Sample records for joint surfaces measurement

  1. Joint surface modeling with thin-plate splines.

    PubMed

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  2. Three-dimensional and thermal surface imaging produces reliable measures of joint shape and temperature: a potential tool for quantifying arthritis

    PubMed Central

    Spalding, Steven J; Kwoh, C Kent; Boudreau, Robert; Enama, Joseph; Lunich, Julie; Huber, Daniel; Denes, Louis; Hirsch, Raphael

    2008-01-01

    Introduction The assessment of joints with active arthritis is a core component of widely used outcome measures. However, substantial variability exists within and across examiners in assessment of these active joint counts. Swelling and temperature changes, two qualities estimated during active joint counts, are amenable to quantification using noncontact digital imaging technologies. We sought to explore the ability of three dimensional (3D) and thermal imaging to reliably measure joint shape and temperature. Methods A Minolta 910 Vivid non-contact 3D laser scanner and a Meditherm med2000 Pro Infrared camera were used to create digital representations of wrist and metacarpalphalangeal (MCP) joints. Specialized software generated 3 quantitative measures for each joint region: 1) Volume; 2) Surface Distribution Index (SDI), a marker of joint shape representing the standard deviation of vertical distances from points on the skin surface to a fixed reference plane; 3) Heat Distribution Index (HDI), representing the standard error of temperatures. Seven wrists and 6 MCP regions from 5 subjects with arthritis were used to develop and validate 3D image acquisition and processing techniques. HDI values from 18 wrist and 9 MCP regions were obtained from 17 patients with active arthritis and compared to data from 10 wrist and MCP regions from 5 controls. Standard deviation (SD), coefficient of variation (CV), and intraclass correlation coefficients (ICC) were calculated for each quantitative measure to establish their reliability. CVs for volume and SDI were <1.3% and ICCs were greater than 0.99. Results Thermal measures were less reliable than 3D measures. However, significant differences were observed between control and arthritis HDI values. Two case studies of arthritic joints demonstrated quantifiable changes in swelling and temperature corresponding with changes in symptoms and physical exam findings. Conclusion 3D and thermal imaging provide reliable measures of

  3. Spectral unmixing of agents on surfaces for the Joint Contaminated Surface Detector (JCSD)

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Chyba, Thomas H.; LaValley, Howard; Emge, Darren

    2007-09-01

    ITT Corporation, Advanced Engineering and Sciences Division, is currently developing the Joint Contaminated Surface Detector (JCSD) technology under an Advanced Concept Technology Demonstration (ACTD) managed jointly by the U.S. Army Research, Development, and Engineering Command (RDECOM) and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance for incorporation on the Army's future reconnaissance vehicles. This paper describes the design of the chemical agent identification (ID) algorithm associated with JCSD. The algorithm detects target chemicals mixed with surface and interferent signatures. Simulated data sets were generated from real instrument measurements to support a matrix of parameters based on a Design Of Experiments approach (DOE). Decisions based on receiver operating characteristics (ROC) curves and area-under-the-curve (AUC) measures were used to down-select between several ID algorithms. Results from top performing algorithms were then combined via a fusion approach to converge towards optimum rates of detections and false alarms. This paper describes the process associated with the algorithm design and provides an illustrating example.

  4. Generalized Models for Rock Joint Surface Shapes

    PubMed Central

    Du, Shigui; Hu, Yunjin; Hu, Xiaofei

    2014-01-01

    Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough. PMID:25152901

  5. Some aspects of frictional measurements in hip joint simulators.

    PubMed

    Unsworth, Anthony

    2016-05-01

    The measurement of friction in artificial hip joints can lead to the knowledge of the lubrication mechanisms occurring in the joints. However, the measurement of friction, particularly in spherical contacts, is not always straightforward. The important loading and kinematic features must be appropriate and the friction must be measured in the correct plane. Even defining a coefficient of friction is difficult with spherical contacts as friction acts at different moment arms throughout the contact area. Thus, the generated frictional torques depend on the pressure distribution of the contact and the moment arms at which this pressure acts. The pressure distribution depends on the material properties, the surface entraining velocities, the joint diameters, and the clearance between the two surfaces of the ball and socket joint. Equally measuring friction is very taxing for machines which are applying very high loads. Slight misalignments of the application of these loads can produce torques which are very much greater than the frictional torques that we are trying to measure. This article attempts to share the thoughts behind over 40 years of measuring friction in artificial joints using the Durham Friction Simulators. This has led to accrued consistency of measurement and a robust scientific design rationale to understand the nature of friction in these spherical contacts. It also impacts on how to obtain accurate measurements as well as on the understanding of where the difficult issues lie and how to overcome them. © IMechE 2016.

  6. Diminishing friction of joint surfaces as initiating factor for destabilising permafrost rocks?

    NASA Astrophysics Data System (ADS)

    Funk, Daniel; Krautblatter, Michael

    2010-05-01

    Degrading alpine permafrost due to changing climate conditions causes instabilities in steep rock slopes. Due to a lack in process understanding, the hazard is still difficult to asses in terms of its timing, location, magnitude and frequency. Current research is focused on ice within joints which is considered to be the key-factor. Monitoring of permafrost-induced rock failure comprises monitoring of temperature and moisture in rock-joints. The effect of low temperatures on the strength of intact rock and its mechanical relevance for shear strength has not been considered yet. But this effect is signifcant since compressive and tensile strength is reduced by up to 50% and more when rock thaws (Mellor, 1973). We hypotheisze, that the thawing of permafrost in rocks reduces the shear strength of joints by facilitating the shearing/damaging of asperities due to the drop of the compressive/tensile strength of rock. We think, that decreasing surface friction, a neglected factor in stability analysis, is crucial for the onset of destabilisation of permafrost rocks. A potential rock slide within the permafrost zone in the Wetterstein Mountains (Zugspitze, Germany) is the basis for the data we use for the empirical joint model of Barton (1973) to estimate the peak shear strength of the shear plane. Parameters are the JRC (joint roughness coefficient), the JCS (joint compressive strength) and the residual friction angle (φr). The surface roughness is measured in the field with a profile gauge to create 2D-profiles of joint surfaces. Samples of rock were taken to the laboratory to measure compressive strength using a high-impact Schmidt-Hammer under air-dry, saturated and frozen conditions on weathered and unweathered surfaces. Plugs where cut out of the rock and sand blasted for shear tests under frozen and unfrozen conditions. Peak shear strength of frozen and unfrozen rocks will be calculated using Barton's model. First results show a mean decrease of compressive

  7. A sound and efficient measure of joint congruence.

    PubMed

    Conconi, Michele; Castelli, Vincenzo Parenti

    2014-09-01

    In the medical world, the term "congruence" is used to describe by visual inspection how the articular surfaces mate each other, evaluating the joint capability to distribute an applied load from a purely geometrical perspective. Congruence is commonly employed for assessing articular physiology and for the comparison between normal and pathological states. A measure of it would thus represent a valuable clinical tool. Several approaches for the quantification of joint congruence have been proposed in the biomechanical literature, differing on how the articular contact is modeled. This makes it difficult to compare different measures. In particular, in previous articles a congruence measure has been presented which proved to be efficient and suitable for the clinical practice, but it was still empirically defined. This article aims at providing a sound theoretical support to this congruence measure by means of the Winkler elastic foundation contact model which, with respect to others, has the advantage to hold also for highly conforming surfaces as most of the human articulations are. First, the geometrical relation between the applied load and the resulting peak of pressure is analytically derived from the elastic foundation contact model, providing a theoretically sound approach to the definition of a congruence measure. Then, the capability of congruence measure to capture the same geometrical relation is shown. Finally, the reliability of congruence measure is discussed. © IMechE 2014.

  8. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    NASA Astrophysics Data System (ADS)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  9. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Surface Modifications for Improved Wear Performance in Artificial Joints: A Review

    NASA Astrophysics Data System (ADS)

    Sullivan, Stacey J. L.; Topoleski, L. D. Timmie

    2015-11-01

    Artificial joint replacement is one of the most successful treatments for arthritis. Excellent wear and corrosion resistance, together with high strength and fracture toughness, are fundamental requirements for implant materials. Wear and/or corrosion of the materials used in artificial joints may lead to implant failure. Therefore, hard and wear-resistant materials, like cobalt-chromium-molybdenum and ceramic, are currently used as bearing surfaces. However, even using such hard materials, wear and/or corrosion related failure of artificial joints remains a central concern. One primary goal in orthopedic biomaterials research is to create more wear-resistant surfaces. Different technologies have been used to create new surfaces, or to modify existing surfaces, to prevent wear. It is the intent of this overview first to provide a summary of materials currently used as bearing surfaces in artificial joints, their functions, and their contributions to device longevity. Then, we will discuss advancements in modifying those bearing surfaces to produce more wear-resistant artificial joints.

  11. GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurement

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.; Huang, G.; Gonzalez Abad, G.

    2016-12-01

    It has been shown from sensitivity studies that adding visible measurements in the Chappuis ozone band to UV measurements in the Hartley/Huggins ozone bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI (Earth Venture Instrument) TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels ( 290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interferences from surface reflectance and aerosols and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on combining EOFs (Empirical Orthogonal Functions) derived from ASTER and other surface reflectance spectra with MODIS BRDF climatology into the ozone profile algorithm. The impacts of various types of aerosols and surface BRDF on the retrievals will be investigated. In addition, we will also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We will evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval based on fitting quality and validation against ozonesonde observations.

  12. IMU-Based Joint Angle Measurement for Gait Analysis

    PubMed Central

    Seel, Thomas; Raisch, Jorg; Schauer, Thomas

    2014-01-01

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160

  13. Measurements of surface layer of the articular cartilage using microscopic techniques

    NASA Astrophysics Data System (ADS)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  14. Joint measurement of multiple noncommuting parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiamin; Liu, Yuhong; Cui, Liang; Huo, Nan; Assad, Syed M.; Li, Xiaoying; Ou, Z. Y.

    2018-05-01

    Although quantum metrology allows us to make precision measurements beyond the standard quantum limit, it mostly works on the measurement of only one observable due to the Heisenberg uncertainty relation on the measurement precision of noncommuting observables for one system. In this paper, we study the schemes of joint measurement of multiple observables which do not commute with each other using the quantum entanglement between two systems. We focus on analyzing the performance of a SU(1,1) nonlinear interferometer on fulfilling the task of joint measurement. The results show that the information encoded in multiple noncommuting observables on an optical field can be simultaneously measured with a signal-to-noise ratio higher than the standard quantum limit, and the ultimate limit of each observable is still the Heisenberg limit. Moreover, we find a resource conservation rule for the joint measurement.

  15. Metatarsophalangeal joint extension changes ultrasound measurements for plantar fascia thickness.

    PubMed

    Granado, Michael J; Lohman, Everett B; Gordon, Keith E; Daher, Noha S

    2018-01-01

    Ultrasound is an inexpensive method for quantifying plantar fascia thickness, especially in those with plantar fasciitis. Ultrasound has also been used to assess the effectiveness of various treatments for plantar fasciitis by comparing plantar fascia thickness before and after an intervention period. While a plantar fascia thickness over 4 mm via ultrasound has been proposed to be consistent with plantar fasciitis, some researchers believe the 4 mm plantar fascia thickness level to be a dubious guideline for diagnosing plantar fasciitis due to the lack of standardization of the measurement process for plantar fascia thickness. In particular, no universal guidelines exist on the positioning of the metatarsophalangeal (MTP) joints during the procedure and the literature also has inconsistent protocols. The purpose of this study is to investigate and compare the influence of MTP joint extension on plantar fascia thickness in healthy participants and those with unilateral plantar fasciitis. The plantar fascia thickness of forty participants (20 with unilateral plantar fasciitis and 20 control) was measured via ultrasound three times at three different MTP joint positions: 1) at rest, 2) 30° of extension from the plantar surface, and 3) maximal extension possible. The plantar fascia became significantly thinner as MTP joint extension increased in both the plantar fasciitis group ( p  < 0.001) and the control group ( p  < 0.001). In the plantar fasciitis group, the involved plantar fascia was 1.2 to 1.3 mm thicker (p < 0.001) than the uninvolved side depending on the MTP joint position. In the control group, the difference in plantar fascia thickness between the two sides was less than 0.1 mm ( p  < 0.92) at any MTP joint position. MTP joint position can influence the ultrasound measurement of plantar fascia thickness. It is recommended that plantar fascia thickness measurements be performed with the toes at rest. If MTP joints must be extended

  16. Registration of knee joint surfaces for the in vivo study of joint injuries based on magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.

    2006-03-01

    In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.

  17. A simple approach to the joint inversion of seismic body and surface waves applied to the southwest U.S.

    NASA Astrophysics Data System (ADS)

    West, Michael; Gao, Wei; Grand, Stephen

    2004-08-01

    Body and surface wave tomography have complementary strengths when applied to regional-scale studies of the upper mantle. We present a straight-forward technique for their joint inversion which hinges on treating surface waves as horizontally-propagating rays with deep sensitivity kernels. This formulation allows surface wave phase or group measurements to be integrated directly into existing body wave tomography inversions with modest effort. We apply the joint inversion to a synthetic case and to data from the RISTRA project in the southwest U.S. The data variance reductions demonstrate that the joint inversion produces a better fit to the combined dataset, not merely a compromise. For large arrays, this method offers an improvement over augmenting body wave tomography with a one-dimensional model. The joint inversion combines the absolute velocity of a surface wave model with the high resolution afforded by body waves-both qualities that are required to understand regional-scale mantle phenomena.

  18. Automated inspection of solder joints for surface mount technology

    NASA Technical Reports Server (NTRS)

    Savage, Robert M.; Park, Hyun Soo; Fan, Mark S.

    1993-01-01

    Researchers at NASA/GSFC evaluated various automated inspection systems (AIS) technologies using test boards with known defects in surface mount solder joints. These boards were complex and included almost every type of surface mount device typical of critical assemblies used for space flight applications: X-ray radiography; X-ray laminography; Ultrasonic Imaging; Optical Imaging; Laser Imaging; and Infrared Inspection. Vendors, representative of the different technologies, inspected the test boards with their particular machine. The results of the evaluation showed limitations of AIS. Furthermore, none of the AIS technologies evaluated proved to meet all of the inspection criteria for use in high-reliability applications. It was found that certain inspection systems could supplement but not replace manual inspection for low-volume, high-reliability, surface mount solder joints.

  19. In Vivo Measurement of Glenohumeral Joint Contact Patterns

    NASA Astrophysics Data System (ADS)

    Bey, Michael J.; Kline, Stephanie K.; Zauel, Roger; Kolowich, Patricia A.; Lock, Terrence R.

    2009-12-01

    The objectives of this study were to describe a technique for measuring in-vivo glenohumeral joint contact patterns during dynamic activities and to demonstrate application of this technique. The experimental technique calculated joint contact patterns by combining CT-based 3D bone models with joint motion data that were accurately measured from biplane x-ray images. Joint contact patterns were calculated for the repaired and contralateral shoulders of 20 patients who had undergone rotator cuff repair. Significant differences in joint contact patterns were detected due to abduction angle and shoulder condition (i.e., repaired versus contralateral). Abduction angle had a significant effect on the superior/inferior contact center position, with the average joint contact center of the repaired shoulder 12.1% higher on the glenoid than the contralateral shoulder. This technique provides clinically relevant information by calculating in-vivo joint contact patterns during dynamic conditions and overcomes many limitations associated with conventional techniques for quantifying joint mechanics.

  20. Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography.

    PubMed

    Segal, Neil A; Frick, Eric; Duryea, Jeffrey; Nevitt, Michael C; Niu, Jingbo; Torner, James C; Felson, David T; Anderson, Donald D

    2017-07-01

    The objective of this project was to determine the relationship between medial tibiofemoral joint space width measured on fixed-flexion radiographs and the three-dimensional joint space width distribution on low-dose, standing CT (SCT) imaging. At the 84-month visit of the Multicenter Osteoarthritis Study, 20 participants were recruited. A commercial SCT scanner for the foot and ankle was modified to image knees while standing. Medial tibiofemoral joint space width was assessed on radiographs at fixed locations from 15% to 30% of compartment width using validated software and on SCT by mapping the distances between three-dimensional subchondral bone surfaces. Individual joint space width values from radiographs were compared with three-dimensional joint space width values from corresponding sagittal plane locations using paired t-tests and correlation coefficients. For the four medial-most tibiofemoral locations, radiographic joint space width values exceeded the minimal joint space width on SCT by a mean of 2.0 mm and were approximately equal to the 61st percentile value of the joint space width distribution at each respective sagittal-plane location. Correlation coefficients at these locations were 0.91-0.97 and the offsets between joint space width values from radiographs and SCT measurements were consistent. There were greater offsets and variability in the offsets between modalities closer to the tibial spine. Joint space width measurements on fixed-flexion radiographs are highly correlated with three-dimensional joint space width from SCT. In addition to avoiding bony overlap obscuring the joint, a limitation of radiographs, the current study supports a role for SCT in the evaluation of tibiofemoral OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1388-1395, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    PubMed

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Tool Measures Depths of Defects on a Case Tang Joint

    NASA Technical Reports Server (NTRS)

    Ream, M. Bryan; Montgomery, Ronald B.; Mecham, Brent A.; Keirstead, Bums W.

    2005-01-01

    A special-purpose tool has been developed for measuring the depths of defects on an O-ring seal surface. The surface lies in a specially shaped ringlike fitting, called a capture feature tang, located on an end of a cylindrical segment of a case that contains a solid-fuel booster rocket motor for launching a space shuttle. The capture feature tang is a part of a tang-and-clevis, O-ring joint between the case segment and a similar, adjacent cylindrical case segment. When the segments are joined, the tang makes an interference fit with the clevis and squeezes the O-ring at the side of the gap.

  3. Lithological and Surface Geometry Joint Inversions Using Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them. In contrast, standard minimum-structure geophysical inversions are performed on meshes of space-filling cells (typically prisms or tetrahedra) and recover smoothly varying physical property distributions that are inconsistent with typical geological interpretations. There are several approaches through which mesh-based minimum-structure geophysical inversion can help recover models with some of the desired characteristics. However, a more effective strategy may be to consider two fundamentally different types of inversions: lithological and surface geometry inversions. A major advantage of these two inversion approaches is that joint inversion of multiple types of geophysical data is greatly simplified. In a lithological inversion, the subsurface is discretized into a mesh and each cell contains a particular rock type. A lithological model must be translated to a physical property model before geophysical data simulation. Each lithology may map to discrete property values or there may be some a priori probability density function associated with the mapping. Through this mapping, lithological inverse problems limit the parameter domain and consequently reduce the non-uniqueness from that presented by standard mesh-based inversions that allow physical property values on continuous ranges. Furthermore, joint inversion is greatly simplified because no additional mathematical coupling measure is required in the objective function to link multiple physical property models. In a surface geometry inversion, the model comprises wireframe surfaces representing contacts between rock units. This parameterization is then fully consistent with Earth models built by geologists, which in 3D typically comprise wireframe contact surfaces of tessellated triangles. As for the lithological case, the physical properties of the units lying between the contact

  4. Atlas-based automatic measurements of the morphology of the tibiofemoral joint

    NASA Astrophysics Data System (ADS)

    Brehler, M.; Thawait, G.; Shyr, W.; Ramsay, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-03-01

    Purpose: Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce userdependence of the metrics arising from manual identification of the anatomical landmarks. Methods: The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Results: Intra-reader variability as high as 10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. Conclusions: The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

  5. Atlas-based automatic measurements of the morphology of the tibiofemoral joint.

    PubMed

    Brehler, M; Thawait, G; Shyr, W; Ramsay, J; Siewerdsen, J H; Zbijewski, W

    2017-02-11

    Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce user-dependence of the metrics arising from manual identification of the anatomical landmarks. The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Intra-reader variability as high as ~10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

  6. Residual-stress measurement in socket welded joints by neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, M.; Ishiwata, M.; Minakawa, N.

    1994-12-31

    Neutron diffraction measurements of lattice strains provide spatial maps of residual stress near welds in ferritic steel socket joints. The highest tensile stresses in the welds are found in axial, radial and hoop direction at the weld root. However, the highest tensile stress in the axial direction is about 110MPa. Balancing compressive stresses are found near the surface of the socket weld fusion zone. Heat treatment at 600 C for 2 hours is sufficient to relieve residual stress in socket welds.

  7. 30 CFR 18.33 - Finish of surface joints.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Finish of surface joints. 18.33 Section 18.33 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and Design...

  8. Correlation between MRI evidence of degenerative condylar surface changes, induction of articular disc displacement and pathological joint sounds in the temporomandibular joint.

    PubMed

    Honda, Kosuke; Natsumi, Yoshiko; Urade, Masahiro

    2008-12-01

    The relationship of bony changes in the condylar surfaces in articular disc displacement without reduction in temporomandibular joint (TMJ) was investigated using diagnostic imaging. The study also evaluated whether the bony changes in the condylar surfaces limit disc and condyle motion, and produce pathological joint sounds. Thirty-seven joints in 28 patients diagnosed with degenerative bony changes in the condylar surfaces radiographically and anterior disc displacement without reduction using magnetic resonance imaging (MRI) were studied. The bony changes were assessed by radiographic examination and classified into two types: pathological bone changes (PBCs) including erosion, osteophyte formation and deformity, and adaptive bone changes (ABCs) including flattening and concavity. MRI was performed on the TMJ to examine the configuration and position of the discs. Joint sounds in the TMJ were determined using electrovibratograghy with a joint vibration analysis. The articular disc motion to the condyle in the PBC group was smaller than in the ABC group irrespective of the configuration of the disc, even though there were no significant differences between the two types of bony changes in the disc position during jaw closing. The joint vibration analysis of the TMJ showed that joint sounds with a higher frequency were observed in the PBC group than in the ABC group. High energy levels needed to produce the higher frequencies (over 300 Hz) were observed only in the PBC group.

  9. Exploring the joint measurability using an information-theoretic approach

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yi

    2016-12-01

    We explore the legal purity parameters for the joint measurements. Instead of direct unsharpening the measurements, we perform the quantum cloning before the sharp measurements. The necessary fuzziness in the unsharp measurements is equivalently introduced in the imperfect cloning process. Based on the information causality and the consequent noisy nonlocal computation, one can derive the information-theoretic quadratic inequalities that must be satisfied by any physical theory. On the other hand, to guarantee the classicality, the linear Bell-type inequalities deduced by these quadratic ones must be obeyed. As for the joint measurability, the purity parameters must be chosen to obey both types of inequalities. Finally, the quadratic inequalities for purity parameters in the joint measurability region are derived.

  10. Joint inversion of apparent resistivity and seismic surface and body wave data

    NASA Astrophysics Data System (ADS)

    Garofalo, Flora; Sauvin, Guillaume; Valentina Socco, Laura; Lecomte, Isabelle

    2013-04-01

    this constraint further reducing the maximum error to 30 %. The same test was performed on field data acquired in a landslide-prone area close by the town of Hvittingfoss, Norway. Seismic data were recorded on two 160-m long profiles in roll-along mode using a 5-kg sledgehammer as source and 24 4.5-Hz vertical geophones with 4-m separation. First-arrival travel times were picked at every shot locations and surface wave dispersion curves extracted at 8 locations for each profile. 2D resistivity measurements were carried out on the same profiles using Gradient and Dipole-Dipole arrays with 2-m electrode spacing. The apparent resistivity curves were extracted at the same location as for the dispersion curves. The data were subsequently jointly inverted and the resulting model compared to individual inversions. Although models from both, individual and joint inversions are consistent, the estimation error is smaller for joint inversion, and more especially for first-arrival travel times. The joint inversion exploits different sensitivities of the methods to model parameters and therefore mitigates solution nonuniqueness and the effects of intrinsic limitations of the different techniques. Moreover, it produces an internally consistent multi-parametric final model that can be profitably interpreted to provide a better understanding of subsurface properties.

  11. A Thumb Carpometacarpal Joint Coordinate System Based on Articular Surface Geometry

    PubMed Central

    Halilaj, Eni; Rainbow, Michael J.; Got, Christopher; Moore, Douglas C.; Crisco, Joseph J.

    2013-01-01

    The thumb carpometacarpal (CMC) joint is a saddle-shaped articulation whose in vivo kinematics can be explored more accurately with computed tomography (CT) imaging methods than with previously used skin-based marker systems. These CT-based methods permit a detailed analysis of the morphology of the joint, and thus the prominent saddle-shaped geometry can be used to define a coordinate system that is inherently aligned with the primary directions of motion at the joint. The purpose of this study was to develop a CMC joint coordinate systems that is based on the computed principal directions of curvature on the trapezium and the first metacarpal. We evaluated the new coordinate system using bone surface models segmented from the CT scans of twenty-four healthy subjects. An analysis of sensitivity to the manual selection of articular surfaces resulted in mean orientation differences of 0.7±0.7° and mean location differences of 0.2±0.1mm. Inter-subject variability, which mostly emanates from anatomical differences, was evaluated with whole bone registration and resulted in mean orientation differences of 3.1±2.7° and mean location differences of 0.9±0.5mm. The proposed joint coordinate system addresses concerns of repeatability associated with bony landmark identification and provides a robust platform for describing the complex kinematics of the CMC joint. PMID:23357698

  12. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    NASA Astrophysics Data System (ADS)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  13. Joint inversion of high-frequency surface waves with fundamental and higher modes

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Liu, Q.; Xu, S.

    2007-01-01

    Joint inversion of multimode surface waves for estimating the shear (S)-wave velocity has received much attention in recent years. In this paper, we first analyze sensitivity of phase velocities of multimodes of surface waves for a six-layer earth model, and then we invert surface-wave dispersion curves of the theoretical model and a real-world example. Sensitivity analysis shows that fundamental mode data are more sensitive to the S-wave velocities of shallow layers and are concentrated on a very narrow frequency band, while higher mode data are more sensitive to the parameters of relatively deeper layers and are distributed over a wider frequency band. These properties provide a foundation of using a multimode joint inversion to define S-wave velocities. Inversion results of both synthetic data and a real-world example demonstrate that joint inversion with the damped least-square method and the singular-value decomposition technique to invert high-frequency surface waves with fundamental and higher mode data simultaneously can effectively reduce the ambiguity and improve the accuracy of S-wave velocities. ?? 2007.

  14. Uniqueness of the joint measurement and the structure of the set of compatible quantum measurements

    NASA Astrophysics Data System (ADS)

    Guerini, Leonardo; Terra Cunha, Marcelo

    2018-04-01

    We address the problem of characterising the compatible tuples of measurements that admit a unique joint measurement. We derive a uniqueness criterion based on the method of perturbations and apply it to show that extremal points of the set of compatible tuples admit a unique joint measurement, while all tuples that admit a unique joint measurement lie in the boundary of such a set. We also provide counter-examples showing that none of these properties are both necessary and sufficient, thus completely describing the relation between the joint measurement uniqueness and the structure of the compatible set. As a by-product of our investigations, we completely characterise the extremal and boundary points of the set of general tuples of measurements and of the subset of compatible tuples.

  15. Comparison of 2 Radiographic Techniques for Measurement of Tibiofemoral Joint Space Width.

    PubMed

    Mehta, Nabil; Duryea, Jeffrey; Badger, Gary J; Akelman, Matthew R; Jones, Morgan H; Spindler, Kurt P; Fleming, Braden C

    2017-09-01

    No consensus is available regarding the best method for measuring tibiofemoral joint space width (JSW) on radiographs to quantify joint changes after injury. Studies that track articular cartilage thickness after injury frequently use patients' uninjured contralateral knees as controls, although the literature supporting this comparison is limited. (1) To compare JSW measurements using 2 established measurement techniques in healthy control participants and (2) to determine whether the mean JSW of the uninjured contralateral knee in a cohort with anterior cruciate ligament (ACL) reconstruction is different from that obtained from a true control population. Cohort study (diagnosis); Level of evidence, 2. Medial and lateral JSWs were measured on standardized, bilateral, semiflexed metatarsophalangeal positioning, posteroanterior radiographs of 60 healthy individuals (26 females; mean ± SD age, 25 ± 6.2 years; no history of knee injury) via 2 published techniques: a computerized surface-delineation method (surface-fit method) and a manual digitization method (midpoint method). Bland-Altman method was used to examine the agreement between JSW measurements obtained with the 2 methods and to examine the agreement between measurements obtained on left and right knees within a participant for each measurement method. Within- and between-participant variance components and intraclass correlation coefficients (ICCs) were computed for JSW measurements corresponding to each method. Two-sample t tests were used to compare the surface-fit method measurements of mean JSW of the true control group (n = 60) with the previously published mean JSW measurements from the Multicenter Orthopaedics Outcomes Network (MOON) nested cohort of 262 contralateral uninjured knees 2 to 3 years after ACL reconstruction. For JSW in the medial compartment, the surface-fit method had lower within-participant interknee variability (σ 2 within , 0.064; 95% CI, 0.04-0.09) compared with the midpoint

  16. Seismicity and structure of Akutan and Makushin Volcanoes, Alaska, using joint body and surface wave tomography

    DOE PAGES

    Syracuse, E. M.; Maceira, M.; Zhang, H.; ...

    2015-02-18

    Joint inversions of seismic data recover models that simultaneously fit multiple constraints while playing upon the strengths of each data type. Here, we jointly invert 14 years of local earthquake body wave arrival times from the Alaska Volcano Observatory catalog and Rayleigh wave dispersion curves based upon ambient noise measurements for local V p, V s, and hypocentral locations at Akutan and Makushin Volcanoes using a new joint inversion algorithm.The velocity structure and relocated seismicity of both volcanoes are significantly more complex than many other volcanoes studied using similar techniques. Seismicity is distributed among several areas beneath or beyond themore » flanks of both volcanoes, illuminating a variety of volcanic and tectonic features. The velocity structures of the two volcanoes are exemplified by the presence of narrow high-V p features in the near surface, indicating likely current or remnant pathways of magma to the surface. A single broad low-V p region beneath each volcano is slightly offset from each summit and centered at approximately 7 km depth, indicating a potential magma chamber, where magma is stored over longer time periods. Differing recovery capabilities of the Vp and Vs datasets indicate that the results of these types of joint inversions must be interpreted carefully.« less

  17. Adaptive strategy for joint measurements

    NASA Astrophysics Data System (ADS)

    Uola, Roope; Luoma, Kimmo; Moroder, Tobias; Heinosaari, Teiko

    2016-08-01

    We develop a technique to find simultaneous measurements for noisy quantum observables in finite-dimensional Hilbert spaces. We use the method to derive lower bounds for the noise needed to make incompatible measurements jointly measurable. Using our strategy together with recent developments in the field of one-sided quantum information processing we show that the attained lower bounds are tight for various symmetric sets of quantum measurements. We use this characterisation to prove the existence of so called 4-Specker sets, i.e. sets of four incompatible observables with compatible subsets in the qubit case.

  18. Anatomy of the proximal tibiofibular joint and interosseous membrane, and their contributions to joint kinematics in below-knee amputations.

    PubMed

    Burkhart, Timothy A; Asa, Benjamin; Payne, Michael W C; Johnson, Marjorie; Dunning, Cynthia E; Wilson, Timothy D

    2015-02-01

    A result of below-knee amputations (BKAs) is abnormal motion that occurs about the proximal tibiofibular joint (PTFJ). While it is known that joint morphology may play a role in joint kinematics, this is not well understood with respect to the PTFJ. Therefore, the purposes of this study were: (i) to characterize the anatomy of the PTFJ and statistically analyze the relationships within the joint; and (ii) to determine the relationships between the PTFJ characteristics and the degree of movement of the fibula in BKAs. The PTFJ was characterized in 40 embalmed specimens disarticulated at the knee, and amputated through the mid-tibia and fibula. Four metrics were measured: inclination angle (angle at which the fibula articulates with the tibia); tibial and fibular articular surface areas; articular surface concavity and shape. The specimens were mechanically tested by applying a load through the biceps femoris tendon, and the degree of motion about the tibiofibular joint was measured. Regression analyses were performed to determine the relationships between the different PTFJ characteristics and the magnitude of fibular abduction. Finally, Pearson correlation analyses were performed on inclination angle and surface area vs. fibular kinematics. The inclination angle measured on the fibula was significantly greater than that measured on the tibia. This difference may be attributed to differences in concavity of the tibial and fibular surfaces. Surface area measured on the tibia and fibula was not statistically different. The inclination angle was not statistically correlated to surface area. However, when correlating fibular kinematics in BKAs, inclination angle was positively correlated to the degree of fibular abduction, whereas surface area was negatively correlated. The characteristics of the PTFJ dictate the amount of fibular movement, specifically, fibular abduction in BKAs. Predicting BKA complications based on PTFJ characteristics can lead to recommendations in

  19. Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Gabb, Timothy P.

    2009-01-01

    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed.

  20. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint

    PubMed Central

    Zhang, Xiangming

    2011-01-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141

  1. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    PubMed

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  2. [The clinical value of cartilaginous surface and corresponding osseous contour of patellofemoral joint].

    PubMed

    Zhang, Jian-Bing; Chen, Bai-Cheng; Zhang, Jing; Wang, Zhi-Qiang; Yan, Chang-Bao

    2010-11-15

    to investigate if the cartilaginous surface and corresponding osseous contour of the patellofemoral joint match in the axial plane for providing theoretical basis with evaluating alignment of patellofemoral joint and designing the part of patellofemoral joint in knee prosthesis. from January 2009 to March 2010, 9 human cadaver knees were prepared, which chandra of patellofemoral joint didn't degenerate. Each specimen was sectioned in the axial plane at 20° to 30° knee flax. The cross-sections revealed characteristics in the bony anatomy and corresponding articular surface geometry of the patellofemoral joint in the axial plane. Evaluating parameters included osseous patella congruence angle (OPCA), chondral patella congruence angle (CPCA), patella chondral convex point parameter (PCCPP), patella subchondral osseous convex point parameter (PSOCPP), the parameters of the deepest (chondral or osseous) point of the intercondylar sulcus. After that, the osseous and cartilaginous contours and subchondral osseous contours of the patella in the axial plane were analyzed through MRI data of 11 patients who didn't degenerate in patellofemoral joint cartilage. Parameters as same as cadaver knees were compared. data from specimens of OPCA was (-4.5 ± 1.1)°, CPCA was (0.5 ± 0.8)°, PCCPP was 1.13 ± 0.11, PSOCPP was 1.67 ± 0.14, PCDPIS was 1.35 ± 0.28, PODPIS was 1.38 ± 0.33. Date from MRI of OPCA was (-3.8 ± 1.4)°, CPCA was (0.7 ± 1.0)°, PCCPP was 1.05 ± 0.21, PSOCPP was 1.73 ± 0.18, PCDPIS was 1.41 ± 0.21, PODPIS was 1.37 ± 0.27. The patella exhibited significant differences in the bony vs. chondral anatomy (P < 0.05), but the intercondylar sulcus nearly match in the bony vs. chondral anatomy. the cartilaginous surface and corresponding osseous contour of the patella don't match in the patellofemoral joint axial plane, but that of the trochlea nearly matches. This is very important for accurately evaluating alignment of patellofemoral joint because the normal

  3. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  4. Imageological measurement of the sternoclavicular joint and its clinical application.

    PubMed

    Li, Ming; Wang, Bo; Zhang, Qi; Chen, Wei; Li, Zhi-Yong; Qin, Shi-Ji; Zhang, Ying-Ze

    2012-01-01

    Dislocation of the sternoclavicular joint is rare. However, posterior dislocation compressing important structures in the mediastinum may be fatal. Early diagnosis and prompt therapy of sternoclavicular joint dislocation are important. Computed tomography (CT) is an optimal means to investigate sternoclavicular joint anatomy; however, there are few reports on the imageological anatomical features of the sternoclavicular joint. The study investigated imageological anatomical features, and a new plate was devised according to these data to treat sternoclavicular joint dislocation. Fifty-three healthy Chinese volunteers examined with chest CT were included in the study. The coronal, sagittal, and axial images of the sternoclavicular region were reconstructed. The sternal head diameter in the inferolateral-to-superomedial direction, length of the clavicular notch, and angle between the clavicular notch and sternum were measured on coronal images. The angle between the presternum and trunk was measured on sagittal images. The following dimensions were measured on axial images: anteroposterior dimensions of the sternal head, clavicular notch, and presternum; width of the sternoclavicular joint; distance between bilateral clavicles; and minimal distance from the presternum to the underlying structures in the thoracic cavity. A new plate was designed according to the above data and was used to repair six sternoclavicular joint dislocations. All cases were followed up with a range of 9 to 12 months. The proximal clavicle is higher than the presternum in a horizontal position. On axial images, the anteroposterior dimension of the sternal head was longer than the presternum, and the center region of the presternum was thinner than the edges. The left sternoclavicular joint space was (0.82 ± 0.21) cm, and the right was (0.87 ± 0.22) cm. Among the structures behind the sternum, the left bilateral innominate vein ran nearest to the presternum. The distance from the anterior

  5. Ultrasonic measurement and monitoring of loads in bolts used in structural joints

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer. A number of cases of bolted joints are covered. These include, a clamped joint with clearance fit between the bolt and hole, a clamped joint with bolt in an interference fit with the hole, a flanged joint which allows the flange and bolt to bend; and a shear joint in a clevis and tang configuration. These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures. The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit. The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure diametrical interference between the bolt shank and hole, as well as interference pressure on the bolt shank. Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint. A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt. The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.

  6. Ultrasonic detection technology based on joint robot on composite component with complex surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Juan; Xu, Chunguang; Zhang, Lan

    Some components have complex surface, such as the airplane wing and the shell of a pressure vessel etc. The quality of these components determines the reliability and safety of related equipment. Ultrasonic nondestructive detection is one of the main methods used for testing material defects at present. In order to improve the testing precision, the acoustic axis of the ultrasonic transducer should be consistent with the normal direction of the measured points. When we use joint robots, automatic ultrasonic scan along the component surface normal direction can be realized by motion trajectory planning and coordinate transformation etc. In order tomore » express the defects accurately and truly, the robot position and the signal of the ultrasonic transducer should be synchronized.« less

  7. Transfer impedance measurements of the space shuttle Solid Rocket Motor (SRM) joints, wire meshes and a carbon graphite motor case

    NASA Technical Reports Server (NTRS)

    Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David

    1988-01-01

    Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.

  8. Effect of Epoxy on Mechanical Property of SAC305 Solder Joint with Various Surface Finishes Under 3-Point Bend Test.

    PubMed

    Jeong, Haksan; Myung, Woo-Ram; Sung, Yong-Gue; Kim, Kyung-Yeol; Jung, Seung-Boo

    2018-09-01

    Microstructures and mechanical property of Sn-3.0Ag-0.5Cu (SAC305) and epoxy Sn-3.0Ag-0.5Cu (epoxy SAC) solder joints were investigated with various surface finishes; organic solderability preservative (OSP), electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). Bending property of solder joints was evaluated by 3-point bend test method. Microstructure and chemical composition of solder joints was characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively. Epoxy did not effect on intermetallic compound (IMC) morphology. Scalloped shaped Cu6Sn5 IMC was observed at OSP surface finish. Chunky-like shaped and needle-like shaped (Ni,Cu)6Sn5 IMC were observed at the solder/ENIG joint and solder/ENEPIG joint, respectively. The bending cycles of SAC305/OSP joint, SAC305/ENIG joints and SAC305/ENEPIG joints were 720, 440 and 481 cycle numbers. The bending cycles of epoxy SAC and three types surface finished solder joints were over 1000 bending cycles. Under OSP surface finish, bending cycles of epoxy SAC solder was approximately 1.5 times higher than those of SAC305 solder joint. Bending cycles of epoxy SAC solder was over twice times higher than those of SAC305 solder with ENIG and ENEPIG surface finishes. The bending property of epoxy solder joint was enhanced due to epoxy fillet held the solder joint.

  9. Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors.

    PubMed

    Lebel, Karina; Boissy, Patrick; Nguyen, Hung; Duval, Christian

    2016-07-05

    Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units-IMUs) that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC) process to assess the quality of orientation data based on features extracted from the raw inertial sensors' signals. Joint orientation (trunk, hip, knee, ankle) of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning) performed under varying conditions (speed, environment). An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients' mobility.

  10. Radiological study of the knee joint line position measured from the fibular head and proximal tibial landmarks.

    PubMed

    Havet, Eric; Gabrion, Antoine; Leiber-Wackenheim, Frederic; Vernois, Joël; Olory, Bruno; Mertl, Patrice

    2007-06-01

    Restoring the joint line level is one of the surgical challenges during revision of total knee arthroplasty. The position of the tibial surface is commonly estimated by its distance to the apex of fibular head, but no study evaluating this distance accurately has been published yet. The purpose of this work was to study the distance between the knee joint line and the apex of the fibular head and the proximal tibia, particularly the tibial tuberosity. Variability with clinical data and relations with other local measurements have been evaluated on knee radiographs (an antero-posterior view, a medio-lateral view and an anteroposterior full length view) of 100 subjects (125 knees). Results showed no correlation between the joint line-fibular head apex distance and any clinical data of the patients, or any other performed measurements. Relations between tibial measurements and the sexe or the height of the subjects were noted. Besides, the review of the 25 bilateral cases did not show statistically significant side difference but the descriptive analysis showed too large discrepancies for the joint line-fibular head apex distance to be used as a landmark. We conclude that the fibular head apex cannot be used as a morphologic landmark to determine the knee joint line position. Its interest in clinical and surgical practice must be discussed.

  11. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Jacob A.; Timmers, Heiko; Smith, Paul N.

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes {sup 97}Ru, {sup 100}Pd, {sup 100}Rh, and {sup 101m}Rh are produced in fusion evaporation reactions induced by {sup 12}C ions in a {sup 92}Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. Themore » concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 {mu}m. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24 deg. flexion angle removed (14{+-}1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12{+-}3) mm{sup 3}/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.« less

  12. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.

    PubMed

    Zhang, Jun-Tian; Novak, Alison C; Brouwer, Brenda; Li, Qingguo

    2013-08-01

    This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.

  13. Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.

    PubMed

    Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten

    2016-07-01

    The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.

    2009-02-01

    We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and

  15. Experimental joint quantum measurements with minimum uncertainty.

    PubMed

    Ringbauer, Martin; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Branciard, Cyril; White, Andrew G

    2014-01-17

    Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us to verge upon the fundamental limits of measurement uncertainty.

  16. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of

  17. Joint quantum measurement using unbalanced array detection.

    PubMed

    Beck, M; Dorrer, C; Walmsley, I A

    2001-12-17

    We have measured the joint Q-function of a highly multimode field using unbalanced heterodyne detection with a charge-coupled device array detector. We use spectral interferometry between a weak signal field and a strong, 100 fs duration local oscillator pulse to reconstruct the joint quadrature amplitude statistics of about 25 temporal modes. By adjusting the time delay between the signal and local oscillator pulses we are able to shift all the classical noise to modes distinct from the signal. This obviates the need to use a balanced detector.

  18. Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.

    PubMed

    Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C

    2018-01-01

    The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.

  19. Conarticular congruence of the hominoid subtalar joint complex with implications for joint function in Plio-Pleistocene hominins.

    PubMed

    Prang, Thomas C

    2016-07-01

    The purpose of this study is to test the hypothesis that conarticular surfaces areas and curvatures are correlates of mobility at the hominoid talocalcaneal and talonavicular joints. Articular surface areas and curvatures of the talonavicular, anterior talocalcaneal, and posterior talocalcaneal joints were quantified using a total of 425 three-dimensional surface models of extant hominoid and fossil hominin tali, calcanei, and naviculars. Quadric surface fitting was used to calculate curvatures, pairwise comparisons were used to evaluate statistical differences between taxa, and regression was used to test for the effects of allometry. Pairwise comparisons show that the distributions of values for joint curvature indices follow the predicted arboreal-terrestrial morphocline in hominoid primates with no effect of body mass (PGLS p > 0.05). OH 8 (Homo habilis) and LB 1 (Homo floresiensis) can be accommodated within the range of human variation for the talonavicular joint, whereas MH2 (Australopithecus sediba) falls within the ranges of variation for Pan troglodytes and Gorilla gorilla in measures of posterior talocalcaneal joint congruity. Joint curvature indices are better discriminators than joint surface area indices, which may reflect a greater contribution of rotation, rather than translation, to joint movement in plantigrade taxa due to discrepancies in conarticular congruence and the "convex-concave" rule. The pattern of joint congruence in Au. sediba contributes to other data on the foot and ankle suggesting that the lateral side of the foot was more mobile than the medial side, which is consistent with suggestions of increased medial weight transfer associated with hyperpronation. Am J Phys Anthropol 160:446-457, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Measurements of normal joint angles by goniometry in calves.

    PubMed

    Sengöz Şirin, O; Timuçin Celik, M; Ozmen, A; Avki, S

    2014-01-01

    The aim of this study was to establish normal reference values of the forelimb and hindlimb joint angles in normal Holstein calves. Thirty clinically normal Holstein calves that were free of any detectable musculoskeletal abnormalities were included in the study. A standard transparent plastic goniometer was used to measure maximum flexion, maximum extension, and range-of-motion of the shoulder, elbow, carpal, hip, stifle, and tarsal joints. The goniometric measurements were done on awake calves that were positioned in lateral recumbency. The goniometric values were measured and recorded by two independent investigators. As a result of the study it was concluded that goniometric values obtained from awake calves in lateral recumbency were found to be highly consistent and accurate between investigators (p <0.05). The data of this study acquired objective and useful information on the normal forelimb and hindlimb joint angles in normal Holstein calves. Further studies can be done to predict detailed goniometric values from different diseases and compare them.

  1. How weak values emerge in joint measurements on cloned quantum systems.

    PubMed

    Hofmann, Holger F

    2012-07-13

    A statistical analysis of optimal universal cloning shows that it is possible to identify an ideal (but nonpositive) copying process that faithfully maps all properties of the original Hilbert space onto two separate quantum systems, resulting in perfect correlations for all observables. The joint probabilities for noncommuting measurements on separate clones then correspond to the real parts of the complex joint probabilities observed in weak measurements on a single system, where the measurements on the two clones replace the corresponding sequence of weak measurement and postselection. The imaginary parts of weak measurement statics can be obtained by replacing the cloning process with a partial swap operation. A controlled-swap operation combines both processes, making the complete weak measurement statistics accessible as a well-defined contribution to the joint probabilities of fully resolved projective measurements on the two output systems.

  2. Device for measuring hole elongation in a bolted joint

    NASA Technical Reports Server (NTRS)

    Wichorek, Gregory R. (Inventor)

    1987-01-01

    A device to determine the operable failure mode of mechanically fastened lightweight composite joints by measuring the hole elongation of a bolted joint is disclosed. The double-lap joint test apparatus comprises a stud, a test specimen having a hole, two load transfer plates, and linear displacement measuring instruments. The test specimen is sandwiched between the two load transfer plates and clamped together with the stud. Spacer washers are placed between the test specimen and each load transfer plate to provide a known, controllable area for the determination of clamping forces around the hole of the specimen attributable to bolt torque. The spacer washers also provide a gap for the mounting of reference angles on each side of the test specimen. Under tensile loading, elongation of the hole of the test specimen causes the stud to move away from the reference angles. This displacement is measured by the voltage output of two linear displacement measuring instruments that are attached to the stud and remain in contact with the reference angles throughout the tensile loading. The present invention obviates previous problems in obtaining specimen deformation measurements by monitoring the reference angles to the test specimen and the linear displacement measuring instruments to the stud.

  3. Measurement of strain and tensile force of the supraspinatus tendon under conditions that simulates low angle isometric elevation of the gleno-humeral joint: Influence of adduction torque and joint positioning.

    PubMed

    Miyamoto, Hiroki; Aoki, Mitsuhiro; Hidaka, Egi; Fujimiya, Mineko; Uchiyama, Eiichi

    2017-12-01

    Recently, supraspinatus muscle exercise has been reported to treat rotator cuff disease and to recover shoulder function. However, there have been no report on the direct measurement of strain on the supraspinatus tendon during simulated isometric gleno-humeral joint elevation. Ten fresh-frozen shoulder specimens with the rotator cuff complex left intact were used as experimental models. Isometric gleno-humeral joint elevation in a sitting position was reproduced with low angle of step-by-step elevation in the scapular plane and strain was measured on the surface layer of the supraspinatus tendon. In isometric conditions, applied tensile force of the supraspinatus tendon increased significantly with increases in adduction torque on the gleno-humeral joint. Significant increases in the strain on the layer were observed by increase in adduction torque, which were recorded in isometric elevation at -10° and 0°, but little increase in the strain was observed at 10° or greater gleno-humeral elevation. Increased strain on the surface layer of the supraspinatus tendon was observed during isometric gleno-humeral elevation from -10 to 0°. These findings demonstrate a potential risk of inducing overstretching of the supraspinatus tendon during supraspinatus muscle exercise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Strain measurements in composite bolted-joint specimens

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Lightfoot, M. C.; Perry, J. C.

