the sterile instrument tray and the surgical field. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Computer-aided classification of optical images for diagnosis of osteoarthritis in the finger joints.

    PubMed

    Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei

    2011-01-01

    This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.

  8. Effects of load proportioning on the capacity of multiple-hole composite joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Chastain, P. A.

    1985-01-01

    This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.

  9. Overview of Carbon Dioxide Control Issues During International Space Station/Space Shuttle Joint Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Hayley, Elizabeth P.

    2009-01-01

    Manned space vehicles have a common requirement to remove the Carbon Dioxide (CO2) created by the metabolic processes of the crew. The Space Shuttle and International Space Station (ISS) each have systems in place to allow control and removal of CO2 from the habitable cabin environment. During periods where the Space Shuttle is docked to ISS, known as joint docked operations, the Space Shuttle and ISS share a common atmosphere environment. During this period there is an elevated production of CO2 caused by the combined metabolic activity of the Space Shuttle and ISS crew. This elevated CO2 production, combined with the large effective atmosphere created by the collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe the individual CO2 control plans implemented by the Space Shuttle and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. In addition, the paper will discuss some of the issues and anomalies experienced by both engineering teams.

  10. Reusable Solid Rocket Motor Nozzle Joint-4 Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    This study provides for development and test verification of a thermal model used for prediction of joint heating environments, structural temperatures and seal erosions in the Space Shuttle Reusable Solid Rocket Motor (RSRM) Nozzle Joint-4. The heating environments are a result of rapid pressurization of the joint free volume assuming a leak path has occurred in the filler material used for assembly gap close out. Combustion gases flow along the leak path from nozzle environment to joint O-ring gland resulting in local heating to the metal housing and erosion of seal materials. Analysis of this condition was based on usage of the NASA Joint Pressurization Routine (JPR) for environment determination and the Systems Improved Numerical Differencing Analyzer (SINDA) for structural temperature prediction. Model generated temperatures, pressures and seal erosions are compared to hot fire test data for several different leak path situations. Investigated in the hot fire test program were nozzle joint-4 O-ring erosion sensitivities to leak path width in both open and confined joint geometries. Model predictions were in generally good agreement with the test data for the confined leak path cases. Worst case flight predictions are provided using the test-calibrated model. Analysis issues are discussed based on model calibration procedures.

  11. Geometric features of workspace and joint-space paths of 3D reaching movements.

    PubMed

    Klein Breteler, M D; Meulenbroek, R G; Gielen, S C

    1998-11-01

    The present study focuses on geometric features of workspace and joint-space paths of three-dimensional reaching movements. Twelve subjects repeatedly performed a three-segment, triangular-shaped movement pattern in an approximately 60 degrees tilted horizontal plane. Task variables elicited movement patterns that varied in position, rotational direction and speed. Trunk, arm, hand and finger-tip movements were recorded by means of a 3D motion-tracking system. Angular excursions of the shoulder and elbow joints were extracted from position data. Analyses of the shape of 3D workspace and joint-space paths focused on the extent to which the submovements were produced in a plane, and on the curvature of the central parts of the submovements. A systematic tendency to produce movements in a plane was found in addition to an increase of finger-tip path curvature with increasing speed. The findings are discussed in relation to the role of optimization principles in trajectory-formation models.

  12. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  13. Overview of Carbon Dioxide Control Issues During International Space Station/Space Shuttle Joint Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.

    2010-01-01

    Crewed space vehicles have a common requirement to remove the carbon dioxide (CO2) created by the metabolic processes of the crew. The space shuttle [Space Transportation System (STS)] and International Space Station (ISS) each have systems in place that allow control and removal of CO2 from the habitable cabin environment. During periods in which the space shuttle is docked to the ISS, known as "joint docked operations," the space shuttle and ISS share a common atmosphere environment. During this period, an elevated amount of CO2 is produced through the combined metabolic activity of the STS and ISS crews. This elevated CO2 production, together with the large effective atmosphere created by collective volumes of the docked vehicles, creates a unique set of requirements for CO2 removal. This paper will describe individual CO2 control plans implemented by STS and ISS engineering teams, as well as the integrated plans used when both vehicles are docked. The paper will also discuss some of the issues and anomalies experienced by both engineering teams.

  14. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  15. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  16. Computer re-sampling for demographically representative user populations in anthropometry: a case of doorway and clear floor space widths.

    PubMed

    Paquet, Victor; Joseph, Caroline; D'Souza, Clive

    2012-01-01

    Anthropometric studies typically require a large number of individuals that are selected in a manner so that demographic characteristics that impact body size and function are proportionally representative of a user population. This sampling approach does not allow for an efficient characterization of the distribution of body sizes and functions of sub-groups within a population and the demographic characteristics of user populations can often change with time, limiting the application of the anthropometric data in design. The objective of this study is to demonstrate how demographically representative user populations can be developed from samples that are not proportionally representative in order to improve the application of anthropometric data in design. An engineering anthropometry problem of door width and clear floor space width is used to illustrate the value of the approach.

  17. Genome-wide association study of rice grain width variation.

    PubMed

    Zheng, Xiao-Ming; Gong, Tingting; Ou, Hong-Ling; Xue, Dayuan; Qiao, Weihua; Wang, Junrui; Liu, Sha; Yang, Qingwen; Olsen, Kenneth M

    2018-04-01

    Seed size is variable within many plant species, and understanding the underlying genetic factors can provide insights into mechanisms of local environmental adaptation. Here we make use of the abundant genomic and germplasm resources available for rice (Oryza sativa) to perform a large-scale genome-wide association study (GWAS) of grain width. Grain width varies widely within the crop and is also known to show climate-associated variation across populations of its wild progenitor. Using a filtered dataset of >1.9 million genome-wide SNPs in a sample of 570 cultivated and wild rice accessions, we performed GWAS with two complementary models, GLM and MLM. The models yielded 10 and 33 significant associations, respectively, and jointly yielded seven candidate locus regions, two of which have been previously identified. Analyses of nucleotide diversity and haplotype distributions at these loci revealed signatures of selection and patterns consistent with adaptive introgression of grain width alleles across rice variety groups. The results provide a 50% increase in the total number of rice grain width loci mapped to date and support a polygenic model whereby grain width is shaped by gene-by-environment interactions. These loci can potentially serve as candidates for studies of adaptive seed size variation in wild grass species.

  18. Modeling and optimization of joint quality for laser transmission joint of thermoplastic using an artificial neural network and a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia

    2012-11-01

    A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.

  19. Space suit glove design with advanced metacarpal phalangeal joints and robotic hand evaluation.

    PubMed

    Southern, Theodore; Roberts, Dustyn P; Moiseev, Nikolay; Ross, Amy; Kim, Joo H

    2013-06-01

    One area of space suits that is ripe for innovation is the glove. Existing models allow for some fine motor control, but the power grip--the act of grasping a bar--is cumbersome due to high torque requirements at the knuckle or metacarpal phalangeal joint (MCP). This area in particular is also a major source of complaints of pain and injury as reported by astronauts. This paper explores a novel fabrication and patterning technique that allows for more freedom of movement and less pain at this crucial joint in the manned space suit glove. The improvements are evaluated through unmanned testing, manned testing while depressurized in a vacuum glove box, and pressurized testing with a robotic hand. MCP joint flex score improved from 6 to 6.75 (out of 10) in the final glove relative to the baseline glove, and torque required for flexion decreased an average of 17% across all fingers. Qualitative assessments during unpressurized and depressurized manned testing also indicated the final glove was more comfortable than the baseline glove. The quantitative results from both human subject questionnaires and robotic torque evaluation suggest that the final iteration of the glove design enables flexion at the MCP joint with less torque and more comfort than the baseline glove.

  20. Effect of heating scheme on SOL width in DIII-D and EAST

    DOE PAGES

    Wang, L.; Makowski, M. A.; Guo, H. Y.; ...

    2017-03-10

    Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less

  1. Effect of heating scheme on SOL width in DIII-D and EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L.; Makowski, M. A.; Guo, H. Y.

    Joint DIII-D/EAST experiments in the radio-frequency (RF) heated H-mode scheme with comparison to that of neutral beam (NB) heated H-mode scheme were carried out on DIII-D and EAST under similar conditions to examine the effect of heating scheme on scrape-off layer (SOL) width in H-mode plasmas for application to ITER. A dimensionally similar plasma equilibrium was used to match the EAST shape parameters. The divertor heat flux and SOL widths were measured with infra-red camera in DIII-D, while with divertor Langmuir probe array in EAST. It has been demonstrated on both DIII-D and EAST that RF-heated plasma has a broadermore » SOL than NB-heated plasma when the edge electrons are effectively heated in low plasma current and low density regime with low edge collisionality. Detailed edge and pedestal profile analysis on DIII-D suggests that the low edge collisionality and ion orbit loss effect may account for the observed broadening. Finally, the joint experiment in DIII-D has also demonstrated the strong inverse dependence of SOL width on the plasma current in electron cyclotron heated (ECH) H-mode plasmas.« less

  2. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.

    PubMed

    Kim, Joo H; Roberts, Dustyn

    2015-09-01

    Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.

  3. The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers' behavioral adaptations.

    PubMed

    Mecheri, Sami; Rosey, Florence; Lobjois, Régis

    2017-07-01

    Previous research has shown that lane-width reduction makes drivers operate vehicles closer to the center of the road whereas hard-shoulder widening induces a position farther away from the road's center. The goal of the present driving-simulator study was twofold. First, it was aimed at further investigating the respective effects of lane and shoulder width on in-lane positioning strategies, by examining vehicle distance from the center of the lane. The second aim was to assess the impact on safety of three possible cross-sectional reallocations of the width of the road (i.e., three lane-width reductions with concomitant shoulder widening at a fixed cross-sectional width) as compared to a control road. The results confirmed that lane-width reduction made participants drive closer to the road's center. However, in-lane position was affected differently by lane narrowing, depending on the traffic situation. In the absence of oncoming traffic, lane narrowing gave rise to significant shifts in the car's distance from the lane's center toward the edge line, whereas this distance remained similar across lane widths during traffic periods. When the shoulders were at least 0.50m wide, participants drove farther away from both the road center and the lane center. Road reallocation operations resulted in vehicles positioned farther away from the edge of the road and less swerving behavior, without generating higher driving speeds. Finally, it is argued that road-space reallocation may serve as a good low-cost tool for providing a recovery area for steering errors, without impairing drivers' behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. TH-A-18C-02: An Electrostatic Model for Assessment of Joint Space Morphology in Cone-Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Q; Thawait, G; Gang, G

    Purpose: High-resolution cone-beam CT (CBCT) of the extremities presents a potentially valuable basis for image-based biomarkers of arthritis, trauma, and risk of injury. We present a new method for 3D joint space analysis that exploits the high isotropic spatial resolution of CBCT and is sensitive to small changes in disease-related morphology. Methods: The approach uses an “electrostatic” model in which joint surfaces (e.g., distal femur and proximal tibia) are labeled as charge densities between which the electric field is solved by approximation to the Laplace equation. The method yields a unique solution determined by the field lines across the “capacitor”more » and is hypothesized to be more sensitive than conventional (Sharp) scores and immune to degeneracies that limit simple distance-along-axis or closest-point analysis. The algorithm was validated in CBCT phantom images and applied in two clinical scenarios: osteoarthritis (OA, change in loadbearing tibiofemoral joint space); and assessment of injury risk (correlation of 3D joint space to tibial slope). Results: Joint space maps computed from the electrostatic model were accurate to within the voxel size (0.26 mm). The method highlighted subtle regions of morphological change that would likely be missed by conventional scalar metrics. Regions of subtle cartilage erosion were well quantified, and the method confidently discriminated OA and non-OA cohorts. 3D joint space maps correlated well with tibial slope and provide a new basis for principal component analysis of loadbearing injury risk. Runtime was less than 5 min (235×235×121 voxel subvolume in Matlab). Conclusion: A new method for joint space assessment was reported as a possible image-based biomarker of subtle articular change. The algorithm yields accurate quantitation of the joint in a manner that is robust against operator and patient setup variation. The method shows promising initial results in ongoing trials of CBCT in

  5. The Efficacy of Platelets Rich Plasma Injection in the Superior Joint Space of the Tempromandibular Joint Guided by Ultra Sound in Patients with Non-reducing Disk Displacement.

    PubMed

    Al-Delayme, Ra'ed M Ayoub; Alnuamy, Shefaa H; Hamid, Firas Taha; Azzamily, Tariq Jassim; Ismaeel, Salah AbdulMahdy; Sammir, R; Hadeel, M; Nabeel, Jafaar; Shwan, R; Alfalahi, Shahad Jamal; Yasin, Alaa

    2017-03-01

    The objective of this study was to determine average improvement during the rest and active mouth opening after ultrasound guided platelets rich plasma injection in the tempromandibular superior joint space for the patients complaining from non-reducing disk displacement. Thirty-four patients with non-reducing disk displacement underwent guided ultrasound injection of platelet rich plasma to the upper joint space. The extent of maximal mouth opening, chewing efficiency, sound intensity of the TMJ, and tenderness of the TMJ and the masticatory muscles at rest, motion and mastication were thoroughly assessed at the beginning of the study and scheduled for next follow-up at 1st, 3rd, and 6th months. Injection with platelets rich plasma was significantly more effective in improvements of the extent of maximal mouth opening, statistics result demonstrated a significant reduction in the VAS values of pain at rest, motion and mastication compared to the baseline VAS values. PRP injection to the upper temporomandibular joint space provided improvement in signs and symptoms of patient with non-reducing disk displacement of the temporomandibular joint.

  6. Joint Simon effects in extrapersonal space.

    PubMed

    Welsh, Timothy N; Kiernan, Dovin; Neyedli, Heather F; Ray, Matthew; Pratt, Jay; Potruff, Andrew; Weeks, Daniel J

    2013-01-01

    Numerous studies have revealed that when people sit next to each other and complete separate parts of a Simon task, response times are shorter when the participants' stimulus appears in front of them than when the stimulus appears in the opposite side of space. According to the action co-representation account of this joint Simon effect (JSE), participants represent each other's responses and the compatibility effects emerge because of a set of facilitatory and inhibitory processes that are similar to those that are activated when individuals perform the entire Simon task alone. D. Guagnano, E. Rusconi, and C. A. Umiltà (2010) argued against this account as the sole mechanism based on their finding that a JSE was not observed when participants sat outside of each other's peripersonal space. Notably, the task in the Guagnano et al.'s was a modified version of the conventional JSE task designed to increase the independence of the partners. Here, we reconsider the arguments of Guagnano et al. and report a study in which the authors failed to replicate their key finding. Considering the extant JSE literature, we conclude that the null effect in Guagnano et al.'s study may be an anomaly and that co-representation remains a leading candidate for the critical process underlying JSEs.

  7. Effect of patient positions on measurement errors of the knee-joint space on radiographs

    NASA Astrophysics Data System (ADS)

    Gilewska, Grazyna

    2001-08-01

    Osteoarthritis (OA) is one of the most important health problems these days. It is one of the most frequent causes of pain and disability of middle-aged and old people. Nowadays the radiograph is the most economic and available tool to evaluate changes in OA. Error of performance of radiographs of knee joint is the basic problem of their evaluation for clinical research. The purpose of evaluation of such radiographs in my study was measuring the knee-joint space on several radiographs performed at defined intervals. Attempt at evaluating errors caused by a radiologist of a patient was presented in this study. These errors resulted mainly from either incorrect conditions of performance or from a patient's fault. Once we have information about size of the errors, we will be able to assess which of these elements have the greatest influence on accuracy and repeatability of measurements of knee-joint space. And consequently we will be able to minimize their sources.

  8. Design and Simulation of Control Technique for Permanent Magnet Synchronous Motor Using Space Vector Pulse Width Modulation

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor; Yong, Wang; Mustafa, Ehtasham

    2017-07-01

    After the rapid advancement in the field of power electronics devices and drives for last few decades, there are different kinds of Pulse Width Modulation techniques which have been brought to the market. The applications ranging from industrial appliances to military equipment including the home appliances. The vey common application for the PWM is three phase voltage source inverter, which is used to convert DC to AC in the homes to supply the power to the house in case electricity failure, usually named as Un-interrupted Power Supply. In this paper Space Vector Pulse Width Modulation techniques is discussed and analysed under the control technique named as Field Oriented Control. The working and implementation of this technique has been studied by implementing on the three phase bridge inverter. The technique is used to control the Permanente Magnet Synchronous Motor. The drive system is successfully implemented in MATLAB/Simulink using the mathematical equation and algorithm to achieve the satisfactory results. PI type of controller is used to tuned ers of the motothe parametr i.e. torque and current.

  9. Clinical synovitis in a particular joint is associated with progression of erosions and joint space narrowing in that same joint, but not in patients initially treated with infliximab.

    PubMed

    Klarenbeek, N B; Güler-Yüksel, M; van der Heijde, D M F M; Hulsmans, H M J; Kerstens, P J S M; Molenaar, T H E; de Sonnaville, P B J; Huizinga, T W J; Dijkmans, B A C; Allaart, C F

    2010-12-01

    To assess the relationship between joint tenderness, swelling and joint damage progression in individual joints and to evaluate the influence of treatment on these relationships. First-year data of the Behandel Strategieën (BeSt) study were used, in which patients recently diagnosed as having rheumatoid arthritis (RA) were randomly assigned into four different treatment strategies. Baseline and 1-year x-rays of the hands and feet were assessed using the Sharp-van der Heijde score (SHS). With generalised estimating equations, 3-monthly assessments of tender and swollen joints of year 1 were related to erosion progression, joint space narrowing (JSN) progression and total SHS progression at the individual joint level (definition > 0.5 SHS units) in year 1, corrected for potential confounders and within-patient correlation for multiple joints per patient. During year 1, 59% of all 13 959 joints analysed were ever tender and 45% ever swollen, 2.1% showed erosion progression, 1.9% JSN progression and 3.6% SHS progression. Swelling and tenderness were both independently associated with erosion and JSN progression with comparable OR, although with higher OR in the hands than in the feet. Local swelling and tenderness were not associated with local damage progression in patients initially treated with infliximab. Clinical signs of synovitis are associated with erosion and JSN progression in individual joints after 1 year in RA. A disconnect between synovitis and joint damage progression was observed at joint level in patients who were treated with methotrexate and infliximab as initial treatment, confirming the disconnect between synovitis and the development of joint damage in tumour necrosis factor blockers seen at patient level.

  10. A Comparison of Methods for Assessing Space Suit Joint Ranges of Motion

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay T.

    2012-01-01

    Through the Advanced Exploration Systems (AES) Program, NASA is attempting to use the vast collection of space suit mobility data from 50 years worth of space suit testing to build predictive analysis tools to aid in early architecture decisions for future missions and exploration programs. However, the design engineers must first understand if and how data generated by different methodologies can be compared directly and used in an essentially interchangeable manner. To address this question, the isolated joint range of motion data from two different test series were compared. Both data sets were generated from participants wearing the Mark III Space Suit Technology Demonstrator (MK-III), Waist Entry I-suit (WEI), and minimal clothing. Additionally the two tests shared a common test subject that allowed for within subject comparisons of the methods that greatly reduced the number of variables in play. The tests varied in their methodologies: the Space Suit Comparative Technologies Evaluation used 2-D photogrammetry to analyze isolated ranges of motion while the Constellation space suit benchmarking and requirements development used 3-D motion capture to evaluate both isolated and functional joint ranges of motion. The isolated data from both test series were compared graphically, as percent differences, and by simple statistical analysis. The results indicated that while the methods generate results that are statistically the same (significance level p= 0.01), the differences are significant enough in the practical sense to make direct comparisons ill advised. The concluding recommendations propose direction for how to bridge the data gaps and address future mobility data collection to allow for backward compatibility.

  11. SU-E-T-171: Evaluation of the Analytical Anisotropic Algorithm in a Small Finger Joint Phantom Using Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, J; Owrangi, A; Jiang, R

    2014-06-01

    Purpose: This study investigated the performance of the anisotropic analytical algorithm (AAA) in dose calculation in radiotherapy concerning a small finger joint. Monte Carlo simulation (EGSnrc code) was used in this dosimetric evaluation. Methods: Heterogeneous finger joint phantom containing a vertical water layer (bone joint or cartilage) sandwiched by two bones with dimension 2 × 2 × 2 cm{sup 3} was irradiated by the 6 MV photon beams (field size = 4 × 4 cm{sup 2}). The central beam axis was along the length of the bone joint and the isocenter was set to the center of the joint. Themore » joint width and beam angle were varied from 0.5–2 mm and 0°–15°, respectively. Depth doses were calculated using the AAA and DOSXYZnrc. For dosimetric comparison and normalization, dose calculations were repeated in water phantom using the same beam geometry. Results: Our AAA and Monte Carlo results showed that the AAA underestimated the joint doses by 10%–20%, and could not predict joint dose variation with changes of joint width and beam angle. The calculated bone dose enhancement for the AAA was lower than Monte Carlo and the depth of maximum dose for the phantom was smaller than that for the water phantom. From Monte Carlo results, there was a decrease of joint dose as its width increased. This reflected the smaller the joint width, the more the bone scatter contributed to the depth dose. Moreover, the joint dose was found slightly decreased with an increase of beam angle. Conclusion: The AAA could not handle variations of joint dose well with changes of joint width and beam angle based on our finger joint phantom. Monte Carlo results showed that the joint dose decreased with increase of joint width and beam angle. This dosimetry comparison should be useful to radiation staff in radiotherapy related to small bone joint.« less

  12. The effect of repetitive baseball pitching on medial elbow joint space gapping associated with 2 elbow valgus stressors in high school baseball players.

    PubMed

    Hattori, Hiroshi; Akasaka, Kiyokazu; Otsudo, Takahiro; Hall, Toby; Amemiya, Katsuya; Mori, Yoshihisa

    2018-04-01

    To prevent elbow injury in baseball players, various methods have been used to measure medial elbow joint stability with valgus stress. However, no studies have investigated higher levels of elbow valgus stress. This study investigated medial elbow joint space gapping measured ultrasonically resulting from a 30 N valgus stress vs. gravitational valgus stress after a repetitive throwing task. The study included 25 high school baseball players. Each subject pitched 100 times. The ulnohumeral joint space was measured ultrasonographically, before pitching and after each successive block of 20 pitches, with gravity stress or 30 N valgus stress. Two-way repeated measures analysis of variance and Pearson correlation coefficient analysis were used. The 30 N valgus stress produced significantly greater ulnohumeral joint space gapping than gravity stress before pitching and at each successive 20-pitch block (P < .01). For the 2 stress methods, ulnohumeral joint space gapping increased significantly from baseline after 60 pitches (P < .01). Strong significant correlations were found between the 2 methods for measurement of medial elbow joint space gapping (r = 0.727-0.859, P < .01). Gravity stress and 30 N valgus stress may produce different effects with respect to medial elbow joint space gapping before pitching; however, 30 N valgus stress appears to induce greater mechanical stress, which may be preferable when assessing joint instability but also has the potential to be more aggressive. The present results may indicate that constraining factors to medial elbow joint valgus stress matched typical viscoelastic properties of cyclic creep. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint

  14. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint

  15. Joint-space adaptive control of a 6 DOF end-effector with closed-kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1989-01-01

    The development is presented for a joint-space adaptive scheme that controls the joint position of a six-degree-of-freedom (DOF) robot end-effector performing fine and precise motion within a very limited workspace. The end-effector was built to study autonomous assembly of NASA hardware in space. The design of the adaptive controller is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method. In the development, it is assumed that the end-effector performs slowly varying motion. Computer simulation is performed to investigate the performance of the developed control scheme on position control of the end-effector. Simulation results manifest that the adaptive control scheme provides excellent tracking of several test paths.

  16. Skyrmion dynamics in width-varying nanotracks and implications for skyrmionic applications

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Kang, Wang; Zhu, Daoqian; Zhang, Xichao; Lei, Na; Zhang, Youguang; Zhou, Yan; Zhao, Weisheng

    2017-11-01

    A comprehensive study of the magnetic skyrmion dynamics in terms of size, velocity, energy, and stability in width-varying nanotracks is reported by micromagnetic simulations. We find that the diameter of a skyrmion reduces with the decrease in the nanotrack width in the spin Hall effect (SHE)-induced skyrmion motion. Accordingly, the skyrmion energy increases giving rise to the growing instability of the skyrmion. It is also numerically demonstrated that the velocity of the skyrmion varies during the motion, since the repulsive force of the nanotrack edges acting on the skyrmion as well as the driving force created by the SHE associated with the size of the skyrmion have a joint impact on the skyrmion motion dynamics in the width-varying nanotrack. In addition, one interesting finding reveals that skyrmions with small sizes, which may be inaccessible to typical approaches by means of directly injecting a spin-polarized current, could be obtained by utilizing this structure. This finding is potential for generating nanoscale skyrmions in skyrmionic applications with ultra-dense density. Finally, inspired by the skyrmion dynamics in the width-varying nanotrack, a general summary on the tradeoff between the nanotrack width (storage density) and the skyrmion velocity (data access speed) is given by further analyzing the skyrmion dynamics in parallel nanotracks with different widths, which may provide guidelines in designing racetrack-type skyrmionic applications.

  17. Design and technical support for development of a molded fabric space suit joint

    NASA Technical Reports Server (NTRS)

    Olson, L. Howard

    1994-01-01

    NASA Ames Research Center has under design a new joint or element for use in a space suit. The design concept involves molding a fabric to a geometry developed at Ames. Unusual characteristics of this design include the need to produce a fabric molding draw ratio on the order of thirty percent circumferentially on the surface. Previous work done at NASA on molded fabric joints has shown that standard, NASA qualified polyester fabrics as are currently available in the textile industry for use in suits have a maximum of about fifteen percent draw ratio. NASA has done the fundamental design for a prototype joint and of a mold which would impart the correct shape to the fabric support layer of the joint. NASA also has the capability to test a finished product for suitability and reliability. Responsibilities resting with Georgia Tech in the design effort for this project are textile related, namely fiber selection, fabric design to achieve the properties of the objective design, and determining production means and sources for the fabrics. The project goals are to produce a prototype joint using the NASA design for evaluation of effectiveness by NASA, and to establish the sources and specifications which would allow reliable and repeatable production of the joint.

  18. Structural analysis of a bolted joint concept for the space shuttle's solid rocket motor casing

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.; Stalnaker, Winifred A.

    1987-01-01

    The Space Shuttle Challenger accident is thought to have been caused by the failure of one of the tang-clevis joints joining together the casing segments of the Solid Rocket Motors (SRM). Excessive displacement between the tang and clevis, possibly unseating the O-ring seals, may have initiated the resulting accident. An effort was made at NASA Langley Research Center to design an alternative concept for mating the casing segments. A bolted flange joint concept was designed and analyzed to determine if the concept would effectively maintain a seal while minimizing joint weight and controlling stress levels. It is shown that under the loading conditions analyzed the seal area of the joint remains seated. The only potential stress problem is a stress concentration in the flange at the edge of the bolt hole, which is highly localized. While heavier than the existing joint, this concept does have some advantages making the bolted joint an attractive alternative.

  19. Structural characterization of a first-generation articulated-truss joint for space crane application

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey; Riutort, Kevin T.; Laufer, Joseph B.; Phelps, James E.

    1992-01-01

    A first-generation space crane articulated-truss joint was statically and dynamically characterized in a configuration that approximated an operational environment. The articulated-truss joint was integrated into a test-bed for structural characterization. Static characterization was performed by applying known loads and measuring the corresponding deflections to obtain load-deflection curves. Dynamic characterization was performed using modal testing to experimentally determine the first six mode shapes, frequencies, and modal damping values. Static and dynamic characteristics were also determined for a reference truss that served as a characterization baseline. Load-deflection curves and experimental frequency response functions are presented for the reference truss and the articulated-truss joint mounted in the test-bed. The static and dynamic experimental results are compared with analytical predictions obtained from finite element analyses. Load-deflection response is also presented for one of the linear actuators used in the articulated-truss joint. Finally, an assessment is presented for the predictability of the truss hardware used in the reference truss and articulated-truss joint based upon hardware stiffness properties that were previously obtained during the Precision Segmented Reflector (PSR) Technology Development Program.

  20. Changes in the Width of the Tibiofibular Syndesmosis Related to Lower Extremity Joint Dynamics and Neuromuscular Coordination on Drop Landing During the Menstrual Cycle.

    PubMed

    Okazaki, Michie; Kaneko, Masaaki; Ishida, Yukisato; Murase, Norio; Katsumura, Toshihito

    2017-09-01

    Many injuries of the lower extremities, especially the knee and ankle, occur during sports activity, and the incidence rate is higher in women than in men. The hypothesis was that phases of the menstrual cycle affect the width of the tibiofibular syndesmosis during drop landing in healthy young women and that such changes at the tibiofibular joint also affect the dynamics and neuromuscular coordination of the lower extremities. Descriptive laboratory study. Participants included 28 healthy young women (mean age, 21.0 ± 0.8 years). Blood samples were collected to determine plasma levels of estradiol and progesterone immediately before the performance of the task: drop landing on a single leg from a 30-cm platform. Using ultrasonography, the distance between the tibia and the distal end of the fibula, regarded as the width of the tibiofibular syndesmosis, was measured in an upright position without flexion of the ankle. The peak ground-reaction force (GRF) on landing was measured using a force platform. The time to peak GRF (Tp-GRF) was measured as the time from initial ground contact to the peak GRF. Hip, knee, and ankle joint angles during the single-leg landing were calculated using a 3-dimensional motion analysis system. Muscle activities of the lower extremities were measured using surface electromyography. The width of the tibiofibular syndesmosis was significantly greater in the luteal phase when compared with the menstrual, follicular, and ovulation phases (by 5%-8% of control). Also, during the luteal phase, the Tp-GRF was significantly shorter than in the follicular phase (by 6%); hip internal rotation and knee valgus were significantly greater than in the menstrual phase (by 43% and 34%, respectively); knee flexion was significantly less than in the menstrual and follicular phases (by 7%-9%); ankle dorsiflection was significantly less than in the follicular phase (by 11%); ankle adduction and eversion were significantly greater than in the menstrual and

  1. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  2. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  3. The influence of joint parameters on normal fault evolution and geometry: a parameter study using analogue modeling

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.

    2017-04-01

    joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.

  4. Anterior delayed gadolinium-enhanced MRI of cartilage values predict joint failure after periacetabular osteotomy.

    PubMed

    Kim, Sang Do; Jessel, Rebecca; Zurakowski, David; Millis, Michael B; Kim, Young-Jo

    2012-12-01

    Several available compositional MRIs seem to detect early osteoarthritis before radiographic appearance. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been most frequently used in clinical studies and reportedly predicts premature joint failure in patients undergoing Bernese periacetabular osteotomies (PAOs). We asked, given regional variations in biochemical composition in dysplastic hips, whether the dGEMRIC index of the anterior joint would better predict premature joint failure after PAOs than the coronal dGEMRIC index as previously reported. We retrospectively reviewed 43 hips in 41 patients who underwent Bernese PAO for hip dysplasia. Thirty-seven hips had preserved joints after PAOs and six were deemed premature failures based on pain, joint space narrowing, or subsequent THA. We used dGEMRIC to determine regional variations in biochemical composition. Preoperative demographic and clinical outcome score, radiographic measures of osteoarthritis and severity of dysplasia, and dGEMRIC indexes from different hip regions were analyzed in a multivariable regression analysis to determine the best predictor of premature joint failure. Minimum followup was 24 months (mean, 32 months; range, 24-46 months). The two cohorts were similar in age and sex distribution. Severity of dysplasia was similar as measured by lateral center-edge, anterior center-edge, and Tönnis angles. Preoperative pain, joint space width, Tönnis grade, and coronal and sagittal dGEMRIC indexes differed between groups. The dGEMRIC index in the anterior weightbearing region of the hip was lower in the prematurely failed group and was the best predictor. Success of PAO depends on the amount of preoperative osteoarthritis. These degenerative changes are seen most commonly in the anterior joint. The dGEMRIC index of the anterior joint may better predict premature joint failure than radiographic measures of hip osteoarthritis and coronal dGEMRIC index. Level II, prognostic study. See

  5. A digital beamforming processor for the joint DoD/NASA space based radar mission

    NASA Technical Reports Server (NTRS)

    Fischman, Mark A.; Le, Charles; Rosen, Paul A.

    2004-01-01

    The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.

  6. The JOVE initiative - A NASA/university Joint Venture in space science

    NASA Technical Reports Server (NTRS)

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  7. Evaluation of arch width variations among different skeletal patterns in South Indian population.

    PubMed

    Prasad, Mandava; Kannampallil, Senny Thomas; Talapaneni, Ashok Kumar; George, Suja Ani; Shetty, Sharath Kumar

    2013-01-01

    Anterior cranial base can be taken as a reference line (SN) to determine the steepness of mandibular plane. Subjects with high mandibular plane angle tend to have a long face and one with low MP-SN angle has a shorter face. This study was done to investigate if dental arch widths correlated with vertical facial types and if there are any differences in arch widths between untreated male and female adults in South Indian population. Lateral cephalogram and dental casts were obtained from 180 untreated South Indian adults (90 males and 90 females) above 18 year old with no cross bite, minimal crowding and spacing. The angle between the anterior cranial base and the mandibular plane was measured on lateral cephalogram of each patient. Dental casts were used to obtain comprehensive dental measurements including maxillary and mandibular inter canine, inter premolar and inter molar widths, as well as amount of crowding or spacing. The results showed that male arch widths were significantly larger than those of females (P < 0.05) and there was a significant decrease in inter arch width as the MP-SN angle increased in untreated adult South Indian population. The results obtained in our study when compared with studies done in other population groups showed that there is difference in inter arch widths according to ethnicity and race. It was concluded that the dental arch width is associated with gender, race and vertical facial morphology. Thus using individualized arch wires according to each patient's pre treatment arch form and width is suggested during orthodontic treatment.

  8. Influence of groove size and reinforcements addition on mechanical properties and microstructure of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Reddy Baridula, Ravinder; Ibrahim, Abdullah Bin; Yahya, Che Ku Mohammad Faizal Bin Che Ku; Kulkarni, Ratnakar; Varma Ramaraju, Ramgopal

    2018-03-01

    The butt joints fabricated by friction stir welding were found to have more strength than the joints obtained by conventional joining process. The important outcome of this process is the successful fabrication of surface composites with improved properties. Thus in order to further enhance the strength of the dissimilar alloy joints the reinforcements can be deposited in to the aluminium matrix during the process of friction stir welding. In the present study the multi-walled carbon nanotubes were embedded in to the groove by varying the width during joining of dissimilar alloys AA2024 and AA7075. Four widths were selected with constant depth and optimum process parameters were selected to fabricate the sound welded joints. The results show that the mechanical properties of the fabricated butt joints were influenced by the size of the groove, due to variation in the deposition of reinforcement in the stir zone. The microstructural study and identification of the elements of the welded joints show that the reinforcements deposition is influenced by the size of the groove. It has also been observed that the groove with minimum width is more effective than higher width. The mechanical properties are found to be improved due to the pinning of grain boundaries.

  9. Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina

    USGS Publications Warehouse

    Wright, Heather M.; Lesti, Chiara; Cas, Ray A.F.; Porreca, Massimiliano; Viramonte, Jose G.; Folkes, Christopher B.; Giordano, Guido

    2011-01-01

    Columnar jointing is thought to occur primarily in lavas and welded pyroclastic flow deposits. However, the non-welded Cerro Galán Ignimbrite at Paycuqui, Argentina, contains well-developed columnar joints that are instead due to high-temperature vapor-phase alteration of the deposit, where devitrification and vapor-phase crystallization have increased the density and cohesion of the upper half of the section. Thermal remanent magnetization analyses of entrained lithic clasts indicate high emplacement temperatures, above 630°C, but the lack of welding textures indicates temperatures below the glass transition temperature. In order to remain below the glass transition at 630°C, the minimum cooling rate prior to deposition was 3.0 × 10−3–8.5 × 10−2°C/min (depending on the experimental data used for comparison). Alternatively, if the deposit was emplaced above the glass transition temperature, conductive cooling alone was insufficient to prevent welding. Crack patterns (average, 4.5 sides to each polygon) and column diameters (average, 75 cm) are consistent with relatively rapid cooling, where advective heat loss due to vapor fluxing increases cooling over simple conductive heat transfer. The presence of regularly spaced, complex radiating joint patterns is consistent with fumarolic gas rise, where volatiles originated in the valley-confined drainage system below. Joint spacing is a proxy for cooling rates and is controlled by depositional thickness/valley width. We suggest that the formation of joints in high-temperature, non-welded deposits is aided by the presence of underlying external water, where vapor transfer causes crystallization in pore spaces, densifies the deposit, and helps prevent welding.