    1979-01-01

    Strain data from a series of bolted joint tests is presented. Double lap, double hole, double lap, single hole, and open hole tensile specimens were tested and the strain gage locations, load strain responses, and load axial displacement responses are presented. The open hole specimens were gaged to determine strain concentration factors. The double lap, double hole specimens were gaged to determine the uniformity of the strain in the joint and the amount of load transferred past the first bolt. The measurements indicated roughly half the load passed the first bolt to be reacted by the second bolt.

  5. Effect of surface finish on the failure mechanisms of flip-chip solder joints under electromigration

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Lai, Y. S.; Tsai, C. M.; Kao, C. R.

    2006-12-01

    Two substrate surface finishes, Au/Ni and organic solderable preservative (OSP), were used to study the effect of the surface finish on the reliability of flip-chip solder joints under electromigration at 150°C ambient temperature. The solder used was eutectic PbSn, and the applied current density was 5×103 A/cm2 at the contact window of the chip. The under bump metallurgy (UBM) on the chip was sputtered Cu/Ni. It was found that the mean-time-to-failure (MTTF) of the OSP joints was six times better than that of the Au/Ni joints (3080 h vs. 500 h). Microstructure examinations uncovered that the combined effect of current crowding and the accompanying local Joule heating accelerated the local Ni UBM consumption near the point of electron entrance. Once Ni was depleted at a certain region, this region became nonconductive, and the flow of the electrons was diverted to the neighboring region. This neighboring region then became the place where electrons entered the joint, and the local Ni UBM consumption was accelerated. This process repeated itself, and the Ni-depleted region extended further on, creating an ever-larger nonconductive region. The solder joint eventually, failed when the nonconductive region became too large, making the effective current density very high. Accordingly, the key factor determining the MTTF was the Ni consumption rate. The joints with the OSP surface finish had a longer MTTF because Cu released from the substrate was able to reduce the Ni consumption rate.

  6. Thermal conductance measurements of bolted copper joints for SuperCDMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, R.; Tatkowski, Greg; Ruschman, M.

    2015-09-01

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Results obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  7. Thermal conductance measurements of bolted copper joints for SuperCDMS

    DOE PAGES

    Schmitt, R. L.; Tatkowski, G.; Ruschman, M.; ...

    2015-04-28

    Joint thermal conductance testing has been undertaken for bolted copper to copper connections from 60 mK to 26 K. This testing was performed to validate an initial design basis for the SuperCDMS experiment, where a dilution refrigerator will be coupled to a cryostat via multiple bolted connections. Copper used during testing was either gold plated or passivated with citric acid to prevent surface oxidation. Finally, the results we obtained are well fit by a power law regression of joint thermal conductance to temperature and match well with data collected during a literature review.

  8. Structural tests and development of a laminar flow control wing surface composite chordwise joint

    NASA Technical Reports Server (NTRS)

    Lineberger, L. B.

    1984-01-01

    The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.

  9. Focusing in Arthurs-Kelly-type joint measurements with correlated probes.

    PubMed

    Bullock, Thomas J; Busch, Paul

    2014-09-19

    Joint approximate measurement schemes of position and momentum provide us with a means of inferring pieces of complementary information if we allow for the irreducible noise required by quantum theory. One such scheme is given by the Arthurs-Kelly model, where information about a system is extracted via indirect probe measurements, assuming separable uncorrelated probes. Here, following Di Lorenzo [Phys. Rev. Lett. 110, 120403 (2013)], we extend this model to both entangled and classically correlated probes, achieving full generality. We show that correlated probes can produce more precise joint measurement outcomes than the same probes can achieve if applied alone to realize a position or momentum measurement. This phenomenon of focusing may be useful where one tries to optimize measurements with limited physical resources. Contrary to Di Lorenzo's claim, we find that there are no violations of Heisenberg's error-disturbance relation in these generalized Arthurs-Kelly models. This is simply due to the fact that, as we show, the measured observable of the system under consideration is covariant under phase space translations and as such is known to obey a tight joint measurement error relation.

  10. Biomechanical measures of knee joint mobilization.

    PubMed

    Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C

    2011-08-01

    The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial-lateral and inferior glide) at two grades (Maitland's grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC(3,1)) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial-lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial-lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent.

  11. Biomechanical measures of knee joint mobilization

    PubMed Central

    Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C

    2011-01-01

    Background and purpose The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Methods Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial–lateral and inferior glide) at two grades (Maitland’s grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC3,1) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Results Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial–lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial–lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Discussion and conclusion Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent. PMID:22851879

  12. Extracting joint weak values with local, single-particle measurements.

    PubMed

    Resch, K J; Steinberg, A M

    2004-04-02

    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure directly in practice (for instance, in optics-a common testing ground for this technique-strong photon-photon interactions would be needed to implement an appropriate von Neumann interaction). Here we derive a general, experimentally feasible, method for extracting these joint weak values from correlations between single-particle observables.

  13. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  14. “Soft that molds the hard:” Geometric morphometry of lateral atlantoaxial joints focusing on the role of cartilage in changing the contour of bony articular surfaces

    PubMed Central

    Prasad, Prashant Kumar; Salunke, Pravin; Sahni, Daisy; Kalra, Parveen

    2017-01-01

    Purpose: The existing literature on lateral atlantoaxial joints is predominantly on bony facets and is unable to explain various C1-2 motions observed. Geometric morphometry of facets would help us in understanding the role of cartilages in C1-2 biomechanics/kinematics. Objective: Anthropometric measurements (bone and cartilage) of the atlantoaxial joint and to assess the role of cartilages in joint biomechanics. Materials and Methods: The authors studied 10 cadaveric atlantoaxial lateral joints with the articular cartilage in situ and after removing it, using three-dimensional laser scanner. The data were compared using geometric morphometry with emphasis on surface contours of articulating surfaces. Results: The bony inferior articular facet of atlas is concave in both sagittal and coronal plane. The bony superior articular facet of axis is convex in sagittal plane and is concave (laterally) and convex medially in the coronal plane. The bony articulating surfaces were nonconcordant. The articular cartilages of both C1 and C2 are biconvex in both planes and are thicker than the concavities of bony articulating surfaces. Conclusion: The biconvex structure of cartilage converts the surface morphology of C1-C2 bony facets from concave on concavo-convex to convex on convex. This reduces the contact point making the six degrees of freedom of motion possible and also makes the joint gyroscopic. PMID:29403249

  15. Optimal joint measurements of complementary observables by a single trapped ion

    NASA Astrophysics Data System (ADS)

    Xiong, T. P.; Yan, L. L.; Ma, Z. H.; Zhou, F.; Chen, L.; Yang, W. L.; Feng, M.; Busch, P.

    2017-06-01

    The uncertainty relations, pioneered by Werner Heisenberg nearly 90 years ago, set a fundamental limitation on the joint measurability of complementary observables. This limitation has long been a subject of debate, which has been reignited recently due to new proposed forms of measurement uncertainty relations. The present work is associated with a new error trade-off relation for compatible observables approximating two incompatible observables, in keeping with the spirit of Heisenberg’s original ideas of 1927. We report the first direct test and confirmation of the tight bounds prescribed by such an error trade-off relation, based on an experimental realisation of optimal joint measurements of complementary observables using a single ultracold {}40{{{Ca}}}+ ion trapped in a harmonic potential. Our work provides a prototypical determination of ultimate joint measurement error bounds with potential applications in quantum information science for high-precision measurement and information security.

  16. Measurement of damping of graphite epoxy composite materials and structural joints

    NASA Technical Reports Server (NTRS)

    Crocker, Malcolm J.; Rao, Mohan D.; Raju, P. K.; Yan, Xinche

    1989-01-01

    The damping capacity of graphite epoxy materials and structural joints was evaluated. The damping ratio of different composite specimens and bonded joints were systematically evaluated under normal atmospheric conditions and in a vacuum environment. Free and forced vibration test methods were employed for measuring the damping ratios. The effect of edge support conditions on the damping value of a composite tube specimen was studied by using a series of experiments performed on the specimen with different edge supports. It was found that simulating a free-free boundary conditions by having no constraints at the ends gives the lowest value of the material damping of the composite. The accuracy of the estimation of the damping ratio value was improved by using a curve-fitting technique on the response data obtained through measurement. The effect of outgassing (moisture desorption) on the damping capacity was determined by measuring the damping ratio of the tube specimen in a vacuum environment before and after outgassing had occurred. The effects of high and low temperatures on the damping was also investigated by using a series of experiments on tube and beam specimens. An analytical model to study the vibrations of a bonded lap joint system was formulated. Numerical results were generated for different overlap ratios of the system. These were compared with experimental results. In order to determine the influence of bonded joints on the material damping capacity, experiments were conducted on bonded lap-jointed and double-butt-jointed specimens. These experimental results were compared with simple beam specimens with no joints.

  17. Mobile Phone-Based Joint Angle Measurement for Functional Assessment and Rehabilitation of Proprioception

    PubMed Central

    Mourcou, Quentin; Fleury, Anthony; Diot, Bruno; Franco, Céline; Vuillerme, Nicolas

    2015-01-01

    Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home. PMID:26583101

  18. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis.

    PubMed

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L; van de Laar, Mart A; Kuper, Ina H H; Slump, Kees C H; Lafeber, Floris P J G; Bernelot Moens, Hein J

    2016-10-01

    Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp-van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was [Formula: see text] and [Formula: see text] in the two series of radiographs, and of PIP joints [Formula: see text] and [Formula: see text]. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was [Formula: see text], indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of

  19. Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis

    PubMed Central

    Schenk, Olga; Huo, Yinghe; Vincken, Koen L.; van de Laar, Mart A.; Kuper, Ina H. H.; Slump, Kees C. H.; Lafeber, Floris P. J. G.; Bernelot Moens, Hein J.

    2016-01-01

    Abstract. Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp–van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was 1.7±0.2 and 1.6±0.3  mm in the two series of radiographs, and of PIP joints 1.0±0.2 and 0.9±0.2  mm. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was 0.0±0.1  mm, indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than

  20. Joint temporal density measurements for two-photon state characterization.

    PubMed

    Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey

    2008-10-10

    We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.

  1. Subperiosteal Transmission Of Intra-Articular Pressure Between Articulated And Stationary Joints

    PubMed Central

    Pitkin, Mark; Muppavarapu, Raghuveer; Cassidy, Charles; Pitkin, Emil

    2015-01-01

    Hydrostatic pressures can be transmitted between synovial capsules. In each of ten rabbits, we simultaneously measured pressure in two joints, one of which was passively ranged, and the other of which was kept stationary. The intra-articular pressure inside the stationary joint changed every time its companion joint was ranged. But the pressure in the stationary joint did not change when the periosteum was transected above the ranged joint. This phenomenon was observed in all four animals that served as their own controls. The study suggests that the intra-articular pressure was transmitted through the space between the periosteum and the bone surface. Alternative explanations, like measurements of venous blood pressure, did not show correlation with hydrostatic pressure changes in the joints. The Floating Skeleton concept suggests a biomechanical rationale for this newly observed phenomenon: that there exists a subperiosteal hydrostatic connection of synovial joints, and that this “net” distributes excess pressures among joints through the periosteal sheath to sustain the integrity of the joint contacting surfaces over a lifetime. PMID:25632015

  2. Pressure application measurement (PAM): a novel behavioural technique for measuring hypersensitivity in a rat model of joint pain.

    PubMed

    Barton, Nicola J; Strickland, Iain T; Bond, Susan M; Brash, Harry M; Bate, Simon T; Wilson, Alex W; Chessell, Iain P; Reeve, Alison J; McQueen, Daniel S

    2007-06-15

    Chronic joint pain affects physical well being and can lead to severe psychological and social problems, therefore successful long-term management is highly sought-after. No current behavioural measures of pain used in pre-clinical models mimic the clinical dolorimeter, which provides an objective measure of joint hypersensitivity. In this study we aim to use a novel behavioural readout alongside an established measure to mimic the multifactorial measurements taken in the clinic. Using the pressure application measurement (PAM) device a gradually increasing squeeze was applied across the knee joint of rats until the animal gave an indication of pain or discomfort. PAM and the incapacitance tester were used to detect joint hypersensitivity in a well-established rodent model of adjuvant-induced arthritis. Subsequently, the analgesic effects of prednisolone (1, 3 or 10 mg kg(-1)), morphine (3 mg kg(-1)) and celecoxib (15 mg kg(-1)) were assessed. Both PAM and the incapacitance tester detected a reversal of hypersensitivity 1h post-drug administration. Furthermore, the two readouts were highly correlated, and power analysis indicated that PAM was highly reproducible. In conclusion, PAM provides a novel, accurate behavioural tool for detecting a primary mechanical hypersensitivity in a rat model of chronic inflammatory joint pain.

  3. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    PubMed

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  4. Dataglove measurement of joint angles in sign language handshapes

    PubMed Central

    Eccarius, Petra; Bour, Rebecca; Scheidt, Robert A.

    2012-01-01

    In sign language research, we understand little about articulatory factors involved in shaping phonemic boundaries or the amount (and articulatory nature) of acceptable phonetic variation between handshapes. To date, there exists no comprehensive analysis of handshape based on the quantitative measurement of joint angles during sign production. The purpose of our work is to develop a methodology for collecting and visualizing quantitative handshape data in an attempt to better understand how handshapes are produced at a phonetic level. In this pursuit, we seek to quantify the flexion and abduction angles of the finger joints using a commercial data glove (CyberGlove; Immersion Inc.). We present calibration procedures used to convert raw glove signals into joint angles. We then implement those procedures and evaluate their ability to accurately predict joint angle. Finally, we provide examples of how our recording techniques might inform current research questions. PMID:23997644

  5. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade

    PubMed Central

    Arnold, Allison S.; Lee, David V.; Biewener, Andrew A.

    2013-01-01

    SUMMARY Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and −15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg−1 body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the

  6. The feasibility of measuring joint angular velocity with a gyro-sensor.

    PubMed

    Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Nakano, Chika; Higashi, Takuya

    2008-01-01

    To determine the reliability of an assessment of joint angular velocity using a gyro-sensor and to examine the relationship between ankle angular velocity and physical functions. Cross-sectional. Kinesiology laboratory. Twenty healthy young adults (mean age, 22.5 y) and 113 community-dwelling older adults (mean age, 75.1 y). Not applicable. Maximal ankle joint velocity was measured using a gyro-sensor during heel-rising and jumping with knee extended. The intraclass correlation coefficient (ICC) was used to determine the intertester and intratester reliability. The Pearson correlation coefficient was used to examine the relationships between maximal ankle joint velocity and isometric muscle strength and isokinetic muscle power in young adults and also to examine the relationships between maximal ankle joint velocity and functional performance measurements such as walking time in older adults. High reliability was found for intertester (ICC=.96) and intratester reliability (ICC=.96). The data from the gyro-sensor highly correlated with muscle strength (r range, .62-.68; P<.01) and muscle power (r range, .45-.79; P range, .01-.05). In older subjects, mobility functions significantly correlated with the angular velocity of ankle plantarflexion. Measurement of ankle angular velocity using a gyro-sensor is both reliable and feasible, with the results representing a significant correlation to muscle power and performance measurements.

  7. N -term pairwise-correlation inequalities, steering, and joint measurability

    NASA Astrophysics Data System (ADS)

    Karthik, H. S.; Devi, A. R. Usha; Tej, J. Prabhu; Rajagopal, A. K.; Sudha, Narayanan, A.

    2017-05-01

    Chained inequalities involving pairwise correlations of qubit observables in the equatorial plane are constructed based on the positivity of a sequence of moment matrices. When a jointly measurable set of positive-operator-valued measures (POVMs) is employed in the first measurement of every pair of sequential measurements, the chained pairwise correlations do not violate the classical bound imposed by the moment matrix positivity. We find that incompatibility of the set of POVMs employed in first measurements is only necessary, but not sufficient, in general, for the violation of the inequality. On the other hand, there exists a one-to-one equivalence between the degree of incompatibility (which quantifies the joint measurability) of the equatorial qubit POVMs and the optimal violation of a nonlocal steering inequality, proposed by Jones and Wiseman [S. J. Jones and H. M. Wiseman, Phys. Rev. A 84, 012110 (2011), 10.1103/PhysRevA.84.012110]. To this end, we construct a local analog of this steering inequality in a single-qubit system and show that its violation is a mere reflection of measurement incompatibility of equatorial qubit POVMs, employed in first measurements in the sequential unsharp-sharp scheme.

  8. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    PubMed

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  9. The Effect of Surface Irregularities on Wing Drag. II - Lap Joints. 2; Lap Joints

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been made in the NACA 8-foot high-speed wind tunnel of the drag caused by four types of lap joint. The tests were made on an airfoil of NACA 23012 section and 5-foot chord and covered in a range of speeds from 80 to 500 miles per hour and lift coefficients from 0 to 0.30. The increases in profile drag caused by representative arrangements of laps varied from 4 to 9%. When there were protruding rivet heads on the surface, the addition of laps increased the drag only slightly. Laps on the forward part of a wing increased the drag considerably more than those farther back.

  10. Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus.

    PubMed

    Jin, Z M; Dowson, D; Fisher, J

    1997-01-01

    Lubrication mechanisms and contact mechanics have been analysed for total hip joint replacements made from hard bearing surfaces such as metal-on-metal and ceramic-on-ceramic. A similar analysis for ultra-high molecular weight polyethylene (UHMWPE) against a hard bearing surface has also been carried out and used as a reference. The most important factor influencing the predicted lubrication film thickness has been found to be the radial clearance between the ball and the socket. Full fluid film lubrication may be achieved in these hard/hard bearings provided that the surface finish of the bearing surface and the radial clearance are chosen correctly and maintained. Furthermore, there is a close relation between the predicted contact half width and the predicted lubrication film thickness. Therefore, it is important to analyse the contact mechanics in artificial hip joint replacements. Practical considerations of manufacturing these bearing surfaces have also been discussed.

  11. Towards understanding knee joint laxity: errors in non-invasive assessment of joint rotation can be corrected.

    PubMed

    Moewis, P; Boeth, H; Heller, M O; Yntema, C; Jung, T; Doyscher, R; Ehrig, R M; Zhong, Y; Taylor, W R

    2014-07-01

    The in vivo quantification of rotational laxity of the knee joint is of importance for monitoring changes in joint stability or the outcome of therapies. While invasive assessments have been used to study rotational laxity, non-invasive methods are attractive particularly for assessing young cohorts. This study aimed to determine the conditions under which tibio-femoral rotational laxity can be assessed reliably and accurately in a non-invasive manner. The reliability and error of non-invasive examinations of rotational joint laxity were determined by comparing the artefact associated with surface mounted markers against simultaneous measurements using fluoroscopy in five knees including healthy and ACL deficient joints. The knees were examined at 0°, 30°, 60° and 90° flexion using a device that allows manual axial rotation of the joint. With a mean RMS error of 9.6°, the largest inaccuracy using non-invasive assessment was present at 0° knee flexion, whereas at 90° knee flexion, a smaller RMS error of 5.7° was found. A Bland and Altman assessment indicated that a proportional bias exists between the non-invasive and fluoroscopic approaches, with limits of agreement that exceeded 20°. Correction using average linear regression functions resulted in a reduction of the RMS error to below 1° and limits of agreement to less than ±1° across all knees and flexion angles. Given the excellent reliability and the fact that a correction of the surface mounted marker based rotation values can be achieved, non-invasive evaluation of tibio-femoral rotation could offer opportunities for simplified devices for use in clinical settings in cases where invasive assessments are not justified. Although surface mounted marker based measurements tend to overestimate joint rotation, and therefore joint laxity, our results indicate that it is possible to correct for this error. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Joint modelling of repeated measurement and time-to-event data: an introductory tutorial.

    PubMed

    Asar, Özgür; Ritchie, James; Kalra, Philip A; Diggle, Peter J

    2015-02-01

    The term 'joint modelling' is used in the statistical literature to refer to methods for simultaneously analysing longitudinal measurement outcomes, also called repeated measurement data, and time-to-event outcomes, also called survival data. A typical example from nephrology is a study in which the data from each participant consist of repeated estimated glomerular filtration rate (eGFR) measurements and time to initiation of renal replacement therapy (RRT). Joint models typically combine linear mixed effects models for repeated measurements and Cox models for censored survival outcomes. Our aim in this paper is to present an introductory tutorial on joint modelling methods, with a case study in nephrology. We describe the development of the joint modelling framework and compare the results with those obtained by the more widely used approaches of conducting separate analyses of the repeated measurements and survival times based on a linear mixed effects model and a Cox model, respectively. Our case study concerns a data set from the Chronic Renal Insufficiency Standards Implementation Study (CRISIS). We also provide details of our open-source software implementation to allow others to replicate and/or modify our analysis. The results for the conventional linear mixed effects model and the longitudinal component of the joint models were found to be similar. However, there were considerable differences between the results for the Cox model with time-varying covariate and the time-to-event component of the joint model. For example, the relationship between kidney function as measured by eGFR and the hazard for initiation of RRT was significantly underestimated by the Cox model that treats eGFR as a time-varying covariate, because the Cox model does not take measurement error in eGFR into account. Joint models should be preferred for simultaneous analyses of repeated measurement and survival data, especially when the former is measured with error and the association

  13. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; van der Hilst, Robert D.

    2016-05-01

    We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.

  14. The relationships between instrumented measurements of ankle and knee ligamentous laxity and generalized joint laxity.

    PubMed

    Pearsall, A W; Kovaleski, J E; Heitman, R J; Gurchiek, L R; Hollis, J M

    2006-03-01

    The purpose of this study was to evaluate whether lower extremity joint laxity is a function of a particular joint and/or a generalizable characteristic (trait) of the person. Validated instrumented measurements of ankle and knee joint-specific laxity in the same individual were correlated to determine whether a relationship exists. In addition, ankle and knee joint-specific laxity were correlated with generalized joint laxity using the modified Beighton mobility index. Fifty-seven male and female athletes were studied. We examined dominant ankle laxity using an ankle arthrometer and dominate knee anterior laxity using the KT 2000. The dominant ankle was loaded in anteroposterior (AP) drawer and inversion-eversion (I-E) rotation. Laxity was measured as total AP displacement (millimeters) after +/-125 N of applied force and total I-E rotation (degrees) was measured after +/-4 N x m of applied torque. The dominant knee was loaded with an anterior drawer and laxity (millimeters) was measured after manual maximum displacement. Non-significant correlations were observed among the test variables for generalized joint laxity (0.21 to 0.37; P>0.05) and instrumented ankle and knee joint laxity (0.19 to 0.21; P>0.05). When examined by gender, no statistically significant correlations (0.05 to 0.40; P>0.05) were found for either generalized laxity or instrumented ankle and knee joint laxity. These results imply that ankle and knee joint laxity are joint-specific and not generalizable.

  15. Automatic joint alignment measurements in pre- and post-operative long leg standing radiographs.

    PubMed

    Goossen, A; Weber, G M; Dries, S P M

    2012-01-01

    For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. In a two step approach we first detect and segment any implants or other artificial objects within the image. We exploit physical characteristics and avoid prior shape information to cope with the vast amount of implant types. Subsequently, we exploit the implant delineations to adapt the initialization and adaptation phase of a dedicated bone segmentation scheme using deformable template models. Implant and bone contours are fused to derive the final joint segmentation and thus the alignment measurements. We evaluated our method on clinical long leg radiographs and compared both the initialization rate, corresponding to the number of images successfully processed by the proposed algorithm, and the accuracy of the alignment measurement. Ground truth has been generated by an experienced orthopedic surgeon. For comparison a second reader reevaluated the measurements. Experiments on two sets of 70 and 120 digital radiographs show that 92% of the joints could be processed automatically and the derived measurements of the automatic method are comparable to a human reader for pre-operative as well as post-operative images with a typical error of 0.7° and correlations of r = 0.82 to r = 0.99 with the ground truth. The proposed method allows deriving objective measures of joint alignment from clinical radiographs. Its accuracy and precision are on par with a human reader for all evaluated measurements.

  16. Joint body and surface wave tomography applied to the Toba caldera complex (Indonesia)

    NASA Astrophysics Data System (ADS)

    Jaxybulatov, Kairly; Koulakov, Ivan; Shapiro, Nikolai

    2016-04-01

    We developed a new algorithm for a joint body and surface wave tomography. The algorithm is a modification of the existing LOTOS code (Koulakov, 2009) developed for local earthquake tomography. The input data for the new method are travel times of P and S waves and dispersion curves of Rayleigh and Love waves. The main idea is that the two data types have complementary sensitivities. The body-wave data have good resolution at depth, where we have enough crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution. The surface wave dispersion curves can be retrieved from the correlations of the ambient seismic noise and in this case the sampled path distribution does not depend on the earthquake sources. The contributions of the two data types to the inversion are controlled by the weighting of the respective equations. One of the clearest cases where such approach may be useful are volcanic systems in subduction zones with their complex magmatic feeding systems that have deep roots in the mantle and intermediate magma chambers in the crust. In these areas, the joint inversion of different types of data helps us to build a comprehensive understanding of the entire system. We apply our algorithm to data collected in the region surrounding the Toba caldera complex (north Sumatra, Indonesia) during two temporary seismic experiments (IRIS, PASSCAL, 1995, GFZ, LAKE TOBA, 2008). We invert 6644 P and 5240 S wave arrivals and ~500 group velocity dispersion curves of Rayleigh and Love waves. We present a series of synthetic tests and real data inversions which show that joint inversion approach gives more reliable results than the separate inversion of two data types. Koulakov, I., LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. seism. Soc. Am., 99(1), 194-214, 2009, doi:10.1785/0120080013

  17. Joint Test Report for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the NASA Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. The objective of this project was to qualify candidate alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel applications at NASA facilities. This project compares the surface preparation/depainting performance of the proposed alternatives to existing surface preparation/depainting systems or standards. This Joint Test Report (JTR) contains the results of testing as per the outlines of the Joint Test Protocol (JTP), Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Test Plan (FTP), Field Evaluations Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, for critical requirements and tests necessary to qualify alternatives for coating removal systems. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of government and industry participants. This JTR documents the results of the testing as well as any test modifications made during the execution of the project. This JTR is made available as a reference for future pollution prevention endeavors by other NASA Centers, the Department of Defense and commercial users to minimize duplication of effort. The current coating removal processes

  18. Biochemical and biomechanical characterisation of equine cervical facet joint cartilage.

    PubMed

    O'Leary, S A; White, J L; Hu, J C; Athanasiou, K A

    2018-04-15

    The equine cervical facet joint is a site of significant pathology. Located bilaterally on the dorsal spine, these diarthrodial joints work in conjunction with the intervertebral disc to facilitate appropriate spinal motion. Despite the high prevalence of pathology in this joint, the facet joint is understudied and thus lacking in viable treatment options. The goal of this study was to characterise equine facet joint cartilage and provide a comprehensive database describing the morphological, histological, biochemical and biomechanical properties of this tissue. Descriptive cadaver studies. A total of 132 facet joint surfaces were harvested from the cervical spines of six skeletally mature horses (11 surfaces per animal) for compiling biomechanical and biochemical properties of hyaline cartilage of the equine cervical facet joints. Gross morphometric measurements and histological staining were performed on facet joint cartilage. Creep indentation and uniaxial strain-to-failure testing were used to determine the biomechanical compressive and tensile properties. Biochemical assays included quantification of total collagen, sulfated glycosaminoglycan and DNA content. The facet joint surfaces were ovoid in shape with a flat articular surface. Histological analyses highlighted structures akin to articular cartilage of other synovial joints. In general, biomechanical and biochemical properties did not differ significantly between the inferior and superior joint surfaces as well as among spinal levels. Interestingly, compressive and tensile properties of cervical facet articular cartilage were lower than those of articular cartilage from other previously characterised equine joints. Removal of the superficial zone reduced the tissue's tensile strength, suggesting that this zone is important for the tensile integrity of the tissue. Facet surfaces were sampled at a single, central location and do not capture the potential topographic variation in cartilage properties. This

  19. Single-joint outcome measures: preliminary validation of patient-reported outcomes and physical examination.

    PubMed

    Heald, Alison E; Fudman, Edward J; Anklesaria, Pervin; Mease, Philip J

    2010-05-01

    To assess the validity, responsiveness, and reliability of single-joint outcome measures for determining target joint (TJ) response in patients with inflammatory arthritis. Patient-reported outcomes (PRO), consisting of responses to single questions about TJ global status on a 100-mm visual analog scale (VAS; TJ global score), function on a 100-mm VAS (TJ function score), and pain on a 5-point Likert scale (TJ pain score) were piloted in 66 inflammatory arthritis subjects in a phase 1/2 clinical study of an intraarticular gene transfer agent and compared to physical examination measures (TJ swelling, TJ tenderness) and validated function questionnaires (Disabilities of the Arm, Shoulder and Hand scale, Rheumatoid Arthritis Outcome Score, and the Health Assessment Questionnaire). Construct validity was assessed by evaluating the correlation between the single-joint outcome measures and validated function questionnaires using Spearman's rank correlation. Responsiveness or sensitivity to change was assessed through calculating effect size and standardized response means (SRM). Reliability of physical examination measures was assessed by determining interobserver agreement. The single-joint PRO were highly correlated with each other and correlated well with validated functional measures. The TJ global score exhibited modest effect size and modest SRM that correlated well with the patient's assessment of response on a 100-mm VAS. Physical examination measures exhibited high interrater reliability, but correlated less well with validated functional measures and the patient's assessment of response. Single-joint PRO, particularly the TJ global score, are simple to administer and demonstrate construct validity and responsiveness in patients with inflammatory arthritis. (ClinicalTrials.gov identifier NCT00126724).

  20. Minimum distraction gap: how much ankle joint space is enough in ankle distraction arthroplasty?

    PubMed

    Fragomen, Austin T; McCoy, Thomas H; Meyers, Kathleen N; Rozbruch, S Robert

    2014-02-01

    The success of ankle distraction arthroplasty relies on the separation of the tibiotalar articular surfaces. The purpose of this study was to find the minimum distraction gap needed to ensure that the tibiotalar joint surfaces would not contact each other with full weight-bearing while under distraction. Circular external fixators were mounted to nine cadaver ankle specimens. Each specimen was then placed into a custom-designed load chamber. Loads of 0, 350, and 700N were applied to the specimen. Radiographic joint space was measured and joint contact pressure was monitored under each load. The external fixator was then sequentially distracted, and the radiographic joint space was measured under the three different loads. The experiment was stopped when there was no joint contact under 700N of load. The radiographic joint space was measured and the initial (undistracted) radiographic joint space was subtracted from it yielding the distraction gap. The minimum distraction gap (mDG) that would provide total unloading was calculated. The average mDG was 2.4 mm (range, 1.6 to 4.0 mm) at 700N of load, 4.4 mm (range, 3.7 to 5.8 mm) at 350N of load, and 4.9 mm (range, 3.7 to 7.0 mm) at 0N of load. These results suggest that if the radiographic joint space of on a standing X-ray of an ankle undergoing distraction arthroplasty shows a minimum of 5.8 mm of DG, then there will be no contact between joint surfaces during full weight-bearing. Therefore, 5 mm of radiographic joint space, as recommended historically, may not be adequate to prevent contact of the articular surfaces during weight-bearing.

  1. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  2. The human first carpometacarpal joint: osteoarthritic degeneration and 3-dimensional modeling.

    PubMed

    Kovler, Maksim; Lundon, Katie; McKee, Nancy; Agur, Anne

    2004-01-01

    The purpose of this study was to gain insight into potential mechanical factors contributing to osteoarthritis of the human first carpometacarpal joint (CMC). This was accomplished by creating three-dimensional (3-D) computer models of the articular surfaces of CMC joints of older humans and by determining their locus of cartilage degeneration. The research questions of this study were: 1) What is the articular wear pattern of cartilage degeneration in CMC osteoarthritis?, (2) Are there significant topographic differences in joint area and contour between the joints of males and females?, and 3) Are there measurable bony joint recesses consistently found within the joint? The articular surfaces of 25 embalmed cadaveric joints (from 13 cadavers) were graded for degree of osteoarthritis, and the location of degeneration was mapped using a dissection microscope. The surfaces of 14 mildly degenerated joints were digitized and reconstructed as 3-D computer models using the Microscribe 3D-X Digitizer and the Rhinoceros 2.0 NURBS Modeling Software. This technology provided accurate and reproducible information on joint area and topography. The dorsoradial trapezial region was found to be significantly more degenerated than other quadrants in both males and females. Mean trapezial articular surface area was 197 mm 2 in males and 160 mm(2) in females; the respective mean areas for the metacarpal were 239 mm(2) in males and 184 mm(2) in females. Joints of females were found to be significantly more concave in radioulnar profile than those of males. Three bony joint recesses were consistently found, two in the radial and ulnar aspects of the trapezium and the third in the palmar surface of the metacarpal.

  3. Joint inversion of surface and borehole magnetic data to prospect concealed orebodies: A case study from the Mengku iron deposit, northwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Hu, Xiangyun; Zhu, Rixiang

    2018-07-01

    The Mengku iron deposit is one of the largest magnetite deposits in Xinjiang Province, northwestern China. It is important to accurately delineate the positions and shapes of concealed orebodies for drillhole layout and resource quantity evaluations. Total-field surface and three-component borehole magnetic measurements were carried out in the deposit. We made a joint inversion of the surface and borehole magnetic data to investigate the characteristics of the orebodies. We recovered the distributions of the magnetization intensity using a preconditioned conjugate gradient algorithm. Synthetic examples show that the reconstructed models of the joint inversion yield a better consistency with the true models than those recovered using independent inversion. By using joint inversion, more accurate information is obtained on the position and shape of the orebodies in the Mengku iron deposit. The magnetization distribution of Line 135 reveals that the major magnetite orebodies occur at 200-400 m depth with a lenticular cross-section dipping north-east. The orebodies of Line 143 are modified and buried at 100-200 m depth with an elliptical cross-section caused by fault activities at north-northeast directions. This information is verified by well logs. The borehole component anomalies are combined with surface data to reconstruct the physical property model and improve the ability to distinguish vertical and horizontal directions, which provides an effective approach to prospect buried orebodies.

  4. The Measurement Of Total Joint Loosening By X-Ray Photogrammetry

    NASA Astrophysics Data System (ADS)

    Lippert, Frederick G.; Veress, Sandor A.; Tiwari, Rama S.; Harrington, Richard M.

    1980-07-01

    Failure of total joint replacement due to loosening of the composents either between the implant and cement or between the cement and bone is emerging as a late complication with an incidence as high as 20 percent. Loosening may not only cause pain but progressive loss of support for the prosthesis with eventual structural failure. Early diagnosis is important so that revision may be carried when deterioration or pain occurs. No method is currently available which clearly establishes loosening at an early stage except surgical exploration. We have devised a method based on our in vivo photogrammetry studies of patellar tracking patterns using metallic markers placed in bone near both components of the total joint. Stereo x-rays taken with the joint loaded and unloaded are measured for relative motion between the implant and the metallic markers. Laboratory studies using prosthetic hip components mounted in plastic bone have revealed the ability of this method to detect pistoning movements as small as 80 microns. These findings were confirmed by physical measurements.

  5. Copula Models for Sociology: Measures of Dependence and Probabilities for Joint Distributions

    ERIC Educational Resources Information Center

    Vuolo, Mike

    2017-01-01

    Often in sociology, researchers are confronted with nonnormal variables whose joint distribution they wish to explore. Yet, assumptions of common measures of dependence can fail or estimating such dependence is computationally intensive. This article presents the copula method for modeling the joint distribution of two random variables, including…

  6. Radiologic changes of ankle joint after total knee arthroplasty.

    PubMed

    Lee, Jung Hee; Jeong, Bi O

    2012-12-01

    The authors noticed that ankle joint osteoarthritis was not uncommon when lower extremity malalignment, such as a knee varus deformity, was present as a result of severe osteoarthritis of the knee. The purpose of this study was to analyze radiologic changes of the ankle joint after total knee arthroplasty. This study included 142 cases in 110 patients who underwent total knee arthroplasty and were followed for at least 3 years. The varus knee group included 128 cases and the valgus knee group included 14 cases. On anteroposterior standing lower extremity radiographs, varus and valgus angles of the knee were measured preoperatively and at the last follow-up. The angle between the ground surface and the distal tibial plafond as well as the upper talus was also measured. In addition, tibial anterior surface angle, talar tilt, space between the medial malleolar distal tip and the medial articular surface of the talus, and medial tibiotalar joint space of the ankle joint were measured. Out of 142 cases, 50 (35.2%) had arthritis in the ankle before total knee arthroplasty and 31 (21.8%) had newly developed or progressive arthritis after surgery. In particular, the varus knee group demonstrated statistically significant differences in preoperative varus deformity, preoperative talar tilt, and postoperative correction angle between the cases that developed or had progressive arthritis and those that did not show any changes (p < .05). After total knee arthroplasty, arthritis developed or progressed in the ankle of many cases radiographically. In particular, when the preoperative talar tilt increased medial to the ankle or the postoperative correction angle was large, the incidence of arthritis in the ankle joint increased. The authors recommend more cautious follow-up on the symptoms of the ankle joint after total knee arthroplasty.

  7. Mechanical Reliability of the Epoxy Sn-58wt.%Bi Solder Joints with Different Surface Finishes Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo

    2018-04-01

    The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder

  8. Mechanical Reliability of the Epoxy Sn-58wt.%Bi Solder Joints with Different Surface Finishes Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo

    2018-07-01

    The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder

  9. [Temporo-mandibular joint. Morpho-functional considerations].

    PubMed

    Scutariu, M D; Indrei, Anca

    2004-01-01

    The temporo-mandibular joint is distinguished from most other synovial joints of the body by two features: 1. the two jointed components carry teeth whose position and occlusion introduce a very strong influence on the movements of the temporo-mandibular joint and 2. its articular surfaces are not covered by hyaline cartilage, but by a dense, fibrous tissue. This paper describes the parts of the temporo-mandibular joint: the articular surfaces (the condylar process of the mandible and the glenoid part of the temporal bone), the fibrocartilaginous disc which is interposed between the mandibular and the temporal surface, the fibrous capsule of the temporo-mandibular joint and the ligaments of this joint. All these parts present a very strong adaptation at the important functions of the temporo-mandibular joint.

  10. Noninvasively measuring oxygen saturation of human finger-joint vessels by multi-transducer functional photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Li, Changhui

    2016-06-01

    Imaging small blood vessels and measuring their functional information in finger joint are still challenges for clinical imaging modalities. In this study, we developed a multi-transducer functional photoacoustic tomography (PAT) system and successfully imaged human finger-joint vessels from ˜1 mm to <0.2 mm in diameter. In addition, the oxygen saturation (SO2) values of these vessels were also measured. Our results demonstrate that PAT can provide both anatomical and functional information of individual finger-joint vessels with different sizes, which might help the study of finger-joint diseases, such as rheumatoid arthritis.

  11. Comparative Study of ENIG and ENEPIG as Surface Finishes for a Sn-Ag-Cu Solder Joint

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2011-09-01

    Interfacial reactions and joint reliability of Sn-3.0Ag-0.5Cu solder with two different surface finishes, electroless nickel-immersion gold (ENIG) and electroless nickel-electroless palladium-immersion gold (ENEPIG), were evaluated during a reflow process. We first compared the interfacial reactions of the two solder joints and also successfully revealed a connection between the interfacial reaction behavior and mechanical reliability. The Sn-Ag-Cu/ENIG joint exhibited a higher intermetallic compound (IMC) growth rate and a higher consumption rate of the Ni(P) layer than the Sn-Ag-Cu/ENEPIG joint. The presence of the Pd layer in the ENEPIG suppressed the growth of the interfacial IMC layer and the consumption of the Ni(P) layer, resulting in the superior interfacial stability of the solder joint. The shear test results show that the ENIG joint fractured along the interface, exhibiting indications of brittle failure possibly due to the brittle IMC layer. In contrast, the failure of the ENEPIG joint only went through the bulk solder, supporting the idea that the interface is mechanically reliable. The results from this study confirm that the Sn-Ag-Cu/ENEPIG solder joint is mechanically robust and, thus, the combination is a viable option for a Pb-free package system.

  12. Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    Headquarters National Aeronautics and Space Administration (NASA) chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of the AP2 Office are to: (1) Reduce or eliminate the use of hazardous materials (HazMats) or hazardous processes at manufacturing, remanufacturing, and sustainment locations. (2) A void duplication of effort in actions required to reduce or eliminate HazMats through joint center cooperation and technology sharing. This project will identify, evaluate and approve alternative surface preparation technologies for use at NASA and Air Force Space Command (AFSPC) installations. Materials and processes will be evaluated with the goal of selecting those processes that will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination and reduce the amount of hazardous waste generated. This Joint Test Protocol (JTP) contains the critical requirements and tests necessary to qualify alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel Applications. These tests were derived from engineering, performance, and operational impact (supportability) requirements defined by a consensus of NASA and Air Force Space Command (AFSPC) participants. The Field Test Plan (FTP), entitled Joint Test Protocol for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, prepared by ITB, defines the field evaluation and testing requirements for validating alternative surface preparation/depainting technologies and supplements the JTP.

  13. The joint use of the tangential electric field and surface Laplacian in EEG classification.

    PubMed

    Carvalhaes, C G; de Barros, J Acacio; Perreau-Guimaraes, M; Suppes, P

    2014-01-01

    We investigate the joint use of the tangential electric field (EF) and the surface Laplacian (SL) derivation as a method to improve the classification of EEG signals. We considered five classification tasks to test the validity of such approach. In all five tasks, the joint use of the components of the EF and the SL outperformed the scalar potential. The smallest effect occurred in the classification of a mental task, wherein the average classification rate was improved by 0.5 standard deviations. The largest effect was obtained in the classification of visual stimuli and corresponded to an improvement of 2.1 standard deviations.

  14. Design, fabrication and test of graphite/polyimide composite joints and attachments. [spacecraft control surfaces

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    The design, analysis, and testing performed to develop four types of graphite/polyimide (Gr/PI) bonded and bolted composite joints for lightly loaded control surfaces on advanced space transportation systems that operate at temperatures up to 561 K (550 F) are summarized. Material properties and small specimen tests were conducted to establish design data and to evaluate specific design details. Static discriminator tests were conducted on preliminary designs to verify structural adequacy. Scaled up specimens of the final joint designs, representative of production size requirements, were subjected to a series of static and fatigue tests to evaluate joint strength. Effects of environmental conditioning were determined by testing aged (125 hours at 589 K (600 F)) and thermal cycled (116 K to 589 K (-250 F to 600 F), 125 times) specimens. It is concluded Gr/PI joints can be designed and fabricated to carry the specified loads. Test results also indicate a possible resin loss or degradation of laminates after exposure to 589 K (600 F) for 125 hours.

  15. Hospital Performance Trends on National Quality Measures and the Association With Joint Commission Accreditation

    PubMed Central

    Schmaltz, Stephen P; Williams, Scott C; Chassin, Mark R; Loeb, Jerod M; Wachter, Robert M

    2011-01-01

    BACKGROUND Evaluations of the impact of hospital accreditation have been previously hampered by the lack of nationally standardized data. One way to assess this impact is to compare accreditation status with other evidence-based measures of quality, such as the process measures now publicly reported by The Joint Commission and the Centers for Medicare and Medicaid Services (CMS). OBJECTIVES To examine the association between Joint Commission accreditation status and both absolute measures of, and trends in, hospital performance on publicly reported quality measures for common diseases. DESIGN, SETTING, AND PATIENTS Performance data for 2004 and 2008 from U.S. acute care and critical access hospitals were obtained using publicly available CMS Hospital Compare data augmented with Joint Commission performance data. MEASUREMENTS Changes in hospital performance between 2004 and 2008, and percent of hospitals with 2008 performance exceeding 90% for 16 measures of quality-of-care and 4 summary scores. RESULTS Hospitals accredited by The Joint Commission tended to have better baseline performance in 2004 than non-accredited hospitals. Accredited hospitals had larger gains over time, and were significantly more likely to have high performance in 2008 on 13 out of 16 standardized clinical performance measures and all summary scores. CONCLUSIONS While Joint Commission-accredited hospitals already outperformed non-accredited hospitals on publicly reported quality measures in the early days of public reporting, these differences became significantly more pronounced over 5 years of observation. Future research should examine whether accreditation actually promotes improved performance or is a marker for other hospital characteristics associated with such performance. Journal of Hospital Medicine 2011;6:458–465. © 2011 Society of Hospital Medicine PMID:21990175

  16. Using the American alligator and a repeated-measures design to place constraints on in vivo shoulder joint range of motion in dinosaurs and other fossil archosaurs.

    PubMed

    Hutson, Joel D; Hutson, Kelda N

    2013-01-15

    Using the extant phylogenetic bracket of dinosaurs (crocodylians and birds), recent work has reported that elbow joint range of motion (ROM) studies of fossil dinosaur forearms may be providing conservative underestimates of fully fleshed in vivo ROM. As humeral ROM occupies a more central role in forelimb movements, the placement of quantitative constraints on shoulder joint ROM could improve fossil reconstructions. Here, we investigated whether soft tissues affect the more mobile shoulder joint in the same manner in which they affect elbow joint ROM in an extant archosaur. This test involved separately and repeatedly measuring humeral ROM in Alligator mississippiensis as soft tissues were dissected away in stages to bare bone. Our data show that the ROMs of humeral flexion and extension, as well as abduction and adduction, both show a statistically significant increase as flesh is removed, but then decrease when the bones must be physically articulated and moved until they separate from one another and/or visible joint surfaces. A similar ROM pattern is inferred for humeral pronation and supination. All final skeletonized ROMs were less than initial fully fleshed ROMs. These results are consistent with previously reported elbow joint ROM patterns from the extant phylogenetic bracket of dinosaurs. Thus, studies that avoid separation of complementary articular surfaces may be providing fossil shoulder joint ROMs that underestimate in vivo ROM in dinosaurs, as well as other fossil archosaurs.

  17. [Determination of joint contact area using MRI].

    PubMed

    Yoshida, Hidenori; Kobayashi, Koichi; Sakamoto, Makoto; Tanabe, Yuji

    2009-10-20

    Elevated contact stress on the articular joints has been hypothesized to contribute to articular cartilage wear and joint pain. However, given the limitations of using contact stress and areas from human cadaver specimens to estimate articular joint stress, there is need for an in vivo method to obtain such data. Magnetic resonance imaging (MRI) has been shown to be a valid method of quantifying the human joint contact area, indicating the potential for in vivo assessment. The purpose of this study was to describe a method of quantifying the tibiofemoral joint contact area using MRI. The validity of this technique was established in porcine cadaver specimens by comparing the contact area obtained from MRI with the contact area obtained using pressure-sensitive film (PSF). In particular, we assessed the actual condition of contact by using the ratio of signal intensity of MR images of cartilage surfaces. Two fresh porcine cadaver knees were used. A custom loading apparatus was designed to apply a compressive load to the tibiofemoral joint. We measured the contact area by using MRI and PSF methods. When the ratio of signal intensity of the cartilage surface was 0.9, the error of the contact area between the MR image and PSF was about 6%. These results suggest that this MRI method may be a valuable tool in quantifying joint contact area in vivo.

  18. Subtalar joint stress imaging with tomosynthesis.

    PubMed

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  19. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  20. Concentration polarization of hyaluronan on the surface of the synovial lining of infused joints

    PubMed Central

    Lu, Y; Levick, JR; Wang, W

    2004-01-01

    Hyaluronan (HA) in joints conserves the lubricating synovial fluid by making trans-synovial fluid escape almost insensitive to pressure elevation (e.g. effusions, joint flexion). This phenomenon, ‘outflow buffering’, was discovered during HA infusion into the rabbit knee joint cavity. It was also found that HA is partially reflected by the joint lining (molecular sieving), and that the reflected fraction R decreases as trans-synovial filtration rate Q is increased. It was postulated therefore that outflow buffering is mediated by HA reflection. Reflection creates a HA concentration polarization layer, the osmotic pressure of which opposes fluid loss. A steady-state, cross-flow ultrafiltration model was previously used to explain the outflow buffering and negative R-vs.-Q relation. However, the steady-state, cross-perfusion assumptions restricted the model's applicability for an infused, dead-end cavity or a non-infused joint during cyclical motion. We therefore developed a new, non-steady-state model which describes the time course of dead-end, partial HA ultrafiltration. The model describes the progressive build-up of a HA concentration polarization layer at the synovial surface over time. Using experimental parameter values, the model successfully accounts for the observed negative R-vs.-Q relation and shows that the HA reflected fraction (R) also depends on HA diffusivity, membrane area expansion and the synovial HA reflection coefficient. The non-steady-state model thus explains existing experimental work, and it is a key stage in understanding synovial fluid turnover in intact, moving, human joints or osteoarthritic joints treated by HA injections. PMID:15579541

  1. Peripheral DXA measurement around ankle joint to diagnose osteoporosis as assessed by central DXA measurement.

    PubMed

    Sung, Ki Hyuk; Choi, Young; Cho, Gyeong Hee; Chung, Chin Youb; Park, Moon Seok; Lee, Kyoung Min

    2018-02-05

    This study evaluated the correlation between central and peripheral bone mineral density (BMD) of the ankle joint, using dual-energy X-ray absorptiometry (DXA). We also investigated whether peripheral ankle BMD could be used to identify individuals who were diagnosed with osteoporosis, using central DXA. We recruited 134 volunteers aged 20-90 years who agreed to participate in this study. Central BMD of the lumbar spine and left femur, and peripheral BMD of the medial malleolus, distal tibia, lateral malleolus, and talus were measured with DXA. Among the peripheral sites of the ankle, the highest and lowest BMD were observed in the talus and lateral malleolus, respectively. All peripheral DXA measurements of the ankle joint were significantly correlated with central DXA measurements. There was a good correlation (r: 0.656-0.725) between peripheral and central BMD for the older age group (> 50 years), but fair-to-good correlation (r: 0.263-0.654) for the younger age group (< 50 years). The cut-off values for peripheral BMD of the ankle joint between osteoporosis and non-osteoporosis were 0.548 g/cm 2 (sensitivity, 89.0%; specificity, 69.0%) for the medial malleolus, 0.626 g/cm 2 (sensitivity, 83.3%; specificity, 82.8%) for the distal tibia, 0.47 g/cm 2 (sensitivity, 100.0%; specificity, 65.5%) for the lateral malleolus, and 0.973 g/cm 2 (sensitivity, 72.2%; specificity, 83.6%) for the talus (p < 0.001). This study showed good correlation between peripheral BMD around ankle joint and central BMD for older age group. Further study is required to use the ankle DXA as a valid clinical tool for the diagnosis of osteoporosis and fracture risk assessment.

  2. Is the Oswestry Disability Index a valid measure of response to sacroiliac joint treatment?

    PubMed

    Copay, Anne G; Cher, Daniel J

    2016-02-01

    Disease-specific measures of the impact of sacroiliac (SI) joint pain on back/pelvis function are not available. The Oswestry Disability Index (ODI) is a validated functional measure for lower back pain, but its responsiveness to SI joint treatment has yet to be established. We sought to assess the validity of ODI to capture disability caused by SI joint pain and the minimum clinically important difference (MCID) after SI joint treatment. Patients (n = 155) participating in a prospective clinical trial of minimally invasive SI joint fusion underwent baseline and follow-up assessments using ODI, visual analog scale (VAS) pain assessment, Short Form 36 (SF-36), EuroQoL-5D, and questions (at follow-up only) regarding satisfaction with the SI joint fusion and whether the patient would have the fusion surgery again. All outcomes were compared from baseline to 12 months postsurgery. The health transition item of the SF-36 and the satisfaction scale were used as external anchors to calculate MCID. MCID was estimated for ODI using four calculation methods: (1) minimum detectable change, (2) average ODI change of patients' subsets, (3) change difference between patients' subsets, and (4) receiver operating characteristic (ROC) curve. After SI fusion, patients improved significantly (p < .0001) on all measures: SI joint pain (48.8 points), ODI (23.8 points), EQ-5D (0.29 points), EQ-5D VAS (11.7 points), PCS (8.9 points), and MCS (9.2 points). The improvement in ODI was significantly correlated (p < .0001) with SI joint pain improvement (r = .48) and with the two external anchors: SF-36 health transition item (r = .49) and satisfaction level (r = .34). The MCID values calculated for ODI using the various methods ranged from 3.5 to 19.5 points. The ODI minimum detectable change was 15.5 with the health transition item as the anchor and 13.5 with the satisfaction scale as the anchor. ODI is a valid measure of change in SI joint health. Hence, researchers and

  3. Markerless Knee Joint Position Measurement Using Depth Data during Stair Walking

    PubMed Central

    Mita, Akira; Yorozu, Ayanori; Takahashi, Masaki

    2017-01-01

    Climbing and descending stairs are demanding daily activities, and the monitoring of them may reveal the presence of musculoskeletal diseases at an early stage. A markerless system is needed to monitor such stair walking activity without mentally or physically disturbing the subject. Microsoft Kinect v2 has been used for gait monitoring, as it provides a markerless skeleton tracking function. However, few studies have used this device for stair walking monitoring, and the accuracy of its skeleton tracking function during stair walking has not been evaluated. Moreover, skeleton tracking is not likely to be suitable for estimating body joints during stair walking, as the form of the body is different from what it is when it walks on level surfaces. In this study, a new method of estimating the 3D position of the knee joint was devised that uses the depth data of Kinect v2. The accuracy of this method was compared with that of the skeleton tracking function of Kinect v2 by simultaneously measuring subjects with a 3D motion capture system. The depth data method was found to be more accurate than skeleton tracking. The mean error of the 3D Euclidian distance of the depth data method was 43.2 ± 27.5 mm, while that of the skeleton tracking was 50.4 ± 23.9 mm. This method indicates the possibility of stair walking monitoring for the early discovery of musculoskeletal diseases. PMID:29165396

  4. In Situ Monitoring of Pb2+ Leaching from the Galvanic Joint Surface in a Prepared Chlorinated Drinking Water.

    PubMed

    Ma, Xiangmeng; Armas, Stephanie M; Soliman, Mikhael; Lytle, Darren A; Chumbimuni-Torres, Karin; Tetard, Laurene; Lee, Woo Hyoung

    2018-02-20

    A novel method using a micro-ion-selective electrode (micro-ISE) technique was developed for in situ lead monitoring at the water-metal interface of a brass-leaded solder galvanic joint in a prepared chlorinated drinking water environment. The developed lead micro-ISE (100 μm tip diameter) showed excellent performance toward soluble lead (Pb 2+ ) with sensitivity of 22.2 ± 0.5 mV decade -1 and limit of detection (LOD) of 1.22 × 10 -6 M (0.25 mg L -1 ). The response time was less than 10 s with a working pH range of 2.0-7.0. Using the lead micro-ISE, lead concentration microprofiles were measured from the bulk to the metal surface (within 50 μm) over time. Combined with two-dimensional (2D) pH mapping, this work clearly demonstrated that Pb 2+ ions build-up across the lead anode surface was substantial, nonuniform, and dependent on local surface pH. A large pH gradient (ΔpH = 6.0) developed across the brass and leaded-tin solder joint coupon. Local pH decreases were observed above the leaded solder to a pH as low as 4.0, indicating it was anodic relative to the brass. The low pH above the leaded solder supported elevated lead levels where even small local pH differences of 0.6 units (ΔpH = 0.6) resulted in about four times higher surface lead concentrations (42.9 vs 11.6 mg L -1 ) and 5 times higher fluxes (18.5 × 10 -6 vs 3.5 × 10 -6 mg cm -2 s -1 ). Continuous surface lead leaching monitoring was also conducted for 16 h.

  5. Dynamic properties of human incudostapedial joint-Experimental measurement and finite element modeling.

    PubMed

    Jiang, Shangyuan; Gan, Rong Z

    2018-04-01

    The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.

  6. CONICAL, RADIOGRAPHIC, AND PATIENT-REPORTED RESULTS OF SURFACE REPLACING PROXIMAL INTERPHALANGEAL JOINT ARTHROPLASTY OF THE HAND

    PubMed Central

    Amirtharajah, Mohana; Fufa, Duretti; Lightdale, Nina; Weiland, Andew

    2011-01-01

    The purpose of this study was to evaluate the one-year clinical, radiologic and patient-reported results of surface-replacing proximal interphalangeal joint arthroplasty (SR-PIP) of the hand. Fifteen patients with 18 joints underwent the procedure, and nine patients with 11 joints had follow-up of at least one year's duration. Of these joints, six had a diagnosis of osteoarthritis with no history of trauma, three had post-traumatic arthritis, one had psoriatic arthritis, and one had erosive arthritis. The mean clinical follow-up was at 3.3 years, and the mean radiographic follow-up was at 3.1 years. The average post-operative gain in range of motion at the PIP joint was 28 degrees and was statistically significant. Six patients completed self-reported questionnaires at a mean of 4.8 years post-operatively. The mean Disabilities of the Arm, Shoulder and Hand (DASH) score post-operatively was 17, and the Michigan Hand Questionnaire (MHQ) score for overall satisfaction was 70. There were three complications but only one reoperation. Seven of 11 joints showed some evidence of subsidence on follow-up radiographic examination. However, no joints were revised sec-ondary to loosening. Longer follow-up is needed to determine if this observable radiologic subsidence leads to symptomatic loosening of the implant PMID:22096433

  7. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data in the Wavelet Domain Constrained by Sparsity Regularization

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Fang, H.; Yao, H.; Maceira, M.; van der Hilst, R. D.

    2014-12-01

    Recently, Zhang et al. (2014, Pure and Appiled Geophysics) have developed a joint inversion code incorporating body-wave arrival times and surface-wave dispersion data. The joint inversion code was based on the regional-scale version of the double-difference tomography algorithm tomoDD. The surface-wave inversion part uses the propagator matrix solver in the algorithm DISPER80 (Saito, 1988) for forward calculation of dispersion curves from layered velocity models and the related sensitivities. The application of the joint inversion code to the SAFOD site in central California shows that the fault structure is better imaged in the new model, which is able to fit both the body-wave and surface-wave observations adequately. Here we present a new joint inversion method that solves the model in the wavelet domain constrained by sparsity regularization. Compared to the previous method, it has the following advantages: (1) The method is both data- and model-adaptive. For the velocity model, it can be represented by different wavelet coefficients at different scales, which are generally sparse. By constraining the model wavelet coefficients to be sparse, the inversion in the wavelet domain can inherently adapt to the data distribution so that the model has higher spatial resolution in the good data coverage zone. Fang and Zhang (2014, Geophysical Journal International) have showed the superior performance of the wavelet-based double-difference seismic tomography method compared to the conventional method. (2) For the surface wave inversion, the joint inversion code takes advantage of the recent development of direct inversion of surface wave dispersion data for 3-D variations of shear wave velocity without the intermediate step of phase or group velocity maps (Fang et al., 2014, Geophysical Journal International). A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. We will test the new joint

  8. The comparison of measurement between ultrasound and computed tomography for abnormal degenerative facet joints: A STROBE-compliant article.

    PubMed

    Shi, Wen; Tian, Dan; Liu, Da; Yin, Jing; Huang, Ying

    2017-08-01

    Besides the study on examining facet joints of lumbar spine by ultrasound in normal population, there has not been any related report about examining normal facet joints of lumbar spine by ultrasound so far. This study was aimed to explore the feasibility of ultrasound assessment of lumber spine facet joints by comparing ultrasound measure values of normal and degenerative lumber spine facet joints, and by comparing measure values of ultrasound and computed tomography (CT) of degenerative lumber spine facet joints.This study included 15 patients who had chronic low back pain because of degenerative change in lumbar vertebrae, and 19 volunteers who did not have low back pain or pain in the lower limb. The ultrasound measure values (height [H] and width [W]) of normal and degenerative lumber spine facet joints were compared. And the differentiation between measure values (H and W) of ultrasound and CT of degenerative lumber spine facet joints was also analyzed.The ultrasound clearly showed abnormal facet joints lesion, which was characterized by hyperostosis on the edge of joints, bone destruction under joints, and thinner or thicker articular cartilage. There were significant differences between the ultrasound measure values of the normal (H: 1.26 ± 0.03 cm, W: 0.18 ± 0.01 cm) and abnormal facet joints (H: 1.43 ± 0.05 cm, W: 0.15 ± 0.02 cm) (all P < .05). However, there were no significant differences between the measure values of the ultrasound (H: 1.43 ± 0.17 cm, W: 0.15 ± 0.03 cm) and CT (H: 1.42 ± 0.16, W: 0.14 ± 0.03) of the degenerative lumber spine facet joints (all P > .05).Ultrasound can clearly show the structure of facet joints of lumbar spine. It is precise and feasible to assess facet joints of lumbar spine by ultrasound. This study has important significance for the diagnosis of lumbar facet joint degeneration.

  9. Experimental joint weak measurement on a photon pair as a probe of Hardy's paradox.

    PubMed

    Lundeen, J S; Steinberg, A M

    2009-01-16

    It has been proposed that the ability to perform joint weak measurements on postselected systems would allow us to study quantum paradoxes. These measurements can investigate the history of those particles that contribute to the paradoxical outcome. Here we experimentally perform weak measurements of joint (i.e., nonlocal) observables. In an implementation of Hardy's paradox, we weakly measure the locations of two photons, the subject of the conflicting statements behind the paradox. Remarkably, the resulting weak probabilities verify all of these statements but, at the same time, resolve the paradox.

  10. Thermal Protection System with Staggered Joints

    NASA Technical Reports Server (NTRS)

    Simon, Xavier D. (Inventor); Robinson, Michael J. (Inventor); Andrews, Thomas L. (Inventor)

    2014-01-01

    The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.

  11. Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2008-10-01

    In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.

  12. Astronaut candidate strength measurement using the Cybex 2 and the LIDO Multi-Joint 2 dynamometers

    NASA Technical Reports Server (NTRS)

    Carroll, Amy E.; Wilmington, Robert P.

    1992-01-01

    The Anthropometry and Biomechanics Laboratory in the man-Systems division at NASA's Johnson Space Center has as one of its responsibilities the anthropometry and strength measurement data collection of astronaut candidates. The anthropometry data is used to ensure that the astronaut candidates are within the height restrictions for space vehicle and space suit design requirements, for example. The strength data is used to help detect abnormalities or isolate injuries to muscle groups that could jeopardize the astronauts safety. The Cybex II Dynamometer has been used for strength measurements from 1985 through 1991. The Cybex II was one of the first instruments of its kind to measure strength and similarity of muscle groups by isolating the specific joint of interest. In November 1991, a LIDO Multi-Joint II Dynamometer was purchased to upgrade the strength measurement data collection capability of the Anthropometry and Biomechanics Laboratory. The LIDO Multi-Joint II Dynamometer design offers several advantages over the Cybex II Dynamometer including a more sophisticated method of joint isolation and a more accurate and efficient computer based data collection system.

  13. Effect of Plasma Surface Finish on Wettability and Mechanical Properties of SAC305 Solder Joints

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; Koike, Junichi; Yoon, Jeong-Won; Yoo, Sehoon

    2016-12-01

    The wetting behavior, interfacial reactions, and mechanical reliability of Sn-Ag-Cu solder on a plasma-coated printed circuit board (PCB) substrate were evaluated under multiple heat-treatments. Conventional organic solderability preservative (OSP) finished PCBs were used as a reference. The plasma process created a dense and highly cross-linked polymer coating on the Cu substrates. The plasma finished samples had higher wetting forces and shorter zero-cross times than those with OSP surface finish. The OSP sample was degraded after sequential multiple heat treatments and reflow processes, whereas the solderability of the plasma finished sample was retained after multiple heat treatments. After the soldering process, similar microstructures were observed at the interfaces of the two solder joints, where the development of intermetallic compounds was observed. From ball shear tests, it was found that the shear force for the plasma substrate was consistently higher than that for the OSP substrate. Deterioration of the OSP surface finish was observed after multiple heat treatments. Overall, the plasma surface finish was superior to the conventional OSP finish with respect to wettability and joint reliability, indicating that it is a suitable material for the fabrication of complex electronic devices.

  14. Measurement of Resistive Torques in Major Human Joints

    DTIC Science & Technology

    1979-04-01

    was assisted by the following graduate students whose names, in the order of the magnitude of their contributions, are: Richard D. Peindl, Manssour...acknowledged by the author, a considerable addi- tional time investment was made by the principal investigator and several graduate students to complete the...Conaill, M.A., "Joint Movement," Physiotherapy (50), 359, 1964. 17. Murphy, W.W., Garcia, D.H. and Bird, R.G., "Measurement of Body Motion," ASME

  15. Surface finish measurement studies

    NASA Technical Reports Server (NTRS)

    Teague, E. C.

    1983-01-01

    The performance of stylus instruments for measuring the topography of National Transonic Facility (NTF) model surfaces both for monitoring during fabrication and as an absolute measurement of topography was evaluated. It was found that the shop-grade instruments can damage the surface of models and that their use for monitoring fabrication procedures can lead to surface finishes that are substantially out of range in critical areas of the leading edges. The development of a prototype light-scattering instrument which would allow for rapid assessment of the surface finish of a model is also discussed.

  16. An instrumented spatial linkage for measuring knee joint kinematics.

    PubMed

    Rosvold, Joshua M; Atarod, Mohammad; Frank, Cyril B; Shrive, Nigel G

    2016-01-01

    In this study, the design and development of a highly accurate instrumented spatial linkage (ISL) for kinematic analysis of the ovine stifle joint is described. The ovine knee is a promising biomechanical model of the human knee joint. The ISL consists of six digital rotational encoders providing six degrees of freedom (6-DOF) to its motion. The ISL makes use of the complete and parametrically continuous (CPC) kinematic modeling method to describe the kinematic relationship between encoder readings and the relative positions and orientation of its two ends. The CPC method is useful when calibrating the ISL, because a small change in parameters corresponds to a small change in calculated positions and orientations and thus a smaller optimization error, compared to other kinematic models. The ISL is attached rigidly to the femur and the tibia for motion capture, and the CPC kinematic model is then employed to transform the angle sensor readings to relative motion of the two ends of the linkage, and thereby, the stifle joint motion. The positional accuracy for ISL after calibration and optimization was 0.3±0.2mm (mean +/- standard deviation). The ISL was also evaluated dynamically to ensure that accurate results were maintained, and achieved an accuracy of 0.1mm. Compared to the traditional motion capture methods, this system provides increased accuracy, reduced processing time, and ease of use. Future work will be on the application of the ISL to the ovine gait and determination of in vivo joint motions and tissue loads. Accurate measurement of knee joint kinematics is essential in understanding injury mechanisms and development of potential preventive or treatment strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Thickness Distribution of Glenohumeral Joint Cartilage.

    PubMed

    Schleich, Christoph; Bittersohl, Bernd; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph; Kircher, Jörn

    2017-04-01

    High-resolution 3-dimensional cartilage-specific magnetic resonance imaging (MRI) was performed at 3 T to test the following hypotheses: (1) there is a nonuniform cartilage thickness distribution both on the proximal humerus and on the glenoid surface and (2) the glenohumeral joint as a combined system is congruent with the level of the joint cartilage surface without substantial radial mismatch. Inclusion of 38 volunteers (19 females, mean age 24.34 ± 2.22 years; range 21-29 years) in a prospective study. Measurements of: cartilage thickness in 3 regions and 3 zones; radius of both circles (glenoid and humeral cartilage) for congruency calculation using 3-T MRI with 3-dimensional dual-echo steady-state sequence with water excitation. A homogenous mean cartilage thickness (1.2-1.5 mm) and slightly higher values for the glenoidal articulating surface radii both in the mid-paracoronar section (2.4 vs. 2.1 cm, P < 0.001) and in the mid-paraaxial section (2.4 vs. 2.1 cm, P < 0.001) compared with the humeral side were observed. The concept of a radial mismatch between the humeral head and the glenoid in healthy human subjects can be confirmed. This study provides normative data for the comparison of joint cartilage changes at the shoulder for future studies.

  18. NEWS RELEASE - Agencies Agree to Joint Regulatory Framework for Processing Applications for Surface Coal Mining Operations

    EPA Pesticide Factsheets

    News release from February 10, 2005 announcing a memorandum of understanding (MOU) that offers a joint framework to improve permit application procedures for surface coal mining operations that place dredged or fill material in waters of the United States.

  19. Digital tomosynthesis rendering of joint margins for arthritis assessment

    NASA Astrophysics Data System (ADS)

    Duryea, Jeffrey W.; Neumann, Gesa; Yoshioka, Hiroshi; Dobbins, James T., III

    2004-05-01

    PURPOSE: Rheumatoid arthritis (RA) of the hand is a significant healthcare problem. Techniques to accurately quantity the structural changes from RA are crucial for the development and prescription of therapies. Analysis of radiographic joint space width (JSW) is widely used and has demonstrated promise. However, radiography presents a 2D view of the joint. In this study we performed tomosynthesis reconstructions of proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints to measure the 3D joint structure. METHODS: We performed a reader study using simulated radiographs of 12 MCP and 12 PIP joints from skeletal specimens imaged with micro-CT. The tomosynthesis technique provided images of reconstructed planes with 0.75 mm spacing, which were presented to 2 readers with a computer tool. The readers were instructed to delineate the joint surfaces on tomosynthetic slices where they could visualize the margins. We performed a quantitative analysis of 5 slices surrounding the central portion of each joint. Reader-determined JSW was compared to a gold standard. As a figure of merit we calculated the average root-mean square deviation (RMSD). RESULTS: RMSD was 0.22 mm for both joints. For the individual joints, RMSD was 0.18 mm (MCP), and 0.26 mm (PIP). The reduced performance for the smaller PIP joints suggests that a slice spacing less than 0.75 mm may be more appropriate. CONCLUSIONS: We have demonstrated the capability of limited 3D rendering of joint surfaces using digital tomosynthesis. This technique promises to provide an improved method to visualize the structural changes of RA.

  20. Interrater and intrarater reliability in the measurement of ankle joint dorsiflexion is independent of examiner experience and technique used.

    PubMed

    Kim, Paul Jeong; Peace, Ruth; Mieras, Jamie; Thoms, Tanya; Freeman, Denise; Page, Jeffrey

    2011-01-01

    Goniometric measurement is currently being used as a diagnostic and outcomes assessment tool for ankle joint dorsiflexion. Despite its common use, its interrater and intrarater reliability has been questioned. This is a prospective study examining whether the experience of the examiner or the technique used affects the interrater and intrarater reliability for measuring ankle joint dorsiflexion. Fourteen asymptomatic individuals (8 male and 6 female) with a mean age of 28.2 years (range, 23-52) were enrolled into this study. The years of clinical experience of the five examiners averaged 10.4 years (range, 0-26). Four examiners used a modified Root, Weed and Orien method of measuring ankle joint dorsiflexion. The fifth examiner utilized a nonstandardized technique. A standard goniometer was used for bilateral measurements of ankle joint dorsiflexion with the knee extended and flexed. All five examiners repeated each measurement three times during each of the three sessions, with each session spaced at least 1 week apart. The interclass correlation coefficient reveals a moderate intrarater and poor interrater reliability in ankle joint dorsiflexion measurements using a standard goniometer. More importantly, further analysis indicates that the use of a standardized technique for measurement of ankle joint dorsiflexion or years of clinical experience does not increase the intrarater or interrater reliability. The utility of the goniometric measurement of ankle joint dorsiflexion may be limited.

  1. Effects of surface preparation on the long-term durability of adhesively bonded composite joints

    NASA Astrophysics Data System (ADS)

    Bardis, Jason Dante

    The long-term durability of adhesively bonded composite joints is critical to modern aircraft structures, which are increasingly adopting bonding as an alternative option to mechanical fastening. The effects of the surface preparation of the adherends are critical, affecting initial strength, long-term durability, fracture toughness, and failure modes of bonded joints. In this study, several potential factors are evaluated, with focus on the following: (1) Effects of possible chemical contamination from release fabrics, release films, and peel plies during adherend cure. (2) Chemical and mechanical effects of abrasion on the fracture toughness and failure mode. (3) Characterization of paste and film adhesives. There are several standard test methods used to evaluate specimen fracture, but the majority concentrate on bonded metals and interlaminar composite fracture. Testing concentrated on mode I tests; a custom double cantilever beam specimen was devised and utilized, and two forms of a wedge crack test (traveling and static) were also used. Additionally, single lap shear tests were run to contrast the mode I tests. Non-destructive testing included X-ray photography of crack fronts, energy dispersive spectroscopy and X-ray photoelectron spectroscopy surface chemistry analyses, and scanning electron microscope imaging of prepared surfaces. All mode I test methods tended to be in agreement in the ranking of different surface preparation methods. Test results revealed that release agents deposited on adherend surfaces during their cure cycle prevented proper adhesion. While mechanical abrasion did improve their fracture toughness and lower their contamination greatly, the test values did not reach the levels of samples that were not contaminated before bonding, and the interfacial modes of failure did not always change to desirable modes.

  2. Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.

    PubMed

    Liu, Jing; Zhou, Weidong; Juwono, Filbert H

    2017-05-08

    Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

  3. Predicting the Functional Roles of Knee Joint Muscles from Internal Joint Moments.

    PubMed

    Flaxman, Teresa E; Alkjær, Tine; Simonsen, Erik B; Krogsgaard, Michael R; Benoit, Daniel L

    2017-03-01

    Knee muscles are commonly labeled as flexors or extensors and aptly stabilize the knee against sagittal plane loads. However, how these muscles stabilize the knee against adduction-abduction and rotational loads remains unclear. Our study sought 1) to classify muscle roles as they relate to joint stability by quantifying the relationship between individual muscle activation patterns and internal net joint moments in all three loading planes and 2) to determine whether these roles change with increasing force levels. A standing isometric force matching protocol required subjects to modulate ground reaction forces to elicit various combinations and magnitudes of sagittal, frontal, and transverse internal joint moments. Surface EMG measured activities of 10 lower limb muscles. Partial least squares regressions determined which internal moment(s) were significantly related to the activation of individual muscles. Rectus femoris and tensor fasciae latae were classified as moment actuators for knee extension and hip flexion. Hamstrings were classified as moment actuators for hip extension and knee flexion. Gastrocnemius and hamstring muscles were classified as specific joint stabilizers for knee rotation. Vastii were classified as general joint stabilizers because activation was independent of moment generation. Muscle roles did not change with increasing effort levels. Our findings indicate muscle activation is not dependent on anatomical orientation but perhaps on its role in maintaining knee joint stability in the frontal and transverse loading planes. This is useful for delineating the roles of biarticular knee joint muscles and could have implications in robotics, musculoskeletal modeling, sports sciences, and rehabilitation.

  4. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    PubMed

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  5. Hip and knee net joint moments that correlate with success in lateral load transfers over a low friction surface.

    PubMed

    Catena, Robert D; Xu, Xu

    2016-12-01

    We previously described two different preferred strategies used to perform a lateral load transfer. The wide stance strategy was not used successfully on a low-friction surface, while the narrow stance strategy was successful. Here, we retrospectively examined lower extremity net joint moments between successful and unsuccessful strategies to determine if there is a kinetic benefit consideration that may go into choosing the preferred strategy. Success vs. failure over a novel slippery surface was used to dichotomise 35 healthy working-age individuals into the two groups (successful and unsuccessful). Participants performed lateral load transfers over three sequential surface conditions: high friction, novel low friction and practised low friction. The unsuccessful strategy required larger start torques, but lower dynamic moments during transfer compared to the successful strategy. These results indicate that the periodically unsuccessful strategy may be preferred because it requires less muscle recruitment and lower stresses on lower extremity soft tissues. Practitioner Summary: The reason for this paper is to retrospectively examine the joint moment in two different load transfer strategies that are used in a lateral load transfer. We found that periodically unsuccessful strategies that we previously reported may be a beneficial toward reduced lower extremity joint stresses.

  6. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  7. Test-retest reliability of sudden ankle inversion measurements in subjects with healthy ankle joints.

    PubMed

    Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart

    2007-01-01

    Sudden ankle inversion tests have been used to investigate whether the onset of peroneal muscle activity is delayed in patients with chronically unstable ankle joints. Before interpreting test results of latency times in patients with chronic ankle instability and healthy subjects, the reliability of these measures must be first demonstrated. To investigate the test-retest reliability of variables measured during a sudden ankle inversion movement in standing subjects with healthy ankle joints. Validation study. Research laboratory. 15 subjects with healthy ankle joints (30 ankles). Subjects stood on an ankle inversion platform with both feet tightly fixed to independently moveable trapdoors. An unexpected sudden ankle inversion of 50 degrees was imposed. We measured latency and motor response times and electromechanical delay of the peroneus longus muscle, along with the time and angular position of the first and second decelerating moments, the mean and maximum inversion speed, and the total inversion time. Correlation coefficients and standard error of measurements were calculated. Intraclass correlation coefficients ranged from 0.17 for the electromechanical delay of the peroneus longus muscle (standard error of measurement = 2.7 milliseconds) to 0.89 for the maximum inversion speed (standard error of measurement = 34.8 milliseconds). The reliability of the latency and motor response times of the peroneus longus muscle, the time of the first and second decelerating moments, and the mean and maximum inversion speed was acceptable in subjects with healthy ankle joints and supports the investigation of the reliability of these measures in subjects with chronic ankle instability. The lower reliability of the electromechanical delay of the peroneus longus muscle and the angular positions of both decelerating moments calls the use of these variables into question.

  8. A Study on the Effect of Ageing and Intermetallic Compound Growth on the Shear Strength of Surface Mount Technology Solder Joints

    NASA Astrophysics Data System (ADS)

    Nath, Jyotishman; Mallik, Sabuj; Borah, Anil

    2015-04-01

    The effect of ageing and intermetallic compound formation on the surface mount solder joints and its shear strength behavior under extreme mechanical and thermal conditions have been discussed in this paper. The specimens used are solder paste (Sn3.8Ag0.7Cu), bench marker II printed circuit boards (PCB), resistors 1206 and the fabrication of solder joints makes use of conventional surface mount technology (SMT). Reflow process was carried out at a peak temperature of 250 °C and the test samples were exposed to isothermal ageing at a constant temperature of 150 °C for a period of 600 h. Shear test was conducted on the PCB's. The shear strength of the solder joints rapidly increased during isothermal ageing to a certain time period and then started decreasing. Field emission scanning electron microscopy (FESEM) micrograph of the solder joint and energy dispersive X-ray (EDX) was performed on the solder sample to verify the formation of intermetallic compounds.

  9. Knee joint forces: prediction, measurement, and significance

    PubMed Central

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.

    2011-01-01

    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  10. Thermographic Analysis of Stress Distribution in Welded Joints

    NASA Astrophysics Data System (ADS)

    Piršić, T.; Krstulović Opara, L.; Domazet, Ž.

    2010-06-01

    The fatigue life prediction of welded joints based on S-N curves in conjunction with nominal stresses generally is not reliable. Stress distribution in welded area affected by geometrical inhomogeneity, irregular welded surface and weld toe radius is quite complex, so the local (structural) stress concept is accepted in recent papers. The aim of this paper is to determine the stress distribution in plate type aluminum welded joints, to analyze the reliability of TSA (Thermal Stress Analysis) in this kind of investigations, and to obtain numerical values for stress concentration factors for practical use. Stress distribution in aluminum butt and fillet welded joints is determined by using the three different methods: strain gauges measurement, thermal stress analysis and FEM. Obtained results show good agreement - the TSA mutually confirmed the FEM model and stresses measured by strain gauges. According to obtained results, it may be stated that TSA, as a relatively new measurement technique may in the future become a standard tool for the experimental investigation of stress concentration and fatigue in welded joints that can help to develop more accurate numerical tools for fatigue life prediction.

  11. Ceramic joints

    DOEpatents

    Miller, Bradley J.; Patten, Jr., Donald O.

    1991-01-01

    Butt joints between materials having different coefficients of thermal expansion are prepared having a reduced probability of failure of stress facture. This is accomplished by narrowing/tapering the material having the lower coefficient of thermal expansion in a direction away from the joint interface and not joining the narrow-tapered surface to the material having the higher coefficient of thermal expansion.

  12. Accuracy of methods for calculating volumetric wear from coordinate measuring machine data of retrieved metal-on-metal hip joint implants.

    PubMed

    Lu, Zhen; McKellop, Harry A

    2014-03-01

    This study compared the accuracy and sensitivity of several numerical methods employing spherical or plane triangles for calculating the volumetric wear of retrieved metal-on-metal hip joint implants from coordinate measuring machine measurements. Five methods, one using spherical triangles and four using plane triangles to represent the bearing and the best-fit surfaces, were assessed and compared on a perfect hemisphere model and a hemi-ellipsoid model (i.e. unworn models), computer-generated wear models and wear-tested femoral balls, with point spacings of 0.5, 1, 2 and 3 mm. The results showed that the algorithm (Method 1) employing spherical triangles to represent the bearing surface and to scale the mesh to the best-fit surfaces produced adequate accuracy for the wear volume with point spacings of 0.5, 1, 2 and 3 mm. The algorithms (Methods 2-4) using plane triangles to represent the bearing surface and to scale the mesh to the best-fit surface also produced accuracies that were comparable to that with spherical triangles. In contrast, if the bearing surface was represented with a mesh of plane triangles and the best-fit surface was taken as a smooth surface without discretization (Method 5), the algorithm produced much lower accuracy with a point spacing of 0.5 mm than Methods 1-4 with a point spacing of 3 mm.

  13. Comparison of goniometric measurements of the stifle joint in seven breeds of normal dogs.

    PubMed

    Sabanci, Seyyid S; Ocal, Mehmet K

    2016-05-18

    To compare the goniometric measurements of the stifle joint in seven dog breeds, and to determine the relationship among goniometric measurements, age, body weight, tibial plateau angle, crus and thigh circumferences, and widths of quadriceps, hamstring, and gastrocnemius muscles in healthy dogs. We used a total of 126 dogs from seven different breeds, and recorded the angle of the stifle joint at standing, extension, and flexion together with the range of motion (ROM). The circumferences of the thigh and crus were also measured. Mediolateral radiographic projections of the tibia and the femur were obtained from the dogs, and the tibial plateau angles, as well as the widths of quadriceps, hamstring, and gastrocnemius muscles, were measured from these images. Neither the sex of the dog nor the differences in the side measured affected the goniometric measurements of the stifle joint. The standing, extension, flexion, and ROM angles were different among the breeds. The standard deviations of the standing and extension angles were small relative to their means, but the standard deviations of the flexion angle were large relative to their means in all breeds. Body weight and muscular measurements were the most influential factors on the stifle flexion angle and ROM. Breed differences, body weights, and muscle mass should be taken into consideration during assessment of the stifle function using goniometric measurements.

  14. Joint measurement of lensing-galaxy correlations using SPT and DES SV data

    DOE PAGES

    Baxter, E. J.

    2016-07-04

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less

  15. Joint measurement of lensing-galaxy correlations using SPT and DES SV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, E. J.

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less

  16. Joint measurement of lensing–galaxy correlations using SPT and DES SV data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, E.; Clampitt, J.; Giannantonio, T.

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev–Zel'dovich (SPT-SZ) survey. The two lensing–galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairlymore » insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Λ cold dark matter cosmological model. It also demonstrates that joint lensing–galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less

  17. Corrosion Performance of Friction Stir Linear Lap Welded AM60B Joints

    NASA Astrophysics Data System (ADS)

    Kish, J. R.; Birbilis, N.; McNally, E. M.; Glover, C. F.; Zhang, X.; McDermid, J. R.; Williams, G.

    2017-11-01

    A corrosion investigation of friction stir linear lap welded AM60B joints used to fabricate an Mg alloy-intensive automotive front end sub-assembly was performed. The stir zone exhibited a slightly refined grain size and significant break-up and re-distribution of the divorced Mg17Al12 (β-phase) relative to the base material. Exposures in NaCl (aq) environments revealed that the stir zone was more susceptible to localized corrosion than the base material. Scanning vibrating electrode technique measurements revealed differential galvanic activity across the joint. Anodic activity was confined to the stir zone surface and involved initiation and lateral propagation of localized filaments. Cathodic activity was initially confined to the base material surface, but was rapidly modified to include the cathodically-activated corrosion products in the filament wake. Site-specific surface analyses revealed that the corrosion observed across the welded joint was likely linked to variations in Al distribution across the surface film/metal interface.

  18. Land Surface Temperature Measurements from EOD MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    1998-01-01

    We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from

  19. Thickness Distribution of Glenohumeral Joint Cartilage

    PubMed Central

    Schleich, Christoph; Bittersohl, Bernd; Antoch, Gerald; Krauspe, Rüdiger; Zilkens, Christoph; Kircher, Jörn

    2016-01-01

    High-resolution 3-dimensional cartilage-specific magnetic resonance imaging (MRI) was performed at 3 T to test the following hypotheses: (1) there is a nonuniform cartilage thickness distribution both on the proximal humerus and on the glenoid surface and (2) the glenohumeral joint as a combined system is congruent with the level of the joint cartilage surface without substantial radial mismatch. Inclusion of 38 volunteers (19 females, mean age 24.34 ± 2.22 years; range 21-29 years) in a prospective study. Measurements of: cartilage thickness in 3 regions and 3 zones; radius of both circles (glenoid and humeral cartilage) for congruency calculation using 3-T MRI with 3-dimensional dual-echo steady-state sequence with water excitation. A homogenous mean cartilage thickness (1.2-1.5 mm) and slightly higher values for the glenoidal articulating surface radii both in the mid-paracoronar section (2.4 vs. 2.1 cm, P < 0.001) and in the mid-paraaxial section (2.4 vs. 2.1 cm, P < 0.001) compared with the humeral side were observed. The concept of a radial mismatch between the humeral head and the glenoid in healthy human subjects can be confirmed. This study provides normative data for the comparison of joint cartilage changes at the shoulder for future studies. PMID:28345405

  20. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  1. The Origin and Mantle Dynamics of Quaternary Intraplate Volcanism in Northeast China From Joint Inversion of Surface Wave and Body Wave

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Wang, Kai; Yang, Yingjie; Tang, Youcai; John Chen, Y.; Hung, Shu-Huei

    2018-03-01

    We present a 3-D model of NE China by joint inversion of body and surface waves. The joint inversion significantly improves the resolution at shallow depths compared with body wave tomography alone and provides seismic evidence for the origin of Quaternary volcanism in NE China. Our model reveals that the mantle upwelling beneath the Changbaishan volcano originates from the transition zone and extends up to 60 km, and spreads at the base of the lithosphere with the upwelling head 5 times wider than the raising tail in the lower upper mantle. However, low velocities beneath the Halaha and Abaga volcanoes in the Xingmeng belt are confined to depths shallower than 150 km, suggesting that magmatism in the Xingmeng belt is more likely caused by localized asthenospheric upwelling at shallow depths rather than from the common deep source. A small-scale sublithospheric mantle convection may control the spatial and temporal distribution of Quaternary magmatism in NE China; that is, the upwelling beneath the Changbaishan volcano triggers the downwelling beneath the southern Songliao basin, where the high velocity imaged extends to 300 km. The downwelling may further induce localized upwelling in the surrounding areas, such as the Halaha and Abaga volcanoes. Thanks to the joint constraints from both surface and body waves, we can estimate the dimension of the convection cell. The convection cell is located between 42°N and 45°N, spreads around 500 km in the W-E direction measured from the distance between centers of downwelling and upwelling, and extends to 300 km vertically.

  2. Heisenberg's error-disturbance relations: A joint measurement-based experimental test

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-Yuan; Kurzyński, Paweł; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-01

    The original Heisenberg error-disturbance relation was recently shown to be not universally valid and two different approaches to reformulate it were proposed. The first one focuses on how the error and disturbance of two observables A and B depend on a particular quantum state. The second one asks how a joint measurement of A and B affects their eigenstates. Previous experiments focused on the first approach. Here we focus on the second one. First, we propose and implement an extendible method of quantum-walk-based joint measurements of noisy Pauli operators to test the error-disturbance relation for qubits introduced in the work of Busch et al. [Phys. Rev. A 89, 012129 (2014), 10.1103/PhysRevA.89.012129], where the polarization of the single photon, corresponding to a walker's auxiliary degree of freedom that is commonly known as a coin, undergoes a position- and time-dependent evolution. Then we formulate and experimentally test a universally valid state-dependent relation for three mutually unbiased observables. We therefore establish a method of testing error-disturbance relations.

  3. Towards Scalable Strain Gauge-Based Joint Torque Sensors

    PubMed Central

    D’Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G.; Cuschieri, Alfred

    2017-01-01

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS), the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot-MiniHyQ. This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR). PMID:28820446

  4. Towards Scalable Strain Gauge-Based Joint Torque Sensors.

    PubMed

    Khan, Hamza; D'Imperio, Mariapaola; Cannella, Ferdinando; Caldwell, Darwin G; Cuschieri, Alfred; Semini, Claudio

    2017-08-18

    During recent decades, strain gauge-based joint torque sensors have been commonly used to provide high-fidelity torque measurements in robotics. Although measurement of joint torque/force is often required in engineering research and development, the gluing and wiring of strain gauges used as torque sensors pose difficulties during integration within the restricted space available in small joints. The problem is compounded by the need for a scalable geometric design to measure joint torque. In this communication, we describe a novel design of a strain gauge-based mono-axial torque sensor referred to as square-cut torque sensor (SCTS) , the significant features of which are high degree of linearity, symmetry, and high scalability in terms of both size and measuring range. Most importantly, SCTS provides easy access for gluing and wiring of the strain gauges on sensor surface despite the limited available space. We demonstrated that the SCTS was better in terms of symmetry (clockwise and counterclockwise rotation) and more linear. These capabilities have been shown through finite element modeling (ANSYS) confirmed by observed data obtained by load testing experiments. The high performance of SCTS was confirmed by studies involving changes in size, material and/or wings width and thickness. Finally, we demonstrated that the SCTS can be successfully implementation inside the hip joints of miniaturized hydraulically actuated quadruped robot- MiniHyQ . This communication is based on work presented at the 18th International Conference on Climbing and Walking Robots (CLAWAR).

  5. Implantable sensor technology: measuring bone and joint biomechanics of daily life in vivo

    PubMed Central

    2013-01-01

    Stresses and strains are major factors influencing growth, remodeling and repair of musculoskeletal tissues. Therefore, knowledge of forces and deformation within bones and joints is critical to gain insight into the complex behavior of these tissues during development, aging, and response to injury and disease. Sensors have been used in vivo to measure strains in bone, intraarticular cartilage contact pressures, and forces in the spine, shoulder, hip, and knee. Implantable sensors have a high impact on several clinical applications, including fracture fixation, spine fixation, and joint arthroplasty. This review summarizes the developments in strain-measurement-based implantable sensor technology for musculoskeletal research. PMID:23369655

  6. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL-rupture.

    PubMed

    Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn

    2018-05-23

    Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee

  7. Artefacts for optical surface measurement

    NASA Astrophysics Data System (ADS)

    Robson, Stuart; Beraldin, J.-Angelo; Brownhill, Andrew; MacDonald, Lindsay

    2011-07-01

    Flexible manufacturing technologies are supporting the routine production of components with freeform surfaces in a wide variety of materials and surface finishes. Such surfaces may be exploited for both aesthetic and performance criteria for a wide range of industries, for example automotive, aircraft, small consumer goods and medial components. In order to ensure conformance between manufactured part and digital design it is necessary to understand, validate and promote best practice of the available measurement technologies. Similar, but currently less quantifiable, measurement requirements also exist in heritage, museum and fine art recording where objects can be individually hand crafted to extremely fine levels of detail. Optical 3D measurement systems designed for close range applications are typified by one or more illumination sources projecting a spot, line or structured light pattern onto a surface or surfaces of interest. Reflections from the projected light are detected in one or more imaging devices and measurements made concerning the location, intensity and optionally colour of the image. Coordinates of locations on the surface may be computed either directly from an understanding of the illumination and imaging geometry or indirectly through analysis of the spatial frequencies of the projected pattern. Regardless of sensing configuration some independent means is necessary to ensure that measurement capability will meet the requirements of a given level of object recording and is consistent for variations in surface properties and structure. As technologies mature, guidelines for best practice are emerging, most prominent at the current time being the German VDI/VDE 2634 and ISO/DIS 10360-8 guidelines. This considers state of the art capabilities for independent validation of optical non-contact measurement systems suited to the close range measurement of table top sized manufactured or crafted objects.

  8. Aspheric surface measurement using capacitive probes

    NASA Astrophysics Data System (ADS)

    Tao, Xin; Yuan, Daocheng; Li, Shaobo

    2017-02-01

    With the application of aspheres in optical fields, high precision and high efficiency aspheric surface metrology becomes a hot research topic. We describe a novel method of non-contact measurement of aspheric surface with capacitive probe. Taking an eccentric spherical surface as the object of study, the averaging effect of capacitive probe measurement and the influence of tilting the capacitive probe on the measurement results are investigated. By comparing measurement results from simultaneous measurement of the capacitive probe and contact probe of roundness instrument, this paper indicates the feasibility of using capacitive probes to test aspheric surface and proposes the compensation method of measurement error caused by averaging effect and the tilting of the capacitive probe.

  9. Shear wave velocity model beneath CBJI station West Java, Indonesia from joint inversion of teleseismic receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto

    2018-03-01

    Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.

  10. Tomographic measurement of joint photon statistics of the twin-beam quantum state

    PubMed

    Vasilyev; Choi; Kumar; D'Ariano

    2000-03-13

    We report the first measurement of the joint photon-number probability distribution for a two-mode quantum state created by a nondegenerate optical parametric amplifier. The measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the marginal distributions are thermal as expected for parametric fluorescence.

  11. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  12. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  13. Free-form surface measuring method based on optical theodolite measuring system

    NASA Astrophysics Data System (ADS)

    Yu, Caili

    2012-10-01

    The measurement for single-point coordinate, length and large-dimension curved surface in industrial measurement can be achieved through forward intersection measurement by the theodolite measuring system composed of several optical theodolites and one computer. The measuring principle of flexible large-dimension three-coordinate measuring system made up of multiple (above two) optical theodolites and composition and functions of the system have been introduced in this paper. Especially for measurement of curved surface, 3D measured data of spatial free-form surface is acquired through the theodolite measuring system and the CAD model is formed through surface fitting to directly generate CAM processing data.

  14. In vitro biomechanical comparison of three different types of single- and double-row arthroscopic rotator cuff repairs: analysis of continuous bone-tendon contact pressure and surface during different simulated joint positions.

    PubMed

    Grimberg, Jean; Diop, Amadou; Kalra, Kunal; Charousset, Christophe; Duranthon, Louis-Denis; Maurel, Nathalie

    2010-03-01

    We assessed bone-tendon contact surface and pressure with a continuous and reversible measurement system comparing 3 different double- and single-row techniques of cuff repair with simulation of different joint positions. We reproduced a medium supraspinatus tear in 24 human cadaveric shoulders. For the 12 right shoulders, single-row suture (SRS) and then double-row bridge suture (DRBS) were used. For the 12 left shoulders, DRBS and then double-row cross suture (DRCS) were used. Measurements were performed before, during, and after knot tying and then with different joint positions. There was a significant increase in contact surface with the DRBS technique compared with the SRS technique and with the DRCS technique compared with the SRS or DRBS technique. There was a significant increase in contact pressure with the DRBS technique and DRCS technique compared with the SRS technique but no difference between the DRBS technique and DRCS technique. The DRCS technique seems to be superior to the DRBS and SRS techniques in terms of bone-tendon contact surface and pressure. Copyright 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  15. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    PubMed Central

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  16. Research on joint parameter inversion for an integrated underground displacement 3D measuring sensor.

    PubMed

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-04-13

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0~30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  17. Sensate Scaffolds Can Reliably Detect Joint Loading

    PubMed Central

    Bliss, C. L.; Szivek, J. A.; Tellis, B. C.; Margolis, D. S.; Schnepp, A. B.; Ruth, J. T.

    2008-01-01

    Treatment of cartilage defects is essential to the prevention of osteoarthritis. Scaffold-based cartilage tissue engineering shows promise as a viable technique to treat focal defects. Added functionality can be achieved by incorporating strain gauges into scaffolds, thereby providing a real-time diagnostic measurement of joint loading. Strain-gauged scaffolds were placed into the medial femoral condyles of 14 adult canine knees and benchtop tested. Loads between 75 and 130 N were applied to the stifle joints at 30°, 50°, and 70° of flexion. Strain-gauged scaffolds were able to reliably assess joint loading at all applied flexion angles and loads. Pressure sensitive films were used to determine joint surface pressures during loading and to assess the effect of scaffold placement on joint pressures. A comparison of peak pressures in control knees and joints with implanted scaffolds, as well as a comparison of pressures before and after scaffold placement, showed that strain-gauged scaffold implantation did not significantly alter joint pressures. Future studies could possibly use strain-gauged scaffolds to clinically establish normal joint loads and to determine loads that are damaging to both healthy and tissue-engineered cartilage. Strain-gauged scaffolds may significantly aid the development of a functional engineered cartilage tissue substitute as well as provide insight into the native environment of cartilage. PMID:16941586

  18. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  19. Interobserver repeatability of measurements on computed tomography images of lax canine hip joints from youth to maturity.