  10. Evaluation of symphysis pubis and sacroiliac joint distances in skeletally immature patients: A computerized tomography study of 1020 individuals.

    PubMed

    Kalenderer, Önder; Turgut, Ali; Bacaksız, Tayfun; Bilgin, Emre; Kumbaracı, Mert; Akkan, Hasan Ali

    2017-03-01

    The aim of this study was to create a reference about normal pubic symphysis and sacroiliac joint widths of children and adolescents. A total of 1020 computerized tomography axial scans of patients without pelvic injury between 2 and 18 year-old were studied. The narrowest width of pubic symphysis and bilateral sacroiliac joints were measured. The average pubic symphyseal width at 2 years old boys was 6.35 ± 1.06 mm (4.88-9.13 mm). The average of right and left sacroiliac joints' widths at 2 years old boys was 4.56 ± 0.65 mm (3.59-6.07 mm) and 4.58 ± 0.66 mm (3.44-5.74 mm), respectively. The average pubic symphyseal width of 2 years old girls was 5.85 ± 1.14 mm (4.06-8.20 mm). The average of right and left sacroiliac joints' widths at 2 years old girls was found 4.36 ± 0.56 mm (3.50-5.37 mm) and 4.42 ± 0.59 mm (3.58-5.73 mm), respectively. The average pubic symphyseal width at 18 years old boys was found 3.68 ± 1.30 mm (1.90-5.79 mm). The average of right and left sacroiliac joints' widths at 18 years old boys was found 1.97 ± 0.21 mm (1.73-2.41 mm) and 2.04 ± 0.30 mm (1.70-2.65 mm), respectively. The average pubic symphyseal width at 18 years old girls was 3.92 ± 0.52 mm (2.97-4.76 mm). The average of right and left sacroiliac joints' widths at 18 years old girls was found 2.34 ± 0.40 mm (1.58-3.34 mm) and 2.33 ± 0.37 mm (1.58-3.10 mm), respectively. Our results suggest that one should be suspicious about pelvic injury if the width of pubic symphysis is over 10 mm and width of sacroiliac joint is over 8 mm especially in patients younger than 10 years-old. Level III Diagnostic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  11. The decay width of stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob; Weissman, Dorin

    2018-02-01

    In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp ⁡ (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.

  12. Kinematics and Kinetics of Squat and Deadlift Exercises with Varying Stance Widths

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.

    2011-01-01

    The primary motion of squat and deadlift exercise involves flexion and extension of the hips, knees, and ankles, but each exercise can be performed with variations in stance width. These variations may result in differing kinematics and ground reaction forces (GRF), which may in turn affect joint loading. PURPOSE: The purpose of this investigation was to compare ankle, knee, and hip kinematics and kinetics of normal squat (NS), wide-stance squat (WS), normal deadlift (ND), and sumo deadlift (SD). We hypothesized that hip joint kinematics and work at each joint would differ between exercise variations. METHODS: Six subjects (3 m/3 f; 70.0 plus or minus 13.7 kg; 168 plus or minus 9.9 cm) performed each lift in normal gravity on the ground-based version of the Advanced Resistive Exercise Device (ARED) used on the International Space Station. The ARED provided resistance with a combination vacuum tube/flywheel mechanism designed to replicate the gravitational and inertial forces of free weights. Subjects completed each lift with their 10-repetition maximum load. Kinematic data were collected at 250 Hz by a 12-camera motion-capture system (Smart-D, BTS Bioengineering, Milan, Italy), and GRF data were collected at 1000 Hz with independent force platforms for each leg (Model 9261, Kistler Instruments AG, Winterhur, Switzerland). All data were captured simultaneously on a single workstation. The right leg of a single lift for each motion was analyzed. Modeling software (OpenSim 2.2.0, Simbios, Palo Alto, CA) determined joint kinematics and net positive and negative work at each lower extremity joint. Total work was found as the sum of work across all joints and was normalized by system mass. Effect sizes and their 95% confidence intervals were computed between conditions. RESULTS: Peak GRF were similar for each lift. There were no differences between conditions in hip flexion range of motion (ROM). For hip adduction ROM, there were no differences between the NS, WS, and SD

  13. The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.

    PubMed

    Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian

    2018-05-01

    The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.

  14. Development and Implementation of Joint Programs in Laser Ranging and Other Space Geodetic Techniques

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.; Carter, David (Technical Monitor)

    2004-01-01

    This progress report discusses the status and progress made in joint international programs including: 1) WEGENER; 2) Arabian Peninsula program; 3) Asia-Pacific Space Geodynamics (APSG) program; 4) the Fourteenth International Workshop on Laser Ranging; 5) the International Laser Ranging Service; and 6) current support for the NASA network.

  15. Evaluation of arch width variations among different skeletal patterns in South Indian population

    PubMed Central

    Prasad, Mandava; Kannampallil, Senny Thomas; Talapaneni, Ashok Kumar; George, Suja Ani; Shetty, Sharath Kumar

    2013-01-01

    Background: Anterior cranial base can be taken as a reference line (SN) to determine the steepness of mandibular plane. Subjects with high mandibular plane angle tend to have a long face and one with low MP-SN angle has a shorter face. Objective: This study was done to investigate if dental arch widths correlated with vertical facial types and if there are any differences in arch widths between untreated male and female adults in South Indian population. Materials and Methods: Lateral cephalogram and dental casts were obtained from 180 untreated South Indian adults (90 males and 90 females) above 18 year old with no cross bite, minimal crowding and spacing. The angle between the anterior cranial base and the mandibular plane was measured on lateral cephalogram of each patient. Dental casts were used to obtain comprehensive dental measurements including maxillary and mandibular inter canine, inter premolar and inter molar widths, as well as amount of crowding or spacing. Results: The results showed that male arch widths were significantly larger than those of females (P < 0.05) and there was a significant decrease in inter arch width as the MP-SN angle increased in untreated adult South Indian population. The results obtained in our study when compared with studies done in other population groups showed that there is difference in inter arch widths according to ethnicity and race. Conclusion: It was concluded that the dental arch width is associated with gender, race and vertical facial morphology. Thus using individualized arch wires according to each patient's pre treatment arch form and width is suggested during orthodontic treatment. PMID:23633842

  16. Flow measurements in two cambered vane diffusers with different passage widths

    NASA Astrophysics Data System (ADS)

    Stein, W.; Rautenberg, M.

    1985-03-01

    To investigate the influence of the vaneless space between impeller exit and the diffuser vanes, detailed flow measurements in two diffusers with the same vane geometry but different passage width are compared. The three-dimensional character of the flow changes between impeller exit and the entry to the two dimensional vanes depending on the shape of the shroud. After initial measurements with a constant area vaneless space, the width of the vaned diffuser was later on reduced by 10 percent. The compressor maps show increases in overall pressure rise and efficiency with the width reduction. To get further details of the flow field, measurements of the static pressure distribution at hub and shroud have been performed at several operation points for both diffusers. At the same points, the flow angle and total pressure distribution between hub and shroud upstream and downstream of the vanes have been measured with probes. The maximum efficiency of the narrow diffuser is nearly 2 percent higher than for the wide diffuser. The measurements give further details to explain this improvement.

  17. Effects of joints in truss structures

    NASA Technical Reports Server (NTRS)

    Ikegami, R.

    1988-01-01

    The response of truss-type structures for future space applications, such as Large Deployable Reflector (LDR), will be directly affected by joint performance. Some of the objectives of research at BAC were to characterize structural joints, establish analytical approaches that incorporate joint characteristics, and experimentally establish the validity of the analytical approaches. The test approach to characterize joints for both erectable and deployable-type structures was based upon a Force State Mapping Technique. The approach pictorially shows how the nonlinear joint results can be used for equivalent linear analysis. Testing of the Space Station joints developed at LaRC (a hinged joint at 2 Hz and a clevis joint at 2 Hz) successfully revealed the nonlinear characteristics of the joints. The Space Station joints were effectively linear when loaded to plus or minus 500 pounds with a corresponding displacement of about plus or minus 0.0015 inch. It was indicated that good linear joints exist which are compatible with errected structures, but that difficulty may be encountered if nonlinear-type joints are incorporated in the structure.

  18. Tissue effects of Ho:YAG laser with varying fluences and pulse widths

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; van der Veen, Maurits J.; Pergadia, Vani R.; Shi, Wei-Qiang; Duffy, J. T.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1994-02-01

    We investigated the effect of varying fluence and pulse width on the ablation rate and consequent thermal damage of the Ho:YAG (2.130 micrometers ) laser. The rate of ablation on fresh bovine knee joint tissues, fibrous cartilage, hyaline cartilage, and bone in saline was determined after varying the fluence (160 - 640 J/cm2) and pulse width (150, 250, 450 microsecond(s) ec, FWHM) at a repetition rate of 2 Hz. A 400/440 micrometers fiber was used. The ablation rate increased linearly with the fluence. In fibrocartilage, different pulse durations generated significant changes in the ablation rates, but showed minor effects on hyaline cartilage and bone. The heat of ablation for all three tissue types decreased after lengthening the pulse.

  19. Fluoroscopic Sacroiliac Joint Injection: Is Oblique Angulation Really Necessary?

    PubMed

    Khuba, Sandeep; Agarwal, Anil; Gautam, Sujeet; Kumar, Sanjay

    2016-01-01

    The conventional technique for sacroiliac (SI) joint injection involves aligning the anterior and posterior aspects of the SI joint under fluoroscopic guidance and then entering the SI joint in the most caudal aspect. We wish to highlight that there is no added advantage to aligning both the anterior and posterior joint lines of the SI joint as it is time consuming, associated with additional radiation exposure, and may make the entry into the posterior SI joint technically more difficult. Observational study. Pain Clinic, Department of Anesthesiology. With the patient lying prone on fluoroscopy table, SI joint injection is performed with a 22 G, 10 cm spinal needle in a true anteroposterior (AP) view, where anterior and posterior SI joint spaces are seen as separate entities, where the medial joint space represents the posterior SI joint and the lateral joint space represents the anterior SI joint. The distal 1 cm of the medial joint space is entered under AP view. If the SI joint is seen as a straight line rather than 2 joint spaces in the AP view then the image intensifier of the fluoroscope was tilted cranially to elongate the image of the lower part of the posterior SI joint, thus facilitating entry into this part of the joint which was confirmed by administering 0.3 to 0.5 mL of radiopaque contrast medium. Sixty SI joints of 58 patients were injected under an AP fluoroscopic view. Forty-two (70%) SI joints were seen as 2 separate medial and lateral joint spaces and were entered in distal 1 cm of the medial joint space. In 18 (30%) joints seen as a straight line rather than 2 separate spaces, the image intensifier of the fluoroscope was tilted cranially to elongate the image of the lower part of the posterior SI joint and then the SI joint was entered in its distal 1 cm. Confirmation of entry into the SI joint was confirmed by with 0.3 to 0.5 mL of radiopaque contrast medium. In 4 cases the joints did not show the correct radiopaque contrast spread (3/42 and 1

  20. Lightweight structural design of a bolted case joint for the space shuttle solid rocket motor

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1988-01-01

    The structural design of a bolted joint with a static face seal which can be used to join Space Shuttle Solid Rocket Motor (SRM) case segments is given. Results from numerous finite element parametric studies indicate that the bolted joint meets the design requirement of preventing joint opening at the O-ring locations during SRM pressurization. A final design recommended for further development has the following parameters: 180 one-in.-diam. studs, stud centerline offset of 0.5 in radially inward from the shell wall center line, flange thickness of 0.75 in, bearing plate thickness of 0.25 in, studs prestressed to 70 percent of ultimate load, and the intermediate alcove. The design has a mass penalty of 1096 lbm, which is 164 lbm greater than the currently proposed capture tang redesign.

  1. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.

    PubMed

    Moreno-Valenzuela, Javier; González-Hernández, Luis

    2011-01-01

    In this paper, a new control algorithm for operational space trajectory tracking control of robot arms is introduced. The new algorithm does not require velocity measurement and is based on (1) a primary controller which incorporates an algorithm to obtain synthesized velocity from joint position measurements and (2) a secondary controller which computes the desired joint acceleration and velocity required to achieve operational space motion control. The theory of singularly perturbed systems is crucial for the analysis of the closed-loop system trajectories. In addition, the practical viability of the proposed algorithm is explored through real-time experiments in a two degrees-of-freedom horizontal planar direct-drive arm. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A novel ultrasound technique for detection of osteochondral defects in the ankle joint: a parametric and feasibility study.

    PubMed

    Sarkalkan, Nazli; Loeve, Arjo J; van Dongen, Koen W A; Tuijthof, Gabrielle J M; Zadpoor, Amir A

    2014-12-24

    (Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.

  3. Beam width and transmitter power adaptive to tracking system performance for free-space optical communication.

    PubMed

    Arnon, S; Rotman, S; Kopeika, N S

    1997-08-20

    The basic free-space optical communication system includes at least two satellites. To communicate between them, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is to increase the satellite receiver beacon power. However, this solution requires increased power consumption and weight, both of which are disadvantageous in satellite development. Considering these facts, we derive a mathematical model of a communication system that adapts optimally the transmitter beam width and the transmitted power to the tracking system performance. Based on this model, we investigate the performance of a communication system with discrete element optical phased array transmitter telescope gain. An example for a practical communication system between a Low Earth Orbit Satellite and a Geostationary Earth Orbit Satellite is presented. From the results of this research it can be seen that a four-element adaptive transmitter telescope is sufficient to compensate for vibration amplitude doubling. The benefits of the proposed model are less required transmitter power and improved communication system performance.

  4. Exploration of joint redundancy but not task space variability facilitates supervised motor learning.

    PubMed

    Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya

    2016-12-13

    The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.

  5. Exploration of joint redundancy but not task space variability facilitates supervised motor learning

    PubMed Central

    Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya

    2016-01-01

    The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise. PMID:27911808

  6. Segmentation of hand radiographs using fast marching methods

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Novak, Carol L.

    2006-03-01

    Rheumatoid Arthritis is one of the most common chronic diseases. Joint space width in hand radiographs is evaluated to assess joint damage in order to monitor progression of disease and response to treatment. Manual measurement of joint space width is time-consuming and highly prone to inter- and intra-observer variation. We propose a method for automatic extraction of finger bone boundaries using fast marching methods for quantitative evaluation of joint space width. The proposed algorithm includes two stages: location of hand joints followed by extraction of bone boundaries. By setting the propagation speed of the wave front as a function of image intensity values, the fast marching algorithm extracts the skeleton of the hands, in which each branch corresponds to a finger. The finger joint locations are then determined by using the image gradients along the skeletal branches. In order to extract bone boundaries at joints, the gradient magnitudes are utilized for setting the propagation speed, and the gradient phases are used for discriminating the boundaries of adjacent bones. The bone boundaries are detected by searching for the fastest paths from one side of each joint to the other side. Finally, joint space width is computed based on the extracted upper and lower bone boundaries. The algorithm was evaluated on a test set of 8 two-hand radiographs, including images from healthy patients and from patients suffering from arthritis, gout and psoriasis. Using our method, 97% of 208 joints were accurately located and 89% of 416 bone boundaries were correctly extracted.

  7. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    1987-01-01

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  8. Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial.

    PubMed

    van der Woude, J A D; Wiegant, K; van Heerwaarden, R J; Spruijt, S; van Roermund, P M; Custers, R J H; Mastbergen, S C; Lafeber, F P J G

    2017-03-01

    Both, knee joint distraction as a relatively new approach and valgus-producing opening-wedge high tibial osteotomy (HTO), are knee-preserving treatments for knee osteoarthritis (OA). The efficacy of knee joint distraction compared to HTO has not been reported. Sixty-nine patients with medial knee joint OA with a varus axis deviation of <10° were randomized to either knee joint distraction (n = 23) or HTO (n = 46). Questionnaires were assessed at baseline and 3, 6, and 12 months. Joint space width (JSW) as a surrogate measure for cartilage thickness was determined on standardized semi-flexed radiographs at baseline and 1-year follow-up. All patient-reported outcome measures (PROMS) improved significantly over 1 year (at 1 year p < 0.02) in both groups. At 1 year, the HTO group showed slightly greater improvement in 4 of the 16 PROMS (p < 0.05). The minimum medial compartment JSW increased 0.8 ± 1.0 mm in the knee joint distraction group (p = 0.001) and 0.4 ± 0.5 mm in the HTO group (p < 0.001), with minimum JSW improvement in favour of knee joint distraction (p = 0.05). The lateral compartment showed a small increase in the knee joint distraction group and a small decrease in the HTO group, leading to a significant increase in mean JSW for knee joint distraction only (p < 0.02). Cartilaginous repair activity, as indicated by JSW, and clinical outcome improvement occurred with both, knee joint distraction and HTO. These findings suggest that knee joint distraction may be an alternative therapy for medial compartmental OA with a limited mechanical leg malalignment. Randomized controlled trial, Level I.

  9. Structural design of an in-line bolted joint for the space shuttle solid rocket motor case segments

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Stein, Peter A.; Bush, Harold G.

    1987-01-01

    Results of a structural design study of an in-line bolted joint concept which can be used to assemble Space Shuttle Solid Rocket Motor (SRM) case segments are presented. Numerous parametric studies are performed to characterize the in-line bolted joint behavior as major design variables are altered, with the primary objective always being to keep the inside of the joint (where the O-rings are located) closed during the SRM firing. The resulting design has 180 1-inch studs, an eccentricity of -0.5 inch, a flange thickness of 3/4 inch, a bearing plate thickness of 1/4 inch, and the studs are subjected to a preload which is 70% of ultimate. The mass penalty per case segment joint for the in-line design is 346 lbm more than the weight penalty for the proposed capture tang fix.

  10. Computer-Based Radiographic Quantification of Joint Space Narrowing Progression Using Sequential Hand Radiographs: Validation Study in Rheumatoid Arthritis Patients from Multiple Institutions.

    PubMed

    Ichikawa, Shota; Kamishima, Tamotsu; Sutherland, Kenneth; Fukae, Jun; Katayama, Kou; Aoki, Yuko; Okubo, Takanobu; Okino, Taichi; Kaneda, Takahiko; Takagi, Satoshi; Tanimura, Kazuhide

    2017-10-01

    We have developed a refined computer-based method to detect joint space narrowing (JSN) progression with the joint space narrowing progression index (JSNPI) by superimposing sequential hand radiographs. The purpose of this study is to assess the validity of a computer-based method using images obtained from multiple institutions in rheumatoid arthritis (RA) patients. Sequential hand radiographs of 42 patients (37 females and 5 males) with RA from two institutions were analyzed by a computer-based method and visual scoring systems as a standard of reference. The JSNPI above the smallest detectable difference (SDD) defined JSN progression on the joint level. The sensitivity and specificity of the computer-based method for JSN progression was calculated using the SDD and a receiver operating characteristic (ROC) curve. Out of 314 metacarpophalangeal joints, 34 joints progressed based on the SDD, while 11 joints widened. Twenty-one joints progressed in the computer-based method, 11 joints in the scoring systems, and 13 joints in both methods. Based on the SDD, we found lower sensitivity and higher specificity with 54.2 and 92.8%, respectively. At the most discriminant cutoff point according to the ROC curve, the sensitivity and specificity was 70.8 and 81.7%, respectively. The proposed computer-based method provides quantitative measurement of JSN progression using sequential hand radiographs and may be a useful tool in follow-up assessment of joint damage in RA patients.

  11. Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing

    NASA Technical Reports Server (NTRS)

    Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

    2001-01-01

    Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable

  12. Shoulder and hip joints for hard space suits and the like

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C.

    1986-01-01

    For use in hard space suits and the like, a joint between the torso covering and the upper arm covering (i.e., shoulder) or between the torso covering and upper leg covering (i.e., hip) is disclosed. Each joint has an outer covering and a inner covering. The outer covering has plural perferably truncated toroidal sections decreasing in size proceeding outwardly. In one embodiment at each joint there are two bearings, the first larger than the second. The outer race of the larger bearing is attached to the outer edge of the smaller end of each section and the inner race of the larger bearing is attached to the end wall. The inner race of the smaller bearing is attached to the end wall. The outer race of the smaller bearing is attached to the larger end of the next section. Each bearing hask appropriate seals. Between each section is a rubber ring for the comfort of the wearer. Such rubber rings have radial flanges attached to the inner races of two adjacent bearings. Matching semicircular grooves are formed in the abutting overlapping surfaces. Bellows-like inner walls are also provided for each section fixed at one end to an inner cylindrical flange and, at the opposite end, to an end wall. Each outer section may rotate 360 deg relative to the next outer section, whereas the bellows sections do not rotate, but rather expand or contract locally as the rigid sections rotate relative to each other.

  13. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Christensen, H. E.; Kipp, H. W.

    1974-01-01

    Heat transfer data measured in gaps typical of those under consideration for joints in space shuttle reusable surface insulation protection systems have been assimilated, analyzed and correlated. The data were obtained in four NASA facilities. Several types of gaps were investigated with emphasis on simple butt joints. Gap widths ranged from 0.07 to 0.7 cm and depths ranged from 1 to 6 cm. Laminar, transitional and turbulent boundary layer flows over the gap opening were investigated. Three-dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Heat transfer correlation equations were obtained for several of the tests. Thermal protection system performance with and without gaps was compared for a representative shuttle entry trajectory.

  14. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Carvalho Antunes de Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; Cms Collaboration

    2015-10-01

    Constraints on the lifetime and width of the Higgs boson are obtained from H →Z Z →4 ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb-1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τH<1.9 ×10-13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of ΓH>3.5 ×10-9 MeV . The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From this measurement, a joint constraint is set on the Higgs boson width and a parameter fΛ Q that expresses an anomalous coupling contribution as an on-shell cross-section fraction. The limit on the Higgs boson width is ΓH<46 MeV with fΛ Q unconstrained and ΓH<26 MeV for fΛ Q=0 at the 95% C.L. The constraint fΛ Q<3.8 ×10-3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.

  15. Radiation hydrodynamic effects in two beryllium plates with an idealized aluminum joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkov, S.A.; Mkhitarian, L.S.; Vinokurov, O.A.

    A beryllium capsule formed from two hemispherical shells with a thin bond is one possible ignition target for the National Ignition Facility [J. A. Paisner {ital et al.}, Laser Focus World {bold 30}, 75 (1994)] Nonuniformities in density, opacity, and interface position at the joint between these hemishells will initiate two-dimensional (2-D) perturbations of the shock wave and material behind the shock as the shock passes through the shell perpendicular to the joint width. Rarefaction of material flow behind the shock front can cause the interface between the shell and joint material to oscillate in position. The amplitude of thesemore » oscillations may be comparable to the joint width. The evolution of these perturbations is studied by numerically simulating shock passage through flat beryllium plates containing aluminum joints. Using the MIMOSA-ND code [D. Sofronov {ital et al.}, Vopr. At. Nauki Tekh., Ser: Mat. modelirovanie fizicheskih processov {bold 2}, 3 (1990)] two different cases are calculated{emdash}a wide (10 {mu}m) and a narrow (1 {mu}m) joint of aluminum between two 150 {mu}m long semiinfinite beryllium plates. Both cases showed good agreement with an analytic representation of the oscillation behavior. For the narrow joint, a special technique allows the calculation of mixing between the joint and surrounding material caused by the Kelvin{endash}Helmholtz instability. {copyright} {ital 1999 American Institute of Physics.}« less

  16. Application of a passivity based control methodology for flexible joint robots to a simplified Space Shuttle RMS

    NASA Technical Reports Server (NTRS)

    Sicard, Pierre; Wen, John T.

    1992-01-01

    A passivity approach for the control design of flexible joint robots is applied to the rate control of a three-link arm modeled after the shoulder yaw joint of the Space Shuttle Remote Manipulator System (RMS). The system model includes friction and elastic joint couplings modeled as nonlinear springs. The basic structure of the proposed controller is the sum of a model-based feedforward and a model-independent feedback. A regulator approach with link state feedback is employed to define the desired motor state. Passivity theory is used to design a motor state-based controller to stabilize the error system formed by the feedforward. Simulation results show that greatly improved performance was obtained by using the proposed controller over the existing RMS controller.

  17. High-resolution x-ray guided three-dimensional diffuse optical tomography of joint tissues in hand osteoarthritis: Morphological and functional assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Zhen; Zhang Qizhi; Sobel, Eric S.

    Purpose: The aim of this study was to investigate the potential use of multimodality functional imaging techniques to identify the quantitative optical findings that can be used to distinguish between osteoarthritic and normal finger joints. Methods: Between 2006 and 2009, the distal interphalangeal finger joints from 40 female subjects including 22 patients and 18 healthy controls were examined clinically and scanned by a hybrid imaging system. This system integrated x-ray tomosynthetic setup with a diffuse optical imaging system. Optical absorption and scattering images were recovered based on a regularization-based hybrid reconstruction algorithm. A receiver operating characteristic curve was used tomore » calculate the statistical significance of specific optical features obtained from osteoarthritic and healthy joints groups. Results: The three-dimensional optical and x-ray images captured made it possible to quantify optical properties and joint space width of finger joints. Based on the recovered optical absorption and scattering parameters, the authors observed statistically significant differences between healthy and osteoarthritis finger joints. Conclusions: The statistical results revealed that sensitivity and specificity values up to 92% and 100%, respectively, can be achieved when optical properties of joint tissues were used as classifiers. This suggests that these optical imaging parameters are possible indicators for diagnosing osteoarthritis and monitoring its progression.« less

  18. Using Curved Crystals to Study Terrace-Width Distributions.

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore L.

    Recent experiments on curved crystals of noble and late transition metals (Ortega and Juurlink groups) have renewed interest in terrace width distributions (TWD) for vicinal surfaces. Thus, it is timely to discuss refinements of TWD analysis that are absent from the standard reviews. Rather than by Gaussians, TWDs are better described by the generalized Wigner surmise, with a power-law rise and a Gaussian decay, thereby including effects evident for weak step repulsion: skewness and peak shifts down from the mean spacing. Curved crystals allow analysis of several mean spacings with the same substrate, so that one can check the scaling with the mean width. This is important since such scaling confirms well-established theory. Failure to scale also can provide significant insights. Complicating factors can include step touching (local double-height steps), oscillatory step interactions mediated by metallic (but not topological) surface states, short-range corrections to the inverse-square step repulsion, and accounting for the offset between adjacent layers of almost all surfaces. We discuss how to deal with these issues. For in-plane misoriented steps there are formulas to describe the stiffness but not yet the strength of the elastic interstep repulsion. Supported in part by NSF-CHE 13-05892.

  19. Design, Static Analysis And Fabrication Of Composite Joints

    NASA Astrophysics Data System (ADS)

    Mathiselvan, G.; Gobinath, R.; Yuvaraja, S.; Raja, T.

    2017-05-01

    The Bonded joints will be having one of the important issues in the composite technology is the repairing of aging in aircraft applications. In these applications and also for joining various composite material parts together, the composite materials fastened together either using adhesives or mechanical fasteners. In this paper, we have carried out design, static analysis of 3-D models and fabrication of the composite joints (bonded, riveted and hybrid). The 3-D model of the composite structure will be fabricated by using the materials such as epoxy resin, glass fibre material and aluminium rivet for preparing the joints. The static analysis was carried out with different joint by using ANSYS software. After fabrication, parametric study was also conducted to compare the performance of the hybrid joint with varying adherent width, adhesive thickness and overlap length. Different joint and its materials tensile test result have compared.

  20. Geometric methods for estimating representative sidewalk widths applied to Vienna's streetscape surfaces database

    NASA Astrophysics Data System (ADS)

    Brezina, Tadej; Graser, Anita; Leth, Ulrich

    2017-04-01

    Space, and in particular public space for movement and leisure, is a valuable and scarce resource, especially in today's growing urban centres. The distribution and absolute amount of urban space—especially the provision of sufficient pedestrian areas, such as sidewalks—is considered crucial for shaping living and mobility options as well as transport choices. Ubiquitous urban data collection and today's IT capabilities offer new possibilities for providing a relation-preserving overview and for keeping track of infrastructure changes. This paper presents three novel methods for estimating representative sidewalk widths and applies them to the official Viennese streetscape surface database. The first two methods use individual pedestrian area polygons and their geometrical representations of minimum circumscribing and maximum inscribing circles to derive a representative width of these individual surfaces. The third method utilizes aggregated pedestrian areas within the buffered street axis and results in a representative width for the corresponding road axis segment. Results are displayed as city-wide means in a 500 by 500 m grid and spatial autocorrelation based on Moran's I is studied. We also compare the results between methods as well as to previous research, existing databases and guideline requirements on sidewalk widths. Finally, we discuss possible applications of these methods for monitoring and regression analysis and suggest future methodological improvements for increased accuracy.

  1. Imageological measurement of the sternoclavicular joint and its clinical application.

    PubMed

    Li, Ming; Wang, Bo; Zhang, Qi; Chen, Wei; Li, Zhi-Yong; Qin, Shi-Ji; Zhang, Ying-Ze

    2012-01-01

    Dislocation of the sternoclavicular joint is rare. However, posterior dislocation compressing important structures in the mediastinum may be fatal. Early diagnosis and prompt therapy of sternoclavicular joint dislocation are important. Computed tomography (CT) is an optimal means to investigate sternoclavicular joint anatomy; however, there are few reports on the imageological anatomical features of the sternoclavicular joint. The study investigated imageological anatomical features, and a new plate was devised according to these data to treat sternoclavicular joint dislocation. Fifty-three healthy Chinese volunteers examined with chest CT were included in the study. The coronal, sagittal, and axial images of the sternoclavicular region were reconstructed. The sternal head diameter in the inferolateral-to-superomedial direction, length of the clavicular notch, and angle between the clavicular notch and sternum were measured on coronal images. The angle between the presternum and trunk was measured on sagittal images. The following dimensions were measured on axial images: anteroposterior dimensions of the sternal head, clavicular notch, and presternum; width of the sternoclavicular joint; distance between bilateral clavicles; and minimal distance from the presternum to the underlying structures in the thoracic cavity. A new plate was designed according to the above data and was used to repair six sternoclavicular joint dislocations. All cases were followed up with a range of 9 to 12 months. The proximal clavicle is higher than the presternum in a horizontal position. On axial images, the anteroposterior dimension of the sternal head was longer than the presternum, and the center region of the presternum was thinner than the edges. The left sternoclavicular joint space was (0.82 ± 0.21) cm, and the right was (0.87 ± 0.22) cm. Among the structures behind the sternum, the left bilateral innominate vein ran nearest to the presternum. The distance from the anterior

  2. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    DOE PAGES

    Khachatryan, Vardan

    2015-10-22

    Constraints on the lifetime and width of the Higgs boson are obtained from H → ZZ → 4ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb -1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τ H < 1.9 × 10 -13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of Γ H > 3.5more » × 10 -9 MeV. The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From our measurement, a joint constraint is set on the Higgs boson width and a parameter f ΛQ that expresses an anomalous coupling contribution as an on-shell cross-section fraction. Additionally, the limit on the Higgs boson width is Γ H<46 MeV with f ΛQ unconstrained and Γ H < 26 MeV for f ΛQ = 0 at the 95% C.L. The constraint f ΛQ < 3.8 × 10 -3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.« less

  3. Radiological evaluation of the posterior pelvic ring in paediatric patients: Results of a retrospective study developing age- and gender-related non-osseous baseline characteristics in paediatric pelvic computed tomography - References for suspected sacroiliac joint injury.

    PubMed

    Bayer, Jörg; Neubauer, Jakob; Saueressig, Ulrich; Südkamp, Norbert Paul; Reising, Kilian

    2016-04-01

    The prevalence of paediatric pelvic injury is low, yet they are often indicative of accompanying injuries, and an instable pelvis at presentation is related to long-term poor outcome. Judging diastasis of the sacroiliac joint in paediatric pelvic computed tomography is challenging, as information on their normal appearance is scarce. We therefore sought to generate age- and gender-related standard width measurements of the sacroiliac joint in children for comparison. A total of 427 pelvic computed tomography scans in paediatric patients (<18 years old) were retrospectively evaluated. After applying exclusion criteria, 350 scans remained for measurements. Taking a standard approach we measured the sacroiliac joint width bilaterally in axial and coronal planes. We illustrate age- and gender-related measurements of the sacroiliac joint width as a designated continuous 3rd, 15th, 50th, 85th and 97th centile graph, respectively. Means and standard deviations in the joint width are reported for four age groups. There are distinct changes in the sacroiliac joint's appearance during growth. In general, male children exhibit broader sacroiliac joints than females at the same age, although this difference is significant only in the 11 to 15-year-old age group. The sacroiliac joint width in children as measured in coronal and axial CT scans differs in association with age and gender. When the sacroiliac joint width is broader than the 97th centile published in our study, we strongly encourage considering a sacroiliac joint injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Feasibility study of a discrete bearing/roller drive rotary joint for the space station

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Schuller, F. T.

    1986-01-01

    The most critical mechanism on board the proposed space station is the continously rotating joint which must accurately align the solar power units with the sun during earth orbit. The feasibility of a multiple, discrete bearing supported joint driven by a self-loading, pinch drive actuator was investigated for this application. This concept appears to offer greater protection against catastrophic jamming, less sensitivity to adverse thermal gradients, greater accessibility to inorbit servicing or replacement and greater adaptability to very large (5 m) truss members than to more conventional continuous support bearing/gear reducer joints. Analytical trade studies performed herein establish that a discrete cam roller bearing support system having eight hangers around a continuous ring would provide sufficient radial and bending stiffness to prevent any degradation in the fundamental frequencies of the solar wing structure. Furthermore, it appears that the pinch roller drive mechanism can be readily sized to meet or exceed system performance and service life requirements. Wear life estimates based on experimental data for a steel roller coated with an advanced polyimide film show a continuous service life more than two orders of magnitude greater than required for this application.

  5. Columnar jointing - the mechanics of thermal contraction in cooling lavas

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.

    2014-12-01

    Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio

  6. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.

    PubMed

    Lovejoy, S; de Lima, M I P

    2015-07-01

    Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.

  7. 14 CFR 399.37 - Joint fares.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Joint fares. 399.37 Section 399.37 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) POLICY STATEMENTS STATEMENTS OF GENERAL POLICY Policies Relating to Rates and Tariffs § 399.37 Joint fares. There...

  8. Knee joint distraction compared with total knee arthroplasty: a randomised controlled trial.

    PubMed

    van der Woude, J A D; Wiegant, K; van Heerwaarden, R J; Spruijt, S; Emans, P J; Mastbergen, S C; Lafeber, F P J G

    2017-01-01

    Knee joint distraction (KJD) is a relatively new, knee-joint preserving procedure with the goal of delaying total knee arthroplasty (TKA) in young and middle-aged patients. We present a randomised controlled trial comparing the two. The 60 patients ≤ 65 years with end-stage knee osteoarthritis were randomised to either KJD (n = 20) or TKA (n = 40). Outcomes were assessed at baseline, three, six, nine, and 12 months. In the KJD group, the joint space width (JSW) was radiologically assessed, representing a surrogate marker of cartilage thickness. In total 56 patients completed their allocated treatment (TKA = 36, KJD = 20). All patient reported outcome measures improved significantly over one year (p < 0.02) in both groups. At one year, the TKA group showed a greater improvement in only one of the 16 patient-related outcome measures assessed (p = 0.034). Outcome Measures in Rheumatology-Osteoarthritis Research Society International clinical response was 83% after TKA and 80% after KJD. A total of 12 patients (60%) in the KJD group sustained pin track infections. In the KJD group both mean minimum (0.9 mm, standard deviation (sd) 1.1) and mean JSW (1.2 mm, sd 1.1) increased significantly (p = 0.004 and p = 0.0003). In relatively young patients with end-stage knee osteoarthritis, KJD did not demonstrate inferiority of outcomes at one year when compared with TKA. However, there is a high incidence of pin track infection associated with KJD. Cite this article: Bone Joint J 2017;99-B:51-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  9. Pool spacing in forest channels

    Treesearch

    David R. Montgomery; John M. Buffington; Richard D. Smith; Kevin M. Schmidt; George Pess

    1995-01-01

    Field surveys of stream channels in forested mountain drainage basins in southeast Alaska and Washington reveal that pool spacing depends on large woody debris (LWD) loading and channel type, slope, and width. Mean pool spacing in pool-riffle, plane-bed, and forced pool-riffle channels systematically decreases from greater than 13 channel widths per pool to less than 1...