    PubMed

    Lopez, Mandi J; Davis, Kechia M; Jeffrey-Borger, Susan L; Markel, Mark D; Rettenmund, Christy

    2009-12-01

    To determine interobserver repeatability of measurements on computed tomography (CT) images of lax canine hip joints at different ages and in the presence of degenerative joint disease at maturity. Longitudinal observational investigation. Sibling crossbreed hounds. Pelvic CT was performed at 20, 24, 32, 48, 68, and 104 weeks of age. Measures were performed on 3 contiguous two-dimensional (2D) transverse CT images of both hips at each time point by 3 investigators. Center-edge angle (CEA), horizontal toit externe angle (HTEA), ventral (VASA), dorsal (DASA), and horizontal (HASA) acetabular sector angles, acetabular index (AI), and percent femoral head coverage (CPC) were measured. Interobserver repeatability was quantified with the intraclass correlation coefficient (ICC). Satisfactory repeatability was considered when ICC >or=0.75. DASA, CEA, and CPC were repeatable in all age groups. HASA and HTEA were repeatable for all but 1 time point. At 20 weeks of age, all measures but AI were repeatable, and at 104 weeks of age, DASA, CEA, CPC, and HASA were repeatable. Measures were repeatable in hips with and without degenerative changes with the exceptions of AI and HASA in normal hips and VASA and HTEA in osteoarthritic hips. Most 2D CT measurements examined were repeatable regardless of age or joint disease. Two-dimensional CT measures may augment current techniques for assessing joint changes in lax canine hips.

  20. Effect of traction on wrist joint space and cartilage visibility with and without MR arthrography

    PubMed Central

    Griffith, James F; Tang, W K; Ng, Alex W H; Yeung, David K W

    2017-01-01

    Objective: To compare the effect of traction during non-arthrographic and arthrographic MR examination of the wrist with regard to joint space width, joint fluid dispersion and cartilage surface visibility. Methods: Prospective 3-T MRI study of 100 wrists in 96 patients. The first 50 wrists underwent MR arthrography first without traction and then with traction. The following 50 wrists underwent standard MR first without traction and then with traction. On these examinations, two radiologists independently measured (i) joint space width, semi-quantitatively graded (ii) joint fluid dispersion between opposing cartilage surfaces and (iii) articular cartilage surface visibility. The three parameters were compared between the two groups. Results: Traction led to an increase in joint space width at nearly all joints in all patients (p < 0.05), although more so in the arthrography (∆ = 0.08–0.79 mm, all p < 0.05) than in the non-arthrography (∆ = 0.001–0.61 mm, all p < 0.05) group. Joint fluid dispersion and cartilage surface visibility improved after traction in nearly all joints (p < 0.05) in all patients and more so in the arthographic than in the non-arthrography group. Conclusion: Traction did significantly improve cartilage surface visibility for standard MRI of the wrist although the effect was not as great as that seen with MR arthography or MR arthrography with traction. Advances in knowledge: This is the first study to show the beneficial effect of traction during standard non-arthrography MRI of the wrist and compare the effect of traction between non-arthrographic and arthrographic MRI of the wrist. PMID:28181830

  1. Effect of patient positions on measurement errors of the knee-joint space on radiographs

    NASA Astrophysics Data System (ADS)

    Gilewska, Grazyna

    2001-08-01

    Osteoarthritis (OA) is one of the most important health problems these days. It is one of the most frequent causes of pain and disability of middle-aged and old people. Nowadays the radiograph is the most economic and available tool to evaluate changes in OA. Error of performance of radiographs of knee joint is the basic problem of their evaluation for clinical research. The purpose of evaluation of such radiographs in my study was measuring the knee-joint space on several radiographs performed at defined intervals. Attempt at evaluating errors caused by a radiologist of a patient was presented in this study. These errors resulted mainly from either incorrect conditions of performance or from a patient's fault. Once we have information about size of the errors, we will be able to assess which of these elements have the greatest influence on accuracy and repeatability of measurements of knee-joint space. And consequently we will be able to minimize their sources.

  2. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  3. Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device.

    PubMed

    Nomura, Kenta; Yonezawa, Teru; Mizoguchi, Hiroshi; Takemura, Hiroshi

    2016-08-01

    This paper presents a method to measure the passive stiffness of an ankle joint in three degrees of freedom (DOF) under two motion speeds (1 Hz and 5 degree/s) using a developed Stewart platform-type device. The developed device can reproduce input motions of the foot in 6 DOF by controlling six pneumatic linear motion actuators. We used the device to measure the passive stiffness of an ankle joint undergoing three kinds of motion, namely dorsi-plantar flexion, inversion-eversion, and adduction-abduction. The measured values of the passive stiffness of the ankle joint in dorsiflexion that we obtained agreed well with that obtained in a previous study, indicating that the developed device is useful for measuring the passive stiffness of ankle joint. In addition, the developed device can be used to measure the stiffness in inversion-eversion and adduction-abduction motions as well, parameters that have never been measured. The results we obtained demonstrated certain interesting features as we varied both the direction and pace of motion (e.g., there were significant differences in the stiffness not only between adduction and abduction during the faster pace, but also between these and the other motions).

  4. Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.

    PubMed

    Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A

    2016-10-01

    Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Surface texture measurement for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Triantaphyllou, Andrew; Giusca, Claudiu L.; Macaulay, Gavin D.; Roerig, Felix; Hoebel, Matthias; Leach, Richard K.; Tomita, Ben; Milne, Katherine A.

    2015-06-01

    The surface texture of additively manufactured metallic surfaces made by powder bed methods is affected by a number of factors, including the powder’s particle size distribution, the effect of the heat source, the thickness of the printed layers, the angle of the surface relative to the horizontal build bed and the effect of any post processing/finishing. The aim of the research reported here is to understand the way these surfaces should be measured in order to characterise them. In published research to date, the surface texture is generally reported as an Ra value, measured across the lay. The appropriateness of this method for such surfaces is investigated here. A preliminary investigation was carried out on two additive manufacturing processes—selective laser melting (SLM) and electron beam melting (EBM)—focusing on the effect of build angle and post processing. The surfaces were measured using both tactile and optical methods and a range of profile and areal parameters were reported. Test coupons were manufactured at four angles relative to the horizontal plane of the powder bed using both SLM and EBM. The effect of lay—caused by the layered nature of the manufacturing process—was investigated, as was the required sample area for optical measurements. The surfaces were also measured before and after grit blasting.

  6. Simulating the Structural Response of a Preloaded Bolted Joint

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.

  7. Surface Preparation Methods to Enhance Dynamic Surface Property Measurements of Shocked Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; McNeil, Wendy; Gray, George, III; Huerta, David; King, Nicholas; Neal, George; Payton, Jeremy; Rubin, Jim; Stevens, Gerald; Turley, William; Buttler, William

    2008-03-01

    This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free-surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface preparation methods were considered: fly-cut machined finish, diamond-turned machine finish, polished finish, and ball-rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front-side of the metal coupons. Ejecta production at the back-side or free-side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.

  8. Surface preparation methods to enhance dynamic surface property measurements of shocked metal surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Vogan McNeil, W.; Gray, G. T.; Huerta, D. C.; King, N. S. P.; Neal, G. E.; Valentine, S. J.; Payton, J. R.; Rubin, J.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.

    2008-04-01

    This effort investigates surface-preparation methods to enhance dynamic surface-property measurements of shocked metal surfaces. To assess the ability of making reliable and consistent dynamic surface-property measurements, the amount of material ejected from the free surface upon shock release to vacuum (ejecta) was monitored for shocked Al-1100 and Sn targets. Four surface-preparation methods were considered: Fly-cut machine finish, diamond-turned machine finish, polished finish, and ball rolled. The samples were shock loaded by in-contact detonation of HE PBX-9501 on the front side of the metal coupons. Ejecta production at the back side or free side of the metal coupons was monitored using piezoelectric pins, optical shadowgraphy, and x-ray attenuation radiography.

  9. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, Richard N.; Wright, Julie K.; Moore, Glenn A.

    1994-01-01

    A method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600.degree. C. to less than the melting point of the lower melting point body; d) applying pressure on the juxtaposed surfaces; and e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  10. Iron aluminide alloy coatings and joints, and methods of forming

    DOEpatents

    Wright, R.N.; Wright, J.K.; Moore, G.A.

    1994-09-27

    Disclosed is a method of joining two bodies together, at least one of the bodies being predominantly composed of metal, the two bodies each having a respective joint surface for joining with the joint surface of the other body, the two bodies having a respective melting point, includes the following steps: (a) providing aluminum metal and iron metal on at least one of the joint surfaces of the two bodies; (b) after providing the aluminum metal and iron metal on the one joint surface, positioning the joint surfaces of the two bodies in juxtaposition against one another with the aluminum and iron positioned therebetween; (c) heating the aluminum and iron on the juxtaposed bodies to a temperature from greater than or equal to 600 C to less than the melting point of the lower melting point body; (d) applying pressure on the juxtaposed surfaces; and (e) maintaining the pressure and the temperature for a time period effective to form the aluminum and iron into an iron aluminide alloy joint which bonds the juxtaposed surfaces and correspondingly the two bodies together. The method can also effectively be used to coat a body with an iron aluminide coating.

  11. Hole-to-surface resistivity measurements.

    USGS Publications Warehouse

    Daniels, J.J.

    1983-01-01

    Hole-to-surface resistivity measurements over a layered volcanic tuff sequence illustrate procedures for gathering, reducing, and interpreting hole-to-surface resistivity data. The magnitude and direction of the total surface electric field resulting from a buried current source is calculated from orthogonal potential difference measurements for a grid of closely spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Resistivity anomalies can be enhanced by calculating the difference between apparent resistivities calculated from the total surface electric field and apparent resistivities for a layered earth model.-from Author

  12. Surface cleanliness measurement procedure

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  13. Fully automated joint space width measurement and digital X-ray radiogrammetry in early RA.

    PubMed

    Platten, Michael; Kisten, Yogan; Kälvesten, Johan; Arnaud, Laurent; Forslind, Kristina; van Vollenhoven, Ronald

    2017-01-01

    To study fully automated digital joint space width (JSW) and bone mineral density (BMD) in relation to a conventional radiographic scoring method in early rheumatoid arthritis (eRA). Radiographs scored by the modified Sharp van der Heijde score (SHS) in patients with eRA were acquired from the SWEdish FarmacOTherapy study. Fully automated JSW measurements of bilateral metacarpals 2, 3 and 4 were compared with the joint space narrowing (JSN) score in SHS. Multilevel mixed model statistics were applied to calculate the significance of the association between ΔJSW and ΔBMD over 1 year, and the JSW differences between damaged and undamaged joints as evaluated by the JSN. Based on 576 joints of 96 patients with eRA, a significant reduction from baseline to 1 year was observed in the JSW from 1.69 (±0.19) mm to 1.66 (±0.19) mm (p<0.01), and BMD from 0.583 (±0.068) g/cm 2 to 0.566 (±0.074) g/cm 2 (p<0.01). A significant positive association was observed between ΔJSW and ΔBMD over 1 year (p<0.0001). On an individual joint level, JSWs of undamaged (JSN=0) joints were wider than damaged (JSN>0) joints: 1.68 mm (95% CI 1.70 to 1.67) vs 1.54 mm (95% CI 1.63 to 1.46). Similarly the unadjusted multilevel model showed significant differences in JSW between undamaged (1.68 mm (95% CI 1.72 to 1.64)) and damaged joints (1.63 mm (95% CI 1.68 to 1.58)) (p=0.0048). This difference remained significant in the adjusted model: 1.66 mm (95% CI 1.70 to 1.61) vs 1.62 mm (95% CI 1.68 to 1.56) (p=0.042). To measure the JSW with this fully automated digital tool may be useful as a quick and observer-independent application for evaluating cartilage damage in eRA. NCT00764725.

  14. Influence of the upper joint surface and synovial lining in the outcome of chronic closed lock of the temporomandibular joint treated with arthroscopy.

    PubMed

    González-García, Raúl; Rodríguez-Campo, Francisco J; Monje, Florencio; Román-Romero, Leticia; Sastre-Pérez, Jesús; Usandizaga, José L Gil-Díez

    2010-01-01

    Temporomandibular joint (TMJ) arthroscopy has been reported to be an effective and reliable technique for the treatment of chronic closed lock (CCL) of the TMJ. The purpose of the present study was to evaluate whether the status of the joint surface and the synovial lining directly visualized with arthroscopy could determine postoperative results in patients with CCL of the TMJ. In all, 257 of 500 patients (344 joints) fulfilled the inclusion criteria for CCL of the TMJ. Of these patients, 172 with unilateral TMJ involvement were finally selected for the study. Synovitis and chondromalacia were chosen as the main features for evaluation of the joint surface and synovial lining. Two groups of patients were established: 1) patients with scarce affectation (synovitis grades I-II and chondromalacia grades I-II); and 2) patients with severe affectation (synovitis grades III-IV and/or chondromalacia grades III-IV). Pain and maximal interincisal opening were chosen as dependent variables. All patients were assessed at 1, 3, 6, 12, and 24 months postoperatively. The paired-samples Student's t test was used to compare mean values for pain (using a visual analog scale) and maximal interincisal opening (MIO) both pre- and postoperatively. The Student's t test for unpaired data was applied for the statistical analysis. A P value less than .05 was considered statistically significant. Synovitis grades I-II were arthroscopically observed in 87 (50.58%) patients, whereas synovitis grades III-IV were present in 72 (41.86%) patients. Chondromalacia grades I-II were arthroscopically observed in 66 (38.37%) patients, whereas chondromalacia grades III-IV were present in 54 (31.39%) patients. A statistically significant decrease in pain (P < .001) with a parallel increase in mouth opening (P < .001) after arthroscopy was observed for patients with synovitis I-II, synovitis III-IV, chondromalacia I-II, and chondromalacia III-IV during the whole follow-up period. A significant difference

  15. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions.

    PubMed

    Parr, W C H; Chatterjee, H J; Soligo, C

    2012-04-05

    Orientation of the subtalar joint axis dictates inversion and eversion movements of the foot and has been the focus of evolutionary and clinical studies for a number of years. Previous studies have measured the subtalar joint axis against the axis of the whole foot, the talocrural joint axis and, recently, the principal axes of the talus. The present study introduces a new method for estimating average joint axes from 3D reconstructions of bones and applies the method to the talus to calculate the subtalar and talocrural joint axes. The study also assesses the validity of the principal axes as a reference coordinate system against which to measure the subtalar joint axis. In order to define the angle of the subtalar joint axis relative to that of another axis in the talus, we suggest measuring the subtalar joint axis against the talocrural joint axis. We present corresponding 3D vector angles calculated from a modern human skeletal sample. This method is applicable to virtual 3D models acquired through surface-scanning of disarticulated 'dry' osteological samples, as well as to 3D models created from CT or MRI scans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation

    NASA Astrophysics Data System (ADS)

    Roa, Luis; Ladrón de Guevara, María L.; Soto-Moscoso, Matias; Catalán, Pamela

    2018-05-01

    In our work we consider the following problem in the context of teleportation: an unknown pure state has to be teleported and there are two laboratories which can perform the task. One laboratory uses a pure non-maximally entangled channel but has a capability of performing the joint measurement on bases with a constrained degree of entanglement; the other lab makes use of a mixed X-state channel but can perform a joint measurement on bases with higher entanglement degrees. We compare the average teleportation fidelity achieved in both cases, finding that the fidelity achieved with the X-state can surpass the obtained with a pure channel, even though the X-state is less entangled than the latter. We find the conditions under which this effect occurs. Our results evidence that the entanglement of the joint measurement plays a role as important as the entanglement of the channel in order to optimize the teleportation process. We include an example showing that the average fidelity of teleportation obtained with a Werner state channel can be greater than that obtained with a Bell state channel.

  17. Comparison of Extravehicular Mobility Unit (EMU) suited and unsuited isolated joint strength measurements

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Demel, Kenneth J.; Morgan, David A.; Wilmington, Robert P.; Pandya, Abhilash K.

    1996-01-01

    In this study the strength of subjects suited in extravehicular mobility units (EMU's) - or Space Shuttle suits - was compared to the strength of unsuited subjects. The authors devised a systematic and complete data set that characterizes isolated joint torques for all major joints of EMU-suited subjects. Six joint motions were included in the data set. The joint conditions of six subjects were compared to increase our understanding of the strength capabilities of suited subjects. Data were gathered on suited and unsuited subjects. Suited subjects wore Class 3 or Class 1 suits, with and without thermal micrometeoroid garments (TMG's). Suited and unsuited conditions for each joint motion were compared. From this the authors found, for example, that shoulder abduction suited conditions differ from each other and from the unsuited condition. A second-order polynomial regression model was also provided. This model, which allows the prediction of suited strength when given unsuited strength information, relates the torques of unsuited conditions to the torques of all suited conditions. Data obtained will enable computer modeling of EMU strength, conversion from unsuited to suited data, and isolated joint strength comparisons between suited and unsuited conditions at any measured angle. From these data mission planners and human factors engineers may gain a better understanding of crew posture, and mobility and strength capabilities. This study also may help suit designers optimize suit strength, and provide a foundation for EMU strength modeling systems.

  18. Push-off tests and strength evaluation of joints combining shrink fitting with bonding

    NASA Astrophysics Data System (ADS)

    Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi

    1997-03-01

    Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.

  19. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements

    PubMed Central

    Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  20. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    PubMed

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  1. Comparison of regression models for estimation of isometric wrist joint torques using surface electromyography

    PubMed Central

    2011-01-01

    Background Several regression models have been proposed for estimation of isometric joint torque using surface electromyography (SEMG) signals. Common issues related to torque estimation models are degradation of model accuracy with passage of time, electrode displacement, and alteration of limb posture. This work compares the performance of the most commonly used regression models under these circumstances, in order to assist researchers with identifying the most appropriate model for a specific biomedical application. Methods Eleven healthy volunteers participated in this study. A custom-built rig, equipped with a torque sensor, was used to measure isometric torque as each volunteer flexed and extended his wrist. SEMG signals from eight forearm muscles, in addition to wrist joint torque data were gathered during the experiment. Additional data were gathered one hour and twenty-four hours following the completion of the first data gathering session, for the purpose of evaluating the effects of passage of time and electrode displacement on accuracy of models. Acquired SEMG signals were filtered, rectified, normalized and then fed to models for training. Results It was shown that mean adjusted coefficient of determination (Ra2) values decrease between 20%-35% for different models after one hour while altering arm posture decreased mean Ra2 values between 64% to 74% for different models. Conclusions Model estimation accuracy drops significantly with passage of time, electrode displacement, and alteration of limb posture. Therefore model retraining is crucial for preserving estimation accuracy. Data resampling can significantly reduce model training time without losing estimation accuracy. Among the models compared, ordinary least squares linear regression model (OLS) was shown to have high isometric torque estimation accuracy combined with very short training times. PMID:21943179

  2. Functional anatomy of the temporomandibular joint (I).

    PubMed

    Sava, Anca; Scutariu, Mihaela Monica

    2012-01-01

    Jaw movement is analyzed as the action between two rigid components jointed together in a particular way, the movable mandible against the stabilized cranium. Jaw articulation distinguishes form most other synovial joints of the body by the coincidence of certain characteristic features. Its articular surfaces are not covered by hyaline cartilage as elsewhere. The two jointed components carry teeth the shape, position and occlusion of which having a unique influence on specific positions and movements within the joint. A fibrocartilaginous disc is interposed between upper and lower articular surfaces; this disc compensates for the incongruities in opposing parts and allows sliding, pivoting, and rotating movements between the bony components. These are the reasons for our review of the functional anatomy of the temporomandibular joint.

  3. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system.

    PubMed

    Seslija, Petar; Teeter, Matthew G; Yuan, Xunhua; Naudie, Douglas D R; Bourne, Robert B; Macdonald, Steven J; Peters, Terry M; Holdsworth, David W

    2012-10-01

    The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland-Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07° in-plane, and 0.24 mm and 0.6° out-of-plane. The repeatability of kinematics measurements performed using the radiographic tracking technique was

  4. Assessment of Biomarkers Associated with Joint Injury and Subsequent Post-Traumatic Arthritis

    DTIC Science & Technology

    2016-12-01

    models of the patella and patellar cartilage (Geomagic Studio, Research Triangle Park, NC). Changes in cartilage thickness between post -operative... quantitative scales, and "Assessment of Biomarkers Associated with Joint Injury and Subsequent Post -Traumatic Arthritis" Start date: 9/30/2012 PIs...Geomagic®). Positive and negative deviations of the bone surface were measured, and defined as the distance to a test surface ( post -fx bone surface

  5. Estimation of continuous multi-DOF finger joint kinematics from surface EMG using a multi-output Gaussian Process.

    PubMed

    Ngeo, Jimson; Tamei, Tomoya; Shibata, Tomohiro

    2014-01-01

    Surface electromyographic (EMG) signals have often been used in estimating upper and lower limb dynamics and kinematics for the purpose of controlling robotic devices such as robot prosthesis and finger exoskeletons. However, in estimating multiple and a high number of degrees-of-freedom (DOF) kinematics from EMG, output DOFs are usually estimated independently. In this study, we estimate finger joint kinematics from EMG signals using a multi-output convolved Gaussian Process (Multi-output Full GP) that considers dependencies between outputs. We show that estimation of finger joints from muscle activation inputs can be improved by using a regression model that considers inherent coupling or correlation within the hand and finger joints. We also provide a comparison of estimation performance between different regression methods, such as Artificial Neural Networks (ANN) which is used by many of the related studies. We show that using a multi-output GP gives improved estimation compared to multi-output ANN and even dedicated or independent regression models.

  6. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  7. Evaluation of Asphalt Bridge Deck Joint Systems.

    DOT National Transportation Integrated Search

    2009-12-01

    Asphaltic Plug Joint is an expansion joint that is used for new and rehabilitated bridges. It provides a smooth and watertight surface free of debris; and offers simple, easy and staged construction. Asphaltic plug joint can be repaired segmentally a...

  8. Measurement of surface tension by sessile drop tensiometer with superoleophobic surface

    NASA Astrophysics Data System (ADS)

    Kwak, Wonshik; Park, Jun Kwon; Yoon, Jinsung; Lee, Sanghyun; Hwang, Woonbong

    2018-03-01

    A sessile drop tensiometer provides a simple and efficient method of determining the surface tension of various liquids. The technique involves obtaining the shape of an axisymmetric liquid droplet and iterative fitting of the Young-Laplace equation, which balances the gravitational deformation of the drop. Since the advent of high quality digital cameras and desktop computers, this process has been automated with precision. However, despite its appealing simplicity, there are complications and limitations in a sessile drop tensiometer, i.e., it must dispense spherical droplets with low surface tension. We propose a method of measuring surface tension using a sessile drop tensiometer with a superoleophobic surface fabricated by acidic etching and anodization for liquids with low surface tension and investigate the accuracy of the measurement by changing the wettability of the measuring plate surface.

  9. Soft tissue balance changes depending on joint distraction force in total knee arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Matsumoto, Tomoyuki; Miya, Hidetoshi; Kuroda, Ryosuke; Kurosaka, Masahiro

    2014-03-01

    The influence of joint distraction force on intraoperative soft tissue balance was evaluated using Offset Repo-Tensor® for 78 knees that underwent primary posterior-stabilized total knee arthroplasty. The joint center gap and varus ligament balance were measured between osteotomized surfaces using 20, 40 and 60 lbs of joint distraction force. These values were significantly increased at extension and flexion as the distraction force increased. Furthermore, lateral compartment stiffness was significantly lower than medial compartment stiffness. Thus, larger joint distraction forces led to larger varus ligament balance and joint center gap, because of the difference in soft tissue stiffness between lateral and medial compartments. These findings indicate the importance of the strength of joint distraction force in the assessment of soft tissue balance, especially when using gap-balancing technique. © 2014.

  10. A clamping force measurement system for monitoring the condition of bolted joints on railway track joints and points

    NASA Astrophysics Data System (ADS)

    Tesfa, B.; Horler, G.; Thobiani, F. Al; Gu, F.; Ball, A. D.

    2012-05-01

    Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. Sense changes in the clamping force of the joint and report this fact. Provide compatibility with the large dynamic range of clamping force. Satisfy the limitations in terms of physical size. Provide the means to electronically interface with the washer. Provide a means of powering the washer in situ. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show that a smart washer

  11. The Joint Winter Runway Friction Measurement Program: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    Some background information is given together with the scope and objectives of the 5-year, Joint National Aeronautics & Space Administration (NASA)/Transport Canada (TC)/Federal Aviation Administration (FAA) Winter Runway Friction Measurement Program. The range of the test equipment, the selected test sites and a tentative test program schedule are described. NASA considers the success of this program critical in terms of insuring adequate ground handling performance capability in adverse weather conditions for future aircraft being designed and developed as well as improving the safety of current aircraft ground operations.

  12. Strength evaluation of socket joints

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1994-01-01

    This report documents the development of a set of equations that can be used to provide a relatively simple solution for identifying the strength of socket joints and for most cases avoid the need of more lengthy analyses. The analytical approach was verified by comparison of the contact load distributions to results obtained from a finite element analysis. The contacting surfaces for the specific joint in this analysis are in the shape of frustrums of a cone and are representative of the tapered surfaces in the socket-type joints used to join segments of model support systems for wind tunnels. The results are in the form of equations that can be used to determine the contact loads and stresses in the joint from the given geometry and externally applied loads. Equations were determined to define the bending moments and stresses along the length of the joints based on strength and materials principles. The results have also been programmed for a personal computer and a copy of the program is included.

  13. [Meniscoids of the intervertebral joints].

    PubMed

    Kos, J; Hert, J; Sevcík, P

    2002-01-01

    A large amount of material was used to study the distribution, location and shape of meniscoids in intervertebral joints of the human spine, from the atlanto-occipital joint to the sacrum, in order to find out how many of intervertebral joints had mobile meniscoids. These might be regarded as possible causes of spinal blockade or other vertebrogenous complaints. The materials provided by the Department of Anatomy and Department of Forensic Medicine at the Faculty of Medicine of Charles University in Pilznen included 20 cadaverous spines from humans aged 20 to 80 years. Access to each joint was provided by dissection of the articular capsule from the lower articular processes of the vertebra situated above. In the orthograde view, all meniscoids were described in terms of shape, size, consistence and location. Their structure was ascertained by histological examination of cross sections stained with haematoxylin and eosin. Meniscoids varying in shape and size were found in all of the intervertebral joints. They were classified by their histological structure as synovial, fat and fibrous meniscoids. The first category was observed frequently, the last only rarely. A total of 29 mobile meniscoids were recorded, most of them in the lumbar spine. Most of the meniscoids present in the cervical spine were of synovial and less frequently of fat types. Meniscoids found in the thoracic spine were poorly developed synovial ones and those present in the lumbar spine were of all types and were also largest in size. The most conspicuous meniscoids were seen in the spines that showed degenerative changes in intervertebral joints. Large fat pads were found in atlanto-occipital and atlanto-axial joints. Mobile meniscoids, most of them present in the lumbar spine (6.4% of all joints.), were connected with the capsule by a thin pedicle and it was possible to move them over a half of the articular surface. Some inter-individual changes were also found; in some spines, the most

  14. Assessment of the influence of surface finishing and weld joints on the corrosion/oxidation behaviour of stainless steels in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Martín-Muñoz, F. J.; Soler-Crespo, L.; Gómez-Briceño, D.

    2011-09-01

    The objective of this paper is to gain some insight into the influence of the surface finishing in the oxidation/corrosion behaviour of 316L and T91 steels in lead bismuth eutectic (LBE). Specimens of both materials with different surface states were prepared (as-received, grinded, grinded and polished, and electrolitically polished) and oxidation tests were carried out at 775 and 825 K from 100 to 2000 h for two different oxygen concentrations and for H 2/H 2O molar ratios of 3 and 0.03. The general conclusion for these tests is that the effect of surface finishing on the corrosion/protection processes is not significant under the tested conditions. In addition the behaviour of weld joints, T91-T91 Tungsten Inert Gas (TIG) and T91-316L have been also studied under similar conditions. The conclusions are that, whereas T91-T91 welded joint shows the same corrosion properties as the parent materials for the conditions tested, AISI 316L-T91 welded joint, present an important dissolution over seam area that it associated to the electrode 309S used for the fabrication process.

  15. Computed tomographic method for measurement of inclination angles and motion of the sacroiliac joints in German Shepherd Dogs and Greyhounds.

    PubMed

    Saunders, Fritha C; Cave, Nick J; Hartman, Karl M; Gee, Erica K; Worth, Andrew J; Bridges, Janis P; Hartman, Angela C

    2013-09-01

    To develop an in vivo CT method to measure inclination angles and motion of the sacroiliac joints in dogs of performance breeds. 10 German Shepherd Dogs and 12 Greyhounds without signs of lumbosacral region pain or neurologic problems. CT of the ilium and sacrum was performed in flexed, neutral, and extended hind limb positions. Lines were drawn on volume-rendered images acquired in the flexed and extended positions to measure motion of the ilia relative to the sacra. Inclination angles of the synovial and ligamentous components of the sacroiliac joints were measured on transverse-plane CT images acquired at cranial and caudal locations. Coefficients of variance of measurements were calculated to determine intraobserver variability. Coefficients of variance of measurements ranged from 0.17% to 2.45%. A significantly higher amount of sacroiliac joint rotational motion was detected for German Shepherd Dogs versus Greyhounds. The cranial synovial joint component had a significantly more sagittal orientation in German Shepherd Dogs versus Greyhounds. No significant differences were detected between breeds for x- or y-axis translational motion or caudal synovial or ligamentous joint component inclination angles. The small amounts of sacroiliac joint motion detected in this study may buffer high-frequency vibrations during movement of dogs. Differences detected between breeds may be associated with the predisposition of German Shepherd Dogs to develop lumbosacral region signs of pain, although the biological importance of this finding was not determined. Future studies are warranted to compare sacroiliac joint variables between German Shepherd Dogs with and without lumbosacral region signs of pain.

  16. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems

    PubMed Central

    Kuo, Chien-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system. PMID:29230411

  17. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    PubMed

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  18. Surface dose measurement for helical tomotherapy.

    PubMed

    Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav

    2011-06-01

    To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.

  19. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    NASA Astrophysics Data System (ADS)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  20. Immediate effects of neuromuscular joint facilitation intervention after anterior cruciate ligament reconstruction.

    PubMed

    Wang, Lei

    2016-07-01

    [Purpose] The aim of this study was to examine the immediate effects of neuromuscular joint facilitation (NJF) on the functional activity level after rehabilitation of anterior cruciate ligament (ACL) reconstruction. [Subjects and Methods] Ten young subjects (8 males and 2 females) who underwent ACL reconstruction were included in the study. The subjects were divided into two groups, namely, knee joint extension muscle strength training (MST) group and knee joint extension outside rotation pattern of NJF group. Extension strength was measured in both groups before and after the experiment. Surface electromyography (sEMG) of the vastus medialis and vastus lateralis muscles and joint position error (JPE) test of the knee joint were also conducted. [Results] JPE test results and extension strength measurements in the NJF group were improved compared with those in the MST group. Moreover, the average discharge of the vastus medialis and vastus lateralis muscles on sEMG in the NJF group was significantly increased after MST and NJF treatments. [Conclusion] The obtained results suggest that NJF training in patients with ACL reconstruction can improve knee proprioception ability and muscle strength.

  1. Space Suit Joint Torque Measurement Method Validation

    NASA Technical Reports Server (NTRS)

    Valish, Dana; Eversley, Karina

    2012-01-01

    In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.

  2. Response phase mapping of nonlinear joint dynamics using continuous scanning LDV measurement method

    NASA Astrophysics Data System (ADS)

    Di Maio, D.; Bozzo, A.; Peyret, Nicolas

    2016-06-01

    This study aims to present a novel work aimed at locating discrete nonlinearities in mechanical assemblies. The long term objective is to develop a new metric for detecting and locating nonlinearities using Scanning LDV systems (SLDV). This new metric will help to improve the modal updating, or validation, of mechanical assemblies presenting discrete and sparse nonlinearities. It is well established that SLDV systems can scan vibrating structures with high density of measurement points and produc e highly defined Operational Deflection Shapes (ODSs). This paper will present some insights on how to use response phase mapping for locating nonlinearities of a bolted flange. This type of structure presents two types of nonlinearities, which are geometr ical and frictional joints. The interest is focussed on the frictional joints and, therefore, the ability to locate which joint s are responsible for nonlinearity is seen highly valuable for the model validation activities.

  3. Biomechanics of the natural, arthritic, and replaced human ankle joint

    PubMed Central

    2014-01-01

    The human ankle joint complex plays a fundamental role in gait and other activities of daily living. At the same time, it is a very complicated anatomical system but the large literature of experimental and modelling studies has not fully described the coupled joint motion, position and orientation of the joint axis of rotation, stress and strain in the ligaments and their role in guiding and stabilizing joint motion, conformity and congruence of the articular surfaces, patterns of contact at the articular surfaces, patterns of rolling and sliding at the joint surfaces, and muscle lever arm lengths. The present review article addresses these issues as described in the literature, reporting the most recent relevant findings. PMID:24499639

  4. Self-Calibrating Surface Measuring Machine

    NASA Astrophysics Data System (ADS)

    Greenleaf, Allen H.

    1983-04-01

    A new kind of surface-measuring machine has been developed under government contract at Itek Optical Systems, a Division of Itek Corporation, to assist in the fabrication of large, highly aspheric optical elements. The machine uses four steerable distance-measuring interferometers at the corners of a tetrahedron to measure the positions of a retroreflective target placed at various locations against the surface being measured. Using four interferometers gives redundant information so that, from a set of measurement data, the dimensions of the machine as well as the coordinates of the measurement points can be determined. The machine is, therefore, self-calibrating and does not require a structure made to high accuracy. A wood-structured prototype of this machine was made whose key components are a simple form of air bearing steering mirror, a wide-angle cat's eye retroreflector used as the movable target, and tracking sensors and servos to provide automatic tracking of the cat's eye by the four laser beams. The data are taken and analyzed by computer. The output is given in terms of error relative to an equation of the desired surface. In tests of this machine, measurements of a 0.7 m diameter mirror blank have been made with an accuracy on the order of 0.2µm rms.

  5. The Design, Development, and Reliability Testing of a New Innovative Device to Measure Ankle Joint Dorsiflexion.

    PubMed

    Charles, James

    2016-09-02

    In clinical and research settings, ankle joint dorsiflexion needs to be reliably measured. Dorsiflexion is often measured by goniometry, but the intrarater and interrater reliability of this technique have been reported to be poor. Many devices to measure dorsiflexion have been developed for clinical and research use. An evaluation of 12 current tools showed that none met all of the desirable criteria. The purpose of this study was to design and develop a device that rates highly in all of the criteria and that can be proved to be highly reliable. While supine on a treatment table, 14 participants had a foot placed in the Charles device and ankle joint dorsiflexion measured and recorded three times with a digital inclinometer. The mean of the three readings was determined to be the ankle joint dorsiflexion. The analysis used was intraclass correlation coefficient (ICC). There was very little difference in ICC single or average measures between left and right feet, so data were pooled (N = 28). The single-measure ICC was 0.998 (95% confidence interval, 0.996-0.998). The average-measure ICC was 0.998 (95% confidence interval, 0.995-0.999). Limits of agreement for the average measure were also very good: -1.30° to 1.65°. The Charles device meets all of the desirable criteria and has many innovative features, increasing its appropriateness for clinical and research applications. It has a suitable design for measuring dorsiflexion and high intrarater and interrater reliability.

  6. Novel joint cupping clinical maneuver for ultrasonographic detection of knee joint effusions.

    PubMed

    Uryasev, Oleg; Joseph, Oliver C; McNamara, John P; Dallas, Apostolos P

    2013-11-01

    Knee effusions occur due to traumatic and atraumatic causes. Clinical diagnosis currently relies on several provocative techniques to demonstrate knee joint effusions. Portable bedside ultrasonography (US) is becoming an adjunct to diagnosis of effusions. We hypothesized that a US approach with a clinical joint cupping maneuver increases sensitivity in identifying effusions as compared to US alone. Using unembalmed cadaver knees, we injected fluid to create effusions up to 10 mL. Each effusion volume was measured in a lateral transverse location with respect to the patella. For each effusion we applied a joint cupping maneuver from an inferior approach, and re-measured the effusion. With increased volume of saline infusion, the mean depth of effusion on ultrasound imaging increased as well. Using a 2-mm cutoff, we visualized an effusion without the joint cupping maneuver at 2.5 mL and with the joint cupping technique at 1 mL. Mean effusion diameter increased on average 0.26 cm for the joint cupping maneuver as compared to without the maneuver. The effusion depth was statistically different at 2.5 and 7.5 mL (P < .05). Utilizing a joint cupping technique in combination with US is a valuable tool in assessing knee effusions, especially those of subclinical levels. Effusion measurements are complicated by uneven distribution of effusion fluid. A clinical joint cupping maneuver concentrates the fluid in one recess of the joint, increasing the likelihood of fluid detection using US. © 2013 Elsevier Inc. All rights reserved.

  7. Ambulant adults with spastic cerebral palsy: the validity of lower limb joint angle measurements from sagittal video recordings.

    PubMed

    Larsen, Kerstin L; Maanum, Grethe; Frøslie, Kathrine F; Jahnsen, Reidun

    2012-02-01

    In the development of a clinical program for ambulant adults with cerebral palsy (CP), we investigated the validity of joint angles measured from sagittal video recordings and explored if movements in the transversal plane identified with three-dimensional gait analysis (3DGA) affected the validity of sagittal video joint angle measurements. Ten observers, and 10 persons with spastic CP (19-63 years), Gross Motor Function Classification System I-II, participated in the study. Concurrent criterion validity between video joint angle measurements and 3DGA was assessed by Bland-Altman plots with mean differences and 95% limits of agreement (LoA). Pearson's correlation coefficients (r) and scatter plots were used supplementary. Transversal kinematics ≥2 SD from our reference band were defined as increased movement in the transversal plane. The overall mean differences in degrees between joint angles measured by 3DGA and video recordings (3°, 5° and -7° for the hip, knee and ankle respectively) and corresponding LoA (18°, 10° and 15° for the hip, knee and ankle, respectively) demonstrated substantial discrepancies between the two methods. The correlations ranged from low (r=0.39) to moderate (r=0.68). Discrepancy between the two measurements was seen both among persons with and without the presence of deviating transversal kinematics. Quantifying lower limb joint angles from sagittal video recordings in ambulant adults with spastic CP demonstrated low validity, and should be conducted with caution. This gives implications for selecting evaluation method of gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Minimal measures on surfaces of higher genus

    NASA Astrophysics Data System (ADS)

    Wang, Fang

    We study the minimal measures for positive definite autonomous Lagrangian systems defined on the tangent bundles of compact surfaces with genus greater than one. We present some results on the structure of minimal measures on compact surfaces. Specifically, we give a finer description of the structure of minimal measures with rational rotation vectors for geodesic flows on compact surfaces.

  9. Finding glenoid surface on scapula in 3D medical images for shoulder joint implant operation planning: 3D OCR

    NASA Astrophysics Data System (ADS)

    Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse

    2017-03-01

    Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.

  10. Measuring surface salinity in the N. Atlantic subtropical gyre. The SPURS-MIDAS cruise, spring 2013

    NASA Astrophysics Data System (ADS)

    Font, Jordi; Ward, Brian; Emelianov, Mikhail; Morisset, Simon; Salvador, Joaquin; Busecke, Julius

    2014-05-01

    SPURS-MIDAS (March-April 2013) on board the Spanish R/V Sarmiento de Gamboa was a contribution to SPURS (Salinity Processes in the Upper ocean Regional Study) focused on the processes responsible for the formation and maintenance of the salinity maximum associated to the North Atlantic subtropical gyre. Scientists from Spain, Ireland, France and US sampled the mesoscale and submesoscale structures in the surface layer (fixed points and towed undulating CTD, underway near surface TSG) and deployed operational and experimental drifters and vertical profilers, plus additional ocean and atmospheric data collection. Validation of salinity maps obtained from the SMOS satellite was one of the objectives of the cruise. The cruise included a joint workplan and coordinated sampling with the US R/V Endeavor, with contribution from SPURS teams on land in real time data and analysis exchange. We present here an overview of the different kinds of measurements made during the cruise, as well as a first comparison between SMOS-derived sea surface salinity products and salinity maps obtained from near-surface sampling in the SPURS-MIDAS area and from surface drifters released during the cruise.

  11. NDE of Space Shuttle Solid Rocket Motor field joint

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.

    1987-01-01

    One of the most critical areas for inspection in the Space Shuttle Solid Rocket Motors is the bond between the steel case and rubber insulation in the region of the field joints. The tang-and-clevis geometry of the field joints is sufficiently complex to prohibit the use of resonance-based techniques. One approach we are investigating is to interrogate the steel-insulation bondline in the tang and clevis regions using surface-travelling waves. A low-frequency contact surface wave transmitting array transducer is under development at our laboratory for this purpose. The array is placed in acoustic contact with the steel and surface waves are launched on the inside surface or the clevis leg which propagate along the steel-insulation interface. As these surface waves propagate along the bonded surface, the magnitude of the ultrasonic energy leaking into the steel is monitored on the outer surface of the case. Our working hypothesis is that the magnitude of energy received at the outer surface of the case is dependent upon the integrity of the case-insulation bond, with less attenuation for propagation along a disbond due to imperfect acoustic coupling between the steel and rubber. Measurements on test specimens indicate a linear relationship between received signal amplitude and the length of good bend between the transmitter and receiver, suggesting the validity of this working hypothesis.

  12. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study.

    PubMed

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-03-01

    Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins.

  13. Hot wire anemometer measurements in the unheated air flow tests of the SRB nozzle-to-case joint

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    1988-01-01

    Hot-Wire Anemometer measurements made in the Solid Rocket Booster (SRB) nozzle-to-case joint are discussed. The study was undertaken to glean additional information on the circumferential flow induced in the SRB nozzle joint and the effect of this flow on the insulation bonding flaws. The tests were conducted on a full-scale, 2-D representation of a 65-in long segment of the SRB nozzle joint, with unheated air as the working fluid. Both the flight Mach number and Reynolds number were matched simultaneously and different pressure gradients imposed along the joint face were investigated. Hot-wire anemometers were used to obtain velocity data for different joint gaps and debond configurations. The procedure adopted for hot-wire calibration and use is outlined and the results from the tests summarized.

  14. Nonclassical light revealed by the joint statistics of simultaneous measurements.

    PubMed

    Luis, Alfredo

    2016-04-15

    Nonclassicality cannot be a single-observable property, since the statistics of any quantum observable is compatible with classical physics. We develop a general procedure to reveal nonclassical behavior of light states from the joint statistics arising in the practical measurement of multiple observables. Beside embracing previous approaches, this protocol can disclose nonclassical features for standard examples of classical-like behavior, such as SU(2) and Glauber coherent states. When combined with other criteria, this would imply that every light state is nonclassical.

  15. Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity?

    PubMed

    Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A

    2017-01-01

    Knee joint kinematics derived from multi-body optimisation (MBO) still requires evaluation. The objective of this study was to corroborate model-derived kinematics of osteoarthritic knees obtained using four generic knee joint models used in musculoskeletal modelling - spherical, hinge, degree-of-freedom coupling curves and parallel mechanism - against reference knee kinematics measured by stereo-radiography. Root mean square errors ranged from 0.7° to 23.4° for knee rotations and from 0.6 to 9.0 mm for knee displacements. Model-derived knee kinematics computed from generic knee joint models was inaccurate. Future developments and experiments should improve the reliability of osteoarthritic knee models in MBO and musculoskeletal modelling.

  16. Measuring Light Reflectance of BGO Crystal Surfaces

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-10-01

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  17. Application of the surface azimuthal electrical resistivity survey method to determine patterns of regional joint orientation in glacial tills

    USGS Publications Warehouse

    Carlson, D.

    2010-01-01

    Joints within unconsolidated material such as glacial till can be primary avenues for the flow of electrical charge, water, and contaminants. To facilitate the siting and design of remediation programs, a need exists to map anisotropic distribution of such pathways within glacial tills by determining the azimuth of the dominant joint set. The azimuthal survey method uses standard resistivity equipment with a Wenner array rotated about a fixed center point at selected degree intervals that yields an apparent resistivity ellipse. From this ellipse, joint set orientation can be determined. Azimuthal surveys were conducted at 21 sites in a 500-km2 (193 mi2) area around Milwaukee, Wisconsin, and more specifically, at sites having more than 30 m (98 ft) of glacial till (to minimize the influence of underlying bedrock joints). The 26 azimuthal surveys revealed a systematic pattern to the trend of the dominant joint set within the tills, which is approximately parallel to ice flow direction during till deposition. The average orientation of the joint set parallel with the ice flow direction is N77??E and N37??E for the Oak Creek and Ozaukee tills, respectively. The mean difference between average direct observation of joint set orientations and average azimuthal resistivity results is 8??, which is one fifth of the difference of ice flow direction between the Ozaukee and Oak Creek tills. The results of this study suggest that the surface azimuthal electrical resistivity survey method used for local in situ studies can be a useful noninvasive method for delineating joint sets within shallow geologic material for regional studies. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  18. Is early osteoarthritis associated with differences in joint congruence?

    PubMed Central

    Conconi, Michele; Halilaj, Eni; Castelli, Vincenzo Parenti; Crisco, Joseph J.

    2014-01-01

    Previous studies suggest that osteoarthritis (OA) is related to abnormal or excessive articular contact stress. The peak pressure resulting from an applied load is determined by many factors, among which is shape and relative position and orientation of the articulating surfaces or, referring to a more common nomenclature, joint congruence. It has been hypothesized that anatomical differences may be among the causes of OA. Individuals with less congruent joints would likely develop higher peak pressure and thus would be more exposed to the risk of OA onset. The aim of this work was to determine if the congruence of the first carpometacarpal (CMC) joint differs with the early onset of OA or with sex, as the female population has a higher incidence of OA. 59 without and 38 with early OA were CT-scanned with their dominant or arthritic hand in a neutral configuration. The proposed measure of joint congruence is both shape and size dependent. The correlation of joint congruence with pathology and sex was analyzed both before and after normalization for joint size. We found a significant correlation between joint congruence and sex due to the sex-related differences in size. The observed correlation disappeared after normalization. Although joint congruence increased with size, it did not correlate significantly with the onset of early OA. Differences in joint congruence in this population may not be a primary cause of OA onset or predisposition, at least for the CMC joint. PMID:25468667

  19. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    PubMed

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Preparation of stable silica surfaces for surface forces measurement

    NASA Astrophysics Data System (ADS)

    Ren, Huai-Yin; Mizukami, Masashi; Kurihara, Kazue

    2017-09-01

    A surface forces apparatus (SFA) measures the forces between two surfaces as a function of the surface separation distance. It is regarded as an essential tool for studying the interactions between two surfaces. However, sample surfaces used for the conventional SFA measurements have been mostly limited to thin (ca. 2-3 μm) micas, which are coated with silver layers (ca. 50 nm) on their back, due to the requirement of the distance determination by transmission mode optical interferometry called FECO (fringes of equal chromatic order). The FECO method has the advantage of determining the absolute distance, so it should be important to increase the availability of samples other than mica, which is chemically nonreactive and also requires significant efforts for cleaving. Recently, silica sheets have been occasionally used in place of mica, which increases the possibility of surface modification. However, in this case, the silver layer side of the sheet is glued on a cylindrical quartz disc using epoxy resin, which is not stable in organic solvents and can be easily swollen or dissolved. The preparation of substrates more stable under severe conditions, such as in organic solvents, is necessary for extending application of the measurement. In this study, we report an easy method for preparing stable silica layers of ca. 2 μm in thickness deposited on gold layers (41 nm)/silica discs by sputtering, then annealed to enhance the stability. The obtained silica layers were stable and showed no swelling in organic solvents such as ethanol and toluene.

  1. CORRELATION OF ARTICULAR CARTILAGE THICKNESS MEASUREMENTS MADE WITH MAGNETIC RESONANCE IMAGING, MAGNETIC RESONANCE ARTHROGRAPHY, AND COMPUTED TOMOGRAPHIC ARTHROGRAPHY WITH GROSS ARTICULAR CARTILAGE THICKNESS IN THE EQUINE METACARPOPHALANGEAL JOINT.

    PubMed

    Porter, Erin G; Winter, Matthew D; Sheppard, Barbara J; Berry, Clifford R; Hernandez, Jorge A

    2016-09-01

    Osteoarthritis of the metacarpophalangeal joint is common cause of lameness in equine athletes, and is hallmarked by articular cartilage damage. An accurate, noninvasive method for measuring cartilage thickness would be beneficial to screen for cartilage injury and allow for prompt initiation of interventional therapy. The objective of this methods comparison study was to compare computed tomographic arthrography (CTA), magnetic resonance imaging (MRI), and magnetic resonance arthrography (MRA) measurements of articular cartilage thickness with gross measurements in the metacarpophalangeal joint of Thoroughbred horses. Fourteen cadaveric, equine thoracic limbs were included. Limbs were excluded from the study if pathology of the metacarpophalangeal articular cartilage was observed with any imaging modality. Articular cartilage thickness was measured in nine regions of the third metacarpal bone and proximal phalanx on sagittal plane MRI sequences. After intra-articular contrast administration, the measurements were repeated on sagittal plane MRA and sagittal CTA reformations. In an effort to increase cartilage conspicuity, the volume of intra-articular contrast was increased from 14.5 ml, to maximal distention for the second set of seven limbs. Mean and standard deviation values were calculated, and linear regression analysis was used to determine correlations between gross and imaging measurements of cartilage thickness. This study failed to identify one imaging test that consistently yielded measurements correlating with gross cartilage thickness. Even with the use of intra-articular contrast, cartilage surfaces were difficult to differentiate in regions where the cartilage surfaces of the proximal phalanx and third metacarpal bone were in close contact with each other. © 2016 American College of Veterinary Radiology.

  2. Investigation of the effect of contaminations and cleaning processes on the surface properties of brazing surfaces

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.

    2017-03-01

    The quality of brazed joints is determined by different factors such as the atmosphere and the parameters during brazing as well as the condition of the brazing surfaces. Residues of lubricants used during machining of the components and the subsequent cleaning processes can contaminate the faying surfaces and can hence influence the flow ability of the molten filler metals. Besides their influence on the filler metal flow, the residues can result in the formation of carbonic phases in the joint leading to a possible reduction of the corrosion resistance and the mechanical properties. The first step of the current study with the aim of avoiding these defects is to identify the influence of critical contaminations and cleaning methods on the quality of the brazed joints. In a first step, contaminations on AISI304 and Inconel alloy 625 due to different cooling lubricants and the effect of several cleaning methods, in particular plasma cleaning, have been investigated. Information about the surface energy of contaminated and cleaned surfaces was gained by measuring contact angle of testing fluids. Additionally, the lubricants and the resulting contamination products have been analyzed considering the influence of a heat treatment.

  3. Tribological characterization of the drill pipe tool joints reconditioned by using welding technologies

    NASA Astrophysics Data System (ADS)

    Caltaru, M.; Badicioiu, M.; Ripeanu, R. G.; Dinita, A.; Minescu, M.; Laudacescu, E.

    2018-01-01

    Drill pipe is a seamless steel pipe with upset ends fitted with special threaded ends that are known as tool joints. During drilling operations, the wall thickness of the drill pipe and the outside diameter of the tool joints will be gradually reduced due to wear. The present research work investigate the possibility of reconditioning the drill pipe tool joints by hardbanding with a new metal-cored coppered flux cored wire, Cr-Mo alloyed, using the gas metal active welding process, taking into considerations two different hardbanding technologies, consisting in: hardbanding drill pipe tool joints after removing the old hardbanding material and surface reconstruction with a compensation material (case A), and hardbanding tool joint drill pipe, without removing the old hardbanding material (case B). The present paper brings forward the experimental researches regarding the tribological characterization of the reconditioned drill pipe tool joint by performing macroscopic analyses, metallographic analyses, Vickers hardness measurement, chemical composition measurement and wear tests conducted on ball on disk friction couples, in order to certify the quality of the hardbanding obtained by different technological approaches, to validate the optimum technology.

  4. Measuring Surface Tension of a Flowing Soap Film

    NASA Astrophysics Data System (ADS)

    Sane, Aakash; Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.

  5. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  6. Some effects on SPM based surface measurement

    NASA Astrophysics Data System (ADS)

    Wenhao, Huang; Yuhang, Chen

    2005-01-01

    The scanning probe microscope (SPM) has been used as a powerful tool for nanotechnology, especially in surface nanometrology. However, there are a lot of false images and modifications during the SPM measurement on the surfaces. This is because of the complex interaction between the SPM tip and the surface. The origin is not only due to the tip material or shape, but also to the structure of the sample. So people are paying much attention to draw true information from the SPM images. In this paper, we present some simulation methods and reconstruction examples for the microstructures and surface roughness based on SPM measurement. For example, in AFM measurement, we consider the effects of tip shape and dimension, also the surface topography distribution in both height and space. Some simulation results are compared with other measurement methods to verify the reliability.

  7. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassar, Ray; Jones, DBA; Kulawik, SS

    2011-01-01

    We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES) and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40 S 40 N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the jointmore » inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields 1.13 0.21 PgC for the global ocean, 2.77 0.20 PgC for the global land biosphere and 3.90 0.29 PgC for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion). These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.« less

  8. Scales of columnar jointing in igneous rocks: field measurements and controlling factors

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Taisne, Benoît; Garel, Fanny; Médard, Étienne; Bosshard, Sonja; Mattsson, Hannes B.

    2012-03-01

    Columnar jointing is a common feature of solidified lavas, sills and dikes, but the factors controlling the characteristic stoutness of columns remain debated, and quantitative field observations are few in number. In this paper, we provide quantitative measurements on sizing of columnar joint sets and our assessment of the principal factors controlling it. We focus on (1) chemistry, as it is the major determinant of the physical (mechanical and thermal) properties of the lava, and (2) geology, as it influences the style of emplacement and lava geometry, setting boundary conditions for the cooling process and the rate of heat loss. In our analysis, we cover lavas with a broad range of chemical compositions (from basanite to phonolite, for six of which we provide new geochemical analyses) and of geological settings. Our field measurements cover 50 columnar jointing sites in three countries. We provide reliable, manually digitized data on the size of individual columns and focus the mathematical analysis on their geometry (23,889 data on side length, of which 17,312 are from full column sections and 3,033 data on cross-sectional area and order of polygonality). The geometrical observations show that the variation in characteristic size of columns between different sites exceeds one order of magnitude (side length ranging from 8 to 338 cm) and that the column-bounding polygons' average order is less than 6. The network of fractures is found to be longer than required by a minimum-energy hexagonal configuration, indicating a non-equilibrium, geologically quick process. In terms of the development and characteristic sizing of columnar joint sets, our observations suggest that columns are the result of an interplay between the geological setting of emplacement and magma chemistry. When the geological setting constrains the geometry of the emplaced body, it exerts a stronger control on characteristic column stoutness. At unconstrained geometries (e.g. unconfined lava

  9. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus.

    PubMed

    Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo

    2013-01-01

    The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  10. LOGISMOS—Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation in the Knee Joint

    PubMed Central

    Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan

    2011-01-01

    A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602

  11. Short-term effects of kinesio tape on joint position sense, isokinetic measurements, and clinical parameters in patellofemoral pain syndrome

    PubMed Central

    Kurt, Emine Eda; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen; Sezgin, Hicabi

    2016-01-01

    [Purpose] To evaluate the short-term effects of kinesio tape on joint position sense, isokinetic measurements, kinesiophobia, symptoms, and functional limitations in patients with patellofemoral pain syndrome. [Subjects and Methods] A total of 90 patients (112 knees) with patellofemoral pain syndrome were randomized into a kinesio tape group (n=45) or placebo kinesio tape group (n=45). Baseline isokinetic quadriceps muscle tests and measurements of joint position sense were performed in both groups. Pain was measured with a Visual Analog Scale, kinesiophobia with the Tampa kinesiophobia scale, and symptoms and functional limitations with the Kujala pain scale. Measurements were repeated 2 days after kinesio tape application. [Results] No differences were found between baseline isokinetic muscle measurements and those taken 2 days after application. However, significant improvements were observed in the kinesio tape group, with regard to joint position sense, pain, kinesiophobia, symptoms, and functional limitations after treatment. Examination of the differences between pre- and post-treatment values in both groups revealed that the kinesio tape group demonstrated greater improvements compared to the placebo kinesio tape group. [Conclusion] Although short-term kinesio tape application did not increase hamstring muscle strength, it may have improved joint position sense, pain, kinesiophobia, symptoms, and daily limitations. PMID:27512259

  12. A Joint Model for Longitudinal Measurements and Survival Data in the Presence of Multiple Failure Types

    PubMed Central

    Elashoff, Robert M.; Li, Gang; Li, Ning

    2009-01-01

    Summary In this article we study a joint model for longitudinal measurements and competing risks survival data. Our joint model provides a flexible approach to handle possible nonignorable missing data in the longitudinal measurements due to dropout. It is also an extension of previous joint models with a single failure type, offering a possible way to model informatively censored events as a competing risk. Our model consists of a linear mixed effects submodel for the longitudinal outcome and a proportional cause-specific hazards frailty submodel (Prentice et al., 1978, Biometrics 34, 541-554) for the competing risks survival data, linked together by some latent random effects. We propose to obtain the maximum likelihood estimates of the parameters by an expectation maximization (EM) algorithm and estimate their standard errors using a profile likelihood method. The developed method works well in our simulation studies and is applied to a clinical trial for the scleroderma lung disease. PMID:18162112

  13. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review.

    PubMed

    Theeven, Patrick J R; Hemmen, Bea; Brink, Peter R G; Smeets, Rob J E M; Seelen, Henk A M

    2013-11-27

    The effectiveness of microprocessor-controlled prosthetic knee joints (MPKs) has been assessed using a variety of outcome measures in a variety of health and health-related domains. However, if the patient is to receive a prosthetic knee joint that enables him to function optimally in daily life, it is vital that the clinician has adequate information about the effects of that particular component on all aspects of persons' functioning. Especially information concerning activities and participation is of high importance, as this component of functioning closely describes the person's ability to function with the prosthesis in daily life. The present study aimed to review the outcome measures that have been utilized to assess the effects of microprocessor-controlled prosthetic knee joints (MPK), in comparison with mechanically controlled prosthetic knee joints, and aimed to classify these measures according to the components and categories of functioning defined by the International Classification of Functioning, Disability and Health (ICF). Subsequently, the gaps in the scientific evidence regarding the effectiveness of MPKs were determined. A systematic literature search in 6 databases (i.e. PubMed, CINAHL, Cochrane Library, Embase, Medline and PsychInfo) identified scientific studies that compared the effects of using MPKs with mechanically controlled prosthetic knee joints on persons' functioning. The outcome measures that have been utilized in those studies were extracted and categorized according to the ICF framework. Also, a descriptive analysis regarding all studies has been performed. A total of 37 studies and 72 outcome measures have been identified. The majority (67%) of the outcome measures that described the effects of using an MPK on persons' actual performance with the prosthesis covered the ICF body functions component. Only 31% of the measures on persons' actual performance investigated how an MPK may affect performance in daily life. Research also

  14. Determination of representative dimension parameter values of Korean knee joints for knee joint implant design.

    PubMed

    Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu

    2012-05-01

    Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.

  15. Tools for measuring surface cleanliness

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  16. Wind noise measured at the ground surface.

    PubMed

    Yu, Jiao; Raspet, Richard; Webster, Jeremy; Abbott, Johnpaul

    2011-02-01

    Measurements of the wind noise measured at the ground surface outdoors are analyzed using the mirror flow model of anisotropic turbulence by Kraichnan [J. Acoust. Soc. Am. 28(3), 378-390 (1956)]. Predictions of the resulting behavior of the turbulence spectrum with height are developed, as well as predictions of the turbulence-shear interaction pressure at the surface for different wind velocity profiles and microphone mounting geometries are developed. The theoretical results of the behavior of the velocity spectra with height are compared to measurements to demonstrate the applicability of the mirror flow model to outdoor turbulence. The use of a logarithmic wind velocity profile for analysis is tested using meteorological models for wind velocity profiles under different stability conditions. Next, calculations of the turbulence-shear interaction pressure are compared to flush microphone measurements at the surface and microphone measurements with a foam covering flush with the surface. The measurements underneath the thin layers of foam agree closely with the predictions, indicating that the turbulence-shear interaction pressure is the dominant source of wind noise at the surface. The flush microphones measurements are intermittently larger than the predictions which may indicate other contributions not accounted for by the turbulence-shear interaction pressure.

  17. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  18. Surface texture measurement for dental wear applications

    NASA Astrophysics Data System (ADS)

    Austin, R. S.; Mullen, F.; Bartlett, D. W.

    2015-06-01

    The application of surface topography measurement and characterization within dental materials science is highly active and rapidly developing, in line with many modern industries. Surface measurement and structuring is used extensively within oral and dental science to optimize the optical, tribological and biological performance of natural and biomimetic dental materials. Although there has historically been little standardization in the use and reporting of surface metrology instrumentation and software, the dental industry is beginning to adopt modern areal measurement and characterization techniques, especially as the dental industry is increasingly adopting digital impressioning techniques in order to leverage CAD/CAM technologies for the design and construction of dental restorations. As dental treatment becomes increasingly digitized and reliant on advanced technologies such as dental implants, wider adoption of standardized surface topography and characterization techniques will become evermore essential. The dental research community welcomes the advances that are being made in surface topography measurement science towards realizing this ultimate goal.

  19. Is early osteoarthritis associated with differences in joint congruence?

    PubMed

    Conconi, Michele; Halilaj, Eni; Parenti Castelli, Vincenzo; Crisco, Joseph J

    2014-12-18

    Previous studies suggest that osteoarthritis (OA) is related to abnormal or excessive articular contact stress. The peak pressure resulting from an applied load is determined by many factors, among which is shape and relative position and orientation of the articulating surfaces or, referring to a more common nomenclature, joint congruence. It has been hypothesized that anatomical differences may be among the causes of OA. Individuals with less congruent joints would likely develop higher peak pressure and thus would be more exposed to the risk of OA onset. The aim of this work was to determine if the congruence of the first carpometacarpal (CMC) joint differs with the early onset of OA or with sex, as the female population has a higher incidence of OA. 59 without and 38 with early OA were CT-scanned with their dominant or arthritic hand in a neutral configuration. The proposed measure of joint congruence is both shape and size dependent. The correlation of joint congruence with pathology and sex was analyzed both before and after normalization for joint size. We found a significant correlation between joint congruence and sex due to the sex-related differences in size. The observed correlation disappeared after normalization. Although joint congruence increased with size, it did not correlate significantly with the onset of early OA. Differences in joint congruence in this population may not be a primary cause of OA onset or predisposition, at least for the CMC joint. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Relationships among measurements obtained by use of computed tomography and radiography and scores of cartilage microdamage in hip joints with moderate to severe joint laxity of adult dogs.

    PubMed

    Lopez, Mandi J; Lewis, Brooke P; Swaab, Megan E; Markel, Mark D

    2008-03-01

    To evaluate correlations among measurements on radiographic and computed tomography (CT) images with articular cartilage microdamage in lax hip joints of dogs. 12 adult mixed-breed hounds. Pelvic CT and radiography were performed. Hip joints were harvested following euthanasia. Orthopedic Foundation for Animals (OFA) and PennHIP radiograph reports were obtained. Norberg angle (NA) and radiographic percentage femoral head coverage (RPC) were determined. Center-edge angle (CEA), horizontal toit externe angle (HTEA), ventral acetabular sector angle (VASA), dorsal acetabular sector angle (DASA), horizontal acetabular sector angle (HASA), acetabular index (AI), and CT percentage femoral head coverage (CPC) were measured on 2-dimensional CT images. Femoral head-acetabular shelf percentage was measured on sagittal 3-dimensional CT (SCT) and transverse 3-dimensional CT (TCT) images. Light microscopy was used to score joint cartilage. Relationships of OFA confirmation and PennHIP osteoarthritis scores with radiography, CT, and cartilage variables and relationships of cartilage scores with radiography and CT measurements were evaluated with Spearman rank correlations. Pearson correlation was used for relationships of distraction index (DI) with radiography, CT, and cartilage variables. Significant relationships included PennHIP osteoarthritis score with cartilage score, CEA, HTEA, DASA, AI, CPC, and TCT; OFA confirmation score with cartilage score, NA, RPC, CEA, HTEA, DASA, AI, CPC, and TCT; cartilage score with NA, RPC, CEA, HTEA, DASA, HASA, AI, and TCT; and DI with cartilage score, CEA, HTEA, DASA, HASA, AI, and CPC. CT appeared to be a valuable imaging modality for predicting cartilage microdamage in canine hip joints.

  1. Rock discontinuity surface roughness variation with scale

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We

  2. Deformations and strains in adhesive joints by moire interferometry

    NASA Technical Reports Server (NTRS)

    Post, D.; Czarnek, R.; Wood, J.; John, D.; Lubowinski, S.

    1984-01-01

    Displacement fields in a thick adherend lap joint and a cracked lap shear specimen were measured by high sensitivity moire interferometry. Contour maps of in-plane U and V displacements were obtained across adhesive and adherent surfaces. Loading sequences ranged from modest loads to near-failure loads. Quantitative results are given for displacements and certain strains in the adhesive and along the adhesive/adherend boundary lines. The results show nonlinear displacements and strains as a function of loads or stresses and they show viscoelastic or time-dependent response. Moire interferometry is an excellent method for experimental studies of adhesive joint performance. Subwavelength displacement resolution of a few micro-inches, and spatial resolution corresponding to 1600 fringes/inch (64 fringes/mm), were obtained in these studies. The whole-field contour maps offer insights not available from local measurements made by high sensitivity gages.

  3. The spatial organisation of joint surface chondrocytes: review of its potential roles in tissue functioning, disease and early, preclinical diagnosis of osteoarthritis.

    PubMed

    Aicher, Wilhelm K; Rolauffs, Bernd

    2014-04-01

    Chondrocytes display within the articular cartilage depth-dependent variations of their many properties that are comparable to the depth-dependent changes of the properties of the surrounding extracellular matrix. However, not much is known about the spatial organisation of the chondrocytes throughout the tissue. Recent studies revealed that human chondrocytes display distinct spatial patterns of organisation within the articular surface, and each joint surface is dominated in a typical way by one of four basic spatial patterns. The resulting complex spatial organisations correlate with the specific diarthrodial joint type, suggesting an association of the chondrocyte organisation within the joint surface with the occurring biomechanical forces. In response to focal osteoarthritis (OA), the superficial chondrocytes experience a destruction of their spatial organisation within the OA lesion, but they also undergo a defined remodelling process distant from the OA lesion in the remaining, intact cartilage surface. One of the biological insights that can be derived from this spatial remodelling process is that the chondrocytes are able to respond in a generalised and coordinated fashion to distant focal OA. The spatial characteristics of this process are tremendously different from the cellular aggregations typical for OA lesions, suggesting differences in the underlying mechanisms. Here we summarise the available information on the spatial organisation of chondrocytes and its potential roles in cartilage functioning. The spatial organisation could be used to diagnose early OA onset before manifest OA results in tissue destruction and clinical symptoms. With further development, this concept may become clinically suitable for the diagnosis of preclinical OA.

  4. Coracoclavicular joint: osteologic study of 1020 human clavicles

    PubMed Central

    Gumina, S; Salvatore, M; De Santis, P; Orsina, L; Postacchini, F

    2002-01-01

    We examined 1020 dry clavicles from cadavers of Italian origin to determine the prevalence of the coracoclavicular joint (ccj), a diarthrotic synovial joint occasionally present between the conoid tubercle of the clavicle and the superior surface of the horizontal part of the coracoid process. Five hundred and nine clavicles from individuals of different ages were submitted to X-ray examination. Using radiography, we measured the entire length and the index of sinuosity of the anterior lateral curve, on which the distance between the conoid tubercle and the coracoid process depends. We also used radiography to record the differences in prevalence of arthritis in two neighbouring joints, the acromioclavicular and sternoclavicular joints. Of the 1020 clavicles, eight (0.8%) displayed the articular facet of the ccj. No statistical correlation was found between clavicular length and the index of sinuosity of the anterior lateral curve. The prevalence of arthritis in clavicles with ccj was higher than that revealed in clavicles without ccj. The prevalence of ccj in the studied clavicles is lower than that observed in Asian cohorts. Furthermore, ccj is not conditioned by either length or sinuosity of the anterior lateral curve of the clavicle. Finally, the assumption that ccj is a predisposing factor for degenerative changes of neighbouring joints is statistically justified. PMID:12489763

  5. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  6. Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements

    PubMed Central

    Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus

    2018-01-01

    Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235

  7. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space

    PubMed Central

    Wikstrom, Erik A.; Guderian, Sophie; Turner, Michael J.

    2017-01-01

    Context:  Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known. Objective:  To measure knee-joint space after a single surgically induced ankle sprain in mice. Design:  Randomized controlled trial. Setting:  University research laboratory. Patients or Other Participants:  Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice. Main Outcome Measure(s):  Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs. Results:  Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups. Conclusions:  Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function. PMID:28437129

  8. Partial compensation interferometry for measurement of surface parameter error of high-order aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Li, Tengfei; Hu, Yao

    2018-01-01

    Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.

  9. Advances in the Surface Renewal Flux Measurement Method

    NASA Astrophysics Data System (ADS)

    Shapland, T. M.; McElrone, A.; Paw U, K. T.; Snyder, R. L.

    2011-12-01

    The measurement of ecosystem-scale energy and mass fluxes between the planetary surface and the atmosphere is crucial for understanding geophysical processes. Surface renewal is a flux measurement technique based on analyzing the turbulent coherent structures that interact with the surface. It is a less expensive technique because it does not require fast-response velocity measurements, but only a fast-response scalar measurement. It is therefore also a useful tool for the study of the global cycling of trace gases. Currently, surface renewal requires calibration against another flux measurement technique, such as eddy covariance, to account for the linear bias of its measurements. We present two advances in the surface renewal theory and methodology that bring the technique closer to becoming a fully independent flux measurement method. The first advance develops the theory of turbulent coherent structure transport associated with the different scales of coherent structures. A novel method was developed for identifying the scalar change rate within structures at different scales. Our results suggest that for canopies less than one meter in height, the second smallest coherent structure scale dominates the energy and mass flux process. Using the method for resolving the scalar exchange rate of the second smallest coherent structure scale, calibration is unnecessary for surface renewal measurements over short canopies. This study forms the foundation for analysis over more complex surfaces. The second advance is a sensor frequency response correction for measuring the sensible heat flux via surface renewal. Inexpensive fine-wire thermocouples are frequently used to record high frequency temperature data in the surface renewal technique. The sensible heat flux is used in conjunction with net radiation and ground heat flux measurements to determine the latent heat flux as the energy balance residual. The robust thermocouples commonly used in field experiments

  10. Investigation Leads to Improved Understanding of Space Shuttle RSRM Internal Insulation Joints

    NASA Technical Reports Server (NTRS)

    McWhorter, Bruce B.; Bolton, Doug E.; Hicken, Steve V.; Allred, Larry D.; Cook, Dave J.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) uses an internal insulation J-joint design for the mated insulation interface between two assembled RSRM segments. In this assembled (mated) segment configuration, this J-joint design serves as a thermal barrier to prevent hot gases from affecting the case field joint metal surfaces and O-rings. A pressure sensitive adhesive (PSA) provides some adhesion between the two mated insulation surfaces. In 1995, after extensive testing, a new ODC-free PSA (free of ozone depleting chemicals) was selected for flight on RSRM-55 (STS-78). Post-flight inspection revealed that the J-joint, equipped with the new ODC-free PSA, did not perform well. Hot gas seeped inside the J-joint interface. Although not a flight safety threat, the J-joint hot gas intrusion on RSRM-55 was a mystery to the investigators since the PSA had previously worked well on a full-scale static test. A team was assembled to study the J-joint and PSA further. All J-joint design parameters, measured data, and historical performance data were re-reviewed and evaluated by subscale testing and analysis. Although both the ODC-free and old PSA were weakened by humidity, the ODC-free PSA strength was lower to start with. Another RSRM full-scale static test was conducted in 1998 and intentionally duplicated the gas intrusion. This test, along with many concurring tests, showed that if a J-joint was 1) mated with the new ODC-free PSA, 2) exposed to a history of high humidity (Kennedy Space Center levels), and 3) also a joint which experienced significant but normal joint motion (J-joint deformation resulting from motor pressurization dynamics) then that J-joint would open (allow gas intrusion) during motor operation. When all of the data from the analyses, subscale tests, and full-scale tests were considered together, a theory emerged. Most of the joint motion on the RSRM occurs early in motor operation at which point the J-joints are pulled into tension. If the new

  11. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    PubMed

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  12. Indium adhesion provides quantitative measure of surface cleanliness

    NASA Technical Reports Server (NTRS)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  13. Effect of Strain Rate on Joint Strength and Failure Mode of Lead-Free Solder Joints

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lei, Yongping; Fu, Hanguang; Guo, Fu

    2018-03-01

    In surface mount technology, the Sn-3.0Ag-0.5Cu solder joint has a shorter impact lifetime than a traditional lead-tin solder joint. In order to improve the impact property of SnAgCu lead-free solder joints and identify the effect of silver content on tensile strength and impact property, impact experiments were conducted at various strain rates on three selected SnAgCu based solder joints. It was found that joint failure mainly occurred in the solder material with large plastic deformation under low strain rate, while joint failure occurred at the brittle intermetallic compound layer without any plastic deformation at a high strain rate. Joint strength increased with the silver content in SnAgCu alloys in static tensile tests, while the impact property of the solder joint decreased with increasing silver content. When the strain rate was low, plastic deformation occurred with failure and the tensile strength of the Sn-3.0Ag-0.5Cu solder joint was higher than that of Sn-0.3Ag-0.7Cu; when the strain rate was high, joint failure mainly occurred at the brittle interface layer and the Sn-0.3Ag-0.7Cu solder joint had a better impact resistance with a thinner intermetallic compound layer.

  14. Estimating small-scale roughness of a rock joint using TLS data

    NASA Astrophysics Data System (ADS)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2016-04-01

    Roughness of a rock joint is an important parameter influencing rock mass stability. Besides the surface amplitude, also the roughness direction- and scale-dependency should be observed (i.e. 3D roughness). Up to now most of roughness measurements and parameters rely on point or profile data obtained on small samples, mostly in a laboratory. State-of-the-art remote sensing technologies supply 3D measurements of an in-situ rock surface and therefore enable a 3D roughness parameterization. Detailed morphology of a remote large-scale vertical structure can be best observed by Terrestrial Laser Scanning (TLS). In a short time and from distances of a few hundred meters, TLS provides relatively dense and precise point cloud. Sturzenegger and Stead [2009] showed that the TLS technology and careful fieldwork allow the extraction of first-order roughness profiles, i.e. the surface irregularities with a wavelength greater than about 10 cm. Our goal is to find the lower limit; this is, to define the smallest discernible detail, and appropriate measuring and processing steps to extract this detail from the TLS data. The smallest observable roughness amplitude depends on the TLS data precision, which is limited mostly by an inherent range error (noise). An influence of the TLS noise on the rock joint roughness was analyzed using highly precise reference data acquired by Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. ATOS data were interpolated into 1 mm grid, to which five levels (0.5, 1, 1.5, 2, 2.5 mm) of normally distributed noise were added. The 3D surfaces entered direction-dependent roughness parameter computation after Grasselli [2001]. Average roughness of noisy surfaces logarithmically increase with the noise level and is already doubled for 1 mm noise. Performing Monte Carlo simulation roughness parameter noise sensitivity was investigated. Distribution of roughness differences (roughness of noisy surfaces minus roughness of reference ATOS surface

  15. Method of forming a ceramic to ceramic joint

    DOEpatents

    Cutler, Raymond Ashton; Hutchings, Kent Neal; Kleinlein, Brian Paul; Carolan, Michael Francis

    2010-04-13

    A method of joining at least two sintered bodies to form a composite structure, includes: providing a joint material between joining surfaces of first and second sintered bodies; applying pressure from 1 kP to less than 5 MPa to provide an assembly; heating the assembly to a conforming temperature sufficient to allow the joint material to conform to the joining surfaces; and further heating the assembly to a joining temperature below a minimum sintering temperature of the first and second sintered bodies. The joint material includes organic component(s) and ceramic particles. The ceramic particles constitute 40-75 vol. % of the joint material, and include at least one element of the first and/or second sintered bodies. Composite structures produced by the method are also disclosed.

  16. The relation between residual stress, interfacial structure and the joint property in the SiO2f/SiO2-Nb joints.

    PubMed

    Ma, Qiang; Li, Zhuo Ran; Yang, Lai Shan; Lin, Jing Huang; Ba, Jin; Wang, Ze Yu; Qi, Jun Lei; Feng, Ji Cai

    2017-06-23

    In order to achieve a high-quality joint between SiO 2f /SiO 2 and metals, it is necessary to address the poor wettability of SiO 2f /SiO 2 and the high residual stress in SiO 2f /SiO 2 -Nb joint. Here, we simultaneously realize good wettability and low residual stress in SiO 2f /SiO 2 -Nb joint by combined method of HF etching treatment and Finite Element Analysis (FEA). After etching treatment, the wettability of E-SiO 2f /SiO 2 was improved, and the residual stress in the joint was decreased. In order to better control the quality of joints, efforts were made to understand the relationship between surface structure of E-SiO 2f /SiO 2 and residual stress in joint using FEA. Based on the direction of FEA results, a relationship between residual stress, surface structure and joint property in the brazed joints were investigated by experiments. As well the FEA and the brazing test results both realized the high-quality joint of E-SiO 2f /SiO 2 -Nb and the shear strength of the joint reached 61.9 MPa.

  17. Surface Forces Apparatus Measurements of Interactions between Rough and Reactive Calcite Surfaces.

    PubMed

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon E; Nilsen, Ola; Røyne, Anja

    2018-06-26

    nm-Range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the surface forces apparatus, we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC) and between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by atomic layer deposition. We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time, and this increase was correlated with a decrease of roughness at contacts, the parameter which could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm- to μm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over μm-sized areas and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  18. Physicochemical and microscopic characterization of implant–abutment joints

    PubMed Central

    Lopes, Patricia A.; Carreiro, Adriana F. P.; Nascimento, Rubens M.; Vahey, Brendan R.; Henriques, Bruno; Souza, Júlio C. M.

    2018-01-01

    Objective: The purpose of this study was to investigate Morse taper implant–abutment joints by chemical, mechanical, and microscopic analysis. Materials and Methods: Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant–abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant–abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant–abutment joints. Statistics: Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Results: Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant–abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Conclusions: Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant–abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication. PMID:29657532

  19. Physicochemical and microscopic characterization of implant-abutment joints.

    PubMed

    Lopes, Patricia A; Carreiro, Adriana F P; Nascimento, Rubens M; Vahey, Brendan R; Henriques, Bruno; Souza, Júlio C M

    2018-01-01

    The purpose of this study was to investigate Morse taper implant-abutment joints by chemical, mechanical, and microscopic analysis. Surfaces of 10 Morse taper implants and the correlated abutments were inspected by field emission gun-scanning electron microscopy (FEG-SEM) before connection. The implant-abutment connections were tightened at 32 Ncm. For microgap evaluation by FEG-SEM, the systems were embedded in epoxy resin and cross-sectioned at a perpendicular plane of the implant-abutment joint. Furthermore, nanoindentation tests and chemical analysis were performed at the implant-abutment joints. Results were statistically analyzed via one-way analysis of variance, with a significance level of P < 0.05. Defects were noticed on different areas of the abutment surfaces. The minimum and maximum size of microgaps ranged from 0.5 μm up to 5.6 μm. Furthermore, defects were detected throughout the implant-abutment joint that can, ultimately, affect the microgap size after connection. Nanoindentation tests revealed a higher hardness (4.2 ± 0.4 GPa) for abutment composed of Ti6Al4V alloy when compared to implant composed of commercially pure Grade 4 titanium (3.2 ± 0.4 GPa). Surface defects produced during the machining of both implants and abutments can increase the size of microgaps and promote a misfit of implant-abutment joints. In addition, the mismatch in mechanical properties between abutment and implant can promote the wear of surfaces, affecting the size of microgaps and consequently the performance of the joints during mastication.

  20. Site characterization at Groningen gas field area through joint surface-borehole H/V analysis

    NASA Astrophysics Data System (ADS)

    Spica, Zack J.; Perton, Mathieu; Nakata, Nori; Liu, Xin; Beroza, Gregory C.

    2018-01-01

    A new interpretation of the horizontal to vertical (H/V) spectral ratio in terms of the Diffuse Field Assumption (DFA) has fuelled a resurgence of interest in that approach. The DFA links H/V measurements to Green's function retrieval through autocorrelation of the ambient seismic field. This naturally allows for estimation of layered velocity structure. In this contribution, we further explore the potential of H/V analysis. Our study is facilitated by a distributed array of surface and co-located borehole stations deployed at multiple depths, and by detailed prior information on velocity structure that is available due to development of the Groningen gas field. We use the vertical distribution of H/V spectra recorded at discrete depths inside boreholes to obtain shear wave velocity models of the shallow subsurface. We combine both joint H/V inversion and borehole interferometry to reduce the non-uniqueness of the problem and to allow faster convergence towards a reliable velocity model. The good agreement between our results and velocity models from an independent study validates the methodology, demonstrates the power of the method, but more importantly provides further constraints on the shallow velocity structure, which is an essential component of integrated hazard assessment in the area.

  1. Open questions in surface topography measurement: a roadmap

    NASA Astrophysics Data System (ADS)

    Leach, Richard; Evans, Christopher; He, Liangyu; Davies, Angela; Duparré, Angela; Henning, Andrew; Jones, Christopher W.; O'Connor, Daniel

    2015-03-01

    Control of surface topography has always been of vital importance for manufacturing and many other engineering and scientific disciplines. However, despite over one hundred years of quantitative surface topography measurement, there are still many open questions. At the top of the list of questions is ‘Are we getting the right answer?’ This begs the obvious question ‘How would we know?’ There are many other questions relating to applications, the appropriateness of a technique for a given scenario, or the relationship between a particular analysis and the function of the surface. In this first ‘open questions’ article we have gathered together some experts in surface topography measurement and asked them to address timely, unresolved questions about the subject. We hope that their responses will go some way to answer these questions, address areas where further research is required, and look at the future of the subject. The first section ‘Spatial content characterization for precision surfaces’ addresses the need to characterise the spatial content of precision surfaces. Whilst we have been manufacturing optics for centuries, there still isn’t a consensus on how to specify the surface for manufacture. The most common three methods for spatial characterisation are reviewed and compared, and the need for further work on quantifying measurement uncertainties is highlighted. The article is focussed on optical surfaces, but the ideas are more pervasive. Different communities refer to ‘figure, mid-spatial frequencies, and finish’ and ‘form, waviness, and roughness’, but the mathematics are identical. The second section ‘Light scattering methods’ is focussed on light scattering techniques; an important topic with in-line metrology becoming essential in many manufacturing scenarios. The potential of scattering methods has long been recognized; in the ‘smooth surface limit’ functionally significant relationships can be derived from first

  2. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space.

    PubMed

    Hubbard-Turner, Tricia; Wikstrom, Erik A; Guderian, Sophie; Turner, Michael J

    2017-06-02

      Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known.   To measure knee-joint space after a single surgically induced ankle sprain in mice.   Randomized controlled trial.   University research laboratory.   Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice.   Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs.   Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups.   Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function.

  3. Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Asaf, D.; Still, C.; Montzka, S.; Noone, D.; Gupta, M.; Provencal, R.; Chen, H.; Yakir, D.

    2014-02-01

    Understanding the processes that control the terrestrial exchange of carbon is critical for assessing atmospheric CO2 budgets. Carbonyl sulfide (COS) is taken up by vegetation during photosynthesis following a pathway that mirrors CO2 but has a small or nonexistent emission component, providing a possible tracer for gross primary production. Field measurements of COS and CO2 mixing ratios were made in forest, senescent grassland, and riparian ecosystems using a laser absorption spectrometer installed in a mobile trailer. Measurements of leaf fluxes with a branch-bag gas-exchange system were made across species from 10 genera of trees, and soil fluxes were measured with a flow-through chamber. These data show (1) the existence of a narrow normalized daytime uptake ratio of COS to CO2 across vascular plant species of 1.7, providing critical information for the application of COS to estimate photosynthetic CO2 fluxes and (2) a temperature-dependent normalized uptake ratio of COS to CO2 from soils. Significant nighttime uptake of COS was observed in broad-leafed species and revealed active stomatal opening prior to sunrise. Continuous high-resolution joint measurements of COS and CO2 concentrations in the boundary layer are used here alongside the flux measurements to partition the influence that leaf and soil fluxes and entrainment of air from above have on the surface carbon budget. The results provide a number of critical constraints on the processes that control surface COS exchange, which can be used to diagnose the robustness of global models that are beginning to use COS to constrain terrestrial carbon exchange.

  4. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review

    PubMed Central

    2013-01-01

    Background The effectiveness of microprocessor-controlled prosthetic knee joints (MPKs) has been assessed using a variety of outcome measures in a variety of health and health-related domains. However, if the patient is to receive a prosthetic knee joint that enables him to function optimally in daily life, it is vital that the clinician has adequate information about the effects of that particular component on all aspects of persons’ functioning. Especially information concerning activities and participation is of high importance, as this component of functioning closely describes the person’s ability to function with the prosthesis in daily life. The present study aimed to review the outcome measures that have been utilized to assess the effects of microprocessor-controlled prosthetic knee joints (MPK), in comparison with mechanically controlled prosthetic knee joints, and aimed to classify these measures according to the components and categories of functioning defined by the International Classification of Functioning, Disability and Health (ICF). Subsequently, the gaps in the scientific evidence regarding the effectiveness of MPKs were determined. Methods A systematic literature search in 6 databases (i.e. PubMed, CINAHL, Cochrane Library, Embase, Medline and PsychInfo) identified scientific studies that compared the effects of using MPKs with mechanically controlled prosthetic knee joints on persons’ functioning. The outcome measures that have been utilized in those studies were extracted and categorized according to the ICF framework. Also, a descriptive analysis regarding all studies has been performed. Results A total of 37 studies and 72 outcome measures have been identified. The majority (67%) of the outcome measures that described the effects of using an MPK on persons’ actual performance with the prosthesis covered the ICF body functions component. Only 31% of the measures on persons’ actual performance investigated how an MPK may affect

  5. Experimental measurement of flexion-extension movement in normal and corpse prosthetic elbow joint.

    PubMed

    TarniŢă, Daniela; TarniŢă, DănuŢ Nicolae

    2016-01-01

    This paper presents a comparative experimental study of flexion-extension movement in healthy elbow and in the prosthetic elbow joint fixed on an original experimental bench. Measurements were carried out in order to validate the functional morphology and a new elbow prosthesis type ball head. The three-dimensional (3D) model and the physical prototype of our experimental bench used to test elbow endoprosthesis at flexion-extension and pronation-supination movements is presented. The measurements were carried out on a group of nine healthy subjects and on the prosthetic corpse elbow, the experimental data being obtained for flexion-extension movement cycles. Experimental data for the two different flexion-extension tests for the nine subjects and for the corpse prosthetic elbow were acquired using SimiMotion video system. Experimental data were processed statistically. The corresponding graphs were obtained for all subjects in the experimental group, and for corpse prosthetic elbow for both flexion-extension tests. The statistical analysis has proved that the flexion angles of healthy elbows were significantly close to the values measured at the prosthetic elbow fixed on the experimental bench. The studied elbow prosthesis manages to re-establish the mobility for the elbow joint as close to the normal one.

  6. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  7. Measuring skew in average surface roughness as a function of surface preparation

    NASA Astrophysics Data System (ADS)

    Stahl, Mark T.

    2015-08-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces polishing time, saves money and allows the science requirements to be better defined. This study characterized statistics of average surface roughness as a function of polishing time. Average surface roughness was measured at 81 locations using a Zygo® white light interferometer at regular intervals during the polishing process. Each data set was fit to a normal and Largest Extreme Value (LEV) distribution; then tested for goodness of fit. We show that the skew in the average data changes as a function of polishing time.

  8. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less

  9. Elbow joint angle and elbow movement velocity estimation using NARX-multiple layer perceptron neural network model with surface EMG time domain parameters.

    PubMed

    Raj, Retheep; Sivanandan, K S

    2017-01-01

    Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.

  10. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants

    PubMed Central

    Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in

  11. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.

    PubMed

    Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg

    2017-01-01

    Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the

  12. Contact pressure in the facet joint during sagittal bending of the cadaveric cervical spine.

    PubMed

    Jaumard, Nicolas V; Bauman, Joel A; Weisshaar, Christine L; Guarino, Benjamin B; Welch, William C; Winkelstein, Beth A

    2011-07-01

    The facet joint contributes to the normal biomechanical function of the spine by transmitting loads and limiting motions via articular contact. However, little is known about the contact pressure response for this joint. Such information can provide a quantitative measure of the facet joint's local environment. The objective of this study was to measure facet pressure during physiologic bending in the cervical spine, using a joint capsule-sparing technique. Flexion and extension bending moments were applied to six human cadaveric cervical spines. Global motions (C2-T1) were defined using infra-red cameras to track markers on each vertebra. Contact pressure in the C5-C6 facet was also measured using a tip-mounted pressure transducer inserted into the joint space through a hole in the postero-inferior region of the C5 lateral mass. Facet contact pressure increased by 67.6 ± 26.9 kPa under a 2.4 Nm extension moment and decreased by 10.3 ± 9.7 kPa under a 2.7 Nm flexion moment. The mean rotation of the overall cervical specimen motion segments was 9.6 ± 0.8° and was 1.6 ± 0.7° for the C5-C6 joint, respectively, for extension. The change in pressure during extension was linearly related to both the change in moment (51.4 ± 42.6 kPa/Nm) and the change in C5-C6 angle (18.0 ± 108.9 kPa/deg). Contact pressure in the inferior region of the cervical facet joint increases during extension as the articular surfaces come in contact, and decreases in flexion as the joint opens, similar to reports in the lumbar spine despite the difference in facet orientation in those spinal regions. Joint contact pressure is linearly related to both sagittal moment and spinal rotation. Cartilage degeneration and the presence of meniscoids may account for the variation in the pressure profiles measured during physiologic sagittal bending. This study shows that cervical facet contact pressure can be directly measured with minimal disruption to the joint and is the first to provide local

  13. High-strength braze joints between copper and steel

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  14. Physical property measurements on analog granites related to the joint verification experiment

    NASA Astrophysics Data System (ADS)

    Martin, Randolph J., III; Coyner, Karl B.; Haupt, Robert W.

    1990-08-01

    A key element in JVE (Joint Verification Experiment) conducted jointly between the United States and the USSR is the analysis of the geology and physical properties of the rocks in the respective test sites. A study was initiated to examine unclassified crystalline rock specimens obtained from areas near the Soviet site, Semipalatinsk and appropriate analog samples selected from Mt. Katadin, Maine. These rocks were also compared to Sierra White and Westerly Granite which have been studied in great detail. Measurements performed to characterize these rocks were: (1) Uniaxial strain with simultaneous compressional and shear wave velocities; (2) Hydrostatic compression to 150 MPa with simultaneous compressional and shear wave velocities; (3) Attenuation measurements as a function of frequency and strain amplitude for both dry and water saturated conditions. Elastic moduli determined from the hydrostatic compression and uniaxial strain test show that the rock matrix/mineral properties were comparable in magnitudes which vary within 25 percent from sample to sample. These properties appear to be approximately isotropic, especially at high pressures. However, anisotropy evident for certain samples at pressures below 35 MPa is attributed to dominant pre-existing microcrack populations and their alignments. Dependence of extensional attenuation and Young's modulus on strain amplitude were experimentally determined for intact Sierra White granite using the hysteresis loop technique.

  15. Titan Surface Temperatures as Measured by Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.

    2009-01-01

    Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.

  16. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, T g, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, T ref, by the same amount as the T g depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive T g depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  17. Mechanisms of degradation in adhesive joint strength: Glassy polymer thermoset bond in a humid environment

    DOE PAGES

    Kropka, Jamie Michael; Adolf, Douglas Brian; Spangler, Scott Wilmer; ...

    2015-08-06

    The degradation in the strength of napkin-ring (NR) joints bonded with an epoxy thermoset is evaluated in a humid environment. While adherend composition (stainless steel and aluminum) and surface preparation (polished, grit blasted, primed, coupling agent coated) do not affect virgin (time=0) joint strength, they can significantly affect the role of moisture on the strength of the joint. Adherend surface abrasion and corrosion processes are found to be key factors in determining the reliability of joint strength in humid environments. In cases where surface specific joint strength degradation processes are not active, decreases in joint strength can be accounted formore » by the glass transition temperature, T g, depression of the adhesive associated with water sorption. Under these conditions, joint strength can be rejuvenated to virgin strength by drying. In addition, the decrease in joint strength associated with water sorption can be predicted by the Simplified Potential Energy Clock (SPEC) model by shifting the adhesive reference temperature, T ref, by the same amount as the T g depression. When surface specific degradation mechanisms are active, they can reduce joint strength below that associated with adhesive T g depression, and joint strength is not recoverable by drying. Furthermore, a critical relative humidity (or, potentially, critical water sorption concentration), below which the surface specific degradation does not occur, appears to exist for the polished stainless steel joints.« less

  18. The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.

    PubMed

    Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A

    2011-11-01

    Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should

  19. Improving the Rank Precision of Population Health Measures for Small Areas with Longitudinal and Joint Outcome Models

    PubMed Central

    Athens, Jessica K.; Remington, Patrick L.; Gangnon, Ronald E.

    2015-01-01

    Objectives The University of Wisconsin Population Health Institute has published the County Health Rankings since 2010. These rankings use population-based data to highlight health outcomes and the multiple determinants of these outcomes and to encourage in-depth health assessment for all United States counties. A significant methodological limitation, however, is the uncertainty of rank estimates, particularly for small counties. To address this challenge, we explore the use of longitudinal and pooled outcome data in hierarchical Bayesian models to generate county ranks with greater precision. Methods In our models we used pooled outcome data for three measure groups: (1) Poor physical and poor mental health days; (2) percent of births with low birth weight and fair or poor health prevalence; and (3) age-specific mortality rates for nine age groups. We used the fixed and random effects components of these models to generate posterior samples of rates for each measure. We also used time-series data in longitudinal random effects models for age-specific mortality. Based on the posterior samples from these models, we estimate ranks and rank quartiles for each measure, as well as the probability of a county ranking in its assigned quartile. Rank quartile probabilities for univariate, joint outcome, and/or longitudinal models were compared to assess improvements in rank precision. Results The joint outcome model for poor physical and poor mental health days resulted in improved rank precision, as did the longitudinal model for age-specific mortality rates. Rank precision for low birth weight births and fair/poor health prevalence based on the univariate and joint outcome models were equivalent. Conclusion Incorporating longitudinal or pooled outcome data may improve rank certainty, depending on characteristics of the measures selected. For measures with different determinants, joint modeling neither improved nor degraded rank precision. This approach suggests a simple

  20. Vascular risk reduction during anterior surgical approach sacroiliac joint plating.

    PubMed

    Alla, Sreenivasa R; Roberts, Craig S; Ojike, Nwakile I

    2013-02-01

    Open reduction and internal fixation of sacroiliac (SI) joint is often performed through an anterior approach. However, there were no studies to our knowledge which described the "at risk area" for injury to the nutrient artery as it relates to open reduction and internal fixation of the SI joint. The purpose of this study was to determine the "at risk area" for the nutrient artery during anterior surgical approaches to the SI joint and to define the safe location of the plate for SI joint fixation. Six right and five left hemipelvises (three male and three female cadavers) were dissected with a mean age of 72 years (range, 51-90 years). Three bony landmarks including the pelvic brim, anterior SI joint line, and the anterior superior iliac spine (ASIS) were identified to quantify the measurements. Three different measurements were taken: from the nutrient foramen to the anterior SI joint line; from the nutrient foramen to the nearest point on the pelvic brim; from the nutrient foramen to ASIS using a flexible ruler with a 1mm base. The nutrient artery courses across the SI joint to enter into the nutrient foramen. Whilst exposing the internal surface of the SI joint, the nutrient foramen was identified at a mean distance of 88.1mm medial to ASIS, 20.1mm above the pelvic brim, and 20.1mm lateral to SI joint. The variability of the location of the nutrient foramen was identified and was located from 80mm to 95mm medial to the ASIS, 12mm to 25mm lateral to the SI joint, and 16mm to 30mm above the pelvic brim. Familiarity of the vasculature of the internal pelvis is of utmost importance for the surgeon when considering operative fixation of the anterior SI joint. We were able to identify the relation of the nutrient artery to the anatomic landmarks of the internal pelvis and to define the "at risk area" for the nutrient artery. We believe increased understanding of the anatomy of the nutrient artery will aid in the avoidance of vascular complications during internal

  1. Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction.