  10. Shared action spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action

    PubMed Central

    Pezzulo, Giovanni; Iodice, Pierpaolo; Ferraina, Stefano; Kessler, Klaus

    2013-01-01

    The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the “re-calibration” of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors’ spatial representations and creates a “Shared Action Space” (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. PMID:24324425

  11. Potential Safety Effects of Lane Width and Shoulder Width on Two-Lane Rural State Highways in Idaho

    DOT National Transportation Integrated Search

    2012-07-01

    This study provides a comprehensive evaluation of the relationship between crash rates and shoulder width and lane width for two-lane rural state highways in Idaho. Crash Modification Factors (CMFs) for shoulder width and lane width were developed us...

  12. Recursion equations in predicting band width under gradient elution.

    PubMed

    Liang, Heng; Liu, Ying

    2004-06-18

    The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.

  13. Joint distraction results in clinical and structural improvement of haemophilic ankle arthropathy: a series of three cases.

    PubMed

    Van Meegeren, M E R; Van Veghel, K; De Kleijn, P; Van Roermund, P M; Biesma, D H; Lafeber, F P J G; Roosendaal, G

    2012-09-01

    The incidence of haemophilic arthropathy in multiple joints decreased due to treatment with clotting factor. Nowadays patients are enabled to live a rather normal life, resulting in more (sports) trauma-induced arthropathy in isolated joints like the ankle. As surgical treatment options, fusion of the tibiotalar joint and total ankle replacement are available. Both standard treatments have complications and therefore an alternative treatment is desired. In this study, treatment of haemophilic ankle arthropathy with joint distraction was explored. Three patients with haemophilic ankle arthropathy were treated with joint distraction using an Ilizarov external fixator. Clinical outcomes like function, participation and pain were evaluated in retrospect with three different questionnaires: haemophilia activities list, impact on participation and autonomy and the Van Valburg questionnaire. Structural changes were assessed blinded on X-ray by the Pettersson score and ankle images digital analysis (AIDA) and by an MRI score. All three patients were very satisfied with the clinical outcome of the procedure. They reported a clear improvement for self-perceived functional health, participation in society and autonomy and pain. Partial ankle joint mobility was preserved in the three patients. The Pettersson score remained the same in one patient and slightly improved in the two other patients, while joint space width measured by AIDA and the MRI score demonstrated improvement for all three patients after ankle distraction. This study suggests that joint distraction is a promising treatment for individual cases of haemophilic ankle arthropathy, without additional risk of bleedings during treatment. © 2012 Blackwell Publishing Ltd.

  14. Space Plasma Ion Processing of the Lunar Soil: Modeling of Radiation-Damaged Rim Widths on Lunar Grains

    NASA Technical Reports Server (NTRS)

    Chamberlin, S.; Christoffersen, R.; Keller, L.

    2007-01-01

    Chemically and microstructurally complex altered rims around grains in the finest size fraction (<20 micron) of the lunar regolith are the result of multi-stage processes involving both solar ion radiation damage and nanoscale deposition of impact or sputter-derived vapors. The formation of the rims is an important part of the space weathering process, and is closely linked to key changes in optical reflectance and other bulk properties of the lunar surface. Recent application of field-emission scanning transmission electron microscope techniques, including energy dispersive X-ray spectral imaging, is making it easier to unravel the "nano-stratigraphy" of grain rims, and to delineate the portions of rims that represent Radiation-Amorphized (RA) host grain from overlying amorphous material that represents vapor/sputter deposits. For the portion of rims formed by host grain amorphization (henceforth called RA rims), we have been investigating the feasibility of using Monte Carlo-type ion-atom collision models, combined with experimental ion irradiation data, to derive predictive numerical models linking the width of RA rims to the grain s integrated solar ion radiation exposure time.

  15. Wide field of view CT and acromioclavicular joint instability: A technical innovation.

    PubMed

    Dyer, David R; Troupis, John M; Kamali Moaveni, Afshin

    2015-06-01

    A 21-year-old female with a traumatic shoulder injury is investigated and managed for symptoms relating to this injury. Pathology at the acromioclavicular joint is detected clinically; however, clinical examination and multiple imaging modalities do not reach a unified diagnosis on the grading of this acromioclavicular joint injury. When management appropriate to that suggested injury grading fail to help the patient's symptoms, further investigation methods were utilised. Wide field of view, dynamic CT (4D CT) is conducted on the patient's affected shoulder using a 320 × 0.5 mm detector multislice CT. Scans were conducted with a static table as the patient completed three movements of the affected shoulder. Capturing multiple data sets per second over a z-axis of 16 cm, measurements of the acromioclavicular joint were made, to show dynamic changes at the joint. Acromioclavicular (AC) joint translations were witnessed in three planes (a previously unrecognised pathology in the grading of acromioclavicular joint injuries). Translation in multiple planes was also not evident on careful clinical examination of this patient. AC joint width, anterior-posterior translation, superior-inferior translation and coracoclavicular width were measured with planar reconstructions while volume-rendered images and dynamic sequences aiding visual understanding of the pathology. Wide field of view dynamic CT (4D CT) is an accurate and quick modality to diagnose complex acromioclavicular joint injury. It provides dynamic information that no other modality can; 4D CT shows future benefits for clinical approach to diagnosis and management of acromioclavicular joint injury, and other musculoskeletal pathologies. © 2015 The Royal Australian and New Zealand College of Radiologists.

  16. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra

    2015-07-15

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less

  17. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.

    PubMed

    Day, B L; Steiger, M J; Thompson, P D; Marsden, C D

    1993-09-01

    1. Measurements of human upright body movements in three dimensions have been made on thirty-five male subjects attempting to stand still with various stance widths and with eyes closed or open. Body motion was inferred from movements of eight markers fixed to specific sites on the body from the shoulders to the ankles. Motion of these markers was recorded together with motion of the point of application of the resultant of the ground reaction forces (centre of pressure). 2. The speed of the body (average from eight sites) was increased by closing the eyes or narrowing the stance width and there was an interaction between these two factors such that vision reduced body speed more effectively when the feet were closer together. Similar relationships were found for components of velocity both in the frontal and sagittal planes although stance width exerted a much greater influence on the lateral velocity component. 3. Fluctuations in position of the body were also increased by eye closure or narrowing of stance width. Again, the effect of stance width was more potent for lateral than for anteroposterior movements. In contrast to the velocity measurements, there was no interaction between vision and stance width. 4. There was a progressive increase in the amplitude of position and velocity fluctuations from markers placed higher on the body. The fluctuations in the position of the centre of pressure were similar in magnitude to those of the markers placed near the hip. The fluctuations in velocity of centre of pressure, however, were greater than of any site on the body. 5. Analysis of the amplitude of angular motion between adjacent straight line segments joining the markers suggests that the inverted pendulum model of body sway is incomplete. Motion about the ankle joint was dominant only for lateral movement in the frontal plane with narrow stance widths (< 8 cm). For all other conditions most angular motion occurred between the trunk and leg. 6. The large

  18. Wafer-level Cu-Sn micro-joints with high mechanical strength and low Sn overflow

    NASA Astrophysics Data System (ADS)

    Duan, Ani; Luu, Thi-Thuy; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils

    2015-09-01

    In this paper, we report wafer-level bonding using solid-liquid inter-diffusion (SLID) processes for fabricating micro-joints Cu-Sn at low temperature (270 °C). The evolution of multilayer Cu/Sn to micro-joint alloys has been characterized by optical microscopy and mechanical die-shear testing. The Cu-Sn joints with line width from 80 to 200 μm prove to be reliable packaging materials for bonding vacuum micro-cavities with controllable Sn overflow, as well as high mechanical strength (>70 MPa). A thermodynamic model has been performed to further understand the formation of Cu-Sn intermetallic alloys. There are two important findings for this work: 1) Using a two-step temperature profile may significantly reduce the amount of Sn overflow; 2) for packaging, a bond frame width greater than 80 μm will result in high yield.

  19. Shoulder Joint For Protective Suit

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Smallcombe, Richard D.

    1994-01-01

    Shoulder joint allows full range of natural motion: wearer senses little or no resisting force or torque. Developed for space suit, joint offers advantages in protective garments for underwater work, firefighting, or cleanup of hazardous materials.

  20. Asymptotic normalization coefficients and radiative widths

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Pang, D. Y.

    2015-07-01

    The asymptotic normalization coefficient (ANC) is an important quantity in the calculation of radiative width amplitudes, providing limits on the radiative width. Here we present some examples showing the connection between the ANC and radiative width. In particular, the radiative width of the E 1 transition 17F(1 /2-,Ex=3.104 MeV ) to 17F(1 /2+,Ex=0.495 MeV ) reported by Rolfs [Nucl. Phys. A 217, 29 (1973), 10.1016/0375-9474(73)90622-2] is (1.2 ±0.2 ) ×10-2 eV. Meanwhile the ANC for the first excited state in 17F puts a lower limit on the radiative width, which is (3.4 ±0.50 ) ×10-2 eV. Such a strong disagreement between the measured radiative width and the lower limit imposed by the ANC calls for a new measurement of this radiative width. Other examples are also considered.

  1. Effect of Al-trace dimension on Joule heating and current crowding in flip-chip solder joints under accelerated electromigration

    NASA Astrophysics Data System (ADS)

    Liang, S. W.; Chang, Y. W.; Chen, Chih

    2006-04-01

    Three-dimensional thermoelectrical simulation was conducted to investigate the influence of Al-trace dimension on Joule heating and current crowding in flip-chip solder joints. It is found that the dimension of the Al-trace effects significantly on the Joule heating, and thus directly determines the mean time to failure (MTTF). Simulated at a stressing current of 0.6A at 70°C, we estimate that the MTTF of the joints with Al traces in 100μm width was 6.1 times longer than that of joints with Al traces in 34μm width. Lower current crowding effect and reduced hot-spot temperature are responsible for the improved MTTF.

  2. Thirty years of anthropometric changes relevant to the width and depth of transportation seating spaces, present and future.

    PubMed

    Molenbroek, J F M; Albin, T J; Vink, P

    2017-11-01

    This paper reports the results of an investigation into changes in body shape anthropometry over the past several decades and discusses the impact of those changes on seating in transport, especially airliners. Changes in some body shape dimensions were confirmed in a sample of students at TU Delft; several of the changes, e.g. hip breadth, seated, are relevant to the ongoing design of seating. No change in buttock knee length was observed. The fit between current user anthropometry and current airline seat design, especially regarding seat width, was investigated. A comparison of the average current seat breadth with global anthropometric data suggests that accommodation may be problematic, with less than optimal width for passengers' shoulder and elbow widths. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Assessment of Cabin Dimensions to Accommodate Infantry Soldiers for the Future Vertical Lift/Joint Multi-Role Medium-Class Aircraft

    DTIC Science & Technology

    2014-07-01

    an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does...The dimensions assessed included seat space widths, cabin ceiling heights, aisle widths, seating configurations, and cabin door widths. Emergency... seat spacing, 66-in. cabin ceiling height, 72-in. floor width, and 32-in. door width. These dimensions will help ensure that Soldiers have adequate

  4. Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubenets, Elena R.

    We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence ofmore » this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)].« less

  5. Enabling Interoperable Space Robots With the Joint Technical Architecture for Robotic Systems (JTARS)

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville

    2005-01-01

    Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.

  6. Phase 1 Program Joint Report

    NASA Technical Reports Server (NTRS)

    Nield, George C. (Editor); Vorobiev, Pavel Mikhailovich (Editor)

    1999-01-01

    This report consists of inputs from each of the Phase I Program Joint Working Groups. The Working Groups were tasked to describe the organizational structure and work processes that they used during the program, joint accomplishments, lessons learned, and applications to the International Space Station Program. This report is a top-level joint reference document that contains information of interest to both countries.

  7. Self-Alining Quick-Connect Joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1983-01-01

    Quick connect tapered joint used with minimum manipulation and force. Split ring retainer holds locking ring in place. Minimal force required to position male in female joint, at which time split-ring retainers are triggered to release split locking rings. Originally developed to assemble large space structures, joint is simple, compact, strong, lightweight, self alining, and has no loose parts.

  8. Statistical self-similarity of width function maxima with implications to floods

    USGS Publications Warehouse

    Veitzer, S.A.; Gupta, V.K.

    2001-01-01

    Recently a new theory of random self-similar river networks, called the RSN model, was introduced to explain empirical observations regarding the scaling properties of distributions of various topologic and geometric variables in natural basins. The RSN model predicts that such variables exhibit statistical simple scaling, when indexed by Horton-Strahler order. The average side tributary structure of RSN networks also exhibits Tokunaga-type self-similarity which is widely observed in nature. We examine the scaling structure of distributions of the maximum of the width function for RSNs for nested, complete Strahler basins by performing ensemble simulations. The maximum of the width function exhibits distributional simple scaling, when indexed by Horton-Strahler order, for both RSNs and natural river networks extracted from digital elevation models (DEMs). We also test a powerlaw relationship between Horton ratios for the maximum of the width function and drainage areas. These results represent first steps in formulating a comprehensive physical statistical theory of floods at multiple space-time scales for RSNs as discrete hierarchical branching structures. ?? 2001 Published by Elsevier Science Ltd.

  9. [X-ray characteristics of sacroiliac joint disorders and its clinical significance].

    PubMed

    Shi, Ning-Ning; Shen, Guo-Quan; He, Shui-Yong; Guo, Ru-bao

    2013-02-01

    To study the X-ray characteristics of sacroiliac joint disorders and its clinical significance,so as to provide clinical diagnosis basis for Tuina treatment of sacroiliac joint disorder. From July 2009 to March 2011,104 patients with sacroiliac joint disorder were reviewed,including 64 males and 40 females,ranging in age from 18 to 81 years, with an average of (45.39 +/- 1.30) years. The duration of the disease ranged from 1 to 144 months,with an average of (12.64 +/- 2.19) months. One hundred and four pelvic plain films and 97 lumbar spine lateral films of the patients with sacroiliac joint disorder were taken. On the lateral X-ray of lumbar,the sacral horizontal angles (lumbosacral angle) were measured; and on the X-ray of pelvis,the vertical distance of two side iliac crest (iliac crest difference), the distance from lateral border to medial margin of two hips (hip width),the clip angle between sacral spin connection and vertical axis were measured,and then the data were analyzed. The mean difference of iliac crest was (10.34+/-0.73) mm; the mean width difference of hip'was (6.73+/-1.01) mm; and the mean difference of the iliac crest was larger than that of mean difference of hip (P<0.01). The occurrence rate of inequal width of hip was higher(P<0.01). The mean abnormal lumbosacral angle was (7.29 +/- 1.86) degrees,and the mean angle of sacral crest tilting to left or right was (3.18 +/- 0.47) degrees; the mean abnormal lumbosacral angle was larger than that of angle of sacral crest tilting to left or right (P<0.01), and the occurrence rate of sacral crest tilting to left or right was higher

  10. Stress analysis of the space telescope focal plane structure joint

    NASA Technical Reports Server (NTRS)

    Foster, W. A., Jr.; Shoemaker, W. L.

    1985-01-01

    Two major efforts were begun concerning the Space Telescope focal plane structure joint. The 3-D solid finite element modeling of the bipod flexure plate was carried out. Conceptual models were developed for the load transfer through the three major bolts to the flexure plate. The flexure plate drawings were reconstructed using DADAM for the purpose of developing a file from which the coordinates of any point on the flexure plate could be determined and also to locate the attachment points of the various components which connect with the flexure plate. For modeling convenience the CADAM drawing of the flexure plate has been divided into several regions which will be subdivided into finite elements using MSGMESH, which is a finite element mesh generator available with MSC/NASTRAN. In addition to the CADAM work on the flexure plate, an effort was also begun to develop computer aided drawings of the peripheral beam which will be used to assist in modeling the connection between it and the flexure plate.

  11. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study

    PubMed Central

    Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A; Cotofana, Sebastian; Eckstein, Felix; Castelein, Rene M; Bijlsma, Johannes W J; Mastbergen, Simon C; Lafeber, Floris P J G

    2011-01-01

    Background Modification of joint tissue damage is challenging in late-stage osteoarthritis (OA). Few options are available for treating end-stage knee OA other than joint replacement. Objectives To examine whether joint distraction can effectively modify knee joint tissue damage and has the potential to delay prosthesis surgery. Methods 20 patients (<60 years) with tibiofemoral OA were treated surgically using joint distraction. Distraction (∼5 mm) was applied for 2 months using an external fixation frame. Tissue structure modification at 1 year of follow-up was evaluated radiographically (joint space width (JSW)), by MRI (segmentation of cartilage morphology) and by biochemical markers of collagen type II turnover, with operators blinded to time points. Clinical improvement was evaluated by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Visual Analogue Scale (VAS) pain score. Results Radiography demonstrated an increase in mean and minimum JSW (2.7 to 3.6 mm and 1.0 to 1.9 mm; p<0.05 and <0.01). MRI revealed an increase in cartilage thickness (2.4 to 3.0 mm; p<0.001) and a decrease of denuded bone areas (22% to 5%; p<0.001). Collagen type II levels showed a trend towards increased synthesis (+103%; p<0.06) and decreased breakdown (−11%; p<0.08). The WOMAC index increased from 45 to 77 points, and VAS pain decreased from 73 to 31 mm (both p<0.001). Conclusions Joint distraction can induce tissue structure modification in knee OA and could result in clinical benefit. No current treatment is able to induce such changes. Larger, longer and randomised studies on joint distraction are warranted. PMID:21565898

  12. Shear joint capability versus bolt clearance

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1992-01-01

    The results of a conservative analysis approach into the determination of shear joint strength capability for typical space-flight hardware as a function of the bolt-hole clearance specified in the design are presented. These joints are comprised of high-strength steel fasteners and abutments constructed of aluminum alloys familiar to the aerospace industry. A general analytical expression was first arrived at which relates bolt-hole clearance to the bolt shear load required to place all joint fasteners into a shear transferring position. Extension of this work allowed the analytical development of joint load capability as a function of the number of fasteners, shear strength of the bolt, bolt-hole clearance, and the desired factor of safety. Analysis results clearly indicate that a typical space-flight hardware joint can withstand significant loading when less than ideal bolt hole clearances are used in the design.

  13. Laser Fabrication and Characterization of Adhesive-Free Joints for Encapsulation of Biomedical Implant Devices

    DTIC Science & Technology

    2005-01-01

    excitation sources should be helpful in overcoming this problem. CONCLUSIONS Biocompatible joints between polyimide and titanium-coated borosilicate...Technology, 46025 Port St., Plymouth, MI 48170, U.S.A. ABSTRACT Laser-fabricated joints of sub-millimeter widths between biocompatible , dissimilar materials...method of a very promising system, polyimide /titanium-coated borosilicate glass, and present and discuss results from characterization of such laser

  14. Extended hybrid-space SENSE for EPI: Off-resonance and eddy current corrected joint interleaved blip-up/down reconstruction.

    PubMed

    Zahneisen, Benjamin; Aksoy, Murat; Maclaren, Julian; Wuerslin, Christian; Bammer, Roland

    2017-06-01

    Geometric distortions along the phase encode direction caused by off-resonant spins are still a major issue in EPI based functional and diffusion imaging. If the off-resonance map is known it is possible to correct for distortions. Most correction methods operate as a post-processing step on the reconstructed magnitude images. Here, we present an algebraic reconstruction method (hybrid-space SENSE) that incorporates a physics based model of off-resonances, phase inconsistencies between k-space segments, and T2*-decay during the acquisition. The method can be used to perform a joint reconstruction of interleaved acquisitions with normal (blip-up) and inverted (blip-down) phase encode direction which results in reduced g-factor penalty. A joint blip-up/down simultaneous multi slice (SMS) reconstruction for SMS-factor 4 in combination with twofold in-plane acceleration leads to a factor of two decrease in maximum g-factor penalty while providing off-resonance and eddy-current corrected images. We provide an algebraic framework for reconstructing diffusion weighted EPI data that in addition to the general applicability of hybrid-space SENSE to 2D-EPI, SMS-EPI and 3D-EPI with arbitrary k-space coverage along z, allows for a modeling of arbitrary spatio-temporal effects during the acquisition period like off-resonances, phase inconsistencies and T2*-decay. The most immediate benefit is a reduction in g-factor penalty if an interleaved blip-up/down acquisition strategy is chosen which facilitates eddy current estimation and ensures no loss in k-space encoding in regions with strong off-resonance gradients. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multilateral Biomedical Data Sharing in the One-year Joint US-Russian Mission on the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Haven, C.; Johnson-Throop, K.; Van Baalen, M.; McFather, J.

    2014-01-01

    The One Year Mission (1YM) by two astronauts on the International Space Station (ISS), starting in March 2015, offers a unique opportunity to expand multilateral collaboration by sharing data and resources among the partner agencies in preparation for planned space exploration missions beyond low Earth orbit. Agreements and protocols will be established for the collection, distribution, analysis and reporting of both research and clinical data. Data will be shared between the agencies sponsoring the investigators, and between the research and clinical medicine communities where common interests are identified. The assignment of only two astronauts, one Russian and the other American, to the 1YM necessitated creativity in bilateral efforts to maximize the biomedical return from the opportunity. Addition of Canadian, European and Japanese investigations make the effort even more integrative. There will be three types of investigations: joint, cross-participation and data-exchange. The joint investigations have US and Russian coprincipal investigators, and the data acquired will be their common responsibility. The other two types must develop data sharing agreements and processes specific to their needs. A multilateral panel of ISS partner space agencies will develop policies for international exchange of scientific information to meet their science objectives and priorities. They will promote archiving of space flight data and will inform each other and the scientific community at large about the results obtained from space life sciences studies. Integration tasks for the 1YM are based on current experience from the ISS and previous efforts on the Russian space station Mir. Closer coordination between international partners requires more common approaches to remove barriers to multilateral resource utilization on the ISS. Greater integration in implementation should increase utilization efficiency to benefit all participants in spaceflight human research. This

  16. Army Space and Transformation

    DTIC Science & Technology

    2005-09-01

    Command – Space and Global Strike JFCOM Joint Forces Command JFRL Joint Forces Restricted Frequency List JIC Joint Integrating Concept JIM Joint...into the theater’s Joint Restricted Frequency List (JRFL). The ARSST trained the coalition and US soldiers on installation, use and troubleshooting

  17. Operational space weather product development and validation at the joint SMC-AFRL Rapid Prototyping Center

    NASA Astrophysics Data System (ADS)

    Quigley, S.

    The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space &Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that have been, or will soon be added to real-time operations include: 1) the Operational Space Environment Network Display (OpSEND) suit - a set of four products that address HF communication, UHF satellite communication scintillation, radar auroral clutter, and GP S single- frequency errors; 2) a solar radio background and burst effects (SoRBE) product suite; and C) a meteor effects (ME) product suite. The RPC is also involved in a rather substantial "V&V" effort to produce multiple operational product verifications and validations, with an added end goal of a generalized validation software package. The presentation will provide a general overview of the RPC and each of the products mentioned above, to include background science, operational history, inputs, outputs, dissemination, and customer uses for each.

  18. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  19. Acromioclavicular joint dislocations: radiological correlation between Rockwood classification system and injury patterns in human cadaver species.

    PubMed

    Eschler, Anica; Rösler, Klaus; Rotter, Robert; Gradl, Georg; Mittlmeier, Thomas; Gierer, Philip

    2014-09-01

    The classification system of Rockwood and Young is a commonly used classification for acromioclavicular joint separations subdividing types I-VI. This classification hypothesizes specific lesions to anatomical structures (acromioclavicular and coracoclavicular ligaments, capsule, attached muscles) leading to the injury. In recent literature, our understanding for anatomical correlates leading to the radiological-based Rockwood classification is questioned. The goal of this experimental-based investigation was to approve the correlation between the anatomical injury pattern and the Rockwood classification. In four human cadavers (seven shoulders), the acromioclavicular and coracoclavicular ligaments were transected stepwise. Radiological correlates were recorded (Zanca view) with 15-kg longitudinal tension applied at the wrist. The resulting acromio- and coracoclavicular distances were measured. Radiographs after acromioclavicular ligament transection showed joint space enlargement (8.6 ± 0.3 vs. 3.1 ± 0.5 mm, p < 0.05) and no significant change in coracoclavicular distance (10.4 ± 0.9 vs. 10.0 ± 0.8 mm). According to the Rockwood classification only type I and II lesions occurred. After additional coracoclavicular ligament cut, the acromioclavicular joint space width increased to 16.7 ± 2.7 vs. 8.6 ± 0.3 mm, p < 0.05. The mean coracoclavicular distance increased to 20.6 ± 2.1 mm resulting in type III-V lesions concerning the Rockwood classification. Trauma with intact coracoclavicular ligaments did not result in acromioclavicular joint lesions higher than Rockwood type I and II. The clinical consequence for reconstruction of low-grade injuries might be a solely surgical approach for the acromioclavicular ligaments or conservative treatment. High-grade injuries were always based on additional structural damage to the coracoclavicular ligaments. Rockwood type V lesions occurred while muscle attachments were intact.

  20. Excluding joint probabilities from quantum theory

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Danageozian, Arshag

    2018-03-01

    Quantum theory does not provide a unique definition for the joint probability of two noncommuting observables, which is the next important question after the Born's probability for a single observable. Instead, various definitions were suggested, e.g., via quasiprobabilities or via hidden-variable theories. After reviewing open issues of the joint probability, we relate it to quantum imprecise probabilities, which are noncontextual and are consistent with all constraints expected from a quantum probability. We study two noncommuting observables in a two-dimensional Hilbert space and show that there is no precise joint probability that applies for any quantum state and is consistent with imprecise probabilities. This contrasts with theorems by Bell and Kochen-Specker that exclude joint probabilities for more than two noncommuting observables, in Hilbert space with dimension larger than two. If measurement contexts are included into the definition, joint probabilities are not excluded anymore, but they are still constrained by imprecise probabilities.

  1. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  2. Space nuclear system expansion joints

    NASA Technical Reports Server (NTRS)

    Whitaker, W. D.; Shimazki, T. T.

    1973-01-01

    The engineering, design, and fabrication status of the expansion joint unit (EJU) to be employed in the NaK primary coolant piping loop of the 5-kwe Reactor thermoelectric system are described. Four EJU's are needed in the NaK primary coolant piping loop. The four EJU's which will be identical, utilize bellows as the flexing member, are hermetically sealed, and provide double containment. The bellows are of a nested-formed design, and are to be constructed of 1-ply thickness of 0.010-in. Inconel 718. The EJU's provide a minimum piping load margin of safety of +0.22.

  3. Influence of restricted vision and knee joint range of motion on gait properties during level walking and stair ascent and descent.

    PubMed

    Demura, Tomohiro; Demura, Shin-ich

    2011-01-01

    Because elderly individuals experience marked declines in various physical functions (e.g., vision, joint function) simultaneously, it is difficult to clarify the individual effects of these functional declines on walking. However, by imposing vision and joint function restrictions on young men, the effects of these functional declines on walking can be clarified. The authors aimed to determine the effect of restricted vision and range of motion (ROM) of the knee joint on gait properties while walking and ascending or descending stairs. Fifteen healthy young adults performed level walking and stair ascent and descent during control, vision restriction, and knee joint ROM restriction conditions. During level walking, walking speed and step width decreased, and double support time increased significantly with vision and knee joint ROM restrictions. Stance time, step width, and walking angle increased only with knee joint ROM restriction. Stance time, swing time, and double support time were significantly longer in level walking, stair descent, and stair ascent, in that order. The effects of vision and knee joint ROM restrictions were significantly larger than the control conditions. In conclusion, vision and knee joint ROM restrictions affect gait during level walking and stair ascent and descent. This effect is marked in stair ascent with knee joint ROM restriction.

  4. Size of the lower third molar space in relation to age in Serbian population.

    PubMed

    Zelić, Ksenija; Nedeljković, Nenad

    2013-10-01

    It is considered that the shortage of space is the major cause of the third molar impaction. The aim of this study was to establish the frequency of insufficient lower third molar eruption space in Serbian population, to question the differences in this frequency in the subjects of different age, to determine the influence of the lower third molar space (retromolar space) size on third molar eruption, and to investigate a possible correlation between the size of gonial angle and the space/third molar width ratio. Digital orthopantomograms were taken from 93 patients divided into two groups: early adult (16-18 years of age) and adult (18-26) patients. Retromolar space, mesiodistal third molar crown width, gonial angle and eruption levels were measured. The space/third molar width in early adult subjects was smaller (p < 0.0001) and insufficient space was significantly more frequent (p = 0.0003) than in adult patients. Considerably more third molars erupted in case of enough space in both age groups (p < 0.0001). There was no difference between the means of gonial angle size in relations to the available space. The retromolar space/third molar width ratio is more favorable in adult subjects. Gonial angle is not in correlation with the retromolar space/third molar width ratio.

  5. A deterministic width function model

    NASA Astrophysics Data System (ADS)

    Puente, C. E.; Sivakumar, B.

    Use of a deterministic fractal-multifractal (FM) geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States), that the FM approach may also be used to closely approximate existing width functions.

  6. Debonding of Stitched Composite Joints: Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  7. Signaling networks in joint development

    PubMed Central

    Salva, Joanna E.; Merrill, Amy E.

    2016-01-01

    Here we review studies identifying regulatory networks responsible for synovial, cartilaginous, and fibrous joint development. Synovial joints, characterized by the fluid-filled synovial space between the bones, are found in high-mobility regions and are the most common type of joint. Cartilaginous joints unite adjacent bones through either a hyaline cartilage or fibrocartilage intermediate. Fibrous joints, which include the cranial sutures, form a direct union between bones through fibrous connective tissue. We describe how the distinct morphologic and histogenic characteristics of these joint classes are established during embryonic development. Collectively, these studies reveal that despite the heterogeneity of joint strength and mobility, joint development throughout the skeleton utilizes common signaling networks via long-range morphogen gradients and direct cell-cell contact. This suggests that different joint types represent specialized variants of homologous developmental modules. Identifying the unifying aspects of the signaling networks between joint classes allows a more complete understanding of the signaling code for joint formation, which is critical to improving strategies for joint regeneration and repair. PMID:27859991

  8. Maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width groups

    PubMed Central

    Shahid, Fazal; Alam, Mohammad Khursheed; Khamis, Mohd Fadhli

    2015-01-01

    Objective: To investigate the maxillary and mandibular anterior crown width/height ratio and its relation to various arch perimeters, arch length, and arch width (intercanine, interpremolar, and intermolar) groups. Materials and Methods: The calculated sample size was 128 subjects. The crown width/height, arch length, arch perimeter, and arch width of the maxilla and mandible were obtained via digital calliper (Mitutoyo, Japan). A total of 4325 variables were measured. The sex differences in the crown width and height were evaluated. Analysis of variance was applied to evaluate the differences between arch length, arch perimeter, and arch width groups. Results: Males had significantly larger mean values for crown width and height than females (P ≤ 0.05) for maxillary and mandibular arches, both. There were no significant differences observed for the crown width/height ratio in various arch length, arch perimeter, and arch width (intercanine, interpremolar, and intermolar) groups (P ≤ 0.05) in maxilla and mandible, both. Conclusions: Our results indicate sexual disparities in the crown width and height. Crown width and height has no significant relation to various arch length, arch perimeter, and arch width groups of maxilla and mandible. Thus, it may be helpful for orthodontic and prosthodontic case investigations and comprehensive management. PMID:26929686

  9. Anomalous width variations for ion acoustic rarefactive solitary waves in a warm ion plasma with two electron temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, S.S.; Sekar Iyengar, A.N.

    1997-09-01

    Anomalous width{endash}amplitude variations were observed in large amplitude rarefactive solitary waves which show increasing width with increasing amplitude, contrasting the usual reciprocal relation between the square of the width and the amplitude, beyond a certain value of the plasma parameters [S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas, {bold 3}, 3939 (1996)]. For the limiting maximum amplitude, the {open_quotes}increasing width{close_quotes} solitary wave tends to a double layer-like solution. The overall variation was found to depend crucially on the specific parameter space. From a detailed investigation of the above behavior, a plausible physical explanation has beenmore » presented for such increases in the width. It is found that the ions{close_quote} initial kinetic energies and the cold electron concentration within the perturbed region play a significant role in determining the observed width{endash}amplitude variation. This contradicts the investigation of Sayal, Yadav, and Sharma [Phys. Scr. {bold 47}, 576 (1993)]. {copyright} {ital 1997 American Institute of Physics.}« less

  10. Development of an Underactuated 2-DOF Wrist Joint using McKibben PAMs

    NASA Astrophysics Data System (ADS)

    Rajagopal, S. P.; Jain, S.; Ramasubramanian, S. N.; Johnson, B. V.; Dwivedy, S. K.

    2014-10-01

    In this work, model of an underactuated 2-DOF wrist joint with pneumatically actuated muscles is proposed. For the joint, McKibben-type artificial muscles are used in parallel configuration for the actuation. For each Degree of Freedom (DOF) one agonist-antagonist pair arrangement is usually used with a pulley mechanism. A mathematical model of wrist joint is derived using conventional forward kinematic analysis. The static model relating pressure in the muscle with the orientation of the wrist joint is obtained by combining the experimental data and mathematical model. Regulation of pressure can be achieved by pulse width modulation control of on/off solenoid valves. A set of free vibration experiments are done for the dynamic identification of the muscle characteristics.

  11. Selection of optimal welding condition for GTA pulse welding in root-pass of V-groove butt joint

    NASA Astrophysics Data System (ADS)

    Yun, Seok-Chul; Kim, Jae-Woong

    2010-12-01

    In the manufacture of high-quality welds or pipeline, a full-penetration weld has to be made along the weld joint. Therefore, root-pass welding is very important, and its conditions have to be selected carefully. In this study, an experimental method for the selection of optimal welding conditions is proposed for gas tungsten arc (GTA) pulse welding in the root pass which is done along the V-grooved butt-weld joint. This method uses response surface analysis in which the width and height of back bead are chosen as quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, is used as the objective function to obtain the optimal welding conditions. In our experiments, the target values of back bead width and height are 4 mm and zero, respectively, for a V-grooved butt-weld joint of a 7-mm-thick steel plate. The optimal welding conditions could determine the back bead profile (bead width and height) as 4.012 mm and 0.02 mm. From a series of welding tests, it was revealed that a uniform and full-penetration weld bead can be obtained by adopting the optimal welding conditions determined according to the proposed method.

  12. [Feasibility and accuracy of ultrasound-guided methodology in the examination of lumbar spine facet joints].

    PubMed

    Wen, Chuan-Bing; Li, Yong-Zhong; Tang, Qin-Qin; Sun, Lin; Xiao, Hong; Yang, Bang-Xiang; Song, Li; Liu, Hui

    2013-03-01

    To investigate the feasibility, accuracy of B ultrasound in the examination of joint space of lumbar spine facet joints compared with CT scan. Ten healthy adult volunteers were enrolled. The joint space of lumbar facet joints was measured by ultrasound. To identify the spinal levels, the posterior parasagittal sonograms were obtained at levels L1 to S1. The lumbar facet joints were delineated with the help of transverse sonograms at each level. Meanwhile, the lumbar facet joints were evaluated by spiral CT on the same plane, reformatted to 1-mm axial slices. A total of 88 lumbar facet joints from L1 to S1 were clearly visualized in the 10 volunteers. Both ultrasound and CT measurements showed the same average depth and lateral distance of lumbar facet joint space (P > 0.05). The lumbar facet joint space can be accurately demonstrated by ultrasound.

  13. Root Cause Investigation of the Starboard Solar Alpha Rotary Joint Anomaly on the International Space Station

    NASA Technical Reports Server (NTRS)

    Taylor, Deneen; Enriquez, Carlos; McCann, David; McFatter, Justin

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high current draw. Later inspections via Extravehicular Activity (EVA) discovered that the case hardened steel race ring on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken, comprising metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The investigation found that the race ring damage had been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors.

  14. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  15. The effect of variable size posterior wall acetabular fractures on contact characteristics of the hip joint.

    PubMed

    Olson, S A; Bay, B K; Pollak, A N; Sharkey, N A; Lee, T

    1996-01-01

    The indications for open reduction and internal fixation of posterior wall acetabular fractures associated with a clinically stable hip joint are unclear. In previous work a large posterior wall defect (27% articular surface area) resulted in significant alteration of load transmission across the hip; specifically, there was a transition from evenly distributed loading along the acetabular articular surface to loading concentrated mainly in the superior portion of the articular surface during simulated single leg stance. However, the majority of posterior wall fractures involve a smaller amount of the articular surface. Posterior wall acetabular fractures not associated with instability of the hip are commonly treated nonoperatively. This practice does not account for the size of the posterior wall fracture. To study the biomechanical consequences of variably sized articular defects, a laboratory experiment was conducted evaluating three progressively larger posterior wall defects of the acetabulum during simulated single leg stance using superlow Fuji prescale film (Itochu International, New York): (a) 1/3 articular surface width through a 50 degrees arc along the posterior wall of the acetabulum, (b) 2/3, and (c) 3/3 articular width defects through the same 50 degrees arc along the posterior wall of the acetabulum. In the intact acetabulum, 48% of the total articular contact was located in the superior acetabulum. Twenty-eight percent of articular contact was in the anterior wall region of the acetabulum and 24% in the posterior wall region. After the 1/3 width posterior wall defect, 64% of the articular contact was located in the superior acetabulum (p = 0.0011). The 2/3 width posterior wall defect resulted in 71% of articular contact area being located in the superior acetabulum (p = 0.0006). After the 3/3 width posterior wall defect, 77% of articular contact was located in the superior acetabulum, significantly greater than the intact condition (p < 0

  16. X-ray natural widths, level widths and Coster-Kronig transition probabilities

    NASA Astrophysics Data System (ADS)

    Papp, T.; Campbell, J. L.; Varga, D.