    PubMed

    Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J

    2018-05-29

    Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

  2. Identifying dominant controls on the water balance of partly sealed surfaces

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Schübl, Marleen; Siebert, Caroline; Weiler, Markus

    2017-04-01

    It is the challenge of modern urban development to obtain a near natural state for the urban water balance. For this purpose permeable alternatives to conventional surface sealing have been established during the last decades. A wealth of studies - under laboratory as well as field conditions - has emerged around the globe to examine the hydrological characteristics of different types of pavements. The main results of these studies - measured infiltration and evaporation rates, vary to a great extent between single studies and pavement types due to methodological approaches and local conditions. Within this study we analyze the controls of water balance components of partly sealed urban surfaces derived from an extensive literature review and a series of infiltration experiments conducted on historical and modern pavements within the city of Freiburg, Germany. Measured values published in 48 studies as well as the results of 30 double-ring infiltration experiments were compiled and sorted according to the measured parameter, the pavement type, pavement condition, age of the pavement, porosity of the pavement material and joint filling material as well as joint proportion of joint pavements. The main influencing factors on infiltration / hydraulic conductivity, evaporation rates and groundwater recharge of permeable pavements were identified and quantified using multiple linear regression methods. The analysis showed for both the literature study and our own infiltration experiments that condition and age of the pavement have the major influence on the pavement's infiltration capacity and that maintenance plays an important role for the long-term effectiveness of permeable pavements. For pavements with joints, the porosity of the pavement material seemed to have a stronger influence on infiltration capacity than the proportion of joint surface for which a clear influence could not be observed. Evaporation rates were compared for different surface categories as not

  3. Collateral ligament strains during knee joint laxity evaluation before and after TKA.

    PubMed

    Delport, Hendrik; Labey, Luc; De Corte, Ronny; Innocenti, Bernardo; Vander Sloten, Jos; Bellemans, Johan

    2013-08-01

    Passive knee stability is provided by the soft tissue envelope. There is consensus among orthopedic surgeons that good outcome in Total Knee Arthroplasty requires equal tension in the medial/lateral compartment of the knee joint, as well as equal tension in the flexion/extension gap. The purpose of this study was to quantify the ligament laxity in the normal non-arthritic knee before and after Posterior-Stabilized Total Knee Arthroplasty. We hypothesized that the Medial/Lateral Collateral Ligament shows minimal changes in length when measured directly by extensometers in the native human knee during varus/valgus laxity testing. We also hypothesized that due to differences in material properties and surface geometry, native laxity is difficult to reconstruct using a Posterior-Stabilized Total Knee. Six specimens were used to perform this in vitro cadaver test using extensometers to provide numerical values for laxity and varus-valgus tilting in the frontal plane. This study enabled a precise measurement of varus-valgus laxity as compared with the clinical assessment. The strains in both ligaments in the replaced knee were different from those in the native knee. Both ligaments were stretched in extension, in flexion the Medial Collateral Ligament tends to relax and the Lateral Collateral Ligament remains tight. As material properties and surface geometry of the replaced knee add stiffness to the joint, we recommend to avoid overstuffing the joint, when using this type of Posterior-Stabilized Total Knee Arthroplasty, in order to obtain varus/valgus laxity close to the native joint. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Crustal seismic structure beneath the southwest Yunnan region from joint inversion of body-wave and surface wave data

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Thurber, C. H.; Zeng, X.; Zhang, L.

    2016-12-01

    Data from 71 broadband stations of a dense transportable array deployed in southwest Yunnan makes it possible to improve the resolution of the seismic model in this region. Continuous waveforms from 12 permanent stations of the China National Seismic Network were also used in this study. We utilized one-year continuous vertical component records to compute ambient noise cross-correlation functions (NCF). More than 3,000 NCFs were obtained and used to measure group velocities between 5 and 25 seconds with the frequency-time analysis method. This frequency band is most sensitive to crustal seismic structure, especially the upper and middle crust. The group velocity at short-period shows a clear azimuthal anisotropy with a north-south fast direction. The fast direction is consistent with previous seismic results revealed from shear wave splitting. More than 2,000 group velocity measurements were employed to invert the surface wave dispersion data for group velocity maps. We applied a finite difference forward modeling algorithm with an iterative inversion. A new body-wave and surface wave joint inversion algorithm (Fang et al., 2016) was utilized to improve the resolution of both P and S models. About 60,000 P wave and S wave arrivals from 1,780 local earthquakes, which occurred from May 2011 to December 2013 with magnitudes larger than 2.0, were manually picked. The new high-resolution seismic structure shows good consistency with local geological features, e.g. Tengchong Volcano. The earthquake locations also were refined with our new velocity model.

  5. Low-Friction, Low-Profile, High-Moment Two-Axis Joint

    NASA Technical Reports Server (NTRS)

    Lewis, James L.; Le, Thang; Carroll, Monty B.

    2010-01-01

    The two-axis joint is a mechanical device that provides two-degrees-of-freedom motion between connected components. A compact, moment-resistant, two-axis joint is used to connect an electromechanical actuator to its driven structural members. Due to the requirements of the overall mechanism, the joint has a low profile to fit within the allowable space, low friction, and high moment-reacting capability. The mechanical arrangement of this joint can withstand high moments when loads are applied. These features allow the joint to be used in tight spaces where a high load capability is required, as well as in applications where penetrating the mounting surface is not an option or where surface mounting is required. The joint consists of one base, one clevis, one cap, two needle bearings, and a circular shim. The base of the joint is the housing (the base and the cap together), and is connected to the grounding structure via fasteners and a bolt pattern. Captive within the housing, between the base and the cap, are the rotating clevis and the needle bearings. The clevis is attached to the mechanical system (linear actuator) via a pin. This pin, and the rotational movement of the clevis with respect to the housing, provides two rotational degrees of freedom. The larger diameter flange of the clevis is sandwiched between a pair of needle bearings, one on each side of the flange. During the assembly of the two-axis joint, the circular shims are used to adjust the amount of preload that is applied to the needle bearings. The above arrangement enables the joint to handle high moments with minimal friction. To achieve the high-moment capability within a low-profile joint, the use of depth of engagement (like that of a conventional rotating shaft) to react moment is replaced with planar engagement parallel to the mounting surface. The needle bearings with the clevis flange provide the surface area to react the clevis loads/moments into the joint housing while providing minimal

  6. Measurement of surface microtopography

    NASA Technical Reports Server (NTRS)

    Wall, S. D.; Farr, T. G.; Muller, J.-P.; Lewis, P.; Leberl, F. W.

    1991-01-01

    Acquisition of ground truth data for use in microwave interaction modeling requires measurement of surface roughness sampled at intervals comparable to a fraction of the microwave wavelength and extensive enough to adequately represent the statistics of a surface unit. Sub-centimetric measurement accuracy is thus required over large areas, and existing techniques are usually inadequate. A technique is discussed for acquiring the necessary photogrammetric data using twin film cameras mounted on a helicopter. In an attempt to eliminate tedious data reduction, an automated technique was applied to the helicopter photographs, and results were compared to those produced by conventional stereogrammetry. Derived root-mean-square (RMS) roughness for the same stereo-pair was 7.5 cm for the automated technique versus 6.5 cm for the manual method. The principal source of error is probably due to vegetation in the scene, which affects the automated technique but is ignored by a human operator.

  7. Effect of Knee Joint Angle and Contraction Intensity on Hamstrings Coactivation.

    PubMed

    Wu, Rui; Delahunt, Eamonn; Ditroilo, Massimiliano; Lowery, Madeleine M; DE Vito, Giuseppe

    2017-08-01

    This study investigated the effect of knee joint angle and contraction intensity on the coactivation of the hamstring muscles (when acting as antagonists to the quadriceps) in young and older individuals of both sexes. A total of 25 young (24 ± 2.6 yr) and 26 older (70 ± 2.5 yr) healthy men and women participated. Maximal voluntary isometric contraction of the knee extensors and flexors was assessed at two knee joint angles (90° and 60°, 0° = full extension). At each angle, participants performed submaximal contractions of the knee extensors (20%, 50%, and 80% maximal voluntary isometric contraction), whereas surface EMG was simultaneously acquired from the vastus lateralis and biceps femoris muscles to assess the level (EMG root-mean-square) of agonist activation and antagonist coactivation. Subcutaneous adipose tissue in the areas corresponding to surface EMG electrode placements was measured via ultrasonography. The contractions performed at 90° knee flexion demonstrated higher levels of antagonist coactivation (all P < 0.01) and agonist activation (all P < 0.01) as a function of contraction intensity compared with the 60° knee flexion. Furthermore, after controlling for subcutaneous adipose tissue, older participants exhibited a higher level of antagonist coactivation at 60° knee flexion compared with young participants (P < 0.05). The results of the present study suggest that 1) the antagonist coactivation is dependent on knee joint angle and contraction intensity and 2) subcutaneous adipose tissue may affect the measured coactivation level likely because of a cross-talk effect. Antagonist coactivation may play a protective role in stabilizing the knee joint and maintaining constant motor output.

  8. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    PubMed

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  9. Direct Measurement of the Surface Energy of Graphene.

    PubMed

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  10. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    NASA Astrophysics Data System (ADS)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  11. Analysis of Contraction Joint Width Influence on Load Stress of Pavement Panels

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Cui, Wei; Sun, Wei

    2018-05-01

    The width of transverse contraction joint of the cement road varies with temperatures, which leads to changes in load transmission among plates of the road surface and affects load stress of the road plates. Three-dimensional element analysis software EverFE is used to address the relation between the contraction joint width and road surface load stress, revealing the impact of reducing contraction joint width. The results could be of critical value in maintaining road functions and extending the service life of cement road surfaces.

  12. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with

  13. Effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics in neonatal foals.

    PubMed

    Kasper, C A; Clayton, H M; Wright, A K; Skuba, E V; Petrie, L

    1995-07-01

    Thirteen clinically normal Belgian-type foals were used to study the effects of high doses of oxytetracycline on metacarpophalangeal joint kinematics. Seven foals (treatment group) received 2 doses of oxytetracycline (3 g, IV). The first dose was given when foals were 4 days old; the second dose was given 24 hours later. Six foals (control group) received 2 doses of saline (0.9% NaCl) solution (15 ml, IV) at equivalent time periods. All foals were videotaped at a walk twice: immediately prior to the first treatment and 24 hours after the second treatment. The tapes were digitized, and metacarpophalangeal joint angle was measured along the palmar surface of the limb during 3 strides. The angular data were normalized for time, and data from the 3 strides were averaged to describe a representative stride. Repeated measures ANOVA was used to test for differences between groups and within groups over time. Values for stride duration, stance phase percentage, and minimum metacarpophalangeal joint angle obtained before treatment were not significantly different from values obtained after treatment. Maximum metacarpophalangeal joint angle, which occurred during the stance phase of the stride, and range of joint motion were significantly increased for foals in the treatment group, compared with foals in the control group.

  14. Surface measuring technique. [using a laser to scan the surface of a reflector

    NASA Technical Reports Server (NTRS)

    Spiers, R. B., Jr.

    1980-01-01

    Measurement of the surface contour of a large electrostatically formed concave reflector using a modified Foucault or knife edge test is described. The curve of the actual electrostatically formed reflector surface is compared to a curve representing a reference sphere. Measurements of surface slope and deviation are calculated every 15 cm along the reflector's horizontal and vertical diameters. Characterization of surface roughness on a small scale compared to the laser spot size at the reflector are obtained from the increased laser spot size at a distant projection screen.

  15. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  16. The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.

    2010-01-01

    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.

  17. Projected impact of the ICD-10-CM/PCS conversion on longitudinal data and the Joint Commission Core Measures.

    PubMed

    Fenton, Susan H; Benigni, Mary Sue

    2014-01-01

    The transition from ICD-9-CM to ICD-10-CM/PCS is expected to result in longitudinal data discontinuities, as occurred with cause-of-death in 1999. The General Equivalence Maps (GEMs), while useful for suggesting potential maps do not provide guidance regarding the frequency of any matches. Longitudinal data comparisons can only be reliable if they use comparability ratios or factors which have been calculated using records coded in both classification systems. This study utilized 3,969 de-identified dually coded records to examine raw comparability ratios, as well as the comparability ratios between the Joint Commission Core Measures. The raw comparability factor results range from 16.216 for Nicotine dependence, unspecified, uncomplicated to 118.009 for Chronic obstructive pulmonary disease, unspecified. The Joint Commission Core Measure comparability factor results range from 27.15 for Acute Respiratory Failure to 130.16 for Acute Myocardial Infarction. These results indicate significant differences in comparability between ICD-9-CM and ICD-10-CM code assignment, including when the codes are used for external reporting such as the Joint Commission Core Measures. To prevent errors in decision-making and reporting, all stakeholders relying on longitudinal data for measure reporting and other purposes should investigate the impact of the conversion on their data.

  18. Mathematical Model and Calibration Experiment of a Large Measurement Range Flexible Joints 6-UPUR Six-Axis Force Sensor

    PubMed Central

    Zhao, Yanzhi; Zhang, Caifeng; Zhang, Dan; Shi, Zhongpan; Zhao, Tieshi

    2016-01-01

    Nowadays improving the accuracy and enlarging the measuring range of six-axis force sensors for wider applications in aircraft landing, rocket thrust, and spacecraft docking testing experiments has become an urgent objective. However, it is still difficult to achieve high accuracy and large measuring range with traditional parallel six-axis force sensors due to the influence of the gap and friction of the joints. Therefore, to overcome the mentioned limitations, this paper proposed a 6-Universal-Prismatic-Universal-Revolute (UPUR) joints parallel mechanism with flexible joints to develop a large measurement range six-axis force sensor. The structural characteristics of the sensor are analyzed in comparison with traditional parallel sensor based on the Stewart platform. The force transfer relation of the sensor is deduced, and the force Jacobian matrix is obtained using screw theory in two cases of the ideal state and the state of flexibility of each flexible joint is considered. The prototype and loading calibration system are designed and developed. The K value method and least squares method are used to process experimental data, and in errors of kind Ι and kind II linearity are obtained. The experimental results show that the calibration error of the K value method is more than 13.4%, and the calibration error of the least squares method is 2.67%. The experimental results prove the feasibility of the sensor and the correctness of the theoretical analysis which are expected to be adopted in practical applications. PMID:27529244

  19. Computational measurement of joint space width and structural parameters in normal hips.

    PubMed

    Nishii, Takashi; Shiomi, Toshiyuki; Sakai, Takashi; Takao, Masaki; Yoshikawa, Hideki; Sugano, Nobuhiko

    2012-05-01

    Joint space width (JSW) of hip joints on radiographs in normal population may vary by related factors, but previous investigations were insufficient due to limitations of sources of radiographs, inclusion of subjects with osteoarthritis, and manual measurement techniques. We investigated influential factors on JSW using semiautomatic computational software on pelvic radiographs in asymptomatic subjects without radiological osteoarthritic findings. Global and local JSW at the medial, middle, and lateral compartments, and the hip structural parameters were measured in asymptomatic, normal 150 cases (300 hips), using a customized computational software. Reliability of measurement in global and local JSWs was high with intraobserver reproducibility (intraclass correlation coefficient) ranging from 0.957 to 0.993 and interobserver reproducibility ranging from 0.925 to 0.985. There were significant differences among three local JSWs, with the largest JSW at the lateral compartment. Global and medial local JSWs were significantly larger in the right hip, and global, medial and middle local JSWs were significantly smaller in women. Global and local JSWs were inversely correlated with CE angle and positively correlated with horizontal distance of the head center, but not correlated with body mass index in men and women. They were positively correlated with age and inversely correlated with vertical distance of the head center only in men. There were interindividual variations of JSW in normal population, depending on sites of the weight-bearing area, side, gender, age, and hip structural parameters. For accurate diagnosis and assessment of hip osteoarthritis, consideration of those influential factors other than degenerative change is important.

  20. [effectiveness of open reduction and internal fixation without opening joint capsule on tibial plateau fracture].

    PubMed

    Chen, Qi; Xu, Xiaofeng; Huang, Yonghui; Cao, Xingbing; Meng, Chen; Cao, Xueshu; Wei, Changbao

    2014-12-01

    To introduce the surgery method to reset and fix tibial plateau fracture without opening joint capsule, and evaluate the safety and effectiveness of this method. Between July 2011 and July 2013, 51 patients with tibial plateau fracture accorded with the inclusion criteria were included. All of 51 patients, 17 cases underwent open reduction and internal fixation without opening joint capsule in trial group, and 34 cases underwent traditional surgery method in control group. There was no significant difference in gender, age, cause of injury, time from injury to admission, side of injury, and types of fracture between 2 groups (P > 0.05). The operation time, intraoperative blood loss, incision length, incision healing, and fracture healing were compared between 2 groups. The tibial-femoral angle and collapse of joint surface were measured on X-ray film. At last follow-up, joint function was evaluated with Hospital for Special Surgery (HSS) knee function scale. The intraoperative blood loss in trial group was significantly less than that in control group (P < 0.05). The incision length in trial group was significantly shorter than that in control group (P < 0.05). Difference was not significant in operation time and the rate of incision healing between 2 groups (P > 0.05). The patients were followed up 12-30 months (mean, 20.4 months) in trial group and 12-31 months (mean, 18.2 months) in control group. X-ray films indicated that all cases in 2 groups obtained fracture healing; there was no significant difference in the fracture healing time between 2 groups (t=1.382, P=0.173). On X-ray films, difference was not significant in tibial-femoral angle and collapse of joint surface between 2 groups (P > 0.05). HSS score of the knee in trial group was significantly higher than that of control group (t=3.161, P=0.003). It can reduce the intraoperative blood loss and shorten the incision length to use open reduction and internal fixation without opening joint capsule for

  1. 46 CFR 56.75-10 - Joint clearance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Joint clearance. 56.75-10 Section 56.75-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Brazing § 56.75-10 Joint clearance. (a) The clearance between surfaces to be joined shall be no...

  2. Measurement of body joint angles for physical therapy based on mean shift tracking using two low cost Kinect images.

    PubMed

    Chen, Y C; Lee, H J; Lin, K H

    2015-08-01

    Range of motion (ROM) is commonly used to assess a patient's joint function in physical therapy. Because motion capture systems are generally very expensive, physical therapists mostly use simple rulers to measure patients' joint angles in clinical diagnosis, which will suffer from low accuracy, low reliability, and subjective. In this study we used color and depth image feature from two sets of low-cost Microsoft Kinect to reconstruct 3D joint positions, and then calculate moveable joint angles to assess the ROM. A Gaussian background model is first used to segment the human body from the depth images. The 3D coordinates of the joints are reconstructed from both color and depth images. To track the location of joints throughout the sequence more precisely, we adopt the mean shift algorithm to find out the center of voxels upon the joints. The two sets of Kinect are placed three meters away from each other and facing to the subject. The joint moveable angles and the motion data are calculated from the position of joints frame by frame. To verify the results of our system, we take the results from a motion capture system called VICON as golden standard. Our 150 test results showed that the deviation of joint moveable angles between those obtained by VICON and our system is about 4 to 8 degree in six different upper limb exercises, which are acceptable in clinical environment.

  3. Shear Behaviour and Acoustic Emission Characteristics of Bolted Rock Joints with Different Roughnesses

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Zhang, Yongzheng; Jiang, Yujing; Liu, Peixun; Guo, Yanshuang; Liu, Jiankang; Ma, Ming; Wang, Ke; Wang, Shugang

    2018-06-01

    To study shear failure, acoustic emission counts and characteristics of bolted jointed rock-like specimens are evaluated under compressive shear loading. Model joint surfaces with different roughnesses are made of rock-like material (i.e. cement). The jointed rock masses are anchored with bolts with different elongation rates. The characteristics of the shear mechanical properties, the failure mechanism, and the acoustic emission parameters of the anchored joints are studied under different surface roughnesses and anchorage conditions. The shear strength and residual strength increase with the roughness of the anchored joint surface. With an increase in bolt elongation, the shear strength of the anchored joint surface gradually decreases. When the anchored structural plane is sheared, the ideal cumulative impact curve can be divided into four stages: initial emission, critical instability, cumulative energy, and failure. With an increase in the roughness of the anchored joint surface, the peak energy rate and the cumulative number of events will also increase during macro-scale shear failure. With an increase in the bolt elongation, the energy rate and the event number increase during the shearing process. Furthermore, the peak energy rate, peak number of events and cumulative energy will all increase with the bolt elongation. The results of this study can provide guidance for the use of the acoustic emission technique in monitoring and predicting the static shear failure of anchored rock masses.

  4. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  5. Outdoor surface temperature measurement: ground truth or lie?

    NASA Astrophysics Data System (ADS)

    Skauli, Torbjorn

    2004-08-01

    Contact surface temperature measurement in the field is essential in trials of thermal imaging systems and camouflage, as well as for scene modeling studies. The accuracy of such measurements is challenged by environmental factors such as sun and wind, which induce temperature gradients around a surface sensor and lead to incorrect temperature readings. In this work, a simple method is used to test temperature sensors under conditions representative of a surface whose temperature is determined by heat exchange with the environment. The tested sensors are different types of thermocouples and platinum thermistors typically used in field trials, as well as digital temperature sensors. The results illustrate that the actual measurement errors can be much larger than the specified accuracy of the sensors. The measurement error typically scales with the difference between surface temperature and ambient air temperature. Unless proper care is taken, systematic errors can easily reach 10% of this temperature difference, which is often unacceptable. Reasonably accurate readings are obtained using a miniature platinum thermistor. Thermocouples can perform well on bare metal surfaces if the connection to the surface is highly conductive. It is pointed out that digital temperature sensors have many advantages for field trials use.

  6. Practical quantum private query with better performance in resisting joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Wei, Chun-Yan; Wang, Tian-Yin; Gao, Fei

    2016-04-01

    As a kind of practical protocol, quantum-key-distribution (QKD)-based quantum private queries (QPQs) have drawn lots of attention. However, joint-measurement (JM) attack poses a noticeable threat to the database security in such protocols. That is, by JM attack a malicious user can illegally elicit many more items from the database than the average amount an honest one can obtain. Taking Jacobi et al.'s protocol as an example, by JM attack a malicious user can obtain as many as 500 bits, instead of the expected 2.44 bits, from a 104-bit database in one query. It is a noticeable security flaw in theory, and would also arise in application with the development of quantum memories. To solve this problem, we propose a QPQ protocol based on a two-way QKD scheme, which behaves much better in resisting JM attack. Concretely, the user Alice cannot get more database items by conducting JM attack on the qubits because she has to send them back to Bob (the database holder) before knowing which of them should be jointly measured. Furthermore, JM attack by both Alice and Bob would be detected with certain probability, which is quite different from previous protocols. Moreover, our protocol retains the good characters of QKD-based QPQs, e.g., it is loss tolerant and robust against quantum memory attack.

  7. Longitudinally Jointed Edge-wise Compression Honeycomb Composite Sandwich Coupon Testing and FE Analysis: Three Methods of Strain Measurement, and Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; AbdulRahim, Nur Aida; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex; Gifford, Dawn; hide

    2013-01-01

    Three means (i.e., typical foil strain gages, fiber optic sensors, and a digital image correlation (DIC) system) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The Pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The strain gages and fiber optic sensors were bonded on the specimen at locations with nearly the same strain values, as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the DIC system are justified. The test article was loaded to failure (at approximately 38 kips), at the strain value of approximately 10,000mu epsilon As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the strain gage and DIC data, and also will be compared with FEA predictions.

  8. Predicting dynamic knee joint load with clinical measures in people with medial knee osteoarthritis.

    PubMed

    Hunt, Michael A; Bennell, Kim L

    2011-08-01

    Knee joint loading, as measured by the knee adduction moment (KAM), has been implicated in the pathogenesis of knee osteoarthritis (OA). Given that the KAM can only currently be accurately measured in the laboratory setting with sophisticated and expensive equipment, its utility in the clinical setting is limited. This study aimed to determine the ability of a combination of four clinical measures to predict KAM values. Three-dimensional motion analysis was used to calculate the peak KAM at a self-selected walking speed in 47 consecutive individuals with medial compartment knee OA and varus malalignment. Clinical predictors included: body mass; tibial angle measured using an inclinometer; walking speed; and visually observed trunk lean toward the affected limb during the stance phase of walking. Multiple linear regression was performed to predict KAM magnitudes using the four clinical measures. A regression model including body mass (41% explained variance), tibial angle (17% explained variance), and walking speed (9% explained variance) explained a total of 67% of variance in the peak KAM. Our study demonstrates that a set of measures easily obtained in the clinical setting (body mass, tibial alignment, and walking speed) can help predict the KAM in people with medial knee OA. Identifying those patients who are more likely to experience high medial knee loads could assist clinicians in deciding whether load-modifying interventions may be appropriate for patients, whilst repeated assessment of joint load could provide a mechanism to monitor disease progression or success of treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Jet-Surface Interaction Test: Flow Measurements Results

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Wernet, Mark

    2014-01-01

    Modern aircraft design often puts the engine exhaust in close proximity to the airframe surfaces. Aircraft noise prediction tools must continue to develop in order to meet the challenges these aircraft present. The Jet-Surface Interaction Tests have been conducted to provide a comprehensive quality set of experimental data suitable for development and validation of these exhaust noise prediction methods. Flow measurements have been acquired using streamwise and cross-stream particle image velocimetry (PIV) and fluctuating surface pressure data acquired using flush mounted pressure transducers near the surface trailing edge. These data combined with previously reported far-field and phased array noise measurements represent the first step toward the experimental data base. These flow data are particularly applicable to development of noise prediction methods which rely on computational fluid dynamics to uncover the flow physics. A representative sample of the large flow data set acquired is presented here to show how a surface near a jet affects the turbulent kinetic energy in the plume, the spatial relationship between the jet plume and surface needed to generate surface trailing-edge noise, and differences between heated and unheated jet flows with respect to surfaces.

  10. Can symptomatic acromioclavicular joints be differentiated from asymptomatic acromioclavicular joints on 3-T MR imaging?

    PubMed

    Choo, Hye Jung; Lee, Sun Joo; Kim, Jung Han; Cha, Seong Sook; Park, Young Mi; Park, Ji Sung; Lee, Jun Woo; Oh, Minkyung

    2013-04-01

    To evaluate retrospectively whether symptomatic acromioclavicular joints can be differentiated from asymptomatic acromioclavicular joints on 3-T MR imaging. This study included 146 patients who underwent physical examination of acromioclavicular joints and 3-T MR imaging of the shoulder. Among them, 67 patients showing positive results on physical examination were assigned to the symptomatic group, whereas 79 showing negative results were assigned to the asymptomatic group. The following MR findings were compared between the symptomatic and asymptomatic groups: presence of osteophytes, articular surface irregularity, subchondral cysts, acromioclavicular joint fluid, subacromial fluid, subacromial bony spurs, joint capsular distension, bone edema, intraarticular enhancement, periarticular enhancement, superior and inferior joint capsular distension degree, and joint capsular thickness. The patients were subsequently divided into groups based on age (younger, older) and the method of MR arthrography (direct MR arthrography, indirect MR arthrography), and all the MR findings in each subgroup were reanalyzed. The meaningful cutoff value of each significant continuous variable was calculated using receiver operating characteristic analysis. The degree of superior capsular distension was the only significant MR finding of symptomatic acromioclavicular joints and its meaningful cutoff value was 2.1mm. After subgroup analyses, this variable was significant in the older age group and indirect MR arthrography group. On 3-T MR imaging, the degree of superior joint capsular distension might be a predictable MR finding in the diagnosis of symptomatic acromioclavicular joints. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Joint Air-to-Surface Standoff Missile (JASSM)

    DTIC Science & Technology

    2015-12-01

    6.1.3) All Ops All Ops Joint Critical Ops All Ops All Ops Missile Reliability (KSA) (CPD para 6.2.8) 4th Lot .91 4th Lot .91 IOT &E .80 4th Lot .85 IOT &E...the ORD 303-95-III dated January 20, 2004 Change Explanations None Acronyms and Abbreviations IOT &E - Initial Operational Test and Evaluation KSA... Actuator Control Card, Lots 12 and 4 Systems Engineering Program Support/Program Tooling and Test Equipment, and JASSM-ER Standard Data Protocol (DS

  12. The Influence of Joint Distraction Force on the Soft-Tissue Balance Using Modified Gap-Balancing Technique in Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Nagai, Kanto; Muratsu, Hirotsugu; Takeoka, Yoshiki; Tsubosaka, Masanori; Kuroda, Ryosuke; Matsumoto, Tomoyuki

    2017-10-01

    During modified gap-balancing technique, there is no consensus on the best method for obtaining appropriate soft-tissue balance and determining the femoral component rotation. Sixty-five varus osteoarthritic patients underwent primary posterior-stabilized total knee arthroplasty using modified gap-balancing technique. The influence of joint distraction force on the soft-tissue balance measurement during the modified gap-balancing technique was evaluated with Offset Repo-Tensor between the osteotomized surfaces at extension, and between femoral posterior condyles and tibial osteotomized surface at flexion of the knee before the resection of femoral posterior condyles. The joint center gap (millimeters) and varus ligament balance (°) were measured under 20, 40, and 60 pounds of joint distraction forces, and the differences in these values at extension and flexion (the value at flexion minus the value at extension) were also calculated. The differences in joint center gap (-6.7, -6.8, and -6.9 mm for 20, 40, and 60 pounds, respectively) and varus ligament balance (3.5°, 3.8°, and 3.8°) at extension and flexion were not significantly different among different joint distraction forces, although the joint center gap and varus ligament balance significantly increased stepwise at extension and flexion as the joint distraction force increased. The difference in joint center gap and varus ligament balance at extension and flexion were consistent even among the different joint distraction forces. This novel index would be useful for the determination of femoral component rotation during the modified gap-balancing technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The effect of bearing surface on risk of periprosthetic joint infection in total hip arthroplasty: a systematic review and meta-analysis.

    PubMed

    Hexter, A T; Hislop, S M; Blunn, G W; Liddle, A D

    2018-02-01

    Periprosthetic joint infection (PJI) is a serious complication of total hip arthroplasty (THA). Different bearing surface materials have different surface properties and it has been suggested that the choice of bearing surface may influence the risk of PJI after THA. The objective of this meta-analysis was to compare the rate of PJI between metal-on-polyethylene (MoP), ceramic-on-polyethylene (CoP), and ceramic-on-ceramic (CoC) bearings. Electronic databases (Medline, Embase, Cochrane library, Web of Science, and Cumulative Index of Nursing and Allied Health Literature) were searched for comparative randomized and observational studies that reported the incidence of PJI for different bearing surfaces. Two investigators independently reviewed studies for eligibility, evaluated risk of bias, and performed data extraction. Meta-analysis was performed using the Mantel-Haenzel method and random-effects model in accordance with methods of the Cochrane group. Our search strategy revealed 2272 studies, of which 17 met the inclusion criteria and were analyzed. These comprised 11 randomized controlled trials and six observational studies. The overall quality of included studies was high but the observational studies were at high risk of bias due to inadequate adjustment for confounding factors. The overall cumulative incidence of PJI across all studies was 0.78% (1514/193 378). For each bearing combination, the overall incidence was as follows: MoP 0.85% (1353/158 430); CoP 0.38% (67/17 489); and CoC 0.53% (94/17 459). The meta-analysis showed no significant difference between the three bearing combinations in terms of risk of PJI. On the basis of the clinical studies available, there is no evidence that bearing choice influences the risk of PJI. Future research, including basic science studies and large, adequately controlled registry studies, may be helpful in determining whether implant materials play a role in determining the risk of PJI following arthroplasty

  14. Joint radius-length distribution as a measure of anisotropic pore eccentricity: an experimental and analytical framework.

    PubMed

    Benjamini, Dan; Basser, Peter J

    2014-12-07

    In this work, we present an experimental design and analytical framework to measure the nonparametric joint radius-length (R-L) distribution of an ensemble of parallel, finite cylindrical pores, and more generally, the eccentricity distribution of anisotropic pores. Employing a novel 3D double pulsed-field gradient acquisition scheme, we first obtain both the marginal radius and length distributions of a population of cylindrical pores and then use these to constrain and stabilize the estimate of the joint radius-length distribution. Using the marginal distributions as constraints allows the joint R-L distribution to be reconstructed from an underdetermined system (i.e., more variables than equations), which requires a relatively small and feasible number of MR acquisitions. Three simulated representative joint R-L distribution phantoms corrupted by different noise levels were reconstructed to demonstrate the process, using this new framework. As expected, the broader the peaks in the joint distribution, the less stable and more sensitive to noise the estimation of the marginal distributions. Nevertheless, the reconstruction of the joint distribution is remarkably robust to increases in noise level; we attribute this characteristic to the use of the marginal distributions as constraints. Axons are known to exhibit local compartment eccentricity variations upon injury; the extent of the variations depends on the severity of the injury. Nonparametric estimation of the eccentricity distribution of injured axonal tissue is of particular interest since generally one cannot assume a parametric distribution a priori. Reconstructing the eccentricity distribution may provide vital information about changes resulting from injury or that occurred during development.

  15. Temporo mandibular joint ankylosis.

    PubMed

    Vasconcelos, Belmiro Cavalcanti do Egito; Porto, Gabriela Granja; Bessa-Nogueira, Ricardo Viana

    2008-01-01

    Ankylosis may be defined as joint surfaces fusion. The treatment of temporomandibular joint ankylosis poses a significant challenge because of the high recurrence rate. The aim of this study is to report six cases treated by joint reconstruction, evaluate the results of these surgeries and review the literature. The sample in this retrospective study was obtained from the records of the university hospital, patients who had to undergo ankylosis treatment by alloplastic or autogenous graft between March 2001 and October 2005. Pre - and post-operative assessment included a throughout history and physical examination to determine the cause of ankylosis, the Maximum mouth opening (MMO), etiology and type of ankylosis, recurrence rate and presence of facial nerve paralysis. The mean MMO in the pre-operative period was 9.6 mm (0 mm to 17 mm) and in the post-operative period it was of 31.33 mm (14 mm to 41 mm), there was no facial nerve paralysis and there was recurrence in just one case. The joint reconstruction with alloplastic or autogenous grafts for the ankylosis treatment proved to be efficient in relation to the post-operative MMO, recurrence and joint function.

  16. Innervation of the Anterior Sacroiliac Joint.

    PubMed

    Cox, Marcus; Ng, Garrett; Mashriqi, Faizullah; Iwanaga, Joe; Alonso, Fernando; Tubbs, Kevin; Loukas, Marios; Oskouian, Rod J; Tubbs, R Shane

    2017-11-01

    Sacroiliac joint pain can be disabling and recalcitrant to medical therapy. The innervation of this joint is poorly understood, especially its anterior aspect. Therefore, the present cadaveric study was performed to better elucidate this anatomy. Twenty-four cadaveric sides underwent dissection of the anterior sacroiliac joint, with special attention given to any branches from regional nerves to this joint. No femoral, obturator, or lumbosacral trunk branches destined to the anterior sacroiliac joint were identified in the 24 sides. In 20 sides, one or two small branches (less than 0.5 mm in diameter) were found to arise from the L4 ventral ramus (10%), the L5 ventral ramus (80%), or simultaneously from both the L4 and L5 ventral rami (10%). The length of the branches ranged from 5 to 31 mm (mean, 14 mm). All these branches arose from the posterior part of the nerves and traveled to the anterior surface of the sacroiliac joint. No statistical significance was found between sides or sexes. An improved knowledge of the innervation of the anterior sacroiliac joint might decrease suffering in patients with chronic sacroiliac joint pain. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1975-01-01

    The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.

  18. Understanding land surface evapotranspiration with satellite multispectral measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1993-01-01

    Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.

  19. Joint measurements of black carbon and particle mass for ...

    EPA Pesticide Factsheets

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate total BC emissions from historical PM data; however, theseratios have not been measured using portable emission measurement systems(PEMS) in order to obtain real-world measurements over a wide range ofdriving conditions. In this study, we developed a PEMS platform byintegrating two Aethalometers and an electric low pressure impactor torealize the joint measurement of real-world BC and PM emissions for tenHDDVs in China. Test results showed that the average BC/PM ratio for fiveHDDVs equipped with mechanical fuel injection (MI) engines was 0.43±0.06,significantly lower (P<0.05) than another five HDDVs equipped withelectronically-controlled fuel injection (EI) engines (0.56±0.12).Traffic conditions also affected the BC/PM ratios with higher BC/PMratios on freeway routes than on local roads. Further, higher ratios wereobserved for HDDVs equipped with EI engines than for the MI engines forthe highway and local road routes. With an operating mode binningapproach, we observed that the instantaneous BC/PM ratios of EI enginevehicles were above those of the MI engine vehicles in all operatingmodes except for the braking mode (i.e., Bin 0). Therefore, the compleximpacts from engine technology and

  20. The surface geometry of inherited joint and fracture trace patterns resulting from active and passive deformation

    NASA Technical Reports Server (NTRS)

    Podwysocki, M. H.; Gold, D. P.

    1974-01-01

    Hypothetical models are considered for detecting subsurface structure from the fracture or joint pattern, which may be influenced by the structure and propagated to the surface. Various patterns of an initially orthogonal fracture grid are modeled according to active and passive deformation mechanisms. In the active periclinal structure with a vertical axis, fracture frequency increased both over the dome and basin, and remained constant with decreasing depth to the structure. For passive periclinal features such as a reef or sand body, fracture frequency is determined by the arc of curvature and showed a reduction over the reefmound and increased over the basin.

  1. Parameter identification and optimization of slide guide joint of CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Sun, B. B.

    2017-11-01

    The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.

  2. Measurement of local high-level, transient surface heat flux

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1988-01-01

    This study is part of a continuing investigation to develop methods for measuring local transient surface heat flux. A method is presented for simultaneous measurements of dual heat fluxes at a surface location by considering the heat flux as a separate function of heat stored and heat conducted within a heat flux gage. Surface heat flux information is obtained from transient temperature measurements taken at points within the gage. Heat flux was determined over a range of 4 to 22 MW/sq m. It was concluded that the method is feasible. Possible applications are for heat flux measurements on the turbine blade surfaces of space shuttle main engine turbopumps and on the component surfaces of rocket and advanced gas turbine engines and for testing sensors in heat flux gage calibrators.

  3. The lexicon of polyethylene wear in artificial joints.

    PubMed

    McKellop, Harry A

    2007-12-01

    far as possible, investigators endeavor to limit their descriptions of surface damage to these terms and, importantly, to clearly and consistently distinguish the classical wear mechanisms from the types of damage produced by those mechanisms. Wear debris refers to the billions of particles, some measuring in nanometers, that are generated by the wear mechanisms, and that initiate biological reactions, such as osteolysis, that may lead to the failure of the implant. As the methods for recovering wear debris from joint fluids and tissues are improved, investigators are using a growing number of terms to describe them. As with the types of damage, it will be important in the coming years to maximize clarity and minimize redundancy of the vocabulary in this important area of research.

  4. Measuring Skew in Average Surface Roughness as a Function of Surface Preparation

    NASA Technical Reports Server (NTRS)

    Stahl, Mark T.

    2015-01-01

    Characterizing surface roughness is important for predicting optical performance. Better measurement of surface roughness reduces grinding saving both time and money and allows the science requirements to be better defined. In this study various materials are polished from a fine grind to a fine polish. Each sample's RMS surface roughness is measured at 81 locations in a 9x9 square grid using a Zygo white light interferometer at regular intervals during the polishing process. Each data set is fit with various standard distributions and tested for goodness of fit. We show that the skew in the RMS data changes as a function of polishing time.

  5. Combined measurement of synovial fluid α-Defensin and C-reactive protein levels: highly accurate for diagnosing periprosthetic joint infection.

    PubMed

    Deirmengian, Carl; Kardos, Keith; Kilmartin, Patrick; Cameron, Alexander; Schiller, Kevin; Parvizi, Javad

    2014-09-03

    The diagnosis of periprosthetic joint infection remains a challenge. The purpose of this study was to evaluate the combined measurement of the levels of two synovial fluid biomarkers, α-defensin and C-reactive protein (CRP), for the diagnosis of periprosthetic joint infection. One hundred and forty-nine synovial fluid aspirates, including 112 from patients with an aseptic diagnosis and thirty-seven from patients with periprosthetic joint infection, met the inclusion criteria for this prospective study. Synovial fluid aspirates were tested for α-defensin and CRP levels with use of enzyme-linked immunosorbent assay (ELISA). The Musculoskeletal Infection Society (MSIS) definition of periprosthetic joint infection was utilized for the classification of cases as aseptic or infected. Comorbidities, such as inflammatory conditions, that could confound a test for periprosthetic joint infection were documented, but the patients with such comorbidities were included in the study. The combination of synovial fluid α-defensin and CRP tests demonstrated a sensitivity of 97% and a specificity of 100% for the diagnosis of periprosthetic joint infection. Synovial fluid α-defensin tests alone demonstrated a sensitivity of 97% and a specificity of 96% for the diagnosis of periprosthetic joint infection. Synovial fluid CRP tests, with a low threshold of 3 mg/L, reversed all-false positive α-defensin results without affecting the sensitivity of the test. The diagnostic characteristics of these assays were achieved in a population of patients demonstrating a 23% rate of systemic inflammatory diseases (in the series as a whole) and a 27% rate of concurrent antibiotic treatment (in the infection group). The synovial fluid levels of α-defensin in the setting of periprosthetic joint infection were unchanged during concurrent antibiotic treatment. The combined measurement of synovial fluid α-defensin and CRP levels correctly diagnosed 99% of the cases in this study as aseptic or

  6. On the characterization of subsurface flow and hydraulic conductivity from surface SP measurements: correcting for electrical heterogeneities.

    NASA Astrophysics Data System (ADS)

    Sailhac, P.; Marquis, G.; Darnet, M.; Szalai, S.

    2003-04-01

    Surface self potential measurements (SP) are useful to characterize underground fluid flow or chemical reactions (as redox) and can be used in addition to NMR and electrical prospecting in hydrological investigations. Assuming that the SP anomalies have an electrokinetic origin, the source of SP data is the divergence of underground fluid flow; one important problem with surface SP data is then its interpretation in terms of fluid flow geometry. Some integral transform techniques have been shown to be powerful for SP interpretation (e.g. Fournier 1989, Patella, 1997; Sailhac &Marquis 2001). All these techniques are based upon Green’{ }s functions to characterize underground water flow, but they assume a constant electrical conductivity in the subsurface. This unrealistic approximation results in the appearance of non-electrokinetic sources at strong lateral electrical conductivity contrasts. We present here new Green’{ }s functions suitable for media of heterogeneous electrical conductivity. This new approach allows the joint interpretation of electrical resistivity tomography and SP measurements to detect electrokinetic sources caused by fluid flow. Tests on synthetic examples show that it gives more realistic results that when a constant electrical conductivity is assumed.

  7. Strength and Mechanics of Bonded Scarf Joints for Repair of Composite Materials

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Adkins, D. W.

    1982-01-01

    Experimental and analytical investigations of scarf joints indicate that slight bluntness of adherend tips induces adhesive stress concentrations which significantly reduce joint strength, and the stress distribution through the adhesive thickness is non-uniform and has significant stress concentrations at the ends of the joint. The laminate stacking sequence can have important effects on the adhesive stress distribution. A significant improvement in joint strength is possible by increasing overlap at the expense of raising the repair slightly above the original surface. Although a surface grinder was used to make most experimental specimens, a hand held rotary bur can make a surprisingly good scarf. Scarf joints wit doublers on one side, such as might be used for repair, bend under tensile loads and may actually be weaker than joints without doublers.

  8. Prosthetic elbow joint

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1994-01-01

    An artificial, manually positionable elbow joint for use in an upper extremity, above-elbow, prosthetic is described. The prosthesis provides a locking feature that is easily controlled by the wearer. The instant elbow joint is very strong and durable enough to withstand the repeated heavy loadings encountered by a wearer who works in an industrial, construction, farming, or similar environment. The elbow joint of the present invention comprises a turntable, a frame, a forearm, and a locking assembly. The frame generally includes a housing for the locking assembly and two protruding ears. The forearm includes an elongated beam having a cup-shaped cylindrical member at one end and a locking wheel having a plurality of holes along a circular arc on its other end with a central bore for pivotal attachment to the protruding ears of the frame. The locking assembly includes a collar having a central opening with a plurality of internal grooves, a plurality of internal cam members each having a chamfered surface at one end and a V-shaped slot at its other end; an elongated locking pin having a crown wheel with cam surfaces and locking lugs secured thereto; two coiled compression springs; and a flexible filament attached to one end of the elongated locking pin and extending from the locking assembly for extending and retracting the locking pin into the holes in the locking wheel to permit selective adjustment of the forearm relative to the frame. In use, the turntable is affixed to the upper arm part of the prosthetic in the conventional manner, and the cup-shaped cylindrical member on one end of the forearm is affixed to the forearm piece of the prosthetic in the conventional manner. The elbow joint is easily adjusted and locked between maximum flex and extended positions.

  9. A three-dimensional architecture of vertically aligned multilayer graphene facilitates heat dissipation across joint solid surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.

    2012-02-01

    Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.

  10. [Coordination patterns assessed by a continuous measure of joints coupling during upper limb repetitive movements].

    PubMed

    Draicchio, F; Silvetti, A; Ranavolo, A; Iavicoli, S

    2008-01-01

    We analyzed the coordination patterns between elbow, shoulder and trunk in a motor task consisting of reaching out, picking up a cylinder, and transporting it back by using the Dynamical Systems Theory and calculating the continuous relative phase (CRP), a continuous measure of the coupling between two interacting joints. We used an optoelectronic motion analysis system consisting of eight infra-red ray cameras to detect the movements of nine skin-mounted markers. We calculated the root square of the adjusted coefficient of determination, the coefficient of multiple correlation (CMC), in order to investigate the repeatability of the joints coordination. The data confirm that the CNS establishes both synergic (i.e. coupling between shoulder and trunk on the frontal plane) and hierarchical (i.e. coupling between elbow-shoulder-trunk on the horizontal plane) relationships among the available degrees of freedom to overcome the complexity due to motor redundancy. The present study describes a method to investigate the organization of the kinematic degrees of freedom during upper limb multi-joint motor tasks that can be useful to assess upper limb repetitive movements.

  11. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    PubMed

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  12. Surface flow measurements from drones

    NASA Astrophysics Data System (ADS)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  13. Microwave remote sensing of sea ice in the AIDJEX Main Experiment. [Arctic Ice Dynamics Joint Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.

    1978-01-01

    A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.

  14. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo

    2017-09-20

    Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.

  15. NASA's Space Lidar Measurements of Earth and Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Abshire, James B.

    2010-01-01

    A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.

  16. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  17. Development and Applications of a Self-Contained, Non-Invasive EVA Joint Angle and Muscle Fatigue Sensor System

    NASA Technical Reports Server (NTRS)

    Ranniger, C. U.; Sorenson, E. A.; Akin, D. L.

    1995-01-01

    The University of Maryland Space Systems Laboratory, as a participant in NASA's INSTEP program, is developing a non-invasive, self-contained sensor system which can provide quantitative measurements of joint angles and muscle fatigue in the hand and forearm. The goal of this project is to develop a system with which hand/forearm motion and fatigue metrics can be determined in various terrestrial and zero-G work environments. A preliminary study of the prototype sensor systems and data reduction techniques for the fatigue measurement system are presented. The sensor systems evaluated include fiberoptics, used to measure joint angle, surface electrodes, which measure the electrical signals created in muscle as it contracts; microphones, which measure the noise made by contracting muscle; and accelerometers, which measure the lateral muscle acceleration during contraction. The prototype sensor systems were used to monitor joint motion of the metacarpophalangeal joint and muscle fatigue in flexor digitorum superficialis and flexor carpi ulnaris in subjects performing gripping tasks. Subjects were asked to sustain a 60-second constant-contraction (isometric) exercise and subsequently to perform a repetitive handgripping task to failure. Comparison of the electrical and mechanical signals of the muscles during the different tasks will be used to evaluate the applicability of muscle signal measurement techniques developed for isometric contraction tasks to fatigue prediction in quasi-dynamic exercises. Potential data reduction schemes are presented.

  18. Surface tension measurements with a smartphone

    NASA Astrophysics Data System (ADS)

    Goy, Nicolas-Alexandre; Denis, Zakari; Lavaud, Maxime; Grolleau, Adrian; Dufour, Nicolas; Deblais, Antoine; Delabre, Ulysse

    2017-11-01

    Smartphones are increasingly used in higher education and at university in mechanics, acoustics, and even thermodynamics as they offer a unique way to do simple science experiments. In this article, we show how smartphones can be used in fluid mechanics to measure surface tension of various liquids, which could help students understand the concept of surface tension through simple experiments.

  19. Metal-on-metal hip joint tribology.

    PubMed

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  20. A portable FTS measurements during GOSAT and OCO-2 joint campaign in Western US 2017

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Kikuchi, N.; Kuze, A.; Hashimoto, M.; Suto, H.; Kataoka, F.; Kasai, K.; Arai, T.; Oshio, H.; Ohyama, H.; Morino, I.; Hori, A.; Hedelius, J.; Parker, H. A.; Roehl, C. M.; Wennberg, P. O.; Leifer, I.; Iraci, L. T.; Bruegge, C. J.; Schwandner, F. M.; Osterman, G. B.; Crisp, D.