    1997-01-01

    A critical review is given for the K-N7 atomic level widths. The experimental level widths were collected from x-ray photoelectron spectroscopy (XPS), x-ray emission spectroscopy (XES), x-ray spectra fluoresced by synchrotron radiation, and photoelectrons from x-ray absorption (PAX). There are only limited atomic number ranges for a few atomic levels where data are available from more than one source. Generally the experimental level widths have large scatter compared to the reported error bars. The experimental data are compared with the recent tabulation of Perkins et al. and of Ohno et al. Ohno et al. performed a many body approach calculation for limited atomic number ranges and have obtained reasonable agreement with the experimental data. Perkins et al. presented a tabulation covering the K-Q1 shells of all atoms, based on extensions of the Scofield calculations for radiative rates and extensions of the Chen calculations for non-radiative rates. The experimental data are in disagreement with this tabulation, in excess of a factor of two in some cases. A short introduction to the experimental Coster-Kronig transition probabilities is presented. It is our opinion that the different experimental approaches result in systematically different experimental data.

  17. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  18. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  19. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  20. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  1. 14 CFR 121.95 - Route width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... routes in the case of certificate holders conducting flag operations) have a width equal to the... width of other approved routes, he considers the following: (1) Terrain clearance. (2) Minimum en route...

  2. Joint search and sensor management for geosynchronous satellites

    NASA Astrophysics Data System (ADS)

    Zatezalo, A.; El-Fallah, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2008-04-01

    Joint search and sensor management for space situational awareness presents daunting scientific and practical challenges as it requires a simultaneous search for new, and the catalog update of the current space objects. We demonstrate a new approach to joint search and sensor management by utilizing the Posterior Expected Number of Targets (PENT) as the objective function, an observation model for a space-based EO/IR sensor, and a Probability Hypothesis Density Particle Filter (PHD-PF) tracker. Simulation and results using actual Geosynchronous Satellites are presented.

  3. Substrate Oxide Layer Thickness Optimization for a Dual-Width Plasmonic Grating for Surface-Enhanced Raman Spectroscopy (SERS) Biosensor Applications

    PubMed Central

    Bauman, Stephen J.; Brawley, Zachary T.; Darweesh, Ahmad A.; Herzog, Joseph B.

    2017-01-01

    This work investigates a new design for a plasmonic SERS biosensor via computational electromagnetic models. It utilizes a dual-width plasmonic grating design, which has two different metallic widths per grating period. These types of plasmonic gratings have shown larger optical enhancement than standard single-width gratings. The new structures have additional increased enhancement when the spacing between the metal decreases to sub-10 nm dimensions. This work integrates an oxide layer to improve the enhancement even further by carefully studying the effects of the substrate oxide thickness on the enhancement and reports ideal substrate parameters. The combined effects of varying the substrate and the grating geometry are studied to fully optimize the device’s enhancement for SERS biosensing and other plasmonic applications. The work reports the ideal widths and substrate thickness for both a standard and a dual-width plasmonic grating SERS biosensor. The ideal geometry, comprising a dual-width grating structure atop an optimal SiO2 layer thickness, improves the enhancement by 800%, as compared to non-optimized structures with a single-width grating and a non-optimal oxide thickness. PMID:28665308

  4. Evaluation of longitudinal joint tie bar system.

    DOT National Transportation Integrated Search

    2011-09-01

    "An adequate longitudinal joint tie bar system is essential in the overall performance of concrete pavement. Excessive : longitudinal joint openings are believed to be caused by either inadequate tie bar size or spacing or improper tie bar : installa...

  5. Effects of gap width on droplet transfer behavior in ultra-narrow gap laser welding of high strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng

    2017-10-01

    Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.

  6. Regeneration of spine disc and joint cartilages under temporal and space modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Sobol, E.; Shekhter, A.; Baskov, A.; Baskov, V.; Baum, O.; Borchshenko, I.; Golubev, V.; Guller, A.; Kolyshev, I.; Omeltchenko, A.; Sviridov, A.; Zakharkina, O.

    2009-02-01

    The effect of laser radiation on the generation of hyaline cartilage in spine disc and joints has been demonstrated. The paper considers physical processes and mechanisms of laser regeneration, presents results of investigations aimed to optimize laser settings and to develop feedback control system for laser reconstruction of spine discs. Possible mechanisms of laser-induced regeneration include: (1) Space and temporary modulated laser beam induces nonhomogeneous and pulse repetitive thermal expansion and stress in the irradiated zone of cartilage. Mechanical effect due to controllable thermal expansion of the tissue and micro and nano gas bubbles formation in the course of the moderate (up to 45-50 oC) heating of the NP activate biological cells (chondrocytes) and promote cartilage regeneration. (2) Nondestructive laser radiation leads to the formation of nano and micro-pores in cartilage matrix. That promotes water permeability and increases the feeding of biological cells. Results provide the scientific and engineering basis for the novel low-invasive laser procedures to be used in orthopedics for the treatment cartilages of spine and joints. The technology and equipment for laser reconstruction of spine discs have been tested first on animals, and then in a clinical trial. Since 2001 the laser reconstruction of intervertebral discs have been performed for 340 patients with chronic symptoms of low back or neck pain who failed to improve with non-operative care. Substantial relief of back pain was obtained in 90% of patients treated who returned to their daily activities. The experiments on reparation of the defects in articular cartilage of the porcine joints under temporal and spase modulated laser radiation have shown promising results.

  7. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width.

    PubMed

    Arbellay, Estelle; Jarvis, Ingrid; Chavardès, Raphaël D; Daniels, Lori D; Stoffel, Markus

    2018-05-19

    Reconstructions of defoliation by larch bud moth (LBM, Zeiraphera diniana Gn.) based on European larch (Larix decidua Mill.) tree rings have unraveled outbreak patterns over exceptional temporal and spatial scales. In this study, we conducted tree-ring analyses on 105 increment cores of European larch from the Valais Alps, Switzerland. The well-documented history of LBM outbreaks in Valais provided a solid baseline for evaluating the LBM defoliation signal in multiple tree-ring parameters. First, we used tree-ring width measurements along with regional records of LBM outbreaks to reconstruct the occurrence of these events at two sites within the Swiss Alps. Second, we measured earlywood width, latewood width and blue intensity, and compared these parameters with tree-ring width to assess the capacity of each proxy to detect LBM defoliation. A total of six LBM outbreaks were reconstructed for the two sites between AD 1850 and 2000. Growth suppression induced by LBM was, on average, highest in latewood width (59%), followed by total ring width (54%), earlywood width (51%) and blue intensity (26%). We show that latewood width and blue intensity can improve the temporal accuracy of LBM outbreak reconstructions, as both proxies systematically detected LBM defoliation in the first year it occurred, as well as the differentiation between defoliation and non-defoliation years. This study introduces blue intensity as a promising new proxy of insect defoliation and encourages its use in conjunction with latewood width.

  8. Prediction of cartilaginous tissue repair after knee joint distraction.

    PubMed

    van der Woude, J A D; Welsing, P M; van Roermund, P M; Custers, R J H; Kuchuk, N O; Lafeber, F P J G G

    2016-10-01

    For young patients (<65years), knee joint distraction (KJD) may be a joint-saving treatment option for end-stage knee osteoarthritis. Distracting the femur from the tibia by five millimeters for six to eight weeks using an external fixation frame results in cartilaginous tissue repair, in addition to clinical benefits. This study is a first attempt to predict the degree of cartilaginous tissue repair after KJD. Fifty-seven consecutive patients received KJD. At baseline and at one year of follow-up, mean and minimum joint space width (JSW) of the most-affected compartment was determined on standardized radiographs. To evaluate the predictive ability of baseline characteristics for JSW at one year of follow-up, multivariable linear regression analysis was performed. Mean JSW±SD of the most affected compartment increased by 0.95±1.23mm to 3.08±1.43mm at one year (P<0.001). The minimum JSW increased by 0.94±1.03mm to 1.63±1.21mm at one year of follow-up (P<0.001). For a larger mean JSW one year after KJD, only Kellgren & Lawrence grade (KLG) at baseline was predictive (Regression coefficient (β)=0.47, 95% CI=0.18 to 0.77, P=0.002). For a larger minimum JSW, KLG (β=0.46, 95% CI=0.19 to 0.73, P=0.001) and male gender (β=0.52, 95% CI=0.06 to 0.99, P=0.028) were statistically predictive. Eight weeks of distraction time neared significance (β=0.44, 95% CI=-0.05 to 0.93, P=0.080). In our cohort of patients treated with KJD, males with higher KLG had the best chance of cartilaginous tissue repair by distraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Materials based on cellulose fabric and PVC with porous structures formed by jointed aza- and oxa-aza-crown macromolecules

    NASA Astrophysics Data System (ADS)

    Fridman, A. Ya.; Tsivadze, A. Yu.; Morozova, E. M.; Sokolova, N. P.; Shiryaev, A. A.; Petukhova, G. A.; Voloshchuk, A. M.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Novikov, A. K.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.

    2016-12-01

    A material with porous structures formed by jointed aza- and oxa-aza-crowns with peripheral OHgroups is synthesized on the basis of cellulose fabric and PVC transformed into hydroxyethylcyclam. Mesopores are mainly observed on the fiber surface. The specific surface of the material is 6 m2/g; the volume of free space is 0.112 cm3/g. Assuming the internal pores have a disk-like shape, their width is estimated at 2 nm. The material sorbs vapors of aliphatic and aromatic hydrocarbons, alcohols, aldehydes, ketones, amines, amides, nitriles, and sulfoxides. It also swells to a limited degree in organic solvents. When sulfuric acid or sodium hydroxide is sorbed in the pores, compounds of them with H+- and OH--conducting systems of hydrogen bonds are formed.

  10. Influence of the Strength Mismatch of a Narrow Gap Welded Joint of SA508 on the Plastic η Factor

    NASA Astrophysics Data System (ADS)

    Koo, J. M.; Huh, Y.; Seok, C. S.

    2012-11-01

    In this article, the influence of the strength mismatch of a narrow gap welded joint of SA508 on the η factor was evaluated. The η factor is the principal parameter that determines the plastic portion of the J-integral. The specimens for tensile and hardness tests were collected from piping with narrow gap welding and the stress-strain curve and hardness were obtained from those. From these results, the Ramberg-Osgood (R-O) constant was obtained. Also, the finite element analysis was performed with variations in the strength mismatch and the weld width. The η factor equation considering the strength mismatch and the weld width of a narrow gap welded joint was suggested.

  11. Six weeks of continuous joint distraction appears sufficient for clinical benefit and cartilaginous tissue repair in the treatment of knee osteoarthritis.

    PubMed

    van der Woude, J A D; van Heerwaarden, R J; Spruijt, S; Eckstein, F; Maschek, S; van Roermund, P M; Custers, R J H; van Spil, W E; Mastbergen, S C; Lafeber, F P J G

    2016-10-01

    Knee joint distraction (KJD) is a surgical joint-preserving treatment in which the knee joint is temporarily distracted by an external frame. It is associated with joint tissue repair and clinical improvement. Initially, patients were submitted to an eight-week distraction period, and currently patients are submitted to a six-week distraction period. This study evaluates whether a shorter distraction period influences the outcome. Both groups consisted of 20 patients. Clinical outcome was assessed by WOMAC questionnaires and VAS-pain. Cartilaginous tissue repair was assessed by radiographic joint space width (JSW) and MRI-observed cartilage thickness. Baseline data between both groups were comparable. Both groups showed an increase in total WOMAC score; 24±4 in the six-week group and 32±5 in the eight-week group (both p<0.001). Mean JSW increased 0.9±0.3mm in the six-week group and 1.1±0.3mm in the eight-week group (p=0.729 between groups). The increase in mean cartilage thickness on MRI was 0.6±0.2mm in the eight-week group and 0.4±0.1mm in the six-week group (p=0.277). A shorter distraction period does not influence short-term clinical and structural outcomes statistically significantly, although effect sizes tend to be smaller in six week KJD as compared to eight week KJD. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Design of multiplier-less sharp transition width non-uniform filter banks using gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Bindiya T., S.; Elias, Elizabeth

    2015-01-01

    In this paper, multiplier-less near-perfect reconstruction tree-structured filter banks are proposed. Filters with sharp transition width are preferred in filter banks in order to reduce the aliasing between adjacent channels. When sharp transition width filters are designed as conventional finite impulse response filters, the order of the filters will become very high leading to increased complexity. The frequency response masking (FRM) method is known to result in linear-phase sharp transition width filters with low complexity. It is found that the proposed design method, which is based on FRM, gives better results compared to the earlier reported results, in terms of the number of multipliers when sharp transition width filter banks are needed. To further reduce the complexity and power consumption, the tree-structured filter bank is made totally multiplier-less by converting the continuous filter bank coefficients to finite precision coefficients in the signed power of two space. This may lead to performance degradation and calls for the use of a suitable optimisation technique. In this paper, gravitational search algorithm is proposed to be used in the design of the multiplier-less tree-structured uniform as well as non-uniform filter banks. This design method results in uniform and non-uniform filter banks which are simple, alias-free, linear phase and multiplier-less and have sharp transition width.

  13. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints

    PubMed Central

    Jang, Andrew T.; Merkle, Arno; Fahey, Kevin; Gansky, Stuart A.; Ho, Sunita P.

    2015-01-01

    Reduced functional loads cause adaptations in organs. In this study, temporal adaptations of bone-ligament-tooth fibrous joints to reduced functional loads were mapped using a holistic approach. Systematic studies were performed to evaluate organ-level and tissue-level adaptations in specimens harvested periodically from rats given powder food for 6 months (N = 60 over 8,12,16,20, and 24 weeks). Bone-periodontal ligament (PDL)-tooth fibrous joint adaptation was evaluated by comparing changes in joint stiffness with changes in functional space between the tooth and alveolar bony socket. Adaptations in tissues included mapping changes in the PDL and bone architecture as observed from collagen birefringence, bone hardness and volume fraction in rats fed soft foods (soft diet, SD) compared to those fed hard pellets as a routine diet (hard diet, HD). In situ biomechanical testing on harvested fibrous joints revealed increased stiffness in SD groups (SD:239-605 N/mm) (p<0.05) at 8 and 12 weeks. Increased joint stiffness in early development phase was due to decreased functional space (at 8wks change in functional space was −33 µm, at 12wks change in functional space was −30 µm) and shifts in tissue quality as highlighted by birefringence, architecture and hardness. These physical changes were not observed in joints that were well into function, that is, in rodents older than 12 weeks of age. Significant adaptations in older groups were highlighted by shifts in bone growth (bone volume fraction 24wks: Δ-0.06) and bone hardness (8wks: Δ−0.04 GPa, 16 wks: Δ−0.07 GPa, 24wks: Δ−0.06 GPa). The response rate (N/s) of joints to mechanical loads decreased in SD groups. Results from the study showed that joint adaptation depended on age. The initial form-related adaptation (observed change in functional space) can challenge strain-adaptive nature of tissues to meet functional demands with increasing age into adulthood. The coupled effect between functional space in

  14. Optimization and Prediction of Angular Distortion and Weldment Characteristics of TIG Square Butt Joints

    NASA Astrophysics Data System (ADS)

    Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.

    2014-05-01

    Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.

  15. SOAR 89: Space Station. Space suit test program

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; West, Philip; Rouen, Michael

    1990-01-01

    The elements of the test program for the space suit to be used on Space Station Freedom are noted in viewgraph form. Information is given on evaluation objectives, zero gravity evaluation, mobility evaluation, extravehicular activity task evaluation, and shoulder joint evaluation.

  16. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  17. Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling.

    PubMed

    Thomas, Reshmi; Thomas, Anoop; Pullanchery, Saranya; Joseph, Linta; Somasundaran, Sanoop Mambully; Swathi, Rotti Srinivasamurthy; Gray, Stephen K; Thomas, K George

    2018-01-23

    Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.

  18. Integration of Visual and Joint Information to Enable Linear Reaching Motions

    NASA Astrophysics Data System (ADS)

    Eberle, Henry; Nasuto, Slawomir J.; Hayashi, Yoshikatsu

    2017-01-01

    A new dynamics-driven control law was developed for a robot arm, based on the feedback control law which uses the linear transformation directly from work space to joint space. This was validated using a simulation of a two-joint planar robot arm and an optimisation algorithm was used to find the optimum matrix to generate straight trajectories of the end-effector in the work space. We found that this linear matrix can be decomposed into the rotation matrix representing the orientation of the goal direction and the joint relation matrix (MJRM) representing the joint response to errors in the Cartesian work space. The decomposition of the linear matrix indicates the separation of path planning in terms of the direction of the reaching motion and the synergies of joint coordination. Once the MJRM is numerically obtained, the feedfoward planning of reaching direction allows us to provide asymptotically stable, linear trajectories in the entire work space through rotational transformation, completely avoiding the use of inverse kinematics. Our dynamics-driven control law suggests an interesting framework for interpreting human reaching motion control alternative to the dominant inverse method based explanations, avoiding expensive computation of the inverse kinematics and the point-to-point control along the desired trajectories.

  19. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    PubMed

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  20. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  1. Effect of Shielding Gas on the Properties of AW 5083 Aluminum Alloy Laser Weld Joints

    NASA Astrophysics Data System (ADS)

    Vyskoč, Maroš; Sahul, Miroslav; Sahul, Martin

    2018-04-01

    The paper deals with the evaluation of the shielding gas influence on the properties of AW 5083 aluminum alloy weld joints produced with disk laser. Butt weld joints were produced under different shielding gas types, namely Ar, He, Ar + 5 vol.% He, Ar + 30 vol.% He and without shielding weld pool. Light and electron microscopy, computed tomography, microhardness measurements and tensile testing were used for evaluation of weld joint properties. He-shielded weld joints were the narrowest ones. On the other hand, Ar-shielded weld joints exhibited largest weld width. The choice of shielding gas had significant influence on the porosity level of welds. The lowest porosity was observed in weld joint produced in Ar with the addition of 5 vol.% He shielding atmosphere (only 0.03%), while the highest level of porosity was detected in weld joint produced in pure He (0.24%). Except unshielded aluminum alloy weld joint, the lowest tensile strength was recorded in He-shielded weld joints. On the contrary, the highest average microhardness was measured in He-shielded weld joints.

  2. Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathematical methods and its applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.

  3. Upright CT of the knee: the effect of weight-bearing on joint alignment.

    PubMed

    Hirschmann, Anna; Buck, Florian M; Fucentese, Sandro F; Pfirrmann, Christian W A

    2015-11-01

    To prospectively compare patellofemoral and femorotibial alignment in supine non-weight-bearing computed tomography (NWBCT) and upright weight-bearing CT (WBCT) and assess the differences in joint alignment. NWBCT and WBCT images of the knee were obtained in 26 patients (mean age, 57.0 ± 15.9 years; range, 21-81) using multiple detector CT for NWBCT and cone-beam extremity CT for WBCT. Two musculoskeletal radiologists independently quantified joint alignment by measuring femorotibial rotation, tibial tuberosity-trochlear groove distance (TTTG), lateral patellar tilt angle, lateral patellar shift, and medial and lateral femorotibial joint space widths. Significant differences between NWBCT and WBCT were sought using Wilcoxon signed-rank test (P-value < 0.05). Significant differences were found for femorotibial rotation (the NWBCT mean changed from 2.7° ± 5.1 (reader 1)/2.6° ± 5.6 (reader 2) external rotation to WBCT 0.4° ± 7.7/0.2° ± 7.5 internal rotation; P = 0.009/P = 0.004), TTTG (decrease from NWBCT (13.8 mm ± 5.1/13.9 mm ± 3.9) to WBCT (10.5 mm ± 5.0/10.9 mm ± 5.2; P = 0.008/P = 0.002), lateral patellar tilt angle (decrease from NWBCT (15.6° ± 6.7/16.9° ± 7.4) to WBCT (12.5° ± 7.7/15.0° ± 6.2; P = 0.011/P = 0.188). The medial femorotibial joint space decreased from NWBCT (3.9 mm ± 1.4/4.5 mm ± 1.3) to WBCT (2.9 mm ± 2.2/3.5 mm ± 2.2; P = 0.003/P = 0.004). Inter-reader agreement ranged from 0.52-0.97. Knee joint alignment changes significantly in the upright weight-bearing position using CT when compared to supine non-weight-bearing CT. • Cone-beam extremity CT offers upright weight-bearing examinations of the lower extremities. • Knee alignment changes significantly in an upright position compared to supine position. • Tibial tuberosity-trochlear groove distance (TTTG) is less pronounced in a weight-bearing position. • The

  4. An experimental investigation on the requirement of roof height and sill width for car ingress and egress.

    PubMed

    Causse, Julien; Wang, Xuguang; Denninger, Lisa

    2012-01-01

    This study aimed at experimentally investigating the influence of roof height and sill width on car ingress/egress movements. The first uncomfortable (Ht1) and the lowest acceptable (Ht2) roof heights were obtained from 26 participants of three different stature groups thanks to a multi-adjustable vehicle mock-up. Both Ht1 and Ht2 were affected neither by stature nor by vehicle type. Only a difference of 45 mm between Ht1 and Ht2 was observed. Tall volunteers more flexed the trunk and neck than short persons thanks to a larger space available around the seat when the head passing under the roof. The vehicle type had almost no effect on upper body posture. The roof height only affected neck flexion. The sill width mainly imposed a lateral translation. Results demonstrated that an appropriate roof height should be determined carefully. A small change of 45 mm in roof height may lead to an unacceptable situation. The present study experimentally investigated the effects of roof height and sill width on car ingress and egress movements. Short females required almost the same roof height as tall males due to smaller space around the seat. The results would help to optimise car dimensions for improving car accessibility.

  5. Test Validation of the Repair to the Space Station Solar Alpha Rotary Joint

    NASA Technical Reports Server (NTRS)

    Allmon, Curtis; Wilkinson, Will; Loewenthal, Stu

    2010-01-01

    The Solar Array Alpha Joint Lubrication Interval Test (SARJ LITE) test rig was built as a method to evaluate the performance of the grease repair on the Starboard SARJ of the International Space Station (ISS) . The on-orbit SARJ was temporarily parked after receiving significant damage on one of its race ring surfaces as a result of inadequate lu brication (high dry contact friction) and unaccounted for roller traction kinematics. In a scaled down rig, flight-like roller bearings wer e preloaded and cycled on a nitrided 15-5 race surface. Grease was ad ded to the track and with instrumentation monitoring performance, trending data will be extracted and used to determine lubrication interva ls for both Port and Starboard ISS SARJ?s. The grease lubrication was found to be effective in eliminating the high friction that contributed to the onorbit race damage.

  6. Flaw Tolerance in Lap Shear Brazed Joints. Part 1

    NASA Technical Reports Server (NTRS)

    Flom, Yury; Wang, Li-Qin

    2003-01-01

    Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.

  7. Tourniquet pressures: strap width and tensioning system widths.

    PubMed

    Wall, Piper L; Coughlin, Ohmar; Rometti, Mary; Birkholz, Sarah; Gildemaster, Yvonne; Grulke, Lisa; Sahr, Sheryl; Buising, Charisse M

    2014-01-01

    Pressure distribution over tourniquet width is a determinant of pressure needed for arterial occlusion. Different width tensioning systems could result in arterial occlusion pressure differences among nonelastic strap designs of equal width. Ratcheting Medical Tourniquets (RMTs; m2 inc., http://www.ratcheting buckles.com) with a 1.9 cm-wide (Tactical RMT) or 2.3 cm-wide (Mass Casualty RMT) ladder were directly compared (16 recipients, 16 thighs and 16 upper arms for each tourniquetx2). Then, RMTs were retrospectively compared with the windlass Combat Application Tourniquet (C-A-T ["CAT"], http://combattourniquet.com) with a 2.5 cm-wide internal tensioning strap. Pressure was measured with an air-filled No. 1 neonatal blood pressure cuff under each 3.8 cm-wide tourniquet. RMT circumferential pressure distribution was not uniform. Tactical RMT pressures were not higher, and there were no differences between the RMTs in the effectiveness, ease of use ("97% easy"), or discomfort. However, a difference did occur regarding tooth skipping of the pawl during ratchet advancement: it occurred in 1 of 64 Tactical RMT applications versus 27 of 64 Mass Casualty RMT applications. CAT and RMT occlusion pressures were frequently over 300 mmHg. RMT arm occlusion pressures (175-397 mmHg), however, were lower than RMT thigh occlusion pressures (197-562 mmHg). RMT effectiveness was better with 99% reached occlusion and 1% lost occlusion over 1 minute versus the CAT with 95% reached occlusion and 28% lost occlusion over 1 minute. RMT muscle tension changes (up to 232 mmHg) and pressure losses over 1 minute (24±11 mmHg arm under strap to 40±12 mmHg thigh under ladder) suggest more occlusion losses may have occurred if tourniquet duration was extended. The narrower tensioning system Tactical RMT has better performance characteristics than the Mass Casualty RMT. The 3.8 cm-wide RMTs have some pressure and effectiveness similarities and differences compared with the CAT. Clinically

  8. Hong's grading for evaluating anterior chamber angle width.

    PubMed

    Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul

    2012-11-01

    To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.

  9. Space Traveler Project.

    ERIC Educational Resources Information Center

    Instructor, 1981

    1981-01-01

    Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)

  10. Step width alters iliotibial band strain during running.

    PubMed

    Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R

    2012-11-01

    This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p < 0.001, p = 0.040). ITB strain was significantly (p < 0.001) greater in the narrow condition than the preferred and wide conditions and it was greater in the preferred condition than the wide condition. ITB strain rate was significantly greater in the narrow condition than the wide condition (p = 0.020). Polynomial contrasts revealed a linear increase in both ITB strain and strain rate with decreasing step width. We conclude that relatively small decreases in step width can substantially increase ITB strain as well as strain rates. Increasing step width during running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.

  11. Thread Graphs, Linear Rank-Width and Their Algorithmic Applications

    NASA Astrophysics Data System (ADS)

    Ganian, Robert

    The introduction of tree-width by Robertson and Seymour [7] was a breakthrough in the design of graph algorithms. A lot of research since then has focused on obtaining a width measure which would be more general and still allowed efficient algorithms for a wide range of NP-hard problems on graphs of bounded width. To this end, Oum and Seymour have proposed rank-width, which allows the solution of many such hard problems on a less restricted graph classes (see e.g. [3,4]). But what about problems which are NP-hard even on graphs of bounded tree-width or even on trees? The parameter used most often for these exceptionally hard problems is path-width, however it is extremely restrictive - for example the graphs of path-width 1 are exactly paths.

  12. Expandable space frames

    NASA Technical Reports Server (NTRS)

    Schoen, A. H. (Inventor)

    1973-01-01

    Expandable space frames having essentially infinite periodicity limited only by practical considerations, are described. Each expandable space frame comprises a plurality of hinge joint assemblies having arms that extend outwardly in predetermined symmetrically related directions from a central or vertex point. The outer ends of the arms form one part of a hinge point. The outer expandable space frame also comprises a plurality of struts. The outer ends of the struts from the other part of the hinged joint. The struts interconnect the plurality of hinge point in sychronism, the spaceframes can be expanded or collapsed. Three-dimensional as well as two-dimensional spaceframes of this general nature are described.

  13. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel basemore » alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should

  14. Development of Stable, Low Resistance Solder Joints for a Space-Flight HTS Lead Assemblies

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Chiao, Meng; Panashchenko, Lyudmyla; Sampson, Michael

    2017-01-01

    The solder joints in spaceflight high temperature superconductor (HTS) lead assemblies for certain astrophysics missions have strict constraints on size and power dissipation. In addition, the joints must tolerate years of storage at room temperature, many thermal cycles, and several vibration tests between their manufacture and their final operation on orbit. As reported previously, solder joints between REBCO coated conductors and normal metal traces for the Astro-H mission showed low temperature joint resistance that grew approximately as log time over the course of months. Although the assemblies worked without issue in orbit, for the upcoming X-ray Astrophysics Recovery Mission we are attempting to improve our solder process to give lower, more stable, and more consistent joint resistance. We produce numerous sample joints and measure time- and thermal cycle-dependent resistance, and characterize the joints using x-ray and other analysis tools. For a subset of the joints, we use SEMEDS to try to understand the physical and chemical processes that effect joint behavior.

  15. Experimental data on single-bolt joints in quasi isotropic graphite/polyimide laminates

    NASA Technical Reports Server (NTRS)

    Wichorek, G. R.

    1982-01-01

    Sixteen ply, quasi-isotropic laminates of Celanese Celion 6000/PMR-15 and Celion 6000/LARC-160 with a fiber orientation of (0/45/90/-45) sub 2S were evaluated. Tensile and open hole specimens were tested at room temperature to establish laminate tensile strength and net tensile strength at an unloaded bolt hole. Double lap joint specimens with a single 4.83-mm (0.19 in.) diameter bolt torqued to 1.7 N-m (15 lbf-in.) were tested in tension at temperatures of 116 K (-250F), 297 K (75F), and 589 K (600F). The joint ratios of w/d (specimen width to hole diameter) and e/d (edge distance to hole diameter) were varied from 4 to 6 and from 2 to 4, respectively. The effect of joint geometry and temperature on failure mode and joint stresses are shown. Joint stresses calculated at maximum load for each joint geometry and test temperature are reported. Joint strength in net tension, bearing, and shear out at 116 K (-250F), 297 K (75F), and 589 K (600F) are given for the Celion 6000/PMR-15 and Celion 6000/LARC-160 laminates.

  16. Investigation on the Cracking Character of Jointed Rock Mass Beneath TBM Disc Cutter

    NASA Astrophysics Data System (ADS)

    Yang, Haiqing; Liu, Junfeng; Liu, Bolong

    2018-04-01

    With the purpose to investigate the influence of joint dip angle and spacing on the TBM rock-breaking efficacy and cracking behaviour, experiments that include miniature cutter head tests are carried out on sandstone rock material. In the experiment, prefabricated joints of different forms are made in rock samples. Then theoretical analysis is conducted to improve the calculating models of the fractured work and crack length of rock in the TBM process. The experimental results indicate that lower rupture angles appear for specimens with joint dip angles between 45° and 60°. Meanwhile, rock-breaking efficacy for rock mass with joint dip angles in this interval is also higher. Besides, the fracture patterns are transformed from compressive shear mode to tensile shear mode as the joint spacing decreases. As a result, failure in a greater extent is resulted for specimens with smaller joint spacings. The results above suggest that joint dip angle between 45° and 60° and joint spacing of 1 cm are the optimal rock-breaking conditions for the tested specimens. Combining the present experimental data and taking the joint dip angle and spacing into consideration, the calculating model for rock fractured work that proposed by previous scholars is improved. Finally, theoretical solution of rock median and side crack length is also derived based on the analytical method of elastoplastic invasion fracture for indenter. The result of the analytical solution is also in good agreement with the actual measured experimental result. The present study may provide some primary knowledge about the rock cracking character and breaking efficacy under different engineering conditions.

  17. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  18. A quantitative analysis of transtensional margin width

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Buiter, Susanne J. H.

    2018-06-01

    Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).

  19. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  20. Relationship between iris surface features and angle width in Asian eyes.

    PubMed

    Sidhartha, Elizabeth; Nongpiur, Monisha Esther; Cheung, Carol Y; He, Mingguang; Wong, Tien Yin; Aung, Tin; Cheng, Ching-Yu

    2014-10-23

    To examine the associations between iris surface features with anterior chamber angle width in Asian eyes. In this prospective cross-sectional study, we recruited 600 subjects from a large population-based study, the Singapore Epidemiology of Eye Diseases (SEED) study. We obtained standardized digital slit-lamp iris photographs and graded the iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of anterior chamber were imaged using anterior segment optical coherence tomography. Angle opening distance (AOD), angle recess area (ARA), and trabecular-iris space area (TISA) were measured using customized software. Associations of the angle width with the iris surface features in the subject's right eyes were assessed using linear regression analysis. A total of 464 eyes of the 464 subjects (mean age: 57.5 ± 8.6 years) had complete and gradable data for crypts and color, and 423 eyes had gradable data for furrows. After adjustment for age, sex, ethnicity, pupil size, and corneal arcus, higher crypt grade was independently associated with wider AOD750 (β [change in angle width per grade higher] = 0.018, P = 0.023), ARA750 (β = 0.022, P = 0.049), and TISA750 (β = 0.011, P = 0.019), and darker iris was associated narrower ARA750 (β = -0.025, P = 0.044) and TISA750 (β = -0.013, P = 0.011). Iris surface features, assessed and measured from slit-lamp photographs, correlated well with anterior chamber angle width; irises with more crypts and lighter color were associated with wider angle. These findings may provide another imaging modality to assess angle closure risk based on iris surface features. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  1. An equivalent viscoelastic model for rock mass with parallel joints

    NASA Astrophysics Data System (ADS)

    Li, Jianchun; Ma, Guowei; Zhao, Jian

    2010-03-01

    An equivalent viscoelastic medium model is proposed for rock mass with parallel joints. A concept of "virtual wave source (VWS)" is proposed to take into account the wave reflections between the joints. The equivalent model can be effectively applied to analyze longitudinal wave propagation through discontinuous media with parallel joints. Parameters in the equivalent viscoelastic model are derived analytically based on longitudinal wave propagation across a single rock joint. The proposed model is then verified by applying identical incident waves to the discontinuous and equivalent viscoelastic media at one end to compare the output waves at the other end. When the wavelength of the incident wave is sufficiently long compared to the joint spacing, the effect of the VWS on wave propagation in rock mass is prominent. The results from the equivalent viscoelastic medium model are very similar to those determined from the displacement discontinuity method. Frequency dependence and joint spacing effect on the equivalent viscoelastic model and the VWS method are discussed.

  2. Angioplasty balloon catheters used for distraction of the ankle joint.

    PubMed

    Sartoretti, C; Sartoretti-Schefer, S; Duff, C; Buchmann, P

    1996-02-01

    Arthroscopy of the ankle joint is now routinely performed in diagnostic and therapeutic interventions but is still a demanding and difficult operative procedure in this very small and tight joint. Arthroscopy can be facilitated by a sufficient distraction that gives a better overview of the joint space. However, it is still a matter of debate how to obtain the adequate distraction. Distention by manual strength as well as by the help of a technical device have been proposed. We report our experience with distraction of the ankle joint by the help of one or two intraarticularily located and secondarily insufflated angioplasty balloon catheters that are routinely used in interventional radiology. These special catheters allow a careful and controlled distention of the joint with a fixed space of distraction and, according to our limited experience, without any morbidity.

  3. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  4. Image Reconstruction from Highly Undersampled (k, t)-Space Data with Joint Partial Separability and Sparsity Constraints

    PubMed Central

    Zhao, Bo; Haldar, Justin P.; Christodoulou, Anthony G.; Liang, Zhi-Pei

    2012-01-01

    Partial separability (PS) and sparsity have been previously used to enable reconstruction of dynamic images from undersampled (k, t)-space data. This paper presents a new method to use PS and sparsity constraints jointly for enhanced performance in this context. The proposed method combines the complementary advantages of PS and sparsity constraints using a unified formulation, achieving significantly better reconstruction performance than using either of these constraints individually. A globally convergent computational algorithm is described to efficiently solve the underlying optimization problem. Reconstruction results from simulated and in vivo cardiac MRI data are also shown to illustrate the performance of the proposed method. PMID:22695345

  5. Joint Lead-Free Solder Test Program for High Reliability Military and Space Applications

    NASA Technical Reports Server (NTRS)

    Brown, Christina

    2004-01-01

    Current and future space and defense systems face potential risks from the continued use of tin-lead solder, including: compliance with current environmental regulations, concerns about potential environmental legislation banning lead-containing products, reduced mission readiness, and component obsolescence with lead surface finishes. For example, the United States Environmental Protection Agency (USEPA) has lowered the Toxic Chemical Release reporting threshold for lead to 100 pounds. Overseas, the Waste Electrical and Electronic Equipment (WEEE) and the Restriction on Hazardous Substances (RoHS) Dicctives in Europe and similar mandates in Japan have instilled concern that a legislative body will prohibit the use of lead in aerospace/military electronics soldering. Any potential banning of lead compounds could reduce the supplier base and adversely affect the readiness of missions led by the National Aeronautics and Space Administration (NASA) and the U.S. Department of Defense (DoD). Before considering lead-free electronics for system upgrades or future designs, however, it is important for the DoD and NASA to know whether lead-free solders can meet their systems' requirements. No single lead-free solder is likely to qualify for all defense and space applications. Therefore, it is important to validate alternative solders for discrete applications. As a result of the need for comprehensive test data on the reliability of lead-free solders, a partnership was formed between the DoD, NASA, and several original equipment manufactures (OEMs) to conduct solder-joint reliability (laboratory) testing of three lead-free solder alloys on newly manufactured and reworked circuit cards to generate performance data for high-reliability (IPC Class 3) applications.

  6. Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements

    PubMed Central

    Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus

    2018-01-01

    Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235

  7. Delamination and Stitched Failure in Stitched Composite Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and finite element study. The experimental program was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The experimentally determined debond length vs. applied load was used as an input parameter in the finite element analysis of both configurations. The strain energy release rates at the debond from were calculated using plate finite elements. Nonlinear fastener elements were used to model the stitches and multipoint constraints were used to model the contact problem. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches were effective in reducing mode I to zero, but had less of an effect on modes II and III.

  8. Design of a quasi-CW laser diode driver for space-based laser transmitter

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra; Dangwal, Nishma; Chandraprakash, .; Agrawal, Lalita; Pal, Suranjan; Kamlakar, J. A.

    2006-12-01

    LASTEC Delhi in a joint collaborative activity with LEOS, Bangalore is developing a space qualified diode array pumped Nd:YAG laser transmitter delivering 30 mJ @ 10 pps of 10 ns duration. For space applications laser diodes are preferred because of their excellent reliability with lifetimes exceeding 100,000 hours. However, they are extremely sensitive to electro-static discharge, excessive current levels, and current spikes and transients. Small variations in bias voltage may produce large fluctuations in the current causing instability and damage to the device. Hence instead of the traditional power supplies a current controlled laser diode driver is required. This paper presents the design of a Q-CW laser diode driver based on closed loop current regulator, capable of driving 24 QCW laser diode bars each with 75W peak power at 70 A. The driver can generate up to 100 Amp peak current and 200μsec pulse width operating at 10 Hz. The current source design includes special circuits for low noise operation, slow turn-on and turn-off, circuits for over voltage and transient current protection; and good regulation. Space qualified and radiation hardened components are required to be used to sustain stringent space environment requirements during mission life of two years.

  9. A summary of activities of the US/Soviet-Russian joint working group on space biology and medicine

    NASA Astrophysics Data System (ADS)

    Doarn, Charles R.; Nicogossian, Arnauld E.; Grigoriev, Anatoly I.; Tverskaya, Galina; Orlov, Oleg I.; Ilyin, Eugene A.; Souza, Kenneth A.

    2010-10-01

    The very foundation of cooperation between the United States (US) and Russia (former Soviet Union) in space exploration is a direct result of the mutual desire for scientific understanding and the creation of a collaborative mechanism—the Joint Working Group (JWG) on Space Biology and Medicine. From the dawn of the space age, it has been the quest of humankind to understand its place in the universe. While nations can and do solve problems independently, it takes nations, working together, to accomplish great things. The formation of the JWG provided an opportunity for the opening of a series of productive relationships between the superpowers, the US and the Union of Soviet Socialist Republics (USSR); and served as a justification for continued relationship for medical assistance in spaceflight, and to showcase Earth benefits from space medicine research. This relationship has been played out on an international scale with the construction and operation of the International Space Station. The fundamental reason for this successful endeavor is a direct result of the spirit and perseverance of the men and women who have worked diligently side-by-side to promote science and move our understanding of space forward. This manuscript provides a historical perspective of the JWG; how it came about; its evolution; what it accomplished; and what impact it has had and continues to have in the 21st century with regard to human spaceflight and space life sciences research. It captures the spirit of this group, which has been in continuous existence for over 40 years, and provides a never before reported summary of its activities.

  10. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  11. Static Strength Characteristics of Mechanically Fastened Composite Joints

    NASA Technical Reports Server (NTRS)

    Fox, D. E.; Swaim, K. W.

    1999-01-01

    The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.

  12. A structurally adaptive space crane concept for assembling space systems on orbit

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Sutter, Thomas R.; Wu, K. C.

    1992-01-01

    A space crane concept is presented which is based on erectable truss hardware to achieve high stiffness and low mass booms and articulating-truss joints which can be assembled on orbit. The hardware is characterized by linear load-deflection response and is structurally predictable. The crane can be reconfigured into different geometries to meet future assembly requirements. Articulating-truss joint concepts with significantly different geometries are analyzed and found to have similar static and dynamic performance, which indicates that criteria other than structural and kinematic performance can be used to select a joint. Passive damping and an open-loop preshaped command input technique greatly enhance the structural damping in the space crane and may preclude the need for an active vibrations suppression system.

  13. The retrodural space of Okada.

    PubMed

    Murthy, Naveen S; Maus, Timothy P; Aprill, Charles

    2011-06-01

    The retrodural space of Okada is a potential space that can act as a conduit for the spread of inflammatory or infectious processes, connecting ipsilateral adjacent facet joints, contralateral adjacent facet joints, adjacent neural foramen, paraspinal musculature, and spinous process adventitial bursa (i.e., Baastrup disease). Awareness of these potential retrodural communications during diagnostic imaging interpretation and interventional spine injection procedures can play an important role in patient care and management.

  14. Seismogenic width controls aspect ratios of earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Weng, Huihui; Yang, Hongfeng

    2017-03-01

    We investigate the effect of seismogenic width on aspect ratios of earthquake ruptures by using numerical simulations of strike-slip faulting and an energy balance criterion near rupture tips. If the seismogenic width is smaller than a critical value, then ruptures cannot break the entire fault, regardless of the size of the nucleation zone. The seismic moments of these self-arresting ruptures increase with the nucleation size, forming nucleation-related events. The aspect ratios increase with the seismogenic width but are smaller than 8. In contrast, ruptures become breakaway and tend to have high aspect ratios (>8) if the seismogenic width is sufficiently large. But the critical nucleation size is larger than the theoretical estimate for an unbounded fault. The eventual seismic moments of breakaway ruptures do not depend on the nucleation size. Our results suggest that estimating final earthquake magnitude from the nucleation phase may only be plausible on faults with small seismogenic width.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2006-09-17

    This view of the International Space Station, back dropped against the blackness of space, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT during the STS-115 mission. The unlinking completed after six days, two hours and two minutes of joint operations of the installation of the P3/P4 truss. The new 17 ton truss included batteries, electronics, a giant rotating joint, and sported a second pair of 240-foot solar wings. The new solar arrays will eventually double the onboard power of the Station when their electrical systems are brought online during the next shuttle flight, STS-116.

  16. A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.

    1996-01-01

    NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.

  17. What sets the minimum tokamak scrape-off layer width?

    NASA Astrophysics Data System (ADS)

    Joseph, Ilon

    2016-10-01

    The heat flux width of the tokamak scrape-off layer is on the order of the poloidal ion gyroradius, but the ``heuristic drift'' physics model is still not completely understood. In the absence of anomalous transport, neoclassical transport sets the minimum width. For plateau collisionality, the ion temperature width is set by qρi , while the electron temperature width scales as the geometric mean q(ρeρi) 1 / 2 and is close to qρi in magnitude. The width is enhanced because electrons are confined by the sheath potential and have a much longer time to radially diffuse before escaping to the wall. In the Pfirsch-Schluter regime, collisional diffusion increases the width by the factor (qR / λ) 1 / 2 where qR is the connection length and λ is the mean free path. This qualitatively agrees with the observed transition in the scaling law for detached plasmas. The radial width of the SOL electric field is determined by Spitzer parallel and ``neoclassical'' radial electric conductivity and has a similar scaling to that for thermal transport. Prepared under US DOE contract DE-AC52-07NA27344.

  18. Space Station - Government and industry launch joint venture

    NASA Astrophysics Data System (ADS)

    Nichols, R. G.

    1985-04-01

    After the development of the space transportation system over the last decade, the decision to launch a permanently manned space station was announced by President Reagan in his 1984 State of the Union Address. As a result of work performed by the Space Station Task Force created in 1982, NASA was able to present Congress with a plan for achieving the President's objective. The plan envisions a space station which would cost about $8 billion and be operational as early as 1992. The functions of the Space Station would include the servicing of satellites. In addition, the station would serve as a base for the construction of large space structures, and provide facilities for research and development. The Space Station design selected by NASA is the 'Power Tower', a 450-foot-long truss structure which will travel in orbit with its main axis perpendicular to the earth's surface. Attention is given to the living and working quarters for the crew, the location of earth observation equipment and astronomical instruments, and details regarding the employment of the Station.

  19. ALPHA-CTX is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis

    PubMed Central

    Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B

    2014-01-01

    Objective To evaluate joint tissue remodeling, with urinary collagen biomarkers, uALPHA CTX and uCTXII, and their association with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Methods Participants (N=149) with symptomatic and radiographic knee OA underwent fixed flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, scored semi-quantitatively for osteophyte (OST) and joint space narrowing (JSN) severity and uptake intensity with scores summed across knees. Urinary concentrations of ALPHA CTX and CTXII were determined by ELISA. Immunohistochemistry of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Results uALPHA CTX correlated strongly with intensity of bone scintigraphic uptake, and JSN and OST progression (risk ratio=13.2 and 3, respectively). uCTXII was strongly associated with intensity of bone scintigraphic uptake, with JSN and OST severity, and OA progression based on OST. uALPHA CTX localized primarily to high bone turnover areas in subchondral bone; CTXII localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Conclusion Baseline uALPHA CTX, localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees signified by scintigraphy, and progression of both OST and JSN. uCTXII correlated with JSN and OST severity, and progression of OST. To our knowledge, this represents the first report of serological markers reflecting subchondral bone turnover. These collagen markers may be useful for non-invasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA. PMID:24909851

  20. PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Riffel, Rogério; Borges Vale, Tibério

    2011-05-01

    PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.

  1. Design to Improve Visibility: Impact of Corridor Width and Unit Shape.

    PubMed

    Hadi, Khatereh; Zimring, Craig

    2016-07-01

    This study analyzes 10 intensive care units (ICUs) to understand the associations between design features of space layout and nurse-to-patient visibility parameters. Previous studies have explored how different hospital units vary in their visibility relations and how such varied visibility relations result in different nurse behaviors toward patients. However, more limited research has examined the specific design attributes of the layouts that determine the varied visibility relations in the unit. Changes in size, geometry, or other attributes of design elements in nursing units, which might affect patient observation opportunities, require more research. This article reviews the literature to indicate evidence for the impact of hospital unit design on nurse/patient visibility relations and to identify design parameters shown to affect visibility. It further focuses on 10 ICUs to investigate how different layouts diverge regarding their visibility relations using a set of metrics developed by other researchers. Shape geometry and corridor width, as two selected design features, are compared. Corridor width and shape characteristics of ICUs are positively correlated with visibility. Results suggest that floor plans, which are repeatedly broken down into smaller convex (higher convex fragmentation values), or units, which have longer distances between their rooms or between their two opposite ends (longer relative grid distances), might have lower visibility levels across the unit. The findings of this study also suggest that wider corridors positively affect visibility of patient rooms. Changes in overall shape configuration and corridor width of nursing units may have important effects on patient observation and monitoring opportunities. © The Author(s) 2016.

  2. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  3. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  4. Correlation between radiographic findings of osteoarthritis and arthroscopic findings of articular cartilage degeneration within the patellofemoral joint.

    PubMed

    Kijowski, Richard; Blankenbaker, Donna; Stanton, Paul; Fine, Jason; De Smet, Arthur

    2006-12-01

    To correlate radiographic findings of osteoarthritis on axial knee radiographs with arthroscopic findings of articular cartilage degeneration within the patellofemoral joint in patients with chronic knee pain. The study group consisted of 104 patients with osteoarthritis of the patellofemoral joint and 30 patients of similar age with no osteoarthritis of the patellofemoral joint. All patients in the study group had an axial radiograph of the knee performed prior to arthroscopic knee surgery. At the time of arthroscopy, each articular surface of the patellofemoral joint was graded using the Noyes classification system. Two radiologists retrospectively reviewed the knee radiographs to determine the presence of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts. The sensitivity and specificity of the various radiographic features of osteoarthritis for the detection of articular cartilage degeneration within the patellofemoral joint were determined. The sensitivity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 73%, 37%, 4%, and 0% respectively. The specificity of marginal osteophytes, joint-space narrowing, subchondral sclerosis, and subchondral cysts for the detection of articular cartilage degeneration within the patellofemoral joint was 67%, 90%, 100%, and 100% respectively. Marginal osteophytes were the most sensitive radiographic feature for the detection of articular cartilage degeneration within the patellofemoral joint. Joint-space narrowing, subchondral sclerosis, and subchondral cysts were insensitive radiographic features of osteoarthritis, and rarely occurred in the absence of associated osteophyte formation.

  5. Assessment of Various Flow Solvers Used to Predict the Thermal Environment inside Space Shuttle Solid Rocket Motor Joints

    NASA Technical Reports Server (NTRS)

    Wang, Qun-Zhen; Cash, Steve (Technical Monitor)

    2002-01-01

    It is very important to accurately predict the gas pressure, gas and solid temperature, as well as the amount of O-ring erosion inside the space shuttle Reusable Solid Rocket Motor (RSRM) joints in the event of a leak path. The scenarios considered are typically hot combustion gas rapid pressurization events of small volumes through narrow and restricted flow paths. The ideal method for this prediction is a transient three-dimensional computational fluid dynamics (CFD) simulation with a computational domain including both combustion gas and surrounding solid regions. However, this has not yet been demonstrated to be economical for this application due to the enormous amount of CPU time and memory resulting from the relatively long fill time as well as the large pressure and temperature rising rate. Consequently, all CFD applications in RSRM joints so far are steady-state simulations with solid regions being excluded from the computational domain by assuming either a constant wall temperature or no heat transfer between the hot combustion gas and cool solid walls.

  6. Comparison of goniometric measurements of the stifle joint in seven breeds of normal dogs.

    PubMed

    Sabanci, Seyyid S; Ocal, Mehmet K

    2016-05-18

    To compare the goniometric measurements of the stifle joint in seven dog breeds, and to determine the relationship among goniometric measurements, age, body weight, tibial plateau angle, crus and thigh circumferences, and widths of quadriceps, hamstring, and gastrocnemius muscles in healthy dogs. We used a total of 126 dogs from seven different breeds, and recorded the angle of the stifle joint at standing, extension, and flexion together with the range of motion (ROM). The circumferences of the thigh and crus were also measured. Mediolateral radiographic projections of the tibia and the femur were obtained from the dogs, and the tibial plateau angles, as well as the widths of quadriceps, hamstring, and gastrocnemius muscles, were measured from these images. Neither the sex of the dog nor the differences in the side measured affected the goniometric measurements of the stifle joint. The standing, extension, flexion, and ROM angles were different among the breeds. The standard deviations of the standing and extension angles were small relative to their means, but the standard deviations of the flexion angle were large relative to their means in all breeds. Body weight and muscular measurements were the most influential factors on the stifle flexion angle and ROM. Breed differences, body weights, and muscle mass should be taken into consideration during assessment of the stifle function using goniometric measurements.

  7. Description of and preliminary tests results for the Joint Damping Experiment (JDX)

    NASA Technical Reports Server (NTRS)

    Bingham, Jeffrey G.; Folkman, Steven L.

    1995-01-01

    An effort is currently underway to develop an experiment titled joint Damping E_periment (JDX) to fly on the Space Shuttle as Get Away Special Payload G-726. This project is funded by NASA's IN-Space Technology Experiments Program and is scheduled to fly in July 1995 on STS-69. JDX will measure the influence of gravity on the structural damping of a three bay truss having clearance fit pinned joints. Structural damping is an important parameter in the dynamics of space structures. Future space structures will require more precise knowledge of structural damping than is currently available. The mission objectives are to develop a small-scale shuttle flight experiment that allows researchers to: (1) characterize the influence of gravity and joint gaps on structural damping and dynamic behavior of a small-scale truss model, and (2) evaluate the applicability of low-g aircraft test results for predicting on-orbit behavior. Completing the above objectives will allow a better understanding and/or prediction of structural damping occurring in a pin jointed truss. Predicting damping in joints is quite difficult. One of the important variables influencing joint damping is gravity. Previous work has shown that gravity loads can influence damping in a pin jointed truss structure. Flying this experiment as a GAS payload will allow testing in a microgravity environment. The on-orbit data (in micro-gravity) will be compared with ground test results. These data will be used to help develop improved models to predict damping due to pinned joints. Ground and low-g aircraft testing of this experiment has been completed. This paper describes the experiment and presents results of both ground and low-g aircraft tests which demonstrate that damping of the truss is dramatically influenced by gravity.

  8. Measuring river from the cloud - River width algorithm development on Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Yang, X.; Pavelsky, T.; Allen, G. H.; Donchyts, G.

    2017-12-01

    Rivers are some of the most dynamic features of the terrestrial land surface. They help distribute freshwater, nutrients, sediment, and they are also responsible for some of the greatest natural hazards. Despite their importance, our understanding of river behavior is limited at the global scale, in part because we do not have a river observational dataset that spans both time and space. Remote sensing data represent a rich, largely untapped resource for observing river dynamics. In particular, publicly accessible archives of satellite optical imagery, which date back to the 1970s, can be used to study the planview morphodynamics of rivers at the global scale. Here we present an image processing algorithm developed using the Google Earth Engine cloud-based platform, that can automatically extracts river centerlines and widths from Landsat 5, 7, and 8 scenes at 30 m resolution. Our algorithm makes use of the latest monthly global surface water history dataset and an existing Global River Width from Landsat (GRWL) dataset to efficiently extract river masks from each Landsat scene. Then a combination of distance transform and skeletonization techniques are used to extract river centerlines. Finally, our algorithm calculates wetted river width at each centerline pixel perpendicular to its local centerline direction. We validated this algorithm using in situ data estimated from 16 USGS gauge stations (N=1781). We find that 92% of the width differences are within 60 m (i.e. the minimum length of 2 Landsat pixels). Leveraging Earth Engine's infrastructure of collocated data and processing power, our goal is to use this algorithm to reconstruct the morphodynamic history of rivers globally by processing over 100,000 Landsat 5 scenes, covering from 1984 to 2013.

  9. Augmented Reality-Guided Lumbar Facet Joint Injections.

    PubMed

    Agten, Christoph A; Dennler, Cyrill; Rosskopf, Andrea B; Jaberg, Laurenz; Pfirrmann, Christian W A; Farshad, Mazda

    2018-05-08

    The aim of this study was to assess feasibility and accuracy of augmented reality-guided lumbar facet joint injections. A spine phantom completely embedded in hardened opaque agar with 3 ring markers was built. A 3-dimensional model of the phantom was uploaded to an augmented reality headset (Microsoft HoloLens). Two radiologists independently performed 20 augmented reality-guided and 20 computed tomography (CT)-guided facet joint injections each: for each augmented reality-guided injection, the hologram was manually aligned with the phantom container using the ring markers. The radiologists targeted the virtual facet joint and tried to place the needle tip in the holographic joint space. Computed tomography was performed after each needle placement to document final needle tip position. Time needed from grabbing the needle to final needle placement was measured for each simulated injection. An independent radiologist rated images of all needle placements in a randomized order blinded to modality (augmented reality vs CT) and performer as perfect, acceptable, incorrect, or unsafe. Accuracy and time to place needles were compared between augmented reality-guided and CT-guided facet joint injections. In total, 39/40 (97.5%) of augmented reality-guided needle placements were either perfect or acceptable compared with 40/40 (100%) CT-guided needle placements (P = 0.5). One augmented reality-guided injection missed the facet joint space by 2 mm. No unsafe needle placements occurred. Time to final needle placement was substantially faster with augmented reality guidance (mean 14 ± 6 seconds vs 39 ± 15 seconds, P < 0.001 for both readers). Augmented reality-guided facet joint injections are feasible and accurate without potentially harmful needle placement in an experimental setting.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2006-09-17

    This view of the International Space Station, back dropped against the blackness of space and Earth, was taken shortly after the Space Shuttle Atlantis undocked from the orbital outpost at 7:50 a.m. CDT during the STS-115 mission. The unlinking completed after six days, two hours and two minutes of joint operations of the installation of the P3/P4 truss. The new 17 ton truss included batteries, electronics, a giant rotating joint, and sported a second pair of 240-foot solar wings. The new solar arrays will eventually double the onboard power of the Station when their electrical systems are brought online during the next shuttle flight, STS-116.

  11. Soviet/Russian-American space cooperation

    NASA Astrophysics Data System (ADS)

    Karash, Yuri Y.

    This dissertation seeks to answer two questions: (1) what are the necessary conditions for the emergence of meaningful space cooperation between Russia and the United States, and (2) might this cooperation continue developing on its own merit, contributing to the further rapprochement between the two countries, even if the conditions that originated the cooperation were to change? The study examines the entire space era up to this point, 1957 to 1997, from the first satellite launch through the joint U.S.-Russian work on the ISS project. It focuses on the analysis of three distinct periods of possible and real cooperation between the United States and the Soviet Union/Russia. The first possibility for a limited Soviet-American cooperation in space emerged in the late 1950s, together with the space age, and continued until the mid-1960s. The major potential joint project of this period was a human expedition to the Moon. The global competition/confrontation between the two countries prevented actual cooperation. The second period was from the late 1960s until 1985 with consideration of experimental docking missions, including the docking of a reusable U.S. shuttle to a Soviet Salyut-type station. The global U.S.-Soviet competition still continued, but the confrontation was replaced by detente for a brief period of time lasting from the end of 1960s until mid-1970s. Detente gave the first example of U.S.-Soviet cooperation in space---the Apollo-Soyuz joint space flight (ASTP) which took place in 1975. However, the lack of interest of political leaderships in continuation of broad-scale cooperation between the two countries, and the end of detente, removed ASTP-like projects out of question at least until 1985. The third period started together with Mikhail Gorbachev's Perestroika in 1985 and continues until now. It involves almost a hundred of joint space projects both at the governmental and at the private sectors levels. The mainstream of the joint activities

  12. Research study on materials processing in space experiment number M512. [adhesion-cohesion properties of liquid metals under weightlessness conditions in Skylab

    NASA Technical Reports Server (NTRS)

    Tobin, J. M.; Kossowsky, R.

    1973-01-01

    Adhesion of the melted metals to the adjacent solid metals, and cohesion of the liquid metal to itself appeared to be equally as strong in zero gravity as on earth. Similar cut edge bead periodicity in cut thin plate, and similar periodic chevron patterns in full penetration welds were seen. The most significant practical result is that the design of braze joints for near zero gravity can be very tolerant of dimensional gaps in the joint. This conclusion is based on a comparison of narrow, wide and variable gap widths. Brazing is very practical as a joining or repairing technique for metal structures at zero gravity. The operation of the hardware developed to locate successive small (0.6 cm) diameter cylinders in the focus of the battery powered EB unit, melt the various metal specimens and deploy some liquid metal drops to drift in space, was generally successful. However, the sphericity and surface roughness were far from those of ball bearings.

  13. Intraflow width variations in Martian and terrestrial lava flows

    NASA Astrophysics Data System (ADS)

    Peitersen, Matthew N.; Crown, David A.

    1997-03-01

    Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.

  14. A New Approach to Scaling Channel Width in Bedrock Rivers and its Implications for Modeling Fluvial Incision

    NASA Astrophysics Data System (ADS)

    Finnegan, N. J.; Roe, G.; Montgomery, D. R.; Hallet, B.

    2004-12-01

    The fundamental role of bedrock channel incision on the evolution of mountainous topography has become a central concept in tectonic geomorphology over the past decade. During this time the stream power model of bedrock river incision has immerged as a valuable tool for exploring the dynamics of bedrock river incision in time and space. In most stream power analyses, river channel width--a necessary ingredient for calculating power or shear stress per unit of bed area--is assumed to scale solely with discharge. However, recent field-based studies provide evidence for the alternative view that channel width varies locally, much like channel slope does, in association with spatial changes in rock uplift rate and erodibility. This suggests that simple scaling relations between width and discharge, and hence estimates of stream power, don't apply in regions where rock uplift and erodibility vary spatially. It also highlights the need for an alternative to the traditional assumptions of hydraulic geometry to further investigation of the coupling between bedrock river incision and tectonic processes. Based on Manning's equation, basic mass conservation principles, and an assumption of self-similarity for channel cross sections, we present a new relation for scaling the steady-state width of bedrock river channels as a function of discharge (Q), channel slope (S), and roughness (Ks): W \\propto Q3/8S-3/16Ks1/16. In longitudinally simple, uniform-concavity rivers from the King Range in coastal Northern California, the model emulates traditional width-discharge relations that scale channel width with the square root of discharge. More significantly, our relation describes river width trends for the Yarlung Tsangpo in SE Tibet and the Wenatchee River in the Washington Cascades, both rivers that narrow considerably as they incise terrain with spatially varied rock uplift rates and/or lithology. We suggest that much of observed channel width variability is a simple consequence

  15. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is moved closer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  16. Finite Element Analysis of Composite Joint Configurations with Gaps and Overlaps

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2014-01-01

    The goal of the current study is to identify scenarios for which thermal and moisture effects become significant in the loading of a composite structure. In the current work, a simple configuration was defined, and material properties were selected. A Fortran routine was created to automate the mesh generation process. The routine was used to create the models for the initial mesh refinement study. A combination of element length and width suitable for further studies was identified. Also, the effect of the overlap length and gap length on computed shear and through-thickness stresses along the bondline of the joints was studied for the mechanical load case. Further, the influence of neighboring gaps and overlaps on these joint stresses was studied and was found to be negligible. The results suggest that for an initial study it is sufficient to focus on one configuration with fixed overlap and gap lengths to study the effects of mechanical, thermal and moisture loading and combinations thereof on computed joint stresses

  17. Relationship between width of greater trochanters and width of iliac wings in tronchanteric bursitis.

    PubMed

    Viradia, Neal K; Berger, Alex A; Dahners, Laurence E

    2011-09-01

    Trochanteric bursitis is a common disorder that is characterized by inflammation of the bursa, superficial to the greater trochanter of the femur, leading to pain in the lateral hip, and often occurs because of acute trauma or repetitive friction involving the iliotibial band, the greater trochanter, and the bursa. In the study reported here, we hypothesized that the increased incidence of bursitis may be the result of the increased prominence of the trochanter in relation to the wings of the iliac crest. Distances between the outermost edges of trochanters and iliac wings were measured in 202 patients from the University of North Carolina Health Care System-101 without a known diagnosis and 101 with a clinical diagnosis of trochanteric bursitis. To determine significance, t tests for nonpaired data were used. Mean (SD) difference between trochanter and iliac wing widths was 28 (20) mm in the group diagnosed with trochanteric bursitis and 17 (18) mm in the control group. The difference between the groups in this regard was significant (P<.00005). In addition, mean (SD) ratio of trochanter widths to iliac wing widths was 1.09 (.06) in the bursitis group and 1.05 (.06) in the control group. The difference between these groups was significant (P<.0005) in this regard as well. Having trochanters wider in relation to iliac wings was associated with the diagnosis of trochanteric bursitis.

  18. Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver.

    PubMed

    Kim, Young-Sun; Park, Min Jung; Rhim, Hyunchul; Lee, Min Woo; Lim, Hyo Keun

    2014-07-01

    The purposes of this study were to assess the widths of the intercostal spaces of the right inferior human rib cage through which high-intensity focused ultrasound therapy would be applied for treating liver cancer and to elucidate the demographic factors associated with intercostal space width. From March 2013 to June 2013, the widths of the intercostal spaces and the ribs at six areas of the right inferior rib cage (area 1, lowest intercostal space on anterior axillary line and the adjacent upper rib; area 2, second-lowest intercostal space on anterior axillary line and the adjacent upper rib; areas 3 and 4, lowest and second-lowest spaces on midaxillary line; areas 5 and 6, lowest and second-lowest spaces on posterior axillary line) were sonographically measured in 466 patients (214 men, 252 women; mean age, 53.0 years) after an abdominal sonographic examination. Demographic factors and the presence or absence of chronic liver disease were evaluated by multivariate analysis to investigate which factors influence intercostal width. The width of the intercostal space was 19.7 ± 3.7 mm (range, 9-33 mm) at area 1, 18.3 ± 3.4 mm (range, 9-33 mm) at area 2, 17.4 ± 4.0 mm (range, 7-33 mm) at area 3, 15.4 ± 3.5 mm (range, 5-26 mm) at area 4, 17.2 ± 3.7 mm (range, 7-28 mm) at area 5, and 14.5 ± 3.6 mm (range, 4-26 mm) at area 6. The corresponding widths of the ribs were 15.2 ± 2.3 mm (range, 8-22 mm), 14.5 ± 2.3 mm (range, 9-22 mm), 13.2 ± 2.0 mm (range, 9-20), 14.3 ± 2.2 mm (range, 9-20 mm), 15.0 ± 2.2 mm (range, 10-22 mm), and 15.1 ± 2.3 mm (range, 8-21 mm). Only female sex was significantly associated with the narrower intercostal width at areas 1, 2, 3, and 5 (regression coefficient, 1.124-1.885; p = 0.01-0.04). There was substantial variation in the widths of the intercostal spaces of the right inferior rib cage such that the anterior and inferior aspects of the intercostal space were relatively wider. Women had significantly narrower intercostal spaces

  19. Effect of step width manipulation on tibial stress during running.

    PubMed

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (p<0.001 for all). The data from this study suggests that stresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Joint Force Quarterly. Number 1, Summer 1993

    DTIC Science & Technology

    1993-01-01

    Contributors Joint Force Quarterly A PROFESSIONAL MILITARY JOURNAL Editor-in-Chief Alvin H. Bernstein Executive Editor Patrick M. Cronin Managing Editor Robert...understanding of the integrated employ- ment of land, sea, air, space, and special operations forces. The journal focuses on joint doctrine, coalition...other agency of the Federal Government. Por- tions of this journal are protected by copyright and may not be reproduced or extracted without the

  1. The payload canister leaves the O&C with the Joint Airlock Module inside

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The payload canister, with the Joint Airlock Module inside, backs out of the Operations and Checkout Building for a short trip to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.

  2. Dubious space for Artelon joint resurfacing for basal thumb (trapeziometacarpal joint) osteoarthritis. A systematic review.

    PubMed

    Smeraglia, Francesco; Mariconda, Massimo; Balato, Giovanni; Di Donato, Sigismondo Luca; Criscuolo, Giovanni; Maffulli, Nicola

    2018-06-01

    Trapeziometacarpal arthritis is a common and disabling condition. There is no evidence in the literature of superiority of one surgical procedure over others. Several prosthetic implants have been introduced to preserve joint mobility. We searched the on Medline (PubMed), Web of Science and Scopus databases using the combined keywords 'artelon', 'thumb', 'carpometacarpal', 'trapeziometacarpal' and 'rhizoarthrosis'; 11 studies were identified. The use of Artelon implant is not recommended because of its high revision rate and worse outcomes compared to conventional techniques. Inert materials subjected to compressive and shearing forces could produce debris and subsequent inflammatory response. There is debate in the published scientific literature regarding the role of preoperative antibiotic profilaxis and post-surgery inflammatory response. Standard techniques such as trapeziectomy alone or combined with interposition or suspensionplasty offer effective treatment for thumb basal joint arthritis. Several prosthetic implants show promising results in terms of pain relief and functional request, but there is a need of long-term randomized controlled trials to demonstrate their equivalence, and eventually superiority, compared to standard techniques.

  3. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.

  4. Joint Spatial-Spectral Feature Space Clustering for Speech Activity Detection from ECoG Signals

    PubMed Central

    Kanas, Vasileios G.; Mporas, Iosif; Benz, Heather L.; Sgarbas, Kyriakos N.; Bezerianos, Anastasios; Crone, Nathan E.

    2014-01-01

    Brain machine interfaces for speech restoration have been extensively studied for more than two decades. The success of such a system will depend in part on selecting the best brain recording sites and signal features corresponding to speech production. The purpose of this study was to detect speech activity automatically from electrocorticographic signals based on joint spatial-frequency clustering of the ECoG feature space. For this study, the ECoG signals were recorded while a subject performed two different syllable repetition tasks. We found that the optimal frequency resolution to detect speech activity from ECoG signals was 8 Hz, achieving 98.8% accuracy by employing support vector machines (SVM) as a classifier. We also defined the cortical areas that held the most information about the discrimination of speech and non-speech time intervals. Additionally, the results shed light on the distinct cortical areas associated with the two syllable repetition tasks and may contribute to the development of portable ECoG-based communication. PMID:24658248

  5. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  6. Fixed-flexion view X-ray of the knee superior in detection and follow-up of knee osteoarthritis

    PubMed Central

    Kan, Hiroyuki; Arai, Yuji; Kobayashi, Masashi; Nakagawa, Shuji; Inoue, Hiroaki; Hino, Manabu; Komaki, Shintaro; Ikoma, Kazuya; Ueshima, Keiichiro; Fujiwara, Hiroyoshi; Yokota, Isao; Kubo, Toshikazu

    2017-01-01

    Abstract A fixed flexion view (FFV) is useful for evaluating joint space when assessing the severity of osteoarthritis (OA) of the knee. We analyzed changes in joint space revealed by standing extended view (SEV) and FFV over a mean 4 years, to compare both views on their capacity to measure joint space width accurately at particular time points during follow-up. SEV and FFV images were acquired in patients with knee OA. The 81 patients (157 knees) followed up for ≥24 months were selected as study subjects. Medial joint space widths (MJSW), Kellgren–Lawrence (KL) grades, and reductions in MJSW on SEV (ΔSEV) and FFV (ΔFFV) were compared in knees evaluated by SEV and FFV. At both time-points, mean MJSW was significantly lower by FFV than by SEV. Mean MJSW was significantly lower at follow-up than at first examination by both SEV and FFV. At both time-points, the KL grade was higher by FFV than by SEV group. The ΔFFV was significantly greater than the ΔSEV. ΔSEV did not differ significantly among KL grades, but ΔFFV was significantly greater in patients with KL grade II than in patients with other KL grades. FFV is not only useful for evaluating joint space in knees with OA, but also for accurately evaluating the progression of OA. The risk of rapid progression of knee OA may be higher in patients with KL grade II, as determined by FFV. FFV may be superior to SEV in determining appropriate treatment strategies for knee OA. PMID:29245351

  7. The golden ratio of nasal width to nasal bone length.

    PubMed

    Goynumer, G; Yayla, M; Durukan, B; Wetherilt, L

    2011-01-01

    To calculate the ratio of fetal nasal width over nasal bone length at 14-39 weeks' gestation in Caucasian women. Fetal nasal bone length and nasal width at 14-39 weeks' gestation were measured in 532 normal fetuses. The mean and standard deviations of fetal nasal bone length, nasal width and their ratio to one another were calculated in normal fetuses according to the gestational age to establish normal values. A positive and linear correlation was detected between the nasal bone length and the gestational week, as between the nasal width and the gestational week. No linear growth pattern was found between the gestational week and the ratio of nasal width to nasal bone length, nearly equal to phi, throughout gestation. The ratio of nasal width to nasal bone length, approximately equal to phi, can be calculated at 14-38 weeks' gestation. This might be useful in evaluating fetal abnormalities.

  8. Development of Flow and Heat Transfer Models for the Carbon Fiber Rope in Nozzle Joints of the Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)

    2001-01-01

    Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.

  9. An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus).

    PubMed

    Molnar, Julia L; Pierce, Stephanie E; Hutchinson, John R

    2014-03-01

    Despite their semi-aquatic mode of life, modern crocodylians use a wide range of terrestrial locomotor behaviours, including asymmetrical gaits otherwise only found in mammals. The key to these diverse abilities may lie in the axial skeleton. Correlations between vertebral morphology and both intervertebral joint stiffness and locomotor behaviour have been found in other animals, but the vertebral mechanics of crocodylians have not yet been experimentally and quantitatively tested. We measured the passive mechanics and morphology of the thoracolumbar vertebral column in Crocodylus niloticus in order to validate a method to infer intervertebral joint stiffness based on morphology. Passive stiffness of eight thoracic and lumbar joints was tested in dorsal extension, ventral flexion and mediolateral flexion using cadaveric specimens. Fifteen measurements that we deemed to be potential correlates of stiffness were taken from each vertebra and statistically tested for correlation with joint stiffness. We found that the vertebral column of C. niloticus is stiffer in dorsoventral flexion than in lateral flexion and, in contrast to that of many mammals, shows an increase in joint stiffness in the lumbar region. Our findings suggest that the role of the axial column in crocodylian locomotion may be functionally different from that in mammals, even during analogous gaits. A moderate proportion of variation in joint stiffness (R(2)=0.279-0.520) was predicted by centrum width and height, neural spine angle and lamina width. These results support the possible utility of some vertebral morphometrics in predicting mechanical properties of the vertebral column in crocodiles, which also should be useful for forming functional hypotheses of axial motion during locomotion in extinct archosaurs.