    2017-12-01

    The column-average dry air mole fractions of carbon dioxide (XCO2), methane (XCH4) and carbon monoxide (XCO) were measured from the surface using direct sunlight at near-IR wavelengths. Simultaneous detection of CO is helpful to characterize CO2 source type. We measured XCO along with XCO2 and XCH4 using an upgraded portable Fourier transform spectrometer (FTS), EM27/SUN, in western US field experiments at 1) Caltech and JPL, in Pasadena, a northern Los Angeles suburb, 2) Railroad Valley (RRV), a desert playa in Nevada, and 3) Salton Sea, a terminal high-salinity lake in southern California's Imperial Valley. These measurements were conducted during the GOSAT/OCO-2 joint campaign in the early summer of 2017. Before and after US shipments, the JAXA EM27 was compared with the NIES EM27 and Tsukuba TCCON station to quantify the measurement bias and to identify any unanticipated changes. After US shipment, the JAXA EM27 was compared with the Caltech EM27 and the Caltech TCCON station with the NASA-Dryden TCCON station, which is now located at JPL for OCO-3 pre-flight test comparisons. At RRV, we obtained not only the EM27 data but also atmospheric profile of pressure, temperature and humidity by radiosonde and aerosol optical thickness (AOT) by Microtops. Then, we deployed the EM27 on the south side of the Salton Sea, where agriculture, active volcanism and geothermal power plants might produce CO2 and CH4 as sources. A large CO enhancement originating from wildfires was serendipitously measured in conjunction with a large AOT measured by the Microtops. The JAXA EM27 measurements at Pasadena, RRV and Salton Sea were taken in conjunction with GOSAT and OCO-2 overpass targets and are being used to assess the value of the EM27 as a portable transfer standard for validating space based measurements of greenhouse gases.

  1. Measuring the Softness of an Athletic Surface.

    ERIC Educational Resources Information Center

    Brody, Howard

    1992-01-01

    Uses the context of sports surfaces to discuss the qualities of a surface that will produce a shock-absorbing effect. Discusses experiments to measure the shock-absorbing properties from two theoretical perspectives. Describes necessary equipment for the experiments. (MDH)

  2. X-ray surface dose measurements using TLD extrapolation.

    PubMed

    Kron, T; Elliot, A; Wong, T; Showell, G; Clubb, B; Metcalfe, P

    1993-01-01

    Surface dose measurements in therapeutic x-ray beams are of importance in determining the dose to the skin of patients undergoing radiotherapy. Measurements were performed in the 6-MV beam of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD) using a solid water phantom. TLD chips (surface area 3.17 x 3.17 cm2) of three different thicknesses (0.230, 0.099, and 0.038 g/cm2) were used to extrapolate dose readings to an infinitesimally thin layer of LiF. This surface dose was measured for field sizes ranging from 1 x 1 cm2 to 40 x 40 cm2. The surface dose relative to maximum dose was found to be 10.0% for a field size of 5 x 5 cm2, 16.3% for 10 x 10 cm2, and 26.9% for 20 x 20 cm2. Using a 6-mm Perspex block tray in the beam increased the surface dose in these fields to 10.7%, 17.7%, and 34.2% respectively. Due to the small size of the TLD chips, TLD extrapolation is applicable also for intracavity and exit dose determinations. The technique used for in vivo dosimetry could provide clinicians information about the build up of dose up to 1-mm depth in addition to an extrapolated surface dose measurement.

  3. A validation of the Nottingham Clavicle Score: a clavicle, acromioclavicular joint and sternoclavicular joint-specific patient-reported outcome measure.

    PubMed

    Charles, Edmund R; Kumar, Vinod; Blacknall, James; Edwards, Kimberley; Geoghegan, John M; Manning, Paul A; Wallace, W Angus

    2017-10-01

    Patients with acromioclavicular joint (ACJ) and sternoclavicular joint (SCJ) injuries and with clavicle fractures are typically younger and more active than those with other shoulder pathologies. We developed the Nottingham Clavicle Score (NCS) specifically for this group of patients to improve sensitivity for assessing the outcomes of treatment of these conditions compared with the more commonly used Constant Score (CS) and Oxford Shoulder Score (OSS). This was a cohort study in which the preoperative and 6-month postoperative NCS evaluations of outcome in 90 patients were compared with the CS, OSS, Imatani Score (IS), and the EQ-5D scores. Reliability was assessed using the Cronbach α. Reproducibility of the NCS was assessed using the test/retest method. Effect sizes were calculated for each score to assess sensitivity to change. Validity was examined by correlations between the NCS and the CS, OSS, IS, and EQ-5D scores obtained preoperatively and postoperatively. Significant correlations were demonstrated preoperatively with the OSS (P = .025) and all subcategories of the EQ-5D (P < .05) and postoperatively with the OSS (P < .001), CS (P = .008), IS (P < .001), and all subcategories of EQ-5D (P < .02). The NCS had the largest effect size (1.92) of the compared scores. Internal consistency was excellent (Cronbach α = 0.87). The NCS has been proven to be a valid, reliable and sensitive outcome measure that accurately measures the level of function and disability in the ACJ, SCJ and clavicle after traumatic injury and in degenerative disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A new fiber optic sensor for inner surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  5. Mixed-effects location and scale Tobit joint models for heterogeneous longitudinal data with skewness, detection limits, and measurement errors.

    PubMed

    Lu, Tao

    2017-01-01

    The joint modeling of mean and variance for longitudinal data is an active research area. This type of model has the advantage of accounting for heteroscedasticity commonly observed in between and within subject variations. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a mixed-effects location scale joint model that concurrently accounts for longitudinal data with multiple features. Specifically, our joint model handles heterogeneity, skewness, limit of detection, measurement errors in covariates which are typically observed in the collection of longitudinal data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. Simulation studies are performed to assess the performance of the proposed method. Alternative models under different conditions are compared.

  6. Measuring Surface Bulk Elemental Composition on Venus

    NASA Technical Reports Server (NTRS)

    Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McCclanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard

    2017-01-01

    The extreme surface environment (462 C, 93 bars pressure) of Venus makes subsurface measurements of its bulk elemental composition extremely challenging. Instruments landed on the surface of Venus must be enclosed in a pressure vessel. The high surface temperatures also require a thermal control system to keep the instrumentation temperatures within their operational range for as long as possible. Since Venus surface probes can currently operate for only a few hours, it is crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x.9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays

  7. Aerial Measuring System (AMS)/Israel Atomic Energy Commission (IAEC) Joint Comparison Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasiolek, P.; Halevy, I.

    Under the 13th Bilateral Meeting to Combat Nuclear Terrorism conducted on January 8–9, 2013, the committee approved the development of a cost-effective proposal to conduct a Comparison Study of the Aerial Measuring System (AMS) of the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) and Israel Atomic Energy Commission (IAEC). The study was to be held at the Remote Sensing Laboratory (RSL), Nellis Air Force Base, Las Vegas, Nevada, with measurements at the Nevada National Security Site (NNSS). The goal of the AMS and the IAEC joint survey was to compare the responses of the two agencies’ aerialmore » radiation detection systems to varied radioactive surface contamination levels and isotopic composition experienced at the NNSS, and the differing data processing techniques utilized by the respective teams. Considering that for the comparison both teams were using custom designed and built systems, the main focus of the short campaign was to investigate the impact of the detector size and data analysis techniques used by both teams. The AMS system, SPectral Advanced Radiological Computer System, Model A (SPARCS-A), designed and built by RSL, incorporates four different size sodium iodide (NaI) crystals: 1" × 1", 2" × 4" × 4", 2" × 4" ×16", and an “up-looking” 2" × 4" × 4". The Israel AMS System, Air RAM 2000, was designed by the IAEC Nuclear Research Center – Negev (NRCN) and built commercially by ROTEM Industries (Israel) and incorporates two 2" diameter × 2" long NaI crystals. The operational comparison was conducted at RSL-Nellis in Las Vegas, Nevada, during week of June 24–27, 2013. The Israeli system, Air RAM 2000, was shipped to RSL-Nellis and mounted together with the DOE SPARCS on a DOE Bell-412 helicopter for a series of aerial comparison measurements at local test ranges, including the Desert Rock Airport and Area 3 at the NNSS. A 4-person Israeli team from the IAEC NRCN supported the activity together

  8. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  9. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  10. Functional aspects of cross-legged sitting with special attention to piriformis muscles and sacroiliac joints.

    PubMed

    Snijders, Chris J; Hermans, Paul F G; Kleinrensink, Gerrit Jan

    2006-02-01

    Transversely oriented pelvic muscles such as the internal abdominal oblique, transversus abdominis, piriformis and pelvic floor muscles may contribute to sacroiliac joint stability by pressing the sacrum between the hipbones. Surface electromyographic measurements showed that leg crossing lowers the activity of the internal oblique abdominal muscle significantly. This suggests that leg crossing is a substitute for abdominal muscle activity. No previous studies addressed piriformis muscle and related pelvic structures in cross-legged sitting. Angles of pelvis and femur were measured in healthy subjects in standing, normal sitting and cross-legged sitting, and were used to simulate these postures on embalmed pelvises and measure piriformis muscle elongation. Deformations of pelvic ring and iliolumbar ligament caused by piriformis muscle force were measured on embalmed pelvises. Cross-legged sitting resulted in a relative elongation of the piriformis muscle of 11.7% compared to normal sitting and even 21.4% compared to standing. Application of piriformis muscle force resulted in inward deformation of the pelvic ring and compression of the sacroiliac joints and the dorsal side of the pubic symphysis. Cross-legged sitting is common. We believe that it contributes to sacroiliac joint stability. This study demonstrates the influence of the piriformis muscle on sacroiliac joint compression. The elongation of the piriformis muscle bilaterally by crossing the legs may be functional in the build-up of active or passive tension between sacrum and femur.

  11. Optimization of CO2 Surface Flux using GOSAT Total Column CO2: First Results for 2009-2010

    NASA Astrophysics Data System (ADS)

    Basu, S.; Houweling, S.

    2011-12-01

    Constraining surface flux estimates of CO2 using satellite measurements has been one of the long-standing goals of the atmospheric inverse modeling community. We present the first results of inverting GOSAT total column CO2 measurements for obtaining global monthly CO2 flux maps over one year (June 2009 to May 2010). We use the SRON RemoTeC retrieval of CO2 for our inversions. The SRON retrieval has been shown to have no bias when compared to TCCON total column measurements, and latitudinal gradients of the retrieved CO2 are consistent with gradients deduced from the surface flask network [Butz et al, 2011]. This makes this retrieval an ideal candidate for atmospheric inversions, which are highly sensitive to spurious gradients. Our inversion system is analogous to the CarbonTracker (CT) data assimilation system; it is initialized with the prior CO2 fluxes of CT, and uses the same atmospheric transport model, i.e., TM5. The two major differences are (a) we add GOSAT CO2 data to the inversion in addition to flask data, and (b) we use a 4DVAR optimization system instead of a Kalman filter. We compare inversions using (a) only GOSAT total column CO2 measurements, (b) only surface flask CO2 measurements, and (c) the joint data set of GOSAT and surface flask measurements. We validate GOSAT-only inversions against the NOAA surface flask network and joint inversions against CONTRAIL and other aircraft campaigns. We see that inverted fluxes from a GOSAT-only inversion are consistent with fluxes from a stations-only inversion, reaffirming the low biases in SRON retrievals. From the joint inversion, we estimate the amount of added constraints upon adding GOSAT total column measurements to existing surface layer measurements.

  12. Seismic Anisotropy from Surface Refraction Measurements

    NASA Astrophysics Data System (ADS)

    Vilhelm, J.; Hrdá, J.; Klíma, K.; Lokajícek, T.; Pros, Z.

    2003-04-01

    The contribution deals with the methods of determining P and S wave velocities in the shallow refraction seismics. The comparison of a P-wave anisotropy from samples and field surface measurement is performed. The laboratory measurement of the P-wave velocity is realized as omni directional ultrasound measurement on oriented spherical samples (diameter 5 cm) under a hydrostatic pressure up to 400 MPa. The field measurement is based on the processing of at least one pair of reversed time-distance curves of refracted waves. Different velocity calculation techniques are involved including tomographic approach from the surface. It is shown that field seismic measurement can reflect internal rock fabric (lineation, mineral anisotropy) as well as effects connected with the fracturing and weathering. The elastic constants derived from laboratory measurements exhibit transversal isotropy. For the estimation of anisotropy influence we perform ray-tracing by the software package ANRAY (Consortium Seismic Waves in Complex 3-D Structures). The use of P and S wave anisotropy measurement to determine hard rock hydro-geological collector (water resource) is presented. In a relatively homogeneous lutaceous sedimentary medium we identified a transversally isotropic layer which exhibits increased value of permeability (transmisivity). The seismic measurement is realized by three component geophones with both vertical and shear seismic sources. VLF and resistivity profiling accompany the filed survey.

  13. CT measurement of range of motion of ankle and subtalar joints following two lateral column lengthening procedures.

    PubMed

    Beimers, Lijkele; Louwerens, Jan W K; Tuijthof, Gabrielle Josephine Maria; Jonges, Remmet; van Dijk, C N Niek; Blankevoort, Leendert

    2012-05-01

    Lateral column lengthening (LCL) has become an accepted procedure for the operative treatment of the flexible flatfoot deformity. Hindfoot arthrodesis via a calcaneocuboid distraction arthrodesis (CCDA) has been considered a less favourable surgical option than the anterior open wedge calcaneal distraction osteotomy (ACDO), as CCDA has been associated with reduced hindfoot joint motion postoperatively. The ankle and subtalar joint ranges of motion were measured in patients who underwent an ACDO or CCDA procedure for flatfoot deformity. CT scanning was performed with the foot in extreme positions in five ACDO and five CCDA patients. A bone segmentation and registration technique for the tibia, talus and calcaneus was applied to the CT images. Finite helical axis (FHA) rotations representing the range of motion of the joints were calculated for the motion between opposite extreme foot positions of the tibia and the calcaneus relative to the talus. The maximum mean FHA rotation of the ankle joint (for extreme dorsiflexion to extreme plantarflexion) after ACDO was 52.2 degrees ± 12.4 degrees and after CCDA 49.0 degrees ± 12.0 degrees. Subtalar joint maximum mean FHA rotation (for extreme eversion to extreme inversion) following ACDO was 22.8 degrees ± 8.6 degrees, and following CCDA 24.4 degrees ± 7.6 degrees. An accurate CT-based technique was used to assess the range of motion of the ankle and subtalar joints following two lateral column lengthening procedures for flatfoot deformity. Comparable results with a considerable amount of variance were found for the range of motion following the ACDO and CCDA procedures.

  14. Dietary correlates of temporomandibular joint morphology in the great apes.

    PubMed

    Terhune, Claire E

    2013-02-01

    Behavioral observations of great apes have consistently identified differences in feeding behavior among species, and these differences have been linked to variation in masticatory form. As the point at which the mandible and cranium articulate, the temporomandibular joint (TMJ) is an important component of the masticatory apparatus. Forces are transmitted between the mandible and cranium via the TMJ, and this joint helps govern mandibular range of motion. This study examined the extent to which TMJ form covaries with feeding behavior in the great apes by testing a series of biomechanical hypotheses relating to specific components of joint shape using linear measurements extracted from three-dimensional coordinate data. Results of these analyses found that taxa differ significantly in TMJ shape, particularly in the mandibular fossa. Chimpanzees have relatively more anteroposteriorly elongated joint surfaces, whereas gorillas tend to have relatively anteroposteriorly compressed joints. Orangutans were most commonly intermediate in form between Pan and Gorilla, perhaps reflecting a trade-off between jaw gape and load resistance capabilities. Importantly, much of the observed variation among taxa reflects differences in morphologies that facilitate gape over force production. These data therefore continue to emphasize the unclear relationship between mandibular loading and bony morphology, but highlight the need for further data regarding food material properties, jaw gape, and ingestive/food processing behaviors. Copyright © 2012 Wiley Periodicals, Inc.

  15. Surface dose measurements for highly oblique electron beams.

    PubMed

    Ostwald, P M; Kron, T

    1996-08-01

    Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.

  16. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  17. Experimental and numerical study of Bondura® 6.6 PIN joints

    NASA Astrophysics Data System (ADS)

    Berkani, I.; Karlsen, Ø.; Lemu, H. G.

    2017-12-01

    Pin joints are widely used in heavy-duty machinery such as aircrafts, cranes and offshore drilling equipment to transfer multi-dimensional shear forces. Their strength and service life depend on the clamping force in the contact region that is provided by interference fits. Though the interference fits provide full contact at the pin-hole interface under pretension loads, the contact interface reduces when the pin is subjected to an external load and hence a smaller contact surface leads to dramatic increase of the contact stress. The PIN joint of Bondura® Technology, investigated in this study, is an innovative solution intended to reduce the slack at the contact surface of the pin joint of heavy-duty machinery by using tapered sleeves on each end of the PIN. The study is aimed to better understand the contact pressure build-up and stress distribution in the supporting contact surface under pre-loading of the joint and the influence of temperature difference between part assembly and operation conditions. Numerical simulation using finite element method and diverse experimental tests were conducted. The numerical simulation and the test results, particularly the tests conducted with lubricated joints, show good conformance.

  18. Seafloor geodesy: Measuring surface deformation and strain-build up

    NASA Astrophysics Data System (ADS)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  19. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  20. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  1. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-05-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  2. Crustal structure of northern Egypt from joint inversion of receiver functions and surface wave dispersion velocities

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim

    2018-01-01

    In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at

  3. Real-time controller for foot-drop correction by using surface electromyography sensor.

    PubMed

    Al Mashhadany, Yousif I; Abd Rahim, Nasrudin

    2013-04-01

    Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking. A design and analysis of a controller for such legs is the subject of this article. Surface electromyography electrodes are connected to the skin surface of the human muscle and work on the mechanics of human muscle contraction. The design uses real surface electromyography signals for estimation of the joint angles. Various-speed flexions and extensions of the leg were analyzed. The two phases of the design began with surface electromyography of real human leg electromyography signal, which was subsequently filtered, amplified, and normalized to the maximum amplitude. Parameters extracted from the surface electromyography signal were then used to train an artificial neural network for prediction of the joint angle. The artificial neural network design included various-speed identification of the electromyography signal and estimation of the angles of the knee and ankle joints by a recognition process that depended on the parameters of the real surface electromyography signal measured through real movements. The second phase used artificial neural network estimation of the control signal, for calculation of the electromyography signal to be stimulated for the leg muscle to move the ankle joint. Satisfactory simulation (MATLAB/Simulink version 2012a) and implementation results verified the design feasibility.

  4. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  5. Eye-Tracking as a Measure of Responsiveness to Joint Attention in Infants at Risk for Autism

    ERIC Educational Resources Information Center

    Navab, Anahita; Gillespie-Lynch, Kristen; Johnson, Scott P.; Sigman, Marian; Hutman, Ted

    2012-01-01

    Reduced responsiveness to joint attention (RJA), as assessed by the Early Social Communication Scales (ESCS), is predictive of both subsequent language difficulties and autism diagnosis. Eye-tracking measurement of RJA is a promising prognostic tool because it is highly precise and standardized. However, the construct validity of eye-tracking…

  6. Extending the Measurement Range of AN Optical Surface Profiler.

    NASA Astrophysics Data System (ADS)

    Cochran, Eugene Rowland, III

    This dissertation investigates a method for extending the measurement range of an optical surface profiling instrument. The instrument examined in these experiments is a computer -controlled phase-modulated interference microscope. Because of its ability to measure surfaces with a high degree of vertical resolution as well as excellent lateral resolution, this instrument is one of the most favorable candidates for determining the microtopography of optical surfaces. However, the data acquired by the instrument are restricted to a finite lateral and vertical range. To overcome this restriction, the feasibility of a new testing technique is explored. By overlapping a series of collinear profiles the limited field of view of this instrument can be increased and profiles that contain longer surface wavelengths can be examined. This dissertation also presents a method to augment both the vertical and horizontal dynamic range of the surface profiler by combining multiple subapertures and two-wavelength techniques. The theory, algorithms, error sources, and limitations encountered when concatenating a number of profiles are presented. In particular, the effects of accumulated piston and tilt errors on a measurement are explored. Some practical considerations for implementation and integration into an existing system are presented. Experimental findings and results of Monte Carlo simulations are also studied to explain the effects of random noise, lateral position errors, and defocus across the CCD array on measurement results. These results indicate the extent to which the field of view of the profiler may be augmented. A review of current methods of measuring surface topography is included, to provide for a more coherent text, along with a summary of pertinent measurement parameters for surface characterization. This work concludes with recommendations for future work that would make subaperture -testing techniques more reliable for measuring the microsurface structure

  7. Field evidence for control of quarrying by rock bridges in jointed bedrock

    NASA Astrophysics Data System (ADS)

    Hooyer, T. S.; Cohen, D. O.; Iverson, N. R.

    2011-12-01

    Quarrying is generally thought to be the most important mechanism by which glaciers erode bedrock. In quarrying models it is assumed that slow, subcritical, growth of pre-existing cracks rate-limits the process and occurs where there are large stress differences in the bed, such as near rock bumps where ice separates from the bed to form water-filled cavities. Owing to the direction of principal stresses in rocks associated with sliding and resultant cavity formation, models predict that quarrying will occur along cracks oriented perpendicular to the ice flow direction or parallel to zones of ice-bed contact. Preglacial cracks in rocks will tend to propagate mainly downward, and in sedimentary or some metamorphic rocks will merge with bedding planes, thereby helping to isolate rock blocks for dislodgement. In contrast to these model assumptions, new measurements of quarried surface orientations in the deglaciated forefield of nine glaciers in Switzerland and Canada indicate a strong correlation between orientations of pre-existing joints and quarried bedrock surfaces, independent of ice flow direction or ice-water contact lines. The strong correlation persists across all rock types, and rocks devoid of major joints lack quarried surfaces. We propose a new conceptual model of quarrying that idealizes the bedrock as a series of blocks separated by discontinuous preglacial joints containing intact rock bridges. Bridges concentrate stress differences caused by normal and shear forces acting at the rock surface. Failure of bridges is caused by slow subcritical crack growth enhanced by water pressure fluctuations. To lend credibility to this new model, we show field evidence of failed rock bridges in quarried surfaces and of rib marks on plumose structures that we interpret as arrest fracture fronts due to transient subglacial water-pressure fluctuations.

  8. PESTICIDE SURFACE RESIDUE MEASUREMENTS BY A PRESS SAMPLER

    EPA Science Inventory

    Pesticides on household surfaces are a source of exposure to children. Accurate measurements of residues on surfaces are needed to determine amounts available for transfer to foods and other objects handled or eaten by a child. Wiping the surface with a solvent has been the acc...

  9. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  10. Drop shape visualization and contact angle measurement on curved surfaces.

    PubMed

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. First metatarsal-phalangeal joint arthrodesis: a biomechanical assessment of stability.

    PubMed

    Politi, Joel; John, Hayes; Njus, Glen; Bennett, Gordon L; Kay, David B

    2003-04-01

    First metatarsal phalangeal joint (MTP) arthrodesis is a commonly performed procedure for the treatment of hallux rigidus, severe and recurrent bunion deformities, rheumatoid arthritis and other less common disorders of the joint. There are different techniques of fixation of the joint to promote arthrodesis including oblique lag screw fixation, lag screw and dorsal plate fixation, crossed Kirschner wires, dorsal plate fixation alone and various types of external fixation. Ideally the fixation method should be reproducible, lead to a high rate of fusion, and have a low incidence of complications. In the present study, we compared the strength of fixation of five commonly utilized techniques of first MTP joint arthrodesis. These were: 1. Surface excision with machined conical reaming and fixation with a 3.5 mm cortical interfragmentary lag screw. 2. Surface excision with machined conical reaming and fixation with crossed 0.062 Kirschner wires. 3. Surface excision with machined conical reaming and fixation with a 3.5 mm cortical lag screw and a four hole dorsal miniplate secured with 3.5 mm cortical screws. 4. Surface excision with machined conical reaming and fixation with a four hole dorsal miniplate secured with 3.5 mm cortical screws and no lag screw. 5. Planar surface excision and fixation with a single oblique 3.5 mm interfragmentary cortical lag screw. Testing was done on an Instron materials testing device loading the first MTP joint in dorsiflexion. Liquid metal strain gauges were placed over the joint and micromotion was detected with varying loads and cycles. The most stable technique was the combination of machined conical reaming and an oblique interfragmentary lag screw and dorsal plate. This was greater than two times stronger than an oblique lag screw alone. Dorsal plate alone and Kirschner wire fixation were the weakest techniques. First MTP fusion is a commonly performed procedure for the treatment of a variety of disorders of the first MTP joint

  12. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Measurement of strain distribution in bonded joints by fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Guemes, J. Alfredo; Diaz-Carrillo, Sebastian; Menendez, Jose M.

    1998-07-01

    Due to the small dimensions of the adhesive layer, the high non-uniformity of the strain field and the non linear elastic behavior of the adhesive material, the strain distribution at an adhesive joint can be predicted by FEM, but can not be experimentally obtained with classical approaches; only non standard procedures like Moire interferometry, or special artifacts like KGR extensometers may afford some insights on the behavior of the adhesive. Due to their small size, ensuring low perturbation of the strain field, and their innate ability to measure strain and strain gradient along the sensor, fiber Bragg gratings offer a good opportunity to solve this problem, and it is a good example of situations that may benefit from these new sensors. Fiber Bragg gratings may be placed or at the interface, within the adhesive layer, or embedded at the adherents, if these were made of composite material. Tests may be run at different temperatures, changing the adhesive characteristics from brittle to pseudoplastic without additional difficulties. When loading the joint, the strain field is obtained by analyzing the distorted spectrum of the reflected light pulse; the algorithm for doing it has already been published. A comparison with theoretical results is done, and the validity and utility of these sensors for this and similar applications is demonstrated.

  14. Measuring Surface Bulk Elemental Composition on Venus

    NASA Astrophysics Data System (ADS)

    Schweitzer, Jeffrey S.; Parsons, Ann M.; Grau, Jim; Lawrence, David J.; McClanahan, Timothy P.; Miles, Jeffrey; Peplowski, Patrick; Perkins, Luke; Starr, Richard

    Bulk elemental composition measurements of the subsurface of Venus are challenging because of the extreme surface environment (462 ˚C, 93 bars pressure). Instruments provided by landed probes on the surface of Venus must therefore be enclosed in a pressure vessel. The high surface temperatures require a thermal control system that keeps the instrumentation and electronics within their operating temperature range for as long as possible. Currently, Venus surface probes can operate for only a few hours. It is therefore crucial that the lander instrumentation be able to make statistically significant measurements in a short time. An instrument is described that can achieve such a measurement over a volume of thousands of cubic centimeters of material by using high energy penetrating neutron and gamma radiation. The instrument consists of a Pulsed Neutron Generator (PNG) and a Gamma-Ray Spectrometer (GRS). The PNG emits isotropic pulses of 14.1 MeV neutrons that penetrate the pressure vessel walls, the dense atmosphere and the surface rock. The neutrons induce nuclear reactions in the rock to produce gamma rays with energies specific to the element and nuclear process involved. Thus the energies of the detected gamma rays identify the elements present and their intensities provide the abundance of each element. The GRS spectra are analyzed to determine the Venus elemental composition from the spectral signature of individual major, minor, and trace radioactive elements. As a test of such an instrument, a Schlumberger Litho Scanner1 oil well logging tool was used in a series of experiments at NASA's Goddard Space Flight Center. The Litho Scanner tool was mounted above large (1.8 m x 1.8 m x .9 m) granite and basalt monuments and made a series of one-hour elemental composition measurements in a planar geometry more similar to a planetary lander measurement. Initial analysis of the results shows good agreement with target elemental assays.

  15. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.

    PubMed

    Schwartz, Mathew; Dixon, Philippe C

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided

  16. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods

    PubMed Central

    Dixon, Philippe C.

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided

  17. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2006-12-01

    A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.

  18. Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubenets, Elena R.

    We prove the existence for each Hilbert space of the two new quasi hidden variable (qHV) models, statistically noncontextual and context-invariant, reproducing all the von Neumann joint probabilities via non-negative values of real-valued measures and all the quantum product expectations—via the qHV (classical-like) average of the product of the corresponding random variables. In a context-invariant model, a quantum observable X can be represented by a variety of random variables satisfying the functional condition required in quantum foundations but each of these random variables equivalently models X under all joint von Neumann measurements, regardless of their contexts. The proved existence ofmore » this model negates the general opinion that, in terms of random variables, the Hilbert space description of all the joint von Neumann measurements for dimH≥3 can be reproduced only contextually. The existence of a statistically noncontextual qHV model, in particular, implies that every N-partite quantum state admits a local quasi hidden variable model introduced in Loubenets [J. Math. Phys. 53, 022201 (2012)]. The new results of the present paper point also to the generality of the quasi-classical probability model proposed in Loubenets [J. Phys. A: Math. Theor. 45, 185306 (2012)].« less

  19. Safety assessment of Cracked K-joint Structure Based on Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pengyu, Yan; Jianwei, Du; Fuhai, Cai

    2017-05-01

    The K-joint is the main bearing structure of lattice jib crane. During frequent operation of the crane, surface cracks often occur at its weld toe, and then continue to expand until failure. The safety of the weak structure K-joint of the crane jib can be evaluated by BS7910 failure assessment standard in order to improve its utilization. The finite element model of K-joint structure with cracks is established, and its mechanical properties is analyzed by ABAQUS software, the results show that the crack depth has a great influence on the bearing capacity of the structure compared with the crack length. It is assumed that the K-joint with the semi-elliptical surface crack under the action of the tension propagate stably under the condition that the c/a (ratio of short axis to long axis of ellipse) is about 0.3. The safety assessment of K-joint with different lengths crack is presented according to the 2A failure assessment diagram of BS7910, and the critical crack of K-joint under different loads can be obtained.

  20. Mapping surface soil moisture with L-band radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1989-01-01

    A NASA C-130 airborne remote sensing aircraft was used to obtain four-beam pushbroom microwave radiometric measurements over two small Kansas tall-grass prairie region watersheds, during a dry-down period after heavy rainfall in May and June, 1987. While one of the watersheds had been burned 2 months before these measurements, the other had not been burned for over a year. Surface soil-moisture data were collected at the time of the aircraft measurements and correlated with the corresponding radiometric measurements, establishing a relationship for surface soil-moisture mapping. Radiometric sensitivity to soil moisture variation is higher in the burned than in the unburned watershed; surface soil moisture loss is also faster in the burned watershed.

  1. First flux surface measurements on W7-X

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas Sunn; Otte, Matthias; Biedermann, Christoph; Bozhenkov, Sergey; Braeuer, Torsten; Lazerson, Samuel; W7-X Team

    2015-11-01

    Wendelstein 7-X is rapidly approaching first plasma operation. The full operational B-field of 2.5 T has been reached using the 70 superconducting coils. The first flux surface measurements have recently been successfully performed. This talk will describe the W7-X flux surface measurement system, and show and analyze the first results from this diagnostic, which, at the time of writing this abstract, can be summarized as follows: Confirmation of the existence of nested, closed flux surfaces, first measurements of iota, and detection of the expected internal 5/6 island chain of the OP1.1 configuration. The data obtained so far agree with expectations, and provide a first confirmation of the accuracy of the coil geometry and assembly, as well as diagnostic installation. They also confirm that, with respect to the magnetic topology, plasma operation can start. Plans for, and potentially first results of, measurements of any remnant field errors, will be reported separately at this meeting.

  2. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  3. Shear Model Development of Limestone Joints with Incorporating Variations of Basic Friction Coefficient and Roughness Components During Shearing

    NASA Astrophysics Data System (ADS)

    Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon

    2017-04-01

    In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.

  4. Towards attosecond measurement in molecules and at surfaces

    NASA Astrophysics Data System (ADS)

    Marangos, Jonathan

    2015-05-01

    1) We will present a number of experimental approaches that are being developed at Imperial College to make attosecond timescale measurements of electronic dynamics in suddenly photoionized molecules and at surfaces. A brief overview will be given of some of the unanswered questions in ultrafast electron and hole dynamics in molecules and solids. These questions include the existence of electronic charge migration in molecules and how this process might couple to nuclear motion even on the few femtosecond timescale. How the timescale of photoemission from a surface may differ from that of an isolated atom, e.g. due to electron transport phenomena associated with the distance from the surface of the emitting atom and the electron dispersion relation, is also an open question. 2) The measurement techniques we are currently developing to answer these questions are HHG spectroscopy, attosecond pump-probe photoelectron/photoion studies, and attosecond pump-probe transient absorption as well as attosecond streaking for measuring surface emission. We will present recent advances in generating two synchronized isolated attosecond pulses at different colours for pump-probe measurements (at 20 eV and 90 eV respectively). Results on generation of isolated attosecond pulses at 300 eV and higher photon energy using a few-cycle 1800 nm OPG source will be presented. The use of these resources for making pump-probe measurements will be discussed. Finally we will present the results of streaking measurement of photoemission wavepackets from two types of surface (WO3 and a evaporated Au film) that show a temporal broadening of ~ 100 as compared to atomic streaks that is consistent with the electron mean free path in these materials. Work supported by ERC and EPSRC.

  5. In situ surface roughness measurement using a laser scattering method

    NASA Astrophysics Data System (ADS)

    Tay, C. J.; Wang, S. H.; Quan, C.; Shang, H. M.

    2003-03-01

    In this paper, the design and development of an optical probe for in situ measurement of surface roughness are discussed. Based on this light scattering principle, the probe which consists of a laser diode, measuring lens and a linear photodiode array, is designed to capture the scattered light from a test surface with a relatively large scattering angle ϕ (=28°). This capability increases the measuring range and enhances repeatability of the results. The coaxial arrangement that incorporates a dual-laser beam and a constant compressed air stream renders the proposed system insensitive to movement or vibration of the test surface as well as surface conditions. Tests were conducted on workpieces which were mounted on a turning machine that operates with different cutting speeds. Test specimens which underwent different machining processes and of different surface finish were also studied. The results obtained demonstrate the feasibility of surface roughness measurement using the proposed method.

  6. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction.

    PubMed

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-12-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period.

  7. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction

    PubMed Central

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-01-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period. PMID:26834316

  8. Mechanical and Functional Properties of Nickel Titanium Adhesively Bonded Joints

    NASA Astrophysics Data System (ADS)

    Niccoli, F.; Alfano, M.; Bruno, L.; Furgiuele, F.; Maletta, C.

    2014-07-01

    In this study, adhesive joints made up of commercial NiTi sheets with shape memory capabilities are analyzed. Suitable surface pre-treatments, i.e., degreasing, sandblasting, and chemical etching, are preliminary compared in terms of surface roughness, surface energy, and substrate thinning. Results indicate that chemical etching induces marked substrate thinning without substantial gains in terms of surface roughness and free energy. Therefore, adhesive joints with degreased and sandblasted substrates are prepared and tested under both static and cyclic conditions, and damage development within the adhesive layer is monitored in situ using a CCD camera. Sandblasted specimens have a significantly higher mechanical static strength with respect to degreased ones, although they essentially fail in similar fashion, i.e., formation of microcracks followed by decohesion along the adhesive/substrate interface. In addition, the joints show a good functional response with almost complete shape memory recovery after thermo-mechanical cycling, i.e., a small accumulation of residual deformations occurs. The present results show that adhesive bonding is a viable joining technique for NiTi alloys.

  9. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  10. Longitudinally Jointed Edge-Wise Compression HoneyComb Composite Sandwich Coupon Testing And Fe Analysis: Three Methods of Strain Measurement, And Comparison

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Rahim, Nur Aida Abul; Segal, Ken; Fan, Terry; Jones, Justin; Hodges, Ken; Mashni, Noah; Garg, Naman; Sang, Alex

    2013-01-01

    Three distinct strain measurement methods (i.e., foil resistance strain gages, fiber optic strain sensors, and a three-dimensional digital image photogrammetry that gives full field strain and displacement measurements) were implemented to measure strains on the back and front surfaces of a longitudinally jointed curved test article subjected to edge-wise compression testing, at NASA Goddard Space Flight Center, according to ASTM C364. The pre-test finite element analysis (FEA) was conducted to assess ultimate failure load and predict strain distribution pattern throughout the test coupon. The predicted strain pattern contours were then utilized as guidelines for installing the strain measurement instrumentations. The foil resistance strain gages and fiber optic strain sensors were bonded on the specimen at locations with nearly the same analytically predicted strain values, and as close as possible to each other, so that, comparisons between the measured strains by strain gages and fiber optic sensors, as well as the three-dimensional digital image photogrammetric system are relevant. The test article was loaded to failure (at 167 kN), at the compressive strain value of 10,000 micro epsilon. As a part of this study, the validity of the measured strains by fiber optic sensors is examined against the foil resistance strain gages and the three-dimensional digital image photogrammetric data, and comprehensive comparisons are made with FEA predictions.

  11. In vivo measured joint friction in hip implants during walking after a short rest

    PubMed Central

    Damm, Philipp; Bender, Alwina; Duda, Georg; Bergmann, Georg

    2017-01-01

    Introduction It has been suspected that friction in hip implants is higher when walking is initiated after a resting period than during continuous movement. It cannot be excluded that such increased initial moments endanger the cup fixation in the acetabulum, overstress the taper connections in the implant or increase wear. To assess these risks, the contact forces, friction moments and friction coefficients in the joint were measured in vivo in ten subjects. Instrumented hip joint implants with telemetric data transmission were used to access the contact loads between the cup and head during the first steps of walking after a short rest. Results The analysis demonstrated that the contact force is not increased during the first step. The friction moment in the joint, however, is much higher during the first step than during continuous walking. The moment increases throughout the gait cycle were 32% to 143% on average and up to 621% individually. The high initial moments will probably not increase wear by much in the joint. However, comparisons with literature data on the fixation resistance of the cup against moments made clear that the stability can be endangered. This risk is highest during the first postoperative months for cementless cups with insufficient under-reaming. The high moments after a break can also put taper connections between the head and neck and neck and shaft at a higher risk. Discussion During continuous walking, the friction moments individually were extremely varied by factors of 4 to 10. Much of this difference is presumably caused by the varying lubrication properties of the synovia. These large moment variations can possibly lead to friction-induced temperature increases during walking, which are higher than the 43.1°C which have previously been observed in a group of only five subjects. PMID:28350858

  12. In vivo measured joint friction in hip implants during walking after a short rest.

    PubMed

    Damm, Philipp; Bender, Alwina; Duda, Georg; Bergmann, Georg

    2017-01-01

    It has been suspected that friction in hip implants is higher when walking is initiated after a resting period than during continuous movement. It cannot be excluded that such increased initial moments endanger the cup fixation in the acetabulum, overstress the taper connections in the implant or increase wear. To assess these risks, the contact forces, friction moments and friction coefficients in the joint were measured in vivo in ten subjects. Instrumented hip joint implants with telemetric data transmission were used to access the contact loads between the cup and head during the first steps of walking after a short rest. The analysis demonstrated that the contact force is not increased during the first step. The friction moment in the joint, however, is much higher during the first step than during continuous walking. The moment increases throughout the gait cycle were 32% to 143% on average and up to 621% individually. The high initial moments will probably not increase wear by much in the joint. However, comparisons with literature data on the fixation resistance of the cup against moments made clear that the stability can be endangered. This risk is highest during the first postoperative months for cementless cups with insufficient under-reaming. The high moments after a break can also put taper connections between the head and neck and neck and shaft at a higher risk. During continuous walking, the friction moments individually were extremely varied by factors of 4 to 10. Much of this difference is presumably caused by the varying lubrication properties of the synovia. These large moment variations can possibly lead to friction-induced temperature increases during walking, which are higher than the 43.1°C which have previously been observed in a group of only five subjects.

  13. Measuring wintertime surface fluxes at the Tiksi observatory in northern Sakha (Yakutia)

    NASA Astrophysics Data System (ADS)

    Laurila, Thomas; Aurela, Mika; Hatakka, Juha; Tuovinen, Juha-Pekka; Asmi, Eija; Kondratyev, Vladimir; Ivakhov, Victor; Reshetnikov, Alexander; Makshtas, Alexander; Uttal, Taneil

    2013-04-01

    Tiksi hydrometeorological observatory has been equipped by new instrumentation for meteorology, turbulence, trace gas and aerosols studies as a joint effort by National Oceanic and Atmospheric Administration (NOAA), Roshydromet (Yakutian Hydrometeorological Service, Arctic and Antarctic Research Institute and Voeikov Main Geophysical Observatory units) and the Finnish Meteorological Institute (FMI). The site is close to the coast of the Laptev Sea on deep permafrost soil with low tundra vegetation and patches of arctic semidesert. Near-by terrain is gently sloping to the south. Further away they are hills in the NE- and W-directions. Turbulence (3-d wind components and sonic temperature) was measured at 10 Hz by USA-1Scientific sonic by Metek, Gmbh. Concentrations of CO2 and H2O were measured by LiCor LI7000 analyzer and CH4 concentrations by Los Gatos RMT200 analyzer. Measurement height was 2.5m. Active layer freeze up took place in extended October period. Methane and carbon dioxide emissions were observed up to early December. Emissions to the atmosphere were enhanced by turbulence created by high wind speeds. Midwinter conditions existed from the end of October to the beginning of April based on rather constant negative net radiation between 20-30 Wm-2 that cools the surface and forms highly stable stratification. Weather conditions are characterized by either low or high wind speed modes. Roughly half of the time wind speed was low, below 2 ms-1. Then, katabatic winds were common and air temperature was between -40..-30°C. High wind speeds, up to 24 ms-1, were observed during synoptic disturbances which lasted typically a few days. In this presentation we will show climatology of surface layer characteristics in late autumn and winter. We will show frequency of well-developed turbulence vs. katabatic low wind speed conditions and related atmospheric stability. The effect of wind speed on methane and carbon dioxide emissions during the freezing period will be

  14. A study of lubrication, processing conditions, and material combinations that affect the wear of micro-textured-carbide coated cobalt-chromium-molybdenum alloy surfaces used for artificial joints implants

    NASA Astrophysics Data System (ADS)

    Ettienne-Modeste, Geriel A.

    Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide

  15. Joint Contact Stress

    PubMed Central

    Brand, Richard A

    2005-01-01

    A joint's normal mechanical history contributes to the maintenance of articular cartilage and underlying bone. Loading facilitates the flow of nutrients into cartilage and waste products away, and additionally provides the mechanical signals essential for normal cell and tissue maintenance. Deleteriously low or high contact stresses have been presumed to result in joint deterioration, and particular aspects of the mechanical environment may facilitate repair of damaged cartilage. For decades, investigators have explored static joint contact stresses (under some more or less arbitrary condition) as a surrogate of the relevant mechanical history. Contact stresses have been estimated in vitro in many joints and in a number of species, although only rarely in vivo. Despite a number of widely varying techniques (and spatial resolutions) to measure these contact stresses, reported ranges of static peak normal stresses are relatively similar from joint to joint across species, and in the range of 0.5 to 5.0 MPa. This suggests vertebrate diarthrodial joints have evolved to achieve similar mechanical design criteria. Available evidence also suggests some disorders of cartilage deterioration are associated with somewhat higher peak pressures ranging from 1-20 MPa, but overlapping the range of normal pressures. Some evidence and considerable logic suggests static contact stresses per se do not predict cartilage responses, but rather temporal aspects of the contact stress history. Static contact stresses may therefore not be a reasonable surrogate for biomechanical studies. Rather, temporal and spatial aspects of the loading history undoubtedly induce beneficial and deleterious biological responses. Finally, since all articular cartilage experiences similar stresses, the concept of a "weight-bearing" versus a "non-weight-bearing" joint seems flawed, and should be abandoned. PMID:16089079

  16. Exercise and the Knee Joint.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1976-01-01

    This report by the President's Council on Physical Fitness and Sports examines the effects of various forms of physical exercise on the knee joint which, because of its vulnerability, is especially subject to injury. Discussion centers around the physical characteristics of the joint, commonly used measurements for determining knee stability,…

  17. The inaccuracy of surface-measured model-derived tibiofemoral kinematics.

    PubMed

    Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong

    2012-10-11

    This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all six degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0±1.2°, and 6.4±4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, respectively, and 7.1±3.2 mm, 8.8±3.7 mm, and 1.9±1.2 mm for anterior-posterior, proximal-distal, and medial-lateral translations, respectively. The differences were more pronounced in relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotations, and anterior-posterior translation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The inaccuracy of surface-measured model-derived tibiofemoral kinematics

    PubMed Central

    Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong

    2014-01-01

    This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all 6 degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0 ± 1.2°, 6.4 ± 4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, and 7.1± 3.2mm, 8.8± 3.7mm, and 1.9± 1.2mm for anterior-posterior, proximal-distal, and medial-lateral translations. The differences were more pronounced in the relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotation, and anterior-posterior translation. PMID:22964018

  19. Cyclic Behavior of Mortarless Brick Joints with Different Interlocking Shapes

    PubMed Central

    Liu, Hongjun; Liu, Peng; Lin, Kun; Zhao, Sai

    2016-01-01

    The framed structure infilled with a mortarless brick (MB) panel exhibits considerable in-plane energy dissipation because of the relative sliding between bricks and good out-of-plane stability resulting from the use of interlocking mechanisms. The cyclic behaviors of MB are investigated experimentally in this study. Two different types of bricks, namely non-interlocking mortarless brick (N-IMB) and interlocking mortarless brick (IMB), are examined experimentally. The cyclic behavior of all of the joints (N-IMB and IMB) are investigated in consideration of the effects of interlocking shapes, loading compression stress levels and loading cycles. The hysteretic loops of N-IMB and IMB joints are obtained, according to which a mechanical model is developed. The Mohr–Coulomb failure criterion is employed to describe the shear failure modes of all of the investigated joints. A typical frictional behavior is observed for the N-IMB joints, and a significant stiffening effect is observed for the IMB joints during their sliding stage. The friction coefficients of all of the researched joints increase with the augmentation of the compression stress level and improvement of the smoothness of the interlocking surfaces. An increase in the loading cycle results in a decrease in the friction coefficients of all of the joints. The degradation rate (DR) of the friction coefficients increases with the reduction in the smoothness of the interlocking surface. PMID:28773291

  20. Ground-based measurement of surface temperature and thermal emissivity

    NASA Technical Reports Server (NTRS)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  1. Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities

    NASA Astrophysics Data System (ADS)

    Julià, Jordi; Ammon, Charles J.; Herrmann, Robert B.

    2003-08-01

    We estimate lithospheric velocity structure for the Arabian Shield by jointly modeling receiver functions and fundamental-mode group velocities from events recorded by the 1995-1997 Saudi Arabian Portable Broadband Deployment. Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times, and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages, so that their combination bridge resolution gaps associated with each individual data set. Our resulting models correlate well with the observed surface geology; the Asir terrane to the West consists of a 10-km-thick upper crust of 3.3 km/s overlying a lower crust of 3.7-3.8 km/s; in the Afif terrane to the East, the upper crust is 20 km thick and has an average velocity of 3.6 km/s, and the lower crust is about 3.8 km/s; separating the terranes, the Nabitah mobile belt is made of a gradational upper crust up to 3.6 km/s at 15 km overlying an also gradational lower crust up to 4.0 km/s. The crust-mantle transition is found to be sharp in terranes of continental affinity (east) and gradual in terranes of oceanic affinity (west). The upper mantle shear velocities range from 4.3 to 4.6 km/s. Temperatures around 1000 °C are obtained from our velocity models for a thin upper mantle lid observed beneath station TAIF, and suggest that the lithosphere could be as thin as 50-60 km under this station.

  2. Surface acoustical intensity measurements on a diesel engine

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.; Crocker, M. J.

    1980-01-01

    The use of surface intensity measurements as an alternative to the conventional selective wrapping technique of noise source identification and ranking on diesel engines was investigated. A six cylinder, in line turbocharged, 350 horsepower diesel engine was used. Sound power was measured under anechoic conditions for eight separate parts of the engine at steady state operating conditions using the conventional technique. Sound power measurements were repeated on five separate parts of the engine using the surface intensity at the same steady state operating conditions. The results were compared by plotting sound power level against frequency and noise source rankings for the two methods.

  3. Partial compensation interferometry measurement system for parameter errors of conicoid surface

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Li, Tengfei; Hu, Yao; Wang, Shaopu; Ning, Yan; Chen, Zhuo

    2018-06-01

    Surface parameters, such as vertex radius of curvature and conic constant, are used to describe the shape of an aspheric surface. Surface parameter errors (SPEs) are deviations affecting the optical characteristics of an aspheric surface. Precise measurement of SPEs is critical in the evaluation of optical surfaces. In this paper, a partial compensation interferometry measurement system for SPE of a conicoid surface is proposed based on the theory of slope asphericity and the best compensation distance. The system is developed to measure the SPE-caused best compensation distance change and SPE-caused surface shape change and then calculate the SPEs with the iteration algorithm for accuracy improvement. Experimental results indicate that the average relative measurement accuracy of the proposed system could be better than 0.02% for the vertex radius of curvature error and 2% for the conic constant error.

  4. Surface roughness: A review of its measurement at micro-/nano-scale

    NASA Astrophysics Data System (ADS)

    Gong, Yuxuan; Xu, Jian; Buchanan, Relva C.