  10. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  11. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    NASA Technical Reports Server (NTRS)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  12. Effective Widths of Compression-Loaded Plates With a Cutout

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2000-01-01

    A study of the effects of cutouts and laminate construction on the prebuckling and initial postbuckling stiffnesses, and the effective widths of compression-loaded, laminated-composite and aluminum square plates is presented. The effective-width concept is extended to plates with cutouts, and experimental and nonlinear finite-element analysis results are presented. Behavioral trends are compared for seven plate families and for cutout-diameter-to-plate-width ratios up to 0.66. A general compact design curve that can be used to present and compare the effective widths for a wide range of laminate constructions is also presented. A discussion of how the results can be used and extended to include certain types of damage, cracks, and other structural discontinuities or details is given. Several behavioral trends are described that initially appear to be nonintuitive. The results demonstrate a complex interaction between cutout size and plate orthotropy that affects the axial stiffness and effective width of a plate subjected to compression loads.

  13. Effects of Low-Intensity Pulsed Ultrasound for Preventing Joint Stiffness in Immobilized Knee Model in Rats.

    PubMed

    Itaya, Nobuyuki; Yabe, Yutake; Hagiwara, Yoshihiro; Kanazawa, Kenji; Koide, Masashi; Sekiguchi, Takuya; Yoshida, Shinichirou; Sogi, Yasuhito; Yano, Toshihisa; Tsuchiya, Masahiro; Saijo, Yoshihumi; Itoi, Eiji

    2018-06-01

    The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) in preventing joint stiffness. Unilateral knee joints were immobilized in two groups of rats (n = 6/period/group). Under general anesthesia, the immobilized knee joints were exposed to LIPUS for 20 min/d, 5 d/wk, using an existing LIPUS device (LIPUS group, 1.5-MHz frequency, 1.0-kHz repetition cycle, 200-µs burst width and 30-mW/cm 2 power output) until endpoints (2, 4 or 6 wk). In the control group, general anesthesia alone was administered in the same manner as in the other group. The variables compared between the groups included joint angles; histologic, histomorphometric and immunohistochemical analyses; quantitative reverse transcription polymerase chain reactions; and tissue elasticity. LIPUS had a preventive effect on joint stiffness, resulting in decreased adhesion, fibrosis and inflammation and hypoxic response after joint immobilization. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  14. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers standing inside the payload canister help guide the Joint Airlock Module into place. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the Airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  15. The Joint Airlock Module is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the Joint Airlock Module is lifted from its workstand for a transfer to the payload canister. The airlock will be installed in the payload bay of Atlantis for mission STS-104 to the International Space Station. The airlock is a pressurized flight element consisting of two cylindrical chambers attached end-to-end by a connecting bulkhead and hatch. Once installed and activated, the airlock becomes the primary path for spacewalk entry to and departure from the Space Station for U.S. spacesuits, which are known as Extravehicular Mobility Units, or EMUs. In addition, the Joint Airlock is designed to support the Russian Orlan spacesuit for EVA activity. STS-104 is scheduled for launch June 14 from Launch Pad 39B.

  16. Use of an absorbable membrane to position biologically inductive materials in the periprosthetic space of cemented joints.

    PubMed

    DiResta, Gene R; Brown, Holly; Aiken, Sean; Doty, Steven; Schneider, Robert; Wright, Timothy; Healey, John H

    2006-01-01

    A device is presented that positions ultrahigh molecular weight polyethylene (UHMWPE) debris against periprosthetic bone surfaces. This can facilitate the study of aseptic loosening associated with cemented joint prostheses by speeding the appearance of this debris within the periprosthetic space. The device, composed of a 100 microm thick bioabsorbable membrane impregnated with 1.4 x 10(9) sub-micron particles of UHMWPE debris, is positioned on the endosteum of the bone prior to the insertion of the cemented orthopedic implant. An in vitro pullout study and an in vivo canine pilot study were performed to investigate its potential to accelerate "time to aseptic loosening" of cemented prosthetic joints. Pullout studies characterized the influence of the membrane on initial implant fixation. The tensile stresses (mean+/-std.dev.) required to withdraw a prosthesis cemented into canine femurs with and without the membrane were 1.15+/-0.3 and 1.54+/-0.01 MPa, respectively; these findings were not significantly different (p > 0.4). The in vivo pilot study, involving five dogs, was performed to evaluate the efficacy of the debris to accelerate loosening in a canine cemented hip arthroplasty. Aseptic loosening and lameness occurred within 12 months, quicker than the 30 months reported in a retrospective clinical review of canine hip arthroplasty.

  17. Enhanced secure 4-D modulation space optical multi-carrier system based on joint constellation and Stokes vector scrambling.

    PubMed

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2018-03-19

    This paper proposes and demonstrates an enhanced secure 4-D modulation optical generalized filter bank multi-carrier (GFBMC) system based on joint constellation and Stokes vector scrambling. The constellation and Stokes vectors are scrambled by using different scrambling parameters. A multi-scroll Chua's circuit map is adopted as the chaotic model. Large secure key space can be obtained due to the multi-scroll attractors and independent operability of subcarriers. A 40.32Gb/s encrypted optical GFBMC signal with 128 parallel subcarriers is successfully demonstrated in the experiment. The results show good resistance against the illegal receiver and indicate a potential way for the future optical multi-carrier system.

  18. 23 CFR 658.16 - Exclusions from length and width determinations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRAFFIC OPERATIONS TRUCK SIZE AND WEIGHT, ROUTE DESIGNATIONS-LENGTH, WIDTH AND WEIGHT LIMITATIONS § 658.16 Exclusions from length and width determinations. (a) Vehicle components not excluded by law or regulation shall be included in the measurement of the length and width of commercial motor vehicles. (b) The...

  19. Quantitative assessment of early biomechanical modifications in diabetic foot patients: the role of foot kinematics and step width.

    PubMed

    Lamola, Giuseppe; Venturi, Martina; Martelli, Dario; Iacopi, Elisabetta; Fanciullacci, Chiara; Coppelli, Alberto; Rossi, Bruno; Piaggesi, Alberto; Chisari, Carmelo

    2015-11-09

    Forefoot ulcers (FU) are one of the most disabling and relevant chronic complications of diabetes mellitus (DM). In recent years there is emerging awareness that a better understanding of the biomechanical factors underlying the diabetic ulcer could lead to improve the management of the disease, with significant socio-economic impacts. Our purpose was to try to detect early biomechanical factors associated with disease progression. Thirty subjects (M/F: 22/8; mean age ± SD: 61,84 ± 10 years) with diagnosis of type II DM were included. The participants were divided into 3 groups (10 subjects per group) according to the stage of evolution of the disease: Group 1, subjects with newly diagnosed type II DM, without clinical or instrumental diabetic peripheral neuropathy (DPN) nor FU (group called "DM"); Group 2, with DPN but without FU (group called "DPN"); Group 3, with DPN and FU (group called "DNU"). All subjects underwent 3-D Gait Analysis during walking at self-selected speed, measuring spatio-temporal, kinematic and kinetic parameters and focusing on ankle and foot joints. The comparative analysis of values between groups was performed using 1-way ANOVA. We also investigated group to group differences with Tukey HSD test. The results taken into consideration were those with a significance of P < 0,05. 95 % confidence interval was also calculated. A progressive and significant trend of reduction of ROM in flexion-extension of the metatarso-phalangeal joint (P = 0.0038) and increasing of step width (P = 0.0265) with the advance of the disease was evident, with a statistically significant difference comparing subjects with recently diagnosed diabetes mellitus and subjects with diabetic neuropathy and foot ulcer (P = 0.0048 for ROM and P = 0.0248 for step width at Tukey's test). The results provide evidence that foot segmental kinematics, along with step width, can be proposed as simple and clear indicators of disease progression. This

  20. Experimental determination of satellite bolted joints thermal resistance

    NASA Technical Reports Server (NTRS)

    Mantelli, Marcia Barbosa Henriques; Basto, Jose Edson

    1990-01-01

    The thermal resistance was experimentally determined of the bolted joints of the first Brazilian satellite (SCD 01). These joints, used to connect the satellite structural panels, are reproduced in an experimental apparatus, keeping, as much as possible, the actual dimensions and materials. A controlled amount of heat is forced to pass through the joint and the difference of temperature between the panels is measured. The tests are conducted in a vacuum chamber with liquid nitrogen cooled walls, that simulates the space environment. Experimental procedures are used to avoid much heat losses, which are carefully calculated. Important observations about the behavior of the joint thermal resistance with the variation of the mean temperature are made.

  1. Flat H Frangible Joint Evolution

    NASA Technical Reports Server (NTRS)

    Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.

    2016-01-01

    Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same

  2. Experimental Investigation of Solder Joint Defect Formation and Mitigation in Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Struk, Peter M.; Pettegrew, RIchard D.; Downs, Robert S.

    2006-01-01

    This paper documents a research effort on reduced gravity soldering of plated through hole joints which was conducted jointly by the National Center for Space Exploration Research, NASA Glenn Research Center, and NASA Johnson Space Center. Significant increases in joint porosity and changes in external geometry were observed in joints produced in reduced gravity as compared to normal gravity. Multiple techniques for mitigating the observed increase in porosity were tried, including several combinations of flux and solder application techniques, and demoisturizing the circuit board prior to soldering. Results were consistent with the hypothesis that the source of the porosity is a combination of both trapped moisture in the circuit board itself, as well as vaporized flux that is trapped in the molten solder. Other topics investigated include correlation of visual inspection results with joint porosity, pore size measurements, limited pressure effects (0.08 MPa - 0.1 MPa) on the size and number of pores, and joint cooling rate.

  3. Stream Width Dynamics in a Small Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Barefoot, E. A.; Pavelsky, T.; Allen, G. H.; Zimmer, M. A.; McGlynn, B. L.

    2016-12-01

    Changing streamflow conditions cause small, ephemeral and intermittent stream networks to expand and contract, while simultaneously driving widening and narrowing of streams. The resulting dynamic surface area of ephemeral streams impacts critical hydrological and biogeochemical processes, including air-water gas exchange, solute transport, and sediment transport. Despite the importance of these dynamics, to our knowledge there exists no complete study of how stream widths vary throughout an entire catchment in response to changing streamflow conditions. Here we present the first characterization of how variable hydrologic conditions impact the distribution of stream widths in a 48 ha headwater catchment in the Stony Creek Research Watershed, NC, USA. We surveyed stream widths longitudinally every 5 m on 12 occasions over a range of stream discharge from 7 L/s to 128 L/s at the catchment outlet. We hypothesize that the shape and location of the stream width distribution are driven by the action of two interrelated mechanisms, network extension and at-a-station widening, both of which increase with discharge. We observe that during very low flow conditions, network extension more significantly influences distribution location, and during high flow conditions stream widening is the dominant driver. During moderate flows, we observe an approximately 1 cm rightward shift in the distribution peak with every additional 10 L/s of increased discharge, which we attribute to a greater impact of at-a-station widening on distribution location. Aside from this small shift, the qualitative location and shape of the stream width distribution are largely invariant with changing streamflow. We suggest that the basic characteristics of stream width distributions constitute an equilibrium between the two described mechanisms across variable hydrologic conditions.

  4. On the generation of tangential ground motion by underground explosions in jointed rocks

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis

    2015-03-01

    This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.

  5. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    NASA Technical Reports Server (NTRS)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  6. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  7. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  8. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  9. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  10. 7 CFR 29.1085 - Width.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....) Elements Degrees Maturity Immature Unripe Mature Ripe Mellow. Leaf structure Tight Close Firm Open Body... Type 92) § 29.1085 Width. The relative breadth of a tobacco leaf expressed in relation to its length...

  11. Structural optimization of an alternate design for the Space Shuttle solid rocket booster field joint

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.; Rogers, James L., Jr.; Chang, Kwan J.

    1987-01-01

    A structural optimization procedure is used to determine the shape of an alternate design for the Shuttle's solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in diameter and 135 studs of 1 3/16 in diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonlinear displacement analysis. The minimum weight design has 135 studs of 1 3/16 in diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design.

  12. Saturated Widths of Magnetic Islands in Tokamak Discharges

    NASA Astrophysics Data System (ADS)

    Halpern, F.; Pankin, A. Y.

    2005-10-01

    The new ISLAND module described in reference [1] implements a quasi-linear model to compute the widths of multiple magnetic islands driven by saturated tearing modes in toroidal plasmas of arbitrary aspect ratio and cross sectional shape. The distortion of the island shape caused by the radial variation in the perturbation is computed in the new module. In transport simulations, the enhanced transport caused by the magnetic islands has the effect of flattening the pressure and current density profiles. This self consistent treatment of the magnetic islands alters the development of the plasma profiles. In addition, it is found that islands closer to the magnetic axis influence the evolution of islands further out in the plasma. In order to investigate such phenomena, the ISLAND module is used within the BALDUR predictive modeling code to compute the widths of multiple magnetic islands in tokamak discharges. The interaction between the islands and sawtooth crashes is examined in simulations of DIII-D and JET discharges. The module is used to compute saturated neoclassical tearing mode island widths for multiple modes in ITER. Preliminary results for island widths in ITER are consistent with those presented [2] by Hegna. [1] F.D. Halpern, G. Bateman, A.H. Kritz and A.Y. Pankin, ``The ISLAND Module for Computing Magnetic Island Widths in Tokamaks,'' submitted to J. Plasma Physics (2005). [2] C.C. Hegna, 2002 Fusion Snowmass Meeting.

  13. The transport of wear particles in the prosthetic hip joint: a computational fluid dynamics investigation.

    PubMed

    Hölzer, Andreas; Schröder, Christian; Woiczinski, Matthias; Sadoghi, Patrick; Müller, Peter E; Jansson, Volkmar

    2012-02-02

    The joint fluid mechanics and transport of wear particles in the prosthetic hip joint were analyzed for subluxation and flexion motion using computational fluid dynamics (CFD). The entire joint space including a moving capsule boundary was considered. It was found that particles suspended in the joint space are drawn into the joint gap between prosthesis cup and head during subluxation, which was also documented by Lundberg et al. (2007; Journal of Biomechanics 40, 1676-1685), however, wear particles remain in the joint gap. Wear particles leave the joint gap during flexion and can finally migrate to the proximal boundaries including the acetabular bone, where the particle deposition can cause osteolysis according to the established literature. Thus, the present study supports the theory of polyethylene wear particle induced osteolysis of the acetabular bone as a major factor in the loosening of hip prosthesis cups. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Backdropped against water and clouds, the International Space Station was separated from the Space Shuttle Discovery after several days of joint activities and an important crew exchange. This photograph was taken by one of the crew of this mission from the aft flight deck of Discovery.

  15. The measurement of medial knee gap width using ultrasound.

    PubMed

    Slane, Laura C; Slane, Josh A; Scheys, Lennart

    2017-08-01

    Medial knee instability is a key clinical parameter for assessing ligament injury and arthroplasty success, but current methods for measuring stability are typically either qualitative or involve ionizing radiation. The purpose of this study was to perform a preliminary analysis of whether ultrasound (US) could be used as an alternate approach for quantifying medial instability by comparing an US method with an approach mimicking the current gold standard fluoroscopy method. US data from the medial knee were collected, while cadaveric lower limbs (n = 8) were loaded in valgus (10 Nm). During post-processing, the US gap width was measured by identifying the medial edges of the femur and tibia and computing the gap width between these points. For comparison, mimicked fluoroscopy (mFluoro) images were created from specimen-specific bone models, developed from segmented CT scans, and from kinematic data collected during testing. Then, gap width was measured in the mFluoro images based on two different published approaches with gap width measured either at the most medial or at the most distal aspect of the femur. Gap width increased significantly with loading (p < 0.001), and there were no significant differences between the US method (unloaded: 8.7 ± 2.4 mm, loaded: 10.7 ± 2.2 mm) and the mFluoro method that measured gap width at the medial femur. In terms of the change in gap width with load, no correlation with the change in abduction angle was observed, with no correlation between the various methods. Inter-rater reliability for the US method was high (0.899-0.952). Ultrasound shows promise as a suitable alternative for quantifying medial instability without radiation exposure. However, the outstanding limitations of existing approaches and lack of true ground-truth data require that further validation work is necessary to better understand the clinical viability of an US approach for measuring medial knee gap width.

  16. Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths

    DOE PAGES

    Belisle, Rebecca A.; Nguyen, William H.; Bowring, Andrea R.; ...

    2017-01-01

    In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. Here, we show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layersmore » adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 x 10 17 cm -3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity.« less

  17. Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belisle, Rebecca A.; Nguyen, William H.; Bowring, Andrea R.

    In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. Here, we show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layersmore » adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 x 10 17 cm -3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity.« less

  18. Similarity of Stream Width Distributions Across Headwater Systems

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.

    2016-12-01

    The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic

  19. Electrospray ionization from a gap with adjustable width.

    PubMed

    Ek, Patrik; Sjödahl, Johan; Roeraade, Johan

    2006-01-01

    In this paper, we present a new concept for electrospray ionization mass spectrometry, where the sample is applied in a gap which is formed between the edges of two triangular-shaped tips. The size of the spray orifice can be changed by varying the gap width. The tips were fabricated from polyethylene terephthalate film with a thickness of 36 microm. To improve the wetting of the gap and sample confinement, the edges of the tips forming the gap were hydrophilized by means of silicon dioxide deposition. Electrospray was performed with gap widths between 1 and 36 microm and flow rates down to 75 nL/min. The gap width could be adjusted in situ during the mass spectrometry experiments and nozzle clogging could be managed by simply widening the gap. Using angiotensin I as analyte, the signal-to-noise ratio increased as the gap width was decreased, and a shift towards higher charge states was observed. The detection limit for angiotensin I was in the low nM range. Copyright (c) 2006 John Wiley & Sons, Ltd.

  20. Decentralized control of large flexible structures by joint decoupling

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Juang, Jer-Nan

    1992-01-01

    A decentralized control design method is presented for large complex flexible structures by using the idea of joint decoupling. The derivation is based on a coupled substructure state-space model, which is obtained from enforcing conditions of interface compatibility and equilibrium to the substructure state-space models. It is shown that by restricting the control law to be localized state feedback and by setting the joint actuator input commands to decouple joint 'degrees of freedom' (dof) from interior dof, the global structure control design problem can be decomposed into several substructure control design problems. The substructure control gains and substructure observers are designed based on modified substructure state-space models. The controllers produced by the proposed method can operate successfully at the individual substructure level as well as at the global structure level. Therefore, not only control design but also control implementation is decentralized. Stability and performance requirement of the closed-loop system can be achieved by using any existing state feedback control design method. A two-component mass-spring damper system and a three-truss structure are used as examples to demonstrate the proposed method.

  1. The Joint Airlock Module is moved to a payload canister in the O&C

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Joint Airlock Module is suspended by an overhead crane in the Operations and Checkout Building before being moved and placed into the payload canister for transfer to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.

  2. Establishing a relationship between maximum torque production of isolated joints to simulate EVA ratchet push-pull maneuver: A case study

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara

    1993-01-01

    As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.

  3. The Joint Agency Commercial Imagery Evaluation (JACIE) Team: Overview and IKONOS Joint Characterization Approach

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Ryan, Robert; Pagnutti, Mary; Baldridge, Braxton; Roylance, Spencer; Snyder, Greg; Lee, George; Stanley, Tom

    2002-01-01

    An overview of the Joint Agency Commercial Imagery Evalation (JACIE) team is presented. JACIE, composed of the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS), was formed to leverage government agencies' capabilities for the characterization of commercial remote sensing data. Each JACIE agency purchases, or plans to purchase, commercial imagery to support its research and applications. It is critical that the data be assessed for its accuracy and utility. Through JACIE, NASA, NIMA, and USGS jointly characterized image products from Space Imaging's IKONOS satellite. Each JACIE agency performed an aspect of the characterization based on its expertise. NASA and its university partners performed a system characterization focusing on radiometric calibration, geopositional accuracy, and spatial resolution assessment; NIMA performed image interpretability and feature extraction evaluations; and USGS assessed geopositional accuracy of several IKONOS products. The JACIE team purchased IKONOS imagery of several study sites to perform the assessments and presented results at an industry-government workshop. Future plans for JACIE include the characterization of DigitalGlobe's QuickBird-2 image products.

  4. The Effective Width of Curved Sheet After Buckling

    NASA Technical Reports Server (NTRS)

    Wenzek, W A

    1938-01-01

    This report describes experiments made for the purpose of ascertaining the effective width of circularly curved sheet under pure flexural stress. A relation for the effective width of curved sheets is established. Experiments were made with circular cylinders compressed in longitudinal direction. The sheets were rigidly built in at the sides parallel to the axis of the cylinder.

  5. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy

    NASA Astrophysics Data System (ADS)

    Zhou, D. W.; Liu, J. S.; Lu, Y. Z.; Xu, S. H.

    2017-09-01

    The experiments of laser penetration welding for dual phase steel and aluminum alloy were carried out, and the effect of adding Mn or Si powder on mechanical properties and microstructure of the weld was investigated. Some defects, such as spatter, inclusion, cracks and softening in heat affected zone (HAZ), can be avoided in welding joints, and the increased penetration depth is obtained by adding Mn or Si powder. The average tensile-shear strength of Si-added joint is 3.84% higher than that of Mn-added joint, and the strength of both joints exceeds that of no-added joint. In the case of adding Mn powder, small amount of liquid Al is mixed into steel molten pool, and the Al content increases in both sides of the weld, which leads to the increased weld width in aluminum molten pool. Thus, transverse area increases in jointing steel to aluminum, which is significant for the improved tensile-shear strength of joints. As far as adding Si powder is concerned, it is not the case, the enhancement of the joint properties benefits from improvement of metallurgical reaction.

  6. Axial traction magnetic resonance imaging (MRI) of the glenohumeral joint in healthy volunteers: initial experience.

    PubMed

    Garwood, Elisabeth R; Souza, Richard B; Zhang, Amy; Zhang, Alan L; Ma, C Benjamin; Link, Thomas M; Motamedi, Daria

    Evaluate technical feasibility and potential applications of glenohumeral (GH) joint axial traction magnetic resonance imaging (MRI) in healthy volunteers. Eleven shoulders were imaged in neutral and with 4kg axial traction at 3T. Quantitative measurements were assessed. Axial traction was well tolerated. There was statistically significant widening of the superior GH joint space (p=0.002) and acromial angle (p=0.017) with traction. Inter-rater agreement was high. GH joint axial traction MRI is technically feasible and well tolerated in volunteers. Traction of the capsule, widening of the superior GH joint space and acromial angle were observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation.

    PubMed

    Peterchev, Angel V; Luber, Bruce; Westin, Gregory G; Lisanby, Sarah H

    Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Pulse width affects scalp sensation of transcranial magnetic stimulation

    PubMed Central

    Peterchev, Angel V.; Luber, Bruce; Westin, Gregory G.; Lisanby, Sarah H.

    2016-01-01

    Background Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. Objective We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Methods Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Results Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 points increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 point increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Conclusions Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. PMID:28029593

  9. The Standard Joint Unit.

    PubMed

    Casajuana Kögel, Cristina; Balcells-Olivero, María Mercedes; López-Pelayo, Hugo; Miquel, Laia; Teixidó, Lídia; Colom, Joan; Nutt, David John; Rehm, Jürgen; Gual, Antoni

    2017-07-01

    Reliable data on cannabis quantities is required to improve assessment of cannabis consumption for epidemiological analysis and clinical assessment, consequently a Standard Joint Unit (SJU) based on quantity of 9-Tetrahydrocannabinol (9-THC) has been established. Naturalistic study of a convenience sample recruited from February 2015-June 2016 in universities, leisure spaces, mental health services and cannabis clubs in Barcelona. Adults, reporting cannabis use in the last 60 days, without cognitive impairment or language barriers, answered a questionnaire on cannabis use and were asked to donate a joint to further determine their 9-THC and Cannabidiol (CBD) content. 492 participants donated 315 valid joints. Donators were on average 29 years old, mostly men (77%), single (75%), with at least secondary studies (73%) and in active employment (63%). Marijuana joints (N=232) contained a median of 6.56mg of 9-THC (Interquartile range-IQR=10,22) and 0.02mg of CBD (IQR=0.02); hashish joints (N=83) a median of 7.94mg of 9-THC (IQR=10,61) and 3.24mg of CBD (IQR=3.21). Participants rolled 4 joints per gram of cannabis and paid 5€ per gram (median values). Consistent 9-THC-content in joints lead to a SJU of 7mg of 9-THC, the integer number closest to the median values shared by both cannabis types. Independently if marijuana or hashish, 1 SJU = 1 joint = 0.25 g of cannabis = 7 mg of 9-THC. For CBD, only hashish SJU contained relevant levels. Similarly to the Standard Drink Unit for alcohol, the SJU is useful for clinical, epidemiological and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparing perceived auditory width to the visual image of a performing ensemble in contrasting bi-modal environmentsa)

    PubMed Central

    Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.

    2012-01-01

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585

  11. Method of forming a variable width channel

    NASA Technical Reports Server (NTRS)

    Andrews, James T. (Inventor)

    1989-01-01

    A method of forming a channel of varying width in a body comprises the steps of forming a plurality of masking elements having an opening therethrough intersecting a plurality of the elements on a surface of the body, partially flowing the elements into the opening to form a masking pattern having a variable width opening therethrough, and removing portions of the exposed body to form the channel with a sidewall having a surface contour corresponding to an edge of the masking pattern.

  12. Ultrasonic measurement and monitoring of loads in bolts used in structural joints

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.

  13. Gender differences in hip and ankle joint kinematics on knee abduction during running.

    PubMed

    Sakaguchi, Masanori; Ogawa, Haruna; Shimizu, Norifumi; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo

    2014-01-01

    The knee is the most common site of running injuries, particularly prevalent in females. The purpose of this study was to clarify gender differences in the lower extremity kinematics during running, with a specific emphasis on the relationships between the distal and proximal factors and the knee joint kinematics. Eleven female and 11 male runners participated in this study. Three-dimensional marker positions were recorded with a motion analysis system while the subjects ran along a 25 m runway at a speed of 3.5 m/s. Kinematic variables were analyzed for the stance phase of the right leg. Female runners demonstrated significantly greater peak knee abduction (P<0.05), hip adduction (P<0.01) and internal rotation (P<0.05), whereas male runners demonstrated significantly greater peak rearfoot eversion (P<0.01). The knee abduction angles were positively correlated with hip adduction angles (r=0.49, P<0.05) and negatively correlated with rearfoot eversion (r= -0.69, P<0.001). There was no significant difference in normalised step width between genders (P>0.05). Smaller rearfoot eversion and greater hip adduction related closely to the greater knee abduction as the distal and proximal factors, respectively. These relationships are thought to be the compensatory joint motions in the frontal plane, because there was no significant difference in the normalised step width between females and males. The current results suggest that if the step width is identical, the subjects with greater knee abduction had smaller rearfoot eversion to compensate for greater hip adduction, which were more apparent in females. This explains greater knee abduction found in female runners, which can be linked to a high risk of knee injury.

  14. The Joint Space Operations Center (JSpOC) Mission System (JMS) and the Advanced Research, Collaboration, and Application Development Environment (ARCADE)

    NASA Astrophysics Data System (ADS)

    Johnson, K.; Kim, R.; Echeverry, J.

    The Joint Space Operations Center (JSpOC) is a command and control center focused on executing the Space Control mission of the Joint Functional Component Command for Space (JFCC-SPACE) to ensure freedom of action of United States (US) space assets, while preventing adversary use of space against the US. To accomplish this, the JSpOC tasks a network of space surveillance sensors to collect Space Situational Awareness (SSA) data on resident space objects (RSOs) in near earth and deep space orbits. SSA involves the ingestion of data sources and use of algorithms and tools to build, maintain, and disseminate situational awareness of RSOs in space. On the heels of emergent and complex threats to space assets, the JSpOC's capabilities are limited by legacy systems and CONOPs. The JSpOC Mission System (JMS) aims to consolidate SSA efforts across US agencies, international partners, and commercial partners. The JMS program is intended to deliver a modern service-oriented architecture (SOA) based infrastructure with increased process automation and improved tools to remove the current barriers to JSpOC operations. JMS has been partitioned into several developmental increments. Increment 1, completed and operational in early 2013, and Increment 2, which is expected to be completed in 2016, will replace the legacy Space Defense Operations Center (SPADOC) and Astrodynamics Support Workstation (ASW) capabilities. In 2017 JMS Increment 3 will continue to provide additional SSA and C2 capabilities that will require development of new applications and procedures as well as the exploitation of new data sources. Most importantly, Increment 3 is uniquely postured to evolve the JSpOC into the centralized and authoritative source for all Space Control applications by using its SOA to aggregate information and capabilities from across the community. To achieve this goal, Scitor Corporation has supported the JMS Program Office as it has entered into a partnership with AFRL/RD (Directed

  15. Crack width monitoring of concrete structures based on smart film

    NASA Astrophysics Data System (ADS)

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2014-04-01

    Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.

  16. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  17. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    PubMed

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  18. RBC Distribution Width: Biomarker for Red Cell Dysfunction and Critical Illness Outcome?

    PubMed

    Said, Ahmed S; Spinella, Philip C; Hartman, Mary E; Steffen, Katherine M; Jackups, Ronald; Holubkov, Richard; Wallendorf, Mike; Doctor, Allan

    2017-02-01

    RBC distribution width is reported to be an independent predictor of outcome in adults with a variety of conditions. We sought to determine if RBC distribution width is associated with morbidity or mortality in critically ill children. Retrospective observational study. Tertiary PICU. All admissions to St. Louis Children's Hospital PICU between January 1, 2005, and December 31, 2012. We collected demographics, laboratory values, hospitalization characteristics, and outcomes. We calculated the relative change in RBC distribution width from admission RBC distribution width to the highest RBC distribution width during the first 7 days of hospitalization. Our primary outcome was ICU mortality or use of extracorporeal membrane oxygenation as a composite. Secondary outcomes were ICU- and ventilator-free days. We identified 3,913 eligible subjects with an estimated mortality (by Pediatric Index of Mortality 2) of 2.94% ± 9.25% and an actual ICU mortality of 2.91%. For the study cohort, admission RBC distribution width was 14.12% ± 1.89% and relative change in RBC distribution width was 2.63% ± 6.23%. On univariate analysis, both admission RBC distribution width and relative change in RBC distribution width correlated with mortality or the use of extracorporeal membrane oxygenation (odds ratio, 1.19 [95% CI, 1.12-1.27] and odds ratio, 1.06 [95% CI, 1.04-1.08], respectively; p < 0.001). After adjusting for confounding variables, including severity of illness, both admission RBC distribution width (odds ratio, 1.13; 95% CI, 1.03-1.24) and relative change in RBC distribution width (odds ratio, 1.04; 95% CI, 1.01-1.07) remained independently associated with ICU mortality or the use of extracorporeal membrane oxygenation. Admission RBC distribution width and relative change in RBC distribution width both weakly correlated with fewer ICU- (r = 0.038) and ventilator-free days (r = 0.05) (p < 0.001). Independent of illness severity in critically ill children, admission RBC

  19. Stereosat: A proposed private sector/government joint venture in remote sensing from space

    NASA Technical Reports Server (NTRS)

    Anglin, R. L.

    1980-01-01

    Stereosat, a free flying Sun synchronous satellite whose purpose is to obtain worldwide cloud-free stereoscopic images of the Earth's land masses, is proposed as a joint private sector/government venture. A number of potential organization models are identified. The legal, economic, and institutional issues which could impact the continuum of potential joint private sector/government institutional structures are examined.

  20. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  1. Joint Space Operations Center (JSpOC) Mission System (JMS)

    NASA Astrophysics Data System (ADS)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  2. On the generation of horizontal shear waves by underground explosions in jointed rocks

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...

    2015-02-04

    This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less

  3. The effect of lane line width and contrast upon lanekeeping.

    PubMed

    McKnight, A S; McKnight, A J; Tippetts, A S

    1998-09-01

    The combined effect of lane line width and line-pavement contrast upon lanekeeping was studied through simulation. Some 124 subjects, ages 17-79 (x = 56.30), 52% male, each performed 42 trials over road segments representing three levels of width crossed with 14 line-pavement contrast ratios. Lanekeeping performance was recorded in terms of heading error, position error, lane excursions and road excursions. Subjects were stratified into two levels of ability on a combined measure of visual, attentional and psychomotor variables known to decline with age. Contrast and width had a negligible effect upon performance except at very low contrast ratios, ca 1.02 at high pavement luminance levels (e.g. concrete) and 1.04 for very low luminance levels (e.g. asphalt). These ratios are similar to those encountered at night on wet roads. Mean overall performance error at the low contrast ratios increased by a factor of 1.6, 1.8 and 2.2 for 8, 6 and 4" widths, respectively. Lower ability subjects exhibited greater error at almost all contrast ratios, with no consistent relationship between degree of decrement and either width or contrast. The results suggest that lane line width and contrast have a negligible effect upon lanekeeping performance except at extremely low levels of contrast, where both have large effects. Further research in the roadway environment is needed to determine the relationships of line width and contrast ratio to lanekeeping on normal and degraded surface conditions.

  4. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit.

    PubMed

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-08-03

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40 degrees to approximately 90 degrees horizontally and from approximately 45 degrees to more than 90 degrees vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals.

  5. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  6. Future Research Opportunities in Peri-Prosthetic Joint Infection Prevention.

    PubMed

    Berbari, Elie; Segreti, John; Parvizi, Javad; Berríos-Torres, Sandra I

    Peri-prosthetic joint infection (PJI) is a serious complication of prosthetic joint arthroplasty. A better understanding and reversal of modifiable risk factors may lead to a reduction in the incidence of incisional (superficial and deep) and organ/space (e.g., PJI) surgical site infections (SSI). Recently, the Centers for Disease Control and Prevention (CDC) and the Healthcare Infection Control Practices Advisory Committee (HICPAC) published the Guideline for Prevention of Surgical Site Infection. This targeted update applies evidence-based methodology in drafting recommendations for potential strategies to reduce the risk of SSI both across surgical procedures and specifically in prosthetic joint arthroplasty. A panel of PJI content experts identified nine PJI prevention research opportunities based on both evidence gaps identified through the guideline development process (transfusion, immunosuppressive therapy, anticoagulation, orthopedic space suit, and biofilm) and expert opinion (anesthesia, operative room environment, glycemic control, and Staphylococcus aureus nasal screening and decolonization. This article offers a road map for PJI prevention research.

  7. A review of ultrabrief pulse width electroconvulsive therapy

    PubMed Central

    Katalinic, Natalie; Martin, Donel; Schweitzer, Isaac

    2012-01-01

    The effect of shortening the pulse width of the electrical stimulus when administering electroconvulsive therapy (ECT) has recently been systematically studied with promising results. This review examines reported outcomes from three randomized controlled trials which compared ultrabrief (≤0.3 ms) with brief (0.5–1.5 ms) pulse width ECT, and other recent clinical trials of ultrabrief pulse width ECT. The emerging evidence for ultrabrief pulse right unilateral (RUL) ECT suggests clinically meaningful efficacy and substantially reduced neuropsychological side effects compared with standard (brief) pulse ECT; this may represent a generational advance in the ECT technique. However, it is unclear if patients receiving ultrabrief pulse RUL ECT may have a slower speed of response and require additional treatments compared with brief pulse ECT. Therefore, until further data are available, clinicians may be well advised to use brief pulse ECT in situations requiring an urgent clinical response. The evidence base for ultrabrief bilateral ECT is limited, with findings that efficacy may be reduced compared with brief pulse width ECT. Thus ultrabrief bilateral ECT should not be used outside the research setting. PMID:23251770

  8. Improvements to the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; Lodding, Kenneth N.; Ganoe, George G.; Mercer, David; King, Bruce D.

    2015-01-01

    Devices for manipulating and precisely placing payloads are critical for efficient space operations including berthing of spacecraft, in-space assembly, construction and repair. Key to the success of many NASA space activities has been the availability of long-reach crane-like devices such as the Shuttle Remote Manipulation System (SRMS) and the Space Station Remote Manipulation System (SSRMS). These devices have been used for many operations including berthing visiting spacecraft to the International Space Station, deployment of spacecraft, space station assembly, astronaut positioning, payload transfer, and spacecraft inspection prior to atmospheric re-entry. Retiring the Space Transportation System has led to the removal of the SRMS from consideration for in-space missions, thus creating a capability gap. Recognizing this gap, work was initiated at NASA on a new architecture for long-reach space manipulators. Most current devices are constructed by joining revolute joints with carbon composite tubes, with the joints accounting for the majority of the device mass. For example in the case of the SRMS, the entire device mass is 410 kg (904 lbm); the joint structure, motors, gear train, cabling, etc., accounts for the majority of the system mass because the carbon composite tubes mass is 46 kg (101 lbm). An alternate space manipulator concept, the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) was created to address deficiencies in the current state-of-the-art in long-reach manipulators. The antagonistic tendon actuated joint architecture allows the motors actuating the joint to be removed from the joint axis, which simplifies the joint design while simultaneously providing mechanical advantage for the motors. The improved mechanical advantage, in turn, reduces the size and power requirements for the motor and gear train. This paper will describe recent architectural improvements to the TALISMAN design that: 1) improve the operational robustness of the

  9. 14 CFR 296.4 - Joint loading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS INDIRECT AIR TRANSPORTATION OF PROPERTY General § 296.4 Joint loading. Nothing in this part shall... transportation as one shipment, under an agreement between two or more indirect air carriers or foreign indirect...

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    One of the astronauts aboard the Space Shuttle Discovery took this photograph, from the aft flight deck of the Discovery, of the International Space Station (ISS) in orbit. The photo was taken after separation of the orbiter Discovery from the ISS after several days of joint activities and an important crew exchange.

  11. Effect of occlusal appliances and clenching on the internally deranged TMJ space.

    PubMed

    Kuboki, T; Takenami, Y; Orsini, M G; Maekawa, K; Yamashita, A; Azuma, Y; Clark, G T

    1999-01-01

    Stabilization appliances and mandibular anterior repositioning appliances have been used to treat patients with internal derangement of the temporomandibular joint (TMJ) based on the assumption that these appliances work by decompressing the TMJ. The purpose of this study was to indirectly test this assumption. Bilateral TMJ tomograms of 7 subjects with unilateral anterior disc displacement without reduction (ADDwor) were taken during comfortable closure and during maximum clenching in maximum intercuspation; tomograms were also taken with the 2 types of occlusal appliances in use. Outlines of the condyle and the temporal fossa were automatically determined by an edge-detection protocol, and the minimum joint space dimension of the joints with and without ADDwor was automatically measured for each experimental condition as the outcome variable. Upon comfortable closure and maximum clenching, the minimum joint space dimensions of the ipsilateral and contralateral joints with the use of stabilization appliances and mandibular anterior repositioning appliances were not significantly different from those seen in maximum intercuspation. These findings do not indicate that these appliances induce an increase in joint space during closing and clenching in joints with ADDwor.

  12. New role for space station—Enhanced cooperation with Russia?

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    The Clinton administration's recent discussions with Russia on enhanced space cooperation and a possible joint space station prompted a two-part hearing by the House Science Subcommittee on Space, held on October 6 and 14. Subcommittee members, citing rumors and news stories about a joint station, questioned Presidential Science Advisor Jack Gibbons and NASA Administrator Daniel Goldin on the status of the proposed cooperation and heard from additional witnesses regarding the feasibility of and support for the concept.Gibbons reassured subcommittee members that no decision has yet been made on Russian cooperation, and that Congress would be consulted in the process. He explained that, after the Vancouver Summit, establishment of a Joint Commission headed by Vice President Gore and Russian Prime Minister Chernomyrdin provided an opportunity for enhanced cooperation in space, as well as in such other areas as energy, nuclear safety, the environment, business development, science and technology, and defense diversification. Gibbons testified that the study of a cooperative station program took place concurrently with NASA's work on defining the redesigned U.S. space station, now being referred to as “Alpha.” He affirmed that while Alpha's modular design made it adaptable to a joint effort, it could “be built independent of any Russian participation.”

  13. Finite element analysis of a deployable space structure

    NASA Technical Reports Server (NTRS)

    Hutton, D. V.

    1982-01-01

    To assess the dynamic characteristics of a deployable space truss, a finite element model of the Scientific Applications Space Platform (SASP) truss has been formulated. The model incorporates all additional degrees of freedom associated with the pin-jointed members. Comparison of results with SPAR models of the truss show that the joints of the deployable truss significantly affect the vibrational modes of the structure only if the truss is relatively short.

  14. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  15. Commercial use of space - The space business era

    NASA Technical Reports Server (NTRS)

    Griffin, G. D.

    1985-01-01

    Progress and avenues being explored by NASA to hasten the commercialization of space are described. A task force has recommended that the effort begin at once, that bureaucratic barriers to commercial space activities be removed, and that a partnership between government and industry be seriously explored. The government role is to establish links with private industry, invest in high-leverage technologies and space facilities which will be attractive to commercial ventures, and contribute to commercial enterprises where risks are high and significant economic benefits can be foreseen. The government/industry relationship can be legally evinced by MOUs, joint endeavor agreements, technical exchange agreements and industrial guest investigator arrangements. The Space Station is the first step in that it allows Americans to live and work in space. It is expected that international participation in Space Station development and utilization will accelerate the space business era.

  16. Modeling and Analysis of Space Based Transceivers

    NASA Technical Reports Server (NTRS)

    Moore, Michael S.; Price, Jeremy C.; Reinhart, Richard; Liebetreu, John; Kacpura, Tom J.

    2005-01-01

    This paper presents the tool chain, methodology, and results of an on-going study being performed jointly by Space Communication Experts at NASA Glenn Research Center (GRC), General Dynamics C4 Systems (GD), and Southwest Research Institute (SwRI). The team is evaluating the applicability and tradeoffs concerning the use of Software Defined Radio (SDR) technologies for Space missions. The Space Telecommunications Radio Systems (STRS) project is developing an approach toward building SDR-based transceivers for space communications applications based on an accompanying software architecture that can be used to implement transceivers for NASA space missions. The study is assessing the overall cost and benefit of employing SDR technologies in general, and of developing a software architecture standard for its space SDR transceivers. The study is considering the cost and benefit of existing architectures, such as the Joint Tactical Radio Systems (JTRS) Software Communications Architecture (SCA), as well as potential new space-specific architectures.

  17. Revised techniques for estimating peak discharges from channel width in Montana

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.; Omang, R.J.

    1987-01-01

    This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and

  18. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words

    PubMed Central

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants’ performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words. PMID:26909052

  19. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words.

    PubMed

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants' performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words.

  20. Data correlation and analysis of arc tunnel and wind tunnel tests of RSI joints and gaps, phase 2. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Cristensen, H. E.

    1975-01-01

    Heat transfer data measured in gaps representative of those being employed for joints in the space shuttle reusable surface insulation (RSI) thermal protection systems (TPS) were assimilated, analyzed, and correlated. Several types of gap were investigated with emphasis on simple butt joints. Gap widths ranged from 0.0 to 0.76 cm and depths ranged from 1 to 6 cm. Laminar, transitional, and turbulent boundary layer flows over the gap opening were investigated. The angle between gap axis and external flow was varied between 0 and pi/2 radians. The contoured cross section gap performed significantly better than all other wide gaps and slightly better than all other narrow gap geometries. Three dimensional heating variations were observed within gaps in the absence of external flow pressure gradients. Interactions between heating within gaps and heating of adjacent top tile surfaces were observed. Gaps aligned with the flow were observed to promote boundary layer transition. Heat transfer correlation equations were obtained for many of the tests. The TPS thickness requirements with and without gaps were computed for a current shuttle entry trajectory. Experimental data employed in the study are summarized. A description of each test facility, run schedule and test conditions, model descriptive information, and heat flux data are included.

  1. Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows

    NASA Astrophysics Data System (ADS)

    Peitersen, Matthew N.; Crown, David A.

    2000-02-01

    Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera

  2. The importance of costoclavicular space on possible compression of the subclavian artery in the thoracic outlet region: a radio-anatomical study.

    PubMed

    Kaplan, Tevfik; Comert, Ayhan; Esmer, Ali Firat; Ataç, Gökçe Kaan; Acar, Halil Ibrahim; Ozkurt, Bulent; Tekdemir, Ibrahim; Han, Serdar

    2018-04-16

    The purposes of this study were to identify possible compression points along the transit route of the subclavian artery and to provide a detailed anatomical analysis of areas that are involved in the surgical management of the thoracic outlet syndrome (TOS). The results of the current study are based on measurements from cadavers, computed tomography (CT) scans and dry adult first ribs. The width and length of the interscalene space and the width of the costoclavicular passage were measured on 18 cervical dissections in 9 cadavers, on 50 dry first ribs and on CT angiography sections from 15 patients whose conditions were not related to TOS. The average width and length of the interscalene space in cadavers were 15.28 ± 1.94 mm and 15.98 ± 2.13 mm, respectively. The widths of the costoclavicular passage (12.42 ± 1.43 mm) were significantly narrower than the widths and lengths of the interscalene space in cadavers (P < 0.05). The average width and length of the interscalene space (groove for the subclavian artery) in 50 dry ribs were 15.53 ± 2.12 mm and 16.12 ± 1.95 mm, respectively. In CT images, the widths of the costoclavicular passage were also significantly narrower than those of the interscalene space (P < 0.05). The measurements from cadavers, dry first ribs and CT images were not significantly different (P > 0.05). Our results showed that the costoclavicular width was the narrowest space along the passage route of the subclavian artery. When considering the surgical decompression of the subclavian artery for TOS, this narrowest area should always be kept in mind. Since measurements from CT images and cadavers were significantly similar, CT measurements may be used to evaluate the thoracic outlet region in patients with TOS.

  3. Extravehicular activity space suit interoperability.

    PubMed

    Skoog, A I; McBarron JW 2nd; Severin, G I

    1995-10-01

    The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.

  4. Joint-venture proposals strengthen hospital-physician relationship.

    PubMed

    Rovinsky, M

    2000-12-01

    By proposing the joint-venture development of an ambulatory surgery center and medical office space with a group practice, one hospital succeeded in enhancing its relationship with the practice and paved the way for future collaboration. Although the hospital's proposal to jointly develop an ambulatory surgery center was not accepted, the hospital was able to dissuade the group practice from developing a competing ambulatory surgery facility while increasing the group's trust in and loyalty to the hospital. As a result, the hospital potentially will benefit from increased inpatient admissions.

  5. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    NASA Astrophysics Data System (ADS)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2018-01-01

    This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.

  6. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE PAGES

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    2017-09-22

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  7. Near-field non-radial motion generation from underground chemical explosions in jointed granite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan

    Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less

  8. Effects of aging treatment and heat input on the microstructures and mechanical properties of TIG-welded 6061-T6 alloy joints

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Shen, Jun; Tang, Qin; Wu, Cui-ping; Zhou, Yan-bing

    2013-03-01

    Aging treatment and various heat input conditions were adopted to investigate the microstructural evolution and mechanical properties of TIG welded 6061-T6 alloy joints by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175°C for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.

  9. Estimating tree crown widths for the primary Acadian species in Maine

    Treesearch

    Matthew B. Russell; Aaron R. Weiskittel

    2012-01-01

    In this analysis, data for seven conifer and eight hardwood species were gathered from across the state of Maine for estimating tree crown widths. Maximum and largest crown width equations were developed using tree diameter at breast height as the primary predicting variable. Quantile regression techniques were used to estimate the maximum crown width and a constrained...

  10. Seal Joint Analysis and Design for the Ares-I Upper Stage LOX Tank

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Wingate, Robert J.

    2011-01-01

    The sealing capability of the Ares-I Upper Stage liquid oxygen tank-to-sump joint is assessed by analyzing the deflections of the joint components. Analyses are performed using three-dimensional symmetric wedge finite element models and the ABAQUS commercial finite element software. For the pressure loads and feedline interface loads, the analyses employ a mixed factor of safety approach to comply with the Constellation Program factor of safety requirements. Naflex pressure-assisted seals are considered first because they have been used successfully in similar seal joints in the Space Shuttle External Tank. For the baseline sump seal joint configuration with a Naflex seal, the predicted joint opening greatly exceeds the seal design specification. Three redesign options of the joint that maintain the use of a Naflex seal are studied. The joint openings for the redesigned seal joints show improvement over the baseline configuration; however, these joint openings still exceed the seal design specification. RACO pressure-assisted seals are considered next because they are known to also be used on the Space Shuttle External Tank, and the joint opening allowable is much larger than the specification for the Naflex seals. The finite element models for the RACO seal analyses are created by modifying the models that were used for the Naflex seal analyses. The analyses show that the RACO seal may provide sufficient sealing capability for the sump seal joint. The results provide reasonable data to recommend the design change and plan a testing program to determine the capability of RACO seals in the Ares-I Upper Stage liquid oxygen tank sump seal joint.

  11. The effect of sagittal rotation of the glenoid on axial glenoid width and glenoid version in computed tomography scan imaging.

    PubMed

    Gross, Daniel J; Golijanin, Petar; Dumont, Guillaume D; Parada, Stephen A; Vopat, Bryan G; Reinert, Steven E; Romeo, Anthony A; Provencher, C D R Matthew T

    2016-01-01

    Computed tomography (CT) scans of the shoulder are often not well aligned to the axis of the scapula and glenoid. The purpose of this paper was to determine the effect of sagittal rotation of the glenoid on axial measurements of anterior-posterior (AP) glenoid width and glenoid version attained by standard CT scan. In addition, we sought to define the angle of rotation required to correct the CT scan to optimal positioning. A total of 30 CT scans of the shoulder were reformatted using OsiriX software multiplanar reconstruction. The uncorrected (UNCORR) and corrected (CORR) CT scans were compared for measurements of both (1) axial AP glenoid width and (2) glenoid version at 5 standardized axial cuts. The mean difference in glenoid version was 2.6% (2° ± 0.1°; P = .0222) and the mean difference in AP glenoid width was 5.2% (1.2 ± 0.42 mm; P = .0026) in comparing the CORR and UNCORR scans. The mean angle of correction required to align the sagittal plane was 20.1° of rotation (range, 9°-39°; standard error of mean, 1.2°). These findings demonstrate that UNCORR CT scans of the glenohumeral joint do not correct for the sagittal rotation of the glenoid, and this affects the characteristics of the axial images. Failure to align the sagittal image to the 12-o'clock to 6-o'clock axis results in measurement error in both glenoid version and AP glenoid width. Use of UNCORR CT images may have notable implications for decision-making and surgical treatment. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Measuring Slit Width and Separation in a Diffraction Experiment

    ERIC Educational Resources Information Center

    Gan, K. K.; Law, A. T.

    2009-01-01

    We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…

  13. Magnetic Resonance Imaging Zygapophyseal Joint Space Changes (Gapping) in Low Back Pain Patients following Spinal Manipulation and Side Posture Positioning: A Randomized Controlled Mechanisms Trial with Blinding

    PubMed Central

    Cramer, Gregory D.; Cambron, Jerrilyn; Cantu, Joe A; Dexheimer, Jennifer M.; Pocius, Judith D; Gregerson, Douglas; Fergus, Michael; McKinnis, Ray; Grieve, Thomas J

    2013-01-01

    Objective The purpose of this study was to quantify lumbar zygapophyseal (Z) joint space separation (gapping) in low back pain (LBP) subjects after spinal manipulative therapy (SMT) or side-posture positioning (SPP). Methods This was a controlled mechanisms trial with randomization and blinding. Acute LBP subjects (N=112, four n=28 MRI protocol groups) had 2 magnetic resonance imaging (MRI) appointments (initial enrollment [M1] and following 2 weeks of chiropractic treatment [M2]; receiving 2 MRI scans of the L4/L5 and L5/S1 Z joints at each MRI appointment. After the first MRI scan of each appointment, subjects were randomized (M1 appointment) or assigned (M2 appointment) into SPP (non-manipulation), SMT (manipulation), or control MRI protocol groups. After SPP or SMT, a second MRI was taken. The central anterior-posterior (A-P) joint space was measured. Difference between most painful side A-P measurements taken post- and pre-intervention was the Z joint “gapping difference.” Gapping differences were compared (ANOVA) among protocol groups. Secondary measures of pain visual analog scale (VAS), verbal numeric pain rating scale (VNPRS), and function Bournemouth questionnaire (BQ) were assessed. Results Gapping differences were significant at the first (adjusted, p=0.01; SPP=0.66 +0.48mm; SMT=0.23 +0.86; control=0.18 +0.71) and second (adjusted, p=0.0005; SPP=0.65 +0.92mm, SMT=0.89 +0.71; control=0.35 +0.32) MRI appointments. VNPRS differences were significant at first MRI appointment (p=0.04) with SMT showing the greatest improvement. VAS and BQ improved after two weeks of care in all groups (both p<0.0001). Conclusions SPP showed greatest gapping at baseline. After two weeks, SMT resulted in greatest gapping. SPP appeared to have additive therapeutic benefit to SMT. PMID:23648055

  14. Entropy of Movement Outcome in Space-Time.

    PubMed

    Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M

    2015-07-01

    Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.

  15. Effects of pulsed mid-IR lasers on bovine knee joint tissues

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; Pergadia, Vani R.; Duffy, J. T.; Miller, J. M.; van der Veen, Maurits J.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    We investigated the effect of varying Tm:YAG (2.014 micrometers ) and Ho:YAG (2.130 micrometers ) laser parameters on ablation rate and consequent thermal damage. Mid-infrared wavelengths are strongly absorbed by most biological tissues due to the tissue's high water content. The ablation rate of fresh bovine knee joint tissues (fibrous cartilage, hyaline cartilage, and bone) in saline was assessed as a function of radiant exposure (160 - 950 J/cm2), at pulse widths of 200 microsecond(s) ec for Tm:YAG and 250 microsecond(s) ec for Ho:YAG and a repetition rate of 2 Hz. All tissues used in this study could be efficiently ablated using two micron lasers. The mechanism of action is likely related to the formation and collapse of cavitation bubbles, associated with mid-infrared lasers. We concluded that the Tm:YAG and Ho:YAG lasers are capable of effective knee joint tissue ablation.

  16. Line width determination using a biomimetic fly eye vision system.

    PubMed

    Benson, John B; Wright, Cameron H G; Barrett, Steven F

    2007-01-01

    Developing a new vision system based on the vision of the common house fly, Musca domestica, has created many interesting design challenges. One of those problems is line width determination, which is the topic of this paper. It has been discovered that line width can be determined with a single sensor as long as either the sensor, or the object in question, has a constant, known velocity. This is an important first step for determining the width of any arbitrary object, with unknown velocity.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-01

    Astronaut Michael L. Gernhardt, STS-104 mission specialist, participates in one of three STS-104 space walks while holding on to the end effector of the Canadarm on the Space Shuttle Atlantis. Gernhardt was joined on the extravehicular activity (EVA) by astronaut James F. Reilly (out of frame). The major objective of the mission was to install and activate the Joint Airlock, which completed the second phase of construction on the International Space Station (ISS). The airlock accommodates both United States and Russian space suits and was designed and built at the Marshall Space Flight Center by the Boeing Company.

  18. Irish Team Wins SEA & SPACE Super Prize

    NASA Astrophysics Data System (ADS)

    1998-09-01

    A secondary school team from Ireland has won a trip to Europe's Spaceport in Kourou, French Guyana, and to ESO's Very Large Telescope (VLT) at Cerro Paranal, Chile. The trip is the Super-Prize for the Sea & Space Newspaper Competition , organised within the framework of the European Week for Scientific and Technological Culture. ESO PR Photo 33/98 ESO PR Photo 33/98 [Preview - JPEG: 800 x 434 pix - 568k] [High-Res - JPEG: 3000 x 1627 pix - 6.7Mb] The presentation of prize certificates to the winning Irish team (right) in Lisbon, on August 31, 1998, by ESO, ESA and EAAE representatives. Stephen Kearney, Cian Wilson (both aged 16 years), Eamonn McKeogh (aged 17 years) together with their teacher, John Daly of Blackrock College in Dublin, prepared their newspaper, Infinitus , on marine and space themes, and came first in the national round of the competition. Together with other students from all over Europe, they were invited to present their winning newspaper to a jury consisting of representatives of the organisers, during a special programme of events at the Gulbenkian Planetarium and EXPO '98 in Lisbon, from 28-31 August, 1998. The Irish team scored highly in all categories of the judging, which included scientific content and originality and creativity of the articles. Their look at Irish contributions to sea and space research also proved popular in a ballot by fellow student competitors. This vote was also taken into account by the judges. The jury was very impressed by the high quality of the national entries and there were several close runners-up. The width and depth was amazing and the variety of ideas and formats presented by the sixteen teams was enormous. A poster competition was organised for younger students, aged 10 to 13 and winning entries at national level are on display at the Oceanophilia Pavilion at EXPO '98. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the

  19. Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit

    PubMed Central

    Jakobsen, Lasse; Surlykke, Annemarie

    2010-01-01

    Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase of prey pursuit. M. daubentonii increased the half-amplitude angle from approximately 40° to approximately 90° horizontally and from approximately 45° to more than 90° vertically. The increase in beam width is achieved by lowering the frequency by roughly one octave from approximately 55 kHz to approximately 27.5 kHz. The E. serotinus showed beam broadening remarkably similar to that of M. daubentonii. Our results demonstrate dynamic control of beam width in both species. Hence, we propose directionality as an explanation for the frequency decrease observed in the buzz of aerial hawking vespertilionid bats. We predict that future studies will reveal dynamic control of beam width in a broad range of acoustically communicating animals. PMID:20643943

  20. Factors Related to Increased Ulnar Collateral Ligament Thickness on Stress Sonography of the Elbow in Asymptomatic Youth and Adolescent Baseball Pitchers.

    PubMed

    Atanda, Alfred; Averill, Lauren W; Wallace, Maegen; Niiler, Tim A; Nazarian, Levon N; Ciccotti, Michael G

    2016-12-01

    Stress ultrasound (SUS) of the elbow has demonstrated changes in the anterior band of the ulnar collateral ligament (UCL) in professional and high school-aged pitchers. However, there have been no large reports correlating pitching history data with SUS changes in youth and adolescent baseball pitchers. Changes of the UCL on SUS will correlate with pitching volume in youth and adolescent baseball pitchers. Cross-sectional study; Level of evidence, 3. SUS of the elbow was performed in both elbows of 102 youth and adolescent baseball pitchers. UCL thickness and the width of the ulnohumeral joint, at rest and with 150 N of valgus stress, were measured using a standardized, instrumented device. Demographic data, arm measurements, and a pitching history questionnaire were recorded as well. The pitchers were separated into 2 groups based on age: group 1 (12-14 years) and group 2 (15-18 years). SUS findings of the dominant elbows were compared between the 2 groups. Correlation analysis and linear regression were used to identify relationships between SUS findings and pitching history data. In all pitchers, the mean UCL thickness was 4.40 mm in the dominant elbow and 4.11 mm in the nondominant elbow (P =.03). There was no significant difference between elbows in any joint space characteristics. A comparison of group 1 versus group 2 demonstrated significant differences in UCL thickness (4.13 vs 4.96 mm; P < .001), resting joint space width (6.56 vs 4.04 mm; P < .001), and stressed joint space width (7.68 vs 4.07 mm; P < .001). There was no difference in the change in joint space width between the 2 groups (1.11 vs 0.76 mm; P = .05). The UCL was significantly thicker in pitchers who threw more than 67 pitches per appearance (4.69 vs 4.14 mm), who pitched more than 5 innings per appearance (4.76 vs 4.11 mm), and who had more than 5.5 years of pitching experience (4.71 vs 4.07 mm; P < .001). Linear regression demonstrated that age, weight, and pitches per appearance (R 2 = 0

  1. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Fang, Jing; Yuan, Jianping

    2018-03-01

    The existence of the path dependent dynamic singularities limits the volume of available workspace of free-floating space robot and induces enormous joint velocities when such singularities are met. In order to overcome this demerit, this paper presents an optimal joint trajectory planning method using forward kinematics equations of free-floating space robot, while joint motion laws are delineated with application of the concept of reaction null-space. Bézier curve, in conjunction with the null-space column vectors, are applied to describe the joint trajectories. Considering the forward kinematics equations of the free-floating space robot, the trajectory planning issue is consequently transferred to an optimization issue while the control points to construct the Bézier curve are the design variables. A constrained differential evolution (DE) scheme with premature handling strategy is implemented to find the optimal solution of the design variables while specific objectives and imposed constraints are satisfied. Differ from traditional methods, we synthesize null-space and specialized curve to provide a novel viewpoint for trajectory planning of free-floating space robot. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a free-floating spacecraft and demonstrate the feasibility and effectiveness of the proposed method.

  2. Comparison of maxillary anterior tooth width and facial dimensions of 3 ethnicities.

    PubMed

    Parciak, Ewa C; Dahiya, Ankur T; AlRumaih, Hamad S; Kattadiyil, Mathew T; Baba, Nadim Z; Goodacre, Charles J

    2017-10-01

    As the cosmetic demands of patients increase, determining the appropriate dimensions of the maxillary anterior teeth has become increasingly relevant. The relationship between facial measurements and tooth size provide guidance for maxillary anterior tooth size selection. However, most publications on this topic have focused on the white population, and more data for tooth sizes and their proportions in other ethnicities are needed. The purpose of this observational study was to investigate the relationship between the mesiodistal dimensions of the 6 maxillary anterior teeth and the bizygomatic width, interpupillary distance, intercanthal distance, interalar width, and intercommissural width of individuals of Asian, African-American, and white ethnicities. Standardized digital images of 360 participants (120 Asian, 120 African-American, and 120 white) were used to measure facial segments. Individual dimensions of the 6 maxillary anterior teeth were measured using stone casts with digital sliding caliper. The combined width of the 6 maxillary anterior teeth on a straight line corresponded to the sum of the anterior tooth width. The means and standard deviations from descriptive measurements were calculated and analyzed for face and maxillary anterior tooth ratios and correlations. Statistical analysis was done using the Kruskal-Wallis procedure to compare facial and tooth parameters among the 3 ethnicities. Appropriate post hoc comparisons that adjusted for multiple testing were conducted when warranted (α=.05). The Spearman rho correlation, a nonparametric correlate of the Pearson correlation, was used to associate the facial and tooth parameters within the strata of sex and ethnicity. No consistent ratios were found among the examined facial dimensions and the mesiodistal dimensions of the 6 maxillary anterior teeth among the 3 ethnicities, except for the central incisor width-to-bizygomatic width ratio. No correlations were found between the facial dimensions

  3. Cadre Photos for Joint Test Team Feature

    NASA Image and Video Library

    2017-02-23

    During a tour of SpaceX headquarters in Hawthorne, California, commercial crew astronauts Bob Behnken, left, and Eric Boe participate in joint test team training using mockup components of the Crew Dragon on Feb. 23, 2017. Mike Good, program manager for Crew Operations and Testing at Johnson Space Center in Houston, is in the background. Crew Dragon is being developed and manufactured in partnership with NASA's Commercial Crew Program to return human spaceflight capabilities to the U.S.

  4. Deducing the reachable space from fingertip positions.

    PubMed

    Hai-Trieu Pham; Pathirana, Pubudu N

    2015-01-01

    The reachable space of the hand has received significant interests in the past from relevant medical researchers and health professionals. The reachable space was often computed from the joint angles acquired from a motion capture system such as gloves or markers attached to each bone of the finger. However, the contact between the hand and device can cause difficulties particularly for hand with injuries, burns or experiencing certain dermatological conditions. This paper introduces an approach to find the reachable space of the hand in a non-contact measurement form utilizing the Leap Motion Controller. The approach is based on the analysis of each position in the motion path of the fingertip acquired by the Leap Motion Controller. For each position of the fingertip, the inverse kinematic problem was solved under the physiological multiple constraints of the human hand to find a set of all possible configurations of three finger joints. Subsequently, all the sets are unified to form a set of all possible configurations specific for that motion. Finally, a reachable space is computed from the configuration corresponding to the complete extension and the complete flexion of the finger joint angles in this set.

  5. History of Hubble Space Telescope (HST)

    NASA Image and Video Library

    1993-07-09

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  6. Space Separatism: Degree of Differentiation

    DTIC Science & Technology

    2014-12-01

    Separate Service” (Norfolk, VA: Joint Forces Staff College, 6 September 2002); MAJ William S. Moncrief , “Building a United States Space Force,” Army Space...unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 November–December 2014 Air...FY14_Green_Book.pdf. 32. Story, “Separate Space Force,” 2–5. 33. Moncrief , “Building a United States Space Force,” 34–38. 34. DODD 3100.10, Space Policy, 3. 35. Lt

  7. Attentional Focus and Grip Width Influences on Bench Press Resistance Training.

    PubMed

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D; Sundstrup, Emil; Colado, JuanCarlos; Andersen, Lars L

    2018-04-01

    This study evaluated the influence of different attentional foci for varied grip widths in the bench press. Eighteen resistance-trained men were familiarized with the procedure and performed a one-repetition maximum (1RM) test during Session 1. In Session 2, they used three different standardized grip widths (100%, 150%, and 200% of biacromial width distance) in random order at 50% of 1RM while also engaged in three different attention focus conditions (external focus on the bench press, internal focus on pectoralis major muscles, and internal focus on triceps brachii muscles). Surface electromyography (EMG) signals were recorded from the triceps brachii and pectoralis major, and peak EMG of the filtered signals were normalized to maximum EMG of each muscle. Both grip width and focus influenced the muscle activity level, but there were no significant interactions between these variables. Exploratory analyses suggested that an internal focus may slightly (4%-6%) increase pectoralis major activity at wider grip widths and triceps brachii activity at narrower grip widths, but this should be confirmed or rejected in a study with a larger sample size or through a meta-analysis of research to date.

  8. A design aid for determining width of filter strips

    Treesearch

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer

    2008-01-01

    watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites.This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trapping...

  9. Erectable/deployable concepts for large space system technology

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1980-01-01

    Erectable/deployable space structure concepts particularly relating to the development of a science and applications space platform are presented. Design and operating features for an automatic coupler clevis joint, a side latching detent joint, and a module-to-module auto lock coupler are given. An analysis of the packaging characteristics of stacked subassembly, single fold, hybrid, and double fold concepts is given for various platform structure configurations. Payload carrier systems and assembly techniques are also discussed.

  10. Space Shuttle, private enterprise and intellectual properties in the context of space manufacturing

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.; Kempf, R. F.

    1983-01-01

    It is a national policy to make the capabilities of the Space Transportat ion System available to a wide range of potential users. This includes its availability as a space manufacturing facility for commercial activities, which may be carried out on a reimbursable basis or as a joint endeavor with NASA, but with substantial private investment. In any high risk, long lead-time research and development activity directed towards commercialization, the protection afforded the results of the research and development under the laws relating to intellectual property rights may provide an important incentive for private investment. The paper reviews NASA's policies and practices for the protection of privately-established intellectual property rights involved in STS use, with particular emphasis on reimbursable launch agreements and joint endeavor agreements.

  11. Beam width evolution of astigmatic hollow Gaussian beams in highly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Yang, Zhen-Feng; Jiang, Xue-Song; Yang, Zhen-Jun; Li, Jian-Xing; Zhang, Shu-Min

    We investigate the beam width evolution of astigmatic hollow Gaussian beams propagating in highly nonlocal nonlinear media. The input-power-induced different evolutions of the beam width are illustrated: (i) the beam widths in two transverse directions are compressed or broadened at the same time; (ii) the beam width in one transverse direction keeps invariant, and the other is compressed or broadened; (iii) furthermore, the beam width in one transverse direction is compressed, whereas it in the other transverse direction is broadened.

  12. Preserving the posttrapeziectomy space with a human acellular dermal matrix spacer: a pilot case series of patients with thumb carpometacarpal joint arthritis.

    PubMed

    Yao, Caroline A; Ellis, Chandra V; Cohen, Myles J; Kulber, David A

    2013-10-01

    Advanced thumb carpometacarpal arthritis is widely treated with trapeziectomy and tendon interposition despite donor-site morbidities. Trapeziectomy alone leaves a postresection space, leading to proximal metacarpal migration and scaphoid/trapezoid impingement. Prosthetic implants have been unsuccessful due to particulate debris, silicone synovitis, osteolysis, and migration. Recent studies have shown successful use of allograft for interposition material in the posttrapeziectomy space both in animal and human models. To obviate the need for autologous tissue, maintain thumb length, and reduce the risk of scaphoid impingement, the senior author developed an interposition arthroplasty technique using a spacer constructed from human acellular dermal matrix (HADM). Sixteen patients with Eaton stage III-IV thumb carpometacarpal osteoarthritis received the above procedure from the 2 senior authors. HADM was imbricated to fill the posttrapeziectomy space and secured to the volar capsule and metacarpal base. Pre- and postoperative trapezial space on radiograph, pain scores, and grip strength were recorded. Six months postoperatively, radiographs showed an average joint space loss of 11%. Heights postoperatively were not significantly different from immediate postoperative heights (P ≥ 0.01). At 6 months, patients had improved pain and grip strength (P ≤ 0.01). No infections, foreign body reactions, or other complications occurred. HADM has been used extensively in other forms of reconstruction and has been shown to incorporate into surrounding tissues through neovascularization. Our early results illustrate that HADM can safely fill the dead space left by trapeziectomy.

  13. Modeling the effect of preexisting joints on normal fault geometries using a brittle and cohesive material

    NASA Astrophysics Data System (ADS)

    Kettermann, M.; van Gent, H. W.; Urai, J. L.

    2012-04-01

    Brittle rocks, such as for example those hosting many carbonate or sandstone reservoirs, are often affected by different kinds of fractures that influence each other. Understanding the effects of these interactions on fault geometries and the formation of cavities and potential fluid pathways might be useful for reservoir quality prediction and production. Analogue modeling has proven to be a useful tool to study faulting processes, although usually the used materials do not provide cohesion and tensile strength, which are essential to create open fractures. Therefore, very fine-grained, cohesive, hemihydrate powder was used for our experiments. The mechanical properties of the material are scaling well for natural prototypes. Due to the fine grain size structures are preserved in in great detail. The used deformation box allows the formation of a half-graben and has initial dimensions of 30 cm width, 28 cm length and 20 cm height. The maximum dip-slip along the 60° dipping predefined basement fault is 4.5 cm and was fully used in all experiments. To setup open joints prior to faulting, sheets of paper placed vertically within the box to a depth of about 5 cm from top. The powder was then sieved into the box, embedding the paper almost entirely. Finally strings were used to remove the paper carefully, leaving open voids. Using this method allows the creation of cohesionless open joints while ensuring a minimum impact on the sensitive surrounding material. The presented series of experiments aims to investigate the effect of different angles between the strike of a rigid basement fault and a distinct joint set. All experiments were performed with a joint spacing of 2.5 cm and the fault-joint angles incrementally covered 0°, 4°, 8°, 12°, 16°, 20° and 25°. During the deformation time lapse photography from the top and side captured every structural change and provided data for post-processing analysis using particle imaging velocimetry (PIV). Additionally

  14. The Distribution and Composition Characteristics of Siliceous Rocks from Qinzhou Bay-Hangzhou Bay Joint Belt, South China: Constraint on the Tectonic Evolution of Plates in South China

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak. PMID:24302882

  15. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  16. Wide step width reduces knee abduction moment of obese adults during stair negotiation.

    PubMed

    Yocum, Derek; Weinhandl, Joshua T; Fairbrother, Jeffrey T; Zhang, Songning

    2018-05-15

    An increased likelihood of developing obesity-related knee osteoarthritis may be associated with increased peak internal knee abduction moments (KAbM). Increases in step width (SW) may act to reduce this moment. The purpose of this study was to determine the effects of increased SW on knee biomechanics during stair negotiation of healthy-weight and obese participants. Participants (24: 10 obese and 14 healthy-weight) used stairs and walked over level ground while walking at their preferred speed in two different SW conditions - preferred and wide (200% preferred). A 2 × 2 (group × condition) mixed model analysis of variance was performed to analyze differences between groups and conditions (p < 0.05). Increased SW increased the loading-response peak knee extension moment during descent and level gait, decreased loading-response KAbMs, knee extension and abduction range of motion (ROM) during ascent, and knee adduction ROM during descent. Increased SW increased loading-response peak mediolateral ground reaction force (GRF), increased peak knee abduction angle during ascent, and decreased peak knee adduction angle during descent and level gait. Obese participants experienced disproportionate changes in loading-response mediolateral GRF, KAbM and peak adduction angle during level walking, and peak knee abduction angle and ROM during ascent. Increased SW successfully decreased loading-response peak KAbM. Implications of this finding are that increased SW may decrease medial compartment knee joint loading, decreasing pain and reducing joint deterioration. Increased SW influenced obese and healthy-weight participants differently and should be investigated further. Copyright © 2018. Published by Elsevier Ltd.