    2018-01-01

    The measurement of surface roughness at micro-/nano-scale is of great importance to metrological, manufacturing, engineering, and scientific applications given the critical roles of roughness in physical and chemical phenomena. The surface roughness of materials can significantly change the way of how they interact with light, phonons, molecules, and so forth, thus surface roughness ultimately determines the functionality and property of materials. In this short review, the techniques of measuring micro-/nano-scale surface roughness are discussed with special focus on the limitations and capabilities of each technique. In addition, the calculations of surface roughness and their theoretical background are discussed to offer readers a better understanding of the importance of post-measurement analysis. Recent progress on fractal analysis of surface roughness is discussed to shed light on the future efforts in surface roughness measurement.

  5. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  6. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models.

    PubMed

    van IJsseldijk, E A; Valstar, E R; Stoel, B C; Nelissen, R G H H; Baka, N; Van't Klooster, R; Kaptein, B L

    2016-08-01

    An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development.Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van't Klooster, B. L. Kaptein. Three dimensional measurement

  7. Criterion Validation Testing of Clinical Metrology Instruments for Measuring Degenerative Joint Disease Associated Mobility Impairment in Cats

    PubMed Central

    Gruen, Margaret E.; Griffith, Emily H.; Thomson, Andrea E.; Simpson, Wendy; Lascelles, B. Duncan X.

    2015-01-01

    Introduction Degenerative joint disease and associated pain are common in cats, particularly in older cats. There is a need for treatment options, however evaluation of putative therapies is limited by a lack of suitable, validated outcome measures that can be used in the target population of client owned cats. The objectives of this study were to evaluate low-dose daily meloxicam for the treatment of pain associated with degenerative joint disease in cats, and further validate two clinical metrology instruments, the Feline Musculoskeletal Pain Index (FMPI) and the Client Specific Outcome Measures (CSOM). Methods Sixty-six client owned cats with degenerative joint disease and owner-reported impairments in mobility were screened and enrolled into a double-masked, placebo-controlled, randomized clinical trial. Following a run-in baseline period, cats were given either placebo or meloxicam for 21 days, then in a masked washout, cats were all given placebo for 21 days. Subsequently, cats were given the opposite treatment, placebo or meloxicam, for 21 days. Cats wore activity monitors throughout the study, owners completed clinical metrology instruments following each period. Results Activity counts were increased in cats during treatment with daily meloxicam (p<0.0001) compared to baseline. The FMPI results and activity count data offer concurrent validation for the FMPI, though the relationship between baseline activity counts and FMPI scores at baseline was poor (R2=0.034). The CSOM did not show responsiveness for improvement in this study, and the relationship between baseline activity counts and CSOM scores at baseline was similarly poor (R2=0.042). Conclusions Refinements to the FMPI, including abbreviation of the instrument and scoring as percent of possible score are recommended. This study offered further validation of the FMPI as a clinical metrology instrument for use in detecting therapeutic efficacy in cats with degenerative joint disease. PMID:26162101

  8. Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors

    NASA Astrophysics Data System (ADS)

    Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita

    2016-02-01

    Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.

  9. Columnar jointing - the mechanics of thermal contraction in cooling lavas

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Iddon, F.; Hornby, A. J.; Kendrick, J. E.; von Aulock, F. W.; Wadsworth, F. B.

    2014-12-01

    Columnar joints are spectacular features of volcanic rocks, which form by cracking during cooling-induced contraction of lava. The process, and resultant geometry, manifests a complex interplay between heat dissipation, contraction and tensile strength, yet the formation temperature of such joints remains elusive. Here, we present results from a combination of field survey, thermo-analytical characterisation and mechanical investigation to constrain conditions favourable for columnar jointing. Columnar joints at Seljavellir, a basaltic lava flow at the base of Eyjafjallajökull volcano (Iceland) produce quadratic to heptagonal cross sectional patterns with column widths ranging from 20 to 70 cm in size. The fracture surfaces are characterised by striae with spacing (between 1 to 6 cm) that shares a positive linear relationship to the joint spacing. The striae exhibit both a rough and smooth portion, interpreted to express a change in deformation regime from a ductile response as stress builds up to a fully brittle, mode-I fracture propagation at high stress accumulation. To test the thermo-mechanics of columnar joints we developed an experimental setup to investigate the stress, strain-to-failure and temperature at which basalts undergo tensile failure during cooling from the solidus temperature of 980 °C. We find that fractures initiate at ~800 °C, revealed by a change in stress accumulation (i.e., Young modulus), and complete failure completes after some 0.4% strain at ~670 °C. We interpret the two-stage fracture dynamics as the cause for the change in fracture surface roughness observed in nature. We coupled this dataset with Brazil tensile tests at 30, 400, 600, 800 and 1000 °C. We note that the strain to failure decrease from 1% (>800 °C) to 0.4% (<800 °C). Complementary dilatometric measurements (at 3mN of normal stress and a rate of 2 C/min) constrain the expansion coefficient to be linear and equal to 10-5/°C below the solid temperature. Simple ratio

  10. Sintered silver joints via controlled topography of electronic packaging subcomponents

    DOEpatents

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  11. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less

  12. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  13. Measurement of glenohumeral joint translation using real-time ultrasound imaging: A physiotherapist and sonographer intra-rater and inter-rater reliability study.

    PubMed

    Rathi, Sangeeta; Taylor, Nicholas F; Gee, Jamie; Green, Rodney A

    2016-12-01

    Ultrasonography is an economical and non-invasive method for measuring real-time joint movements. Although physiotherapists are increasingly using ultrasound imaging for rotator cuff disorders, there is a lack of evidence on their reliability in using ultrasonography to measure glenohumeral translation. The aim of this study was to evaluate the reliability of a physiotherapist in measuring anterior and posterior glenohumeral joint translation with ultrasound. Study design: within day reliability. Anterior and posterior glenohumeral translations were measured at rest, in response to passive accessory motion testing force, and with isometric internal and external rotation in 12 young healthy adults. All the measurements were made in real time by a physiotherapist and an experienced sonographer in two positions (neutral and abducted) and in two views (anterior and posterior). Intra-rater and inter-rater reliability were expressed using intraclass correlation coefficients (ICC) and measurement error (mm). Intra-rater reliability was good for both raters (ICC P : 0.86-0.98; ICC S : 0.85-0.96). The inter-rater reliability between the physiotherapist and sonographer was moderate to good for posterior measurements (ICC 0.50-0.75) and poor to moderate for anterior measurements (ICC 0.31-0.53). For both intra-rater and inter-rater measurements, posterior translation was more reliable than the anterior translation with smaller measurement errors (posterior: 0.1-0.2 mm, anterior: 0.2-0.3 mm). A physiotherapist with minimal training was reliable in measuring glenohumeral joint translations. The ultrasound method was reliable for repeated measurement of both anterior and posterior glenohumeral translations with posterior measurements being more reliable than anterior. This method is recommended for future research to investigate the stabilising role of rotator cuff muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Recovery of surface mass redistribution from a joint inversion of GPS and GRACE data - A methodology and results from the Australian and other continents

    NASA Astrophysics Data System (ADS)

    Han, S. C.; Tangdamrongsub, N.; Razeghi, S. M.

    2017-12-01

    We present a methodology to invert a regional set of vertical displacement data from Global Positioning System (GPS) to determine surface mass redistribution. It is assumed that GPS deformation is a result of the Earth's elastic response to the surface mass load of hydrology, atmosphere, and ocean. The identical assumption is made when global geopotential change data from Gravity Recovery And Climate Experiment (GRACE) are used to determine surface mass changes. We developed an algorithm to estimate the spectral information of displacements from "regional" GPS data through regional spherical (Slepian) basis functions and apply the load Love numbers to estimate the mass load. We rigorously examine all systematic errors caused by various truncations (spherical harmonic series and Slepian series) and the smoothing constraint applied to the GPS-only inversion. We demonstrate the technique by processing 16 years of daily vertical motions determined from 114 GPS stations in Australia. The GPS inverted surface mass changes are validated against GRACE data, atmosphere and ocean models, and a land surface model. Seasonal and inter-annual terrestrial mass variations from GPS are in good agreement with GRACE data and the water storage models. The GPS recovery compares better with the water storage model around the smaller coastal basins of Australia than two different GRACE solutions. The sub-monthly mass changes from GPS provide meaningful results agreeing with atmospheric mass changes in central Australia. Finally, we integrate GPS data from different continents with GRACE in the least-square normal equations and solve for the global surface mass changes by jointly inverting GPS and GRACE data. We present the results of surface mass changes from the GPS-only inversion and from the joint GPS-GRACE inversion.

  15. Condylar volume and surface in Caucasian young adult subjects.

    PubMed

    Tecco, Simona; Saccucci, Matteo; Nucera, Riccardo; Polimeni, Antonella; Pagnoni, Mario; Cordasco, Giancarlo; Festa, Felice; Iannetti, Giorgio

    2010-12-31

    There have been no quantitative standards for volumetric and surface measurements of the mandibular condyle in Caucasian population. However, the recently developed cone-beam computed tomography (CBCT) system allows measurement of these parameters with high accuracy. CBCT was used to measure the condylar volume, surface and the volume to surface ratio, called the Morphometric Index (MI), of 300 temporo-mandibular joints (TMJ) in 150 Caucasian young adult subjects, with varied malocclusions, without pain or dysfunction of TMJs. The condylar volume was 691.26 ± 54.52 mm3 in males and 669.65 ± 58.80 mm3 in, and was significantly higher (p< 0.001) in the males. The same was observed for the condylar surface, although without statistical significance (406.02 ± 55.22 mm2 in males and 394.77 ± 60.73 mm2 in females).Furthermore, the condylar volume (693.61 ± 62.82 mm3 ) in the right TMJ was significantly higher than in the left (666.99 ± 48.67 mm3, p < 0.001) as was the condylar surface (411.24 ± 57.99 mm2 in the right TMJ and 389.41 ± 56.63 mm2 in the left TMJ; t = 3.29; p < 0.01). The MI is 1.72 ± 0.17 for the whole sample, with no significant difference between males and females or the right and left sides. These data from temporomandibular joints of patients without pain or clinical dysfunction might serve as examples of normal TMJ's in the general population not seeking orthodontic care.

  16. An Investigation of the Tensile Strength of a Composite-To-Metal Adhesive Joint

    NASA Astrophysics Data System (ADS)

    Tsouvalis, Nicholas G.; Karatzas, Vassilios A.

    2011-04-01

    The present study examines the feasibility of a simple concept composite-to-metal butt joint through the performance of both numerical and experimental studies. The composite part is made of glass/epoxy unidirectional layers made with the vacuum bag method. The geometry of the joint is typical for marine applications and corresponds to a low stiffness ratio. Two major parameters are investigated, namely the overlap length and the surface preparation of the steel adherent. Manufacturing of specimens and the procedure of the tensile tests are described in detail, giving hints for obtaining a better quality joint. Axial elongation and strains at various places of the joint were monitored and also numerically calculated. The tests revealed that the joint is quite effective, irrespectively of the steel surface preparation method. The failure loads are comparable and in some cases superior to other corresponding values found in the literature. The numerical models proved to adequately predict the structural response of the joint up to the loading where debonding starts.

  17. Longitudinal Joint Repair Best Practices for the Ohio Department of Transportation

    DOT National Transportation Integrated Search

    2017-07-01

    The Ohio Department of Transportation (ODOT) has identified longitudinal joint (LJ) failure of existing hot-mix asphalt (HMA) paving as a systemic weakness in the structure of some asphalt surfaces. In the past, these joint failures were treated as i...

  18. Experimental characterization of deployable trusses and joints

    NASA Technical Reports Server (NTRS)

    Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.

    1987-01-01

    The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.

  19. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    NASA Astrophysics Data System (ADS)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  20. Molecular Level Investigations of Interfacial Friction of Polymer Brush Surfaces

    NASA Astrophysics Data System (ADS)

    Perry, Scott

    2005-03-01

    The development of synthetic polymer lubricants to mimic joint lubrication within the human body will be presented. Unlike most industrial applications involving oils and greases, lubrication of these joints is accomplished in an aqueous environment. Fundamentally, water is a poor lubricant in most settings due to the weak pressure dependence of its viscosity, yet the contacting surfaces of skeletal joints function with low friction throughout a lifetime. Motivated by the molecular structure of materials making up joint surfaces, interfacial friction between polymer brush surfaces under aqueous environments has been probed with an array of molecularly sensitive surface analytical techniques including atomic force microscopy. The brush surfaces, comprised of poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), have been generated through the spontaneous adsorption of polymer from solution onto oxide substrates and sodium borosilicate surfaces (AFM tip). The character of the polymer films has been investigated in-situ with the quartz crystal microbalance (QCM) and atomic force microscope (AFM) and ex-situ with ellipsometry and X-ray photoelectron spectroscopy (XPS). The interfacial friction measurements have been carried out on polymer-coated substrates with bare or polymer-coated, microsphere-attached tips in over a range of solution conditions. It was found that the adsorption of polymer on oxides strikingly reduced the interfacial friction, resulting in ultra-low friction under certain conditions. By using a series of PLL-g-PEG polymers differing from each other in PEG side-chain length and grafting ratio, we observed that frictional properties of polymer-coated interfaces strongly depend on the architecture of PLL-g-PEG. Polymer-film formation and the influence of polymer architecture will be reviewed while the role of solvent and manifestation of ultra-low friction will be discussed in detail.

  1. Surface roughness measurement in the submicrometer range using laser scattering

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Quan, Chenggen; Tay, C. J.; Shang, H. M.

    2000-06-01

    A technique for measuring surface roughness in the submicrometer range is developed. The principle of the method is based on laser scattering from a rough surface. A telecentric optical setup that uses a laser diode as a light source is used to record the light field scattered from the surface of a rough object. The light intensity distribution of the scattered band, which is correlated to the surface roughness, is recorded by a linear photodiode array and analyzed using a single-chip microcomputer. Several sets of test surfaces prepared by different machining processes are measured and a method for the evaluation of surface roughness is proposed.

  2. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  3. Dynamic Analyses Including Joints Of Truss Structures

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1991-01-01

    Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.

  4. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  5. Cryotherapy impairs knee joint position sense.

    PubMed

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  6. Overview of DAN/MSL water and chlorine measurements acquired in Gale area for four years of surface observations

    NASA Astrophysics Data System (ADS)

    Litvak, Maxim

    2017-04-01

    During more than 4 years MSL Curiosity rover (landed in Gale crater in August 2012) is traveling toward sedimentary layered mound deposited with phyllosilicates and hematite hydrated minerals. Curiosity already traversed more than 14 km and identified lacustrine deposits left from ancient lakes filled Gale area in early history of Mars. Along the traverse the Curiosity rover discovered unique signatures regarding how the Mars environment changed from ancient warm and wet conditions and probably habitable environment to the modern cold and dry climate. We have summarized numerous measurements from the Dynamic Albedo of Neutron (DAN) instrument on Curiosity rover to overview variations of subsurface bound water distribution from the wet to the dry locations, compared it with other MSL measurements and with possible distribution of hydrated minerals and sequence of geological units travelled by Curiosity. We have also performed joint analysis of water and chlorine distributions and compared bulk (down to 0.5 m depth) equivalent chlorine concentrations measured by DAN throughout the Gale area and APXS observations of corresponding local surface targets and drill fines.

  7. Ankle and hip postural strategies defined by joint torques

    NASA Technical Reports Server (NTRS)

    Runge, C. F.; Shupert, C. L.; Horak, F. B.; Zajac, F. E.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Previous studies have identified two discrete strategies for the control of posture in the sagittal plane based on EMG activations, body kinematics, and ground reaction forces. The ankle strategy was characterized by body sway resembling a single-segment-inverted pendulum and was elicited on flat support surfaces. In contrast, the hip strategy was characterized by body sway resembling a double-segment inverted pendulum divided at the hip and was elicited on short or compliant support surfaces. However, biomechanical optimization models have suggested that hip strategy should be observed in response to fast translations on a flat surface also, provided the feet are constrained to remain in contact with the floor and the knee is constrained to remain straight. The purpose of this study was to examine the experimental evidence for hip strategy in postural responses to backward translations of a flat support surface and to determine whether analyses of joint torques would provide evidence for two separate postural strategies. Normal subjects standing on a flat support surface were translated backward with a range of velocities from fast (55 cm/s) to slow (5 cm/s). EMG activations and joint kinematics showed pattern changes consistent with previous experimental descriptions of mixed hip and ankle strategy with increasing platform velocity. Joint torque analyses revealed the addition of a hip flexor torque to the ankle plantarflexor torque during fast translations. This finding indicates the addition of hip strategy to ankle strategy to produce a continuum of postural responses. Hip torque without accompanying ankle torque (pure hip strategy) was not observed. Although postural control strategies have previously been defined by how the body moves, we conclude that joint torques, which indicate how body movements are produced, are useful in defining postural control strategies. These results also illustrate how the biomechanics of the body can transform discrete control

  8. Principal Component Analysis in Construction of 3D Human Knee Joint Models Using a Statistical Shape Model Method

    PubMed Central

    Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan

    2013-01-01

    The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the 3D joint surface model has been reported in literature. In this study, we constructed a SSM database using 152 human CT knee joint models, including the femur, tibia and patella and analyzed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 seconds using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus it may have a broad application in computer assisted knee surgeries that require 3D surface models of the knee. PMID:24156375

  9. Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.

    2006-12-01

    Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.

  10. Geostatistical analysis of fault and joint measurements in Austin Chalk, Superconducting Super Collider Site, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, R.E.; Nance, H.S.; Laubach, S.E.

    1995-06-01

    Faults and joints are conduits for ground-water flow and targets for horizontal drilling in the petroleum industry. Spacing and size distribution are rarely predicted accurately by current structural models or documented adequately by conventional borehole or outcrop samples. Tunnel excavations present opportunities to measure fracture attributes in continuous subsurface exposures. These fracture measurements ran be used to improve structural models, guide interpretation of conventional borehole and outcrop data, and geostatistically quantify spatial and spacing characteristics for comparison to outcrop data or for generating distributions of fracture for numerical flow and transport modeling. Structure maps of over 9 mi of nearlymore » continuous tunnel excavations in Austin Chalk at the Superconducting Super Collider (SSC) site in Ellis County, Texas, provide a unique database of fault and joint populations for geostatistical analysis. Observationally, small faults (<10 ft. throw) occur in clusters or swarms that have as many as 24 faults, fault swarms are as much as 2,000 ft. wide and appear to be on average 1,000 ft. apart, and joints are in swarms spaced 500 to more than 2l,000 ft. apart. Semi-variograms show varying degrees of spatial correlation. These variograms have structured sills that correlate directly to highs and lows in fracture frequency observed in the tunnel. Semi-variograms generated with respect to fracture spacing and number also have structured sills, but tend to not show any near-field correlation. The distribution of fault spacing can be described with a negative exponential, which suggests a random distribution. However, there is clearly some structure and clustering in the spacing data as shown by running average and variograms, which implies that a number of different methods should be utilized to characterize fracture spacing.« less

  11. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2013-09-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  12. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  13. Lithospheric architecture of NE China from joint Inversions of receiver functions and surface wave dispersion through Bayesian optimisation

    NASA Astrophysics Data System (ADS)

    Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian

    2017-04-01

    The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.

  14. Removal of surface-reflected light for the measurement of remote-sensing reflectance from an above-surface platform.

    PubMed

    Lee, Zhongping; Ahn, Yu-Hwan; Mobley, Curtis; Arnone, Robert

    2010-12-06

    Using hyperspectral measurements made in the field, we show that the effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. This means that the derived water-leaving radiance (or remote-sensing reflectance) can be highly inaccurate if a spectrally constant ρ value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote-sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.

  15. Enhancement of Sn-Bi-Ag Solder Joints with ENEPIG Surface Finish for Low-Temperature Interconnection

    NASA Astrophysics Data System (ADS)

    Pun, Kelvin P. L.; Islam, M. N.; Rotanson, Jason; Cheung, Chee-wah; Chan, Alan H. S.

    2018-05-01

    Low-temperature soldering constitutes a promising solution in interconnect technology with the increasing trend of heat-sensitive materials in integrated circuit packaging. Experimental work was carried out to investigate the effect of electroless Ni/electroless Pd/immersion gold (ENEPIG) layer thicknesses on Sn-Bi-Ag solder joint integrity during extended reflow at peak temperatures as low as 175°C. Optimizations are proposed to obtain reliable solder joints through analysis of interfacial microstructure with the resulting joint integrity under extended reflow time. A thin Ni(P) layer with thin Pd led to diffusion of Cu onto the interface resulting in Ni3Sn4 intermetallic compound (IMC) spalling with the formation of thin interfacial (Ni,Cu)3Sn4 IMCs which enhance the robustness of the solder after extended reflow, while thick Ni(P) with thin Pd resulted in weakened solder joints with reflow time due to thick interfacial Ni3Sn4 IMCs with the entrapped brittle Bi-phase. With a suitable thin Ni(P), the Pd thickness has to be optimized to prevent excessive Ni-P consumption and early Cu outward diffusion to enhance the solder joint during extended reflow. Based on these findings, suitable Ni(P) and Pd thicknesses of ENEPIG are recommended for the formation of robust low-temperature solder joints.

  16. Joint inversion of surface wave dispersion and receiver functions for crustal structure in Oklahoma

    NASA Astrophysics Data System (ADS)

    Guo, Hao

    The surge in seismicity in Oklahoma starting in 2008 raises questions about the actual locations of the earthquakes in the upper crust. The key to answering this is an improved crustal model that explains as many observations as possible. Love and Rayleigh wave dispersion, teleseismic P-wave receiver functions and some unique transverse motions observed at distances less than 100 km that are characteristics of rays reverberating in a basin provide data to derive the crustal model. The surface wave dispersion data set consists of over 300,000 Love/Rayleigh phase/group values obtained from ambient noise cross-correlation of BH channels of the 133 Transportable Array (TA) stations of Earthscope to periods as short as 2 seconds. Station coverage is dense enough to perform the tomography on a 25*25 km grid that should be able to image shallow geological structures. In addition, receiver functions were obtained using teleseismic data recorded from 3 US Geological Survey Networks (GS) stations and 6 Oklahoma Seismic Network (OK) stations from 2011 to 2014. The 1-D S-wave velocity models derived by the joint inversion of surface wave dispersion and receiver functions with geological constraints are tested by fitting the independent transverse seismograms. This test also provides constraints on the earthquake depths in relation to the geological structure.

  17. Wind tunnel model surface gauge for measuring roughness

    NASA Technical Reports Server (NTRS)

    Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.

    1987-01-01

    The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.

  18. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  19. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1993-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  20. Surface pressure measurement by oxygen quenching of luminescence

    NASA Technical Reports Server (NTRS)

    Gouterman, Martin P. (Inventor); Kavandi, Janet L. (Inventor); Gallery, Jean (Inventor); Callis, James B. (Inventor)

    1994-01-01

    Methods and compositions for measuring the pressure of an oxygen-containing gas on an aerodynamic surface, by oxygen-quenching of luminescence of molecular sensors is disclosed. Objects are coated with luminescent films containing a first sensor and at least one of two additional sensors, each of the sensors having luminescences that have different dependencies on temperature and oxygen pressure. Methods and compositions are also provided for improving pressure measurements (qualitative or quantitive) on surfaces coated with a film having one or more types of sensor.

  1. Motion deficit of the thumb in CMC joint arthritis.

    PubMed

    Gehrmann, Sebastian V; Tang, Jie; Li, Zong Ming; Goitz, Robert J; Windolf, Joachim; Kaufmann, Robert A

    2010-09-01

    Idiopathic osteoarthritis (OA) of the thumb carpometacarpal (CMC) joint is a common disabling disease that often causes pain and motion loss. The aims of this study were to characterize the multidimensional motion capability of the thumb CMC joint in a group with severe CMC OA and to compare it with a control group. We included 15 subjects with stage III/IV CMC OA according to the Eaton/Littler classification, and 15 control subjects. A motion analysis system using surface markers was employed to quantify the maximum boundary of the thumb circumduction envelope during repetitive thumb movements. We measured the area enclosed by the angular circumduction envelope and the ranges of motion (ROM) in multiple directions for the thumb CMC joint. Thumb osteoarthritis of the CMC joint stage III/IV resulted in a significantly smaller ROM in flexion/extension (45 degrees +/- 11 degrees for the CMC OA group, 59 degrees +/- 10 degrees for the controls), abduction-adduction (37 degrees +/- 6 degrees for the CMC OA group, 63 degrees +/- 13 degrees for the controls), and pronation-supination (49 degrees +/- 10 degrees for the CMC OA group, 62 degrees +/- 11 degrees for the controls) (p < .01). When analyzing the motion directions in flexion-extension and abduction-adduction separately, there was only a loss of extension and adduction (p < .01). Severe stages of thumb CMC OA cause an asymmetrical motion deficit with decreased ROM in extension and adduction, leading to decreased capability of counteropposition. Copyright 2010. Published by Elsevier Inc.

  2. Systems and Methods for Integrated Emissivity and Temperature Measurement of a Surface

    DOEpatents

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  3. Comparative analyses of measured evapotranspiration for various land surfaces

    Treesearch

    Suat Irmak

    2016-01-01

    There is a significant lack of continuously measured ET data for multiple land surfaces in the same area to be able to make comparisons of water use rates of different agroecosystems. This research presentation will provide continuous evapotranspiration and other surface energy balance variables measured above multiple land use and management practices.

  4. Photon Doppler velocimetry measurements of transverse surface velocities

    NASA Astrophysics Data System (ADS)

    Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.

    2018-06-01

    The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.

  5. Highly accurate surface maps from profilometer measurements

    NASA Astrophysics Data System (ADS)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  6. Experimental Investigation of Composite Pressure Vessel Performance and Joint Stiffness for Pyramid and Inverted Pyramid Joints

    NASA Technical Reports Server (NTRS)

    Verhage, Joseph M.; Bower, Mark V.; Gilbert, Paul A. (Technical Monitor)

    2001-01-01

    The focus of this study is on the suitability in the application of classical laminate theory analysis tools for filament wound pressure vessels with adhesive laminated joints in particular: pressure vessel wall performance, joint stiffness and failure prediction. Two 18-inch diameter 12-ply filament wound pressure vessels were fabricated. One vessel was fabricated with a 24-ply pyramid laminated adhesive double strap butt joint. The second vessel was fabricated with the same number of plies in an inverted pyramid joint. Results from hydrostatic tests are presented. Experimental results were used as input to the computer programs GENLAM and Laminate, and the output compared to test. By using the axial stress resultant, the classical laminate theory results show a correlation within 1% to the experimental results in predicting the pressure vessel wall pressure performance. The prediction of joint stiffness for the two adhesive joints in the axial direction is within 1% of the experimental results. The calculated hoop direction joint stress resultant is 25% less than the measured resultant for both joint configurations. A correction factor is derived and used in the joint analysis. The correction factor is derived from the hoop stress resultant from the tank wall performance investigation. The vessel with the pyramid joint is determined to have failed in the joint area at a hydrostatic pressure 33% value below predicted failure. The vessel with the inverted pyramid joint failed in the wall acreage at a hydrostatic pressure within 10% of the actual failure pressure.

  7. The John Charnley Award Paper. The role of joint fluid in the tribology of total joint arthroplasty.

    PubMed

    Mazzucco, Daniel; Spector, Myron

    2004-12-01

    The effect of joint fluid on the tribology (ie, lubrication, friction, and wear) of total hip arthroplasty has not yet been investigated adequately. In the current study, a friction assay was used to assess four hypotheses relating to the effect of human joint fluid and its principal components on the articulation of metal-on-polyethylene. First, joint fluid was found to produce a widely varying amount of friction between cobalt-chromium and polyethylene; this range exceeded the range produced when the articulation was lubricated by water or bovine serum. Second, it was shown that hyaluronic acid, phospholipid, albumin, and gamma-globulin were not acting as boundary lubricants, but that one or more other proteins (as yet unidentified) were responsible for reducing friction in this couple. Third, lower friction was found when oxidized zirconium alloy replaced cobalt-chromium as a bearing surface on polyethylene. Finally, a pilot study suggested that lubricin, which contributes to cartilage-on-cartilage lubrication, is not a protein responsible for the tribological variabiation found among joint fluid samples. The current study showed that joint fluid is a patient factor that influences the tribology of metal-on-polyethylene arthroplasty.

  8. Direct adenovirus-mediated gene delivery to the temporomandibular joint in guinea-pigs.

    PubMed

    Kuboki, T; Nakanishi, T; Kanyama, M; Sonoyama, W; Fujisawa, T; Kobayashi, K; Ikeda, T; Kubo, T; Yamashita, A; Takigawa, M

    1999-09-01

    Adenovirus vector system is expected to be useful for direct gene therapy for joint disease. This study first sought to confirm that foreign genes can be transferred to articular chondrocytes in primary culture. Next, recombinant adenovirus vectors harbouring beta-galactosidase gene (LacZ) was injected directly into the temporomandibular joints of Hartley guinea-pigs to clarify the in vivo transfer availability of the adenovirus vectors. Specifically, recombinant adenovirus harbouring LacZ gene (AxlCALacZ) was injected into the upper joint cavities of both mandibular joints of four male 6-week-old Hartley guinea-pigs. Either the same amount of recombinant adenovirus without LacZ gene (Axlw) suspension (placebo) or the same amount of phosphate-buffered saline solution (control) were injected into the upper joint cavities of both joints of another four male guinea-pigs. At 1, 2, 3 and 4 weeks after injection, the joints were dissected and the expression of delivered LacZ was examined by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining and reverse transcriptase-polymerase chain reaction (RT-PCR). To investigate the expression of transferred gene in other organs, total RNA was extracted from liver, kidney, heart and brain and the expression of LacZ mRNA and 18 S ribosomal RNA were analysed by RT-PCR. Clear expression of LacZ was observed in the articular surfaces of the temporal tubercle, articular disc and synovium of the temporomandibular joints even 4 weeks after injection in the AxlCALacZ-injected group, while no expression was detected in placebo and control groups. Histological examination confirmed that LacZ activity was clearly detected in a few cell layers of the articular surface tissues, which is much more efficient than in a previously study of the knee joint. In the other organs, expression of the delivered transgene was not observed. Based on these findings, direct gene delivery into the articular surface of the temporomandibular joint

  9. Thermal cycling tests on surface-mount assemblies

    NASA Astrophysics Data System (ADS)

    Jennings, C. W.

    1988-03-01

    The capability of surface-mount (SM) solder joints to withstand various thermal cycle stresses was evaluated through electrical circuit resistance changes of a test pattern and by visual examination for cracks in the solder after exposure to thermal cycling. The joints connected different electrical components, primarily leadless-chip carriers (LCCs), and printed wiring-board (PWB) pads on different laminate substrates. Laminate compositions were epoxy-glass and polyimide-glass with and without copper/Invar/copper (CIC) inner layers, polyimide-quartz, epoxy-Kevlar, and polyimide-Kevlar. The most resistant joints were between small LCCs (24 and 48 pins) and polyimide-glass laminate with CIC inner layers. Processing in joint formation was found to be an important part of joint resistant. Thermal cycling was varied with respect to both time and temperature. A few resistors, capacitors, and inductors showed opens after 500 30-min cycles between -65 C and 125 C. Appreciable moisture contents were measured for laminate materials, especially those of polyimide-Kevlar after equilibration in 100 percent relative humidity at room temperature. If not removed or reduced, moisture can cause delamination in vapor-phase soldering.

  10. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    PubMed

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of

  11. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  12. Long-term stress distribution patterns of the ankle joint in varus knee alignment assessed by computed tomography osteoabsorptiometry.

    PubMed

    Onodera, Tomohiro; Majima, Tokifumi; Iwasaki, Norimasa; Kamishima, Tamotsu; Kasahara, Yasuhiko; Minami, Akio

    2012-09-01

    The stress distribution of an ankle under various physiological conditions is important for long-term survival of total ankle arthroplasty. The aim of this study was to measure subchondral bone density across the distal tibial joint surface in patients with malalignment/instability of the lower limb. We evaluated subchondral bone density across the distal tibial joint in patients with malalignment/instability of the knee by computed tomography (CT) osteoabsorptiometry from ten ankles as controls and from 27 ankles with varus deformity/instability of the knee. The quantitative analysis focused on the location of the high-density area at the articular surface, to determine the resultant long-term stress on the ankle joint. The area of maximum density of subchondral bone was located in the medial part in all subjects. The pattern of maximum density in the anterolateral area showed stepwise increases with the development of varus deformity/instability of the knee. Our results should prove helpful for designing new prostheses and determining clinical indications for total ankle arthroplasty.

  13. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint

  14. Structural behavior of the space shuttle SRM Tang-Clevis joint

    NASA Technical Reports Server (NTRS)

    Greene, W. H.; Knight, N. F., Jr.; Stockwell, A. E.

    1986-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  15. Structural behavior of the space shuttle SRM tang-clevis joint

    NASA Technical Reports Server (NTRS)

    Greene, William H.; Knight, Norman F., Jr.; Stockwell, Alan E.

    1988-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  16. Reporting central tendencies of chamber measured surface emission and oxidation.

    PubMed

    Abichou, Tarek; Clark, Jeremy; Chanton, Jeffery

    2011-05-01

    Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report "averages" of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the "average" measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH(4) emissions and surface air CH(4) concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R(2)=0.86), indicating that surface scans are a good way of identifying locations of high emissions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Gravity: first measurement on the lunar surface.

    PubMed

    Nance, R L

    1969-10-17

    The gravity at the landing site of the first lunar-landing mission has been determined to be 162,821.680 milligals from data telemetered to earth by the lunar module on the lunar surface. The gravity was measured with a pulsed integrating pendulous accelerometer. These measurements were used to compute the gravity anomaly and radius at the landing site.

  18. Photothermal measurement of optical surface absorption using strain transducers

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Trusty, G. L.

    1981-09-01

    We discuss the measurement of small optical surface absorption coefficients. A demonstration experiment was performed using a metallurgical strain gauge to measure 488 nm absorption on the surface of a glass plate. A strain of 10 to the minus 8th power resulted from absorption of 0.3 watts. The results are interpreted and the sensitivity of a proposed fiber optic strain gauge is discussed.

  19. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.

  20. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  1. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  2. Determination of surface stress by Seasat-SASS - A case study with JASIN data

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Large, W. G.

    1981-01-01

    The values of sea surface stress determined with the dissipation method and those determined with a surface-layer model from observations on F.S. Meteor during the Joint Air-Sea Interaction (JASIN) Experiment are compared with the backscatter coefficients measured by the scatterometer SASS on the satellite Seasat. This study demonstrates that SASS can be used to determine surface stress directly as well as wind speed. The quality of the surface observations used in the calibration of the retrieval algorithms, however, is important. This sample of measurements disagrees with the predictions by the existing wind retrieval algorithm under non-neutral conditions and the discrepancies depend on atmospheric stability.

  3. Nanoindentation on SnAgCu lead-free solder joints and analysis

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.

    2006-12-01

    The lead-free SnAgCu (SAC) solder joint on copper pad with organic solderability preservative (Cu-OSP) and electroless nickel and immersion gold (ENIG) subjected to thermal testing leads to intermetallic growth. It causes corresponding reliability concerns at the interface. Nanoindentation characterization on SnAgCu solder alloy, intermetallic compounds (IMCs), and the substrates subjected to thermal aging is reported. The modulus and hardness of thin IMC layers were measured by nanoindentation continuous stiffness measurement (CSM) from planar IMC surface. When SAC/Ni(Au) solder joints were subject to thermal aging, the Young’s modulus of the NiCuSn IMC at the SAC/ENIG specimen changed from 207 GPa to 146 GPa with different aging times up to 500 h. The hardness decreased from 10.0 GPa to 7.3 GPa. For the SAC/Cu-OSP reaction couple, the Young’s modulus of Cu6Sn5 stayed constant at 97.0 GPa and hardness about 5.7 GPa. Electron-probe microanalysis (EPMA) was used to thermal aging. The creep effect on the measured result was analyzed when measuring SnAgCu solder; it was found that the indentation penetration, and thus the hardness, is loading rate dependent. With the proposed constant P/P experiment, a constant indentation strain rate h/h and hardness could be achieved. The log-log plot of indentation strain rate versus hardness for the data from the constant P/P experiments yields a slope of 7.52. With the optimized test method and CSM Technique, the Modulus of SAC387 solder alloy and all the layers in a solder joint were investigated.

  4. The sacroiliac joint: anatomy, physiology and clinical significance.

    PubMed

    Forst, Stacy L; Wheeler, Michael T; Fortin, Joseph D; Vilensky, Joel A

    2006-01-01

    The sacroiliac joint (SIJ) is a putative source of low back pain. The objective of this article is to provide clinicians with a concise review of SIJ structure and function, diagnostic indicators of SIJ-mediated pain, and therapeutic considerations. The SIJ is a true diarthrodial joint with unique characteristics not typically found in other diarthrodial joints. The joint differs with others in that it has fibrocartilage in addition to hyaline cartilage, there is discontinuity of the posterior capsule, and articular surfaces have many ridges and depressions. The sacroiliac joint is well innervated. Histological analysis of the sacroiliac joint has verified the presence of nerve fibers within the joint capsule and adjoining ligaments. It has been variously described that the sacroiliac joint receives its innervation from the ventral rami of L4 and L5, the superior gluteal nerve, and the dorsal rami of L5, S1, and S2, or that it is almost exclusively derived from the sacral dorsal rami. Even though the sacroiliac joint is a known putative source of low back and lower extremity pain, there are few findings that are pathognomonic of sacroiliac joint pain. The controlled diagnostic blocks utilizing the International Association for the Study of Pain (IASP) criteria demonstrated the prevalence of pain of sacroiliac joint origin in 19% to 30% of the patients suspected to have sacroiliac joint pain. Conservative management includes manual medicine techniques, pelvic stabilization exercises to allow dynamic postural control, and muscle balancing of the trunk and lower extremities. Interventional treatments include sacroiliac joint, intra-articular joint injections, radiofrequency neurotomy, prolotherapy, cryotherapy, and surgical treatment. The evidence for intra-articular injections and radiofrequency neurotomy has been shown to be limited in managing sacroiliac joint pain.

  5. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    NASA Astrophysics Data System (ADS)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  6. Principal component analysis in construction of 3D human knee joint models using a statistical shape model method.

    PubMed

    Tsai, Tsung-Yuan; Li, Jing-Sheng; Wang, Shaobai; Li, Pingyue; Kwon, Young-Min; Li, Guoan

    2015-01-01

    The statistical shape model (SSM) method that uses 2D images of the knee joint to predict the three-dimensional (3D) joint surface model has been reported in the literature. In this study, we constructed a SSM database using 152 human computed tomography (CT) knee joint models, including the femur, tibia and patella and analysed the characteristics of each principal component of the SSM. The surface models of two in vivo knees were predicted using the SSM and their 2D bi-plane fluoroscopic images. The predicted models were compared to their CT joint models. The differences between the predicted 3D knee joint surfaces and the CT image-based surfaces were 0.30 ± 0.81 mm, 0.34 ± 0.79 mm and 0.36 ± 0.59 mm for the femur, tibia and patella, respectively (average ± standard deviation). The computational time for each bone of the knee joint was within 30 s using a personal computer. The analysis of this study indicated that the SSM method could be a useful tool to construct 3D surface models of the knee with sub-millimeter accuracy in real time. Thus, it may have a broad application in computer-assisted knee surgeries that require 3D surface models of the knee.

  7. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  8. Metacarpophalangeal joint orientation in anthropoid manual phalanges.

    PubMed

    Rein, Thomas R; McCarty, Laura A

    2012-12-01

    The proximal articular surface angle of orientation (AO) of proximal phalanges of the hand and foot has been used to infer the locomotor profile of extinct Miocene catarrhines and early hominins. Previous work has found that joint orientation distinguishes quadrupedal from suspensory anthropoids. The purpose of this study is to expand on previous research by examining this feature within and across several primate clades, allowing us to investigate the potential influences of locomotion, substrate usage, hand posture, and phylogeny. We also report AO measurements in human proximal hand phalanges, allowing us to examine human skeletal variation within a wide comparative context. The angle of orientation was measured on manual proximal third phalanges of 21 extant anthropoid species using a Microscribe digitizer. Comparisons were made between locomotor groups within hominoids, platyrrhines, and cercopithecoids. Proximal phalanges of quadrupedal species were characterized by greater dorsal orientation than those of suspensory taxa in hominoids and atelids. In addition, arboreal quadrupeds had greater AO values than terrestrial quadrupeds within the Cercopithecoidea. However, within the terrestrial locomotor group, mean AO values did not differ between palmigrade and digitigrade taxa. Thus, while there appears to be a functional signal related to substrate usage, differences in use of hand postures when moving on the ground were not reflected in proximal joint orientation of the proximal phalanx. Finally, we measured relatively low AO values in human phalanges, which might be related to integration with serially homologous pedal phalanges that are under strong selective pressure related to bipedalism. Copyright © 2012 Wiley Periodicals, Inc.

  9. Global-scale Joint Body and Surface Wave Tomography with Vertical Transverse Isotropy for Seismic Monitoring Applications

    NASA Astrophysics Data System (ADS)

    Simmons, Nathan; Myers, Steve

    2017-04-01

    We continue to develop more advanced models of Earth's global seismic structure with specific focus on improving predictive capabilities for future seismic events. Our most recent version of the model combines high-quality P and S wave body wave travel times and surface-wave group and phase velocities into a joint (simultaneous) inversion process to tomographically image Earth's crust and mantle. The new model adds anisotropy (known as vertical transverse isotropy) to the model, which is necessitated by the addition of surface waves to the tomographic data set. Like previous versions of the model the new model consists of 59 surfaces and 1.6 million model nodes from the surface to the core-mantle boundary, overlaying a 1-D outer and inner core model. The model architecture is aspherical and we directly incorporate Earth's expected hydrostatic shape (ellipticity and mantle stretching). We also explicitly honor surface undulations including the Moho, several internal crustal units, and the upper mantle transition zone undulations as predicated by previous studies. The explicit Earth model design allows for accurate travel time computation using our unique 3-D ray tracing algorithms, capable of 3-D ray tracing more than 20 distinct seismic phases including crustal, regional, teleseismic, and core phases. Thus, we can now incorporate certain secondary (and sometimes exotic) phases into source location determination and other analyses. New work on model uncertainty quantification assesses the error covariance of the model, which when completed will enable calculation of path-specific estimates of uncertainty for travel times computed using our previous model (LLNL-G3D-JPS) which is available to the monitoring and broader research community and we encourage external evaluation and validation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Acromioclavicular joint injuries in the National Football League: epidemiology and management.

    PubMed

    Lynch, T Sean; Saltzman, Matthew D; Ghodasra, Jason H; Bilimoria, Karl Y; Bowen, Mark K; Nuber, Gordon W

    2013-12-01

    Previous studies investigating acromioclavicular (AC) joint injuries in professional American football players have only been reported on quarterbacks during the 1980s and 1990s. These injuries have not been evaluated across all position players in the National Football League (NFL). The purpose of this study was 4-fold: (1) to determine the incidence of AC joint injuries among all NFL position players; (2) to investigate whether player position, competition setting, type of play, and playing surface put an athlete at an increased risk for this type of injury; (3) to determine the incidence of operative and nonoperative management of these injuries; and (4) to compare the time missed for injuries treated nonoperatively to the time missed for injuries requiring surgical intervention. Descriptive epidemiological study. All documented injuries of the AC joint were retrospectively analyzed using the NFL Injury Surveillance System (NFLISS) over a 12-season period from 2000 through 2011. The data were analyzed by the anatomic location, player position, field conditions, type of play, requirement of surgical management, days missed per injury, and injury incidence. Over 12 NFL seasons, there were a total of 2486 shoulder injuries, with 727 (29.2%) of these injuries involving the AC joint. The overall rate of AC joint injuries in these athletes was 26.1 injuries per 10,000 athlete exposures, with the majority of these injuries occurring during game activity on natural grass surfaces (incidence density ratio, 0.79) and most often during passing plays. These injuries occurred most frequently in defensive backs, wide receivers, and special teams players; however, the incidence of these injuries was greatest in quarterbacks (20.9 injuries per 100 players), followed by special teams players (20.7/100) and wide receivers (16.5/100). Overall, these athletes lost a mean of 9.8 days per injury, with quarterbacks losing the most time to injury (mean, 17.3 days). The majority of

  11. Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces

    NASA Astrophysics Data System (ADS)

    Archer, Sean

    The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted

  12. Multi-Disciplinary Antimicrobial Strategies for Improving Orthopaedic Implants to Prevent Prosthetic Joint Infections in Hip and Knee

    PubMed Central

    Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.

    2016-01-01

    Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208

  13. Composite pipe to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  14. Diffuse Reflectance Spectroscopy for Surface Measurement of Liver Pathology.

    PubMed

    Nilsson, Jan H; Reistad, Nina; Brange, Hannes; Öberg, Carl-Fredrik; Sturesson, Christian

    2017-01-01

    Liver parenchymal injuries such as steatosis, steatohepatitis, fibrosis, and sinusoidal obstruction syndrome can lead to increased morbidity and liver failure after liver resection. Diffuse reflectance spectroscopy (DRS) is an optical measuring method that is fast, convenient, and established. DRS has previously been used on the liver with an invasive technique consisting of a needle that is inserted into the parenchyma. We developed a DRS system with a hand-held probe that is applied to the liver surface. In this study, we investigated the impact of the liver capsule on DRS measurements and whether liver surface measurements are representative of the whole liver. We also wanted to confirm that we could discriminate between tumor and liver parenchyma by DRS. The instrumentation setup consisted of a light source, a fiber-optic contact probe, and two spectrometers connected to a computer. Patients scheduled for liver resection due to hepatic malignancy were included, and DRS measurements were performed on the excised liver part with and without the liver capsule and alongside a newly cut surface. To estimate the scattering parameters and tissue chromophore volume fractions, including blood, bile, and fat, the measured diffuse reflectance spectra were applied to an analytical model. In total, 960 DRS spectra from the excised liver tissue of 18 patients were analyzed. All factors analyzed regarding tumor versus liver tissue were significantly different. When measuring through the capsule, the blood volume fraction was found to be 8.4 ± 3.5%, the lipid volume fraction was 9.9 ± 4.7%, and the bile volume fraction was 8.2 ± 4.6%. No differences could be found between surface measurements and cross-sectional measurements. In measurements with/without the liver capsule, the differences in volume fraction were 1.63% (0.75-2.77), -0.54% (-2.97 to 0.32), and -0.15% (-1.06 to 1.24) for blood, lipid, and bile, respectively. This study shows that it is possible to manage DRS

  15. Load environment of rail joint bars - phase I, effects of track parameters on rail joint stresses and crack growth.

    DOT National Transportation Integrated Search

    2013-04-01

    The load environment of joint bars was assessed under a variety of loading and track conditions. Bending stresses, thermal stresses, and residual stresses were measured on commonly used joint bars. Crack growth rates from artificially induced cracks ...

  16. [Viscosity determination of synovial fluids from the canine hip and elbow joint as well as the human knee joint].

    PubMed

    Helms, Gabriele; Rittmann, Pia; Wefstaedt, Patrick; Windhagen, Henning; Pressel, Thomas; Behrens, Bernd-Arno; Nolte, Ingo

    2008-01-01

    The development of pathological changes in both human and canine hip joints is mainly caused by a lack of synovial fluid lubrication. This results in an increased joint abrasion. Even after implantation of joint prosthesis, inadequate lubrication can lead to abrasion in the tribological pair. This can finally result in aseptic loosening of the prosthesis. In spite of the enormous number of studies that have been performed on human, only little knowledge about the tribological properties of the joints in dogs is available in the literature. For this reason the viscosities of synovial fluid, derived from physiological and pathologically changed canine elbow joints were measured. The viscosities were determined by the use of a cone-plate viscometer at different temperatures and shear rates. The obtained values were compared with the viscosity values of pathologically changed synovial fluids from human knee joints as well as with pathological samples from the canine hip joint. The results show that the viscosity values vary within a series of measurements and are inversely proportional to the temperature of the sample and the shear rate. The differences between the average viscosities of canine and human synovial fluids taken from pathologically changed joints are below 4% (22.5 s(-1) at theta1 = 25 degrees C). The findings of this study are being implemented in a FE-Model for the computation of actual forces in the hip joint during different movements. This would represent a contribution to an improved prosthetic treatment of canine and human hips.

  17. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  18. Crack growth measured on flat and curved surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Orange, T. W.; Sullivan, T. L.

    1967-01-01

    Multiple element continuity gage measures plane stress crack growth plus surface crack growth under plane strain conditions. The gage measures flat and curved surfaces and operates at cryogenic temperatures.

  19. Model-Based Estimation of Ankle Joint Stiffness

    PubMed Central

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  20. The Recommendations for Linear Measurement Techniques on the Measurements of Nonlinear System Parameters of a Joint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.

    2017-01-01

    In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less