  17. The research of laryngeal joints to reconstruction and modeling.

    PubMed

    Zhang, Yi; Shi, Tingchun

    2014-01-01

    Larynx has a complex structure with joints and multiple functions. In order to study the artificial larynx and artificial auricle scaffold, a three-dimensional digital model of laryngeal joint is established in this paper using MIMICS with its biomechanical properties analyzed and calculated by using the finite element method. This model is based on the CT scanned images of 281 layers with an interlamellar spacing of 1.25 mm. The obtained data are denoised, segmented and smoothed before being loaded into MIMICS. By further optimizations, an accurate and complete 3D model can be obtained. Subsequently, a 3D FEM of the normal larynx joint is performed which allows observations from any dimensions and angles. Compared with natural laryngeal joint, this model has good geometric similarity and mechanically similar throat voicing functions.

  18. [Sacroiliac joint disorders in Abidjan: epidemiological, clinical, radiological and etiological characteristics].

    PubMed

    Diomandé, Mohamed; Eti, E; Ouattara, B; Cheteu, K E; Kouakou Ehaulier Soh, C L; Gbané-Koné, M; Djaha Kouassi, Jean-Mermoze; Kouakou N'zué, M

    2014-10-01

    The sacroiliac joint remains unknown in sub-Saharan Africa. Studies about the sacroiliac diseases are rare Aim : Describe the epidemiological, clinical, radiological and etiological characteristics of sacroiliac joint diseases in Abidjan Methods : Retrospective and descriptive study concerning 17 patients hospitalized from February 2003 to April 2010 in the department of rheumatology of university hospital center of Cocody (Abidjan) for buttock pain or others functional signs evoking sacroiliac joint which were attested by radiographic lesions. We were interested on the epidemiological, clinical and radiological characteristics and the etiologies in the sacroiliac disease. The hospital prevalence of sacroiliac diseases was 0.55% corresponding in 17 of 3067 rheumatological diseases. The female sex predominated (82.35%) and the mean age of 25.58 years. Gyneco-obstetric events were the predominant risk factors (47.05%). Sacroiliac damage was manifested by inflammatory pain (64.7%) localized at the buttock or lumbar spine, radiating to the thigh (52.9%) and was accompanied by functional disability (82.2%) and fever was not present every time (64.7%). The physical findings were the tripod sign positive (58.8%), the monopodal backing positive (41.2%) and palpation painful of sacroiliac joint. The standard radiograph revealed a blurring aspect and widening of joint space associated with demineralization (68.4%), a joint space narrowing and erosion of articular banks (23.5%). The etiologies found were bacterial arthritis (82.3%) mainly pyogenic (70.58%), osteoarthritis (11.7%) and ankylosing spondylitis (5.9%). Sacroiliac joint diseases are rare in rheumatology practice in Abidjan, concern younger subjects and are dominated by pyogenic sacroiliitis.

  19. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    PubMed

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  20. Failure Analysis in Space: International Space Station (ISS) Starboard Solar Alpha Rotary Joint (SARJ) Debris Analysis

    NASA Technical Reports Server (NTRS)

    Long, V. S.; Wright, M. C.; McDanels, S. J.; Lubas, D.; Tucker, B.; Marciniak, P. J.

    2010-01-01

    This slide presentation reviews the debris analysis of the Starboard Solar Alpha Rotary Joint (SARJ), a mechanism that is designed to keep the solar arrays facing the sun. The goal of this was to identify the failure mechanism based on surface morphology and to determine the source of debris through elemental and particle analysis.

  1. Does Height to Width Ratio Correlate with Mean Volume in Gastropods?

    NASA Astrophysics Data System (ADS)

    Barriga, R.; Seixas, G.; Payne, J.

    2012-12-01

    Marine organisms' shell shape and size show important biological information. For example, shape and size can dictate how the organism ranges for food and escapes predation. Due to lack of data and analysis, the evolution of shell size in marine gastropods (snails) remains poorly known. In this study, I attempt to find the relationship between height to width ratio and mean volume. I collected height and width measurements from primary literature sources and calculated volume from these measurements. My results indicate that there was no correlation between height to width ratio and mean volume between 500 to 200 Ma, but there was a correlation between 200 Ma to present where there is a steady increase in both height to width ratio and mean volume. This means that shell shape was not an important factor at the beginning of gastropod evolution but after 200 Ma body size evolution was increasingly driven by the height to width ratio.

  2. Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading

    NASA Astrophysics Data System (ADS)

    Awadhani, L. V.; Bewoor, Anand, Dr.

    2017-08-01

    The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.

  3. Subperiosteal Transmission Of Intra-Articular Pressure Between Articulated And Stationary Joints

    PubMed Central

    Pitkin, Mark; Muppavarapu, Raghuveer; Cassidy, Charles; Pitkin, Emil

    2015-01-01

    Hydrostatic pressures can be transmitted between synovial capsules. In each of ten rabbits, we simultaneously measured pressure in two joints, one of which was passively ranged, and the other of which was kept stationary. The intra-articular pressure inside the stationary joint changed every time its companion joint was ranged. But the pressure in the stationary joint did not change when the periosteum was transected above the ranged joint. This phenomenon was observed in all four animals that served as their own controls. The study suggests that the intra-articular pressure was transmitted through the space between the periosteum and the bone surface. Alternative explanations, like measurements of venous blood pressure, did not show correlation with hydrostatic pressure changes in the joints. The Floating Skeleton concept suggests a biomechanical rationale for this newly observed phenomenon: that there exists a subperiosteal hydrostatic connection of synovial joints, and that this “net” distributes excess pressures among joints through the periosteal sheath to sustain the integrity of the joint contacting surfaces over a lifetime. PMID:25632015

  4. Astronaut candidate strength measurement using the Cybex 2 and the LIDO Multi-Joint 2 dynamometers

    NASA Technical Reports Server (NTRS)

    Carroll, Amy E.; Wilmington, Robert P.

    1992-01-01

    The Anthropometry and Biomechanics Laboratory in the man-Systems division at NASA's Johnson Space Center has as one of its responsibilities the anthropometry and strength measurement data collection of astronaut candidates. The anthropometry data is used to ensure that the astronaut candidates are within the height restrictions for space vehicle and space suit design requirements, for example. The strength data is used to help detect abnormalities or isolate injuries to muscle groups that could jeopardize the astronauts safety. The Cybex II Dynamometer has been used for strength measurements from 1985 through 1991. The Cybex II was one of the first instruments of its kind to measure strength and similarity of muscle groups by isolating the specific joint of interest. In November 1991, a LIDO Multi-Joint II Dynamometer was purchased to upgrade the strength measurement data collection capability of the Anthropometry and Biomechanics Laboratory. The LIDO Multi-Joint II Dynamometer design offers several advantages over the Cybex II Dynamometer including a more sophisticated method of joint isolation and a more accurate and efficient computer based data collection system.

  5. Effect of ribbon width on electrical transport properties of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bang, Kyuhyun; Chee, Sang-Soo; Kim, Kangmi; Son, Myungwoo; Jang, Hanbyeol; Lee, Byoung Hun; Baik, Kwang Hyeon; Myoung, Jae-Min; Ham, Moon-Ho

    2018-03-01

    There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanoribbons (GNRs). Monolayer graphene sheets and Si nanowires (NWs) were prepared by chemical vapor deposition and a combination of nanosphere lithography and metal-assisted electroless etching from a Si wafer, respectively. Back-gated GNR field-effect transistors were fabricated on a heavily p-doped Si substrate coated with a 300 nm-thick SiO2 layer, by O2 reactive ion etching of graphene sheets using etch masks based on Si NWs aligned on the graphene between the two electrodes by a dielectrophoresis method. This resulted in GNRs with various widths in a highly controllable manner, where the on/off current ratio was inversely proportional to ribbon width. The field-effect mobility decreased with decreasing GNR widths due to carrier scattering at the GNR edges. These results demonstrate the formation of a bandgap in GNRs due to enhanced carrier confinement in the transverse direction and edge effects when the GNR width is reduced.

  6. Mars Together 2001: Joint US-Russian Team

    NASA Technical Reports Server (NTRS)

    Ulrich, P.; Kremnev, R.; Boyce, J.; Eremenko, A.; Bourke, R.; Linkin, V.; Campbell, J.; Martynov, B.; Haynes, N.; Mitrofanov, I.; hide

    1996-01-01

    While the US and USSR have collaborated in human space flight and Earth application missions, this is the first time in the cultural relations between our two countries that American and Russian specialists have been authorized to work together on a joint space science mission. A study was commissioned to investigate the possibility of a combined US/Russian mission in the 2001 opportunity. A basic option for a proposed mission (abbreviated as MT 2001) was adopted. This option is described.

  7. Risk management in international manned space program operations.

    PubMed

    Seastrom, J W; Peercy, R L; Johnson, G W; Sotnikov, B J; Brukhanov, N

    2004-02-01

    New, innovative joint safety policies and requirements were developed in support of the Shuttle/Mir program, which is the first phase of the International Space Station program. This work has resulted in a joint multinational analysis culminating in joint certification for mission readiness. For these planning and development efforts, each nation's risk programs and individual safety practices had to be integrated into a comprehensive and compatible system that reflects the joint nature of the endeavor. This paper highlights the major incremental steps involved in planning and program integration during development of the Shuttle/Mir program. It traces the transition from early development to operational status and highlights the valuable lessons learned that apply to the International Space Station program (Phase 2). Also examined are external and extraneous factors that affected mission operations and the corresponding solutions to ensure safe and effective Shuttle/Mir missions. c2003 Published by Elsevier Ltd.

  8. Locations of Joint Physical Activity in Parent-Child Pairs Based on Accelerometer and GPS Monitoring

    PubMed Central

    Dunton, Genevieve Fridlund; Liao, Yue; Almanza, Estela; Jerrett, Micheal; Spruijt-Metz, Donna; Pentz, Mary Ann

    2012-01-01

    Background Parental factors may play an important role in influencing children’s physical activity levels. Purpose This cross-sectional study sought to describe the locations of joint physical activity among parents and children. Methods Parent-child pairs (N = 291) wore an Actigraph GT2M accelerometer and GlobalSat BT-335 Global Positioning Systems (GPS) device over the same 7-day period. Children were ages 8–14 years. Joint behavior was defined by a linear separation distance of less than 50m between parent and child. Land use classifications were assigned to GPS data points. Results Joint physical activity was spread across residential locations (35%), and commercial venues (24%), and open spaces/parks (20%). Obese children and parents performed less joint physical activity in open spaces/parks than under/normal weight children and parents (p’s < .01). Conclusions Understanding where joint parent-child physical activity naturally occurs may inform location-based interventions to promote these behaviors. PMID:23011914

  9. Turbulent transport regimes and the SOL heat flux width

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2014-10-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks, and for seeking possible mitigation schemes. Simulation and theory results using reduced edge/SOL turbulence models have produced SOL widths and scalings in reasonable accord with experiments in many cases. In this work, we attempt to qualitatively and conceptually understand various regimes of edge/SOL turbulence and the role of turbulent transport in establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. Recent SOLT turbulence code results are employed to understand the roles of these considerations and to develop analytical scalings. We find a heat flux width scaling with major radius R that is generally positive, consistent with older results reviewed in. The possible relationship of turbulence mechanisms to the heuristic drift mechanism is considered, together with implications for future experiments. Work supported by US DOE grant DE-FG02-97ER54392.

  10. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  11. Capacitor charging FET switcher with controller to adjust pulse width

    DOEpatents

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  12. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  13. Effect of the push-up exercise at different palmar width on muscle activities.

    PubMed

    Kim, You-Sin; Kim, Do-Yeon; Ha, Min-Seong

    2016-01-01

    [Purpose] The purpose of the present study was to determine the effects of changes in palmar width on the muscle activities of the shoulder and truncus muscles during push-up exercise. [Subjects] Twelve healthy adult males participated in this study as subjects. [Methods] Push-up exercises were performed with three different palmar width in narrow (50%), neutral (100%), and wide positions (150%). We measured the muscle activities of the deltoideus p. acromialis, pectoralis minor, pectoralis major, serratus anterior, biceps brachii, triceps brachii, latissimus dorsi, and infraspinatus. [Results] Pectoralis minor, triceps brachii, and infraspinatus muscle activities were greater during push-ups performed with the 50% palmar width compared with the other palmar widths. Pectoralis major muscle activity was greater during push-ups performed with the 50% and 100% palmar widths compared with the 150% palmar width. Serratus anterior muscle activity was greater during push-ups performed with the 150% palmar width compared with the other palmar widths. [Conclusion] These results are expected to serve as reference materials for push-up exercise applications in training programs for truncus muscle strengthening or rehabilitation programs for scapula patients.

  14. Joint estimation over multiple individuals improves behavioural state inference from animal movement data.

    PubMed

    Jonsen, Ian

    2016-02-08

    State-space models provide a powerful way to scale up inference of movement behaviours from individuals to populations when the inference is made across multiple individuals. Here, I show how a joint estimation approach that assumes individuals share identical movement parameters can lead to improved inference of behavioural states associated with different movement processes. I use simulated movement paths with known behavioural states to compare estimation error between nonhierarchical and joint estimation formulations of an otherwise identical state-space model. Behavioural state estimation error was strongly affected by the degree of similarity between movement patterns characterising the behavioural states, with less error when movements were strongly dissimilar between states. The joint estimation model improved behavioural state estimation relative to the nonhierarchical model for simulated data with heavy-tailed Argos location errors. When applied to Argos telemetry datasets from 10 Weddell seals, the nonhierarchical model estimated highly uncertain behavioural state switching probabilities for most individuals whereas the joint estimation model yielded substantially less uncertainty. The joint estimation model better resolved the behavioural state sequences across all seals. Hierarchical or joint estimation models should be the preferred choice for estimating behavioural states from animal movement data, especially when location data are error-prone.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1988-03-21

    The Marshall Space Flight Center (MSFC) successfully test fired the third in a series of Transient Pressure Test Articles (TPTA) in its east test area. The test article was a short-stack solid rocket motor 52-feet long and 12-feet in diameter. The TPTA tests were designed to evaluate the effects of temperature, pressure and external loads encountered by the SRM, primarily during ignition transients. Instrumentation on the motor recorded approximately 1,000 charnels of data to verify the structural performance, thermal response, sealing capability of the redesign field, and case-to-nozzle joints. The TPTA test stand, 14-feet wide by 26-feet long by 33-feet high, was built in 1987. The TPTA series was a joint effort among Morton Thiokol, Inc., United Space Boosters, Inc., Wyle Laboratories, and MSFC. Wyle Laboratories conducted the tests for the MSFC, which manages the redesigned SRM program for NASA.

  16. Entropy of space-time outcome in a movement speed-accuracy task.

    PubMed

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  18. Redundant Manipulator Self-Motion Topology Under Joint Limits with an 8-DOF Case Study

    NASA Technical Reports Server (NTRS)

    Luck, C. L.; Lee, S.

    1993-01-01

    This paper investigates the topology of self-motion manifolds for serial redundant manipulators with revolute joints in the presence of joint limits. It is known that the preimages of singular taskpoints divide the configuration space into regions where self-motion manifolds are homotopic.

  19. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  20. On the use of space photography for identifying transportation routes: A summary of problems

    NASA Technical Reports Server (NTRS)

    Simonett, D. S.; Henderson, F. M.; Egbert, D. D.

    1970-01-01

    It has been widely suggested that space photography may be used for updating maps of transportation networks. Proponents of the argument have suggested that color space photographs of the resolution obtained with Hasselblad 80 mm lenses (about 300 feet) contain enough useful information to update the extensions of major U. S. highways. The present study systematically documents for the Dallas-Fort Worth area the potential of such space photography in detecting, and to a lesser degree identifying, the existing road networks. Color separation plates and an enlargement of the color photograph were produced and all visible roads traced onto transparencies for study. Major roads and roads under construction were the most visible while lower class roads and roads in urban areas had the poorest return. Road width and classification were found to be the major determinant in visibility, varying from 100 per cent visible for divided highways to 15 per cent visible of bladed earth roads. In summary, space photographs of this resolution proved to be difficult to use for accurate road delineation. Only super highways in rural areas with the greatest road-width were completely identifiable, the width being about 1/3 that of the resolution cell.

  1. Solar Wind Suprathermal Electron Strahl Width from 1.3 to 5.4 AU

    NASA Astrophysics Data System (ADS)

    Goodrich, K. A.; Skoug, R. M.; Steinberg, J. T.; McComas, D. J.

    2010-12-01

    The solar wind suprathermal electron population typically includes an anisotropic anti-sunward field-aligned beam component, referred to as the strahl. As strahl electrons propagate anti-sunward in a decreasing interplanetary magnetic field, magnetic focusing acts to narrow the strahl beam width. At the same time, scattering processes work against the focusing and maintain strahl beams of finite width. The observed strahl width in the heliosphere is the result of the competition between focusing and scattering. The suprathermal electron strahl width and intensity observed by Ulysses from 1991 - 2008 have been newly examined. These observations cover radial distances between 1.3 and 5.4 AU, and span more than a solar cycle. The strahl width and intensity are characterized by fitting pitch angle distributions to a function consisting of a Gaussian, peaked parallel (or anti-parallel) to the interplanetary field, plus a constant term. Approximately 50 - 65% of the Ulysses pitch angle spectra yield reasonable fits in preliminary analysis, indicating distributions that are well-described by this simple function. For most of the Ulysses observations at energies below 429 eV, the strahl width lies between 20o and 90o. The Ulysses results contrast with previously reported ACE observations at 1 AU. In particular, the more distant Ulysses results appear shifted towards larger strahl widths, indicating that scattering becomes relatively more important than focusing beyond 1 AU. The Ulysses strahl widths are generally broader at heliospheric distances just beyond 2.5 AU than inside 2.5 AU. Between about 2.5 AU and 4.5 AU, the strahl width distribution varies little. Beyond 4.5 AU the strahl width again narrows, indicating that focusing begins to overcome scattering at these large distances. The distribution of strahl widths during the 1st (1992-1998) and 2nd (1998 - 2004) Ulysses polar orbits were compared, with little difference found. However a comparison of strahl widths

  2. Regionally Varying Assessments of Tropical Width in Reanalyses and CMIP5 Models Using a Tropopause Break Metric

    NASA Astrophysics Data System (ADS)

    Homeyer, C. R.; Martin, E. R.; McKinzie, R.; McCarthy, K.

    2017-12-01

    The boundary between the tropics and the extratropics in each hemisphere is not fixed in space or time. Variations in the north-south width of the tropics are directly connected to changes in weather and climate. These fluctuations have been shown to impact tropical biodiversity, the spread of vector borne diseases, atmospheric chemistry, and additional natural and human sectors. However, there is no unanimous definition of the tropical boundary. This has led to a disagreement on the magnitude of changes in the tropical width during the past 30 years and a lack of understanding concerning its spatial and temporal variability. This study identifies the variability of the tropical width in modern reanalyses (ERA-Interim, JRA-55, CFSR, MERRA, and MERRA-2) and CMIP5 models (all models with available 6-hourly output) using a novel analysis metric: the tropopause "break" (i.e., the sharp discontinuity in tropopause altitude between the tropics and extratropics). Similarities and differences are found amongst the reanalyses, with some degree of tropical narrowing in the Eastern Pacific between 1981 and 2010. Historical simulations from the CMIP5 models agree well with the tropopause break latitudes depicted by the reanalyses, with considerable differences in estimated trends over the relatively short overlapping time period of the datasets. For future projections under the RCP8.5 scenario from 2006 to 2100, CMIP5 models generally show statistically significant increases in tropical width (at the 99% level) throughout each hemisphere, with regional variability of 1-2 degrees in poleward latitude trends. The impact of CMIP5 model grid resolution and other factors on the results of the tropopause break analysis will be discussed.

  3. Joint NASA and DoD deployable optics space experiment

    NASA Astrophysics Data System (ADS)

    Schulthess, Marcus R.; Levine, Marie B.; Bell, Kevin D.; Leonard, Steve; Vanik, Michael W.

    2000-07-01

    The Air Force Research Lab is proposing a DoD partnership with NASA on NEXUS; a deployable optics flight demonstrator scheduled to launch in 2004. NEXUS is designed to demonstrate technologies for the Next Generation Space Telescope, primarily the deployment and wave front control of a 2.8 meter optical telescope in space.

  4. Association of Anterior Cruciate Ligament Width With Anterior Knee Laxity.

    PubMed

    Wang, Hsin-Min; Shultz, Sandra J; Schmitz, Randy J

    2016-06-02

    Greater anterior knee laxity (AKL) has been identified as an anterior cruciate ligament (ACL) injury risk factor. The structural factors that contribute to greater AKL are not fully understood but may include the ACL and bone geometry. To determine the relationship of ACL width and femoral notch angle to AKL. Cross-sectional study. Controlled laboratory. Twenty recreationally active females (age = 21.2 ± 3.1 years, height = 1.66.1 ± 7.3 cm, mass = 66.5 ± 12.0 kg). Anterior cruciate ligament width and femoral notch angle were obtained with magnetic resonance imaging of the knee and AKL was assessed. Anterior cruciate ligament width was measured as the width of a line that transected the ACL and was drawn perpendicular to the Blumensaat line. Femoral notch angle was formed by the intersection of the line parallel to the posterior cortex of the femur and the Blumensaat line. Anterior knee laxity was the anterior displacement of the tibia relative to the femur (mm) at 130 N of an applied force. Ten participants' magnetic resonance imaging data were assessed on 2 occasions to establish intratester reliability and precision. Using stepwise backward linear regression, we examined the extent to which ACL width, femoral notch angle, and weight were associated with AKL. Strong measurement consistency and precision (intraclass correlation coefficient [2,1] ± SEM) were established for ACL width (0.98 ± 0.3 mm) and femoral notch angle (0.97° ± 1.1°). The regression demonstrated that ACL width (5.9 ± 1.4 mm) was negatively associated with AKL (7.2 ± 2.0 mm; R(2) = 0.22, P = .04). Femoral notch angle and weight were not retained in the final model. A narrower ACL was associated with greater AKL. This finding may inform the development of ACL injury-prevention programs that include components designed to increase ACL size or strength (or both). Future authors should establish which other factors contribute to greater AKL in order to best inform injury-prevention efforts.

  5. Joint experiments using ETS-5

    NASA Astrophysics Data System (ADS)

    Nakata, Mutsumi

    1993-03-01

    An overview of the PARTNERS (Pan-Pacific Regional Telecommunications Network Research Satellite) project, which is the post-mission utilization of the ETS-5 (Engineering Test Satellite-5) is presented. The project was registered at SAFISY (Space Agency Forum for International Space Year) and includes the following experiments: (1) research on radio propagation characteristics in satellite links in Pan-Pacific region; (2) joint study on development of rural satellite network using simple mobile station; (3) experiments on telecommunication using personal computers for academic network; (4) experiments on remote education and training through satellite networks; (5) experiments on remote medicine; (6) experiments on the operation of medical information data base; (7) experiments on transmission of the earth observation data; and (8) demonstration of real time transmission of Asia-Pacific ISY (International Space Year) Conference. The experiment systems consisting of space segment (ETS-5) and simple and low cost ground system composed of 1.2 m aperture parabolic antenna, TV (Television) conference system, and terminal equipment are outlined.

  6. Robotic Joints Support Horses and Humans

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A rehabilitative device first featured in Spinoff 2003 is not only helping human patients regain the ability to walk, but is now helping our four-legged friends as well. The late James Kerley, a prominent Goddard Space Flight Center researcher, developed cable-compliant mechanisms in the 1980s to enable sounding rocket assemblies and robots to grip or join objects. In cable-compliant joints (CCJs), short segments of cable connect structural elements, allowing for six directions of movement, twisting, alignment, and energy damping. Kerley later worked with Goddard s Wayne Eklund and Allen Crane to incorporate the cable-compliant mechanisms into a walker for human patients to support the pelvis and imitate hip joint movement.

  7. Radiologic changes of ankle joint after total knee arthroplasty.

    PubMed

    Lee, Jung Hee; Jeong, Bi O

    2012-12-01

    The authors noticed that ankle joint osteoarthritis was not uncommon when lower extremity malalignment, such as a knee varus deformity, was present as a result of severe osteoarthritis of the knee. The purpose of this study was to analyze radiologic changes of the ankle joint after total knee arthroplasty. This study included 142 cases in 110 patients who underwent total knee arthroplasty and were followed for at least 3 years. The varus knee group included 128 cases and the valgus knee group included 14 cases. On anteroposterior standing lower extremity radiographs, varus and valgus angles of the knee were measured preoperatively and at the last follow-up. The angle between the ground surface and the distal tibial plafond as well as the upper talus was also measured. In addition, tibial anterior surface angle, talar tilt, space between the medial malleolar distal tip and the medial articular surface of the talus, and medial tibiotalar joint space of the ankle joint were measured. Out of 142 cases, 50 (35.2%) had arthritis in the ankle before total knee arthroplasty and 31 (21.8%) had newly developed or progressive arthritis after surgery. In particular, the varus knee group demonstrated statistically significant differences in preoperative varus deformity, preoperative talar tilt, and postoperative correction angle between the cases that developed or had progressive arthritis and those that did not show any changes (p < .05). After total knee arthroplasty, arthritis developed or progressed in the ankle of many cases radiographically. In particular, when the preoperative talar tilt increased medial to the ankle or the postoperative correction angle was large, the incidence of arthritis in the ankle joint increased. The authors recommend more cautious follow-up on the symptoms of the ankle joint after total knee arthroplasty.

  8. Radiologic Analysis and Clinical Study of the Upper One-third Joint Technique for Fluoroscopically Guided Sacroiliac Joint Injection.

    PubMed

    Park, Junghyun; Park, Hue Jung; Moon, Dong Eon; Sa, Gye Jeol; Kim, Young Hoon

    2015-01-01

    Sacroiliac intraarticular injection by the traditional technique can be challenging to perform when the joint is covered with osteophytes or is extremely narrow. To examine whether there is enough space for the needle to be advanced from the L5-S1 interspinous space to the upper one-third sacroiliac joint (SIJ) by magnetic resonance image (MRI) analysis as an alternative to fluoroscopically guided SIJ injection with the lower one-third joint technique, and to determine the feasibility of this novel technique in clinical practice. MRI analysis and observational study. An interventional pain management practice at a university hospital. We analyzed 200 axial T2-weighted MRIs between the L5 and S1 vertebrae of 100 consecutive patients. The following measurements were obtained on both sides: 1) the thickness of fat in the midline; 2) the distance between the midline (Point C) and the junction (Point A) of the skin and the imaginary line that connects the SIJ and the most medial cortex of the ilium; 3) the distance between the midline (Point C) and the junction (Point B) of the skin and the imaginary line that connects the SIJ and the L5 spinous process; 4) the distance between the SIJ and midline (Point C) on the skin, or between the SIJ and the midpoint (Point C') of the line from Point A to Point B; and 5) the angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin. The upper one-third joint technique was performed to establish the feasibility of the alternative technique in 20 patients who had unsuccessful sacroiliac intraarticular injections using the lower one-third joint technique. The mean distances from the midline to Point A and to Point B were 21.9 ± 13.7 mm and 27.8 ± 13.6 mm, respectively. The mean distance between the SIJ and Point C (or Point C') was 81.0 ± 13.3 mm. The angle between the sagittal line and the imaginary line that connects the SIJ and the midline on the skin was 42.8 ± 5.1°. The success

  9. Does Compound Nucleus remember its Isospin- An Evidence from the Fission Widths

    NASA Astrophysics Data System (ADS)

    Garg, Swati; Jain, Ashok Kumar

    2018-05-01

    We present an evidence of isospin effects in nuclear fission by comparing the fission widths for reactions involving different isospin states of the same compound nucleus (CN). Yadrovsky [1] suggested this possibility in 1975. Yadrovsky obtained the fission widths for two reaction data sets, namely 206Pb(α,f) and 209Bi(p,f), both leading to same CN, and concluded that "a nucleus remembers the isospin value of the nuclear states leading to fission". We obtain the fission decay widths for both the T0 + ½ and T0 - ½ states of CN by using two appropriate reaction data sets. We then compare the fission widths for the two isospin states of CN. More specifically, we have chosen the combination of 206Pb(α,f) and 209Bi(p,f) same as presented in Yadrovsky's paper [1] in this study. A significant difference between the ratios of fission decay widths to total decay widths for different isospin values suggests that isospin plays an important role in fission.

  10. On the role of precipitation latent heating in modulating the strength and width of the Hadley circulation

    NASA Astrophysics Data System (ADS)

    Mathew, Sneha Susan; Kumar, Karanam Kishore

    2018-05-01

    The latent heat released in the clouds over the tropics plays a vital role in driving the Hadley circulation (HC). The present study discusses the influence of latent heating (LH) on the HC parameters viz., centre, strength and total width by using precipitation LH profiles derived from the space-borne observations of the Precipitation Radar (PR) onboard Tropical Rain Measuring Mission (TRMM) and meridional stream function (MSF) derived from ECMWF-Interim reanalysis. The latitude of peak latent heating, width of the latent heating distribution and the total LH released within the ascending limb of the HC are estimated and their influence on the HC centre, strength and width is quantified, for the first time. The present results show that the latitude of peak LH significantly influences the position of the HC centre with correlation coefficient of 0.90. This high correlation between these two quantities seems to be due to their co-variability with the apparent motion of the Sun across the latitudes. The intensity of the HC in the NH as well as SH shows high correlation with the latitude of peak LH with coefficients - 0.85 and - 0.78, respectively. These results indicate that farther the latitude of peak LH from the equator in the summer hemisphere, stronger is the HC intensity in the winter hemisphere. The present analysis also reveals that the total LH released within the ascending limb of HC substantially influence the total width of the HC, with correlation coefficient 0.52, as compared to the other two LH parameters. This observation can be attributed to the fact that the HC is sensitive to the latent heat release in the mid-tropospheric levels in the tropics. An attempt is also made to investigate the degree of variability of these parameters after deseasonalization and results are discussed in the light of present understanding. The significance of the present study lies in providing the observational evidence for the influence of latent heating on the HC

  11. Flying on Sun Shine: Sailing in Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhorn, Dean

    2012-03-28

    On January 20th, 2011, NanoSail-D successfully deployed its sail in space. It was the first solar sail vehicle to orbit the earth and the second sail ever unfurled in space. The 10m2 sail, deployment mechanism and electronics were packed into a 3U CubeSat with a volume of about 3500cc. The NanoSail-D mission had two objectives: eject a nanosatellite from a minisatellite; deploy its sail from a highly compacted volume to validate large structure deployment and potential de-orbit technologies. NanoSail-D was jointly developed by NASA's Marshall Space Flight Center and Ames Research Center. The ManTech/NeXolve Corporation provided key sail design support.more » NanoSail-D is managed by Marshall and jointly sponsored by the Army Space and Missile Defense Command, the Space Test Program, the Von Braun Center for Science and Innovation and Dynetics Inc. The presentation will provide insights into sailcraft advances and potential missions enabled by this emerging in-space propulsion technology.« less

  12. Effects of injection nozzle exit width on rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Zhou, Jin; Liu, Shijie; Lin, Zhiyong; Cai, Jianhua

    2017-11-01

    A series of numerical simulations of RDE modeling real injection nozzles with different exit widths are performed in this paper. The effects of nozzle exit width on chamber inlet state, plenum flowfield and detonation propagation are analyzed. The results are compared with that using an ideal injection model. Although the ideal injection model is a good approximation method to model RDE inlet, the two-dimensional effects of real nozzles are ignored in the ideal injection model so that some complicated phenomena such as the reflected waves caused by the nozzle walls and the reversed flow into the nozzles can not be modeled accurately. Additionally, the ideal injection model overpredicts the block ratio. In all the cases that stabilize at one-wave mode, the block ratio increases as the nozzle exit width gets smaller. The dual-wave mode case also has a relatively high block ratio. A pressure oscillation in the plenum with the same main frequency with the rotating detonation wave is observed. A parameter σ is applied to describe the non-uniformity in the plenum. σ increases as the nozzle exit width gets larger. Under some condition, the heat release on the interface of fresh premixed gas layer and detonation products can be strong enough to induce a new detonation wave. A spontaneous mode-transition process is observed for the smallest exit width case. Due to the detonation products existing in the premixed gas layer before the detonation wave, the detonation wave will propagate through reactants and products alternately, and therefore its strength will vary with time, especially near the chamber inlet. This tendency gets weaker as the injection nozzle exit width increases.

  13. A space crane concept for performing on-orbit assembly

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    1992-01-01

    The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.

  14. The Joint Space Operations Center Mission System and the Advanced Research, Collaboration, and Application Development Environment Status Update 2016

    NASA Astrophysics Data System (ADS)

    Murray-Krezan, Jeremy; Howard, Samantha; Sabol, Chris; Kim, Richard; Echeverry, Juan

    2016-05-01

    The Joint Space Operations Center (JSpOC) Mission System (JMS) is a service-oriented architecture (SOA) infrastructure with increased process automation and improved tools to enhance Space Situational Awareness (SSA) performed at the US-led JSpOC. The Advanced Research, Collaboration, and Application Development Environment (ARCADE) is a test-bed maintained and operated by the Air Force to (1) serve as a centralized test-bed for all research and development activities related to JMS applications, including algorithm development, data source exposure, service orchestration, and software services, and provide developers reciprocal access to relevant tools and data to accelerate technology development, (2) allow the JMS program to communicate user capability priorities and requirements to developers, (3) provide the JMS program with access to state-of-the-art research, development, and computing capabilities, and (4) support JMS Program Office-led market research efforts by identifying outstanding performers that are available to shepherd into the formal transition process. In this paper we will share with the international remote sensing community some of the recent JMS and ARCADE developments that may contribute to greater SSA at the JSpOC in the future, and share technical areas still in great need.

  15. Correlations for reduced-width amplitudes in /sup 49/V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.

    1980-10-13

    Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2/sup +/ resonances in /sup 49/V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution.

  16. Line width resonance of the longitudinal optical phonon in GaAs:N

    NASA Astrophysics Data System (ADS)

    Mialitsin, Aleksej; Mascarenhas, Angelo

    2013-03-01

    We extend resonant Raman scattering studies of Mascarenhas et al. [PRB68, 233201 (2003)] of GaAs1-xNx to the ultra-dilute nitrogen doping concentrations, whereby we unambiguously resolve the line width resonances of the LO phonon. A discontinuity is observed in the LO phonon line width resonance energy as a function of concentration. With decreasing nitrogen concentration the EW line width resonance energy reduces by ca. 40 meV at x = 0 . 4 % . This value corresponds to the concentration, at which the localized to delocalized transition manifests itself in the electro-reflectance signature line widths.

  17. Rubber Hand Illusion Affects Joint Angle Perception

    PubMed Central

    Butz, Martin V.; Kutter, Esther F.; Lorenz, Corinna

    2014-01-01

    The Rubber Hand Illusion (RHI) is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model. PMID:24671172

  18. Tunneling time in space fractional quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad; Mandal, Bhabani Prasad

    2018-02-01

    We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.

  19. Positive phase space distributions and uncertainty relations

    NASA Technical Reports Server (NTRS)

    Kruger, Jan

    1993-01-01

    In contrast to a widespread belief, Wigner's theorem allows the construction of true joint probabilities in phase space for distributions describing the object system as well as for distributions depending on the measurement apparatus. The fundamental role of Heisenberg's uncertainty relations in Schroedinger form (including correlations) is pointed out for these two possible interpretations of joint probability distributions. Hence, in order that a multivariate normal probability distribution in phase space may correspond to a Wigner distribution of a pure or a mixed state, it is necessary and sufficient that Heisenberg's uncertainty relation in Schroedinger form should be satisfied.

  20. Internal and external radiative widths in the combined R -matrix and potential-model formalism

    NASA Astrophysics Data System (ADS)

    Mukhamedzhanov, A. M.; Shubhchintak, Bertulani, C. A.; Hao, T. V. Nhan

    2017-02-01

    By using the R -matrix approach we calculate the radiative width for a resonance decaying to a bound state through electric-dipole E 1 transitions. The total radiative width is determined by the interference of the nuclear internal and external radiative width amplitudes. For a given channel radius the external radiative width amplitude is model independent and is determined by the asymptotic normalization coefficient (ANC) of the bound state to which the resonance decays. It also depends on the partial resonance width. To calculate the internal radiative width amplitude we show that a single-particle-potential model is appropriate. We compare our results with a few experimental data.